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REPRESENTATION THEORY
OF JORDAN SUPERALGEBRAS I

CONSUELO MARTINEZ AND EFIM ZELMANOV

ABSTRACT. We complete the classification of irreducible bimodules over simple
finite dimensional Jordan superalgebras.

INTRODUCTION

Throughout this paper all algebras are considered over a ground field F' that is
algebraically closed of characteristic zero.

A (linear) Jordan algebra is a vector space J with a binary bilinear operation
(z,y) — xy satisfying the following identities:

Ty =y,
2 2
(z7y)z = 2*(yx).

Let V be an F-vector space of countable dimension and let G = G(V') denote the
Grassmann (or exterior) algebra over V; that is, the quotient of the tensor algebra
over the ideal generated by the symmetric tensors. Then G(V) is a Z/2Z-graded
algebra, G(V) = G(V)g + G(V)1. Its even part G(V)g is the linear span of all
tensors of even length, and the odd part G(V)j is the linear span of all tensors of
odd length.

If V is a variety of algebras defined by homogeneous identities (see [I], [19]), a
superalgebra A = A+ Aj is a V- superalgebra if its Grassmann enveloping algebra
G(A) =430 G(V)s+ A1 @ G(V)1 lies in V.

Given an element a € Ag U Az, |a| denotes its parity (0 or 1).

Thus, a Jordan superalgebra is a Z/2Z-graded algebra J = J5 + J; satisfying
the graded identities

zy = (1)l

(supercommutativity) and
((xy)2)t + (—1) W () 2)y 4 (—1)lllIF Izl 2210 (1) 2) 2
= (2y)(t) + (=) (@2) (y) + (~1) 1D ) y2).
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816 CONSUELO MARTINEZ AND EFIM ZELMANOV

Examples. I) A = M,,,(F), A5 = <6 2)7 Ay = (2 8) and

I) A=Q(n)=(¢%)|a,be M,(F) are associative superalgebras.

C.T.C. Wall [I8] proved that every associative simple finite-dimensional super-
algebra over the algebraically closed field F' is isomorphic to one of them.

III) Let A be an associative (super)algebra. The new operation

a-b= %(ab—i— (—1)lellblpg)

defines a structure of a Jordan (super)algebra on A. We will denote this Jordan
(super)algebra as A*). The Lie superalgebra (A4, [a,b] = ab — (—1)!%/’lba) will be
denoted as A(7).

In this way we get the first examples of Jordan simple finite-dimensional super-
algebras, applying III) to the associative superalgebras I) and II):

1) M, (F),m>1,n>1;

2) Q(n)H), n > 2.

If A is an associative superalgebra and * : A — A is a superinvolution, that is,
(a*)* = a, (ab)* = (=1)1*lIlp*a*, then the set of symmetric elements H (A, ) is
a (Jordan) subsuperalgebra of A(t). Similarly the set of skewsymmetric elements
Skew(A,x) is a Lie subsuperalgebra of A(~).

The following two subalgebras of M, (+) " are of this type:

m—+n
3) Let I,,I,, be the identity matrices, ¢ the transposition and U = —U' =
Ul = (IO _(I)m) Then * : My10m(F) — My y9m(F) given by

a b\° (I, 0\ [(a" —c\ (I, 0
(e o) =G o) 3G o)
is a superinvolution.

We will refer to OSP,om(F) = Skew(Miom(F),*) and Josp, om(F) =
H(M, 19, (F),*) as the Lie and the Jordan orthosymplectic superalgebras respec-
tively.

4) The associative superalgebra M, ,,(F') has another superinvolution:

a b\7 [(d' b
(c d) _(ct at)'

The Lie superalgebra of skewsymmetric elements and the Jordan superalgebra
of symmetric elements are denoted by P, (F) and JP, (F) respectively.

5) The 3-dimensional Kaplansky superalgebra, K3 = Fe + (Fx + Fy), with the
multiplication €2 = e, ex = %x, ey = %y, [z, y] = e is not unital.

6) The 1-parametric family of 4-dimensional superalgebras D; is defined as D; =
(Fey + Fes) + (Fx + Fy) with the product e? = e;,e1e2 = 0,e;x = %x,eiy =
%y,xy:el +teg, te F, 1 =1,2.

The superalgebra D, is simple if ¢ # 0. In the case t = —1, the superalgebra
D_ is isomorphic to My 1(F)(F).
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REPRESENTATION THEORY OF JORDAN SUPERALGEBRAS I 817

7) Let V = Vg+V7 be a Z/2Z-graded vector space with a superform (|) : VxV —
F which is symmetric on Vg, skewsymmetric in V§ and (V5|Vi) = (0) = (Vi|Vp).

The superalgebra J = F1+V = (F1+ V) 4+ Vj is Jordan.

8) V. Kac introduced the 10-dimensional superalgebra K that is related (via
the Tits-Kantor-Koecher construction) to the exceptional 40-dimensional Lie super-
algebra. It was proved in [I4] that this superalgebra is not a homomorphic image
of a special Jordan superalgebra.

9) I. Kantor defined a Jordan superalgebra structure in the finite-dimensional
Grassmann algebra generated by e, ...,e,. These simple Jordan superalgebras
have nonsemisimple even parts and are not special, though they are homomorphic
images of special algebras ([q]).

V. Kac [2] (see also I. Kantor [3]) proved that every simple finite-dimensional
Jordan superalgebra over F'is isomorphic to one of the superalgebras Mner(F)(*‘)7
Qn(F)H) | Jospy am(F), JP,(F), a superalgebra of a superform, K3, Dy, K, or
a Kantor superalgebra.

If J is a Jordan (super)algebra, a Jordan bimodule V over J is a Z/2Z-graded
vector space with operations V' x J — V, J x V — V such that the split null
extension V' + J is a Jordan (super)algebra (see [I]). Recall that the split null
extension is the direct sum of vector spaces V' + J with the operation that extends
the multiplication of J and the action of J on V', while the product of two arbitrary
elements in V' is zero.

If V.=V + Vi is a Jordan bimodule over a Jordan superalgebra .J, then the
bimodule V7 = Vi¥ 4+ V2, where the parity of the subspace V- is different from
i and the action of J is defined via

av®? = (=D (av)P, v°Pa = (va)°?

for arbitrary a € J, v € V is also a Jordan bimodule, which is denoted as V°P and
called the opposite of the bimodule V.

Given an arbitrary set X, there is a unique free J-bimodule V(X)) over the set of
free generators X. If V' is a J-bimodule, then an arbitrary map X — V' uniquely
extends to a homomorphism of bimodules V(X) — V.

Let X be a set consisting of one element. For an element a € J let Ry (x)(a)
denote the multiplication operator Ry (x)(a): V(X) — V(X), v = va.

The subalgebra U(J) of the algebra of all linear transformations of V' (X) gener-
ated by the operators Ry (x)(a),a € J, is called multiplicative enveloping of .J.

Every Jordan bimodule over J is a U(J)-right module, and conversely.

Let’s denote D(z,y) = R(x)R(y) — (=)W R(y)R(z), V(x,y) = D(z,y) +
R(zy), U(z,y) = R(x)R(y)+(=1)*IW R(y) R(x) — R(zy) and {z,y, 2} = yU(z, 2) =
(zy)z + x(yz) — (—1)1*IWly(22), the Jordan triple product.

We will need the following identities which hold in all Jordan superalgebras:

(1) D(z,y) is a superderivation,

(2) D(zy, z) = D(z,y2) + (1) IWID(y, 2z),

(3) R(2)U(y, 2) + (=1)I#I W=D U (y, )R(J«“) Ulzy, z) + (=)0 (y, 22),

(4) ()()()Z%(( )"’”‘R((x)) R(zy)R(z)

H(=1)FWR(22) R(y) + (—1)#IvI+= R(yZ)R( )+ R(x)D(y, z)
(=)D (2, 2) R(y) + (-1) =D R(2) D(, y)),

(5) Ulz1, 22)U(y1,y2) = £V (21, 41)V (22, y2) £ V(21,52)V(22,51)

iQV(Zl, I'QU(yl, yz))

Y
+
D
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818 CONSUELO MARTINEZ AND EFIM ZELMANOV

In [I], N. Jacobson developed the representation theory of semisimple finite-
dimensional Jordan algebras. He proved that:

i) if J is a finite-dimensional Jordan algebra, then dimpU(J) < oo,

ii) if .J is a finite-dimensional semisimple Jordan algebra, then U(.J) is semisimple
as well. In particular, all bimodules over J are completely reducible.

Moreover, he determined all irreducible bimodules over simple finite-dimensional
Jordan algebras.

Let e be the identity of J and let V = {e,V,e} +{l —¢,V,e} + {1 —e,V,1 —¢}
be the Peirce decomposition.

If V(X) is a free Jordan bimodule over J, then V;(X) = {e, V(X), e} is the free
unital bimodule over J. An arbitrary map from X to a unital Jordan bimodule V;
uniquely extends to a homomorphism of bimodules V1 (X) — V7. We call the asso-
ciative algebra Uy (.J) generated by the linear transformations Ry, x)(a) : V1(X) —
V1(X), v — va, the unital (multiplicative) enveloping algebra of J.

A bimodule V over J is said to be one-sided if {J,V,J} = (0). In this case, the
mapping a — Ry (a) € Endp (V) is a homomorphism of J into Endp(V)™H).

The subbimodule W (X) = {e, V(X),1—e}+{1—¢,V(X),1—e} is the universal
one-sided bimodule over J. The associative subalgebra S(X) of Endp(W (X))
generated by Ry (x)(J) is the universal (associative) enveloping algebra of .J (see
(D).

Asin [Il Th. 15, p. 103], U(J) =~ Uy (J) @ S(J).

It J=J @ J", then Uy(J) ~ Uy (J) @ U (J") @ (UL(J") @ U (J")) (see []).

In [II] we classified one-sided finite-dimensional bimodules over simple finite-
dimensional Jordan superalgebras.

The purpose of this paper is the classification of irreducible unital finite-dimen-
sional bimodules over all simple finite-dimensional Jordan superalgebras. Recall
that the irreducible bimodules over the exceptional 10-dimensional Kac superalge-
bra Kjo were classified by A. S. Shtern (see [I6]). Irreducible and even indecom-
posible bimodules over D; were classified in [12] (see also [I7]). Classification of
irreducible finite-dimensional bimodules over Q(n)*+) and over JP, (F) is done in
[9]. In the forthcoming paper [I3] we will treat the case of indecomposible modules.

Contents
. Tits-Kantor-Koecher construction.
. Root graded modules.
. Irreducible bimodules over JP(n), n > 2.
. Irreducible bimodules over M, (F)*), m >n, m +n > 3.
. Unital irreducible bimodules over M; 1 (F)).
. Irreducible bimodules over Josp(m, 2r).
. Irreducible bimodules over Jordan superalgebras of superforms.

8. Jordan superalgebras of rank > 3.

In Chapters 1 and 2 we relate irreducible representations of Jordan superalge-
bras to root graded representations of the corresponding Tits-Kantor-Koecher Lie
superalgebras.

In Chapters 3-7 some irreducible representations for each of the types of Jordan
superalgebras are constructed. The subsequent analysis of highest weights of the
corresponding root graded modules shows that these lists are complete.

