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A force field that accounts for the quantum chemical reality of interacting atoms must include
Coulomb interactions between bonded atoms. The short-range nature of such 1,2 interactions
necessitates atomic multipole moments in addition to point charges. However, the close proximity
of bonded atoms would normally lead to a divergent multipolar expansion. A special algorithm
presented here, within the scope of the previously presented multipole shifting method �M. Rafat
and P. L. A. Popelier, J. Chem. Phys. 124, 144102 �2006��, shows that convergence can nevertheless
be achieved by a suitable selection of multipole displacements. The algorithm is applied to improve
the convergence of the multipolar expansion within the quantum theory of atoms in molecules
approach. © 2010 American Institute of Physics. �doi:10.1063/1.3430523�

I. INTRODUCTION

The basic concepts used by chemists—atoms, bonds,
functional groups—are based on the hypothesis of the exis-
tence of separable and transferable objects in physical three-
dimensional �3D� space. At the same time, the quantum con-
cepts use state vectors defined in an infinite dimensional
Hilbert space. The quantum theory of atoms in molecules
�QTAIM� �Ref. 1� allows a generalization of quantum me-
chanics to finite space regions, bringing it closer to the usual
chemical language. The use of the topology induced by the
electron density is justified under the QTAIM. It allows an
exhaustive partition of 3D space, such that the systems are
divided in topological atoms and the contacts between these
atoms are associated with traditional chemical bonds. An im-
portant empirical result is that topological atoms are transfer-
able in situations with similar chemical bonding. Note that
Quantum Chemical Topology �QTAIM� is part of a wider
research program called quantum chemical topology that
uses the concept of a gradient vector field as a means to
partition quantum chemical functions.2

The transferability mentioned above is very important
for the generation of new force fields. In atomistic simula-
tions of biomolecules, such as proteins, the use of force
fields is widespread. These are constructed on the assump-
tion that the molecules are formed by transferable structural
units, which are called atom types.3 In general, the potential
energy surface of a force field has contributions of two main
types: �a� bonded interactions, which include energy contri-
butions related to bonds deviating from their equilibrium
configurations; and �b� nonbonded interactions, based on in-
termolecular interactions. The bonded contributions can be

further divided into contributions due to: �i� bond stretching,
between atoms directly linked �1,2 interactions�, depending
on the bond lengths; �ii� bond bending, between atoms sepa-
rated by two bonds �1,3 interactions�, depending on the bond
angles; and �iii� bond torsion, between atoms separated by
three bonds �1,4 interactions�, depending on the dihedral
angles. The nonbonded contributions are assumed to occur
between atoms separated by four or more bonds, and they
comprise: �i� the van der Waals energy; and �ii� the electro-
static energy, which is usually obtained from model point
atomic charges.

The main limitations of force fields are as follows: �a�
the dichotomy between bonded and nonbonded interactions
�which may seem natural and justified by chemical intuition,
even as a result of historical development� is arbitrary and is
not based on quantum mechanics; and �b� the lack of a rig-
orous description of the electrostatic interaction. The latter is
one of the major problems to be faced by existing force
fields.

In force field construction, electrostatic point charges are
traditionally fitted in order to reproduce ab initio energies
and forces,4 liquid state bulk properties,5 or an exact ab initio
electrostatic potential,6 to mention a few examples. The re-
sulting charges are then mere numbers appearing in the fa-
miliar expression of Coulomb energy. Because they are fit-
ted, and not obtained directly from the electron density, they
may not be transferable. In this work, atomic charges are
directly sampled from the electron density, securing control
of transferability.7,8 However, in order to guarantee an accu-
rate description of electrostatic interaction at short range,
high-rank atomic multipole moments are necessary, such as
dipole, quadrupole, and octupole moments. Multipole mo-
ments enable that the Coulomb energy between any two at-
oms can be rapidly and accurately calculated, provided the
corresponding multipole expansion converges. Consequently,
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one obtains a route to address both the challenge of transfer-
ability and short-range interaction. This route proposes to
calculate the Coulomb energy between any two atoms, and
only fit remaining types of interaction �e.g., dispersion�.
Coulomb interaction is then introduced in the force field for
both bonded and nonbonded interactions. In principle, this
approach is closer to the underlying quantum reality than the
traditional treatment of current force fields. More details on
this strategy of force field design can be found in full
elsewhere.9,10

Some time ago one of us embarked on a project that
aims at constructing a force field based on topological
atoms.11,12 One can calculate different atomic properties for
the topological atoms, in particular the QTAIM multipole
moments. From these and the multipolar expansion �ME�,
largely studied for intermolecular interactions,13 electrostatic
interactions in the force field can be rigorously introduced.
The price paid for the convenience of the ME is a possible
lack of convergence. We can summarize this problem as fol-
lows: the smaller the distance between the nuclei of the in-
teracting atoms, the more likely the expansion will diverge,
and hence become useless. Traditionally, the ME is expected
to converge for 1 ,n interactions where n is strictly larger
than 4.

In Ref. 14, the multipole shifting �MS� method was pre-
sented, which improved the convergence of the ME for 1,3
and 1,4 interactions. However, its implementation does not
work for interactions between atoms directly bonded to each
other, that is, 1,2 interactions. In this paper we present a new
implementation for this method, the modified multipole shift-
ing �MMS� algorithm, which extends its validity to all elec-
trostatic interactions between topological atoms.

Section II presents the general characteristics of the MS
method for the calculation of the electrostatic interaction be-
tween topological atoms in terms of the ME and the QTAIM
multipole moments. The problems found in 1,2 interactions
and the new MMS algorithm devised to overcome them are
presented together in Sec. III. We include some numerical
results and discuss the validity of the MMS algorithm in
Section IV, finishing with some conclusions in Sec. V.

