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We present new limits on resonant t �b production in p �p collisions at
ffiffiffi
s

p ¼ 1:96 TeV, using 1:9 fb�1 of

data recorded with the CDF II detector at the Fermilab Tevatron. We reconstruct a candidate t �b mass in

events with a lepton, neutrino candidate, and two or three jets, and search for anomalous t �b production as

modeled by W 0 ! t �b. We set a new limit on a right-handed W 0 with standard model-like coupling,

excluding any mass below 800 GeV=c2 at 95% C.L. The cross section for any narrow, resonant t �b

production between 750 and 950 GeV=c2 is found to be less than 0.28 pb at 95% C.L. We also present an

exclusion of the W 0 coupling strength versus W0 mass over the range 300–950 GeV=c2.
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Many modifications of the standard model (SM) of
particle physics include new, massive, short-lived particles
with two-body decays to known fermion pairs. A classic
search strategy for these states looks for resonant signals in
the spectra of two-body mass distributions. Recent tech-
niques developed to observe electroweak single-top-quark
production are well suited to a search for unexpected t �b
resonances [1]. A t �b resonance (inclusion of the charge
conjugate is implied throughout the text) is predicted by a
wide range of models containing a massive charged vector
boson, generically referred to asW 0. The classic model is a
simple extension of the SM to the left-right symmetric
group SUð2ÞL � SUð2ÞR � Uð1Þ [2], which adds a right-
handed charged boson WR with universal weak coupling
strength and unknown mass. The W 0 may arise in models
with other symmetry extensions: as the excitation of theW
boson in Kaluza-Klein extra dimensions [3], as the
techni-� of technicolor theories [4], or as a bosonic partner
in little Higgs scenarios [5].

The classic limits onW 0 are derived from searches in the
W 0 ! ‘� decay channel [6]. For large W 0 masses, the
sensitivity in this channel is diminished by the broad
Jacobian line shapes for the lepton momentum and W 0
transverse mass. Searches in the t �b channel [7] avoid this
difficulty and also probe models where the couplings are
free parameters and the leptonic decay modes may be
suppressed. Although we quantify our results using the
model of a right-handed W 0 with SM-like coupling [8],
this analysis is sensitive to any narrow state decaying to t �b,
including, e.g., a charged Higgs boson or bound states
arising from new dynamics in the third generation.
Searches in the t �b channel complement searches for neu-
tral states coupling to t�t [9].

In this Letter we present a new search for an s-channel
W 0 ! t �b resonance produced in p �p collisions at

ffiffiffi
s

p ¼
1:96 TeV at the Fermilab Tevatron. The data set of
1:9 fb�1 was recorded with the CDF II detector; a standard
coordinate system [10] is used. A detailed explanation of
this analysis can be found in [11]. Our selection is based on
the leptonic decay mode t �b ! ð‘�bÞ �b, which has been
well understood in the search for electroweak single-top-
quark production [1]. Events are expected to have a high
transverse momentum (pT) electron or muon candidate,
missing transverse energy (E6 T) from a neutrino [12], and
two or three jets, at least one of which is a b-quark
candidate. The dominant background is fromW þ jet pro-
cesses and electroweak top-quark production. We recon-
struct each event according to our signal hypothesis
W 0 ! t �b ! ð‘�bÞ �b, then search the mass spectrum for a
narrow resonance. If no signal is detected, we set limits on
theW 0 ! t �b cross section and on theW 0 coupling strength
gW0 .

The CDF II detector [13] is a cylindrically symmetric
general-purpose detector. Precision charged-particle track-

ing is accomplished by layers of silicon microstrip detec-
tors surrounded by a large open-cell drift chamber within a
1.4 T solenoidal magnetic field. Outside the magnet are the
electromagnetic and hadronic calorimeters, steel for had-
ronic shielding, and an exterior layer of muon detectors.
The luminosity of the p �p collisions is measured using gas
Cherenkov detectors at small angles.
We select data using online selection criteria which

require a high-pT lepton or large E6 T [14]. We identify
t �b ! ‘�b �b candidates as having an electron or muon
with pT � 20 GeV=c. We also require E6 T � 25 GeV
and two or three hadronic jets with pT � 20 GeV=c and

j�j � 2:8. Jets are clustered in cones of fixed radius �R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið��Þ2 þ ð��Þ2p � 0:4, and at least one jet is required to

be ‘‘b tagged,’’ i.e., the jet contains a secondary vertex
consistent with the decay of a hadron containing a b quark
[15]. We reduce Z decays and t�t contamination by exclud-
ing events with a second charged lepton. Events consistent
with cosmic ray or photon interactions are also excluded.
QCD multijet background, which does not involve a W
boson, is rejected with a specific set of requirements [11].
The primary background process is the associated pro-

duction of a W boson and jets with subsequent leptonic
decay of the W boson (W þ jets). Approximately 70% of
our sample are W þ jets events containing heavy flavor
(Wb �b, Wc �c, Wcj) or incorrectly b-tagged light flavor
(mistags). We establish the normalization of these pro-
cesses from data, and estimate the fraction of the candidate
events with bottom or charm flavor using the ALPGEN

