
Journal of High Energy Physics
     

First-order flow equations for extremal and non-
extremal black holes
To cite this article: Jan Perz et al JHEP03(2009)150

 

View the article online for updates and enhancements.

Related content
First-order flow equations for extremal
black holes in very special geometry
Gabriel L. Cardoso, Anna Ceresole,
Gianguido Dall'Agata et al.

-

Flow equations for non-BPS extremal
black holes
Anna Ceresole and Gianguido Dall'Agata

-

Entropy function for non-extremal black
holes in string theory
Rong-Gen Cai and Da-Wei Pang

-

Recent citations
First order flow equations for nonextremal
black holes in AdS (super)gravity
Dietmar Klemm and Marco Rabbiosi

-

Comments on fake supersymmetry
Juan Diaz Dorronsoro et al

-

Non-extremal black hole solutions from the
c-map
D. Errington et al

-

This content was downloaded from IP address 156.35.62.23 on 08/03/2018 at 12:40

https://doi.org/10.1088/1126-6708/2009/03/150
http://iopscience.iop.org/article/10.1088/1126-6708/2007/10/063
http://iopscience.iop.org/article/10.1088/1126-6708/2007/10/063
http://iopscience.iop.org/article/10.1088/1126-6708/2007/03/110
http://iopscience.iop.org/article/10.1088/1126-6708/2007/03/110
http://iopscience.iop.org/article/10.1088/1126-6708/2007/05/023
http://iopscience.iop.org/article/10.1088/1126-6708/2007/05/023
http://dx.doi.org/10.1007/JHEP10(2017)149
http://dx.doi.org/10.1007/JHEP10(2017)149
http://iopscience.iop.org/0264-9381/34/9/095003
http://dx.doi.org/10.1007/JHEP05(2015)052
http://dx.doi.org/10.1007/JHEP05(2015)052


J
H
E
P
0
3
(
2
0
0
9
)
1
5
0

Published by IOP Publishing for SISSA

Received: February 11, 2009

Accepted: March 10, 2009

Published: March 31, 2009

First-order flow equations for extremal and

non-extremal black holes

Jan Perz,a Paul Smyth,b Thomas Van Rietc,d and Bert Vercnockea

aAfdeling Theoretische Fysica, Katholieke Universiteit Leuven,

Celestijnenlaan 200D bus 2415, 3001 Heverlee, Belgium
bII. Institut für Theoretische Physik der Universität Hamburg,

Luruper Chaussee 149, 22761 Hamburg, Germany
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1 Introduction

A distinctive feature of supersymmetric extremal black holes with regular event horizons in

theories of gravity coupled to neutral scalar fields and Abelian vector fields is the attractor

mechanism [1–4]. Its name derives from the fact that the radial evolution of the scalars
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follows a set of first-order equations, such that near the event horizon the scalars are driven

to values determined by the electric and magnetic charges carried by the black hole. For

supersymmetric black holes these equations are implied by supersymmetry and constitute

a gradient flow on the scalar manifold, governed by the central charge. The attractor

mechanism also applies to some extremal non-supersymmetric black holes. This suggests

the possibility of non-supersymmetric gradient flows. Indeed, fake superpotentials have

been found for some non-supersymmetric extremal black holes [5–7].

Conversely, it has been shown that the existence of first-order flow equations is not nec-

essarily tied to the attractor mechanism, since there exist non-extremal solutions described

by such flow equations [8] and non-extremal black holes cannot be attractive (see e.g. [9]).

This raises the question of whether one can find a general form of the flow equations

which is valid for both extremal and non-extremal black holes, and under what conditions

these equations constitute a gradient flow. Having a first-order description at hand for

non-extremal solutions might shed light on some open problems concerning the relation

between the scalar charges and the entropy of non-extremal black holes [10]. Furthermore,

a fake superpotential is the natural candidate for a c-function for non-BPS solutions [6, 11].

In this paper we present the general form of the gradient flow equations valid for

extremal and non-extremal, static and spherically symmetric solutions, extending the for-

malism developed in [5] for extremal solutions. We name the function that determines the

gradient flow the ‘generalised superpotential’ in analogy with the fake supergravity formal-

ism for domain walls [12–18]. In addition, for theories whose moduli space is a symmetric

space after a timelike dimensional reduction, we derive the condition for a generalised

superpotential to exist. In these cases the black hole equations of motion are explicitly

integrable [19–22]. In fact, in the case of extremal, but not necessarily supersymmetric

black holes with regular horizons, the procedure proposed in [6] should be sufficient to

construct a fake superpotential for symmetric moduli spaces in N -extended supergravities,

as long as the fake superpotential can be expressed in terms of duality invariants. However,

for general extremal and non-extremal solutions (including those without regular horizons)

not much is known. The goal of our work is to fill this gap, providing a uniform description

of extremal and non-extremal black holes.

We begin our discussion by recalling the necessary background material (section 2). In

particular, we briefly recall what is known about the construction of a black hole effective

action and first-order flow equations from the existing literature. We show in section 3 how

one can obtain such a one-dimensional effective action with a black hole potential, in an

arbitrary number of spacetime dimensions, and how to find the most general first order flow

equations from a ‘generalised superpotential’, assuming that it exists. This is illustrated

by an example, the dilatonic black hole, in section 4. Section 5 discusses the question of

the existence of a superpotential in arbitrary dimensions. In section 6, we explain how to

obtain a free-geodesic form of the effective action by timelike dimensional reduction, for

systems whose scalar manifold is a symmetric space after the reduction, and derive from

it first-order equations. In sections 7 and 8 we then study this condition for a single-scalar

and a multi-scalar example. We end with a discussion of our results and a comparison with

the literature on domain walls in section 9.
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2 Prerequisites

2.1 Two forms of the black hole effective action

We will consider static, spherically symmetric black hole solutions in gravity coupled to a

number of neutral scalars φa and vector fields AI in D + 1 dimensions,

S =

∫

dD+1x
√

|g|
(

RD+1 − 1
2Gab∂µφa∂µφb − 1

2µIJF I
µνF J µν

)

, (2.1)

where Gab and µIJ are functions that depend on the scalar fields φa, and F I
µν are Abelian

field strengths. Greek indices are raised and lowered with the spacetime metric gµν and

g = det gµν . For now we leave the dimension unspecified, but note that in the special case

D + 1 = 4 there can be another term in the action of the form, −1
2νIJF I

µν(⋆ F J)µν , where

νIJ also depends on the scalar fields. To keep our discussion as general as possible we shall

make no further assumptions about this theory, but the reader should notice that it is of

the appropriate form to describe the bosonic sector of ungauged supergravity.

There are two techniques to construct the effective action for such systems. Both are

based on the fact that static, spherically symmetric solutions depend only on the radial

parameter, so that effectively the problem is one-dimensional. The first technique [4, 23]

expresses the Maxwell field strengths in terms of the magnetic and electric charges (the

fluxes of F and ⋆ F at spatial infinity) via the respective equations of motion (and Bianchi

identities). Consider for example the metric ansatz for a black hole in D+1 = 4 dimensions

ds2 = −e2U(τ)dt2 + e−2U(τ)γmndxmdxn , (2.2)

where U(τ) is often referred to as the black hole warp factor and depends only on the

radial coordinate τ on the spherically symmetric spatial slice with the metric γmn. The

one-dimensional effective action obtained as explained above turns out to be that of a

particle subject to an external force field given by the effective black hole potential V :

S =

∫

dτ
(

2U̇2 + 1
2Gab(φ)φ̇aφ̇b + e2UV (φ)

)

, (2.3)

where a dot means differentiation with respect to the radial parameter τ . The configuration

space of this ‘fiducial’ particle is a direct product M×R where M is the scalar target space,

with metric Gab, and R represents the warp factor. The ‘mass parameters’ in the black

hole potential V are given by the electric and magnetic charges. Solutions to this action

have to obey a constraint, stemming from part of the information in the D+1-dimensional

Einstein equations that cannot be derived from the effective action.1 In section 3 we will

explain how to use this first method in arbitrary D + 1 dimensions.

