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Simulation of the droplet-to-bubble transition in a two-fluid system
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Recent experiments by Burton and Taborek have demonstrated a droplet-to-bubble transition in the pinchoff
behavior of one inviscid fluid inside another. With D the relative densities ρE/ρI , they find transition from
(D = 0) droplet-to-bubble behavior at D ≈ 4. Numerical simulations of this two-fluid system, up to and beyond
the initial breakup of the inner fluid, have been carried out utilizing level set and boundary integral methods.
A droplet-to-bubble transition is predicted: For D sufficiently large, the volume of the satellite droplet shrinks
to zero and there is no overturning of the fluid at separation. The calculated self-similar scaling exponents and
the pinchoff region shapes match the known behavior at the droplet and bubble extremes (D = 0, D = 100).
For intermediate D values, the simulations presented here indicate that the transition range between droplet and
bubble behavior depends upon initial drop geometry. When the neck separates two nonequal inner fluid masses
the transition is mild and occurs in the range 4 < D < 10, whereas in the case of equal masses an abrupt transition
occurs at D ≈ 4 in perfect agreement with the above mentioned experiments.
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I. INTRODUCTION

In part due to many important technological applications
[1], fluid breakup has been extensively studied by means of
experimental [2], theoretical, and computational analysis [3,4].
Recently, Burton and Taborek [5] have employed a high speed
camera to study the pinchoff of xenon immersed in water. By
varying the density of the xenon, they were able to examine
the pattern of fluid pinchoff and the scaling exponents as a
function of the ratio of the fluid densities, D = ρE/ρI , where
E and I indicate the exterior (water) and interior (xenon)
fluids. They found that there appeared to be a sharp transition
in the pinchoff behavior: For D < 4 the scaling exponents
are as in the D = 0 Rayleigh limit and satellite droplets
immediately appear, while for D > 4 the exponents differ
and only a single “bubblelike” separation occurs. Using a
potential flow model, the present work studies the two inviscid
fluid evolution through pinchoff into satellite breakoff and
the development of substructures, for a wide range of D

values. For low viscosity fluids the potential flow assumption
is valid up to the nanometers length scale. Previous numerical
approximations of the same model equations [6,7], based on
marker particles, do not present results after pinchoff, which
is probably due to the inherent difficulties of these methods
to follow free boundary topological changes. Moreover, for
D > 6 numerical instabilities reported in [6,7] are absent in
the present calculations.

In a recent work [8], the collapse of a single inviscid
fluid column (D = 0, Rayleigh instability of a liquid jet) has
been numerically approximated. The algorithm combines a
level set method [9] for advancing the free surface and the
free surface boundary condition, together with a boundary
integral approach for the evaluation of surface velocities.
This approach was successful in modeling the free surface
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evolution, continuing the simulation beyond initial separation
and through the subsequent satellite drop evolution, while
accurately predicting the known scaling exponent, αD = 2/3,
of the self-similar power law r ∝ ταD . Here r is the minimum
neck radius and τ is the time remaining until pinchoff.

The model and numerical approximation introduced in the
current work allow us to consider the entire range of values for
D, including the D = 0 case. In particular, see the following:

(1) We introduce a methodology to pass through breakup
and compute dynamic motion after topological change. Mech-
anism of satellite formation, evolution, and satellite size can
be analyzed.

(2) The resulting algorithm provides a seamlessly unified
method for computing across a wide range of D values and no
numerical instabilities were present for 0 � D � 100.

(3) In the case D = 0, the two-fluid solution matches the
results in [8] and produces the known behavior at pinchoff
including correct scaling exponents and overturning of the
fluid.

(4) We are able to compute scaling exponents over the entire
range of D values. The similarity exponents and computed
profiles are consistent with those predicted by theories and
reported in recent experiments.

The initial drop shape, which was taken as in [6] for
comparison, is initially at rest with a neck already formed
separating two nonsymmetrical fluid masses. For the values
of D considered herein for this case, the transition from
satellite-to-bubble behavior (no satellite) occurs in the range
4 < D < 10. This wider range, which differs from the sharper
range (D ≈ 4) found in [5] made us conjecture that it could be
due to differences between their experimental settings and our
model physical assumptions or model initial drop geometry.
To further investigate this fact we run a new set of simulations
starting with an initial drop whose initial neck separates two
equal fluid masses. For this drop geometry a sharp transition is
found at D ≈ 4, in perfect agreement with Burton and Taborek
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FIG. 1. Physical setting in three dimensions.

laboratory experiments. These two initial drop geometries are
depicted in Figs. 2 and 3 and will be referred to as geometry 1
and 2, respectively.

II. MATHEMATICAL MODEL

The presentation below is kept as brief as possible; further
details can be found in [8,10,11]. Consider a fluid of density
ρI immersed in an (infinite) exterior fluid of density ρE . The
system is initially at rest and, in absence of gravity, the fluid
movement is induced by surface tension forces.