N OOt = W N

Licensed to University de Oviedo. Prepared on Thu Nov 15 07:24:26 EST 2012 for download from IP 156.35.62.18/156.35.192.4.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



REPRESENTATION THEORY OF JORDAN SUPERALGEBRAS I 819

In Chapter 8 we prove that for a simple finite-dimensional unital Jordan super-
algebra J, which contains 3 pairwise orthogonal idempotents in its even part, the
universal multiplicative enveloping algebra U(J) is finite-dimensional and semisim-
ple. Thus all finitely generated J-bimodules are finite-dimensional and completely
reducible.

1. TiTs-KANTOR-KOECHER CONSTRUCTION

Definition 1.1 ([6]). A Jordan (super)pair P = (P~,P%) is a pair of vector
(super)spaces with a pair of trilinear operations

{,,}:P " xPtxP =P, {,,}: Pt x P~ xP" = P*

that satisfies the following identities:
(P1) {a,y 7, {27,277, 2°}} = {27, {y 7, 27,277}, a7},
(P.2) {27, 977,27}y 7 w7} = {27, {y~7, 2%,y 7}, u’},
(P.3) {z7,y77,27}, 277 {27,y 7,27} = {27, {y™7, {27,277, 27}, y =7}, 27},
for every 27,u’ € P9,y 7,279 € P79, 0 = % (see [0]).

Let L = L1+ Lo+ L1 be a Z-graded Lie (super)-algebra. Then (L_1, L)
is a Jordan (super)pair with respect to the trilinear operations {z7,y 7,27} =
Hxa,y—o],zo’]; xa',ZO' S Lo’la ZU_U S L*O’]J o=

Theorem 1.2. For an arbitrary Jordan (super) pair P = (P~, PT), there exists a
unique Z-graded Lie (super) algebra K = K_1+ Ko+ K3 such that (K_1, K1) ~ P,
Ko =[K_1, K], and for every 3-graded Lie (super)algebra L = L_1 + Lo+ L1, an
arbitrary homomorphism of the Jordan pairs P — (L_1, L1) uniquely extends to a
homomorphism of Lie (super)algebras K — L.

The uniqueness is obvious. Let us prove the existence. Choose bases {e; }; of
P* and {e; }; of P~, and consider the multiplication table

- t t
{ej_7ej ,eﬁ} = Z%jkei Yijk € F,
t
- + — _ —
{ej 1€ 5 €q } - ijiqes ’ gJs’iq €L
S

+
%

Define a Lie (super)algebra K = K(P) by generators {x
Hx:—,x]_},x;:] = Z’ijkx?_,
t

[[Z;,l’j],l‘;} - Zgqux;a

;2 } and relations

[z, 23] = [aj 2] = 0.
The resulting algebra K is Z-graded (let degz = 1, degz; = —1). Moreover,
K is spanned by z;, z; and [x:r,x;], which implies that K; = (0) for |i| > 2.

It is easy to see that K has the required universal property.

We will refer to K = K(P) as the TKK-construction of the pair P.

If J is a Jordan superalgebra, then (J—,J%) is a Jordan superpair. The Lie
superalgebra K = K(J~,J7) is called the TKK-construction of .J.
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820 CONSUELO MARTINEZ AND EFIM ZELMANOV

2. ROOT GRADED MODULES

Let J = Jj + J; be a simple finite-dimensional Jordan superalgebra. Let’s
consider L = K (J) as its TKK-construction.

If V is a Jordan bimodule over J, then the null extension V + J is a Jor-
dan superalgebra, so we can consider its TKK Lie superalgebra K(V + J) =
(Vo+ )+ [V + VI T+ (VT +JT).

Denote K(V) =V~ + [V, J ]+ [J, V] 4+ VT <K(V+J). Then K(V) is a
Lie module over the subalgebra J~ + [J~, J*] + J* which is isomorphic to K (.J).

Let W be the maximal K (J)-submodule, which is contained in K (V)o=[V~, J*]
+[J7, V. Let K(V) = K(V)/W.

Lemma 2.1. Let J be a unital Jordan (super)algebra and let Vi, Vs be two unital
Jordan J-bimodules. The following assertions are equivalent:

(1) Vi = Vs,

(2) K(V1) ~ K(V2),

(3) K(V1) = K(V2).

Proof. Clearly (1) = (2) = (3). Let us show that (3) = (1).

Let ¢ : K(V1) — K (V) be a K(J)-module isomorphism. Let e be the identity
element of J. Then sly(F) ~ Fe™ + Fle™,e*] + Fet < K(J), and V;* is the
eigenspace of K(V;) with respect to ad([e™,e*]), which corresponds to the eigen-
value —2. This implies that p(V;") = V7. Both spaces V;7, V," are identified with
V1, Vs respectively. Let us show that Pyt is a bimodule isomorphism.

Choose a € J,v; € Vi. Let p(v]) = vy € Vo', The element [[at,e”],v]]
is mapped by ¢ to [[aT,e”],o(v]")], which is identified with avs. The lemma is
proved.

Lemma 2.2. For a unital Jordan bimodule V' over a unital Jordan (super)algebra
J, the following assertions are equivalent:

(1) V is an irreducible J-bimodule,

(2) K(V) is an irreducible K (J)-module

Proof. (1) = (2) Let W be a K(J)-subbimodule of K (V). Choose w € W, w =
w_g + wo + wa, [[e”,eT],w;] = iw;. Using a Vandermonde type argument we get
w; €W, i=-2,0,2. Hence W = (WNK(V)_3)+ (WNK(V)g) +(WNK(V)s).

Suppose that W N K(V)_5 # (0). The subspace K(V)_s is identified with V.
It is easy to see that the intersection of V' with W is a subbimodule of V. Hence
K(V) o CW.

Since K(V)y = [et,[et, K(V)_3]] it follows that K(V), C W as well, and
therefore K(V) = W.

If W C K(V)o then W = (0) since K(V) does not contain nonzero submodules
in K(V)O

(2) = (1) Now suppose that the K(J)-module K (V) is irreducible. If V' is
a proper subbimodule of V', then V'~ + [V/~ J¥] 4+ [J~,V'T]| + V'T is a proper
K (J)-subbimodule of K (V). The lemma is proved.

Lemma 2.3. Let J be a simple finite-dimensional Jordan superalgebra, L = K(.J).
(1) Suppose that both Ly and Jg are semisimple and J; has the same number of
simple summands as Lg. Then Li=K(Jg).
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REPRESENTATION THEORY OF JORDAN SUPERALGEBRAS I 821

(2) Suppose now that Lg/Center is semisimple and that Jg is semisimple

and has the same number of simple summands as Lg/Center. Then [Lg, Ly] =
[K(J5), K(Jo)]-
Proof. (1) We have Ly = J3 + [J5,J& ]+ [J7,J] 4+ JF. This implies that J; +
[J5.JF]+ J = K(Jp) is an ideal of Ly. Let J; be a direct sum of s simple
summands, J; = Jél) @D Jés). Then K(J5) = K(Jél)) D---® K(Jés)). Since
Lg is semisimple and Ly and K (J5) have the same number of simple summands, it
follows that K(J5) = Lg.

(2) Arguing as above, we get
K(J5) + Center(Lg)/Center(Lg) = Lg/Center(Lg),
so K(Jg) + Center(Lg) = Lg. This implies the result and proves the lemma.

Remark 2.4. The superalgebras Josp(n,2m) and JP(n), n > 3 satisfy condition
(1). The superalgebras M,, ., (F)*), Q,(F)*) and JP(2) satisfy condition (2).

Now we will define root graded modules.

Let J be a simple finite-dimensional Jordan superalgebra of one of the types
Josp(n,2m), JP(n),n > 2, My, 1m(F)H), Q(n) ), L = K(J) its universal TKK-
construction and H a Cartan subalgebra of [Lg, Lg]. As we have just seen, [Lg, Lg] =
[K(J5), K (Jg)]-

Let {V;} be the family of all finite-dimensional irreducible unital bimodules over
Jg. Then {K(V;)} are modules over K(J5). Let A(J) be the set of all nonzero
weights of all modules K (V;) with respect to H.

Definition 2.5. A module W over L is said to be root graded if
(1) the action of H on W is diagonalizable,
(2) W, # (0), a # 0, implies a € A(J),
(3) W is generated (as a module) by >°_, Wa.

Lemma 2.6. Let V be a unital bimodule over a simple finite-dimensional uni-
tal Jordan superalgebra J of one of the types JP(n), Q(n) "), My in(F)H), or
Josp(n,2m), and let L = K(J). Then the L-module K (V) is root-graded

Proof. Let’s view V as a bimodule over the semisimple finite-dimensional Jordan
algebra Js, V = >, V;, where each V; is an irreducible Js-bimodule. From the
description of unital Jz-bimodules, it follows that the action of H, H C K(J;), on
K (V) is diagonalizable.

Let 0 # o € H*, [V7,J}] # (0), and v € [V, J{]o. Then there exists
h € H such that [v,h] = a(h)v = Av, with A # 0. Hence v € [V, J{],H] C
V= 5L g e Vo Jg 1+ VE, g .

Similarly, every root space [V, J: ], 0% a € H*, lies in [V =, J ]+ [V, J5].

Hence K(V)=K(V)o+ V™ + VT + [V, Jf 1+ VT I =KV)o+>,Vi +
S ViV IS+ Vi, I ], where K (V) s the centralizer of H in K (V).

Hence K (V)4 # (0), 0 # « € H*, implies o € A(J).

Since K (V) is generated by V~, VT, we conclude that K (V) is generated by
>oea(s) K(V)a. The lemma is proved.

Now we will determine A(J) for various root systems.

Licensed to University de Oviedo. Prepared on Thu Nov 15 07:24:26 EST 2012 for download from IP 156.35.62.18/156.35.192.4.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



822 CONSUELO MARTINEZ AND EFIM ZELMANOV
I) Case JP(n).

J = JP(n) = {(‘; j)meM(F)b:—b,ct:c},

K(J)=P2n—1)= ( l;) a) = 0,b" = =b,c' = ¢;a,b,c € Mo, (F)}

ifn > 2.

The Lie superalgebra K (JP(2)) is the universal central cover of the Lie super-

algebra P(3) ([10]).
In this case, J5 = M, (F)),| K(J5) = sl(2n).
The set of irreducible modules over Jg consists of the regular bimodule and the

e e (3 0 (3 90 (0 T

where H(n) = {a € M,(F)|a' = a}, K(n) = {a € M,(F)|a' = —a}. The
action of Jj on the last four subspaces is defined as follows. We can identify
Jog = M,(F)* with {<g &) ,a € M,(F)} € Ms,(F). Then Jy acts via the

Jordan multiplication in My, (F)).
The TKK Lie module of the regular bimodule over Jj is the regular Lie module
over K(Jj) = sl(2n). The algebra si(2n) is embeddable into My, (F) via a —

a 0 0 H(2n) 0 K(2n) 0 0
(0 —at)' It acts on the subspaces <0 0 >, <0 0 \EEY o)

0 0\ . L
(K(Qn) o) Via the commutation in My, (F').

