
Int. J. Simul. Multidisci. Des. Optim. 2, 223–229 (2008) 1

A new algorithm for the problem of robust single objective
optimization

A. NORIEGA, R. VIJANDE, E. RODRÍGUEZ, J.L. CORTIZO AND J. M. SIERRA

University of Oviedo, Department of Mechanical Engineering, Campus Universitario, Edf. Oeste, Módulo 5

s/n, 33203 Gijón, Spain
noriegaalvaro@uniovi.es

Abstract

This paper propounds a new algorithm, the Sub-Space Random Search (SSRS) for the problem of single-
objective optimization, with the aim of improving the robustness and the precision of classical methods of
global optimization. The new algorithm is compared with a genetic algorithm (GA), on a set of four scaleable
test functions and with the number of variables changing from 1 to 5. A new test function called Deceptive-
bimodal (DB) is proposed. Results indicate that, with the same total number of function evaluations, SSRS is
about 50% faster than GA. Moreover, SSRS shows a greater precision and similar ability to find the global
optimum than GA with 1, 2 and sometimes 3 variables. But this advantage diminishes when the number of
variables increases on multimodal and narrow-flat valley functions. Finally, SSRS is successfully applied to a
problem of dynamical synthesis of a mechanism.

Keywords: meta-heuristic, unconstrained optimization, stratified random search, synthesis of mechanisms

A. Noriega., R Vijande, E Rodríguez, J-L Cortizo, J-M Sierra, A new algorithm for the problem of robust single objective

optimization. Int. J. Simul. Multidisci. Des. Optim. 2, 223–229 (2008)

DOI 10.1051/ijsmdo:2008030

The original publication is available at www.ijsmdo.org

http://www.ijsmdo.org/index.php?option=com_toc&url=/articles/smdo/abs/2008/03/contents/contents.html

Int. J. Simul. Multidisci. Des. Optim. 2, 223–229 (2008) 2

1. Introduction

Stratified Sampling Methods are widely used today in the design of experiments and allow the amount of
important information which can be extracted from the output data of a process to be maximized, see [1]. The
application of these methods with refinement on global optimization problems allows regions with a high
probability of containing the global optimum to be identified. Moreover, the finer the stratification is, the
minimum is delimited with more precision.
The paper propounds a meta-heuristic optimization algorithm based on a search space stratification similar to
the methods cited before. But the sampling and the choice of the zone where the resolution must be increased
is completely different to those methods.
The paper is organized as follows: In section 2, a detailed description of algorithm implementation and its
basic concepts is given. In section 3, the experimental validation of this algorithm is described. Test
conditions and functions are indicated in it, including a new test function proposed and an application to a
problem of dynamical synthesis of a mechanism. In section 4, the results are shown and discussed, extracting
some conclusions about the new algorithm and possible future work-lines.

2. Algorithm description

For this algorithm, it is supposed that the optimization problem is formulated as follows:

min ()f xr (1)

with nx∈ℜr and i i il x u≤ ≤ being 1,..., .i n=

The algorithm Sub-Space Random Search (SSRS) is based on the hypothesis that there is a search space
stratification in sub-spaces of equal size and whose union makes the initial space of every iteration. In every
sub-space, a sample of individuals are generated and evaluated to get a measure of the behaviour of the
objective function in this sub-space To increase the resolution in the optimum search, selecting the most
promising sub-space and re-initiating the process on it is proposed. Figure 1 shows a graphic representation of
this idea with an example of 2 variables.
However, to do this refinement process, it is necessary to determine a reference value which estimates the
probability that a sub-space contains the global minimum. This reference value allows comparing it with other
sub-spaces and thus being able to select the most suitable to continue the process. To calculate this reference
value, a random sample of individuals is generated and evaluated in every sub-space because a random
sample is the easiest way of generating individuals being the sample size is a parameter defined by the user.
Furthermore, this random sample has the same average probability of approaching the unknown minimum of
the sub-space as any other method of generating individuals as is shown in [2]. Finally, this randomized
approach to estimate the reference value, is similar to Monte-Carlo techniques used in robust optimization [3].
Then, the minimum value of the individuals’ evaluations can be taken as a reference value for the comparison
of sub-spaces. Or the average value of the evaluations of all the individuals of the sample can be calculated.
Even the average value of p % smallest values of the individuals’ evaluations (p being a parameter) can be
taken. A priori, it is not known which one is the best option to calculate the reference value because it depends
on the landscape of the objective function in this sub-space. For a continuous and monotonous function, a
sample with few individuals generates a probably correct estimation of the function behaviour in the sub-
space. But the same thing does not happen with a multimodal function (with several minima) since there
exists the probability of not generating individuals in the influence area of the global minimum of sub-space

Int. J. Simul. Multidisci. Des. Optim. 2, 223–229 (2008) 3

when it represents a small percentage regarding the whole space. For the influence area of a minimum, we
understand the minimum’s neighborhood where the function is unimodal.