Let �k(t), k = I,E , be the three-dimensional (3D) in-
terior and exterior fluid domains, respectively, �t (s) =
(x(s,t),y(s,t),z(s,t)) a parametrization of the free surface
boundary at time t and R(s,t) the position vector of a fluid
particle on the moving front (see Fig. 1). Assuming potential
flow, the fluid velocities uk for each fluid domain �k(t),
k = I,E are given in terms of a potential φk ,

uk = ∇φk, (1)

�φk = 0, (2)

DtR = uI on �t (s). (3)

The last equation is the kinematic boundary condition (for the
interior fluid), which states that the interface moves with the
fluid velocity, with Dt denoting the total derivative following
the fluid (interior) particles,

Dt = ∂

∂t
+ uI · ∇. (4)

On the free boundary between the two fluid domains, �t (s),
the continuity of the normal velocity and normal stress tensor
gives

n · ∇φI = n · ∇φE ,

ρI

(
∂φI
∂t

+ 1

2
|∇φI |2

)
− ρE

(
∂φE
∂t

+ 1

2
|∇φE |2

)
+ γ κ = 0,
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FIG. 2. Computational domain in the r-z plane, drop geometry 1.
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FIG. 3. Computational domain in the r-z plane, drop geometry 2.

where n is the unit normal vector pointing from the interior
to the exterior domain, κ = 1/R1 + 1/R2 is twice the mean
curvature of the surface, R1,R2 is the principal radii of
curvature, and γ is the surface tension coefficient. Taking as
characteristic length scale the initial neck radius r0 and time
scale t0 = (ρIr

3
0 /γ )1/2 we get(

∂φI
∂t

+ 1

2
|∇φI |2

)
− D

(
∂φE
∂t

+ 1

2
|∇φE |2

)
+ κ = 0,

where now all the quantities are nondimensional. Next adding
and subtracting the needed terms we obtain

∂φI
∂t

− D
∂φE
∂t

+ uI · (∇φI − D∇φE )

= uI ·
(

1

2
∇φI − D∇φE

)
+ D

2
uE · ∇φE − κ,

and setting φD = φI − DφE , we have

∂φD

∂t
+ uI · ∇φD = f on �t (s),

where

f = uI ·
(

1

2
uI − DuE

)
+ D

2
uE · uE − κ.

The model equations in three dimensions (k = I,E) are
therefore

uk = ∇φk in �k(t), (5)

�φk = 0 in �k(t), (6)
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FIG. 4. Minimum neck radius time evolution for D =
0,1,2,4,6,20,100 (left to right).

046318-2



SIMULATION OF THE DROPLET-TO-BUBBLE . . . PHYSICAL REVIEW E 83, 046318 (2011)

TABLE I. Pinchoff time and relative error in volume, geometry 1.

D tp (coarse) tp (fine) eV (coarse) eV (fine)

0 0.4551 0.4551 1.2036 ×10−3 1.4499 ×10−3

1 0.5320 0.5263 1.0443 ×10−3 5.5482 ×10−4

2 0.5585 0.5566 8.3183 ×10−4 4.6596 ×10−4

4 0.5930 0.5923 5.9535 ×10−4 4.6892 ×10−4

6 0.6265 0.6265 4.9328 ×10−4 4.1447 ×10−4

20 0.8640 0.8620 4.4317 ×10−4 2.2308 ×10−4

100 1.9300 1.8956 5.6643 ×10−4 1.8306 ×10−4

DtR = uI on �t (s), (7)

DtφD = f on �t (s). (8)

This Lagrangian-Eulerian formulation is frequently ap-
proximated numerically using the so-called “front tracking
method,” which suffers difficulties when the free boundary
changes topology. These problems are avoided using the level
set formulation for both the kinematic and dynamic boundary
conditions (7) and (8).

The remaining boundary condition needed to simultane-
ously solve the two Laplace equations, Eq. (6), is that the
normal velocities in the two fluids are equal and opposite in
sign. The far field condition for the exterior potential is set to
zero.

III. LEVEL SET EMBEDDING

The level set method is a mathematical tool developed by
Osher and Sethian [12] to follow interfaces which move with
a given velocity field. The key idea is to view the moving front
as the zero level set of a higher dimensional function, called
the level set function. One main advantage of this approach
comes when the moving boundary changes topology, and thus
a simply connected domain splits into separated disconnected
domains. Let �D be a fixed 3D rectangular domain that
contains the free boundary at any time t and �t (s) the set of
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FIG. 6. Front profiles for D = 6, coarser and finer grids.

points lying in the surface boundary at time t . This surface is
defined through the zero level set of the scalar field �(x,y,z,t).
An equation of motion for � that ties the zero level set of �

to the evolving front comes from observing that the level set
value of a particle on the front with path R(s,t) must always
be zero:

�(R(s,t),t) = 0. (9)

To embed the free surface boundary condition given by Eq. (8)
into the level set framework, we define G(x,y,z,t) on �D such
that

G(R(s,t),t) = φD(x,y,z,t)|�t (s) = φD(R(s,t),t). (10)

