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REPRESENTATION THEORY

OF JORDAN SUPERALGEBRAS I

CONSUELO MARTÍNEZ AND EFIM ZELMANOV

Abstract. We complete the classification of irreducible bimodules over simple
finite dimensional Jordan superalgebras.

Introduction

Throughout this paper all algebras are considered over a ground field F that is
algebraically closed of characteristic zero.

A (linear) Jordan algebra is a vector space J with a binary bilinear operation
(x, y) → xy satisfying the following identities:

xy = yx,

(x2y)x = x2(yx).

Let V be an F -vector space of countable dimension and let G = G(V ) denote the
Grassmann (or exterior) algebra over V ; that is, the quotient of the tensor algebra
over the ideal generated by the symmetric tensors. Then G(V ) is a Z/2Z-graded
algebra, G(V ) = G(V )0̄ + G(V )1̄. Its even part G(V )0̄ is the linear span of all
tensors of even length, and the odd part G(V )1̄ is the linear span of all tensors of
odd length.

If V is a variety of algebras defined by homogeneous identities (see [1], [19]), a
superalgebra A = A0̄+A1̄ is a V- superalgebra if its Grassmann enveloping algebra
G(A) = A0̄ ⊗G(V )0̄ +A1̄ ⊗G(V )1̄ lies in V .

Given an element a ∈ A0̄ ∪ A1̄, |a| denotes its parity (0 or 1).
Thus, a Jordan superalgebra is a Z/2Z-graded algebra J = J0̄ + J1̄ satisfying

the graded identities

xy = (−1)|x||y|yx

(supercommutativity) and

((xy)z)t+ (−1)|y||z|+|y||t|+|z||t|((xt)z)y + (−1)|x||y|+|x||z|+|x||t|+|z||t|((yt)z)x

= (xy)(zt) + (−1)|y||z|(xz)(yt) + (−1)|t|(|y|+|z|)(xt)(yz).
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816 CONSUELO MARTÍNEZ AND EFIM ZELMANOV

Examples. I) A = Mm+n(F ), A0̄ =

(
� 0
0 �

)
, A1̄ =

(
0 �
� 0

)
and

II) A = Q(n) =
(
a b
b a

)
| a, b ∈ Mn(F ) are associative superalgebras.

C.T.C. Wall [18] proved that every associative simple finite-dimensional super-
algebra over the algebraically closed field F is isomorphic to one of them.

III) Let A be an associative (super)algebra. The new operation

a · b = 1

2
(ab+ (−1)|a||b|ba)

defines a structure of a Jordan (super)algebra on A. We will denote this Jordan
(super)algebra as A(+). The Lie superalgebra (A, [a, b] = ab − (−1)|a||b|ba) will be
denoted as A(−).

In this way we get the first examples of Jordan simple finite-dimensional super-
algebras, applying III) to the associative superalgebras I) and II):

1) M
(+)
m+n(F ), m ≥ 1, n ≥ 1;

2) Q(n)(+), n ≥ 2.
If A is an associative superalgebra and � : A → A is a superinvolution, that is,

(a�)� = a, (ab)� = (−1)|a||b|b�a�, then the set of symmetric elements H(A, �) is
a (Jordan) subsuperalgebra of A(+). Similarly the set of skewsymmetric elements
Skew(A, �) is a Lie subsuperalgebra of A(−).

The following two subalgebras of M
(+)
m+n are of this type:

3) Let In, Im be the identity matrices, t the transposition and U = −U t =

−U−1 =

(
0 −Im
Im 0

)
. Then � : Mn+2m(F ) → Mn+2m(F ) given by

(
a b
c d

)�

=

(
In 0
0 U

)(
at −ct

bt dt

)(
In 0
0 U−1

)

is a superinvolution.
We will refer to OSPn,2m(F ) = Skew(Mn+2m(F ), �) and Jospn,2m(F ) =

H(Mn+2m(F ), �) as the Lie and the Jordan orthosymplectic superalgebras respec-
tively.

4) The associative superalgebra Mn+n(F ) has another superinvolution:

(
a b
c d

)σ

=

(
dt −bt

ct at

)
.

The Lie superalgebra of skewsymmetric elements and the Jordan superalgebra
of symmetric elements are denoted by Pn(F ) and JPn(F ) respectively.

5) The 3-dimensional Kaplansky superalgebra, K3 = Fe+ (Fx+ Fy), with the
multiplication e2 = e, ex = 1

2x, ey = 1
2y, [x, y] = e is not unital.

6) The 1-parametric family of 4-dimensional superalgebras Dt is defined as Dt =
(Fe1 + Fe2) + (Fx + Fy) with the product e2i = ei, e1e2 = 0, eix = 1

2x, eiy =
1
2y, xy = e1 + te2, t ∈ F, i = 1, 2.

The superalgebra Dt is simple if t �= 0. In the case t = −1, the superalgebra
D−1 is isomorphic to M1+1(F )(+).
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REPRESENTATION THEORY OF JORDAN SUPERALGEBRAS I 817

7) Let V = V0̄+V1̄ be a Z/2Z-graded vector space with a superform ( | ) : V ×V →
F which is symmetric on V0̄, skewsymmetric in V1̄ and (V0̄|V1̄) = (0) = (V1̄|V0̄).