Refinement in the Refinement in the
most promising most promising

subsub--spacespace

Initial range of variable 1

In
iti

al
 ra

ng
e

of
 v

ar
ia

bl
e

2

2-Variable Space and 3 divisions in each range

Figure 1: Reiterated stratification and selection of the most promising sub-space

The problem is that, for having a precise description of the behaviour of the function in the sub-space and,
therefore, the high security that the election of the most suitable region is correct, it is necessary to increase
the size of the random sample a great deal which will penalize the general efficiency of the search. However,
this action improves the robustness of the search to Type II variations just as they are referred in [4].
The number of selected individuals to calculate the reference value (parameter p) can be modified to
compensate that difficulty without increasing the size of the sample in every sub-space. If the sample is poor,
a small number of individuals will be selected. In the case of having a big sample size, the number of selected
individuals must increase to improve the security of the estimation.
But the landscape of the objective function in the sub-space also has influence on choosing the number of
individuals selected to calculate the reference value. If there are sharp minima, it is necessary to generate a
sample with a big number of individuals and select a small number of them to increase the probability of
obtaining almost one individual closer to these minima.
These values directly influence the efficiency of the algorithm and its robustness and globality in an opposed
way. However, it would also allow the search towards a type of certain minimum (more or less sharp) to be
guided.
The stratification of the variable space is an important factor since the more divisions in the range of every
variable, the finer the global stratification is. Therefore, the search is more global because the complexity of
the function in every sub-space diminishes and, then, it is easier to have a correct evaluation of them. But it is
a very delicate parameter since it has a negative influence on the efficiency of the algorithm, because it
increases the number of sub-spaces exponentially with the number of variables. For instance, if there are three
divisions in every variable’s range of a two-dimensional space, the result is 23 9= sub-spaces to study, but if
the space is three-dimensional, the result is 33 27= sub-spaces. Therefore, this is the most critical parameter
in the algorithm and hence it would limit its application to optimization in spaces with many variables.

Int. J. Simul. Multidisci. Des. Optim. 2, 223–229 (2008) 4

+ (x1,2)
+ (x2,7)

Example: 6 individuals in each
sub-space randomly generated

+ (x5,1)

+ (x4,11)

+ (x3,5)
+ (x6,25)

bvs: 1

bis: X5

cvs(33%): 5.1
2

21
=

+

bvs: 3.7

cvs= 4.5

bvs: 2.1

cvs= 5.8

bvs: 3.4

cvs= 6.1

bvs: 2.6

cvs= 3.5

bvs: 0.7

cvs= 1.1

bvs: 1

cvs= 1.5

bvs: 3.9

cvs= 5.2

bvs: 2.8

cvs= 7.7

bvs: 5.3

cvs= 10.4

bvi: 0,7

bii (corresponding to bvi)

cvi: 1,1 psi

+ (xn,f(xn))

Position Identifier Evaluation

Figure 2: Sub-space evaluation and selection of the most promising one

Thus, the sample’s individuals are evaluated to calculate three values in every sub-space: the smallest value
obtained in the objective function (bvs), the individual of the sample corresponding to this minimum (bis) and
the comparison value for the sub-space (cvs). This last value is calculated taking the mean of the p % of
smallest values of the objective function, p being a parameter defined by the user.
Once these three values of every sub-space have been obtained, the sub-spaces are compared among them to
obtain the final values of this iteration: the best individual obtained (bii), its corresponding value of the
objective function (bvi) and the most promising sub-space to look for the global minimum of the function
(psi). It can be seen in Figure 2 with an example.
The sub-space with smaller cvs is considered as the most promising and the process explained above is
repeated again on it. The number of times that this refinement process is repeated, is externally set by the user,
so that in every step, the precision of the obtained solution increases. The flowchart of the algorithm is shown
in Figure 3.
Then, the proposed algorithm has 4 parameters:
Number of divisions per variable (ndv): This parameter is related with the complexity of the objective
function and it is good that it is a small integer number because the number of sub-spaces depends on it by
means of the following equation:

nndvt = (2)

where n is the number of variables.
Population size (ps): This parameter indicates the number of individuals randomly generated in every sub-
space. It measures the quality of the function description in every sub-space and it is also related with the
complexity of the objective function.

