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We describe the state-of-the art status of multifrequency detection techniques for compact sources in microwave astronomy. From
the simplest cases where the spectral behaviour is well known (i.e., thermal SZ clusters) to the more complex cases where there
is little a priori information (i.e., polarized radio sources) we will review the main advances and the most recent results in the
detection problem.

1. Introduction

Extragalactic foregrounds play a crucial role in microwave
astronomy, not only by their effect as contaminants of the
Cosmic Microwave Background (CMB) but also by their own
right as cosmological probes. Galaxies and galaxy clusters, if
not properly identified and taken into account, can seriously
affect the measurement of the CMB anisotropies angular
power spectrum in temperature [1–3] and polarization
[4, 5], CMB non-Gaussianity tests [6–12], and even the
performance of component separation methods used for
the study of Galactic foregrounds (on the other hand, the
opposite is also true: foregrounds can affect the performance
of compact source detection algorithms. In general, compact
source detection algorithms find it easier to deal with diffuse
foregrounds than diffuse component separation techniques
to deal with compact sources, so the typical CMB analysis
pipeline includes the detection of compact sources as a
previous step to diffuse component separation) [13, 14].
On the other hand, galaxy and galaxy cluster surveys in
the submm regime of the electromagnetic spectrum are
powerful tools for cosmology [15–17]. This is the motivation
of the considerable number of works on extragalactic
foreground detection that have appeared in the literature on
recent years.

As opposed to Galactic foregrounds, that are typically
extended as diffuse clouds over large areas of the sky,
individual extragalactic objects appear as compact blobs that
subtend very small angular scales. For this reason, both
galaxies and galaxy clusters are often referred to as compact
sources and their detection/separation is typically treated as
a problem apart from the one posed by the separation of
Galactic diffuse components.

It is precisely the compactness of extragalactic sources
that makes it possible to detect them against the fluc-
tuations of the diffuse components (CMB included) in
single-frequency (channel) settings. Most of the detection
methods that have been proposed in the literature make use
of this scale diversity. The well-known SExtractor package
[18], for example, is particularly good at estimating and
then subtracting the background at coarse scales and then
detecting compact sources by looking for small sets of
connected pixels above a given threshold. For the same
reason, techniques based on scale-selecting devices such as
band-pass filters [19–24] and wavelets [25, 26] have proven
to be very useful. More sophisticated detection Bayesian
algorithms [27–31] make also use at some point of the
scale diversity of compact sources versus diffuse foregrounds.
A recent review on methods for the detection of compact
sources in microwave images can be found in [32].
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The majority of current CMB experiments, such as the
Wilkinson Microwave Anisotropy Probe (WMAP) [33] and
Planck [34], can observe the sky in several frequency bands
simultaneously. Some of them are also capable of measuring
not only the intensity of the microwave radiation, but also its
polarization. This means that extragalactic compact sources
can be observed in several different images or channels.
Multichannel, (In this work we wil use the term multichannel
detection instead of the more common multifrequency term
because it can accommodate both the classic problem of
detecting a source using different frequency maps and the
detection of a source in polarization using images of the
Stokes’ parameters I , Q, U . As we will see, both problems
are formally equivalent and therefore we prefer the more
general terminology), information can be used to improve
the chances of detecting compact sources. In this paper
we will review the state of the art multichannel detection
techniques for compact sources in microwave astronomy.

Multichannel (multi-frequency) astronomy is almost as
old as the telescope itself: we have been doing it since
the first colour filters became available. During the XXth
and XXIst centuries astronomy has expanded its range of
operation into the radio, microwave, infrared, ultraviolet, X-
ray, and gamma regimes of the electromagnetic spectrum: a
tremendous amount of information we are only beginning to
piece together. The most basic multichannel consideration
we can do is given that we have observed some object
in the optical, let us see how does it look like in, for
example, the infrared. Catalogue cross-correlation and band
merging, follow-ups and the construction of spectral energy
distribution (SED) curves are fundamental parts of this
multichannel quest for knowledge. But we are not going to
review this.

A followup, looking at a certain position of the sky where
a particular source has been already detected in a different
region of the electromagnetic spectrum, can only work if
we have a clear detection of the source in the first place.
Sometimes, however, the sources are just too faint to be
detected with enough significance in any of the available
channels. But maybe if we could join together all the channels
we would be able to detect the source. Even in the cases where
the source is clearly detected in one channel, it may be too
weak to be observed in other channels. Once again, one can
ask if there is any possibility to use other information apart
from just the source position from the “good” channels in
order to enhance the source in the “bad” ones. Or we can
more generally ask if there is a better way to combine all
the channels to get better SEDs than just going channel by
channel separately. This is the aim of our paper.

The key for multichannel source separation is spectral
diversity: we hope the signal of interest to scale from one
image to other in a different way than the other components
(background). Assuming a linear mixture model in which
N different, unknown sources are added with a set of
channel-dependent weights to produceM observed channels
(M ≥ N) and making certain assumptions about the
statistical properties of the sources, for example statistical
independence, or non-Gaussianity, the Blind Source Sepa-
ration (BSS) problem is solvable by means of a number of

statistical signal processing techniques such as the Maximum
Entropy Method [35], Independent Component Analysis
[36], Correlated Component Analysis [37, 38], or wavelet-
based Internal Template Fitting [39], just to mention a few of
them. For a more detailed review of BSS methods applied to
microwave experiments, see [14].