The superalgebra J = F1 + V = (F1 + V0̄) + V1̄ is Jordan.
8) V. Kac introduced the 10-dimensional superalgebra K10 that is related (via

the Tits-Kantor-Koecher construction) to the exceptional 40-dimensional Lie super-
algebra. It was proved in [14] that this superalgebra is not a homomorphic image
of a special Jordan superalgebra.

9) I. Kantor defined a Jordan superalgebra structure in the finite-dimensional
Grassmann algebra generated by e1, . . . , en. These simple Jordan superalgebras
have nonsemisimple even parts and are not special, though they are homomorphic
images of special algebras ([8]).

V. Kac [2] (see also I. Kantor [3]) proved that every simple finite-dimensional
Jordan superalgebra over F is isomorphic to one of the superalgebras Mn+m(F )(+),
Qn(F )(+), Jospn,2m(F ), JPn(F ), a superalgebra of a superform, K3, Dt, K10, or
a Kantor superalgebra.

If J is a Jordan (super)algebra, a Jordan bimodule V over J is a Z/2Z-graded
vector space with operations V × J → V , J × V → V such that the split null
extension V + J is a Jordan (super)algebra (see [1]). Recall that the split null
extension is the direct sum of vector spaces V + J with the operation that extends
the multiplication of J and the action of J on V , while the product of two arbitrary
elements in V is zero.

If V = V0̄ + V1̄ is a Jordan bimodule over a Jordan superalgebra J , then the
bimodule V op = V op

1̄
+ V op

0̄
, where the parity of the subspace V op

ī
is different from

ī and the action of J is defined via

avop = (−1)|a|(av)op, vopa = (va)op

for arbitrary a ∈ J , v ∈ V is also a Jordan bimodule, which is denoted as V op and
called the opposite of the bimodule V .

Given an arbitrary set X, there is a unique free J-bimodule V (X) over the set of
free generators X. If V ′ is a J-bimodule, then an arbitrary map X → V ′ uniquely
extends to a homomorphism of bimodules V (X) → V ′.

Let X be a set consisting of one element. For an element a ∈ J let RV (X)(a)
denote the multiplication operator RV (X)(a) : V (X) → V (X), v → va.

The subalgebra U(J) of the algebra of all linear transformations of V (X) gener-
ated by the operators RV (X)(a), a ∈ J , is called multiplicative enveloping of J .

Every Jordan bimodule over J is a U(J)-right module, and conversely.
Let’s denote D(x, y) = R(x)R(y) − (−1)|x||y|R(y)R(x), V (x, y) = D(x, y) +

R(xy), U(x, y) = R(x)R(y)+(−1)|x||y|R(y)R(x)−R(xy) and {x, y, z} = yU(x, z) =
(xy)z + x(yz)− (−1)|x||y|y(xz), the Jordan triple product.

We will need the following identities which hold in all Jordan superalgebras:
(1) D(x, y) is a superderivation,
(2) D(xy, z) = D(x, yz) + (−1)|x||y|D(y, xz),
(3) R(x)U(y, z) + (−1)|x|(|y|+|z|)U(y, z)R(x) = U(xy, z) + (−1)|x||y|U(y, xz),
(4) R(x)R(y)R(z) = 1

2 (−(−1)|y||z|R((xz)y) +R(xy)R(z)

+(−1)|z||y|R(xz)R(y) + (−1)|x|(|y|+|z|)R(yz)R(x) +R(x)D(y, z)
+(−1)|z||y|D(x, z)R(y) + (−1)|z|(|x|+y|)R(z)D(x, y)),

(5) U(x1, x2)U(y1, y2) = ±V (x1, y1)V (x2, y2)± V (x1, y2)V (x2, y1)
±2V (x1, x2U(y1, y2)).
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818 CONSUELO MARTÍNEZ AND EFIM ZELMANOV

In [1], N. Jacobson developed the representation theory of semisimple finite-
dimensional Jordan algebras. He proved that:

i) if J is a finite-dimensional Jordan algebra, then dimFU(J) < ∞,
ii) if J is a finite-dimensional semisimple Jordan algebra, then U(J) is semisimple

as well. In particular, all bimodules over J are completely reducible.
Moreover, he determined all irreducible bimodules over simple finite-dimensional

Jordan algebras.
Let e be the identity of J and let V = {e, V, e}+ {1− e, V, e}+ {1− e, V, 1− e}

be the Peirce decomposition.
If V (X) is a free Jordan bimodule over J , then V1(X) = {e, V (X), e} is the free

unital bimodule over J . An arbitrary map from X to a unital Jordan bimodule V1

uniquely extends to a homomorphism of bimodules V1(X) → V1. We call the asso-
ciative algebra U1(J) generated by the linear transformations RV1(X)(a) : V1(X) →
V1(X), v → va, the unital (multiplicative) enveloping algebra of J .

A bimodule V over J is said to be one-sided if {J, V, J} = (0). In this case, the
mapping a → RV (a) ∈ EndF (V ) is a homomorphism of J into EndF (V )(+).