Int. J. Simul. Multidisci. Des. Optim. 2, 223–229 (2008) 5

Figure 3: Flowchart of SSRS

% pop for reference value (p): This parameter indicates the % of sample smallest values taken to calculate the
comparison value of every sub-space (cvs). This value is calculated by means of the average of selected
values.
Number of iterations (itermax): This parameter indicates the number of iterations that will be carried out; it
has to be not too big an integer because this algorithm converges very fast to the minimum.

The best individual obtained (bii) will usually be in the most promising sub-space (psi) but it may not be so.
In this case, it is recommended to increase the population size because the function can have a very
complicated landscape in the search space.
The whole explained process has the advantage of allowing a very simple implementation. Furthermore, it
also reduces the number of the individuals’ comparisons to small groups corresponding to the sub-spaces
populations and later among sub-spaces. The result is that the general speed of this algorithm is increased.

Int. J. Simul. Multidisci. Des. Optim. 2, 223–229 (2008) 6

3. Experimental validation

The validation of SSRS will be done by means of a benchmarking of this algorithm and another similar
algorithm. In the field of robust optimization, there are two main philosophies [5]. The first one is called
simplification strategy whose aim is the transformation of the problem to another that can be solved using
standard techniques of mathematical programming. Its drawback is that these techniques are usually of local
search and they need additional information like derivatives of objective function. On the other hand, there
exist the simulation optimization techniques which are less efficient than the first ones but they do not need
additional information and, moreover, they can use randomized approaches, like Genetic Algorithms, which
can do a global search.
Because of the populational nature of SSRS and its general guidance, it is considered to compare it with an
algorithm with similar features, selecting a Genetic Algorithm (GA) as a competitor. In this case, Genetic
Algorithm and Direct Search Toolbox of MATLAB ® is used.

3.1 Test functions

To test the SSRS, two types of test are proposed. First, standard test funtions are used. To select them, the
basic features of a function to optimize are identified. Then, four benchmark functions which represent some
of these features have been selected [6]. These functions will be scaleable, i.e., the number of variables of the
function (n) can be changed but the features are maintained. These features are:
Number of minima: The number of local and global minima and their relative values determine the
complexity of the search and they allow the robustness of the optimization techniques to be verified. A
distinction can be made between Unimodal (a single minimum) and Multimodal (two or more minima). For
these types, De Jong’s function F1 is selected as unimodal function (UM) and Rastrigin’s function as
multimodal function (MM).
Narrow and flat valley: The minimum is located in a very narrow and sharp valley with an almost flat bottom
in which is very difficult to determine whether you have arrived or not at the proximity of the minimum. For
this type, Rosenbrock’s function (NFV) is selected.
Flat surfaces: Flat surfaces are obstacles for optimization algorithms based on derivatives, because they do not
give any information of which direction is favourable.
Deception: This feature arises when in a multimodal function the global minimum influence area represents a
small percentage of whole variable space which is dominated by local minima influence areas. This feature
complicates the search a great deal and it allows the robustness of an optimization technique to be verified.
For this type, the Deceptive-bimodal function (DB) is proposed, inspired by one in Deb [7] but with different
parameters and modified to make it scaleable. It is a bimodal function with a local minimum in 7ix = with a
big influence area and a global minimum in 1ix = with a small influence area and where n is the number of
variables. A graphic representation in 2 variables is shown in Figure 4.

2 2

1 1

10· (1) 0,1· (7)

() 1, 2 0,7·

n n

i i
i i

x x

f x e e= =

− − − −∑ ∑
= − −

r (3)
0 10ix≤ ≤

The function value in the global minimum is 3,6·0, 2 0,7· ne−− .

Int. J. Simul. Multidisci. Des. Optim. 2, 223–229 (2008) 7

Figure 4: Deceptive-bimodal function in 2 variables

In second place, a real optimization problem is proposed. In this case an application to a dynamical synthesis
of a mechanism is selected. The mechanism is a very simple system composed by a mass, a spring and a
damper is proposed, see Figure 5. The mass can move along the Y axis by means of a vertical guide. The
problem consists in adjusting the values of the mass (M), the spring stiffness (K) and the damper coefficient
(C) so that the acceleration in Y of the mass has a certain response regarding time. To define this response and
to ensure that the problem has a well-known solution, a previous simulation of the system is made with the
following variables: M=30 kg, K=3 1−⋅mmN and C=0.1 1−⋅⋅ mmsN . A graphical view of this response can
be seen in Figure 5. The objective is to minimize the average of absolute errors in every simulation frame
between the obtained and the desired responses. The bounds of the variables are the followings: [10 50]M ∈ ,

[1 10]K ∈ and [0.01 1]C∈ .