Unfortunately for our purposes the above mentioned
BSS techniques are not well suited for the detection of
extragalactic compact sources, except for the particular
case of galaxy clusters observed through the thermal
Sunyaev-Zel’dovich (tSZ) effect. Individual galaxies leave
their imprint on the microwave sky through an enormous
variety of astrophysical mechanisms, from radio active lobes
to dust thermal emission, so that, strictly speaking, each
individual galaxy has its own unique spectral behaviour. In
the linear mixing model this translates into N � M, and
the BSS problem is sorely under determined. New methods,
specifically tailored for compact sources, become necessary.
Even in the case of tSZ clusters, where all the sources share
the same spectral behaviour, it may be advisable to apply
other techniques different from the abovementioned BSS
methods. The tSZ is subdominant at all frequencies, making
it very difficult for BSS techniques to detect but the brightest
clusters in the sky. The multichannel detection methods we
are going to describe in this paper make use, up to different
extent, of both scale and spectral diversities in order to
optimize the detectability of compact sources.

In this paper we will review the most widely used
methods for detecting extragalactic compact sources using
multichannel data. We will first formalize the problem in
Section 2. Then we will review the different approaches
currently used in microwave astronomy. We choose the order
in which we introduce the methods on the basis of the
amount of information that is used to achieve detection: we
will start in Section 3 with traditional stacking and band-
merging techniques that make a minimal use of multichannel
information and then proceed in Section 4 to a linear
filtering scheme that takes into account the correlation of the
background among different channels. In Section 5 we will
discuss how to filter the data when both the correlation of the
background among channels and the spectral behaviour of
the sources are known. We will see how the second condition
can be relaxed. Then we will discuss the more general theory
of Bayesian detection in Section 6. Finally, we will devote
Section 7 to the particular case of polarization data.

2. Compact Sources in
Multichannel Observations

Let us consider a set ofN two-dimensional images (channels)
in which there is an unknown number of compact sources
embedded in a mixture of instrumental noise and other
astrophysical components. Without loss of generality, let us
consider the case of a single source with a certain typical
angular scale R and located at the origin of the coordinates.
Our data model is

D j
(
�x
) = s j

(
�x;R

)
+ nj

(
�x
)
, (1)
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where the subscript j = 1, . . . ,N denotes the index of the
channel: it may refer to a given frequency (i.e., 30 GHz,
44 GHz), to a polarization channel (i.e., the Stokes’ param-
eters I , Q, U) or any other image indexing we can consider.
The scale R of the sources can vary from one object to other
(as it happens for galaxy clusters) or be the same for all the
objects belonging to a given class (i.e., radio sources observed
by low angular resolution experiments such as WMAP). It
is common to factorize the source term as the product of
a channel-dependent amplitude or intensity and a spatial
profile:

s j
(
�x
) = Aj × τj

(
�x;R

)
. (2)

The spatial profile, in turn, includes the possible effects of any
channel-dependent point spread function (beam):

τj
(
�x;R

) = bj
(
�x
)⊗ τ0

j

(
�x;R

)
. (3)

The above formula can be expressed more easily in Fourier
space:

τj
(
�k;R

)
= bj

(
�k
)
× τ0

j

(
�k;R

)
, (4)

where for simplicity we have kept the same symbol for the

functions in real and in Fourier space (the argument �x or �k
indicates clearly enough in which space we are). We choose
the normalization of the profile so that

τ0
j

(
�0;R

)
= 1. (5)

Finally, for simplicity we will consider symmetric beams and
profiles, τj(�x;R) = τj(|�x|;R) = τj(x;R). This assumption is
not strictly necessary and can be relaxed on demand but it
greatly simplifies calculations and is quite reasonable in most
applications.

The term nj(�x) in (1) is the generalized noise in the jth
channel, containing not only instrumental noise, but also
CMB and all the other astrophysical components apart from
the compact sources. Let us suppose that the noise has zero
mean and that it can be characterized by its cross-power
spectrum:

〈
nj
(
�k
)
n∗l
(
�k′
)〉
= Pjl(k)δ2

(
�k − �k′

)
. (6)

In other words, we work under the assumption that the
properties of the noise can be sufficiently described by its
second-order statistics. Please note that the homogeneity
of the background is a necessary condition for the power
spectrum to be a full second-order description of the
background; this condition is not globally met in real
astronomical images (where the Galactic foregrounds, for
example, are strongly non homogeneous), but we can always
take patches small enough to satisfy local homogeneity (at
least on a first approximation).

2.1. Notation. In this paper we will use the notation �x to
indicate coordinate vectors (both in real and Fourier spaces)
and the notation x to indicate vectors whose components are

labelled with the indexes of the different channels. According
to this notation, we can write (1)–(6) as

D
(
�x
) = s(x;R) + n

(
�x
)
,

s(x) = Aτ(x;R),

τ(k;R) = b(k)τ0(k;R),

〈
nt
(
�k
)

n
(
�k′
)〉
= P(k)δ2

(
�k − �k′

)
.

(7)

It will be useful in some cases to expand the vector of
intensities as

A = I∗f , (8)

where I∗ can be interpreted as a channel-independent
intensity and f is a vector containing the spectral behaviour
of the sources across the different channels. For example,
when we consider the tSZ I∗ can be associated with the
cluster Compton-y parameter and f takes the well-known
form, in thermodynamic temperature units,

fν̂ ∝ ν̂
eν̂ + 1
eν̂ − 1

− 4, (9)

where ν̂ = hν/kT , ν is the frequency of observation, k is the
Boltzmann constant, and T is the temperature of the CMB.
Other example is provided by radio sources whose spectral
behaviour can be approximated by a power law

fν ∝
(

ν

ν0

)−α
, (10)

where ν0 is some frequency of reference and α is known as
the spectral index. In this case, I∗ can be interpreted as the
source flux density at the reference frequency ν0. Please note
that analytic spectral laws such as (9) or (10) are not always
available, or even convenient.

A list of symbols used in this paper can be found at the
end of the paper.

3. Basic Multichannel Detection

Probably, the simplest imaginable approach to the multi-
channel problem consists in trying somehow to transform
it to a much simpler single-channel problem. The theory
and applications of single-channel source detection are well
studied in the literature; we will assume in this work that
the reader is already familiar with the topic. A short, recent
review can be found in [32] and references therein.