The second technique for constructing a one-dimensional effective action, first described

in the D + 1 = 4 case in [19], is based on the observation that a static solution in D + 1

dimensions can be dimensionally reduced over time to a Euclidean D-dimensional instanton

1This constraint can be found from the effective action if one introduces an ‘einbein’ corresponding to the

reparametrisations of the radial coordinate. This einbein then acts as a Lagrange multiplier that enforces

the constraint [24].

– 3 –
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solution. Because of the assumed spherical symmetry, the resulting instanton solutions are

carried only by the metric and the scalars in D dimensions. Moreover, since the reduction

is performed over a Killing direction, the D-dimensional solutions fully specify the solutions

in D + 1 dimensions. As explained in [19, 22] the equations for the D-dimensional metric

decouple and are easily solved. The scalar field equations of motion are found from the

following effective one-dimensional action

S =

∫

dτ G̃ij
˙̃φi ˙̃φj , (2.4)

which describes the free geodesic motion of a fiducial particle in an enlarged target space of

scalar fields φ̃i that contain the scalar fields φa of the (D+1)-dimensional theory plus axion-

type scalar fields arising from the reduced vector potentials. In the remainder of this paper,

we will always use the notation G̃ for the moduli space metric in the reduced (Euclidean)

gravity theory. Note that in this procedure the vectors (or equivalently, the axions) are not

eliminated by their equations of motion. It is these axionic scalars that have the opposite

sign for their kinetic term, which causes the metric G̃ to have an indefinite signature. If

we were to start in four dimensions and would then integrate out those axions, we would

find the other black hole effective action (2.3). This second technique will be explored in

section 6. There we will discuss systems for which the moduli space after reduction to D

dimensions is a symmetric space and show how to extract the D+1 dimensional first order

equations.

2.2 Flow equations

The question of which technique (or effective action) is best suited for the given task

depends on the theory one considers and on which aspects of black hole solutions one

wishes to investigate. For instance, if the scalar target space in the effective action of the

second type (2.4) is a symmetric space then the geodesic equations are manifestly integrable

and can be used to construct explicit solutions, see for instance [22] for more details. When

one is interested in studying supersymmetry and the black hole attractor mechanism, the

first approach is more commonly used. For a supersymmetric (BPS) black hole ansatz the

first-order Killing spinor equations in D + 1 dimensions provide an integrated form of the

second order equations of motion derived from (2.3), and are of the type

φ̇a = ±Gab∂b|Z| , (2.5)

where the function Z has the property that2

|Z|2 + 2 (D−1)
(D−2)G

ab∂a|Z|∂b|Z| = V . (2.6)

and (when evaluated at infinity) is the (complex) central charge. The set of equations (2.5)

is called BPS or gradient flow equations, and describes an attractor flow if there is an

attractive fixed point (that is, when the black hole potential has a minimum). For non-

supersymmetric black holes the first-order equations are no longer guaranteed to exist.

2Note that in our conventions the gravitational coupling constant κ2 in the Einstein-Hilbert term
1

2κ2

p

|g|R is set to 1

2
. This influences the coefficients in formula (2.6).
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Nonetheless, as non-supersymmetric extremal black holes can still exhibit attractor be-

haviour [25–28], it would seem plausible that they admit a first-order description. Indeed,

Ceresole and Dall’Agata [5] have shown that it is possible for extremal non-supersymmetric

black holes to mimic the BPS equations (2.5) of their supersymmetric counterparts, with

the central charge replaced by a suitable ‘superpotential’ function W 6= |Z| (which is not

necessarily a remnant of supersymmetry in one dimension higher [7]). Subsequent work

has provided further examples of the hidden structure in non-supersymmetric extremal

solutions, see e.g. [6, 10, 29–31] and references therein. Of most direct relevance for this

work is [6], where a fake superpotential was presented for N > 2 theories in D + 1 = 4,

which all possess a symmetric moduli space after timelike reduction.

While non-extremal black holes are of considerable interest, little is known about their

possible interpretation as solutions of first-order equations. As non-extremal solutions

cannot be attractors even when a regular horizon exists (see [9]), it is perhaps already

surprising that some non-extremal solutions can be found from first-order equations derived

from a superpotential [32]. Miller et al. [8] later provided the simplest possible example —

the non-extremal Reissner-Nordström black hole — by making use of Bogomol’nyi’s trick

from non-gravitational field theories, namely completing the squares.3 In these theories one

is able to rewrite the energy functional as a strict sum of squares. The energy-minimising

solutions are found by solving the first-order Bogomol’nyi equations that result from setting

each of the squares to zero, and correspond to the BPS solutions in the supersymmetric

completion of the original field theory. It was pointed out in [8] that the coupling to gravity

introduces at least one term with a relative minus sign, which would appear to ruin this

scheme. However, one can show that the extremal, static, BPS solutions can be found by

solving the equivalent set of first-order equations that arise in rewriting the total action in

terms of squared expressions. It transpires that the relative minus sign makes the rewriting

of the action as a sum of squares non-unique and allows one to introduce a one-parameter

deformation. This leads to the non-extremal version of first-order equations, with the

deformation parameter measuring the deviation from extremality.

The Bogomol’nyi approach has been generalised to include the non-extremal dilatonic

black hole and p-brane solutions, as well as time-dependent (cosmological) solutions in ar-

bitrary dimensions [24] and non-extremal black holes in gauged supergravity [32, 37]. The

first-order formalism for time-dependent solutions is of interest as it provides further evi-

dence for hidden structures in cosmologies, as first suggested by the domain wall/cosmology

correspondence [14]. The explicit structure of non-extremal flow equations in theories with

more complicated scalar matter coupling is not known, although some suggestions were

made in [6].

3The Bogomol’nyi trick was first applied to self-gravitating solutions in the case of cosmic strings [33];

see also [34, 35] for recent discussions. The same procedure can be applied to time-dependent gravitating

solutions [36].
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3 General flow equations in D + 1 dimensions

Consider the metric describing static, spherically symmetric black hole solutions of the

theory described by the action (2.1). The most general form of the spacetime metric

consistent with these symmetries is

ds2
D+1 = −e2βϕ(τ)dt2 + e2αϕ(τ)

(

e2(D−1)A(τ)dτ2 + e2A(τ)dΩ2
D−1

)

, (3.1)

where

α = −1/
√

2(D − 1)(D − 2) , β = −(D − 2)α , (3.2)

and the scalars depend solely on the radial coordinate: φa = φa(τ). In four and five

dimensions, a common notation for the black hole warp factor is U = −αϕ, i.e. in the four-

dimensional case (D + 1 = 4) U = ϕ/2, while in five dimensions (D + 1 = 5) U = ϕ/
√

3.

Following the procedure of [4, 23], described beneath (2.2), we eliminate the vector fields

in terms of the charges through their equations of motion and obtain a one-dimensional

action of the form

S =

∫

dτ
( Ȧ2 + e2(D−2)A

2α2
− 1

2 ϕ̇2 − 1
2Gabφ̇

aφ̇b − e2βϕV (φa)
)

, (3.3)

where a dot denotes a derivative with respect to τ . We use small Latin indices from the

beginning of the alphabet a, b, . . . to label the scalars of the (D + 1)-dimensional theory

and G denotes the moduli space metric in the same theory. This action is supplemented

with a Hamiltonian constraint, which states that the radial evolution of the fields happens

on a slice of constant total energy

(2α2)−1(Ȧ2 − e2(D−2)A) = 1
2 ϕ̇2 + 1

2Gabφ̇
aφ̇b − e2βϕV (φ) ≡ E . (3.4)

The constraint is the remnant of the original D + 1-dimensional Einstein equations that

is not reproduced by the effective action (3.3). The total gravitational energy E contains

a charge contribution, such that extremal black holes have vanishing energy (E = 0) and

non-extremal black holes have positive energy (E > 0).