II. THE MULTIPOLE SHIFTING METHOD FOR THE
MULTIPOLAR EXPANSION OF THE QTAIM COULOMB
ENERGY

In this paper, we will use the MS method, already intro-
duced in Ref. 15 to obtain the QTAIM Coulomb energy be-
tween any two topological atoms by means of a ME. The MS
method improves the convergence of the ME in bonded Cou-
lomb interactions by shifting the positions of the expansion
centers involved in the ME; we will present here a very brief
recount of the method, leaving for an Appendix, the whole
framework of the current reimplementation.

The Coulomb energy interaction between two QTAIM
atoms is

Eelec�A,B� = �
�A

dr�A�
�B

dr�B

�A
tot�r�A��B

tot�r�B�
r12

, �1�

where �A and �B label the two atomic basins of the topo-
logical atoms �see Fig. 1� and

�A
tot�r�A� = Z�A

��r�A� − ��r�A + R� A� , �2�

�B
tot�r�B� = Z�B

��r�B� − ��r�B + R� B� , �3�

are charge densities with origin in the A and B centers, re-
spectively. Note that Z� is a nuclear charge and ��r�� is the
�three-dimensional� Dirac delta function.

Topological atoms typically have complex shapes in real
space. Therefore, the integrals present in Eq. �1� are ex-
tremely difficult to solve analytically. Traditionally, these in-
tegrals have been approximated by a ME; using this, only the
much simpler QTAIM multipole moments are required to
compute an ME approximated Coulomb energy between to-
pological atoms,

Eelec�A,B� = �
lAmA

�
lBmB

QlAmA
��A�TlAmAlBmB

�R� �QlBmB
��B� ,

�4�

where TlAmAlBmB
�R� � is an interaction tensor �see Appendix�

that can also be obtained from stable recurrence relations.16

The real QTAIM multipole moments, which include the
nuclear charges, are defined as

QlAmA
��A� = �

�A

�A
tot�r�A�RlAmA

�r�A�dr�A, �5�

QlBmB
��B� = �

�B

�B
tot�r�B�RlBmB

�r�B�dr�B, �6�

where Rlm�r�� are the real regular spherical harmonics
�see Appendix�. Notice that in the above expressions,
mA=−lA , . . . , lA �mB=−lB , . . . , lB� and lA=0, . . . ,�
�lB=0, . . . ,�� so that ME leads to infinite series, although
they would generally be truncated.

The main advantages17 of the expressions for the Cou-
lomb energy between topological atoms using both the
QTAIM multipole moments and the ME are as follows: �a�
the QTAIM multipole moments are computed and trans-
ferred from an arbitrary local coordinate system and it is not
necessary to compute them once again for every possible
atomic configuration �see Appendix�; �b� the QTAIM multi-

R AR B

BΩ AΩ

r
A

r
B

r12

O

B A

2
1

R

FIG. 1. Global coordinate system used in the description of the electrostatic
interaction between atomic basins �A and �B.
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pole moments are transferable in similar environments; �c�
the finite size of the topological atoms makes exact conver-
gence possible, in principle; and �d� in view of the absence
of penetration energy, there is no need for damping func-
tions.

The main limitation is that the ME has restrictions in its
convergence. It is important to realize that this expansion
formally converges provided �r�A−r�B�� �R� �.18 For two finite
atomic basins �A and �B, the ME is strictly convergent �in-
dependently of the relative orientations� if RA+RB� �R� �=R,
where RA is the maximum value of the radial coordinate still
within �A, called the convergence radius for topological
atom A, with an equivalent definition for RB;19 these are the
extents of their convergence spheres. Two atoms are called
nonoverlapping if their convergence spheres do not overlap
and overlapping otherwise. The ME convergence is guaran-
teed only between nonoverlapping atoms, that is, for interac-
tions between atoms not directly bonded �i.e., diverge only
for 1,2 interactions�, although the divergence may �and does�
extend to further 1 ,n interactions if the convergence radius is
large �open atoms�. Consequently, it should only be the elec-
trostatic component of long range interactions that could be
modeled with confidence and sufficient accuracy, the ME
generally failing for bonded interactions in the force field
sense �i.e., 1,2 to 1,4 interactions�.

However, it is known that the inclusion of the electro-
static contribution from bonded interactions would substan-
tially improve the accuracy of the force fields.20 In addition,
the arbitrary partition between bonded and nonbonded inter-
actions would vanish. Therefore, we present here the basics
of the original MS method, already introduced in Ref. 15,
within the framework of the current reimplementation �see
Appendix�. Its aim is to improve the convergence of the ME
in bonded Coulomb interactions by shifting the position of
the expansion centers involved in the ME; thus reducing or
avoiding the overlap between the convergence spheres
through translation in the local reference systems of each
atom.

If one shifts by c� the origin of the local coordinate sys-
tem associated with a topological atom, its shifted real mul-
tipole moments Qlm

c� ��� can be obtained from

Qlm
c� ��� = �

l�=0

l

�
m�=−l�

l�

Ql�m�
0� ���Wl�m�,lm�c�� , �7�

where the Wl�m�,lm�c�� is a real MS matrix fully described in
the Appendix, the Qlm

0� ��� are the original multipole mo-
ments, l�=0, . . . , l, and m�� �l��. Note that only l�� l multi-
pole moments are needed to obtain Qlm

c� ���, so shifting is a
finite process for a given l, but also that low-order multipole
moments in the original frame �l� low� generate higher-order
shifted multipole moments �l higher�. In other words, a
shifted moment of arbitrary rank l includes contributions
from all original moments of lower rank l�, in general. Be-
cause this arbitrary rank l is unbounded the �finite� set of
original moments gives rise in general to an unbounded �i.e.,
infinite� number of shifted moments.