Differentiating Eqs. (9) and (10) with respect to time, following
the interior fluid particle characteristics, we have

�t + uI · ∇� = 0, (11)

Gt + uI · ∇G = DtφD = f, (12)

which holds on �t (s). Note that G(x,y,z,t) is an auxiliary
function that can be chosen arbitrarily, the only restriction
being that it is equal to φD(x,y,z,t) on the free surface. The
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FIG. 5. Focused fronts at pinchoff.
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FIG. 7. Focused front profiles for D = 4, coarser and finer grids.

velocity uI and the right-hand side of Eq. (12) are only defined
on �t (s), and thus, in order to solve Eqs. (11) and (12) over
the domain �D , these variables must be extended off the front.
A detailed description of how to perform these extensions is
given in [13]. The system of equations, written in a complete
Eulerian framework (k = I,E), is

uk = ∇φk in �k(t), (13)

�φk = 0 in �k(t), (14)

�t + uIext · ∇� = 0 in �D, (15)

Gt + uIext · ∇G = fext in �D. (16)

The subscript “ext” denotes the extension of f and uI onto
�D .

The free surface equations (7) and (8) have now been
embedded into the higher dimension equations (15) and (16)
and it can be shown that system (13)–(16) is equivalent to
system (5)–(8). In fact, this enriches the kinematics of the
system, in the sense that it can incorporate topological changes

3.1 3.2 3.3 3.4 3.5 3.6

−0.2

−0.1

0

0.1

0.2

z

r

coarser

finer

FIG. 8. Focused front profiles for D = 6, coarser and finer grids.
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FIG. 9. Front focused at t = 0.635 for D = 6 showing BEM nodes.

of the free surface, and as well the evolution of the associated
potential function within this boundary; see [8,14].

Assuming symmetry around the z axis the previous system
can be formulated in two dimensions by writing the equations
in cylindrical coordinates. The equations in the (r,z) plane
remain the same except the Laplacian that should be changed
accordingly. In what follows axisymmetry will always hold
and �k(t), k = I,E , will denote the 2D fluid domains in
the (r,z) plane, �t (s) the free boundary between these fluid
domains, and �D is a 2D fixed domain that contains the free
boundary for all times.

IV. NUMERICAL APPROXIMATION

The numerical approximation of system (13)–(16) in the
(r,z) plane can be described in two basic steps. First, using
a standard first-order backward Euler explicit scheme to
approximate time derivatives in the level set equations, the
system to be solved for each time tn and time step �t , k = I,E
is

un
k = ∇φn

k in �k(tn), (17)

�φn
k (r,z) = 0 in �k(tn), (18)

�n+1 − �n

�t
= −un

Iext · ∇�n in �D, (19)

Gn+1 − Gn

�t
= −un

Iext · ∇Gn + f n
ext in �D. (20)

The second main task is to solve Eqs. (18) for the free
surface velocity, subject to the boundary condition φn

I −
Dφn

E = Gn. This is accomplished by solving the boundary
integral equation corresponding to the Laplace equations in
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FIG. 10. Front focused at t = 1.897 14 for D = 100 showing
BEM nodes.
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TABLE II. Second pinchoff time, final time, relative error in
volume, and total number of time steps, geometry 1.

D ts tf eV Nsteps

0 0.46930 0.61430 2.4440 ×10−3 2001
0.3 0.48440 0.58445 1.0490 ×10−3 2001
1 0.55105 0.60635 1.3435 ×10−3 1601
2 0.57480 0.60675 1.1421 ×10−3 1001
4 0.60355 0.61095 1.0013 ×10−3 360
6 0.63325 0.63630 8.1248 ×10−4 196
20 0.86420 3.4854 ×10−4 121
100 1.89714 4.0577 ×10−4 145

the axisymmetric geometry depicted in Fig. 2, the details
to be discussed in Sec. IV C. With the computed velocity,
the new position of the boundary is determined from the
level set equation (19), and the potential φD on �tn+1 (s) will
be obtained from Eq. (20). These procedures are described
below.

A. Initialization

To initialize the system (17)–(20) the initial front posi-
tion �0(s) = (r(s),z(s)) and velocity potential φD(r,z,0) are
needed. For the initial front position we take the same geometry
as in [6]:1

z(s) = 1 + B[1 − a(s)],

r(s) = g1(s) + g2(s),

a(s) = [cos(s) + 1]/2,

and for 0 < s < π we set

g1(s) =
√

B
√

a(s) (e−B2[a(s)]2/2 − e−B2/2),

g2(s) = C
√

B
√

1 − a(s) (e−B2[a(s)−1]2/2 − e−B2/2),

and we set φD(r,z,0) = 0. The initial geometry for B = 5 and
C = 2, referred to as geometry 1, is depicted in Fig. 2. Drop
geometry 2 was built by making the left side of the previous
geometry symmetric with respect to z = 3.5 as is shown in
Fig. 3.