These are the TKK Lie modules of the corresponding irreducible Jg-bimodules.
It is easy to see that A(J) = {0 # xv; £ v;,1 < 4,j < 2n}.

1) Case Q(n)™).
J=Q(n)™) :{<Z b) la,be My(F)}, n>2,

K()=Qea- 100 =((§ 1) labe Man(F))
Jo = M,(F)*, K(Jo) = sl(2n).
We get the same A(J) as in the case P.
1) Case J = My (F)H), 0 >m, m+n > 3.

K(J) = {<i Z) | a € Moy, (F),d € Moy, (F),tr(a) = tr(d)}.
If n = m, then K(J) has a nonzero center.
Jo=A(5 5)) = MnlF) © M)
K(J) = sl(2m) @ sl(2n).

Unital bimodules over M, (F)*) and M,,(F)™) yield the sets of weights {0 #
+u; 05,1 <4,5 <2m} and {0 # fw, T wy, 1 < p,q < 2n}.

I, O 0 0
Let€1:<0 0),62=<0 In>,61+62=1.
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REPRESENTATION THEORY OF JORDAN SUPERALGEBRAS I 823

If V is a unital irreducible bimodule over Jy, then V = {e;,V,e;} or V =
{e2,V,e2} or V.= {e1,V,e2}. In the first case (similarly in the second) V is a
bimodule over M,,(F)™) (resp. M, (F)(*)), so it is one of those mentioned above.

Let V = {e1,V,ea}. There are < 4 irreducible bimodules of this type. Indeed,
such a bimodule is a one-sided bimodule over M, (F)*), a one-sided bimodule
over M,,(F)*), and the actions of M, (F)*) and M,,(F)*) commute. So, V is a
module over the algebra

U(Mp (FYH) @ UMy (F) ) = (M (F) & My (F)) @ (M, (F) & M, (F)"),

which is a sum of 4 isomorphic copies of M,,x,(F).
There are exactly four bimodules that will be listed below:

_ Om men(F)
) v1<0n’m i )

The action is the Jordan multiplication by (8 2)

aOoOx_EOax+xb
0 b 0 0) 2\0 0 ‘

2) Vo = <8 M’”XO"(F)>, but now the product is given by

a 0\ (0 x\_1/0 atz + xb

0 b 0 0) 2\0 0 '
3) Va3 = <8 MmXO"(F)>, and the product is given by

a 0\ (0 z\_1/0 ar+ zb'

0 b 0 0/ 21\0 0 '
4) Vy = <8 M’”XO"(F)> with the product given by

a0.0xiloatx—&—xbt
0 b 0 0/ 2\0 0 '

Now we will indicate the corresponding Lie modules.

1) K(W) = (8 Mzmxozn(F)> with the action

GDED-C)

a € sl(2m), b € sl(2n), and the set of roots of this module is {v; —w; |1 < i < 2m},

2) K(V2) = (8 MQ"“E)Q”(F)) with the action

(506 =6 ")

and the set of roots of this module is {—v; —w; |1 <@ < 2m},

Licensed to University de Oviedo. Prepared on Thu Nov 15 07:24:26 EST 2012 for download from IP 156.35.62.18/156.35.192.4.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



824 CONSUELO MARTINEZ AND EFIM ZELMANOV

3) K(V3) = (8 MQmXO%(F)) with the action

(%) o= 3)

with the set of roots {v; +w; |1 < i < 2m},

4) K(Vy) = (8 MQ"“E)Q”(F)) with the action

(5 5) G op=6 )

that has the set of roots {0 # —v; +w; |1 <i < 2m}.

Hence A(J) = {0 # +v; £ v;, 0 # twy, £ wy, +v; & wy}; that is, the set of all
integral vectors of length 2.
IV) Case Josp(m,n), n even. J = Josp(m,2r) = H(A,x), where A = M, (F),
n = 2r and % is the superinvolution

a b\ .y [fat =
(C d) - Q (bt d > Qv
where Q = (IgL UO ) with Uy, = (? _OIT).
2r T

a b

Hence, J = Josp(m,2r) = {<c d> la = at,d = —Us,.d'Us,,c = —Us,.bt}.

Jg = (H(Om) H(Mn(F(‘)),Symp))

and K (J) = OSP(2m, 4r), K (J5) = (Dém Syﬂgp%) .

The bimodules over Jj are:

i) bimodules over H(m): the regular bimodule H(m) and the bimodule K (m)
with the action k- h = & (kh + hk),

ii) bimodules over H(M,(F), Symp): the regular bimodule and the bimodule
Skew(M,(F), Symp),

iii) modules over U(H,,) @ U(H (M, (F), Symp) = My, (F) @ My (F) = My (F).
There is only one such bimodule, and it is isomorphic to the odd part J; of the
superalgebra J viewed as bimodule over Jj .

Reviewing the irreducible modules above we see that

A(J) = {0 # +v; £v;, 0 # twi £ w;, Tw; £ vi}.

3. IRREDUCIBLE BIMODULES OVER JP(n), n > 2

Recall that the Jordan superalgebra JP(n) is the superalgebra of symmetric
elements of M, (F') with respect to the superinvolution:

a b\ [(dt —bt
c d) —\d a )

So, four examples of unital JP(n)-bimodules appear naturally:
(1) the regular bimodule V' = JP(n),
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h

—at

(2) the bimodule Skew(M,, ., (F),*) = {(Z

—k‘},
(3)-(4) their opposites.

> |a € M,(F), ht = h, kt =

Lemma 3.1. JP(n) is not isomorphic to Skew(M,(F),*) as a JP(n)-bimodule.

Proof. Consider the operator

w=n(y, opr( S o o) (5 o)

The straightforward computation shows that JP(n)WW = (0), whereas for the

element <8 6(1)1) € Skew(M,+,(F),*) we have (8 6(1)1) W #£0.

Triangular (super)algebras. Let L = L_ + Ly + Ly be a Lie superalgebra,
where L_, Lo, L} are subsuperalgebras of L, Ly C Lg is abelian, [Lo,L_] C L_,
and [Lg, L4+] € L. Suppose that L_ decomposes into a sum of eigenspaces with
respect to the action of Ly, L_ = ZaeA,gL; (L_), and the semigroup generated
by A_ in L does not contain 0.

Consider a functional 0 # A € L§. We say that an L-module V is a module of
highest weight \ if V' is generated (as a module) by a nonzero element v such that
Liv = (0) and for every h € Ly, vh = A(h)v.

For an arbitrary functional A € L, there is a unique irreducible module Ir7(\)
of the highest weight .

Recall that the TKK Lie algebra K(JP(n)), n > 2, is the universal central cover
P(2n —1) of P(2n —1). For n > 2, we have P(2n — 1) = P(2n — 1); however, for
n = 2, the superalgebra P(3) has a 1-dimensional center ([I0]). Let H be a Cartan
subalgebra of [P(2n — 1)5, P(2n — 1)5]. Let H = H for n > 2. For n = 2, let
H = H + Fz, where z is a nonzero central element of P(3). Then L = P(2n—1) =
H+Y en Loy A = {w; —wj, —w; —w;, 1 <i# 5 < 2n} U{w; +wj,1 <i,j <n}.

Let V be an irreducible unital bimodule over J = JP(n).

The L-module K (V) decomposes into a direct sum of eigenspaces with respect
to H, K(V) = PP K(V)g, with 8 € A(J) = {0 # +w; +w;,1 < i,j < 2n}. Clearly
2K (V)s C K(V)g for every 8 € A(J).

Lemma 3.2. At least one of the subspaces K(V)au,, K(V)w,—w, is not equal to
zero.

Proof. Suppose that K(V)w,—w, = K(V)2w, = (0) for any i, j.
Then,

Choose v € K (V) w, 110, -
i _ (0 e —ej o 0 0
Consider the elements ¢, —w; = <0 0 ), Qu;+w; = <eij tesn 0>,
1 # 7, from L. B B
We have vq—w, —w; € K(V) wy—wstwitws = K(V)w,—w; = (0). Similarly,
VGwy+ws € K(V)w2+w3+w1+w2 - (0) Hence v[‘]—wz—ws’qwz-i-w:s] = 0. However,
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€99 — €33 0
[Q—wz—ws,Qw2+w3] = < 22 0 83 —e99 +€33> = hjuz—ws € H. Therefore thg—w:s
= (w2 — wslwi + wa)v = v. We have proved that K(V)w,+w,; = (0) for any i, ;.
B Similarly, K(V)—wl—wQng—i-wg - K(V)—w1+w3 = (0)7 K(V)—wl—wgq—wg—wg C
K(V)—wl—sz—ws = (O)
Notice that —w; — 2ws — w3 does not lie in A(J) if n > 3. If n = 2, then

—wy — 2wy — w3 = —wz — (w1 +we +ws) = —we — (—wy) = —wa +wy lies in A(J),
but K (V) _—w,+w, = (0) by our assumptions.
For an arbitrary element v € K (V) _w, —w,, We have vhy, w, = (w2 — ws]

—wy —wy)v = —v. Hence K(V)_y,—w, = (0), for any i,j. Hence, K(V) =
E(V)o+ 370 K (V) -2,

. €ij 0
Consider the elements e, ), = ( Oj eji>' Clearly [ew; —w; s €w; —w:] = Mw;—w;-
As above, K(V)_ ow,ew,—wy, = K(V) 2uw€w,—w, = (0), and therefore

K(V) 2w, hw, —w, = (0). As above, this implies that K (V) _g,, = (0). So K(V) =
K(V)o, a contradiction that proves the lemma.

Let A denote the root lattice, A = 22221 Zw; [ Z(wy + - - - + wap,).
Let v : A — Z be a functional such that all values v(w1), ..., y(wa,), —y(w1), ...,
—v(way,) are distinct. Let’s assume that

[Y(w1)| > |y(ws)| > maxs<i<on|y(ws)]; y(wi) >0, y(wz) < 0.

We can consider L, = Z»y(a)}o Loy Lo =3 (ay<o Las L=L_ + H+ L.

Since all nonzero weights of K (V) lie in A(J), it follows that L1 K(V)2., = (0).
I K(V)aw, = (0), then Ly K(V)w,—w, = (0). Both spaces K(V)a,, and
K(V)w, —w, cannot be simultaneously zero by Lemma 3.2.

Lemma 3.3. If n > 3, then the only irreducible finite-dimensional unital Jordan
bimodules are the regular bimodule R and the bimodule S = Skew(My 4 (F),*).

Proof. If n > 3, then P(2n — 1) = P(2n — 1), H = H. Hence if V is a unital
finite-dimensional irreducible bimodule over JP(n), the module K (V) over L is
isomorphic to Irr(2wy) or to Irr(w; — ws).

By Lemma 3.2 there are at most two nonisomorphic finite-dimensional irreducible
Jordan bimodules over JP(n). By Lemma 3.1 we know the two bimodules R and
S are not isomorphic. The lemma is proved.

Now let n = 2 and let V be a unital irreducible finite dimensional Jordan JP(2)-
bimodule.
Let

w1 — W2 if K(V)le = (0)

The eigenspace K (V)g is invariant with respect to the action of the central
element z. -
Let W be a subspace of K (V') such that zIV C W. By the Poincaré-Birkhoff-

Witt theorem the universal enveloping algebra U (L) is U(L) = U(L_)U(H)U(L.).