The subbimodule W (X) = {e, V (X), 1−e}+{1−e, V (X), 1−e} is the universal
one-sided bimodule over J . The associative subalgebra S(X) of EndF (W (X))
generated by RW (X)(J) is the universal (associative) enveloping algebra of J (see
[1]).

As in [1, Th. 15, p. 103], U(J) � U1(J)⊕ S(J).
If J = J ′ ⊕ J ′′, then U1(J) � U1(J

′)⊕ U1(J
′′)⊕ (U1(J

′)⊗ U1(J
′′)) (see [1]).

In [11] we classified one-sided finite-dimensional bimodules over simple finite-
dimensional Jordan superalgebras.

The purpose of this paper is the classification of irreducible unital finite-dimen-
sional bimodules over all simple finite-dimensional Jordan superalgebras. Recall
that the irreducible bimodules over the exceptional 10-dimensional Kac superalge-
bra K10 were classified by A. S. Shtern (see [16]). Irreducible and even indecom-
posible bimodules over Dt were classified in [12] (see also [17]). Classification of
irreducible finite-dimensional bimodules over Q(n)(+) and over JPn(F ) is done in
[9]. In the forthcoming paper [13] we will treat the case of indecomposible modules.

Contents
1. Tits-Kantor-Koecher construction.
2. Root graded modules.
3. Irreducible bimodules over JP (n), n ≥ 2.
4. Irreducible bimodules over Mm+n(F )(+), m ≥ n, m+ n ≥ 3.
5. Unital irreducible bimodules over M1+1(F )(+).
6. Irreducible bimodules over Josp(m, 2r).
7. Irreducible bimodules over Jordan superalgebras of superforms.
8. Jordan superalgebras of rank ≥ 3.
In Chapters 1 and 2 we relate irreducible representations of Jordan superalge-

bras to root graded representations of the corresponding Tits-Kantor-Koecher Lie
superalgebras.

In Chapters 3-7 some irreducible representations for each of the types of Jordan
superalgebras are constructed. The subsequent analysis of highest weights of the
corresponding root graded modules shows that these lists are complete.
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REPRESENTATION THEORY OF JORDAN SUPERALGEBRAS I 819

In Chapter 8 we prove that for a simple finite-dimensional unital Jordan super-
algebra J , which contains 3 pairwise orthogonal idempotents in its even part, the
universal multiplicative enveloping algebra U(J) is finite-dimensional and semisim-
ple. Thus all finitely generated J-bimodules are finite-dimensional and completely
reducible.

1. Tits-Kantor-Koecher construction

Definition 1.1 ([6]). A Jordan (super)pair P = (P−, P+) is a pair of vector
(super)spaces with a pair of trilinear operations

{ , , } : P− × P+ × P− → P−, { , , } : P+ × P− × P+ → P+

that satisfies the following identities:
(P.1) {xσ, y−σ, {xσ, z−σ, xσ}} = {xσ, {y−σ, xσ, z−σ}, xσ},
(P.2) {{xσ, y−σ, xσ}, y−σ, uσ} = {xσ, {y−σ, xσ, y−σ}, uσ},
(P.3) {{xσ, y−σ, xσ}, z−σ, {xσ, y−σ, xσ}} = {xσ, {y−σ, {xσ, z−σ, xσ}, y−σ}, xσ},
for every xσ, uσ ∈ P σ, y−σ, z−σ ∈ P−σ, σ = ± (see [6]).

Let L = L−1 + L0 + L1 be a Z-graded Lie (super)-algebra. Then (L−1, L1)
is a Jordan (super)pair with respect to the trilinear operations {xσ, y−σ, zσ} =
[[xσ, y−σ], zσ]; xσ, zσ ∈ Lσ1, y

−σ ∈ L−σ1, σ = ±.

Theorem 1.2. For an arbitrary Jordan (super) pair P = (P−, P+), there exists a
unique Z-graded Lie (super) algebra K = K−1+K0+K1 such that (K−1,K1) � P ,
K0 = [K−1,K1], and for every 3-graded Lie (super)algebra L = L−1 + L0 + L1, an
arbitrary homomorphism of the Jordan pairs P → (L−1, L1) uniquely extends to a
homomorphism of Lie (super)algebras K → L.

The uniqueness is obvious. Let us prove the existence. Choose bases {e+i }i of
P+ and {e−j }j of P−, and consider the multiplication table

{e+i , e−j , e+k } =
∑
t

γt
ijke

+
t , γt

ijk ∈ F,

{e−j , e+i , e−q } =
∑
s

ξsjiqe
−
s , ξsjiq ∈ F.

Define a Lie (super)algebra K = K(P ) by generators {x+
i , x

−
j } and relations

[[x+
i , x

−
j ], x

+
k ] =

∑
t

γt
ijkx

+
t ,

[[x−
j , x

+
i ], x

−
q ] =

∑
s

ξsjiqx
−
s ,

[x+
i , x

+
k ] = [x−

j , x
−
q ] = 0.

The resulting algebra K is Z-graded (let degx+
i = 1, degx−

j = −1). Moreover,

K is spanned by x+
i , x

−
j and [x+

i , x
−
j ], which implies that Ki = (0) for |i| ≥ 2.