The MS method has two main limitations: �a� if the shift
vector c� has a large modulus, the shifted multipole moments

will be unacceptably large; and �b� as seen with Eq. �A10�,
shifting can reduce the symmetry in the original multipole
moments, such that a topological atom perfectly described by
a reduced number of multipole moments may need a large
number of shifted multipoles when its origin is displaced.
For example, a spherical atom centered on origin 0� is fully
described by a monopole moment only. Describing this atom
from an alternative origin c� would require a huge number of
higher moments. To mitigate the effects of the reduction of
symmetry, it is essential to use �-spheres. The �-spheres are
usually centered at the nuclei, and have an arbitrary radius
such that they are fully included in the atomic basin for the
topological atoms considered. In our experience, using the
largest possible �-sphere radii provides the optimum perfor-
mance. Thus, the atomic basins are divided into �-spheres
and the outer atomic regions that complete them. The
QTAIM multipole moments are correspondingly divided into
two contributions

Qlm��� = Qlm
� ��� + Qlm

out��� , �8�

where Qlm
� ��� are multipole moments associated with the

�-spheres and Qlm
out��� are multipole moments associated

with the remaining regions. Consequently, the Coulomb en-
ergy between topological atoms is split into four contribu-
tions

Eelec�A,B� = �
�,	=��,out	

Eelec
�	 �A,B� , �9�

where

Eelec
�	 �A,B� = �

lAmA

�
lBmB

QlAmA

� ��A�TlAmAlBmB
�R� �QlBmB

	 ��B� .

�10�

The important point here is that it is only necessary to shift
the residual Qlm

out��� multipoles, since the �-spheres never
overlap and hence the ME is exact for them.

The convergence of the ME in the Coulomb energy be-
tween topological atoms can be improved, in principle, using
shifted QTAIM multipole moments as described in Refs. 14
and 15. However, one has to consider two main issues re-
lated to the efficiency of the MS method. First, the selected
displacements for the MS method must reduce the overlap
between the convergence spheres of the topological atoms,
but the shifted multipole moments cannot become unaccept-
ably large. Second, the Coulomb energy ME described in
Eqs. �9� and �10� has to be truncated in some way that guar-
antees convergence of the ME. The original implementation
of the MS method introduced in Ref. 14 was able to provide
reasonable energies for 1,3 and 1,4 interactions. However,
this implementation did not work for 1,2 interactions, since it
was unable to select multipole shifts providing ME conver-
gence in this case, motivating the search for the new algo-
rithm presented in Sec. III.

III. THE MODIFIED MULTIPOLE SHIFTING
ALGORITHM

We propose here the MMS algorithm for selecting the
multipole displacements involved in the MS method, replac-
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ing the one presented in Ref. 14. We will first introduce some
definitions regarding the different errors involved, using
them in some examples with a whole range of possible dis-
placements to demonstrate the problems posed by the ME for
1,2 interactions within the MS framework that motivates this
new algorithm. Then, we will present the MMS selection
algorithm devised to cope with them, which will be applied
to this particular set of displacements in this section to better
understand its inner workings.

The real error in the Coulomb energy between topologi-
cal atoms A and B is defined as


real
ltot,c��A,B� = �Eelec

ltot,c��A,B� − Eexact�A,B�� , �11�

where the ltot angular quantum number and shift vector c�
labels come from Eelec

ltot,c��A ,B�, which is the Coulomb energy
obtained through Eqs. �9� and �10� using the Qlm

out��� multi-
pole moments displaced by c�, such that in Eq. �10� the sums
on both lA and lB extend to ltot. Eexact�A ,B� is the exact Cou-
lomb energy between topological atoms A and B, which will
be numerically computed through a different algorithm21 �see
below�. Note that this error is computed outside the algo-
rithm, and although the aim of the method is to minimize it,
we are by no means doing a fit to this error: it is only the
final measure of how the algorithm has performed.

The truncation error in the Coulomb energy between
two topological atoms A and B for a given ltot angular quan-
tum number and shift vector c� is defined as


trunc
ltot,c� �A,B� = �Eelec

ltot,c��A,B� − Eelec
ltot−1,c��A,B�� . �12�

Similarly, we introduce the shift error in the Coulomb energy
between topological atoms A and B for a ltot angular quantum
number and shift vector c� as


shift
ltot,c��A,B� = �Eelec

ltot,c�−c��A,B� − Eelec
ltot,0

�
�A,B�� , �13�

where Eelec
ltot,0��A ,B� is the Coulomb energy obtained through

Eqs. �9� and �10� using the original �undisplaced� multipoles
Qlm

0� ���, such that in Eq. �10� the sums on both lA and lB

extend to ltot. The symbol Eelec
ltot,c�−c��A ,B� represents the same

Coulomb energy estimation as Eelec
ltot,0��A ,B� but obtained from

the Qlm
out��� multipoles first shifted by c� and then back shifted

�shift by −c�, Qlm
c�−c�� to the initial origin, introducing possibly

large rounding errors. To conclude these definitions, the total
error in the Coulomb energy between two topological atoms
A and B for a ltot angular quantum number and shift vector c�
is obtained through


total
ltot,c��A,B� = 
trunc

ltot,c� �A,B� + 
shift
ltot,c��A,B� . �14�

This is an estimate of the real error, which of course cannot
be computed on production runs. However, we can check
how good our estimate is in the present test cases, seeing
whether minima of the total error correspond to minima of
the real error.