Hence the L-submodule generated by W is U(L)W = U(L_)UH)U(LOW =
U(L_)W. Hence U(L)W N K(V)g = W. This implies that z acts irreducibly on

K(V)s.

5 { 2u it K(V)aw, # (0),
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Since F is algebraically closed, it follows that z acts on K (V)4 (and so on K (V))
as a scalar o € F.

Definition 3.4. We say that a unital bimodule V' over JP(2) is of level a € F' if
z acts as a on K (V).

From what we proved above it follows that for an arbitrary element o € F
there are at most two nonisomorphic unital irreducible finite-dimensional Jordan
bimodules over JP(2) of level a.

We will now describe the explicit realizations of two non-isomorphic JP(2)-
bimodules of level a.

Consider the associative commutative algebra ® = F1 4 Ft, t?> = 0, and its
derivation d : ® — ® such that d(t) = at.

Let W be the Weyl algebra of the differential algebra (®, d),

W =Y &d = Fld]+ tFld],

dt —td = d(t) = at.

For an arbitrary k& > 0 the subspace td* F[d] is an ideal of W.

The following embedding of JP(2) into My, o(W)*) was described in [§]. The
Jordan superalgebra of My o(W)H),

0 0 0 -1
_fa O . 0 01 0
J_{(h at) |a,h € My(F), h* =h}+ F 0o 40 ol
—-d 0 0 0
is isomorphic to JP(2).
0 0 0 -1
0 01 0 : . _ 4
Denote x = 0o 40 ol The central element z in K(J) is z = [z, 2]
—-d 0 0 O

The inner derivation R(x)? acts on Mayo(tF[d]) as multiplication by «. Hence
Ms4o(tF[d]) is a bimodule over J of level a.

. Then we have

0 0
0 0
Let e = ¢ 0
0 t

Lemma 3.5. ¢-J is an irreducible J-subbimodule of Moo (tF[d]).

c?t)] = 0, which implies that D(e, (a O)) =0.

Proof. First notice that [e, hooat

a
h
Hence we need only to check that (e-J)-x Ce- J.

Now eR(z)? = ae. That’s why we need to consider only (e - <a 0)):c As

h at
0 0 0 1
above, [e, 2] = « <tl€ 0) , where k = (_1 0) . Now,

(o) (o o) =t(6 )G o) =t ):
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a'k — ka € H. Commuting (0 0

h 0
(e.]).J Ce.d.

The even part of this bimodule e.Jj is the regular irreducible bimodule over
Jg = My (F)(). Hence, if eJ has a proper subbimodule, then it has to be contained
in the odd part and, thus, be killed by J;. Let v € eJj be an element killed by J5.
Let e; = <611 0 , 3 = e 0 be the orthogonal idempotents from Jj.

0 €11 0 €99

We have JD(v, [J7, J7] € JD(vJy, J7) = (0). In particular e; D(v,e; — e2) = 0,

which implies that v lies in the Peirce component {ey, eJy, e1} + {es, Ji, e2}. Hence,

v=ce (0 0), h € H(2). Now (e (0 0>)x = 0 implies h = 0. The lemma is

) with (2 8) we get 0. This proves that

h 0O h 0
proved.

Definition 3.6. We will denote this bimodule as R(«). It is easy to see that R(0)
is the regular bimodule.

Consider the J-bimodule V' = My 5(tF[d]/tdF[d]), dimpV = 16. We will iden-
tify R(a) with the subbimodule of V' generated by € = e + My o (tdF[d]).

Lemma 3.7. The J-bimodule S(a)) = V/R(«) is irreducible.

Proof. Consider a composition series of V/R(«) with irreducible factors. Suppose
that it has more than one factor. Then all these factors have dimensions < 8. We
have shown above that for each o, J has at most two irreducible finite-dimensional
unital Jordan bimodules of level «. One of these irreducible bimodules is R(«). Let
V' be another irreducibe J-bimodule of level o, dimpV’ < 8. Let ¢ be the length
of the composition series of V/R(«).

Notice that D(Jg, J5) ~ sl and that

dimp{v € V/R(a) | D(Jy, Jo)v = (0)} = q.dimp{v € V' | D(Jy, Jg)v = (0)}.

However,

{veVID(Js, Jo)v = (0)} = {¢t

SO O
O O O
o33 © o
S O O O

hence dim{v € V/R(«) | D(J5, J5)v = (0)} = 1. This proves the lemma.

Lemma 3.8. R(a) # S(«).

Proof. The modules K (R(«)) and K (S(c)) over P(3) have different sets of weights.

Remark 3.9. If o # 0, then the bimodule V' is indecomposable ([13]).
We have proved the following theorem.

Theorem 3.10. The only finite-dimensional unital irreducible Jordan bimodules
over JP(2) are R(a), R(«)°P, S(a), S(a)°P, o € F.
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4. IRREDUCIBLE BIMODULES OVER M,, 1 ,(F)), m >n, n+m >3

We have already mentioned in Section 3 that the only irreducible unital Jor-

dan bimodules over M,,(F)*, n > 2, are the regular bimodule and (0 H(n))’

0 0
(it ©) (6 *")- (s 5)

The corresponding irreducible modules over the TKK Lie algebra

sl(2n) = K (Mo (F)®)

0 H(2n) 0 0 0 K(2n) 0 0
aretheregularmoduleand(o 0 )’(H(2n) 0>,<0 0 \Kx@n) o)

0 K(n)

For n > 3 all these modules are not isomorphic. For n = 2, 0 0 ~

( K(()n) 8) Hence, if n > 3, there are 5 nonisomorphic irreducible unital bi-

modules over M, (F)(). Over My(F)™) there are only 4.

If one of the numbers m,n is even, then M, ,(F) is equipped with a superin-
volution. Hence, we can repeat the construction above and get 5 non-isomorphic
unital irreducible Jordan bimodules over M,, ., (F)™).

Definition 4.1. Let A = A + A; be an associative superalgebra. A graded
mapping x : A — A, A¥ = A;, is called a pseudoinvolution if (ab)* = (—1)lallblpq*,
a** = (=1)lla, for any a,b € AgU Aj.

* t ot
Example 4.2. For A = M,,,,(F), (Z Z) = (Zt df ) is a pseudoinvolution.

Let « : A — A be a pseudoinvolution. Then A — My(A)H) is still an
embedding of Jordan superalgebras. Let W be a subspace of A such that for
arbitrary elements w € W, a € A,

(C1) aw + (=)l e W,
Then WHP = <8 Vé/> is a Jordan bimodule over {<8 C?*) , a€ A}
Similarly, if W is a subspace of A and for arbitrary elements w € W, a € A, we
have
(C2) a*w~+ (=1)llvlye e W

Then Wdewn = <V(I)/' 8) is a Jordan bimodule over {<8 f*) lac A} ~ A,

Notice that the conditions, (C1) and (C2) are different.
K(m) b

—bt H(n))’
b€ My,n(F)}. A straightforward computation shows that it satisfies (C1). Simi-
larly, Wy = {(Hl():n) Kl()n)) , b€ M, ,(F)} satisfies (C1). The subspaces W5 =

H(m) b _ (K(m) b

{( ot K(n))’ b e Myn(F)} and Wy = {( o Hn)) be My,,(F)}
satisfy (C2).

Now we will give some examples of such subspaces. Let W = {
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So, together with the regular bimodule we have 5 irreducible unital bimodules
(plus the 5 opposite) over M, 1,,(F){*) (they are not isomorphic).
Now let V be an irreducible unital Jordan bimodule, J = M, ,(F)*), L =

K(J)= {(Z Z)}, a € My, (F), d € Moy, (F), tr(a) = tr(d).

Then
oy
. 0
a 2m 2n
H = { " D =D 8 =0}
1 — —
i J
0 .
6211
is a Cartan subalgebra of [Lg, Lg],
n
0
L=H+Y Lo, H=H+Fz = " .
a€A
0

m

As shown in Section 3, A(J) = {w; —w;,1 <i#j <2n,v, —v,, 1 <p#q<
2m, w; —vp, v, —w;}. Let A(V) denote the set of nonzero weights of the irreducible
L-module K (V) with respect to H. Then, A(V) C A(J).

Let v : A — R be a functional such that |y(wy)| > |y(w2)| > |y(ws)| > |y(ws)| >
maz{|y(wi)|, [y(vp)l, i > 4,1 < p < 2m} and y(wi) > 0, y(wz) <0, y(ws) <0,
—y(w2) > 5 (y(wr) + y(ws)).

Notice that such functional exists, because n > 2.

We have

L=L_ +H+Ly, whereL_= Y Ly Li= Y L.
7(A)<0 (A)>0
Let K(V)g # (0) and v(8) = maxzy(A(V)). Then, as we have seen before, z
(central element) acts irreducibly on K(V')s, which implies that z acts as a scalar
a on K (V). We will refer to this « as the level of the module V.

The module K (V) is uniquely determined (up to isomorphism) by 3 and by the
level.

Let’s denote qu,—v, = 8 eép

0 O €ii 0
(61';7 0) Then [Qwi—'ujvq%-—wi] = < 0 epp) = hwri—vp'

Lemma 4.3. IfW is a root graded module over L and Wiy, +w,; = (0), for arbitrary
1<4,5 <2m, then WL = (0).

yfor 1 <4 <2m, 1 <p < 2n, and qy,—w, =

Proof. The weight space Wiy, 1+, is killed both by gy, —v, and by ¢_.,+s,; hence
it is killed by huwytv, = [Qws—v1s Q—wotv,)- Similarly, Vi, o, is killed by Guy— v,
and by q—u,1v,; hence it is killed by Ry -ty = [Gug—vs s T—1wn+1s -
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Now hq,l_w = hw2+’l}1 — hw2+v2 kills Wiwlivl7 but <’U1 — V9 | + w1 + 1}1> = =+1.
Hence Wiy, 44, = (0).

Hence, W = 3 Wi, +,, and hence LiW = (0), which implies LW = (0). The
lemma is proved.

Lemma 4.4. There are 5 possibilities for the highest weight \: 2wy, wy — wa,
—2wsy, Wy + W3, —wW2 — Wy.

Proof. If K(V)a,, # (0), then 2w is clearly the highest weight.

If K(V)au, = (0), then, since all K(V)a,, are conjugate via the Weyl group,
then K(V)a,, = (0) for an arbitrary 1 < i < 2m. If K(V)u,—w, # (0), then
wy — ws is the highest weight.

If K(V)w,—w, = (0), then K(V )y, —w, = (0) for an arbitrary 1 <i # j < 2m. If
K(V)aw, = (0), K(V)w,—w, = (0) and K(V)_g,, # (0), then —2ws is the highest
weight. In case that it is zero, then, as above, K(V)_a,, = (0) for an arbitrary

1 < < 2m. Similarly, if K(V)2u, = (0), K(V)w,—w, = (0), K(V)_24, = (0) and
(0) # K(V ), +ws, then wy + w3 is the highest weight.