It is easy to see that K has the required universal property.
We will refer to K = K(P ) as the TKK-construction of the pair P .
If J is a Jordan superalgebra, then (J−, J+) is a Jordan superpair. The Lie

superalgebra K = K(J−, J+) is called the TKK-construction of J .
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820 CONSUELO MARTÍNEZ AND EFIM ZELMANOV

2. Root graded modules

Let J = J0̄ + J1̄ be a simple finite-dimensional Jordan superalgebra. Let’s
consider L = K(J) as its TKK-construction.

If V is a Jordan bimodule over J , then the null extension V + J is a Jor-
dan superalgebra, so we can consider its TKK Lie superalgebra K(V + J) =
(V − + J−) + [V − + J−, V + + J+] + (V + + J+).

Denote K(V ) = V − + [V −, J+] + [J−, V +] + V + ≤ K(V + J). Then K(V ) is a
Lie module over the subalgebra J− + [J−, J+] + J+ which is isomorphic to K(J).

LetW be the maximalK(J)-submodule, which is contained inK(V )0=[V −, J+]
+ [J−, V +]. Let K̄(V ) = K(V )/W .

Lemma 2.1. Let J be a unital Jordan (super)algebra and let V1, V2 be two unital
Jordan J-bimodules. The following assertions are equivalent:

(1) V1 � V2,
(2) K(V1) � K(V2),
(3) K̄(V1) � K̄(V2).

Proof. Clearly (1) ⇒ (2) ⇒ (3). Let us show that (3) ⇒ (1).
Let ϕ : K̄(V1) → K̄(V2) be a K(J)-module isomorphism. Let e be the identity

element of J . Then sl2(F ) � Fe− + F [e−, e+] + Fe+ ≤ K(J), and V +
i is the

eigenspace of K̄(Vi) with respect to ad([e−, e+]), which corresponds to the eigen-
value −2. This implies that ϕ(V +

1 ) = V +
2 . Both spaces V +

1 , V +
2 are identified with

V1, V2 respectively. Let us show that ϕ|V +
1

is a bimodule isomorphism.

Choose a ∈ J, v1 ∈ V1. Let ϕ(v+1 ) = v+2 ∈ V +
2 . The element [[a+, e−], v+1 ]

is mapped by ϕ to [[a+, e−], ϕ(v+1 )], which is identified with av2. The lemma is
proved.

Lemma 2.2. For a unital Jordan bimodule V over a unital Jordan (super)algebra
J , the following assertions are equivalent:

(1) V is an irreducible J-bimodule,
(2) K̄(V ) is an irreducible K(J)-module

Proof. (1) ⇒ (2) Let W be a K(J)-subbimodule of K̄(V ). Choose w ∈ W , w =
w−2 + w0 + w2, [[e

−, e+], wi] = iwi. Using a Vandermonde type argument we get
wi ∈ W , i = −2, 0, 2. Hence W = (W ∩ K̄(V )−2) + (W ∩ K̄(V )0) + (W ∩ K̄(V )2).

Suppose that W ∩ K̄(V )−2 �= (0). The subspace K̄(V )−2 is identified with V .
It is easy to see that the intersection of V with W is a subbimodule of V . Hence
K̄(V )−2 ⊆ W .

Since K̄(V )2 = [e+, [e+, K̄(V )−2]] it follows that K̄(V )2 ⊆ W as well, and
therefore K̄(V ) = W .

If W ⊆ K̄(V )0 then W = (0) since K̄(V ) does not contain nonzero submodules
in K̄(V )0.

(2) ⇒ (1) Now suppose that the K(J)-module K̄(V ) is irreducible. If V ′ is
a proper subbimodule of V , then V ′− + [V ′−, J+] + [J−, V ′+] + V ′+ is a proper
K(J)-subbimodule of K̄(V ). The lemma is proved.

Lemma 2.3. Let J be a simple finite-dimensional Jordan superalgebra, L = K(J).
(1) Suppose that both L0̄ and J0̄ are semisimple and J0̄ has the same number of

simple summands as L0̄. Then L0̄=K(J0̄).
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REPRESENTATION THEORY OF JORDAN SUPERALGEBRAS I 821

(2) Suppose now that L0̄/Center is semisimple and that J0̄ is semisimple
and has the same number of simple summands as L0̄/Center. Then [L0̄, L0̄] =
[K(J0̄),K(J0̄)].

Proof. (1) We have L0̄ = J−
0̄

+ [J−
0̄
, J+

0̄
] + [J−

1̄
, J+

1̄
] + J+

0̄
. This implies that J−

0̄
+

[J−
0̄
, J+

0̄
] + J+

0̄
= K(J0̄) is an ideal of L0̄. Let J0̄ be a direct sum of s simple

summands, J0̄ = J
(1)

0̄
⊕ · · · ⊕ J

(s)

0̄
. Then K(J0̄) = K(J

(1)

0̄
) ⊕ · · · ⊕K(J

(s)

0̄
). Since

L0̄ is semisimple and L0̄ and K(J0̄) have the same number of simple summands, it
follows that K(J0̄) = L0̄.