XX

Y
CK

M

Figure 5: Dynamical system and desired response

Int. J. Simul. Multidisci. Des. Optim. 2, 223–229 (2008) 8

3.2 Test conditions

A benchmark comparison between the SSRS and a GA is made on the group of test functions cited above.
With the standard test funtions, the number of variables changes from 1 to 5 in a similar way as can be seen in
Elbeltagi [8] except for Rosenbrock’s function which varies from 2 to 5 variables because it is not defined for
1 variable. Experiments are repeated 100 times. Both the average error and its standard deviation and the
average run time are calculated as in Deb [9].
Parameters which control the population size and the generations in both algorithms are tuned so that, keeping
logical values for every test problem, the total number of function evaluations are equal in both algorithms.
These parameters are shown in Table 1.
In the case of dynamical synthesis, there is a simulation of the behaviour of the system done with ADAMS ®
in the objective function. Since, the time cost of the objective function evaluation is around 4 seconds, only
one run with both algorithms will be done. The problem is solved with SSRS with the following parameters:
ndv=3, ps=20, p=10% and itermax=4, using 2160 function evaluations while GA uses a population size of 48
individuals and 45 generations with the same total function evaluations.
The implementation of SSRS and benchmark test has been carried out in MATLAB ® 7.0. The computer used
for the tests has a processor Intel ® Celeron ® 2.0 GHz and 512 Mb of RAM.

4. Results and discussions

The outcomes of the benchmarking with the four standard test functions are the mean and the standard
deviation of the absolute error and the mean of runtime. The error mean gives an idea of the value of the
minimum reached. It can be related with the globality and the precision of the algorithm while the standard
deviation gives an idea of the repeatability of the algorithm. In the case of runtime value, comparison among
the averages obtained by the algorithms gives an idea of the cost of their internal operations since the number
of function evaluations are the same in both cases.
Thus, the most important result which can be seen in Table 2 is that SSRS is faster than GA for all the cases.
SSRS run time is about 40-60% less than GA run time with an equal number of function evaluations over 3, 4
and 5 variables. This ratio is even better for 1 and 2 variables.
Watching mean and standard deviation of error, a different behaviour is observed on different test functions.
On the UM function, algorithm SSRS shows a greater precision than GA. On NFV function, SSRS presents a
better behaviour than GA for 1, 2 and 3 variables but for 4 and 5 this tendency is inverted and the advantage
of GA over SSRS increases as the number of variables increases.
On the MM function something similar happens. With 1 and 2 variables, SSRS does a more global search and
obtains better precision than GA but this behaviour changes when the number of variables increases. In this
case, GA works better with more variables while SSRS shows the opposite behaviour.
On the DB function, both algorithms present a similar behaviour, converging to the local minimum almost
every time but SSRS has better repeatability than GA.
To have an idea about the robustness it would be possible to see the evolution of the cvs in the most promising
sub-space and to relate this value with the size of the sub-space in every iteration.
For the problem of dynamical synthesis, the SSRS obtains the best solution M=31.269, K=3.132 and C=0.103
with an error of 7.066. The GA obtains the best solution M=49.260, K=4.912 and C=0.167 with an error of
13.351. Then, the SSRS is clearly better than the GA obtaining the correct solution with more precision than
the GA and in a more efficient way.

Int. J. Simul. Multidisci. Des. Optim. 2, 223–229 (2008) 9

Table 1. Algorithm parameters

SSRS GA Function
Eval. Function Var.

ndv ps p itermax Pop Gen Elite
1 2 10 25 5 10 10 1 100
2 2 10 25 5 20 10 1 200
3 2 20 25 5 50 16 1 800
4 2 50 25 5 100 40 1 4000

UM

5 2 100 25 5 200 80 1 16000
2 3 20 10 2 20 18 1 360
3 3 50 10 2 50 54 1 2700
4 3 100 10 2 100 162 1 16200

NFV

5 3 200 10 2 200 486 1 97200
1 3 20 10 2 10 12 1 120
2 3 20 10 2 20 18 1 360
3 3 50 10 2 50 54 1 2700
4 3 100 10 2 100 162 1 16200

MM

5 3 200 10 2 200 486 1 97200
1 5 20 1 2 20 10 2 200
2 5 20 1 2 50 20 2 1000
3 5 40 1 2 100 100 2 10000
4 5 60 1 2 500 150 2 75000

DB

5 5 80 1 2 1000 500 2 500000

Table 2. Results
SSRS GA Function Var.