B. Level set numerical schemes

The fixed computational domain for Eqs. (19) and (20)
is taken as �D = [0,L1] × [0,L2], L1,L2 being such that
�D will contain the free boundary for all t ∈ [0,T ] (see
Fig. 2). A rectangular mesh over the domain �D defines a set
of points D� = {(ri,zj ) : ri = i�r,zj = j�z,i = 1,N,j =
1,M}, with N , M the number of mesh points in the r and
z directions and �r , �z the corresponding mesh sizes. Let
n = (nr,nz) be the unit normal vector to �tn (s) and u, v

the radial and axial inner fluid velocity components. The
axisymmetric assumption implies u = 0 and nr = 0 at �z,
and thus

∂�n

∂r
= 0;

∂Gn

∂r
= 0 at �z

1These formulas were kindly supplied by Professor David Leppinen.
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FIG. 11. Front profiles at indicated times, D = 0.

will be imposed for Eqs. (19) and (20). Let Gn
i,j be the

numerical approximation of the fictitious potential G(ri,zj ,tn).
A first-order upwind scheme approximation of Eq. (20) yields,
for i = 2,N − 1; j = 2,M − 1,

Gn+1
i,j = Gn

i,j − �t
[
max

(
un

i,j ,0
)
D−r

i,j + min
(
un

i,j ,0
)
D+r

i,j

+max
(
vn

i,j ,0
)
D−z

i,j + min
(
vn

i,j ,0
)
D+z

i,j

] + �tf n
i,j ,

where

D−r
i,j = D−r

i,j

{
Gn

i,j

} = Gn
i,j − Gn

i−1,j

�r
,

D+r
i,j = D+r

i,j

{
Gn

i,j

} = Gn
i+1,j − Gn

i,j

�r

are the backward and forward finite difference approximations
for the derivative in the radial direction (the same expressions
hold for the corresponding z derivatives D−z

i,j and D+z
i,j ). The

discrete boundary conditions are

v1,j = 0 for j = 1,M,

∂Gn
i,j

∂r
≈ 4Gn

2,j − 3Gn
1,j − Gn

3,j

2�r
for (ri,zj ) ∈ �z,

Gn
i,1 = Gn

i,2; Gn
i,M−1 = Gn

i,M for i = 1,N,

Gn
N,j = Gn

N−1,j ; Gn
1,j = Gn

2,j for j = 1,M.

The same discrete equations, without a source term, can be
written for �, Eq. (19).
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FIG. 12. Front profiles at indicated times, D = 0.3.

Note that, for simplicity, we have written u,v,f instead
of uext,vext,fext, and we describe a first-order explicit scheme
with a centered source term. Initial values of G0

i,j are obtained
by extending φD(r,z,0)|�0(s). However, at any time step n it is
always possible to perform a new extension of φn

D(r,z,n�t)
and a reinitialization of the level set function. We remark
here that if reinitialization is done too often, especially using
poor reinitialization techniques, spurious mass loss or gain
will occur. Thus it is important to perform reinitialization
both sparingly and accurately. For the calculations reported
below, conservation of total volume and energy are monitored,
and these numbers are seen to be constant within reasonable
accuracy. The relative error in volume and energy are less than
0.2%, respectively.

A key issue is how one obtains uIext and fext on the grid
points of �D . One is free to choose any extension for the
velocity and the right-hand side, as long as they smoothly
tend to the correct values on the interface, and do not induce
instabilities in the resulting flow. Given any point in the
domain, a natural way to construct such an extension is to
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FIG. 13. Front profiles at indicated times, D = 1.

choose the value at this point to be the same as that of the closest
point on the interface: this idea was first introduced in [15],
and executed by following the characteristics of the signed
distance function corresponding to the level set function. An
equivalent formulation is to solve the equation ∇W · ∇� = 0,
where W is the quantity to be extended: This was discussed in
detail in [13], along with a fast Dijkstra-like method to solve
this equation. In our case, we calculate f on free surface nodes,
and use these values together with the condition ∇f · ∇� = 0
to obtain fext. For the inner fluid velocity components we
follow the same strategy, ∇u · ∇� = 0, ∇v · ∇� = 0. This
algorithm for extending quantities defined on the front to off
the front works very well for the velocity field in the case of
Eq. (15), as it maintains the signed distance function for the
level sets of �.

C. Boundary integral equations

The direct boundary integral formulation for the two-fluid
problem that is employed in this work has been discussed
in detail in [11], and thus this section provides only a brief
summary of this approach. The method is direct in that, in
contrast to previous work [6,7], the potentials and normal
derivatives for the two fluids are the basic variables. It is
also worth noting that there are other significant differences
with the boundary integral approximations employed in [6,7].
Herein, a linear element Galerkin method [16] is employed, in
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FIG. 14. 3D Front profiles at various times (same as in Fig. 13),
D = 1. For the horizontal axis 0.4 � z � 6.6 and the vertical axis
−1.33 � r � 1.33.
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FIG. 15. Front profiles at indicated times, D = 2.
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FIG. 16. Front profiles at indicated times, D = 4.

contrast to the high-order collocation approximation in [6,7],
and the methods for computing the critical surface gradient are
completely different.