(2) Arguing as above, we get

K(J0̄) + Center(L0̄)/Center(L0̄) = L0̄/Center(L0̄),

so K(J0̄) + Center(L0̄) = L0̄. This implies the result and proves the lemma.

Remark 2.4. The superalgebras Josp(n, 2m) and JP (n), n ≥ 3 satisfy condition
(1). The superalgebras Mn+m(F )(+), Qn(F )(+) and JP (2) satisfy condition (2).

Now we will define root graded modules.
Let J be a simple finite-dimensional Jordan superalgebra of one of the types

Josp(n, 2m), JP (n), n ≥ 2, Mn+m(F )(+), Q(n)(+), L = K(J) its universal TKK-
construction andH a Cartan subalgebra of [L0̄, L0̄]. As we have just seen, [L0̄, L0̄] =
[K(J0̄),K(J0̄)].

Let {Vi} be the family of all finite-dimensional irreducible unital bimodules over
J0̄. Then {K(Vi)} are modules over K(J0̄). Let ∆(J) be the set of all nonzero
weights of all modules K(Vi) with respect to H.

Definition 2.5. A module W over L is said to be root graded if
(1) the action of H on W is diagonalizable,
(2) Wα �= (0), α �= 0, implies α ∈ ∆(J),
(3) W is generated (as a module) by

∑
α�=0 Wα.

Lemma 2.6. Let V be a unital bimodule over a simple finite-dimensional uni-
tal Jordan superalgebra J of one of the types JP (n), Q(n)(+), Mm+n(F )(+), or
Josp(n, 2m), and let L = K(J). Then the L-module K(V ) is root-graded

Proof. Let’s view V as a bimodule over the semisimple finite-dimensional Jordan
algebra J0̄, V =

∑
i Vi, where each Vi is an irreducible J0̄-bimodule. From the

description of unital J0̄-bimodules, it follows that the action of H, H ⊂ K(J0̄), on
K(V ) is diagonalizable.

Let 0 �= α ∈ H�, [V −, J+
1̄
] �= (0), and v ∈ [V −, J+

1̄
]α. Then there exists

h ∈ H such that [v, h] = α(h)v = λv, with λ �= 0. Hence v ∈ [[V −, J+
1̄
],H] ⊆

[[V −, J+
1̄
], [J−

0̄
, J+

0̄
]] ⊆ [V −, J+

0̄
] + [V +, J−

0̄
].

Similarly, every root space [V +, J−
1̄
]α, 0 �= α ∈ H�, lies in [V −, J+

0̄
] + [V +, J−

0̄
].

Hence K(V ) = K(V )0 + V − + V + + [V −, J+
0̄
] + [V +, J−

0̄
] = K(V )0 +

∑
i V

−
i +∑

i V
+
i +

∑
i[V

−
i , J+

0̄
] +

∑
i[V

+
i , J−

0̄
], where K(V )0 is the centralizer of H in K(V ).

Hence K(V )α �= (0), 0 �= α ∈ H∗, implies α ∈ ∆(J).
Since K(V ) is generated by V −, V +, we conclude that K(V ) is generated by∑
α∈∆(J) K(V )α. The lemma is proved.

Now we will determine ∆(J) for various root systems.
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I) Case JP (n).

J = JP (n) = {
(
a b
c at

)
| a ∈ Mn(F ), bt = −b, ct = c},

K(J) = P (2n− 1) = {
(
a b
c −at

)
| tr(a) = 0, bt = −b, ct = c; a, b, c ∈ M2n(F )}

if n > 2.

The Lie superalgebra K(JP (2)) is the universal central cover of the Lie super-
algebra P (3) ([10]).

In this case, J0̄ = Mn(F )(+), K(J0̄) = sl(2n).
The set of irreducible modules over J0̄ consists of the regular bimodule and the

four subspaces

(
0 H(n)
0 0

)
,

(
0 K(n)
0 0

)
,

(
0 0

H(n) 0

)
,

(
0 0

K(n) 0

)
of M2n(F ),

where H(n) = {a ∈ Mn(F ) | at = a}, K(n) = {a ∈ M2n(F ) | at = −a}. The
action of J0̄ on the last four subspaces is defined as follows. We can identify

J0̄ = Mn(F )+ with {
(
a 0
0 at

)
, a ∈ Mn(F )} ⊆ M2n(F ). Then J0̄ acts via the

Jordan multiplication in M2n(F )(+).
The TKK Lie module of the regular bimodule over J0̄ is the regular Lie module

over K(J0̄) = sl(2n). The algebra sl(2n) is embeddable into M4n(F ) via a →(
a 0
0 −at

)
. It acts on the subspaces

(
0 H(2n)
0 0

)
,

(
0 K(2n)
0 0

)
,

(
0 0

H(2n) 0

)
,(

0 0
K(2n) 0

)
via the commutation in M4n(F ).

These are the TKK Lie modules of the corresponding irreducible J0̄-bimodules.
It is easy to see that ∆(J) = {0 �= ±vi ± vj , 1 ≤ i, j ≤ 2n}.

II) Case Q(n)(+).