Fi{laIIY7 ifK(V)le = (0)7 K(V)wlfwz - (0)’ K(V)*le = (0)7 (Q) = K(V)w1+w3
and K (V) _w,—w, 7# (0), then the highest weight is —ws — wy. If K(V)g = (0), for
B = 2wy, wy — wa, —2wa, w1 + Wa, —ws — wy, then by Lemma 4.3 LK (V) = (0), a
contradiction. The lemma is proved.

Remark 4.5. If m = 2, then wy + w3 = —ws — wy.
It is easy to see that H=H+Fz=H+ Fhy, tv,, for arbitrary i, p.

Lemma 4.6. In the cases A = 2wy, wy — we, —2ws in Lemma 4.4 the action oflfl
on f((V) s uniquely determined. If n > 3, then in the cases A\ = wi +ws, —ws —wy
the action ofFI is also uniquely determined. If n = 2 and A = wy + w3 = —ws — wy,
then there are two ways in which H can act on K(V).

Proof. Suppose that A\ = 2wy, K(V )2y, # (0). We have K(V)2u, Gus—v, = (0) and
K(V)2u, G0, —ws = (0). Hence K(V)2u, huwstv, = (0) which determines the action
of Hon K(V).

Now suppose that K(V)a,, = (0) for 1 <i < 2m, A = w1 —wq and K (V) 1w, #
(0). Again K(V)w, —w, Gws—vs =K (V) w, —w, vy —ws = (Q) Hence K (V) w, —ws s+,
= (0), which determines uniquely the action of H on K (V).

Let K(V)2uw, = K(V)w,—w, = (0), for arbitrary 1 < i # j < 2m, A = —2ws,
K(V)—sz 7é (0) As above, K(V)—ngqwg—vl - K(V)—Z'QUQq’Ul—’LU;j = (O)a hence
K(V)_9w,huw, v, = (0) and the action of H is uniquely determined.

Let m > 3 and A\ = wy + ws3. Then

K(V)’w1+w3qw2—v1 = K(V)w1+w3qvl_w2 = (O)’

which determines the action of H over K (V).
With the same assumptions, let A = —ws — wy. Then

K(V)fu&fwz;‘hugfm = K(V)*U)Z*'wéiq'l)l*w.’i = (0),

and the action of H is determined by the fact that K (V) _w, —w, Puws 0, = (0).
Now suppose that m =2, A = wy + w3 = —ws — wy.
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Case 1. K(V)uw, 10, = (0).

In this case, K(V)uw, twsq-wstv; = K V), +wsQuws—v; = (0). Hence the action
of H is determined since K (V)u, +1wshwstvo, = (0).

Case 2. K(V)uw, 10, # (0).
In this case, K (V ), +v, generates K (V). The action of H on K (V) is determined

by its action on K (V) +v,. We have
[_((V)w1+v1Qw27v2 = R(V)lerUl vy —wy = (0)7
so the action of H on K(V ), +v, is determined. The lemma is proved.

From Lemma 4.6 it follows that there are at most 5 (up to opposites) unital
irreducible Jordan bimodules over M, ., (F)™*). Since we have described 5 such
bimodules at the beginning of this section, it implies the following theorem.

Theorem 4.7. The only finite-dimensional unital irreducible Jordan bimodules
over My, 1n(F)), m+4n > 3, are the reqular bimodule, W}'P, W4'P, Wilown Jydown
and their opposites.

5. UNITAL IRREDUCIBLE BIMODULES OVER M 1 (F))

In [7] unital bimodules over M; 1 (F) were studied. Here a new approach, that
is included for completeness, is given.

Let {e, f,x,y} be the standard base of J = M; 1 (F)); that is, e = <(1) 8),

0 0 0 1 0 0
f—(O 1),x—<0 0),y—(1 0). Thus Jg = Fe+ Ff, J; = Fx + Fy,

[z,y] =e— f.
For arbitrary scalars «, 3,y € F define a 4-dimensional J-bimodule, denoted
Ve, B,7), with a base v,w € Vg, z,t € V7 and the multiplication table
1

1
ve =v,we =0,ze = —z,te = —t,
2 2

1 1
vf=0,wf=w,zf = §z,tf: §t’

1
ve = z,wx = (v — 1)z — 2at, 22 = au, tr = 5((7— 1)v —w),

1 1
vy = t,wy = 2Bz — (y+ Dt zy = 5(7—1—1)@—&— Ew,ty = Bv.

Remark 5.1. The operators R(z)?, R(y)?, R(x)R(y) = R(y)R(x) act on V(«, 3,7)
as «, 3,7, respectively.

Lemma 5.2. V(a, 3,7) is a Jordan bimodule over J.

Proof. Choosing an appropriate base in J; we will assume that v = 0. Let us
embed M 1 (F)™) into My o(F)™) via

/T o\ . (00 (0o I\ _[{0 B
c=lo o) =0 1)*={4 o) ¥=\s o)
0 0 28 0 10

WhereA:<0 2a)’B:<0 O)’I:<O 1).
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E 0 0 1

Letv( ),E 0 0

0 0
ment v is V(a, 5,0). The lemma is proved.

). Then the J-submodule generated by the ele-

Remark 5.3. Tt is easy to see that v = {e, v, e}, w = vU(z,y), z = vz, t = vy.

Lemma 5.4. If v —4af8 — 1 # 0, then the bimodule V (v, B,7) is irreducible. If
v? —4aB —1 =0, then Fw + Fwx is the only proper subbimodule of V (c, 3,7).

Proof. Let V' be a nonzero subbimodule of V(«, 3,7). First we will notice that
VNV # (0). Indeed, otherwise V'z = V'y = (0). We apply the Jordan iden-
tity V'(R(z)R(e)R(y) — R(y)R(e)R(z) — R([z,yle) — R(ze)R(y) + R(ye)R(x) —
R([z,y])R(e)) = (0) and we get V' = (0). If {e, V' e} # (0), then v € V' and
therefore V! = V. 1If {e,V' e} = (0), then Vj = Fw. We have wU(z,y) =
vU(z,y)? = (2 — 1 — 4aB)vm. Hence, if 42 — 1 — 4a3 # 0 we still get V/ = V.
The lemma is proved.

For a, 8,7 € F such that 42> — 1 — 4a = 0, denote V) (o, 8,7) = Fw + wJi,
V(e)(aa 577) = V(a,ﬁ,’y)/V(f)(a,ﬁ,’y)

Theorem 5.5. FEvery irreducible finite-dimensional unital Jordan J-bimodule is
isomorphic to one of V(a, 3,7) , ¥ —1—4af # 0 or VI (a, B,7) or V) (a, B,7),
if v2 — 1 — 4aB = 0 or its opposite.

Proof. Let V be an irreducible finite-dimensional Jordan J-bimodule. Up to passing
to an opposite, we can assume that V' is in the normal form, V5 = {e, V5, e} +
{favﬁvf}7 Vi= {eavivf}'

The operators R(z)?, R(y)?, R(x)R(y) + R(y)R(x) commute with the action of
J; hence by Schur’s Lemma they act as scalars «, 3,7, respectively.

Let W be a subspace of {e, Vg, e}. We claim that U = W + WU (Jy, J7) + WJp
is a J-bimodule.

Indeed, WJ; C {e, V5, f}, WU(J;,J1) C {f,V5,f}. Hence each summand
W, WU(Jz, J7), WJi is invariant under the multiplication by J5. Furthermore,
R(J;)R(J7) CU(Ji,J7) + D(J1, J7) + R(J5). Hence WR(J;)R(J7) C U and, more
generally, WR(J)R(J) C U.

It remains to show that WU(Jq,J7)R(J7) € WJ;. We have U(J7,J7) C
R(J1)R(J1) + R(J5).

By the identity 4 (see the Introduction),

R(J7)R(J1)R(J1) € R(J)R(J) + D(Jy, J1) R(J7).-

Since D(Ji, Ji7) acts as multiplication by scalars, the claim follows.

Similarly, it W C {f, Vg, f}, then W+ WU (J7, J7)+ W J7 is a J-bimodule. Since
V is irreducible it follows that dimp{e, V5, e} < 1, dimp{f, V5, f} <1, dimpV; < 2.

Suppose that 1+ 4a8 — 42 # 0. We will show that V ~ V(a,3,7). As we
have seen above, Vg # (0). The operator U(x,y)? acts on Vj as multiplications by
7?2 —4af8 — 1. Hence both {e, Vg, e} and {f, V;, f} are different from zero. Choose
0#£ve{e Vg e} Let w=0oU(x,y) € {f, V5 [}

We claim that the elements vx and vy are linearly independent. Indeed, suppose
that vy = vz, £ € F. Then vR(y)R(z) = Eaw and

vU(z,y) = v(R(z)R(y) — R(y)R(z) — R(e - [))
= v(R(z)R(y) + R(y) R(z) — 2R(y)R(x) — R(e — f)) € F,

Licensed to University de Oviedo. Prepared on Thu Nov 15 07:24:26 EST 2012 for download from IP 156.35.62.18/156.35.192.4.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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a contradiction. Hence v, w, vz, vy is a base of V with the multiplication table as
in V(a, B8,7).

Now let 1+4a8—+2 = 0. Then V3U(z,y)? = (0). Suppose that {e, Vg, e} # (0),
0#£vee Vel Ifw=ovU(x,y) # 0, then V is generated by w, wU (x, y), wz, wy;
but wU (x,y) = 0, which implies dimp Vg < 1, a contradiction. Hence vU (x,y) = 0.
In this case V =~ V() (a,B,7). If {e, Vi, e} = (0), {f, Vs, f} # (0), then V ~
V) (a,B,~). The theorem is proved.

6. IRREDUCIBLE BIMODULES OVER Josp(m,2r)

Recall that the Jordan superalgebra Josp(m, 2r) is the superalgebra of symmet-
ric elements of M,, o, (F)*) with

a b\ (I, 0\ [a® —c\ (I, 0
(o) = o) @) M)
where U = IOT OIT) Therefore, J5 = (H(Om) H(Mzr(FO),Symp))

In this case, A(J) = {0 # tw; +w;, 1 < 1,5 <2m, 0 # tv, v, 1 <p<g<
dr, fw; £ vy, 1 <17 <2m, 1 <p <4r}. Therefore, A(J) coincides with the set of
roots of the Lie superalgebra K (.J).

As in the case of JP(n)- bimodules, four examples appear naturally:

(1) the regular bimodule V' = Josp(m, 2r),

(2) the bimodule Skew (M, 12, (F),*),

(3)-(4) their opposites.

The aim now is to prove that there are no more irreducible J-bimodules, J =
Josp(m, 2r).

Lemma 6.1. There are no irreducible J-bimodules V' such that VJ; = (0).

Proof. Notice first that J; = [J7, Ji] + F1. Indeed, [J, Ji] is a subspace of J5 that
is invariant with respect to all derivations.

/
For ((c) 8), (2 %) € Ji, we have

[0 b 0o v = b’ — Ve 0
c 0)'\cd 0)' 0 cb —cb)

Hence the projections of the right hand side on H(m) and on H (Mo, (F), Symp)
both may have nonzero traces. The examination of all D(Jg, J;)-invariant subspaces
of Jg yields that [Jg, J1] = {a € J5 : tr(a) = 0} and J5 = [J5, J7] + F1.