Generalised superpotential. Let us now assume that there exists a function Y (ϕ, φa),

which we call the ‘generalised superpotential’, such that

e2βϕV (φa) = 1
2∂ϕY ∂ϕY + 1

2∂aY ∂aY + ∆ , (3.5)

where ∆ is a constant to be determined later (see eq. (3.10)). The effective action (3.3)

can then be written in the following form4

S =
1

2

∫

dτ
[ 1

α2

(

Ȧ +

√

e2(D−2)A + γ2
)2

− (ϕ̇ + ∂ϕY )2 − (φ̇a + ∂aY )2
]

, (3.6)

plus a total derivative; γ is a constant.

4In fact a minus sign is also possible within the squares, but this choice amounts to a redefinition of τ

and Y , so without loss of generality we may choose plus.

– 6 –
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The first-order form of the equations of motion is then obtained by putting the terms

within brackets in (3.6) to zero, giving a stationary point of the action. We first note that

the solution to the first-order equation for A is independent of the details of the model

under consideration:

e−(D−2)A = γ−1 sinh[(D − 2)γτ + δ] , (3.7)

where δ is an integration constant. The constant γ2 appearing under the square root must

be non-negative to ensure the absence of naked singularities. We then call the remaining

equations generalised flow equations

ϕ̇ + ∂ϕY = 0 , (3.8)

φ̇a + Gab∂bY = 0 . (3.9)

The Hamiltonian constraint (3.4) fixes the constant ∆ appearing in (3.5) to be

(D − 1)(D − 2)γ2 = −∆ = E . (3.10)

Extremal case. When ∆ = 0 (extremality) equation (3.5) implies that Y (ϕ, φa) must

factor as

Y (ϕ, φa) = eβϕW (φa) , (3.11)

such that the formula for the black hole potential assumes the familiar form

V = 1
2β2W 2 + 1

2∂aW∂aW , (3.12)

and the flow equations become the known expressions for extremal black hole solutions

ϕ̇ + βeβϕW = 0 , (3.13)

φ̇a + eβϕ∂aW = 0 . (3.14)

This means that the main difference between the flow equations describing extremal and

non-extremal solutions is the factorisation property (3.11) of the generalised superpotential

Y (ϕ, φa).

The form of the flow equations for non-extremal solutions presented here differs some-

what from the conjecture made in [6], which proposes to preserve the form of the flow

equations from the extremal case (3.13), (3.14), but allow W to explicitly depend on τ :

W (φ, τ). Noting that explicit τ -dependence can locally be rephrased as ϕ-dependence, with

τ then considered as a function of ϕ, one sees that this is in a similar vein as our proposal.

The two are not equivalent, however, as in [6] the dependence of W on τ is of a specific

kind, ∂τW ∼ −γ2e−ϕ/2. With this form of ∂τW the two sets of equations (3.8), (3.9)

and (3.13), (3.14) can hold simultaneously only in the extremal case. In section 4 we

give an explicit example where all non-extremal solutions obey equations (3.8), (3.9), but

not (3.13), (3.14).

– 7 –
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4 An illustration: dilatonic black hole

The simplest theory involving scalar fields that admits charged black hole solutions is given

by the Einstein-dilaton-Maxwell action

S =

∫

d4x
√

|g|
(

R− 1
2 (∂φ)2 − 1

4eaφF 2
)

, (4.1)

where the dilaton coupling a is a non-zero constant. In reference [24] the ‘fake’ BPS

equations for the purely electric, extremal and non-extremal solutions of this theory were

given by writing the action as a sum and difference of squares, generalising the results

on the pure Reissner-Nordström black hole in [8]. In the following we reconsider these

results in the language of section 3 and extend to the full dyonic solution. For dyonic

solutions, however, we will notice that only in the a = 1 case can we easily find the fake

superpotential. In section 7 we return to this subject and discuss the a =
√

3 example. We

refer the reader to [38] for the original treatment of dilatonic black hole solutions.

Following the language of section 3, we will now consider the first-order equations and

the construction of a generalized superpotential for the dilaton φ and the ‘warp factor’ ϕ

appearing in the metric (3.1). Note that for D+1 = 4 we have β = −α = 1/2. As explained

above, the equations of motion for ϕ and φ can be derived from a one-dimensional action

of the form (3.3), where now Gabφ̇
aφ̇b = φ̇2 and the black hole effective potential is given

by

V (φ) = 1
2Q2

ee
−aφ + 1

2Q2
me+aφ , (4.2)

where Qe is the electric charge and Qm is the magnetic charge (which, in what follows, we

assume to be non-negative).

4.1 Purely electric or magnetic solutions

The first-order equations found in [24] for purely electric solutions are5

fϕ(ϕ, φ) ≡ ϕ̇ = − 2
1+a2

√

1+a2

4 Q2
ee

ϕ−aφ + β2
2 − 2a

1+a2 β3 , (4.3)

fφ(ϕ, φ) ≡ φ̇ = + 2a
1+a2

√

1+a2

4 Q2
ee

ϕ−aφ + β2
2 − 2

1+a2 β3 , (4.4)

where we introduced a set of integration constants (γ, β2, β3) that obey the Hamiltonian

constraint

(1 + a2)γ2 = β2
2 + β2

3 . (4.5)

In order for a generalised superpotential Y to exist, the above two-dimensional flow

must be a gradient flow. This is locally the case, as one immediately verifies that the curl,

∂[φfϕ], vanishes.6 It is not difficult to construct the generalised superpotential explicitly,

Y (ϕ, φ) = − 2

1 + a2

(

2
√

se − 2β2 log(β2 +
√

se) + β2(ϕ − aφ) + β3(aϕ + φ)
)

, (4.6)

5We changed the sign of β3 and divided it by 2, compared to the definition in [24].
6In this example no distinction needs to be made between lower and upper indices, but we maintain it

for consistency with section 5.
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where
√

se is shorthand for
√

1+a2

4 Q2
ee

ϕ−aφ + β2
2 . As expected, extremality (γ = β2 = β3 =

0) implies that the superpotential Y factorises according to (3.11)

Y (ϕ, φ) = eϕ/2
(

− 2√
1+a2

Qee
−aφ/2

)

≡ eϕ/2W (φ) . (4.7)

We now come back to the remark made at the end of the previous section. If we

compare with the flow equations of [6], by locally inverting ϕ(τ), we do not find the form of

∂τW (φ,ϕ(τ)) suggested in [6], unless γ = β2 = β3 = 0. However, from the expression (4.6)

for the generalised superpotential, we see that we can explicitly construct Y for all possible

values of the nonextremality parameters β2, β3.

In the case of purely magnetic charge, the above equations hold when the following

electromagnetic duality rule is imposed:

Qe → Qm , φ → −φ , β2 ↔ β3 . (4.8)

4.2 Dyonic solutions

The dyonic case with arbitrary dilaton coupling a is more involved. The theory with a = 1

is the simplest and, in the extremal case, it is not difficult to see that the correct vector

field f can be found by summing the electric and magnetic ones

fϕ(ϕ, φ) = − 1√
2
Qee

(ϕ−φ)/2 − 1√
2
Qme(ϕ+φ)/2 , (4.9)

fφ(ϕ, φ) = + 1√
2
Qee

(ϕ−φ)/2 − 1√
2
Qme(ϕ+φ)/2 . (4.10)

The corresponding superpotential Y is

Y (ϕ, φ) = −eϕ/2
√

2
(

Qee
−φ/2 + Qme+φ/2

)

≡ eϕ/2W (φ), (4.11)

and is the sum of the pure electric and magnetic superpotentials. An extremum of the

superpotential W (φ), and consequently of the black hole potential V (φ), only exists in the

dyonic case, corresponding to the fact that an attractive AdS2 horizon exists only in the

extremal dyonic case.