With the linear element discretization and Np free boundary
nodes, the boundary integral equations for the exterior and
interior fluids, Eqs. (14), become the matrix equations

HEφE − GE
∂φE
∂n

= 0,

HIφI − GI
∂φI
∂n

= 0. (21)

This can be simplified by directly incorporating the interface
conditions: The interior and exterior potentials are related
through the prescribed interface function φD = φI − DφE ,
and the fluid normal derivatives differ only in sign. Moreover,
an examination of the boundary integral equations shows that
GE = GI and that HI and HE differ by a sign except for the
singular term that is discontinuous crossing the boundary.
Defining ĤE = −HI , ĤE will differ from HE only in the
discontinuous jump term. Incorporating this information, one
can eliminate the interior fluid quantities in Eq. (21) to obtain
the system

(
HE −GE

−DĤE GE

)(
φE
∂φE
∂n

)
=

(
0

ĤEφD

)
. (22)
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FIG. 17. Front profiles at indicated times, D = 6.

Finally, this 2Np × 2Np set of equations can be further
simplified to solving two-order Np matrix systems,

(
HE − DĤE

)
φE = ĤEφD,

GE
∂φE
∂n

= HEφE . (23)

Moreover, with the Galerkin scheme described in [16] the
second subsystem is symmetric. Consequently, the construc-
tion of the two-fluid boundary integral matrices is no more
expensive than for a single fluid. However, compared to a
single fluid simulation, the two-fluid solution involves an
additional matrix-verctor multiplication to compute HEφE
and an additional resolution of a Np × Np symmetric linear
system. Once the exterior boundary functions have been
obtained from Eq. (22), the interior functions are known as
well, and the algorithm discussed in [16] can be applied in
each fluid to obtain the needed boundary gradients.

D. Free surface numerical representation

In a level set formulation the position of the front, � = 0,
is extracted from the level set nodal values of the fixed grid,
�D . Here we use a first order linear approximation of the free
surface, yielding a polygonal interface formed by unevenly
distributed nodes, which are the level set nodes. At each time
step, to overcome instabilities due to very close nodes for
the boundary element calculation and to reduce computational
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FIG. 18. Front profiles at indicated times, D = 10.

time, a regriding technique described in [8] has been employed.
Here the new set of nodes Np, used for the boundary integral
calculation and the level set extensions, are equally spaced
giving a constant boundary mesh size �s. These reduced set
of nodes will be referred to as BEM nodes.

V. NUMERICAL RESULTS

In order to validate the computed results obtained with our
model, all the standard numerical tests required to this end have
been carried out. In particular, a complete numerical analysis
comparing the numerical results with the analytical solution of
an oscillating sphere was presented in [11]. In what follows we
present the numerical experiments and results for the breakup
and post breakup dynamics of a two lobe geometry drop.

A. Two-fluid system breakup simulations

A set of numerical experiments have been carried out for
different D values, starting always with the initial conditions
described in Sec. IV A, geometry 1. The computations were
also carried out after pinchoff to study post separation
dynamics and the evolution, if present, of the satellite drops.
The fixed domain for the level set computations is set to
�D = [−2,2] × [0,8]. As the flow is much faster after first
pinchoff event and very tiny structures may appear, we have
organized the numerical experiments before and after pinchoff.
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FIG. 19. Front profiles at indicated times, D = 100.

1. Before breakup results

To check the behavior of the computed solution with
respect to the discretization parameters we have run two cases:
(a) �r = �z = 0.01, Np = 201, and (b) �r = �z =
0.005, Np = 301, which will be referred to as coarse and fine
grids. As the total arc length of the free boundary changes with
time, the boundary mesh size also changes, being �s ≈ 0.033
and �s ≈ 0.025 for cases (a) and (b), respectively. The time
step is 0.001 initially and changed adaptively according to the
scheme described in [11].

The variables used to characterize the interior fluid flow
are the evolution of the minimum neck radios rmin with time,
the nondimensional pinchoff time tp, the relative error in the
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FIG. 20. Focused details of satellite pinching and coalescing at
indicated times, D = 0.3.
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FIG. 21. Scaling of rmin at pinchoff for D = 0 and D = 100.

volume of the inner fluid eV , and the pinchoff profiles near
breakup. In Fig. 4 we show the values of rmin versus time for
both mesh sizes and parameter values D = 0,1,2,4,6,20,100,
and in Table I nondimensional pinchoff time and relative error
in drop volume are listed for all D values and both grids.

The evolution of rmin versus time is almost the same for both
meshes, although the breakup happens slightly earlier using
the finer grid for all D values. This could be due to the fact
that numerical viscosity diminishes with grid size. Note that
the nondimensional pinchoff time increases with D, but when
converting it to real time, multiplying by the appropriate t0 for
each case, it actually diminishes as D increases, in accordance
with the physical evidence that bubbles break up sooner than
droplets.