Let us start with the simplest, and most frequent, case
of multichannel observation we can conceive. Imagine we
have just two independent observations D1 and D2 of the
same source, taken at the same frequency and with the
same instrumental characteristics (beam size, noise level,
etc.). A perfect example is any pair of identical radiometers
in an experiment such as Planck. Let us also assume that
the two observations are simultaneous or at least that the
source under study has not experienced variability in the
time passed between observations. Then, it is well known
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that if the noises of the two observations are Gaussian with
rms σ1 = σ2 = σ and independently distributed, the linear
combination D̃ = (D1 + D2)/2 has a lower rms noise σ̃ =
σ/
√

2. If the different channels have different noise levels but
the noises are still uncorrelated, another well-known result
is that the noise of the linear combination of the channels
can be minimized by inverse noise variance weighting of the
individual channels. Once the multichannel data has been
combined (or projected) into a single channel (or plane)
it is straightforward to apply threshold detection, filtering
plus thresholding, or any other of the techniques described
in [32]. With the appropriate modifications, the weighting
internal linear combination scheme can be extended to
correlated noise [40]. The problem with this approach is that
if the source has not the same intensity in all the channels
(or if its spectral behaviour is not perfectly known) it is
impossible to relate the intensity observed in the combined
image with the true intensity of the source.

Other merging schemes can be advisable in some other
circumstances. Imagine that some of the components of
the noise in (1) are constant across all the channels, the
best example is the CMB itself in images expressed in
thermodynamic temperature units. Then an obvious way
to reduce the noise is to subtract pairs of channels. As an
example, [41, 42] used combinations of the WMAP W and
V bands in order to produce a CMB-free map to better
detect the elusive radio galaxies in the WMAP 5-year data.
The problem with this approach is that if a source has by
chance a spectrum flat enough, it may be also cancelled by
the subtraction.

4. Matrix Multifilters

A recurrent problem of channel linear combination is that
accurate photometry, that is, the determination of I∗, is not
possible unless the exact values of all the components of the
spectral behaviour f are known. But the spectral behaviour
is not known in most cases. General laws such as (10)
are not reliable when the range of frequencies involved is
wide enough, and even if they are there is the additional
problem that different sources in a given patch of the sky
will have different spectral indexes. The classic solution in
these cases, if one wants to persist using linear combination
nevertheless, is to go back to the individual channels and
extract photometric measurements on them.

In order to overcome these problems authors in [43,
44] proposed a method that combines the signal-to-noise
boosting capacity of linear filters with a particular merging
scheme that makes totally irrelevant the spectral behaviour
f . The method is called matrix multifilters (MTXFs) and its
foundations can be summarized as follows.

Let Ψi j(�x) be a set (matrix) of N ×N linear filters, and let
us define the set of quantities:

wi
(
�x
) =

∑

j

∫

d�y Ψi j
(
�x − �y)Dj

(
�y
)
. (11)

The quantity above is the sum of a set of linear filterings
of the individual channels. We intend to use the combined

filtered images wi(�x) as estimators of the source amplitudes
Ai. For that purpose, we require that the filters Ψi j satisfy the
conditions below.

(i) The combined filtered image at the position of the

source wi(�0) is an unbiased estimator of Ai.

(ii) The combined filtered image at the position of the

source wi(�0) is an efficient estimator of Ai, that is, the
variance of the estimator is minimum.

Looking at the structure of (11) it is easy to verify that a
sufficient condition in order to guarantee the first condition
above is

∫

d�y Ψi j
(
�x − �y)τj

(
�y
) = δi j

(
�x
)
, (12)

that is, the filter functions are orthonormal to the source
profile functions. This guarantees statistical unbiasedness
independently of whatever values f may take. The solution
to the problem given the two conditions above and the
constraints (12) is, in Fourier space:

Ψ∗ = ΛP−1, (13)

where ∗ denotes complex conjugation and

Λlm = λlmτm,

λ = H−1,

Hlm =
∫

d�kτl
(
�k
)
P−1
lm (k)τ∗m

(
�k
)
.

(14)

In the case where P is diagonal (no noise correlation among
channels), it can be shown that the matrix multifilters
default to a simple matched filter applied individually to each
channel.

The MTXF do not project N channels into a single
effective plane where to detect the sources. They project
instead N channels into N new planes where the sources
can be detected and their N amplitudes Ai(i = 1, . . . ,N)
can be estimated separately. The difference with the single-
channel approach is that each one of the N new planes wi

is constructed by combination of the original N channels
in such a way the noise is cancelled more effectively: the
MTXFs use the multichannel cross-correlation of noise
but do not use at all any information about the spectral
behaviour of the sources. It can be described as a “semi-
multichannel approach”, in the sense that it uses only
half of the available information. When the noise cross-
correlation among channels is zero, the method defaults
to standard single-channel-matched filtering. But when the
cross-correlation is not null, the MTXF give better signal-
to-noise boosts than the standard single-channel matched
filter. Figure 1 shows the comparison between the single-
channel matched filter and the MTXF for a simulation
of the Planck 30, 44, 70 and 100 GHz channels. Note
that for the 44 and, 70 GHz channels the output matrix-
filtered maps look far cleaner than their matched filtered
equivalents. For the 30 GHz channel, the distinction is
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Figure 1: Comparison between single-channel-matched filtering and multichannel MTXF filtering for a four-channel simulation of a patch
of the sky as observed by the Planck 30, 44, 70 and 100 GHz detectors. The top row of images show the simulated patches. The second row
shows just the point sources present in the simulations. The third row shows the patches after being filtered with single-channel-matched
filters. The fourth row shows the patches filtered with the corresponding MTXF. The x-and y-axes are in pixel units (pixel size = 3.435
arcmin).