J = Q(n)(+) = {
(
a b
b a

)
| a, b ∈ Mn(F )}, n ≥ 2,

K(J) = Q(2n− 1)(−) = {
(
a b
b a

)
| a, b ∈ M2n(F )},

J0 = Mn(F )+, K(J0) = sl(2n).

We get the same ∆(J) as in the case P .

III) Case J = Mn+m(F )(+), n ≥ m, m+ n ≥ 3.

K(J) = {
(
a b
c d

)
| a ∈ M2n(F ), d ∈ M2m(F ), tr(a) = tr(d)}.

If n = m, then K(J) has a nonzero center.

J0̄ = {
(
a 0
0 b

)
} � Mm(F )+ ⊕Mn(F )+,

K(J0̄) = sl(2m)⊕ sl(2n).

Unital bimodules over Mn(F )(+) and Mm(F )(+) yield the sets of weights {0 �=
±vi ± vj , 1 ≤ i, j ≤ 2m} and {0 �= ±wp ± wq, 1 ≤ p, q ≤ 2n}.

Let e1 =

(
Im 0
0 0

)
, e2 =

(
0 0
0 In

)
, e1 + e2 = 1.
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If V is a unital irreducible bimodule over J0, then V = {e1, V, e1} or V =
{e2, V, e2} or V = {e1, V, e2}. In the first case (similarly in the second) V is a
bimodule over Mm(F )(+) (resp. Mn(F )(+)), so it is one of those mentioned above.

Let V = {e1, V, e2}. There are ≤ 4 irreducible bimodules of this type. Indeed,
such a bimodule is a one-sided bimodule over Mn(F )(+), a one-sided bimodule
over Mm(F )(+), and the actions of Mn(F )(+) and Mm(F )(+) commute. So, V is a
module over the algebra

U(Mm(F )(+))⊗ U(Mn(F )(+)) = (Mm(F )⊕Mm(F )t)⊗ (Mn(F )⊕Mn(F )t),

which is a sum of 4 isomorphic copies of Mm×n(F ).
There are exactly four bimodules that will be listed below:

1) V1 =

(
0m Mm×n(F )
0n,m 0n

)
.

The action is the Jordan multiplication by

(
a 0
0 b

)
:

(
a 0
0 b

)
◦
(
0 x
0 0

)
=

1

2

(
0 ax+ xb
0 0

)
.

2) V2 =

(
0 Mm×n(F )
0 0

)
, but now the product is given by

(
a 0
0 b

)
�

(
0 x
0 0

)
=

1

2

(
0 atx+ xb
0 0

)
.

3) V3 =

(
0 Mm×n(F )
0 0

)
, and the product is given by

(
a 0
0 b

)
�
(
0 x
0 0

)
=

1

2

(
0 ax+ xbt

0 0

)
.

4) V4 =

(
0 Mm×n(F )
0 0

)
with the product given by

(
a 0
0 b

)
•
(
0 x
0 0

)
=

1

2

(
0 atx+ xbt

0 0

)
.

Now we will indicate the corresponding Lie modules.

1) K(V1) =

(
0 M2m×2n(F )
0 0

)
with the action

[

(
a 0
0 b

)
,

(
0 x
0 0

)
] =

(
0 ax− xb
0 0

)
,

a ∈ sl(2m), b ∈ sl(2n), and the set of roots of this module is {vi−wj | 1 ≤ i ≤ 2m},

2) K(V2) =

(
0 M2m×2n(F )
0 0

)
with the action

[

(
−at 0
0 b

)
,

(
0 x
0 0

)
] =

(
0 −atx− xb
0 0

)
,

and the set of roots of this module is {−vi − wj | 1 ≤ i ≤ 2m},
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824 CONSUELO MARTÍNEZ AND EFIM ZELMANOV

3) K(V3) =

(
0 M2m×2n(F )
0 0

)
with the action

[

(
a 0
0 −bt

)
,

(
0 x
0 0

)
] =

(
0 ax+ xbt

0 0

)
,

with the set of roots {vi + wj | 1 ≤ i ≤ 2m},

4) K(V4) =

(
0 M2m×2n(F )
0 0

)
with the action

[

(
−at 0
0 −bt

)
,

(
0 x
0 0

)
] =

(
0 −atx+ xbt

0 0

)

that has the set of roots {0 �= −vi + wj | 1 ≤ i ≤ 2m}.
Hence ∆(J) = {0 �= ±vi ± vj , 0 �= ±wk ± wl, ±vi ± wk}; that is, the set of all

integral vectors of length 2.

IV) Case Josp(m,n), n even. J = Josp(m, 2r) = H(A, ∗), where A = Mm+n(F ),
n = 2r and ∗ is the superinvolution(

a b
c d

)∗
= Q−1

(
at −ct

bt d

)
Q,

where Q =

(
Im 0
0 U2r

)
with U2r =

(
0 −Ir
Ir 0

)
.

Hence, J = Josp(m, 2r) = {
(
a b
c d

)
|a = at, d = −U2rd

tU2r, c = −U2rb
t}.