The relative error in the inner drop volume is always
less than 0.15%, and also diminishes by increasing the grid
resolution. Figure 5 shows the front profiles focused near
the pinchoff region for D = 0,1,4,6,10,20. When 0 � D � 1
the overturning of the profile before separation is quite

−7 −6 −5 −4 −3 −2 −1 0
−7

−6

−5

−4

−3

−2

−1

0

α
D

=0.632

D=4

ln τ

ln
 r

m
in

FIG. 22. Scaling of rmin for D = 4 (squares for the fitted region).
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FIG. 23. Scaling of rmin for D = 6 (squares for the fitted region).

pronounced, whereas for D > 4 there is no overturning.
Moreover, the numerical instabilities for large D seen in
previous work are absent. To show that this is not due to the
mesh resolution we depict in Fig. 6 the coarse and fine profiles
at pinchoff time for D = 6 which are nearly indistinguishable.
In Figs. 7 and 8 we show the profiles for both meshes focused
near the pinchoff point for D = 4 and D = 6, respectively.
Here the level set nodes are marked. As expected, the finer
grid better resolves the front details, with the relative difference
in the axial coordinate at pinchoff time less than 2% for all
D values.

2. After breakup results

In the case of drop geometry 1, with the initial neck sepa-
rating two nonequal fluid masses, the satellite drop appears at
the second pinchoff event for D = 0,0.3,1,2,4,6. The satellite
size diminishes and evolves faster as D increases. To follow
the evolution of such tiny drops �r = �z and �s should
be small enough, restricting the time step size accordingly.
The discretization parameters are set to �r = �z = 0.005
and Np = 201 for each of the two main drops, which makes
�s ≈ 0.015–0.02. For the satellite drop, depending upon its
total arc length, we take �s ≈ 0.005–0.01. Satellites with
sizes under the mesh resolution cannot be resolved and are
automatically removed from the simulation.

TABLE III. Computed αD , VD , tp , and eV for geometry 1.

D αD VD tp eV

0 0.670 1.510834 ×10−1 0.4551 1.4499 ×10−3

0.3 0.660 1.062827 ×10−1 0.4844 1.0496 ×10−3

1 0.651 5.162887 ×10−2 0.5263 5.5482 ×10−4

2 0.642 2.128503 ×10−2 0.5566 4.6596 ×10−4

4 0.632 4.668228 ×10−3 0.5923 4.6892 ×10−4

6 0.622 1.347971 ×10−3 0.6265 4.1447 ×10−4

10 0.593 1.049214 ×10−4 0.6944 2.7416 ×10−4

20 0.572 0 0.8620 2.2308 ×10−4

100 0.560 0 1.8956 1.8306 ×10−4
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FIG. 24. (Color online) Scaling exponents versus D, calculated
and experimental values, geometry 1.

The total simulated time is different for each D value,
as the time step should be diminished from �t = 5 × 10−5

for D = 0,0.3,1,2,4 to �t = 10−5 for D = 6,10,20,100.
Moreover, for these larger D values the exterior fluid penetrates
completely the interior fluid, at which point the simulation is
stopped. See Fig. 9 at t = 0.635 for D = 6, in which the BEM
nodes are also depicted. At this particular time the number of
nodes for the satellite drop is Np = 79. The same pattern is
seen in Fig. 10 for D = 100 at t = 1.897 14. This behavior
could indicate the initiation of a Worthington jet as reported
in [17].

In Table II we show for each D value the second pinchoff
time ts , the final time tf , the relative error in the inner fluid
volume at tf , eV , and the total number of time steps performed,
Nsteps.

Volume conservation of the inner fluid is very accurate,
as the volume lost is always less than 0.25% at the end of
each simulation. Finally, in Figs. 11, 12, 13, 14, 15, 16, 17,
18, and 19 the complete evolution of the two-fluid system,
before and after pinchoff time, at the indicated times, is
depicted for D = 0,0.3,1,2,4,6,10,100, respectively. Note
that the pictures in Fig. 14 are 3D renderings of the 2D
profiles for D = 1 shown in Fig. 13. We include them to
enhance the sense of reality and to be able to compare
the structures of the computed satellite drop with those
seen in laboratory experiments [2,5]. It is also possible to
visualize the complete simulation corresponding to D = 1 in
the supplemental material [18]. By inspecting the numerical
profiles, it can be seen that not only does the shape at separation
depend strongly upon the density ratio, but also the evolution
and shapes of the main drops and satellites. For D < 1

TABLE IV. Computed αD , VD , tp , eV , and eE for geometry 2.