not so clear, but some improvement can be appreciated
nevertheless. Finally, for the 100 GHz channel both filtered
images look practically identical. The gain factors obtained
for these images with the MTXF are [2.9, 3.8, 3.5, 2.8] for
the [30, 44, 70, and 100] GHz channels. The signal-to-
noise gain ratio between the MTXF and the matched
filter is GMTXF/GMF = [1.38, 1.52, 1.49, and 1.00] for
the [30, 44, 70, 100] GHz channels. Note that in one of
the channels (100 GHz) the signal-to-noise gain is equal
to one, although this is not always the case, the MTXFs
tend to default to the standard-matched filter for some of
the channels when the multichannel mixing does not add
information in a constructive way: this is often (but not
always) the case for the Planck 100 GHz when combined
with the lower frequency channels that have worse angular
resolution and higher noise levels. This cannot be taken
as a general rule, because the conditions change from one
region of the sky to another. Only in the worst case the
100 GHz-MTXF-filtered image is as good as the single-
channel-MF-filtered image. Regarding the number of true

and spurious detections produced by both methods Figure 2
shows the receiver operating characteristic (ROC) curves for
the MTXF and the MF in the four considered channels; a
clear improvement can be appreciated at 30, 44, and 70 GHz,
whereas both methods work similarly for thr 100 GHz case.
This serves as an indication of how MTXF can produce
results better or at least equal to single-channel-matched
filters without making any use of the sources spectral
diversity.

5. Matched Multifilter

Multichannel detection techniques reach the summit of
their power when they fully exploit the spectral diversity
of compact sources with respect to the background. he
fully multichannel compact source detection techniques that
are being applied in the context of CMB astronomy lie
in two main groups: linear filtering methods based on
the so-called matched multi-filters plus some thresholding
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TPR stands for true positives ratio (associated to the completeness of a catalogue), FPR stands for false positives ratio (associated to the
purity of the catalogue, a low FPR indicates a high purity).

detection criteria and Bayesian methods, to be discussed in
the next section.

5.1. Standard-Matched Multifilters. Let us assume that the
spectral behaviour f of the sources is known a priori.
An example is the well known thermal Sunyaev-Zel’dovich
effect which, ignoring relativistic effects, has a spectral
behaviour given by (9). This opens interesting possibilities.
For example, if f is known, it is straightforward to stack
the different channels with an optimal weighting designed to
minimize the effects of the background while keeping intact
the intensity of the sources [45]:

D̃
(
�x
) =

∑

i

wiDi
(
�x
) = wtD

(
�x
)
, (15)

such that if there is a source of intensity I∗ located at the
origin, then

〈
D̃
(
�0
)〉
= I∗. (16)

The solution to this kind of internal linear combination of
channels is given by the generalized eigenvalue problem [45]

(G− λM)w = 0, (17)

where the elements of the matrices G and M are given by

Gij = fiτi(0)τj(0) f j ,

Mij =
〈
ni
(
�x
)
nj
(
�x
)〉
.

(18)

It is evident that M is a measure of the cross-correlation of the
noise among the different channels. The combination (15)
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using the weights obtained through (17) gives the optimal
internal linear combination (ILC) map for the detection of
sources with the spectral behaviour f . The ILC map can be
further processed using a single-channel-matched filter as
suggested by [45]. In an independent work, [40] combined
simulated multiwavelength maps in order to increase the
average signal-to-noise ratio of galaxies assuming that their
spectral behaviour could be modelled by expressions such as
(10) with a known spectral index.

In the previous ILC method, however, the separation
between linear combination and filtering seems somewhat
artificial. The process of filtering and projecting into a single
effective plane can be achieved in a single step by means of
the so-called matched multifilters [45–48]. Let us define the
effective filtered plane as a sum of optimally filtered images

D̂
(
�x; S
) =

∑

i

∫

d�yDi
(
�y
)
ψi
(
�x − �y; S

)
, (19)

where the ψi are N linear filters depending on a certain
scale parameter S. The meaning of this scale parameter will
become evident shortly. If we impose to the effective filtered
plane D̂ the usual unbiasedness and efficiency conditions,
that is

(i) at the position of the sources, D̂ is an unbiased
estimator of I∗;

(ii) the variance of D̂ is minimum.
The solution, as proven in [45], is given in Fourier space by

ψ
(
�k; S
)
= α(S)P−1

(
�k
)

F
(
�k; S
)

, (20)

α−1(S) =
∫

d�kFt
(
�k; S
)

P−1
(
�k
)

F
(
�k; S
)

, (21)

where the vector F has components Fi(�k; S) = fiτi(�k; S). We
show explicitly the dependence on S for a reason that will be
clear immediately. The filters defined by (20) take the name
of matched multifilters (MMF).

Just to show the power of the MMF, in Figures 3 and 4
we show the unfiltered channels of a typical simulated SZ
observations and the corresponding filtered plane. Figure 3
shows a small part of a realistic sky simulation obtained with
the Planck Sky Model (PSM) package [49] for the Planck HFI
frequencies of 100 143, 217, 353, 545, and 857 GHz. There is
a bright galaxy cluster in the center of the images, but it is
very hard to spot it visually. On the other hand, the presence
of the cluster is evident in the MMF-filtered image shown in
Figure 4.

5.2. Objects with Different Size. Until now, we have not made
reference to the scale R of the sources that appeared in (1)–
(5). In Sections 3 and 4 we have implicitly assumed that all
the sources shared the same basic profile τ0. This is pretty
well the case of galaxies in low-resolution experiments such
as WMAP and Planck: the angular scale of these objects is
typically far smaller than the instrument psf and therefore
all of them can be safely considered as point sources, with
observed profiles that are basically equal to the observing

beam. In that case, we can effectively forget about the scale R
and assume that is something intrinsic to the profile τ0 that
does not require to be made explicit.