Figures 2–4 show the real and total errors in the Cou-
lomb energy for 1,2 interactions in H2, LiH, and H2O, re-
spectively, for a large trial set of c� shift vectors spaced 0.1a0.
All total errors have minima at various displacements of the
local coordinate systems. However, the lowest minimum for
the total error does not usually coincide with the lowest

minimum for the real error. Also, notice that there may be
several minima for the total error within a given low-error
valley, but there are also spurious low-error spikes outside of
these valleys. From the whole set of minima of the total
error, we wanted to select those in regions with smooth be-
havior, and to do that you have to sample each points sur-
roundings. We thus introduce here a new variable to help us
to choose among the total error minima, through their
smoothness, so that they lead to a reasonable real error in the
energy without an actual knowledge of the latter. The merit
of the total error in the Coulomb energy between two topo-
logical atoms A and B for a ltot angular quantum number and
shift vector c� is defined as a measure of that smoothness,

�ltot,c��A,B� =
�i

Nvec�
total
ltot,c��A,B� − 
total

ltot,c�i�A,B��
Nvec

. �15�

The set of Nvec c�i vectors around c� is selected from those in
the full trial set by their proximity in modulus to �c��, so that
�c�i	i=1,. . .,Nvec

are the shift vectors closest to c�. The choice of
Nvec should try to be low enough not to include vectors out-
side a given 
total valley, and large enough to discard spuri-
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FIG. 2. 
total
10,c��H,H� �solid line� and 
real

10,c��H,H� �dashed line� vs c= �c�� for
the H2 molecule �dH–H=1.40a0 and Eexact�H,H�=111.51 kJ /mol� are repre-
sented in the main axes; the right y axis is used for �10,c��H,H� �circles� vs
c computed at the total error minima, with the parameter Nvec=10. The shift
vectors for each of the two topological atoms stand along the internuclear
axis and face in opposite directions. Explanatory labels have been added, see
text.
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total
10,c��Li,H� �solid line� and 
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10,c��Li,H� �dashed line� vs c= �c�� for
the LiH molecule �dLi–H=3.25 a0 and Eexact�Li,H�=−603.39 kJ /mol� are
represented in the main axes; the right y axis is used for �10,c��Li,H�
�circles� vs c computed at the total error minima, with the parameter Nvec

=10. The shift vectors for each of the two topological atoms stand along the
internuclear axis and face in opposite directions.
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ous low-error spikes �see Fig. 2 for an example�. Notice that
the merit is computed only for trial points which are total
error minima and hence candidates for selection by the algo-
rithm, however, the points in the merit’s Nvec set are not
minima but just which points surround the given minimum in
the full trial set, as shown by the horizontal arrows at the
bottom of Fig. 2. Notice how taking a spike for the minima
will lead to a Nvec set with a much higher total error than the
actual spike, and hence to a much larger merit, which will
discard it in the algorithm as nonsmooth.

Figures 2–4 include the merits computed for each c� that
is a total error minimum �circles, right y axis� for each of the
molecules at the given geometries. As our data shows, rea-
sonable real errors in the computed electrostatic energy may
be obtained from the minimum total errors if the following
requirements are fulfilled: �a� the minimum total error has a
small magnitude; and �b� the merit of this minimum is small.
Therefore, an efficient algorithm should take into account
both requirements to the appropriate extent. It should be no-
ticed that the large 
total

ltot,c��A ,B� values at small displacements
come mainly from the truncation error, in this case measur-
ing the nonconvergence of the original c� =0� ME, while the
large 
total

ltot,c��A ,B� values at large displacements usually signal
an increase in the shift error, since the multipole moments
increase in value as �c��l and the rounding error �both while
performing the displacements and while using the shifted
multipole moments in the ME� can become pronounced.

Figure 5 shows the real and total errors in the Coulomb
energy for 1,3 interactions between the two H atoms in H2O,
as well as the merits of the total error minima subset. This
figure allows us to understand the efficiency of the MS
method between atoms that are not directly bonded. In these
cases, the real and total errors present a quite similar behav-
ior, such that there is a wide shift range available with neg-
ligible real errors in the Coulomb energy.

The MMS algorithm consists of the following steps: �a�
user-specify ltot for the QTAIM multipole moments of the
atoms under study, and obtain the 
total

ltot,c��A ,B� for the set of
user-specified shift vectors c� =c�min, . . . ,c�max with a given step
of say 0.1a0 �note that shifts have only been implemented in

the internuclear direction and with opposite signs for each
topological atom; these shifts have proven to be the overall
best in improving the ME convergence�; �b� determine the
subset of total error minima in this full trial set; �c� obtain,
for each of these minima, their merits for the user-specified
Nvec, and also their relative merits �rel

ltot,c��A ,B�, defined
as the ratios of the different merits and the smallest
value among them; and finally �d� the 
final

ltot,c��A ,B�
=�rel

ltot,c��A ,B�
total
ltot,c��A ,B� errors are calculated for the subset

of total error minima. The smallest of these final errors de-
termines the optimal shift vector according to this algorithm,
selected to improve the ME convergence in the Coulomb
energy between topological atoms. Hence, notice that the
electrostatic interaction between topological atoms is evalu-
ated by means of Eelec

ltot,c�opt�A ,B�, where c�opt is the optimal shift
vector selected.

In order to see how this MMS algorithm works, let us
briefly analyze the most significant total error minima in
Figs. 2–5. In the case of H2, the set of minima with displace-
ments c=2.2, 2.5, 2.7, and 3.0a0 has �10,c��H,H� values sev-
eral orders of magnitude smaller than the rest �which thus
have relative merits larger than 10�, and their corresponding

final

10,c� �H,H� values are 0.84, 0.75, 0.37, and 6.33 kJ/mol, the
rest having values of 87.39 kJ/mol �for c=3.4a0� or larger.
Hence, outside from the total error valley for c between 2
and 3a0, the algorithm discards all minima; within that val-
ley, the different displacements lead to merits and final errors
that are all acceptable. Accordingly, the real errors in that
valley are 3.81, 3.33, 3.16, and 3.92 kJ/mol, the errors being
6.91 kJ/mol �again for c=3.4a0� or larger outside of the val-
ley. What is more important, the MMS algorithm leads to a

final

10,c� �H,H� ordering that coincides with the 
real
10,c��H,H� or-

dering for the eight lowest-lying minima, and hence it is a
good predictor for that magnitude. The fact that c=2.7a0 is
finally chosen is irrelevant, for any of the points in the valley
leads to similar results.