J0̄ =

(
H(m) 0

0 H(Mn(F ), Symp)

)

and K(J) = OSP (2m, 4r), K(J0̄) =

(
D2m 0
0 Symp2n

)
.

The bimodules over J0̄ are:
i) bimodules over H(m): the regular bimodule H(m) and the bimodule K(m)

with the action k · h = 1
2 (kh+ hk),

ii) bimodules over H(Mn(F ), Symp): the regular bimodule and the bimodule
Skew(Mn(F ), Symp),

iii) modules over U(Hm)⊗U(H(Mn(F ), Symp) = Mm(F )⊗Mn(F ) = Mmn(F ).
There is only one such bimodule, and it is isomorphic to the odd part J1̄ of the
superalgebra J viewed as bimodule over J0̄ .

Reviewing the irreducible modules above we see that

∆(J) = {0 �= ±vi ± vj , 0 �= ±wk ± wl, ±wi ± vk}.

3. Irreducible bimodules over JP (n), n ≥ 2

Recall that the Jordan superalgebra JP (n) is the superalgebra of symmetric
elements of Mn+n(F ) with respect to the superinvolution:(

a b
c d

)∗
=

(
dt −bt

ct at

)
.

So, four examples of unital JP (n)-bimodules appear naturally:
(1) the regular bimodule V = JP (n),
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(2) the bimodule Skew(Mn+n(F ), ∗) = {
(
a h
k −at

)
| a ∈ Mn(F ), ht = h, kt =

−k},
(3)-(4) their opposites.

Lemma 3.1. JP (n) is not isomorphic to Skew(Mn+n(F ), ∗) as a JP (n)-bimodule.

Proof. Consider the operator

W = R(

(
0 0
e11 0

)
)R(

(
e12 0
0 e21

)
)R(

(
0 0
e11 0

)
)U(

(
e12 0
0 e21

)
,

(
e21 0
0 e12

)
).

The straightforward computation shows that JP (n)W = (0), whereas for the

element

(
0 e11
0 0

)
∈ Skew(Mn+n(F ), ∗) we have

(
0 e11
0 0

)
W �= 0.

Triangular (super)algebras. Let L = L− + L0 + L+ be a Lie superalgebra,
where L−, L0, L+ are subsuperalgebras of L, L0 ⊆ L0̄ is abelian, [L0, L−] ⊆ L−,
and [L0, L+] ⊆ L+. Suppose that L− decomposes into a sum of eigenspaces with
respect to the action of L0, L− =

∑
α∈∆−⊆L∗

0
(L−)α and the semigroup generated

by ∆− in L∗
0 does not contain 0.

Consider a functional 0 �= λ ∈ L∗
0. We say that an L-module V is a module of

highest weight λ if V is generated (as a module) by a nonzero element v such that
L+v = (0) and for every h ∈ L0, vh = λ(h)v.

For an arbitrary functional λ ∈ L∗
0, there is a unique irreducible module Irr(λ)

of the highest weight λ.
Recall that the TKK Lie algebra K(JP (n)), n ≥ 2, is the universal central cover

P̂ (2n− 1) of P (2n− 1). For n > 2, we have P̂ (2n− 1) = P (2n− 1); however, for

n = 2, the superalgebra P̂ (3) has a 1-dimensional center ([10]). Let H be a Cartan

subalgebra of [P̂ (2n − 1)0̄, P̂ (2n − 1)0̄]. Let Ĥ = H for n > 2. For n = 2, let

Ĥ = H +Fz, where z is a nonzero central element of P̂ (3). Then L = P̂ (2n− 1) =

Ĥ +
∑

α∈∆ Lα, ∆ = {wi −wj ,−wi −wj , 1 ≤ i �= j ≤ 2n} ∪ {wi +wj , 1 ≤ i, j ≤ n}.
Let V be an irreducible unital bimodule over J = JP (n).
The L-module K̄(V ) decomposes into a direct sum of eigenspaces with respect

to H, K̄(V ) =
∑

β K̄(V )β, with β ∈ ∆(J) = {0 �= ±wi±wj , 1 ≤ i, j ≤ 2n}. Clearly
zK̄(V )β ⊆ K̄(V )β for every β ∈ ∆(J).

Lemma 3.2. At least one of the subspaces K̄(V )2wi
, K̄(V )wi−wj

is not equal to
zero.

Proof. Suppose that K̄(V )wi−wj
= K̄(V )2wi

= (0) for any i, j.
Then,

K̄(V ) = K̄(V )0 +
∑
i �=j

K̄(V )wi+wj
+
∑
i �=j

K̄(V )−wi−wj
+

2n∑
i=1

K̄(V )−2wi
.

Choose v ∈ K̄(V )w1+w2
.

Consider the elements q−wi−wj
=

(
0 eij − eji
0 0

)
, qwi+wj

=

(
0 0

eij + eji 0

)
,

i �= j, from L.
We have vq−w2−w3

∈ K̄(V )−w2−w3+w1+w2
= K̄(V )w1−w3

= (0). Similarly,
vqw2+w3

∈ K̄(V )w2+w3+w1+w2
= (0). Hence v[q−w2−w3

, qw2+w3
] = 0. However,
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[q−w2−w3
, qw2+w3

] =

(
e22 − e33 0

0 −e22 + e33

)
= hw2−w3

∈ H. Therefore vhw2−w3

= (w2 − w3|w1 + w2)v = v. We have proved that K̄(V )wi+wj
= (0) for any i, j.