But this cannot be the case for galaxy clusters: many
of them are resolved objects even at the relatively low
angular resolutions of Planck [50]. Detection algorithms
must therefore provide not only a list of positions and
intensities but also of sizes of clusters. Moreover, they should
give accurate photometry (values of I∗) for all the range of
possible object sizes. MMF can be adapted to do precisely
this in a very simple manner.

Let us assume that all the compact sources in a given
multichannel image have the same spatial profile except
for a scale parameter R. For example we may consider the
universal galaxy cluster pressure profile given by [51] with a
different contrast radius R500 for each cluster in our sample.
If the jth cluster has a true value of its scale parameter equal
to Rj , then is it straightforward to prove that the filters
(20) satisfy the conditions of unbiasedness and maximum
efficiency if and only if their scale is S = Rj . Moreover, as
a part of the demonstration it can be shown that the signal-
to-noise boosting given by the filter for that particular cluster
is maximum also if and only if S = Rj . This suggests a very
simple detection/estimation algorithm:

(1) filter the multichannel image with a set of filters (20)
with different scales Si;

(2) select as cluster candidates the positions of the max-
ima of the filtered images above a certain threshold;

(3) for each cluster candidate j, obtain the curve showing
the signal-to-noise boosting versus the scale Si and
find the location Smax( j) of that curvely;

(4) make Rj = Smax( j).

5.3. Unbiased Matched Multifilters. Galaxy clusters interact
with CMB photons not only through the thermal SZ effect,
but also through the so-called kinematic SZ effect due
to the proper motion of the cluster. This is a perfect
example of a case in which the same object produces
two signals with identical spatial distribution but different
spectral behaviours. The mixing of the two signals can affect
negatively the determination of each of them. Normally the
kinematic effect is at least one order of magnitude fainter
than the tSZ and therefore the bias introduced by it in tSZ
measurements can be neglected. But the contrary is not
true: the tSZ can contaminate significantly the estimation
of the kinematic effect. In order to avoid this authors in
[46] proposed a modification of MMF specifically tailored
to cancel out this bias.

Let us consider a case in which we wish to observe
the kinematic SZ effect without being disturbed by tSZ. In
thermodynamic units the vector f = [ f1, . . . , fN ] of the
thermal effect is given by (9). The spectral behaviour of the
kinematic effect is, in the same units, flat: [1, . . . , 1]. We look
for a set ofN filters Φi, . . . ,ΦN such that the estimation of the



8 Advances in Astronomy

10 20 30 40 50

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

10 20 30 40 50 10 20 30 40 50

10

20

30

40

50

10

20

30

40

50

10

20

30

40

50

10

20

30

40

50

10

20

30

40

50

10

20

30

40

50

143 GHz 217 GHz

353 GHz 545 GHz 857 GHz

100 GHz

Figure 3: Simulated patches of the sky at 100, 143, 217, 353, 545 and 857 GHz. A bright galaxy cluster is in the centre of the patches, but it
is almost invisible among the CMB and Galaxy fluctuations.

kinematic effect is not affected by the thermal. A sufficient
condition for this is

∫

d�kτ tΦ = 1,

∫

d�kFtΦ = 0,

(22)

which can be interpreted as a kind of orthogonality with
respect to the spectral behaviour laws of the components.
The solution, when we add the maximum efficiency con-
straint, looks similar to the MMF:

Φ = 1
Δ

P−1(−βF + ατ
)
. (23)

In this equation the constants α, β and Δ are given by

α =
∫

d�kFtP−1F,

β =
∫

d�kτ tP−1F,

γ =
∫

d�kτ tP−1τ,

Δ = αγ − β2.

(24)

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50

MMF-filtered plane

Figure 4: The same area of the simulated sky as in Figure 3, after
filtering with MMF. Now the galaxy cluster is clearly visible.

Similarly, it is possible, albeit less interesting, to design filters
that give the thermal SZ effect while cancelling the bias
introduced by the kinematic effect. Both families of filters are
called unbiased matched multifilters (UMMF).
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5.4. Unknown Spectral Behaviour. The prior knowledge of f
is the fundamental key of the success of MMF and the reason
why they are able to get high signal-to-noise ratio boosts
with respect to the individual channels. However, as we
mentioned before this prior knowledge is only certain when
considering the SZ effect (and while ignoring relativistic
effects). Extragalactic radio and infrared sources are not that
simple to model. One possible solution is to group sources
in broad families, radio flat, radio steep, dusty galaxies of
a certain type, and so forth, and to define average spectral
laws, such as (10), for each family. This approach will not be
optimal for individual sources and will certainly introduce
biases in the photometry but at least is expected to improve
the number of detections with respect to single-channel
detection.

Fortunately MMF allow us to solve the conundrum in a
very elegant way by means of an adaptive filtering scheme
similar to the one described in Section 5.2.

Now imagine that f describes the true (unknown)
spectral behaviour of a source and that g = [gi], i = 1, . . . ,N
is a new vector of equal size as f but whose elements can take
any possible value. We can define the MMF for vector g:

ψg = αgP−1G,

α−1
g =

∫

d�kGtP−1G

Gi = giτi,

, (25)

where all the definitions are in Fourier space and we have

not written down the explicit dependence on�k for simplicity.
If we apply the filter (25) to a source with true spectral
behaviour f and true intensity I∗ we will get

Ig = D̂
(
�0
)
= I∗αg

∫

d�k GtP−1F, (26)

so Ig /= I∗ unless g = f . This is no help since we do not know
the true value I∗. But it can be shown [52] that the quantity

SNRg =
Ig
σg

, (27)

where σ2
g is the variance of the image filtered with (25),

is maximum when g = f . SNRg is obviously the signal-
to-noise ratio of the source after filtering. This allows us
to reproduce the same kind of algorithm that was used in
Section 5.2 to detect the sources and estimate simultaneously
their position, intensity, and spectral behaviour (instead
of their scale). The only difference here is that while in
Section 5.2 there was only one parameter per cluster to be
determined (the scale), here we have N − 1 parameters
per cluster (components of f) to determine. The method
has been recently applied to the two highest frequency
channels of WMAP [53], leading to a new catalogue of
157 objects detected at the 5σ level at 94 GHz, which is a
substantial improvement over the WMAP Five-Band Point
Source Catalogue.