In the LiH case, only four minima appear, with c=4.1,
6.3, 7.2, and 8.3a0, with relative merits �rel

10,c��Li,H�=11, 1,
3, and 8, respectively, while their final errors are

final

10,c� �Li,H�=6.45, 13.17, 30.60, and 0.56 kJ/mol, and their
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real errors are 
real
10,c��Li,H�=52.50, 26.90, 18.01, and 10.00

kJ/mol, respectively. Again, the final error from the MMS
algorithm selects the best approximation, c=8.3a0, although
here it does not sort all the minima in the same order of real
errors.

In the O–H interaction in H2O there is again a valley of
low total �and real� errors in the c=2–4a0 range; the minima
there are at c=1.9 and 3.5, having final errors of 4.47 and
0.79 kJ/mol, while outside of that valley the final error is
larger than 146 kJ/mol. The corresponding real errors are
46.10 and 13.46 kJ/mol, being larger than 200 kJ/mol outside
of the valley; once again, the algorithm not only chooses the
best c=3.5a0 shift, but it also correctly orders the next 13
minima in increasing order of real errors.

Finally, the 1,3 H–H interaction in water is much better
represented by the ME than the rest; correspondingly, the
scale in Fig. 5 is two orders of magnitude smaller. Here,
there are just two minima, with c=0.7 and 1.7a0, relative
merits of 49 and 1, final errors of �0.01 and 0.06 kJ/mol,
and real errors of 0.01 and �0.01 kJ /mol, respectively. Al-
though the algorithm does not give the correct order here,
both shift values give virtually exact ME expansions, the
errors being negligible.

Notice that, although the real errors at the selected c�opt

may seem large �3.8, 8.7, and 18.3 kJ/mol for H–H, Li–H,
and O–H 1,2 interactions�, the Coulomb interaction energies
are much larger �111.51, �603.39, and �766.67 kJ/mol, re-
spectively�, so that the percentage errors are in fact quite
small �3.4%, 1.4%, and 2.4%, respectively�.

IV. RESULTS

In order to test the validity of the MMS algorithm for the
selection of c�opt in a suitable range of situations, we have
studied some 1,2, 1,3, and 1,4 electrostatic interactions be-
tween topological atoms. First, we have selected H2, LiH,
and H2O at different internuclear distances.22 These mol-
ecules are examples of different types of bonds: covalent
�H2�, polar �H2O� and ionic �LiH�. The electronic densities
of these molecules were obtained by 6-311G�p,d� CASSCF
calculations with the GAMESS code.23 In addition, we have
computed glycine and N-methylacetamice at the single opti-
mized 6-311G�p,d� HF geometry �see Fig. 6� to test more
real-life examples.

The topological analysis was performed using the PRO-

MOLDEN code,24 where we used the following computational
choices: �a� the interatomic surface of the topological atoms
was obtained with an accuracy of 110−5a0 and we used
�-spheres to split the atomic basins;25 �b� a two-dimensional
angular Lebedev quadrature with 74 and 5810 nodes for the
�-spheres and the outer regions, respectively; and �c� radial
Gauss–Chebychev second-order �600 nodes� and trapezoidal
�500 nodes� quadratures for the �-spheres and the outer re-
gions, respectively. Although a numerical quadrature could
be chosen directly for the radial coordinate, it is computa-
tionally more efficient to first map it onto a new finite inter-
val u� �−1,+1� by means of the coordinate transformation
r�u�=��1+u� / �1−u+a�, where the parameter a is chosen to

recover the initial interval and � is the Bragg–Slater radius
of the atom.21

We have implemented our new MMS algorithm for the
MS method in the RHOLM code,26 which is tightly linked
with PROMOLDEN. In the present calculations, the following
parameters have been chosen: �a� the highest rank of the
QTAIM multipole moments is ltot=10; �b� the minimum and
maximum shift vector modules are cmin=0a0 and cmax

=10a0, and any two consecutive shifts in the set differ by
0.2a0 �51 c� vectors in the full trial set�; and �c� Nvec=10 to
calculate the merits for the total errors in the Coulomb en-
ergy.

Tables I–III present the results obtained by the MMS
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H10

H7

H10 H9

H8 H9

H12
H11

Glycine (Gly)

N−methylacetamide

O4

FIG. 6. Atomic numbering scheme for the glycine and N-methylacetamide
molecules.

TABLE I. Relative error ���H,H�=
real
10 �H,H� / �Eexact�H,H�� in percentage

terms� in the Coulomb energy between the topological atoms of the H2

molecule obtained by the MMS method for a wide range of internuclear
distances. dH–H represents the internuclear distance �equilibrium is at
1.43a0�, while Eexact�H,H� is the Coulomb energy obtained by
PROMOLDEN.

dH–H /a0

Eexact�H,H�
�kJ mol−1� ��H,H�

0.60 1144.63 0.18
0.80 584.93 3.46
1.00 322.66 1.63
1.20 186.88 2.40
1.40 111.51 3.42
1.60 67.93 3.13
1.80 41.88 3.08
1.90 33.08 2.94
2.00 26.12 2.88
2.20 16.41 2.44
2.30 13.01 2.16
2.40 10.38 1.86
2.50 8.27 1.53
2.80 4.25 0.62
3.00 2.77 0.05
3.20 1.81 0.28
3.60 0.80 0.29
4.00 0.35 2.72
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algorithm for 1,2 interactions in the different molecules. The
exact Coulomb energy between two topological atoms
�shown here and used in computing the real errors in
Figs. 2–5� is numerically computed using the Kay, Todd, and
Silverstone bipolar expansion �KTSBE�,27,28 which has ex-
cellent convergence properties and has been successfully
implemented in the PROMOLDEN code.21 This implementation
of the KTSBE has no restrictions on its convergence, so any
electrostatic interaction between topological atoms �i.e.,
bonded and nonbonded interactions� can be obtained. How-
ever, the QTAIM multipole moments defined by the KTSBE
are r-dependent functions. Thus, one cannot obtain expres-
sions similar to Eq. �4� for electrostatic interactions between
atoms, where the integrals of Eq. �1� are independently cal-
culated in each atomic basin. As shown in these tables, the
��A ,B�=
real