So VJ; = (0) implies that D(V,J5) = D(V,[J7,J;]) = (0). In particular,
uR(x)R(a) = uR(xa) for arbitrary elements u € V, z € J, a € J;.

Let = e1, a = ey be the identity elements of H(m), H(Ma,.(F), Symp), respec-
tively. Then VR(e1)R(e2) = 0 implies V' = {e1,V,e1} + {e2, Vi, ea}. Both Peirce
components {e1,V,e1} and {es,V,ea} are J-bimodules; hence only one of them
is not equal to zero. Let V = {e1,V,e1}. Then {J7,V,J;} C {e2,V,ea} = (0).
This implies VR([J1, J7]) = (0). Hence dimpV = 1 and Ve; = (0) or Vey =
(0). But we have noticed above that the projections of [Ji, 7] on H(m) and to
H(M>,.(F), Symp) both have nonzero traces, a contradiction. The lemma is proved.

Lemma 6.2. IfV is an irreducible J-bimodule, J = Josp(m, 2r), then K(V )y, 41,
7# (0).
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Proof. It K(V)y,+v, = (0), then the classification of irreducible Jg-bimodules (see
Chapter 2) implies that a bimodule of type iii) cannot appear. So V = {e1,V,e1} +
{e2,V,e2}. Since J; = {e1,J,e2}, it follows that V.J; = (0), which contradicts
Lemma 6.1. The lemma is proved.

Let’s consider a functional v : A — Z such that y(w;) > v(v1) > 0 and y(vy) >
()] i > 1, (1) > [y(wy)] i § > 1.

If K(V)aw, # (0), then 2w; is the highest weight of K (V). If K(V )2y, = (0)
and K (V)w, 40, # (0), then wy 4 vy is the highest weight of K (V). This implies

Theorem 6.3. The only finite-dimensional unital irreducible Jordan bimodules
over Josp(m,2r) are the regular bimodule, the bimodule Skew(M,,42-(F),*) and
their opposites.

7. IRREDUCIBLE BIMODULES OVER JORDAN SUPERALGEBRAS OF SUPERFORMS

7.1. r-vectors. In this section we will discuss a construction which is similar to
Jacobson’s r-vectors (see [1]).

Let V = V5 + Vi be a vector (super)space equipped with a nondegenerate super-
symmetric form. We assume that V5 # (0).

Let vq,...,v, be an orthonormal basis of V5 and let wy, ..., wa,, be a basis of
V7 such that (wo;—1|wse;) =1, 1 <4 < m, where all other products are zero.

Let C be the Clifford algebra of V. The products vi' - - - virwht .. wh2m  where
0<41,...,0y <1; kq,..., ko are non negative integers, form a basis of C'.

Consider the subspace C,. = Zigr V...V as the span of all basic products of

K2

length < r.
Co=F1CCiCCC,; O=[]C.
r>0
Let J = F1+V be the Jordan superalgebra of the superform ().

Lemma 7.1. If r is odd, then C, is a J-bimodule.
Proof. Let v,uq,...,u, € V5 UV;. We need to verify that
Uy - upv 4 (1)l oy, e O
Indeed,

Up -+ - UpV -+ (_1)‘u1"'u7'||v|vu1 C Uy
T
= Z(fl)l‘H‘?‘Huk%—l”'url‘Ulul . uk_l(ukv —+ (71)‘uk||v|'UUk)Uk-+1 ce Uy c CT.
k=1

The lemma is proved.
If r < 0, then we let C,. = (0).
Lemma 7.2. For every odd r > 1, C,./Cy_5 is an irreducible J-bimodule.

Proof. Let M be a subbimodule of C,., which strictly contains C)._s.

Let 0 #a = Zavil---viyw’fl wgil eEM,iy,...,ip=00r1;0<ky,..., ko
€ Zand i+ -+, + k1 + -+ ko =7 — 1 or r. Suppose also that a has the
minimal number of nonzero summands among all such elements.

For elements z,y € Jj U J; let D(z,y) denote the derivation of C given by

D(z,y) : ¢ = e(xy — (=1)HWlyz) — (=D)lllevl(zy — (—1)llvlyz)e.
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It is easy to see that

i k Kz _ K k
vyt - whEr D(wa 1, wa) = (kaio1 — g vl - vt - ws

Using the Vandermonde argument and the minimal number of summands in a,
we conclude that ko;—1 — ko; is the same in all summands in a.

Furthermore
oit vl kP D (wa;q, wai )™
o RYPEI ky ., keicitkei ) Koig1 kam
= i(k?%)-?h vy wy Waj—1 Wajyy = W -

Applying appropriate powers of the derivations D(wg;—1,w2;—1), 1 < i < m,
we can assume that ws, ..., ws,, are not involved in the expression of a; that is,
ky =ky = -+ = ko, = 0 in every summand.

Suppose that is # 0. Then

; Ko
ity w2 Do)
o 11 Gs—1 Tst1 k1+1 k}g

7:‘:1)1..1)5 1vs+l 'U wl

Hence we can assume that in each summand iy =iy = --- = 4,, = 0.
If kos_1 > 1, s > 2, then
ki, k kom—1 ki+1 ks—1

wytwg® - wo Ty D(was, wy) = Fwy? w3 T Wog gt

This implies that w] ™' € M or w}] € M.

If w] € M, then [w],wy] = rw] ' € M. If w{~' € M, then w} = w} tw; € M.
Hence both elements w| ! and w7 lie in M.

Now consider an arbitrary basic element b = 111 e vfl"wlflwé” : wgfn"‘, i1+ 4+
in+ki+-+koy,=5=r—1orr. Then

w3 D(wa, w2)"2 D (wa, w3) %4 D(wy, wy)* D(ws, ws)*s T D (wg, we )™
- D(ws, v1)" D(wa,v3)" - - - D(wg, v,)"™

is a nonzero multiple of b modulo C,._5. This proves that M = C).. The lemma is
proved.

Let u be an even vector, V' =V + Fu. We will extend the superform to V' via
(ulu) =1 and (u|V) = 0.
Denote ) = 37, V'--- V' If r is even, then Cj,,/C]_; is an irreducible

J' = F1+ V'-bimodule.
Lemma 7.3. Ifr is even, then uC,./uC\y_o is an irreducible J = F1+4V -bimodule.

Proof. We have uC,. C C]; and uC,_p C C}._;. We need to show that for arbitrary
elements x € uC, \ uC,_o and y € uC,, there exists an operator W from the
multiplication algebra U; (J) such that (x + uCr_o)W =y + uC,_o. Since the J'-
bimodule C],/C;._, is J'-irreducible, there exists an operator W’ in U;(J’) such
that zW’' e y+ Cl_,.

The operator W' is a sum of products of multiplication operators, and in each
summand the element u occurs an even number of times.

For an arbitrary element v € V, uv = 0,u* = 1 imply R(u)R(v)R(u) = 0. Hence
from the Jordan identity it follows that W' € 3, R(u )2M(J). But xR(u)? = .
Hence, without loss of generality, we can assume that W’ € U;(J). Now zW’' —y €
uC. N Cl_; = uC,_y. The lemma is proved.
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7.2. Graded modules over orthosymplectic algebras. The TKK Lie super-
algebra of J is L = K(J) = OSP(n + 1,2m). The root system of L is A =
{Fui £ uj,i # jsfwp Twe, p # ¢ F2wp;tu; Twp 1 <i £ <n+1;1<p,g<m}
if n is odd or all the same plus {+u;,1 <i <n+ 1} if n is even.

The short grading of L which corresponds to the TKK-structure is J© = L; =
2afun=1 Lar J7 = L1 =3 qpuyy)=—1 Lo [T, ] = Lo = 32(ajuy)=0 Lo

The following elements form a basis of the Cartan subalgebra H of Lj:

hui = 0 —€4; hwj = 0 €jj 0 s
0 0 0 —€jj
for a root element a € Lq, [hy,,a] = (ui|a)a, [hy,,a] = (wj|a)a.
We remark also that (L, —w,, L—w,4w,;) = F(hu, + huw,)-

Proposition 7.4. For an arbitrary t > 2 there exists no more than one irre-
ducible finite-dimensional graded bimodule M = M_1 + My + M, over L such that
MLY,,, #(0), ML, = (0).

Proof. Let A be the set of H-weights of M. If X € A, then (Ahy,) € Z and
(Alhw,) € Z. Hence X = Z?Ill o 4 Z;"Zl Bjwj, a;,B; € Z. Since M = M_q +
My + M it follows that oy = —1,0, 1.

The Weyl group permutes uq, . .., t,4+1 and for an arbitrary pair 1 <14 # j < n+1
the mapping u; — —u;, u; — —u;, up — ug, k # 4,j also lies in the Weyl group.
Hence, for any weight A € A and for any i, 1 < i < n + 1, the coefficient a; is
~1,0,1.

Lemma 7.5. Let A =) oyu;+ fjw; € A a; =1, B > 0. Then A—u;+w; € A.

Proof. Since o; = 1, it follows that MLy, ., = (0). If ML _y, 4., = (0) as well,
then Mx(Lu,—w;, L—u;+w;) = (0), which implies (A|hy,; + he,) = 0, (A|u; +w;) = 0,
a; + B = 0, a contradiction. The lemma is proved.

The Weyl group acts on wy, ..., w,, by permutations and, for any 7,1 < 7 < m,
contains the mapping w; — —wj,wr — wi, k # J.

Lemma 7.6. Let s = max{Y || + 31651 © Sowus + 3. Bjw; € A}, Then
swy € A.

Proof. Let v = Y oyu; + 3. Biw; € A, o] + 3°|6;] = s, and among all such
weights the coefficient (5 is maximal.

Let || = max(|ag|,1 < k < n+1}. Without loss of generality, we can assume
that a; > 0. If o; > 1, then v —u; +w; € A, which contradicts the maximality of
B1. Hence, a; = -+ = agp1 =0, v = D10 Biws, |8 = s

Again, without loss of generality we assume that S > 0,...,8,, > 0. Let
B;>1,2<j<m. Then y+w; —us ¢ A by maximality of s.

Since (y|uy + w;) # 0 it follows that v — w; +u; € A. Again by Lemma 7.5 we
eliminate u; and increase (31, a contradiction. Hence, fs = -+ = 3, = 0, 7 = sw;.
The lemma is proved.

There exists a functional f: A = 2" Zu,; 4 > iy Zwj — Z such that £ f(u;),
+f(w;) are distinct and f(w1) = maz{|f(u;)|,|f(w;)|}. This functional defines a
partial order in A making sw; the highest weight of M. This proves the lemma.
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Let r be odd and consider the irreducible module K(C,./C,_3) over L = K(J).

The subspace L_a,, acts on (C,./Cr_3)" as D(wa;, wa;). We have JD(wa;, wa;) =
Fwoy;, OTD(LU2Z', wgi)T = F(JJ;Z-, CT»D(LU%, wgi)TJrl = 0. Hence [(OT/CT»_Q)Jr, Ji}LT_—;iM
= F(wh,)*,wy] # (0) in K(C,/Cr_s), but K(C,/Cr_)L"%2 = (0). Similarly, for
an even r we have K (uC, /uC,_2)L"%1 # (0), but K(uCr/uCT,g)LCJgii = (0).