D αD VD tp eV eE

0 0.678 9.0251 ×10−4 0.63823 2.4830 ×10−3 1.4927 ×10−3

1 0.659 1.5225 ×10−4 0.72132 9.4134 ×10−4 1.3795 ×10−3

2 0.640 5.3837 ×10−5 0.79310 8.9296 ×10−4 2.3295 ×10−3

4 0.599 0 0.88755 7.7861 ×10−4 1.4714 ×10−3

6 0.585 0 0.97710 7.3217 ×10−4 3.8314 ×10−4
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FIG. 25. (Color online) Scaling exponents versus D, calculated
and experimental values, geometry 2.

tiny capillary waves propagate through the surface of the
satellite drop leading to subsequent pinchoff events. For D = 0
and D = 0.3 the satellites break up at times t = 0.6081 and
t = 0.608 25, respectively, showing profile overturning before
pinchoff, but soon after the two smaller satellites coalesce
entrapping a microbubble; see focused details of these events
for D = 0.3 in Fig. 20.

For 1 � D � 4 the satellite is compressed by the exterior
fluid, evolving quickly toward a spherical shape, but is then
further elongated to a narrow disc; see Fig. 13. Values in
the range 4 < D � 10 lead to filamentlike satellites, which
eventually split into smaller satellites. In particular, for D = 10
a very tiny inner fluid drop develops at separation following
the same pattern as predicted by [19]; see Fig. 18 at time
t = 0.694 45. For D � 20 no satellites are present, at least
within the space and time resolution of the present simulations.

B. Transition regime from droplet-to-bubble behavior

To investigate the droplet (D = 0) -to-bubble (D → ∞)
transition, the computations were initiated with the
same “two-lobe” drop geometry 1, and values D =
0,0.3,1,2,4,6,10,20,100 were selected. All the computations
before breakup have been performed with two different sets
of discretization parameters as explained previously. In this
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FIG. 26. rmin evolution, theoretical and calculated, for D = 6 and
geometry 2.

TABLE V. Calculated scaling exponents depending upon rmin

range for D = 6 (geometry 2).

rmin Range αD

[0.0066, 0.0121] 0.585
[0.0061, 0.0121] 0.572
[0.0061, 0.0112] 0.56

section the reported scaling exponents are based upon results
for the finer mesh.

It is generally accepted that the solution of the two-fluid
system approaching pinchoff time is self-similar for any D

and the minimum neck radius follows a power law

rmin ∝ ταD ,

where τ = tp − t is the remaining time until pinchoff. For
D = 0, droplets in air, αD = 2/3 [6] and for D = ∞, i.e., an
air bubble, the scaling exponent α∞ is not constant but rather
has a logarithmic correction

α(τ ) ≈ 1

2
+ 1

4
√− ln τ

(24)

and the approach to the asymptotic limit 1
2 is exceedingly

slow [20]. Detailed experiments yield an approximate effective
exponent with α∞ ≈ 0.53–0.57 [2,21]. Recently, for air
bubbles, it has been reported [22] that the time scale for the
onset of this universal final regime, characterized by the above
exponent, is found to vary by orders of magnitude depending
on the various physical realizations, from the milliseconds
range to the microseconds range.

Calculated scaling results for the two extremes, D = 0 and
D = 100, are shown in Fig. 21, which plots ln rmin versus ln τ .
The linear fit yielded 0.66 and 0.56 for the computed power
law exponents, in excellent agreement with known results.

For intermediate values of D, the evaluation of the expo-
nents is more difficult. As seen in the scaling plot for D = 4
and D = 6, Figs. 22 and 23, the linear region is shorter and the
value for αD will vary somewhat depending upon the chosen
interval. We have taken nondimensional values in the range
0.005 < rmin < 0.011, which corresponds approximately to
the same fitting interval reported in [5]. To make Figs. 22
and 23 clearer only one out of ten data points have been plotted.
Nevertheless, we have observed that the calculated exponents
for these intermediate D values diminish as we get closer
to pinchoff, which is consistent with the slowly decreasing
formula (24).

The computed exponents αD , the satellite drop volume
(relative to the total volume in %) VD , the pinchoff time tp,
and and the relative error in computed volume at pinchoff
time eV , for the finer grid are listed in Table III. Note that the
nondimensional pinchoff time increases with D, but actually
when converted to real time we get 76 ms for water droplets
and 7.9 ms for air bubbles.

In Fig. 5 we show the 2D front profiles for D =
0,1,4,6,10,20 at pinchoff time. The overturning of the fluid
at pinchoff present in Fig. 5 for D = 0,1 is already absent for
D = 6. Moreover, for D = 6, the overturning and interface
instability near pinchoff that was seen in previous calculations
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FIG. 27. 3D profiles at pinchoff for D = 0,1,2,4,6 (top to
bottom), geometry 2. For the horizontal axis 0.4 � z � 6.6 and the
vertical axis −1.33 � r � 1.33.

[6,7] is not present, and the lack of instability is consistent
with the Burton and Taborek experiments.

To show that these results are not due to the mesh resolution,
the front profiles for D = 6 were computed with the coarse and
finer grids, as explained in Sec. V A, and at pinchoff time are
depicted in Fig. 6. Note that the overall front profile is almost
indistinguishable and the difference in the axial coordinate
at the separation point is less than 2%. No instabilities were
found up to the finer mesh resolution.