6. Bayesian Multichannel Detection
and Estimation

All the multichannel detection methods above have a com-
mon two-step methodological approach: in a first moment
the data are somehow preprocessed and then objects are
detected by means of some criterion, typically thresholding,
that hopefully separates them from the background noise.
For the preprocessing step, one chooses beforehand a given
tool (e.g., linear combinations of channels or a given kind
of filter/wavelet) and adjusts a small number of parameters
(e.g., the weights of the linear combination, the scale of the
wavelet, etc.) according to some optimality criterion (e.g.,
unbiasedness, maximum efficiency). For the detection step,
an arbitrary threshold is chosen with the hope to reach a
compromise between minimizing the number of spurious
detections and maximizing the number of true detections.
A third step for the estimation of a number of parameters
of the sources (e.g., intensity, size...) can be attempted after
detection or, in some cases, simultaneously to it, (even if
detection and estimation can be done at the same time under
certain circumstances, it must be noted that in statistics they
are fundamentally different concepts), (as it occurred with
MMF). Errors to the estimated parameters are calculated
by means of some prescription such as Fisher analysis. All
these steps are somewhat arbitrary and are focused only
in the statistical properties of the background (and the
deterministic spectral behaviour of the sources, in the case
of multichannel detection). This approach leaves out all
probabilistic (and potentially useful) information about how
many sources are expected to be found above a given flux
limit, how are they distributed as a function of intensity, how
many classes of sources are there and in which proportion are
they present in the data, and so forth.

The Bayesian system of inference is the only one that
provides a consistent extension of deductive logic to a
broader class of degrees-of-belief by mapping them into
the real interval [0, 1] [54]. Bayesian inference provides a
logically consistent way of tackling the detection problem as a
part of the decision theory, while incorporating a probabilistic
description of the sources as a priori information in a
natural way. The Bayesian framework also provides a sensible
detection criterion through the Bayesian posterior odds
ratio [54, 55]. In estimation, Bayesian methods give a full
description of the a posteriori distribution of the parameters
given the current data, thus allowing us to obtain expectation
values, confidence level contours, and any other statistics of
interest.

A detailed description of multichannel Bayesian detec-
tion of compact sources is given in [55]. Here we will just
summarize the main theoretical aspects of the problem. Let
us start with Bayes’ theorem:

Pr(Θ | D,H) = Pr(D | Θ,H)Pr(Θ | H)
Pr(D | H)

, (28)

where D is the vector of the observations as in (1) and is
the vector Θ contains all the relevant parameters (positions,
intensities, sizes, etc.) to the detection problem and H is the
underlining hypothesis. In the usual Bayesian terminology,
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Pr(Θ | D,H) is the posterior probability distribution of
the parameters, Pr(D | Θ,H) ≡ L(Θ) is the Likelihood,
Pr(Θ | H) ≡ Pr(Θ) is the prior, and Pr(D | H) ≡ Z is the
Bayesian evidence. The most simple detection scenario can be
described as a decision between two incompatible hypothesis
H1 (there is a source) and H0 (there is not a source). In this
case, it can be shown [54, 55] that the decision criterion that
minimizes the expected loss (i.e., that optimizes the balance
between the number of true and false detections) is given by
the following condition on the Bayesian odds ratio:

ln
[
Pr(H1 | D)
Pr(H0 | D)

]
= ln

[
Z1

Z0

Pr(H1)
Pr(H0)

] H1

≷ ξ
H0

, (29)

where ξ is a threshold that is fixed for any given loss function.
The choice of the loss function depends on the particular
setting of the experiment; a common custom in microwave
astronomy is to give identical weight to a spurious detection
than to a missing true detection.

6.1. Likelihood. The form of the likelihood is determined by
the statistical properties of the generalised noise (background
sky emission plus instrumental noise) in each frequency
channel. If the generalised noise is statistically homogeneous
it is more convenient to work in Fourier space, since there are
no correlations between the Fourier modes of the generalised
noise. Please note that although Galactic emission is not
homogeneous, one can always operate locally in patches
small enough to make the homogeneity assumption valid
(as a first approximation). It is also common to assume that
both the background emission and instrumental noise are
Gaussian random fields. This is a very accurate assumption
for instrumental noise and the primordial CMB but more
questionable for Galactic emission. Under the previous
assumptions, the likelihood ratio between the hypotheses H1

and H0 can be written as

ln

[
LH1 (Θ)
LH0 (Θ)

]

=
∑

�k

Dt
(
�k
)

P−1
(
�k
)

s
(
�k;Θ

)

− 1
2

∑

�k

st
(
�k;Θ

)
P−1

(
�k
)

s
(
�k;Θ

)
.

(30)

Note that the effect of the products XtP−1Y, with X and Y
generic vectors, is to project the multichannel data into one
single equivalent channel (or plane), as it happened in the
MMF and UMMF. The similarities are more profound. It is
shown in [55] that when the source term s is written as the
sum of Ns compact sources distributed across the image, the
likelihood ratio (30) can be split into two parts:

(i) a sum of “auto-terms” each containing just the
parameters corresponding to the ith source (i = 1, . . . ,Ns)

(ii) a sum of “cross-terms” with mixed parameters
corresponding to the ith, jth sources (i, j = 1, . . . ,Ns).