10 �A ,B� / �Eexact�A ,B�� relative errors have reason-
able values, appropriate for their use in obtaining the 1,2
interactions. In fact, these errors never exceed an 8% thresh-
old value, and they are generally below 4% for geometries
close to equilibrium. There is also a slight increase at very
large distances probably due to the residual numerical error
present in the KTSBE Eexact, on the order of 1 kJ/mol which
is close to its total value.

Table IV presents the results obtained by the MMS al-
gorithm for the 1,3 H–H interaction in the H2O molecule. As
shown in this table, the relative errors are negligible in this
kind of interaction. Furthermore, these errors are well below
those obtained by the algorithm described in Ref. 14.29

Table V contains the results for 1,2 interactions and se-
lected 1,3 and 1,4 interactions in glycine. All 1,2 interac-

tions, ranking even in the thousands of kJ/mol, are repro-
duced within 5% or even less with the only exception of the
C1–H9 interaction. This is a particular problem of the C–H
interaction: it has a very close range, and its interatomic

TABLE III. Relative error ���O,H�=
real
10 �O,H� / �Eexact�O,H�� in percentage

terms� in the Coulomb energy between the O and H topological atoms of the
H2O molecule obtained by the MMS method for a wide range of O–H
internuclear distances �dO–H� but fixing the opposite O–H distance and the

HOĤ angle �equilibrium has dO–H=1.82a0�. Eexact�O,H� is the Coulomb
energy obtained by PROMOLDEN.

dO–H /a0

Eexact�O,H�
�kJ mol−1� ��O,H�

1.51 �846.26 5.34
1.70 �797.21 3.05
1.78 �766.67 2.39
1.89 �644.13 0.65
2.08 �515.35 0.28
2.27 �407.07 0.76
2.46 �305.97 0.93
2.83 �156.84 0.85
3.21 �83.29 0.60
3.40 �61.98 0.47
3.59 �46.46 0.36
3.78 �34.93 0.35
3.97 �26.40 0.16
4.16 �20.07 0.11
4.35 �15.36 0.06
4.54 �11.93 0.05
4.72 �9.32 0.08
5.10 �5.86 0.07
5.67 �3.05 0.11

TABLE IV. Relative error ���H,H�=
real
10 �H,H� / �Eexact�H,H�� in percentage

terms� in the Coulomb energy between the two H topological atoms of the
H2O molecule obtained by the MMS method for the same set of configura-
tions employed in Table III. dH–H represents the internuclear distance �equi-
librium has dH–H=2.84a0�, while Eexact�H,H� is the Coulomb energy ob-
tained by PROMOLDEN.

dH–H /a0

Eexact�H,H�
�kJ mol−1� ��H,H�

2.61 397.92 �0.01
2.75 351.00 �0.01
2.85 339.87 �0.01
2.89 297.48 �0.01
3.05 250.81 �0.01
3.20 209.38 �0.01
3.36 170.13 0.01
3.69 104.45 �0.01
4.02 62.67 0.01
4.19 48.59 0.02
4.36 37.61 0.05
4.54 29.07 0.08
4.71 22.46 0.09
4.89 17.38 0.08
5.06 13.50 0.04
5.24 10.59 0.02
5.42 8.35 0.05
5.78 5.33 0.22
6.32 2.83 0.52

TABLE II. Relative error ���Li,H�=
real
10 �Li,H� / �Eexact�Li,H�� in percent-

age terms� in the Coulomb energy between the topological atoms of the LiH
molecule obtained by the MMS method for a wide range of internuclear
distances. dLi–H represents the internuclear distance �equilibrium is at
3.09a0�, while Eexact�Li,H� is the Coulomb energy obtained by PROMOLDEN.

dLi–H /a0

Eexact�Li,H�
�kJ mol−1� ��Li,H�

2.50 �664.67 7.64
2.75 �652.59 4.62
3.00 �630.17 3.08
3.25 �603.39 1.38
3.50 �573.56 0.56
3.75 �540.72 0.01
4.00 �505.47 0.43
4.25 �467.28 1.39
4.50 �424.77 0.93
4.75 �377.62 0.99
5.00 �325.00 0.43
5.25 �266.31 0.50
5.50 �202.80 0.20
5.75 �135.55 0.31
6.00 �75.11 0.30
6.25 �43.12 0.03
6.50 �25.26 0.63
6.75 �14.67 0.66
7.00 �8.46 1.48
7.25 �4.89 2.28
7.50 �2.85 2.95
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surface is not quite amenable to the use of sizeable
�-spheres, which have to be quite finely tuned. On the other
hand, the 1,3 and 1,4 results are of superb quality, showing
that the MMS selection algorithm gives an optimum shifting
valid for all types of interaction. The results for the interac-
tions in N-methylacetamide included in Table VI are even

better for the 1,2 interactions �again with the exception of
C–H interactions�, and equally superb for the 1,3 and 1,4
interactions. Overall, the MMS selection algorithm shows its
usefulness across the whole interaction range: it can give
optimum results for 1,3 and 1,4 interactions, and the best
results one could obtain in 1,2 interactions.