Let us now extend to non-extremal solutions using the technique of [8], as explained

in the previous section. This gives

fϕ(ϕ, φ) = −
√

1
2Q2

ee
ϕ−φ + β2

2 −
√

1
2Q2

meϕ+φ + β2
3 , (4.12)

fφ(ϕ, φ) = +
√

1
2Q2

ee
ϕ−φ + β2

2 −
√

1
2Q2

meϕ+φ + β2
3 . (4.13)

The corresponding generalised superpotential Y reads

Y (ϕ, φ) = − 2
√

se + 2β2 log(β2 +
√

se) − β2(ϕ − φ)

− 2
√

sm + 2β3 log(β3 +
√

sm) − β3(ϕ + φ) ,
(4.14)

where
√

se is defined as in the electric case and
√

sm is shorthand for
√

1
2Q2

meϕ+φ + β2
3 .

We have not been able to integrate the second-order equations for ϕ and φ when a 6= 1.

However, we demonstrate in section 7 that the case a =
√

3 can also be solved explicitly
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with the aid of the group-theoretical methods of section 6. For general dilaton coupling

a we are not aware of whether the solution for the dyonic case is explicitly known or not,

but in the next section we argue that the extremal solution (if it exists) obeys first-order

flow equations.

5 Existence of a generalised superpotential

In this section we comment on the question of whether a generalised superpotential exists

or not. First, we consider black holes with a single scalar field and explain that, at least

in the extremal case, a generalised superpotential always exists, as argued in a different

way already in [5]. We then investigate the multiscalar case and see that a generalised

superpotential exists when the velocity field on the enlargement of the scalar manifold

in D + 1 dimensions with the warp factor ϕ is irrotational (curl-free), generalising the

condition of [5] for extremal black holes to non-extremal ones. In the following section we

will study this velocity field in detail for theories with a symmetric moduli space after a

timelike dimensional reduction.

5.1 Black holes with a single scalar field

The argument for the existence of a fake superpotential for extremal black hole solutions

involving one scalar field is taken from the fake supergravity formalism for single scalar

domain walls [14] and proceeds as follows. Assume that the extremal dyonic solution exists,

then equation (3.13) can be used to give W in terms of the radial parameter τ , i.e. this

defines the function W (τ). Since the black hole is supported by a single scalar φ, we have

that W depends only on φ. Locally we can always invert the function φ(τ) to τ(φ) and

this defines W (φ).

Having constructed the fake superpotential W (φ) for the extremal solution, we could

then attempt the deformation technique of [8] to obtain the function Y (ϕ, φ) in the non-

extremal case. This approach, however, requires the Lagrangian to satisfy certain con-

ditions (see [8] for details). For the dyonic example of the previous section it turns out

that only the Lagrangian with a = 1 obeys these constraints. Therefore, when a 6= 1,

even though flow equations might exist, the procedure cannot be applied. For a =
√

3 the

hidden symmetries of the theory will allow us to demonstrate the existence of generalised

flow equations also in the non-extremal case (section 7).

5.2 Black holes with multiple scalar fields

When a black hole solution is carried by multiple scalars, the above argument for the

existence of extremal flow equations does not apply.7 Furthermore, for domain walls an

example has been found, where a solution does not admit a first-order flow that can be

derived from a fake superpotential [18].

We shall now reconsider the question of the existence of a gradient flow for black holes.

Remember that, in the formalism of section 3, the gradient of the generalised superpotential

7Unless some complicated conditions are satisfied, as explained in the case of domain walls in [13, 18].
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determines the first order derivatives of both the ‘warp factor’ ϕ appearing in the D + 1-

dimensional metric and the D+1-dimensional scalars φa, through equations (3.8) and (3.9).

Therefore we consider all these scalars on the same footing and will combine them in a

vector φA:

φA = {ϕ, φa} . (5.1)

In the following section we will investigate a class of theories that have a symmetric moduli

space when reduced over one dimension, as their equations of motion are known to be

integrable. Using the integrability of the effective action we can explicitly write down the

velocity vector field f on the enlarged scalar manifold in D dimensions

φ̇A ≡ fA(φ, χ) , (5.2)

χ̇α ≡ fα(φ, χ) , (5.3)

where the χα are the scalars descending from the vector potentials upon dimensional re-

duction. One can demonstrate that there are enough ‘integrals of motion’ to fully eliminate

the χα in terms of the φA, such that one can write down a velocity field on the original

target space in D + 1 dimensions:

φ̇A = fA(φ, χ(φ)) . (5.4)

Having obtained the velocity field (5.4) on the moduli space in D + 1 dimensions, it

suffices to show that the velocity one-form fA is locally exact

fA(φ, χ(φ)) ≡ G̃AB(φ)fB(φ, χ(φ)) = ∂AY (φ) , (5.5)

where G̃ is the metric on the scalar manifold in the D-dimensional theory. A necessary

and sufficient condition for this to hold locally is, by Poincaré’s lemma, that the one-form

is closed

∂[AfB] = 0 . (5.6)

Whether or not the field Y (φ) is defined over the whole target space is of less relevance to

us and depends on the cohomology of the target space.

For specific non-supersymmetric solutions it might be very difficult in practice to find

the superpotential Y . In spite of this, by verifying the vanishing curl condition (5.6) one

can demonstrate the existence of a gradient flow.8 For this reason we restrict ourselves

to those theories that have a symmetric moduli space after timelike reduction, where we

know that f exists. It will therefore be convenient to now briefly review the relationship

between black holes and geodesics on symmetric spaces.

6 Black holes and geodesics

Now we would like to examine the condition discussed in section 5.2 for the generalised

superpotential to exist. We will consider a timelike reduction of the D + 1-dimensional

8In some cases a direct integration turns out to be possible for an extremal ansatz, as in [39, 40]. One

can readily check that the velocity field is irrotational in these examples.
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theory. We showed that it suffices for the curl (5.6) of a velocity field on the scalar man-

ifold of D dimensions to vanish. In this section we concentrate on theories for which the

D-dimensional scalar manifold is a symmetric space. For these theories we construct the

velocity field needed to investigate the curl-condition (5.6). We begin with explaining the

timelike dimensional reduction to D dimensions and will then give the necessary back-

ground on symmetric spaces to arrive at an expression for the velocity field φ̇A = {ϕ̇, φ̇a}.

6.1 Timelike dimensional reduction

The ansatz for stationary black holes can always be interpreted as the ansatz for the

dimensional reduction over time

ds2
D+1 = −e2βϕ(dt − B0)2 + e2αϕds2

D , (6.1)

AI = χI(dt − B0) + BI
mdxm , (6.2)

where B0 and ϕ are the Kaluza-Klein (KK) vector and (KK) dilaton, respectively. Nor-

malisations are chosen in such a way that the (D, 0)-dimensional theory is in the Einstein

frame and that ϕ is canonically normalised.

We will restrict to spherically symmetric solutions and truncate the KK vector (B0 =

0), since its presence would violate staticity.9 In D + 1 = 4 we make an exception: in

D = 3 the Taub-NUT vector B0 can be dualised to a scalar, χ̃0, which is part of the scalar

manifold. We will make use of the group structure associated to this manifold and truncate

the Taub-NUT scalar at the end of the calculation. In fact, when D = 3 also BI can be

dualised to axionic scalars χ̃I . One can then verify that the kinetic terms of the axions χI

and χ̃I appear with the opposite sign [19].