The cross-term goes quickly to zero when the sources are
well separated but must be taken into account when source
blending is frequent (crowded fields). It is worth noting that
maximising the likelihood ratio (30), in the absence of the
cross-term (negligible source blending), with respect to the

source intensities I∗, j , leads precisely to the MMF described
in Section 5. This is the multichannel generalization of the
well-known result that matched filtering is the solution of the
generalized maximum likelihood test (GLRT) for Gaussian
noise and a single source [32, 56].

6.2. Priors. If the data model provides a good description
of the observed data and the signal-to-noise ratio is high,
then the likelihood will be very strongly peaked around the
true parameter values and the prior will have little or no
influence on the posterior distribution. At the faint end of
the source population, however, priors will inevitably play an
important role. Moreover, since for most cases in astronomy
the faint tail overwhelmingly dominates the population, the
selection of the priors becomes important and has to be
addressed very carefully. Physical (informative) priors are
particularly useful when addressing the detection problem,
whereas noninformative priors can be more adapted to the
task of parameter estimation once the sources have been
detected [55]. For multichannel detection, the list of priors
to be considered must include the following.

(1) Prior on the positions: for extragalactic sources, it is
reasonable to assume a uniform prior. Clustering can
be a problem, particularly for dusty galaxies observed
at ν ≥ 300 GHz.

(2) Prior on the number of sources: following the same
rationale of local uniformity, that is no clustering, the
probability of finding Ns objects (above a given flux
limit) in a sky patch follows a Poisson distribution

π(Ns) = Pr(Ns | λ) = e−λ
λNs

Ns!
, (31)

where λ is the expected number of sources per patch.

(3) Prior on intensity: a usual informative prior on the
distribution in intensity of extragalactic sources is
a Generalized Cauchy Distribution such as in [31].
This provides a good model for the observed distri-
bution of fluxes, fitting the de Zotti or Tucci models
almost perfectly [2, 3]. Moreover, the distribution
can be properly normalised as required for evidence
evaluation. For the case of galaxy clusters, a power law
distribution fits well the cluster populations assum-
ing a standard WMAP best-fit ΛCDM cosmology
[57] and the Jenkins mass function [58].

(4) Prior on the sizes: Point sources are best modelled by
imposing the prior π(R) = δ(R) on the radius. For
galaxy clusters, the fact that a significant number of
them can be resolved must be taken into account. In
[55] a truncated exponential law is found to fit the
simulated catalogues very well.

(5) Prior on the spectral parameters: for galaxy clusters
observed through the thermal Sunyaev-Zel’dovich
effect, the spectral behaviour can be safely fixed to
(9), if we ignore relativistic effects. For point sources,
however, the fact that each source has a spectral
behaviour that is different from all the others must
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be accommodated. Either if we use power laws such
as (10) for radio sources or grey body laws for dusty
galaxies, there is at least one spectral parameter that
changes from one source to another. Informative
priors can be derived from the available source counts
models [2, 3], or uniform priors can be used when
physical models are not available.

(6) Priors on the models: if there is more than a kind
of source in the data (e.g., we have radio sources,
dusty galaxies, Galactic compact sources and galaxy
clusters in the same image) then appropriate priors
in the probability of the different hypotheses Hj

should be included in the Bayesian framework. More
importantly, the Bayesian framework allows us to
explicitly consider the probability of background
fluctuations above a certain level in order to optimize
the decision between the hypotheses Hj and the null
hypothesis H0 (i.e., no source).

6.3. Bayesian Detection Methods in the Literature. Solving
the Bayesian equations for object detection and parameter
estimation typically implies sampling from a very complex
posterior distribution with variable dimensionality (depen-
dent on the number of objects). Thus the main problem
that Bayesian methods need to overcome is the compu-
tational burden of evaluating integrals over the posterior
and its marginals. This can be avoided in some cases
by semianalytical Maximum A Posteriori evaluation [31],
but if a full analysis of the posterior is required then
sampling is unavoidable. Typical implementations include
MonteCarlo Markov chain (MCMC) algorithms [27] and
posterior refinements such as nested sampling [28, 59].
The authors in [29] implemented a simultaneous multiple
minimization code based on Powell’s direction set algorithm
[60], that is generalized to the multichannel case in [55]. A
full description of that algorithm and its catalogue making
procedure out of the scope of this paper.

7. Polarized Sources

An interesting case of multichannel setting is the detection
of extragalactic sources in polarization data. Mathematically
the problem is not different from the general model given in
Section 2, but the particularities of polarization observations
have motivated the appearance of some specific techniques
apart from the ones already discussed.

CMB polarization has been described as the next
observational frontier of cosmology. In the last few years,
some methods have been specifically developed to address
the important problem of detecting compact sources in
polarization data. In this section, we will give a brief review of
these methods, which have been applied to CMB simulations
as well as to real data [61–63].

Polarization of light is conveniently described in terms
of the Stokes parameters I , Q, U , and V , (see [64] for
an excellent review on CMB polarization). Q and U are
the linear polarization parameters and V indicates the

circular polarization. Whereas Q, U , and V depend on the
orientation of the receivers, the total polarization, defined as

P ≡
√
Q2 +U2 +V 2, (32)

is invariant with respect to the relative orientation of the
receivers and the direction of the incoming signal and
therefore has a clear physical meaning. This quantity can
be treated as the modulus of a vector. Thus, the methods
presented in [61] have to do with the study of a set of
images which contain signals whose individual intensities
can be considered as components of a vector, but where the
quantity of interest is the modulus. First, we will consider
the case of linear polarization, V ≡ 0, given that the CMB is
not circularly polarized in the standard cosmological models
[64]. However, since some models predict a possible circular
polarization [65], we will comment briefly on this case later.