Monte Carlo event generator [16]. The mistagging rate
for light-flavor jets is estimated from inclusive generic jet
data [17]. Additional backgrounds including t�t pair pro-
duction, s-channel and t-channel single-top-quark produc-
tion, and diboson processes (WW, WZ, ZZ) are modeled
using the PYTHIA Monte Carlo event generator [18] and are
normalized to the next-to-leading-order cross sections pre-
dicted by theory. A small multijet background without
leptonicW decay (‘‘non-W’’) arises when a jet is misiden-
tified as a lepton and E6 T results from jet energy mismea-
surement; this background is modeled using data. The
predicted SM background is detailed in Table I. The un-
certainties are dominated by imprecise knowledge of the
heavy-flavor fractions and pertain to background rate esti-
mates only; other systematic uncertainties are discussed
later. In data we observe 1362 events with two jets and 617
events with three jets.
According to the proposedW 0 hypothesis, theW 0 mass is

given by reconstructingMt �b from the four-momenta of the
lepton, neutrino, and two jets. The unmeasured longitudi-
nal neutrino momentum p�

z is quadratically constrained by
assigning M‘� ¼ MW ¼ 80:448 GeV=c2 [19]. We assign
p�
z to the smallest real solution or to the real part of

complex solutions [20]. We assume the two highest ET

jets arise from the b quarks, even for the three-jet case in
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which the third jet has been b tagged. The reconstructedW
is then combined with these two leading jets, corrected to
reproduce parton-level energies, to form Mt �b.

Our signal model is a W 0 with purely right-handed
decays and SM-like coupling, simulated using PYTHIA.
The model assumes a top-quark mass of 175 GeV=c2.
The left-handed case is not considered since the conse-
quent W �W 0 interference has not been observed in any
precision W measurements. Figure 1 shows the Mt �b distri-
bution in data superimposed with the expected signal shape
for a 600 GeV=c2 W0 produced with a total cross section of
9 pb (�4� the prediction for a W0 with SM-like coupling
[8]). The reconstructed width of the signal is dominated by
resolution effects, particularly the jet-energy resolution
[21] and the incorrect assignment of jets from initial or
final state radiation. Our test signal is therefore applicable
for any W 0-like object whose width is small compared to
the experimental resolution. The binning is chosen so that
background models have a sufficient number of entries in
each bin, including the overflow bin for all values above
700 GeV=c2.

Unlike single-top-quark production, W 0 production is
entirely an s-channel process; contributions from the t
and u channels are suppressed by the large W 0 mass. We
simulate a narrow right-handed W 0 with SM-like coupling
and a mass between 300 and 950 GeV=c2 in steps of
100 GeV=c2 below 600 GeV=c2 and steps of 50 GeV=c2

above. This is the mass range to which our analysis is
sensitive to changes in the signal distribution: above
950 GeV=c2 the signal events simply pile into the Mt �b

overflow bin. Since there is very little high-mass back-
ground, we are sensitive to excesses of just a few events in
the tail. For MW0 ¼ 800 GeV=c2, our selection efficiency
in the t �b channel is approximately 2:8� 1:0%. An excess
of ten events, for example, would correspond to a Tevatron
cross section of 0.18 pb.

The branching ratios (BR) of a right-handed W 0 depend
on whether decay to �R is allowed; we consider both
possibilities. If leptonic decay is forbidden, as for a lep-

tophobic W 0 or when MW0 <M�R
, the Mt �b prediction

simply has a slightly larger normalization. For example,
if MW0 ¼ 800 GeV=c2, �� BRðW 0 ! t �bÞ is predicted to
be 0.337 pb if leptonic decays are forbidden and 0.262 pb if
they are allowed.
We set frequentist limits on W 0 ! t �b using the measure

CLs from [22], which is defined as the probability of
background plus a specified signal fraction matching the
data (PSþB) divided by the probability of a background-
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FIG. 1. Mt �b for events with two jets and one b tag, comparing
the shapes between background and signal. Backgrounds are
stacked and grouped according to similar shape. A 600 GeV=c2

W0 model is shown with �� BRðW0 ! t �bÞ ¼ 9 pb (� 4� the
prediction for a W 0 with SM-like coupling).

TABLE I. Predicted SM background contribution with two jets
and with three jets.