Error
Mean

Error
Std

Time
Mean

Error
Mean

Error
Std

Time
Mean

1 0.0023 0.004735 0.0175 0.0697 0.156271 0.1267
2 0.0122 0.011414 0.0371 0.2137 0.298253 0.1356
3 0.0172 0.011193 0.1223 0.2611 0.238042 0.2717
4 0.0233 0.012047 0.5502 0.2076 0.154413 1.0549

UM

5 0.0277 0.012261 2.0028 0.2083 0.141052 3.8506
2 0.2501 0.351123 0.0498 0.2701 0.292721 0.1679
3 0.8793 0.274383 0.3312 1.1223 0.875923 0.7321
4 1.8731 0.398454 1.7983 1.3866 1.081146 3.8459

NFV

5 3.0801 0.410591 10.8642 1.7645 0.969627 20.0491
1 0.3578 1.133234 0.0183 1.5934 1.618239 0.1411
2 2.1151 1.719442 0.0619 2.7411 2.079256 0.1869
3 2.3418 1.001727 0.4152 1.7676 0.917453 0.8573
4 3.3164 1.117348 2.5969 0.9946 0.664095 4.5358

MM

5 4.1791 1.206706 14.2511 0.3617 0.284541 25.9321
1 0.1216 0.112855 0.0339 0.1381 0.099891 0.1133
2 0.2011 0.000224 0.1725 0.1931 0.031975 0.3522
3 0.2005 0.000288 1.6128 0.1985 0.017446 2.6995
4 0.2009 0.000449 11.6342 0.2039 0.004432 19.1681

DB

5 0.2013 0.000572 75.7334 0.2052 0.014621 124.8826

Int. J. Simul. Multidisci. Des. Optim. 2, 223–229 (2008) 10

5. Conclusions and future work-lines

A new meta-heuristic algorithm, the Sub-Space Random Search, is proposed for the global optimization
problem and a benchmarking with a GA is made to estimate its behaviour. This benchmark is made on a basic
casuistry of scaleable optimization problems with the number of variables changing from 1 to 5.
Results indicate that SSRS shows a greater precision than GA on unimodal functions. On multimodal and
narrow and flat valley functions its precision is better on low dimensions but it get worse as the number of
dimensions increases. On deceptive function the behaviour of both algorithms is similar. An application of
SSRS to a problem of dynamical synthesis of mechanism also shows the better performance of this algorithm
regarding a GA in problems with a few variables. Furthermore, SSRS is faster than GA in all the cases studied
and it is worth noting the great simplicity of the code needed to implement this algorithm.
Then, the SSRS is showed as a good algorithm for relatively easy problems (unimodal and low multimodality
functions) with few variables since it can get the global optimum and it also allows studying the robustness
during the process.
At present, the authors are working on improving this behaviour when the number of variables increases and
on implementing a parallel search in several equal-promising sub-spaces.

Acknowledgments
The first author is supported by the Ministry of Education of Spain (FPU grant AP-2004-6492)

Int. J. Simul. Multidisci. Des. Optim. 2, 223–229 (2008) 11

References

[1] Tong C., Refinement strategies for stratified sampling methods, Reliability engineering and system safety
91 (2006) 1257--1265.

[2] Wolpert D.H., MacReady W.G., No Free Lunch Theorems for Optimization, IEEE Transactions on
Evolutionary Computation, 1 (1997) 67--82.

[3] Andradóttir S., A review of simulation optimization techniques, Proceedings of the 1998 Winter
Simulation Conference, IEEE, Piscataway, NJ, (1998) 151--158.

[4] Chen W., Allen J., Tsui K.-L., Mistree F., A procedure for robust design: Minimizing variations caused by
noise factors and control factors, ASME Journal of Mechanical Design 118 (4) (1996) 478--493.

[5] Beyer H-G., Sendhoff B., Robust optimization – A comprehensive survey, Computer Methods in Applied
Mechanics and Engineering 196 (2007) 3190--3218.

[6] Goldberg D., Genetic algorithms in search, optimization, and machine learning, New York: Addison-
Wesley, 1989.

[7] Deb K., Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems,
Evolutionary Computation 7 (3) (1999) 205--230.

[8] Elbeltagi E., Hegazy T., Grierson D., Comparison among five evolutionary-based optimization algorithms,
Advanced Engineering Informatics 19 (2005) 43--53.

[9] Deb K., Pratap A., Agarwal S., Meyarivan T., A fast and elitism multi-objective genetic algorithm:
NSGA-II, Technical Report Nº 2000001, Kanpur Genetic Algorithm Laboratory, 2000.