From (3.1) we make following ansatz for the dimensionally reduced black hole (instan-

ton)

ds2
D = e2(D−1)A(τ)dτ2 + e2A(τ)dΩ2

D−1 , φ̃i = φ̃i(τ) , (6.3)

with φ̃i denoting the scalars in the D-dimensional Euclidean theory

φ̃i = {φA, χα} . (6.4)

The fields φA contain both the scalars of the (D, 1)- dimensional theory (φa) and the KK

dilaton ϕ, whereas the χα are the axions χI (and χ̃I , χ̃0 when D = 3). The effective field

equations, which arise by substituting ansatz (6.3) into the equations of motion, can be

found by varying the following effective action (see e.g. [24])

Seff =

∫

dτ
(

(2α2)−1(Ȧ2 + e2(D−2)A) − 1
2G̃ij

˙̃φi ˙̃φj
)

, (6.5)

where dots denote derivatives with respect to τ . Note that we reserve the symbol G̃ij for

the moduli space metric in D dimensions. This action has to be complemented by the

Hamiltonian constraint [24]

α−2(Ȧ2 − e2(D−2)A) = G̃ij
˙̃
φi ˙̃

φj ≡ 2E , (6.6)

9‘Static’ means that the spacetime admits a global, nowhere zero, timelike hypersurface orthogonal

Killing vector field. A generalization are the ‘stationary’ spacetimes, which admit a global, nowhere zero

timelike Killing vector field. In particular, stationary, spherically symmetric spacetimes are static.
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with E a constant. Those D-dimensional solutions that lift to extremal black holes in (D, 1)

dimensions have flat D-dimensional geometries, or equivalently E = 0, which implies that

the geodesic is null

G̃ij
˙̃
φi ˙̃

φj = 0 . (6.7)

In D > 3 one can eliminate the χα from the action, since the moduli space metric has

the following properties

G̃αA = 0 , ∂αG̃ij = 0 , G̃ab = Gab , G̃ϕϕ = 1 , G̃ϕa = 0 . (6.8)

The first two identities can be derived from the fact that the shift symmetries of the scalars

φα commute. In D = 3 this is not the case as the shift symmetries associated with electric

and magnetic charges qI , p
I no longer commute. With a slight abuse of notation, we have

[pI , qJ ] = ΩI
J QT , (6.9)

where QT is the NUT charge and ΩI
J is a symplectic invariant matrix. If the NUT charge

is zero, the properties of the moduli space metric (6.8) are also valid in D = 3 upon

truncation of the vectorial direction that corresponds to the NUT charge. Henceforth we

always restrict to solutions with a vanishing NUT charge (thus, spherically symmetric in

D + 1 dimensions).

6.2 Geodesics on symmetric spaces

The assumption we shall make is that the target space in D dimensions is a symmetric coset

space G/H, where G is a Lie group and H some subgroup subject to certain conditions that

we shall state below. In the theories we consider, such as various supergravities in arbitrary

dimensions, the Lie algebra of G is always semi-simple. The condition that the target

space is a symmetric space is always valid for supergravity theories with more than eight

supercharges and is sometimes valid for theories with less supersymmetry. Nevertheless,

our analysis here is independent of any supersymmetry considerations.

We will take L, an element of G, to be a coset representative. We first define the

group multiplication from the left, L → gL, ∀g ∈ G, and we let the local symmetry act

from the right L → Lh, ∀h ∈ H. The definition of a coset element of G/H then implies

that we identify L and Lh. The Lie algebras associated to G and H are denoted by g

and h respectively. The defining property of a symmetric space G/H is that there exists a

Cartan decomposition

g = h + f , (6.10)

with respect to the Cartan automorphic involution θ, such that θ(f) = −f and θ(h) = +h.

From the Cartan involution we can construct the symmetric coset matrix M = LL♯, where

♯ is the generalised transpose, defined as

L♯ = exp[−θ(log L)] . (6.11)

The matrix M is invariant under H-transformations that act from the right on L. Under

G-transformations from the left, M transforms as follows

M → gMg♯ . (6.12)
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With the aid of the matrix M the line element on the space G/H with coordinates φ̃i

can be written as

ds2 = G̃ijdφ̃idφ̃j = −1
2 Tr

(

dMdM−1
)

. (6.13)

We expand the matrix valued one-form M−1dM in the generators TΛ of Lie algebra g and

in the basis dφ̃i as follows

M−1dM = (M−1∂iM)Λdφ̃iTΛ ≡ eΛ
i dφ̃iTΛ , (6.14)

where we introduced the symbol eΛ
i . This plays a role similar to the vielbein on G/H,

but one should note that eΛ
i is not a square matrix, since Λ = 1, . . . ,dim G and i =

1, . . . ,dim G/H. In this language, the metric can also be written as

G̃ij = eΛ
i ηΛΣ eΣ

j , ηΛΣ = 1
2 Tr (TΛTΣ) . (6.15)

In the above η is proportional to the Cartan-Killing metric of g and is non-degenerate,

since g is semi-simple in the theories we consider.

The metric is invariant under a local action of H on L from the right and under a

global action of G on L from the left. The latter implies that G is the isometry group of

G/H, as expected. The action for the geodesic curves on G/H is then given by

S =

∫

dτ G̃ij
˙̃φi ˙̃φj = −1

2

∫

dτ Tr
(

d
dτ M d

dτ (M−1)
)

, (6.16)

where τ is an affine coordinate parametrising the geodesic curves and the resulting equa-

tions of motion are

d
dτ (M−1 d

dτ M) = 0 ⇒ M−1 d
dτ M = Q , (6.17)

with the matrix of Noether charges Q being a constant matrix in some representation of g.

We now see that the geodesic equations are indeed integrable and their general solution is

M(τ) = M(0)eQτ . (6.18)

The affine velocity squared of the geodesic curve is (the dot stands for ordinary matrix

multiplication)

G̃ij
˙̃φi ˙̃φj = 1

2 Tr(Q · Q) , (6.19)

and coincides with the Hamiltonian constraint (6.6).

An integrable geodesic motion on an n-dimensional space is characterised by 2n con-

stants: the initial position and velocity of the geodesic curve. In our case the geodesic

motion on G/H is thus specified by 2(dim G − dim H) integration constants. In equa-

tion (6.18) M(0) contains (dim G − dimH) arbitrary constants that correspond to the

initial position and Q corresponds to the initial velocity, so we also expect (dim G−dim H)

arbitrary constants there. This can be understood from the constraint

M ♯(τ) = M(τ) ⇒ θ(Q) = −M(0)−1QM(0) , (6.20)
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which indeed reduces the number of arbitrary constants in Q from dimG to (dim G −
dim H).

The first-order equation (6.17) can be written compactly as eΛ
i

˙̃φi = QΛ or equivalently,

˙̃φi = G̃ijeΣ
j ηΣΛQΛ . (6.21)

These are only (dim G − dimH) equations. After substituting (6.21) into eq. (6.17), the

remaining dimH components become non-differential equations. This shows the power

of (6.17): we split the dim G differential equations in M−1 d
dτ M = Q into (dimG− dim H)

first-order equations and dimH equations without any derivatives. In the context of sec-

tion 5 these non-differential equations are precisely what is needed to eliminate the addi-

tional scalars resulting from dimensional reduction, so that we obtain first-order equations

in terms of the scalars in D + 1 dimensions, as in eq. (5.4).

7 The dilatonic black hole revisited

When the Einstein-dilaton-Maxwell action (4.1) has the specific dilaton coupling a = ±
√

3,

a symmetry enhancement takes place upon dimensional reduction over a (timelike or space-

like) circle. This can be explained by the fact that (4.1) is the action obtained from reducing

five-dimensional gravity over a spacelike circle and subsequent reduction should display at

least the GL(2, R) symmetry of the internal torus. Furthermore, if the 3d vectors are du-

alised to scalars the GL(2, R)-symmetry turns out to be part of a larger SL(3, R)-symmetry.