Returning to the original purpose of this work, as de-
scribed in the Introduction, an interesting question arises. A
robust and potentially future proof force field needs to de-
scribe well defined interaction terms. The Coulomb interac-
tion between topological atoms is an important example of
such a well defined term. This is why we aim to siphon off
the Coulomb term from the total energy. The question is now
how this action affects a typical Morse potential that ex-
presses the total interaction between two atoms. Molecular
hydrogen serves as a useful prototype system to investigate
this. Figure 7 shows the total interaction energy as a function
of internuclear distance as well as this energy minus the Cou-
lomb interaction energy. Remarkably, the latter curve pre-
serves the overall Morse shape but has its minimum shifted
toward a shorter distance as a result of the repulsive charac-
ter of the total Coulomb energy. Hence, a Hooke type law
will still be valid in describing the remaining energy very
near the minimum. If this result is universal then the force
field formulae that describe the remaining non-Couloumb in-
teractions barely need to change.

V. CONCLUSIONS

Popelier et al.17 have shown that the atomic partition
based on the QTAIM allows for the recovery of intermolecu-
lar electrostatic interactions accurately, contrary to the opin-
ion expressed until then in the existing literature. To do this,
they used the spherical tensor multipole atomic moments and
the Multipole Expansion �ME�, achieving convergent expres-
sions for the electrostatic interaction between topological at-
oms belonging to different molecules. However, the ME pre-
vented the extension of this procedure to topological atoms
directly bonded or separated by two or three bonds without
additional modifications. The Multipole Shifting �MS�
method14,15 achieved good results for 1,3 and 1,4 interac-

TABLE V. Relative error ���A ,B�=
real
10 �A ,B� / �Eexact�A ,B�� in percentage

terms� in the Coulomb energy between the A and B topological atoms �as
marked in Fig. 6� of the glycine molecule at its equilibrium geometry �see
text�, obtained by the MMS method. d=dA-B represents the internuclear
distance for the several 1,2, 1,3, and 1,4 interactions selected, while E
=Eexact�A ,B� is the Coulomb energy obtained by PROMOLDEN.

A-B Inter. d /a0

E
�kJ mol−1� ��A ,B�

C1–C2 1,2 2.847 969.68 0.032
C2–O4 1,2 2.232 �3778.02 1.440
C1–N5 1,2 2.687 �1171.08 0.103
N5–H7 1,2 1.868 �586.88 2.693
C1–H9 1,2 2.060 100.92 9.807
C2–O3 1,2 2.510 �2981.62 0.332
O3–H6 1,2 1.787 �1107.36 4.360
N5–H8 1,2 1.866 �517.17 0.990
C2–N5 1,3 4.546 �1239.39 0.002
C1–O4 1,3 4.529 �599.87 0.013
C1–H7 1,3 3.956 269.98 0.068
N5–H9 1,3 3.984 �8.43 0.312
C2–H9 1,3 3.955 3.44 0.763
C2–H7 1,4 4.716 428.56 �0.001
N5–O4 1,4 5.138 918.37 0.006
O4–H9 1,4 5.788 �0.37 �0.001
H7–H9 1,4 5.368 1.10 �0.001

TABLE VI. Relative error ���A ,B�=
real
10 �A ,B� / �Eexact�A ,B�� in percentage

terms� in the Coulomb energy between the A and B topological atoms �as
marked in Fig. 6� of the N-methylacetamide molecule at its equilibrium
geometry �see text�, obtained by the MMS method. d=dA-B represents the
internuclear distance for the several 1,2, 1,3, and 1,4 interactions selected,
while E=Eexact�A ,B� is the Coulomb energy obtained by PROMOLDEN.

A-B Inter. d /a0

E
�kJ mol−1� ��A ,B�

C1–C2 1,2 2.861 269.53 0.302
C2–O3 1,2 2.260 �3586.80 1.243
C2–N4 1,2 2.552 �3043.09 0.297
N4–C5 1,2 2.737 �1257.22 0.152
N4–H6 1,2 1.871 �610.77 1.982
C1–H10 1,2 2.048 84.59 9.714
C1–H11 1,2 2.048 98.38 8.727
C5–H7 1,2 2.046 96.43 7.542
C5–H8 1,2 2.048 115.10 6.227
C1–O3 1,3 4.478 �127.55 0.062
C1–N4 1,3 4.596 �119.80 0.022
O3–N4 1,3 4.219 1361.30 0.008
C2–C5 1,3 4.615 819.68 0.003
C2–H6 1,3 3.834 550.04 �0.001
C5–H6 1,3 3.997 233.51 0.112
C1–H6 1,4 4.821 28.96 0.091
O3–H6 1,4 5.867 �278.64 �0.001
C1–C5 1,4 7.177 34.42 0.076
O3–C5 1,4 5.209 �482.07 �0.001
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FIG. 7. Binding energy of H2 as a function of internuclear distance with
�full line� and without �dashed line� the interatomic total Coulombic inter-
action. Notice how the last curve preserves a Morse-like shape.
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tions, but its previous implementation failed for 1,2 interac-
tions. Therefore, it was necessary to overcome these limita-
tions to obtain force fields based on topological atoms.

We have implemented a new algorithm for the MS
method in the RHOLM code. This algorithm displays very
good relative and absolute �0.03–0.3 kJ/mol� errors for 1,3
and 1,4 interactions, but only reasonable ones for 1,2 inter-
actions, overcoming the ME problems even in the most dif-
ficult 1,2 electrostatic interactions between topological at-
oms, such as the strong, shortest-range covalent interaction
of the H2 molecule. Thus, the new algorithm overcomes the
limitation of the original one.

If one decides to employ this MMS algorithm to im-
prove ME convergence, two tasks must be performed in the
near future: �a� adjust the new algorithm for specific cases,
and �b� verify the transferability of the shifts between trans-
ferable topological atoms. Finally, we would like to suggest
that, although devised for the QTAIM multipole moments
discussed here, the MMS algorithm within the MS method is
in principle capable of improving the convergence of more
general ME cases, and hence its usefulness exceeds the
present scope.