As shown before, the calculations have been continued after
pinchoff for all D values. In the range 0 � D � 10 a satellite is

FIG. 28. 3D focused profiles at pinchoff for D = 0,1,2 (top to
bottom), 30◦ view.

FIG. 29. 3D focused profiles at pinchoff for D = 4,6 (top to
bottom), front view. For the horizontal axis 2.9 � z � 4.1 and the
vertical axis −0.26 � r � 0.26.
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FIG. 30. 3D profiles after pinchoff for D = 4, global and focused.
For the horizontal axis 2.9 � z � 4.1 and the vertical axis −0.26 �
r � 0.26.

formed and its volume decreases as D increases. For D = 10
a very tiny satellite is still present, whereas for D = 20 and
D = 100 the flow is much faster and the satellite is absent.

The numbers for the scaling exponents, the satellite drop
volume, and the front profiles at pinchoff would seem to
indicate a continuous transition from droplet to bubble in
the range 4 < D < 10, rather than the sharp transition D ≈ 4
predicted by Burton and Taborek, at least for drop geometry 1.
However, further analysis has shown that our results are
in complete agreement with those of Burton and Taborek,
when discrepancies in the initial drop geometry are taken
into account. In Fig. 24, the computed scaling exponents
for geometry 1 are compared with those reported in [5].
Experimental values in the range 0 < D < 1 would be very
useful for comparison, but they are not reported in [5].

To ascertain whether the transition range depends upon
initial conditions, we ran a series of numerical experiments
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FIG. 31. (Color online) Satellite volume versus D, theoretical and
calculated, geometry 1.

starting with a two lobe geometry drop, with an initial
neck separating two equal inner fluid masses (geometry 2;
see Fig. 3). The simulations were carried out for D =
0,1,2,4,6, with the same fixed domain �D = [−2,2] × [0,8]
and finer mesh discretization parameters. For the free surface
representation equally spaced nodes were chosen with fixed
�s = 0.03, which led to Np ≈ 250 for all cases. For this
set of numerical experiments, the conservation of the total
system energy, calculated as in [11], was also monitored; the
relative error at pinchoff time eE is shown in Table IV, together
with αD,VD,tp, and eV obtained for each D value. Inspecting
Table IV and Fig. 25, where the computed and experimental
scaling exponents are plotted for this drop geometry, we can
conclude that the transition region is sharp and it occurs
at D ≈ 4, in perfect agreement with Burton and Taborek
findings.

The slow decreasing behavior of the scaling exponent in the
bubble regime has also been investigated for geometry 2 and
D = 6. Here we have used formula (24) to plot the theoretical
rmin = C1 τα(τ ) and the computed rmin versus τ . Figure 26
shows that there is a good agreement if we take C1 = 0.2
in the range 0.005 < rmin < 0.015. The linear fittings to the
computed behavior of rmin lead to decreasing scaling exponents
shown in Table V.

Finally we depict in Fig. 27 3D renderings of the drop
profiles for D = 0,1,2,4,6 at pinchoff time. For D = 0,1,2 the
drop profile overturns and we have focused the pinchoff region
with a camera angle of 30◦; the corresponding renderings are
shown in Fig. 28. In the case of D = 4,6 there is no overturning
and focused profiles are shown in Fig. 29. The axial coordinate
at pinchoff time is zp = 3.5 for D = 4,6, and tiny satellites
can be seen in Fig. 30 for D = 4. For D = 6 no satellite drop
is developed up to the finer mesh resolution.

C. Satellite volume

Satellite size predictions are very useful in many techno-
logical applications. The calculated relative sizes of satellites
corresponding to geometry 2 are smaller than those computed
with geometry 1 when comparing the same D values. In
Fig. 31 we plot the volume of the satellite with respect to
the density ratio D for geometry 1. It can be inferred that
the formation mechanism of droplets and bubbles may differ
significantly as the curve shows different behavior above and
below the value D = 1. For the bubble regime and geometry 1
we have compared the computed satellite volume with the
theoretical formula (9) given in [19] and found good agreement
for parameter values of A = 0.1 and �� = 4; see Fig. 31.

VI. CONCLUSIONS

By using the level set–boundary integral approach we have
built up a seamless modeling and numerical methodology
to study the evolution through pinchoff into post separation
dynamics for a two inviscid fluid system. The calculations
accurately predict the limiting Rayleigh case D = 0 and
bubble D = ∞ behaviors and no numerical instabilities are
seen in the range 0 � D � 100. Therefore, unlike previous
computational work, it has been possible to compute scaling
exponents for the minimum neck radius over the entire range of
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relative fluid density D. The transition range between droplet
and bubble behavior has also been studied and it seems to be
nonuniversal, as we have shown its dependency upon initial
drop geometry. For an initial drop with a neck separating two
equal inner fluid masses the transition zone is sharp and it
happens at D ≈ 4, in perfect agreement with experimental
findings of Burton and Taborek. For a drop with nonequal
fluid masses at both sides on the initial neck, the transition is
milder and occurs in the range 4 < D < 10.
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