The Euclidean 3d action then describes gravity minimally coupled to the SL(3, R)/SO(2, 1)

sigma model with coordinates φ̃i = {φ1, φ2, χ0, χ1, χ2}:

G̃ijdφ̃idφ̃j = (dφ1)2 + (dφ2)2 − e−
√

3φ1+φ2

(dχ0)2 + e2φ2

(dχ2)2

−
[

e+
√

3φ1+φ2 − e2φ2

(χ0)2
]

(dχ1)2 + 2χ0e2φ2

dχ1dχ2 .
(7.1)

The details of the Kaluza-Klein reduction can be found in appendix A.1; for details on the

SL(3, R)/SO(2, 1) sigma model, see appendix B. The scalars φ1 and φ2 are both a linear

combination of the black hole warp factor ϕ and the dilaton φ. The scalars χ0 and χ1 are

the electric and magnetic potentials. χ2 comes from the dualisation of the KK vector in

the reduction from four to three dimensions and is hence related to the NUT charge QT

via

QT ∼ χ̇2 + χ0χ̇1 . (7.2)

As explained before, a vanishing NUT charge leads to a truncated target space, where χ0

and χ1 have a shift symmetry

ds2 = (dφ1)2 + (dφ2)2 − e−
√

3φ1+φ2

(dχ0)2 − e+
√

3φ1+φ2

(dχ1)2 . (7.3)

Upon eliminating dχ1 and dχ2 by their equations of motion, one obtains the black hole

potential for φ1 and φ2.

Let us discuss the geodesic equations of motion for the full sigma model (7.1). The

charge matrix Q ∈ sl(3) that specifies a geodesic solution contains eight arbitrary parame-

ters Q = QΛTΛ, where the eight generators of sl(3), denoted TΛ, are given in the appendix,
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eq. (B.4). We will reduce the number of integration constants to four. Firstly, we demand

that the geodesic curve goes through the origin which, using (6.20), gives an involution

condition on Q

Q = −θ(Q) , (7.4)

and requires identifying

Q3 = −Q6 , Q4 = −Q7 , Q5 = Q8 . (7.5)

This condition is gauge-equivalent to the most general expression for Q. It amounts to

fixing the U(1)-gauge transformation and the boundary conditions for the black hole warp

factor and dilaton at spatial infinity. This specification is without loss of generality.10

Secondly, we restrict ourselves to solutions with a vanishing NUT charge, which amounts

to Q5 = Q8 = 0, so that we are left with

Q = QΛTΛ =







− 1√
3
Q1 − Q2 −Q6 0

Q6 2√
3
Q1 −Q7

0 Q7 − 1√
3
Q1 + Q2






. (7.6)

Thus we count four independent integration constants to describe the dilatonic black hole

solutions: the mass, the electric and magnetic charge and the scalar charge. Upon demand-

ing a regular horizon one can write the scalar charge in terms of the three others [38], but

we do not make that restriction here for the sake of generality.

We now have sufficient information to construct the velocity vector field f i(φj) = ˙̃φi

for the charge configuration (7.6)

fφ1

= Q1 +
√

3
2 (Q7χ0 − Q6χ1) , (7.7)

fφ2

= Q2 − 1
2(Q7χ0 + Q6χ1) , (7.8)

fχ0

= Q7e
√

3φ1−φ2

, (7.9)

fχ1

= Q6e−
√

3φ1−φ2

, (7.10)

fχ2

= −χ0fχ1

. (7.11)

Note that we have already used the component of the velocity field for the Taub-NUT scalar

(χ̇2 = fχ2

) to eliminate χ̇2 from the other components of the velocity field via eq. (7.2)

with QT = 0. From the asymptotic behaviour of the velocity field we can then identify

the charges QΛ: Q1 is proportional to the ADM mass, Q2 is proportional to the dilaton

charge, while Q6 and Q7 are equal to the magnetic and electric charge respectively.

Aside from the explicit expression for the velocity field, there is more information in

the eight first-order equations M−1Ṁ = Q. The velocity field uses five out of these eight.

10We put φ(r → ∞) = ϕ(r → ∞) = 0. This condition on the warp factor ϕ can always be achieved by a

coordinate transformation. The condition for the dilaton cannot be changed, but any other boundary value

is equivalent upon a shift of the dilaton and accordingly a compensating rescaling of magnetic and electric

charge.
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The remaining three equations are non-differential and we call them constraint equations:

0 = Q6 + e
√

3φ1+φ2[(
√

3Q1 + Q2
)

χ1 − Q6
(

1 + (χ1)2
)

− Q7χ2
]

, (7.12)

0 = Q7 + e−
√

3φ1+φ2[(−
√

3Q1 + Q2
)

χ0 − Q7
(

1 + (χ0)2
)

+ Q6(χ2 + χ0χ1)
]

, (7.13)

0 = 2Q2(2χ2 + χ0χ1) − Q6
[(

1 + e−
√

3φ1−φ2)

χ0 + χ1χ2
]

+ Q7
[(

1 + e
√

3φ1−φ2)

χ1 − χ0(χ2 + χ0χ1)
]

.
(7.14)

Note that we already used the constraint equations to simplify the first order derivatives

of χ0 and χ1: (7.9) and (7.10). The constraint equations (at least theoretically) enable one

to extract the functional dependence of the χα on the φ1 and φ2, such that we can write

fφ1

(φ, χ) and fφ2

(φ, χ) purely in terms of φ1 and φ2:

fφ1

(φ) ≡ fφ1

[φ, χ(φ)] , fφ2

(φ) ≡ fφ2

[φ, χ(φ)] . (7.15)

The condition for the existence of a first-order gradient flow then becomes

∂[φ1fφ2] = −1
4Q7(

√
3∂φ2 + ∂φ1)χ0(φ1, φ2) + 1

4Q6(
√

3∂φ2 − ∂φ1)χ1(φ1, φ2) = 0 , (7.16)

and we can evaluate under which conditions on the charges QΛ the expression (7.16) holds.

In principle, we have three constraint equations at our disposal to eliminate the three

axions χα(φ1, φ2), α = 0, 1, 2, but in practice this would require solving relatively compli-

cated non-linear simultaneous equations, which is not straightforward. Fortunately, the

curl (7.16) requires only a knowledge of the derivatives of the axions with respect to the

dilatons, i.e. the Jacobian matrix [Jα
A](φ) ≡ ∂φAχα, α = 0, 1. It turns out that the inverse

Jacobian matrix [JA
α ](χ) ≡ ∂χαφA is easily computable using the constraint equations. If

we then use

[Jα
A](φ(χ)) = [JA

α ]−1(χ) , (7.17)

where the inverse is with respect to the whole matrix, we can evaluate the curl in terms of

the fields χ0, χ1. An explicit calculation shows that the curl vanishes. We thus conclude

that when a =
√

3, all the dilatonic black holes with arbitrary mass, electric, magnetic and

scalar charge possess a generalised superpotential.

We have not attempted the construction of the generalised superpotential for arbitrary

solutions with a =
√

3, but rather only for extremal cases. Then one can use the factori-

sation property (3.11) of the superpotential to deduce W as a function of τ from the flow

equation (3.13) with the help of the known explicit solution [38] and invert φ(τ) to obtain

W (φ). Even in this simplified setting the result is very long compared to the a = 1 case

and not illuminating, we therefore refrain from quoting it here.

8 Kaluza-Klein black hole in five dimensions

Let us now consider black holes carried by multiple scalars and vectors. In D +1 = 5 there

is an example for which we can use the same hidden symmetry as for the KK dilatonic

black hole, namely SL(3, R). This theory is obtained by reducing 7d gravity on a two-torus.
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This gives a 5d theory with two vectors, and three scalars: an axion-dilaton system and

an extra dilaton ϕ̃

S =

∫

d5x
√

|g|
(

R− 1
2(∂ϕ̃)2 + 1

4 Tr(∂K∂K−1) − 1
4e

q

5

3
ϕ̃
KmnFmFn

)

, (8.1)

where the matrix K defines the SL(2, R) axion-dilaton system. Details on this action and

subsequent reduction to 4 dimensions can be found in appendix A.2.