ACKNOWLEDGMENTS

This research has been funded by the Spanish Ministerio
de Educación y Ciencia �MEC�, Project Nos. CTQ2006-
02976 and CTQ2009-08376; �Contract No. CSD2007-
00045� MALTA-CONSOLIDER, cofinanced by the Euro-
pean Regional Development Fund �FEDER�; and �Contract
No. IB09-019�, financed by the Principado de Asturias Gov-
ernment through the FICyT. C.J.F.S. thanks the Spanish
MEC for his F. P. I. grant. We dedicate this work to the
memory of our late colleague and friend, Professor Miguel
A. Blanco.

APPENDIX: THE MULTIPOLAR EXPANSION,
REFERENCE FRAMES, COMPLEX AND REAL TERMS

Traditionally, the ME has been defined as

r12
−1 = �r�B − r�A + R� �−1

= �
lAmA

�
lBmB

RlAmA
�r�A�TlAmAlBmB

G �R� �RlBmB
�r�B� , �A1�

where mA=−lA , . . . , lA �mB=−lB , . . . , lB� and lA=0, . . . ,� �lB

=0, . . . ,��, and the regular spherical harmonics are defined
as

Rlm�r�� = Nlr
lYlm��,�� , �A2�

where Ylm�� ,�� are the �complex� spherical harmonics and

Nl =
 4�

2l + 1
. �A3�

TlAmAlBmB

G �R� � represents an interaction tensor, where the su-
perscript G means that the global coordinate system defined
in Fig. 1 is used. Introducing the ME in Eq. �1� gives

Eelec�A,B� = �
lAmA

�
lBmB

QlAmA

G ��A�TlAmAlBmB

G �R� �QlBmB

G ��B� ,

�A4�

where

QlAmA

G ��A� = Z�A
�lA,0 − �

�A

��r�A + R� A�RlAmA
�r�A�dr�A,

�A5�

QlBmB

G ��B� = Z�B
�lB,0 − �

�B

��r�B + R� B�RlBmB
�r�B�dr�B,

�A6�

are the QTAIM total �and complex� multipole moments, in-
cluding the nuclear charge.

The QTAIM multipole moments are generally obtained
in local reference systems centered on the topological atoms
which are going to be translated and rotated. They have an
arbitrary orientation with respect to the global coordinate
system. The QTAIM multipole moments in the global system
are related to the multipole moments obtained in the local
system through:

Qlm
G ��� = �

m�=−l

l

�Dmm�
l ��,�,����Qlm�

L ��� , �A7�

where �� ,� ,�� are the Euler angles of the rotation that takes
the global axes to the local axes and Dmm�

l �� ,� ,�� are the
elements of the Wigner rotation matrix. Using this relation-
ship, Eq. �A4� becomes

Eelec�A,B� = �
lAmA

�
lBmB

QlAmA

L ��A�TlAmAlBmB

L �R� �QlBmB

L ��B� ,

�A8�

where TlAmAlBmB

L �R� � is an interaction tensor that takes into
account the relative orientation between the global and the
two atomic local reference systems. Moreover, it can be ob-
tained from stable recurrence relations.16

For the sake of simplicity, it is more convenient to work
with real QTAIM multipole moments �which are represented
by italics Q�; these are related to their complex analogs �rep-
resented by calligraphic Q� through the unitary transforma-
tion

Qlm��� = �
m�=−l

l

Cmm�Qlm���� , �A9�

where the Cmm� are determined by the rules

�1� Cmm�=0 if �m�� �m��,
�2� C00=1,
�3� Cmm= �−1�m /
2,
�4� Cmm̄=1 /
2,
�5� Cm̄m=−i�−1�m /
2,
�6� Cm̄m̄= i /
2.

Note that in the last four rules, it is assumed that m�0.
Additionally, the last three rules use m̄=−m to simplify the
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notation. Moreover, analogous expressions allow to define
the real regular harmonics Rlm�r�� in terms of the complex
ones Rlm�r��. These definitions have been used in the final
expression for the Coulomb energy between topological at-
oms, Eq. �4�, where we have simplified TlAmAlBmB

�R� � instead
of TlAmAlBmB

L �R� �, which is a real �notice again the change from
T to T� local frame interaction tensor that can also be ob-
tained from stable recurrence relations.16

Another important point to be noticed is the original
definition of the shifts in terms of complex harmonics and
their translation into real harmonics. Shifting again by c� the
origin of the local coordinate system associated with a topo-
logical atom, the �complex� shifted multipole moments
Qlm

c� ��� can be obtained from

Qlm
c� ��� = �

l�m�

Ql�m�
0� ���
� l + m

l� + m�
�� l − m

l� − m�
�Rl−l�m−m��c�� ,

�A10�

where Qlm
0� ��� are the original multipole moments, l�

=0, . . . , l, m�� �l��, and Rlm�c�� are the �complex� regular
spherical harmonics defined by Eq. �A2�. This is analogous
to the process described in Eq. �7�, and hence the real MS
matrix can be computed as

Wl�m�,lm�c�� = �
m1=−l

l

�
m2=−l�

l�

�
m3=l�−l

l−l�

Cmm1
Cm�m2

� Cm3�m1−m2�
�


� l + m1

l� + m2
�� l − m1

l� − m2
�Rl−l�m3

�c�� �A11�

so that Rlm�c�� are the real regular spherical harmonics. No-
tice that, although it appears to involve a triple sum, the
properties of the Cmm� coefficients are such that, at most, two
terms survive among those with m1= �m, m2= �m�, and
m3= � �m+m��, ��m−m��, and they are always real.
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