If we have a compact source embedded in the data of Q
and U , these can be expressed in the following way:

DQ,U
(
�x
) = AQ,Uτ

(
�x
)

+ nQ,U
(
�x
)
. (33)

with AQ,U the compact source intensity in Q and U , τ(�x),
the beam profile and nQ,U(�x) the corresponding noise in
both components. The P-map, P(�x) ≡ (D2

Q(�x) + D2
U(�x))1/2,

is characterised by a source at the centre of the image with
amplitude A ≡ (A2

Q + A2
U)1/2 immersed in nonadditive noise

which is correlated with the signal.
We assume the same beam profile for the images inQ and

U , as well as a Gaussian independently distributed noise with
zero mean and the same variance for Q and U . Given these
typical conditions, the distribution of P if a source is present
is the Rice distribution:

f (P | A) = P

σ2
e−(A2+P2)/2σ2

I0

(
A
P

σ2

)
, (34)

where σ is the noise rms deviation and I0 is the modified
Bessel function of zero order. By using the Neyman-
Pearson lemma [32], a filter is obtained which produces the
maximum likelihood estimator of the amplitude, Â. In the
case of a pixelated image, we can write

Â
∑

i

τ2
i

σ2
i

=
∑

i

yi
I1
(
Âyi
)

I0
(
Âyi
) , yi ≡ Piτi

σ2
i

, (35)

where the indexes refer to the pixels and I1 refers to the
modified Bessel function of the first order. This filter is called
the Neyman-Pearson filter (NPF). Alternatively, a matched
filter can be applied to each image and then, with the two
filtered images QMF,UMF; a nonlinear fusion P ≡ (Q2

MF +
U2

MF)1/2 can be made pixel by pixel. This filter is called the
filtered fusion (FF).

Simulations with the Planck characteristics showed that
the FF performed better than the NPF especially for low
polarization fluxes. The FF outperformed the NPF when the
power of the detections with a given significance and the flux
and position estimation were compared.

If the circular polarization is taken into account, the NPF
and the FF can be also calculated. Indeed, the filters can be
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computed for the modulus of a vector with any number of
components [63]. Simulations showed that in the case of
circular polarization, the FF also produces better results than
the NPF.

Taking into account the results with simulations, The
authors in [62] applied the FF to the detection of polarized
sources in the WMAP 5-year data. They detected, with
a significance level greater than 99.99% in at least one
WMAP channel, 22 objects, 5 of which were doubtful, since
they did not have a plausible low frequency counterpart.
These detections were a clear advance with respect to the
5 polarized sources listed by the WMAP team when they
analysed the same data. The application of a filter targeted
specifically for polarization detection had a clear influence
on the improvement.

The application of these methods to Planck data can
be expected in the future. It would also be interesting to
combine them with a Bayesian approach, so that some
previous information about polarization properties of the
sources could be taken into account.

8. Final Remarks

CMB image processing is a relatively young area of research.
Much work remains to be done. There is an incipient but
resolved interest among CMB cosmologists to incorporate
the newest ideas to solving the problem of compact sources
in microwave images.

In this paper we have reviewed the status of the different
algorithms and methods that attempt the detection of extra-
galactic compact sources (galaxies and clusters of galaxies)
using multichannel (i.e., obtained by means of more than
one single detector) data. This should not be confounded
with the traditional band-merging approach to catalogue
making. We included the case of detection in polarized data
because it is formally equivalent to the detection in multi-
frequency experiments. The techniques we have reviewed
include linear fusion of images, different multichannel fil-
tering methods and Bayesian object detection. Although the
area of research is young, all of these methods have already
been applied to astronomical data sets with great success.
In next years, however, we expect to see new interesting
developments in the field.

One of the most promising ideas for future research is
related to the notions of sparsity and lp-approximations.
For the particular case of point like objects, the idea of
sparse dictionaries comes naturally [66]. However, the full
application to multichannel CMB compact source detection
has not been addressed yet. Wavelet techniques, that are
very popular in single-frequency source detection, open
another interesting possibility that has not been explored yet.
The same applies to other space-scale representations such
as Gabor and Wigner-Ville transforms. Undoubtedly, both
Bayesian and multi-filtering techniques will see substantial
improvements in the next few years. All these new develop-
ments will be really come in handy for the new generation
of many channel cosmological surveys such as the upcoming
J-PAS (http://www.j-pas.org/).

List of Symbols

�x, �y: Position vector
�k: Wave vector (Fourier)
N : Number of channels
Dj : Observed data at the jth channel
s j : Signal at the jth channel
nj : Noise at the jth channel
Aj : Source amplitude at the jth channel
τj : Source profile at the jth channel
τ0: Intrinsic source profile (before

smearing by the beam)
bj : Beam point spread function at the jth

channel
R: Scale parameter
P: Cross-power spectrum matrix
f : Spectral behaviour of the source
Ψ,Φ: Matrix (or vector) of filters
SNR: Signal-to-noise ratio
Θ: Vector of parameters (position, size,

amplitude. . .)
I ,Q,U ,V : Stokes’ polarization parameters
P: Total polarization
I0: Modified Bessel function of zero order.
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[61] F. Argüeso, J. L. Sanz, D. Herranz, M. López-Caniego, and J.
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[63] F. Argüeso, J. Luis Sanz, and D. Herranz, “Filter design for the
detection/estimation of the modulus of a vector: application to
polarization data,” Signal Processing, vol. 91, no. 7, pp. 1527–
1534, 2011.

[64] M. Kamionkowski, A. Kosowsky, and A. Stebbins, “Statistics of
cosmic microwave background polarization,” Physical Review
D, vol. 55, no. 12, pp. 7368–7388, 1997.

[65] A. Cooray, A. Melchiorri, and J. Silk, “Is the cosmic microwave
background circularly polarized?” Physics Letters B, vol. 554,
no. 1-2, pp. 1–6, 2003.

[66] F. Martinelli and J. Sanz, “Sparse Representations versus the
Matched Filter,” in Signal Processing with Adaptive Sparse
Structured Representations (SPARS ’09), R. Gribonval, Ed.,
Inria Rennes-Bretagne Atlantique, Saint Malo, France, 2009.