This Lagrangian is a consistent truncation of maximal and half-maximal supergravity

in D + 1 = 5. Upon reduction over time one obtains four-dimensional Euclidean gravity

coupled to a set of scalars that span the coset SO(1, 1)×SL(3, R)/SO(2, 1). The dynamics

of the decoupled scalar (the SO(1, 1) part) is trivial and the SL(3, R)/SO(2, 1) part differs

from the previous example only in that this coset has a different SO(2, 1) isotropy group

embedded in SL(3, R). The effect of this is purely a matter of signs, as can be seen in the

metric on the moduli space (neglecting the decoupled scalar, see appendix A.2)

G̃ijdφ̃idφ̃j = (dφ1)2 + (dφ2)2 + e−
√

3φ1+φ2

(dχ0)2 − e2φ2

(dχ2)2

−
[

e+
√

3φ1+φ2

+ e2φ2

(χ0)2
]

(dχ1)2 − 2χ0e2φ2

dχ1dχ2 .
(8.2)

This sigma model can be obtained from (7.1) through the analytic continuation

χ0 → iχ0 , χ2 → iχ2 . (8.3)

The representative L̃ of the full coset SO(1, 1) × SL(3, R)/SO(2, 1) is then given by

L̃ = eφ0/
√

6L , (8.4)

where L is the SL(3, R)/SO(2, 1) coset representative (B.5) and the decoupled scalar φ0 is

related to ϕ̃ of (8.1) by eq. (A.16).

We will again assume that the charge matrix describes only the geodesics that go

through the origin. As before we can justify this restriction by proper field redefinitions and

coordinate transformations of the general solution. The Cartan involution condition (7.4)

implies (cf. (7.5))

Q3 = −Q6, Q4 = Q7, Q5 = −Q8 , (8.5)

so that

Q = QΛTΛ =









Q0 − Q1

√
3
− Q2 −Q6 −Q8

Q6 Q0 + 2Q1

√
3

Q7

Q8 Q7 Q0 − Q1

√
3

+ Q2









, (8.6)

where now Λ = 0, . . . , 8, T0 is the three-dimensional identity matrix generating the decou-

pled SO(1, 1) part and the remaining generators are, as previously, given by (B.4). The

parameters Q6 and Q8 can be identified with the electric charges in D + 1 = 5.

To obtain the first-order velocity field for the effective action with the black hole

potential one needs to eliminate χ1 and χ2 in terms of the remaining scalars using the
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constraint equations, which can be concisely written as

χ̇0 = e+
√

3φ1−φ2(

Q7 − Q8χ1
)

, (8.7)

χ̇1 = e−
√

3φ1−φ2(

Q6 − Q8χ0
)

, (8.8)

χ̇2 = e−2φ2

Q8 − χ0χ̇1 = e−2φ2

Q8 − e−
√

3φ1−φ2

χ0
(

Q6 − Q8χ0
)

, (8.9)

where the left-hand side is understood to be expressed by eq. (6.21) and does not con-

tain derivatives. Unlike in the dilatonic black hole example, there are more constraints

than variables to eliminate, unless specific choices for the charges make fewer of them in-

dependent. Using different combinations of constraint equations to eliminate χ1 and χ2

leads to different velocity fields in five dimensions. Although they become equivalent upon

using the Hamiltonian constraint (which is exactly the remaining constraint equation),

the expression for the curl is not unique. One preferred form should however distinguish

itself, namely that not containing second-order integration constants. Finding such a com-

bination of constraint equations is a technically complex task, as it involves relaxing the

boundary conditions (M(0) = 1) in order to distinguish first- and second-order integration

constants.11 For this reason we have not pursued it further.

Regardless of which combination of constraint equations should serve to eliminate the

extraneous scalars χ1 and χ2, the resulting expression for the curl in five dimensions will be

non-trivial and will not involve Q0, hence the condition for the curl to vanish is independent

of extremality, which in turn amounts to (cf. remarks preceding equations (6.7) and (6.19))

Tr(Q · Q) = 3(Q0)2 + 2
[

(Q1)2 + (Q2)2 − (Q6)2 + (Q7)2 − (Q8)2
]

= 0 . (8.10)

We conclude that among both extremal and non-extremal solutions there exist examples

that admit a generalised superpotential, but also examples that do not.

9 Discussion

9.1 Summary of results

For theories of gravity coupled to neutral scalar fields and Abelian vector fields, we have

presented the most general form of first-order flow equations consistent with rewriting the

effective action as a sum (or difference) of squares. The derivatives of the scalars with

respect to the radial parameter are given by the gradient of a generalised superpotential

on the scalar manifold (equations (3.8), (3.9)). The generalised superpotential is related

to the black hole potential by eq. (3.5). The above gradient flow equations are equally

applicable to extremal (whether supersymmetric or not) as well as non-extremal black holes

(necessarily non-supersymmetric). They naturally encompass previously known partial

results, although they differ from the form conjectured in [6].

11The first-order integration constants in Q and the second-order integration constants in M(0) are

intertwined through the involution condition (6.20) making it difficult to distinguish them in the coset

matrix formalism.
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We considered theories with scalar manifolds which become symmetric spaces after a

timelike dimensional reduction and produced a method to verify when a generalised super-

potential exists. We have provided examples of extremal and non-extremal solutions with

a generalised superpotential, but also shown that it is possible to find solutions (including

extremal ones) for which one cannot exist.

Let us now discuss the examples in which we obtained the above results in more detail.

We have applied our formalism to a dilatonic black hole in four dimensions (one scalar

field) and a Kaluza-Klein black hole in five dimensions (multiple scalars). For the dilatonic

black hole with the dilaton coupling a = 1 we were able to show by direct integration

that the generalised flow equations exist in all situations. When a =
√

3 we were able

to show the same, using group-theoretical tools to integrate the second-order equations

of motion to first-order equations. For all other values of a we derived the existence of

a fake superpotential in the extremal case, using the argument applied for single scalar

domain walls [14]. The existence of generalised flow equations for non-extremal black holes

with arbitrary dilaton coupling is not known to us. Although the a = 1 case was easy to

integrate by hand, this is also an example for which we could have constructed the flow

using group theory. The reason is that this case is embeddable in an N = 4 action, which

has a symmetric moduli space after timelike reduction: SO(8, 8+n)/[SO(6, 2)×SO(6+n, 2)]

(see for instance [22]). The investigation of the Kaluza-Klein black hole in five dimensions,

in turn, demonstrated that for both extremal and non-extremal solutions, there are cases

where a generalised superpotential exists and where it does not, depending on the values

of the scalar and vector charges.

The same techniques can be applied to more complicated examples. Possible further

work might include exploring other non-extremal cases, a natural candidate being the STU

or the T 3 model in N = 2 supergravity. It would be most interesting to see whether there

exists a closed form of the generalised superpotential, universally valid for all cosets. It

might be also useful to investigate whether the vanishing curl condition (5.6) could be given

a physical interpretation in terms of other black hole properties. A broader problem that

suggests itself for study is one of the existence of a generalised superpotential in theories

whose scalar manifolds are not symmetric spaces after a timelike dimensional reduction.

9.2 Comparison with domain walls

It has been noticed in the literature that black hole effective actions are very similar to

domain-wall (and cosmology) effective actions [5, 41]. Roughly speaking, the only difference

is in the expression for the potential in terms of the ‘superpotential’

V ∼ W 2 + ξ(∂W )2 , (9.1)

where the constant ξ is positive for black holes and negative for domain walls (and cos-

mologies). The precise value for ξ depends on the dimension. We would like to point out

that this is more then just an analogy as spherically symmetric black holes are nothing but

domain walls seen from a 1 + 1 dimensional point of view. This is consistent with (9.1)

since, in the domain wall case, the usual formula for ξ diverges when D+1 = 2 and instead
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one has to use the expression for ξ for black hole effective potentials. This exact corre-

spondence between spherically symmetric black holes and domain walls in two dimensions

comes about in the same way as the correspondence between domain wall solutions of

gauged supergravity theories in 2 < D + 1 < 10 and p-brane (and M-brane) solutions in

D+1 = 10 (and D+1 = 11) [42, 43]. There the correspondence was obtained by considering

spherical flux reductions of type II theories to some lower-dimensional gauged supergrav-

ity. The domain-wall solutions of the latter theory lift to various (distributions of) p-brane

solutions, whose metrics possess the required spherical symmetry. Similarly, the construc-

tion of the black hole effective potential can effectively be seen as an S2 reduction of 4d

ungauged supergravity to a 2d gauged supergravity. The charges that appear in the black

hole effective potential correspond to the flux parameters of the ‘flux compactification’.