Now let B be an irreducible unital finite-dimensional J-module, M = K(V),
ML, # (0), ML, = (0),s > 2. If s is even, then by Proposition 7.4,
B~ Cys_1/Cs_3; if s is odd, then B ~ uCs_1/uCs_3.

We proved the following theorem.

Theorem 7.7. The only finite-dimensional unital irreducible Jordan bimodules
over J =F14+V are C,./C,_o if r is odd and uC,./uC\_o if r is even.

8. JORDAN SUPERALGEBRAS OF RANK > 3

In this chapter we consider Jordan superalgebras whose even part contains 3
pairwise orthogonal idempotents. We prove the following theorem, which extends
the result by N. Jacobson [I].

Theorem 8.1. Let J be a finite-dimensional simple Jordan superalgebra whose even
part contains 3 pairwise orthogonal idempotents. Then its universal multiplicative
enveloping algebra U(J) is finite-dimensional and semisimple.

The theorem applies to Jordan superalgebras of the types JP(n), n > 3; Q(n)(+),

n > 3; Josp(n,2m), n +m > 3; antr)n, m +n > 3, and to the exceptional Jordan
superalgebra Kig.

By the result of A.S. Shtern [16], U(K19) ~ Myi6(F) D Mgy4(F). Therefore, in
what follows we assume that the superalgebra J is special.

In [I1] we have already proved the assertion for the universal special enveloping
algebra S(J). Now we will prove it for Uy (.J).

8.1. Finite dimension of U;(J).
Proposition 8.2. dimpU;(J) < cc.

Proof. Let V be a free unital J-bimodule. We will denote R(a) = Ry (a) and show
that there is m > 1 such that

Ur(J) = (R(J)) = > R(J)---R(J).
k=1 L

This will imply that dimU;(J) < (dimJ)™ L.
Let d = dimp Jj.
We say that an operator R(ay)---R(ay), a; € JgU Ji, is irreducible if it does
not lie in Zi:ll R(J)---R(J).
—_——
Step 1 (Jacobson). If a; € J5, 1 < i < k, and R(ay)--- R(ay) is irreducible, then
k < 2d. Indeed, suppose that k > 2d + 1. An element

k—1 k—1 k—1
R(a1)-- Rlay) + > R(J)---R(J) € 3 R(J)---R(J)/ Y R(J)- R(J)

(3 (3 7

is skew-symmetric in d + 1 elements aq,as, as, ..., a24+1.
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Step 2. Suppose that a; € Jy U J; and the operator R(aq)--- R(ag) is irreducible.
Then |{i |1 <i<k, a; € J5}| < 3d.

If a;,a;41 € Jg then “push” them to the left via the Jordan identity. If a;,a;41 €
Ji then “push” them to the right via the Jordan identity.

We will get

R(a1)--- R(ax)

k—1
€D B(br) - RO ] Blai)Rle:) R(z1) - R(z) + 3 R(J) -+ R(J),

i=1 .
K3
and for each summand r+2t+s =k; by,..., b c1,...,c € Jg; X1y ooy Ty 21, - oy 2s
€ Ji,and by, ..., by 21, ..., T4y Cly ooy Gy 21, -, 25 1S @ permutation of aq, ..., ag.
The expression [[_, R(zi)R(c;) is skew-symmetric in ¢i,...,¢; modulo
Z?t:_ll R(J)---R(J). Hence t < d. By Step 1, r < 2d. This implies the asser-
J

tion.
Step 3. Let J = Josp(n,m) or JP(n), n > 3. Then

4d+2

Ur(J)= > R(J)---R(J).
k=1 Y

Indeed, consider an irreducible operator
t
R(by) -~ R(b:) (] [ Rlxi) R(e)) R(z1) -+~ R(z0);
i=1

bl,...,br,Cl,...,Ct S J(); L1yew oy Ly, 215.4.,%5 € Jj.
As we have seen above r < 2d, t < d. From the identity (4) it follows that
R(J1)R(J1)R(J1) € R(J) + R(J)R(J) + D(J1, J1)R(J7).
From Lemma 2.3(1) it follows that Ly = K(Jj), hence D(Ji,J7) € R(J5) +
D(Jg, Jg). This shows that s < 2. The claim is proved.
From now on, J = M, ,(F)*) p>¢q, p+qg>3orJ=Q,(F)*), n>3.
In view of the above, it is sufficient to consider only irreducible operators of the

type
t
R(b1)--- R(b,) ([ [ R(wi) R(c)R(z1) - -~ R(z) ([ D(wi, vo);
i=1 i=1
bi,...bp,c1y e € Jgs Wiy W 21 20y BL YL s T Y € JT, v <2, 7 <
2d, t < d.

Our aim is to bound the number p.

Step 4. Let eq,...,e, be a frame of Jy; that is, ey, ..., e, are pairwise orthogonal
idempotents and n is maximal with this property.

Two orthogonal idempotents e, f € Jg are said to be strongly connected (see [1)
if there exists an element a. s € {e, Jg, f} such that aif = e+ f. In this case we
denote e ~ f.

IfJ= Q(n)(+), then all the idempotents eq,...,e, are strongly connected.
IfJ = Mp+q(F)(+),e,» = ey, then eq,..., e, are strongly connected and so are
Ep+1,---5Eptq-
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An element z € Jy is said to be Peirce homogeneous if z € U, <; ;<, Ji,j, where
Jij = {ei, J, 6]'}.

Without loss of generality all the elements x1,y1,...,%,,y, can be assumed to
be Peirce homogeneous.

Let us prove a few statements about inner derivations of Peirce homogeneous
elements.

1) If x,y € J; don’t lie in the same Peirce component, then D(z,y) € D(Jg, Jp).

Indeed, if Peirce homogeneous elements x,y do not lie in the same component,
then there exists k, 1 < k < n, such that e kills one of them but does not kill any
other.

Let e = ax, =1 or %, ey = 0. Then D(z,y) = D(iekw,y) = D(éek,:vy)
by the identity (2).

2) If 4, j, k are distinct and e; ~ e;, then

D((J1)ixs (J1)ix) € D((J1) ks (J1) 1) + D(Ja, Jo)-

Indeed, since e; and e; are strongly connected, there exists a;; € (J5),; such that
afj =e; +e;. We have {a;;, xik, a;;} = 0, which implies a;; - (a;; - Tix) = %afj N —
%l‘ik.

Denote x;-k = 4a;j - x;,. We have

D(zik, yir.) = D(aij - Ty, Yir)
= D(2y,, aij - yir) + D(aij, @yix) € D((J1) ik, (J1)jk) + D(J5, J)-

3) If €; ~ e;, then D((J1)ii, (J1)ii) € D((J1)j5, (J1)j5) + D(Jo, Jo)-
Indeed, (J1);; = {aij, (J1)ii, aij} (see [1]). For two arbitrary elements x;; €
(J1)ii> ¥j5 € (J1)j; we have
D({aij, iz, aiz}, yj5) = D(2as - (aij - i) — a3y - wiiy yj5) = 2D(ai; - (aij - 2i0), yj5)-
Applying the identity (2) twice, we get
D(ai; - (aij - @ii),y55) = D(@is, ai; - (ai; - y55)) mod D(Jg, Jp),
which proves the claim.

4) If x,y are Peirce homogeneous odd elements which do not lie in the same
Peirce component, then

R(x)R(y) € 5U(x,y) + R(o) + D(Js, Jo).

Indeed, R(z)R(y) = 3(D(z,y) + U(z,y) + R(zy)).

Now it remains to refer to 1).

5) Suppose that all the idempotents e, ..., e, are strongly connected (the case
JQ(n)). Then for arbitrary elements x12,25 € (J7)12, Y13, Y15 € (J1)13, 223, 245 €
(J7)23, we have D(x12,215)D(y13,y13) D (223, 743) = > (operators each containing
< 5 odd multiplications).

Indeed, Idy = Zl<i,j<n Ulei,ej). It is sufficient to prove that each
Ules,e;)D(x12, 45) D(y13, yi3) D (223, 243) can be represented as a sum of such oper-
ators. If j ¢ {1,2,3}, then we can find 1 < k # [ < 3 such that i ¢ {k,!} and move
the D((J1)rt, (J1)r) component to the left. However, Ul(e;, e;)D((J1)kt, (J1)r) =
(0).

Suppose that i,j € {1,2,3}. If i = j, then we can repeat the trick with 1 <
k<3, i¢{k1}.
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Let i = 2,7 = 3. By 4) and the identity (3),

D(z12,215)D(y13,y13) € U((J1)12, (J1)13) R((J1)12) R((J1)13)
+ Z (operators containing < 4 odd multiplications).

Move D(za3, 253) to the right of U((J7)12, (Ji)13). However, U(es, e3)U(J12, J13)
D(z23, 253) = (0).

Step 5. Now we are ready to finish the case J = Q(n)(t), n > 3.

Consider le D(x;,y;); the x;,y; are Peirce homogeneous elements; x; and
y; lie in the same Peirce component. If at least 3 derivations D(x;,y;) lie in

_ 1)kk, (J7)kE), then move them to the left. By 3) it is sufficient to consider

vy D((J7 Ji th them to the left. By 3) it is sufficient t id

D((J1)11, (J1)11)D((J1)22, (J1)22) D((J7)33, (J1)33),

but this product is equal to 0.

Hence < 2 factors lie in (J;_; D(Jxk, Jrk)-

Let p1 > 5. Without loss of generality we can assume that D(z;,y;), 1 < i < 3,
do not lie in (J;_; D(Jgk, Jxk). By 2) it is sufficient to consider

D((Ji)lz, (Ji)12)D((Ji)137 (J1)13)D((J1)23a (JI)QB)

and then use 5).

Hence we can assume g < 4. The case of Q(n)*) is finished.

Now let J = My, ,(F)*), p > 2,¢ > 1. Then (Jj);; is 2-dimensional, (J7);
Fe;; + Fej;, where €;; is the matrix having the element (7,7), 1 <i <p, p+1
Jj < p+q, equal to one and the rest of the elements equal to zero; the matrix €;; is
defined similarly.

IA

Step 6. D(éij, éij) = RV(éij)2 0 and snnllarly D(éji, éji) =0.
Indeed, choose 1 < k < p, k # i. Then €; = e - éx; and D(€;;,€;;) =
D(e - exj, €ij) = D(ei, [erj, €ij]) + D(€xj, eir - €i5) = 0.
This proves the claim.
Step 7.
D((J1)ij» (J1)i5)* = FD(ei5, ;1)
= F'R(é;j)R(eji) R(ei;) R(€;i) + FR(ej;) R(€;;) R(€ji) R(ei;)
= FR(ei;)(U(€ji, €i5) + R(&iz) R(eji) + R([€ji, €iz])) R(€j:)
+FR(€;:)(Uleij,€5:) + R(€ji) R(€ij) + R([eis, €55])) R(€i;)
C U(eji,e:5)R(J1)R(J1) + Z operators containing < 4 odd multiplications).

o~

Step 8. D(Ji, J;)* C Span of operators containing < 8 odd multiplications.
Indeed, by part 2) of Step 4 it is sufficient to consider

((Jl) ,p+17(J1)1 p+1) ((Jl) ,p+17(J1) ,p+l)
4

CU((J) 141 (T 1pe DU ((JD) 29515 (J1)2,p41)-O_ R(T))

=1
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Now apply identity (5) to the product of two U-operators and notice that
V((J)1,p+1, (J1)2,p+1) € R(J) + D(Jg, Jp)

by 1). This proves the claim.
We showed that p < 7. The proposition is proved.