Background 2 jets 3 jets

Wb �b 409:4� 123:4 125:6� 37:9
Wc �cþWcj 412:4� 127:2 109:3� 33:6
Mistags 276:5� 35:0 82:5� 10:7
Non-W 53:2� 21:3 17:3� 6:9
t�t 126:5� 13:4 291:8� 36:7
Single top quark (t channel) 53:3� 7:8 15:7� 2:3
Single top quark (s channel) 35:4� 5:0 11:6� 1:6
WW þWZþ ZZ 54:4� 4:2 18:4� 1:5
Zþ jets 22:6� 3:3 9:3� 1:4

Total BG prediction 1443:8� 254:6 681:6� 83:0

Observed 1362 617

TABLE II. 95% C.L. limits on �� BRðW 0 ! t �bÞ as function
of MW0 for a right-handed W0 with SM-like coupling. The
expected limit is quoted with the range of values into which
our observation should fall 68% of the time assuming no signal is
present.

MW0 (GeV=c2) Expected limit (pb) Observed limit (pb)

300 1:56þ0:62
�0:45 1.59

400 1:04þ0:44
�0:30 1.17

500 0:74þ0:35
�0:22 0.84

600 0:54þ0:24
�0:17 0.44

650 0:46þ0:21
�0:13 0.39

700 0:40þ0:17
�0:12 0.32

750 0:33þ0:15
�0:09 0.28

800 0:30þ0:13
�0:09 0.26

850 0:28þ0:13
�0:08 0.25

900 0:28þ0:13
�0:08 0.26

950 0:30þ0:13
�0:09 0.28
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only model matching the data (PB). Sources of uncertainty
are treated using a large series of trials (�50� 103) for
both cases. Each trial is produced by randomly varying all
uncertain parameters in the model prediction within a
Gaussian constraint about their nominal values. PSþB is
determined from the fraction of the Sþ B trials with a
minimized ��2 ¼ �2ðdatajSþ BÞ � �2ðdatajBÞ larger
than in data; PB is analogous. The 95% C.L. limit is set
by adjusting the signal fraction assumed in the Sþ B
model until CLs ¼ 0:05.

Our event selection introduces various sources of sys-
tematic uncertainty. These are manifest as errors in both
the rates and shapes of the mass distributions for our signal
and background models. They include jet-energy scale
(JES), b-tagging efficiencies, lepton identification and trig-
ger efficiencies, recorded luminosity, quantity of initial and
final state radiation, parton distribution functions, factori-
zation and renormalization scale, and MC modeling. Our
limit procedure evaluates their impact by making reason-
able variations in the model parameters and resimulating
the analysis [11].

The systematic uncertainties are dominated by JES and
the b-tagging rate uncertainties for the signal. JES uncer-
tainty is modeled by calculating 1� shifts in each jet-
energy correction and adding the results in quadrature.
The uncertainty in b-tagging efficiency is determined by
binning the b-tagging rate as a function of energy for
multijet data. The uncertainty is found to be proportional
to the jet energy, allowing extrapolation to the higher
energies common for our W 0 signal. This jet-energy
weighted uncertainty on the b-tagging rate leads to accep-
tance errors as large as 40% for a 950 GeV=c2 W 0.

Including all such sources of uncertainty in our model
results in the expected upper limit on the cross section
increasing by 30%–40%.
Applying the full limit procedure, we set 95% C.L.

upper limits on �� BRðW 0 ! t �bÞ as listed in Table II
for a right-handed W 0 with SM-like coupling. Predicted
cross sections for such aW 0 [8] are shown in Fig. 2: we set
new 95% C.L. limits of MW0 > 800 GeV=c2 including
leptonic decays, and MW0 > 825 GeV=c2 if leptonic de-
cays are forbidden. The best prior result used 0:9 fb�1 and
found MW 0 � 768 GeV=c2 if leptonic decays are forbid-
den [7]. These results are quoted for a top-quark mass of
175 GeV=c2 and thus are slightly conservative: using the
smaller world average would increase the t �b branching
fraction.
For a simple s-channel model with effective coupling

gW 0 , the cross section is proportional to g4W0 . Relaxing the

assumption of the universal weak coupling, our cross
section limits can be rewritten as upper limits on gW0 as a
function of MW 0 . The excluded region of the gW 0 �MW0

plane is shown in Fig. 3, with gW 0 in units of gW . AtMW0 ¼
300 GeV=c2, we limit (95% C.L.) the effective coupling to
be less than 0.40 of the W boson coupling. In this more
general case, the effective cross section for any narrow,
resonant t �b production between 750 and 950 GeV=c2 is
found to be less than 0.28 pb at 95% C.L.
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