As in the black hole case, it was also appreciated that the effective action for domain

walls can be described both as a free particle action and as a particle subject to a potential.

In the case of cosmological solutions this is known as ‘cosmology as a geodesic motion’ [44]

(see also [45]). By virtue of the ‘domain wall/cosmology correspondence’ [14], the same

principle applies to domain wall solutions. It is in this sense that the existence of two

different types of effective actions for black holes can be understood: it is the same as

‘domain walls as a geodesic motion’ [44], but applied to D = 2 domain walls. Finally, in a

pure mathematical context, this correspondence between particle actions with a force field

and an associated action of a free particle in an enlarged target space is what underlies

the way the integrability of Toda-Liouville equations is linked to the integrability of the

geodesic equations on symmetric spaces [46].
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A Dimensional reductions

A.1 From D + 2 = 4 + 1 to D + 1 = 3 + 1 to D = 3

The reduction of pure gravity in 4+1 dimensions on a spacelike circle leads to the Einstein-

Maxwell-dilaton action (4.1) with a =
√

3. When this is further reduced over a timelike
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circle through the following reduction ansatz12

ds2
4 = eφ2

ds2
3 − e−φ2

(dt − Bt)
2 , (A.1)

A = Bz − χ0(dt − Bt) , φ1 = φ , (A.2)

where φ is the dilaton in the four-dimensional theory, the resulting 3d Euclidean action is

given by

S3 =

∫ √
g
(

R3 − 1
2∂ϕ∂ϕ + 1

4 Tr(∂K∂K−1) − 1
4e−

√
3ϕKmnFmFn

)

, (A.3)

where m,n = t, z and

ϕ = 1
2φ1 +

√
3

2 φ2 , (A.4)

Ktt = −e

√
3

2 φ1−1
2φ2

+ (χ0)2e−
√

3
2 φ1+

1
2φ2

, (A.5)

Kzz = e−
√

3
2 φ1+

1
2φ2

, (A.6)

Ktz = −e−
√

3
2 φ1+

1
2φ2

χ0 . (A.7)

If we dualise the 3d vectors to scalars via

Kzn ⋆Fn ≡ dχ1 , Ktn ⋆Fn ≡ dχ2 , (A.8)

we find the sigma model (7.1).

A.2 From D + 3 = 6 + 1 to D + 1 = 4 + 1 to D = 4

If we reduce pure 7d gravity, given by the action:
∫

d7x
√

|g7|R7 , (A.9)

over a spacelike two-torus (with coordinates ym, m = 1, 2) via

ds2
7 = e2αϕ̃ds2

5 + e2βϕ̃Kmn(dym + A(m))(dyn + A(n)) , α =
√

1
15 , β = −1

2

√

3
5 , (A.10)

we find the 5d action

S =

∫

d5x
√

|g5|
(

R5 − 1
2∂ϕ̃∂ϕ̃ + 1

4 Tr(∂K−1∂K) − 1
4e

q

5
3 ϕ̃KmnFmFn

)

. (A.11)

The SL(2, R) matrix K parameterises the deformations of the torus through the two scalars

ϕ0 and χ0:

K = e−ϕ0

(

e2ϕ0

+ (χ0)2 χ0

χ0 1

)

. (A.12)

In five dimensions, this gives rise to an SO(1, 1)× SL(2,R)
SO(2) sigma model, where the decoupled

SO(1, 1) is parameterised by ϕ, as can be seen from the action.

12Note that in equation (A.1) φ2 is a scalar with an upper index and not a square.
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A subsequent timelike reduction to D = 4 + 0 via the ansatz (we truncate the 4d

vectors)

ds2
5 = −e−2ϕ1

dt2 + eϕ1

ds2
4 , (A.13)

A(1) = χ1dt , A(2) = χ2dt , (A.14)

gives the 4d action

S =

∫

d4x
√

g4

[

R4 − 1
2∂ϕ̃∂ϕ̃ − 1

2∂ϕ0∂ϕ0 − 3
2∂ϕ1∂ϕ1 − 1

2e−2ϕ0

∂χ0∂χ0

+ 1
4e

q

5
3 ϕ̃+2ϕ1−ϕ0

(

(

e2ϕ0

+ (χ0)2
)

∂χ1∂χ1 + 2χ0∂χ1∂χ2 + ∂χ2∂χ2
)]

.

(A.15)

This action describes an SO(1, 1)× SL(3,R)
SO(2,1) sigma model coupled to gravity. Written in this

way, it is not evident how to decouple the SO(1, 1) part. To obtain the form (8.2), we

further have to perform the following rotation of the dilatons {ϕ̃, ϕ0, ϕ1} → {φ0, φ1, φ2}:

φ0 = −2
3 ϕ̃ +

√

5
3ϕ1 , (A.16)

φ1 = 1
2
√

3

(
√

5
3 ϕ̃ + 3ϕ0 + 2ϕ1

)

, (A.17)

φ2 = 1
2

(
√

5
3 ϕ̃ − ϕ0 + 2ϕ1

)

. (A.18)

The action now becomes:

S =

∫

d4x
√

g4

(

R4 − 1
2∂φ0∂φ0 − 1

2∂φ1∂φ1 − 1
2∂φ2∂φ2 − 1

2e−
√

3φ1+φ2

∂χ0∂χ0

+ 1
2e2φ2

∂χ2∂χ2 + 1
2

(

e
√

3φ1+φ2

+ e2φ2

(χ0)2
)

∂χ1∂χ1 + χ0e2φ2

∂χ1∂χ2
)

.

(A.19)

The scalar φ0 describes the SO(1, 1)-part, while the others parameterise a SL(3,R)
SO(2,1) sigma

model.

B The
SL(3,R)

SO(2,1)
sigma model

We define the SL(3, R)/SO(2, 1) coset element in the Borel gauge

L = exp(χ1E12) exp(χ0E23) exp(χ2E13) exp(1
2φ1H0 + 1

2φ2H2) , (B.1)

where H1 and H2 are the Cartan generators of sl(3) and the Eα are the three positive root

generators. In here we use the fundamental representation of sl(3) and choose the following

basis for the generators

H0 =
1√
3







−1 0 0

0 2 0

0 0 −1






, H1 =







−1 0 0

0 0 0

0 0 1






, (B.2)

– 23 –



J
H
E
P
0
3
(
2
0
0
9
)
1
5
0

and the three positive step operators

E12 =







0 1 0

0 0 0

0 0 0






, E23 =







0 0 0

0 0 1

0 0 0






, E13 =







0 0 1

0 0 0

0 0 0






. (B.3)

The generators TΛ, Λ = 1, . . . , 8, of SL(3, R) are given by

TΛ = {H0,H1, E12, E23, E13, E
T
12, E

T
23, E

T
13} . (B.4)

Then the coset element is explicitly given by

L =

















e
− 1

2
√

3
φ1−1

2φ2

e
φ1

√
3 χ1 e

− φ1

2
√

3
+

φ2

2 (χ0χ1 + χ2)

0 e
φ1

√
3 e

− φ1

2
√

3
+

φ2

2 χ0

0 0 e
− φ1

2
√

3
+

φ2

2

















. (B.5)

To find the metric on the coset we define the symmetric coset matrix M via M = LηLT

where η is the matrix whose stabiliser defines the specific isotopy group SO(2, 1) of the

coset. To reproduce the sigma model (7.1) we choose

η = diag(+1,−1,+1) , (B.6)

whereas the other sigma model (8.2) has another SO(2, 1) defined by

η = diag(−1,+1,+1) . (B.7)

The metric that is then defined by ds2 = −1
2 Tr(dMdM−1) and the Cartan involution for

a matrix A ∈ sl(3, R) is

θ(A) = −ηATη . (B.8)
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