8.2. Complete reducibility. As above, we consider a special simple finite dimen-
sional Jordan superalgebra of rank > 3.

Proposition 8.3. Every unital Jordan J-bimodule is completely reducible.
Part 1. J=JP(n)or J =Q(n)*), n > 3.

Let A be an alternative superalgebra with a superinvolution ¢ : A — A. An
alternative A-bimodule equipped with a linear transformation 7 : V' — V is called
an involutive alternative bimodule over (A, o) if the linear transformation A+V —
A+V,a+v— o(a)+ 7(v) is a superinvolution of the split extension A + V.

In this case, Hp(V,7) = {(vij)i<ij<n € Mp(V), vij € V, vj; = 7(vi;)} s a
bimodule over H,, (A, o) = {(aij)i<i j<n € Mpn(A), a;j € A, a;; = o(a;j)}.

The following theorem is an analog of N. Jacobson’s coordinatization theorem

.

Theorem 8.4 (see [9]). Let J be a unital Jordan superalgebra, 1 = > | e;, where
€1,...,en are pairwise orthogonal, strongly connected idempotents of Js. Let n > 3
and let V' be a unital J-bimodule. Then there exists an alternative superalgebra A
with an involution o such that H,(A,0) ~ J and a unital involutive alternative
module (W, 1) over (A,o) such that V ~ H, (W, 1) as an H,(A,c)-bimodule. Fur-
thermore, the subspace of symmetric elements H(A+ W, o+ 1) is in the associative
center of A+ W.

It is easy to see that:

(I) If (W, ) is an irreducible involutive (A, o)-bimodule, then H, (W, 7) is an
irreducible H, (A, o)-bimodule.

(IT) If (W, 7) is a completely reducible (A, 7)-bimodule, then H, (W, 7) is a com-
pletely reducible (A, 7)-bimodule.

We have

c a

spw) = i0naEe, (45) = (1)),

Qn)M ~ H,(B,o), B=(F+Fuv)®(F+Fuv), v}=1, v2=-1,
By=F®F, B;=Fuv+Fuvs, (a+pv1)°=a+pbvs, (a+pv2)? =a+ Pu.

Lemma 8.5. Let (W, 7) be an involutive alternative bimodule over (A,o). If W is
completely reducible (as an A-bimodule), then (W, T) is completely reducible as an
involutive (A, T)-bimodule.

Proof. We only need to prove that 1 is the sum (not necessarily direct) of involutive
irreducible A-bimodules. We have W = > W;, with each W, an irreducible A-
bimodule. If W7 = W;, then W; is an involutive irreducible A-bimodule. If W7 N
W; = (0), then W; + W7 is an involutive irreducible bimodule. This implies the
assertion.
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Pisarenko [I5] proved that an alternative module over a simple finite-dimensional
associative superalgebra, different from M1 (F'), is associative and completely
reducible. The assertion is no longer true for Mj 1 (F)-bimodules.

Lemma 8.6. Let V' be a unital alternative bimodule over the superalgebra A =
Mi11(F). Let us assume that the element ea = (1) 8) lies in the associative

center of A+ V. Then V is an associative bimodule.

Proof. We have [ea1, A|(A+V,A+V,A+ V) = (0) (example 6, page 144 of [19]).
But [ea1,e12] = 1; hence (A+V,A+V,A+V) =0, that is, A+ V is associative.

If J =JP(n), n > 3, then A = My 1(F). For the eg; = <(1) 8) we have

€9, = eo1; hence it lies in the associative center of A+ V. Now complete reducibility
of J-bimodules follows from Lemma 8.6.

In the case J = Q(n)*) all alternative modules over B are associative and
completely reducible by Pisarenko’s result.

Part 2. J = Josp(m,2n) or My, (F)™).
In this case Jj is a direct sum of two simple algebras,
Jo = {e1, Jy,e1} @ {ea, Jy, €2}

with 1 = ey + eg and J; = {eq, J7, e}

We say that a unital Jordan J-bimodule V' is in the normal form if V5 =
{617 ‘/%)a 61} D {627 ‘/%)a 62}, VI = {61, Viv 62}'

Every unital Jordan J-bimodule is the sum of a J-bimodule in the normal form
and the opposite of a J-bimodule in the normal form.

Let V be a finite-dimensional unital Jordan bimodule over J in the normal form.

According to the classification of unital irreducible bimodules (Chapters 4 and
6) we know that every irreducible bimodule in the normal form has two Peirce
components in the even part and the odd part is nonzero.

Consequently, for V' = V5 + Vi we have:

(1) Both Peirce components {eq, V5, e1} and {es, Vg, e2} are nonzero,

(2) Vi # (0).

Let’s consider the subspace S = Ry (J5) + Dy (Ji, J7) C Endp(V).

Lemma 8.7. If S acts completely reducibly on V', then V is a completely reducible
J-bimodule.

Proof. The Peirce component {e1, Vj, €1} is S-invariant. Let (0) # W C {e1, Vg, e1}
be an irreducible S-module.

Claim 1. Let us show that W = W +W.J; + WU (Jy, J;) is a J-subbimodule of V.
Indeed, R(J7)R(J7) € D(Ji,Ji) + U(Ji, J;) + R(J5). Hence

(WJp)Jg CWS +WU(Jy, J;) CW +WU(Jg, J{) CW.

We will prove that WR(J;)R(J5) € WR(J7). Indeed, if w € W, a € {ez, Jg, €2},
then D(w,a) = 0, which implies that wR(J;)R(a) = wR(Jja) C wR(J7).

Now let a € {ey, J5,e1}. Then {w, J1,a} = (0), which implies that wR(J7)R(a)
C wR(a)R(J7) + wR(J7a) € WR(J7).
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The claim follows from the following inclusions:

U(Ji,J1)R(J5) € R(J5)U(Js, J1) + U(J1, J1),
U(Ji, J1)R(J1) € R(J7)R(J1)R(J1) + R(Jg) R(J1),
R(J1)R(J7)R(J1) € D(J3, J1) + R(J1) + R(J5) R(J1)

Claim 2. W is an irreducible J-bimodule.

Indeed, {e;, W, e} = W. If W’ is a proper J-bimodule of W, then W/NW = (0);
hence Wy = {ez, W5, ea}, which contradicts property (1) of irreducible J-bimodules.

Let V'’ be the sum of all irreducible subbimodules of V. We have proved that
{e1,Vg,e1} C V' and similarly, {es, Vg, ea} € V’. Since there are no nonzero unital
J-bimodules whose even part is zero, we conclude that V/V’ = (0), that is, V = V|
which proves the lemma.

Lemma 8.8. (1) If J = Josp(m,2n), then S C Ry (J5) + Dy (J5, J5)-

(2) Let J = My, (F)). Let’s denote as x, (respectively x,;) the matriz whose
element (i,p) (respectively (p,1)) is equal to 1 and the rest of the elements are equal
to zero, where 1 <1 <m, m+1<p<m-+n.

Letz =37 cicommii<p<min DV (@ip, @pi). Then S C Ry (Jg)+Dv (Jg, Jo)+F'z.

Proof. Let L = K(J) be the Lie superalgebra that is the universal Tits-Kantor-
Koecher construction of Josp(m, 2n) (orthosymplectic Lie superalgebra). Then the
even part Ly is semisimple and Ly = Jy + [J;, J5 ]+ J (see [2]), which implies
(1).

The universal TKK-superalgebra of M,, ., (F)™*) is isomorphic to

M2 (F) ) Mo (F) 1= (5 3) 0 € M (),

be Mgm’gn(F), cE Mgnﬁgm(F), de Mgn(F),tr(a) = tr(d)}

Furthermore, J; + [J5 . Ji |+ J; = <Sl(2)m le ) and
2n

2nl 0
_ —+ + 2m
Lo=J5 +[Jy,J5]1+J;5 +F< 0 2m12n>’

which implies (2) and proves the lemma.

The two previous lemmas imply complete reducibility of the unital bimodules
over Josp(m,2n). With respect to the complete reducibility of unital bimodules
over Mm+n(F)(+), it is only needed to prove that the action of z on V' is diagonal-
izable.

Lemma 8.9. The linear transformation z is diagonalizable.

Proof. Tt is easy to see that the linear transformations Dy (2;p, Z;) and Dy (24, Z4;)
commute. Consequently we only need to prove that Dy (2, T,;) is diagonalizable.
We will prove that Dy (21,m+1, Tm+1,1) is diagonalizable.

Step 1. The inner derivation Dj(21,m+1,%Tm+1,1) Iis diagonalizable since

yDJ(ﬂfl,m+1,33m+1,1) = [y, [$1,m+1,$m+1,1]] and [$1,m+1,$m+1,1} = €11t €m+1,m+1
is a diagonal matrix.
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Step 2. Without loss of generality we will assume that m > n. Hence, m > 2.
Let us denote V' = {ea2, V,e11 + €m+1,m+1}- We claim that V' generates the J-
bimodule V. Indeed, let V = V/V'R(J). Then {e2,V,e11 + emi1ms1} = (0),
which implies {622, V, 611} = {822, V, em+1,m+1} = (O)

Since e;; is strongly connected to egp and ey, is strongly connected to €m4-1,m+1,
for 1 <i<m,m+1<p<m-+n, it follows that {e;;,V,ep} = (0). Hence
{e1,V,ea} = (0), where e; = €11 + -+ + €mm, €2 = €mitmt+1 + - “+ emtn,mn-
From the classification of irreducible J-bimodules we conclude that V' = (0).

Step 3. It suffices to prove that D(21 p41, Tm+1,1) acts diagonally on V.

Let A= Ry/(x1,m+1) and B = Ry (@m+1,1). Hence D(z1 m+1, Tmt11) = AB+
BA.

We have

A2 = D(Z17m+1,l’1)m+1) = 2D(612-x2,m+1; xl,m—i-l)
=2D(e12, [®2,m+1, T1,m+1]) + 2D(22,m+1,€12.Z1,m+1) = 0.

Similarly, B2 = 0.
Furthermore, {1 41, V', Zms1,1} = 0. Hence,

Uvi(Z1m+41, Tmi1,1) = AB — BA — Ry ([Z1,m+41, Tmt1,1]) =0,

which implies that AB — BA = Ry (e11 — €m+1,m+1). Similarly,

Uvi(ern — ems1mr1) = 2Ry (€11 — emi1me1)® — Ryr(€11 + emitms1) = 0.

Hence (AB — BA)? = 1Ry /(e11 + €mt1,m+1) = s1dy+ and hence

(AB + BA)? = ABAB + ABBA + BAAB + BABA = (AB — BA)* = i]dv,.

This implies that Dy (21,m+1, Tm+1,1) = AB + BA is diagonalizable. The lemma
is proved.
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