Similarly, K̄(V )−w1−w2
qw2+w3

⊆ K̄(V )−w1+w3
= (0); K̄(V )−w1−w2

q−w2−w3
⊆

K̄(V )−w1−2w2−w3
= (0).

Notice that −w1 − 2w2 − w3 does not lie in ∆(J) if n ≥ 3. If n = 2, then
−w1− 2w2−w3 = −w2− (w1+w2+w3) = −w2− (−w4) = −w2+w4 lies in ∆(J),
but K̄(V )−w2+w4

= (0) by our assumptions.
For an arbitrary element v ∈ K̄(V )−w1−w2

, we have vhw2−w3
= (w2 − w3|

− w1 − w2)v = −v. Hence K̄(V )−wi−wj
= (0), for any i, j. Hence, K̄(V ) =

K̄(V )0 +
∑2n

i=1 K̄(V )−2wi
.

Consider the elements ewi−wj
=

(
eij 0
0 eji

)
. Clearly [ewi−wj

, ewj−wi
] = hwi−wj

.

As above, K̄(V )−2w1
ew1−w2

= K̄(V )−2w1
ew2−w1

= (0), and therefore
K̄(V )−2w1

hw1−w2
= (0). As above, this implies that K̄(V )−2w1

= (0). So K̄(V ) =
K̄(V )0, a contradiction that proves the lemma.

Let Λ denote the root lattice, Λ =
∑2n

i=1 Zwi/Z(w1 + · · ·+ w2n).
Let γ : Λ → Z be a functional such that all values γ(w1), . . . , γ(w2n), −γ(w1), . . . ,

−γ(w2n) are distinct. Let’s assume that

|γ(w1)| > |γ(w2)| > max3≤i≤2n|γ(wi)|; γ(w1) > 0, γ(w2) < 0.

We can consider L+ =
∑

γ(α)>0 Lα, L− =
∑

γ(α)<0 Lα, L = L− + Ĥ + L+.

Since all nonzero weights of K̄(V ) lie in ∆(J), it follows that L+K̄(V )2w1
= (0).

If K̄(V )2w1
= (0), then L+K̄(V )w1−w2

= (0). Both spaces K̄(V )2w1
and

K̄(V )w1−w2
cannot be simultaneously zero by Lemma 3.2.

Lemma 3.3. If n ≥ 3, then the only irreducible finite-dimensional unital Jordan
bimodules are the regular bimodule R and the bimodule S = Skew(Mn+n(F ), �).

Proof. If n ≥ 3, then P̂ (2n − 1) = P (2n − 1), Ĥ = H. Hence if V is a unital
finite-dimensional irreducible bimodule over JP (n), the module K̄(V ) over L is
isomorphic to Irr(2w1) or to Irr(w1 − w2).

By Lemma 3.2 there are at most two nonisomorphic finite-dimensional irreducible
Jordan bimodules over JP (n). By Lemma 3.1 we know the two bimodules R and
S are not isomorphic. The lemma is proved.

Now let n = 2 and let V be a unital irreducible finite dimensional Jordan JP (2)-
bimodule.

Let

β =

{
2w1 if K̄(V )2w1

�= (0),
w1 − w2 if K̄(V )2w1

= (0).

The eigenspace K̄(V )β is invariant with respect to the action of the central
element z.

Let W be a subspace of K̄(V )β such that zW ⊆ W . By the Poincaré-Birkhoff-

Witt theorem the universal enveloping algebra U(L) is U(L) = U(L−)U(Ĥ)U(L+).

Hence the L-submodule generated by W is U(L)W = U(L−)U(Ĥ)U(L+)W =
U(L−)W . Hence U(L)W ∩ K̄(V )β = W . This implies that z acts irreducibly on
K̄(V )β .
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Since F is algebraically closed, it follows that z acts on K̄(V )β (and so on K̄(V ))
as a scalar α ∈ F .

Definition 3.4. We say that a unital bimodule V over JP (2) is of level α ∈ F if
z acts as α on K̄(V ).

From what we proved above it follows that for an arbitrary element α ∈ F
there are at most two nonisomorphic unital irreducible finite-dimensional Jordan
bimodules over JP (2) of level α.

We will now describe the explicit realizations of two non-isomorphic JP (2)-
bimodules of level α.

Consider the associative commutative algebra Φ = F1 + Ft, t2 = 0, and its
derivation d : Φ → Φ such that d(t) = αt.

Let W be the Weyl algebra of the differential algebra (Φ, d),

W =
∑
i≥0

Φdi = F [d] + tF [d],

dt− td = d(t) = αt.
For an arbitrary k ≥ 0 the subspace tdkF [d] is an ideal of W .
The following embedding of JP (2) into M2+2(W )(+) was described in [8]. The

Jordan superalgebra of M2+2(W )(+),

J = {
(
a 0
h at

)
| a, h ∈ M2(F ), ht = h}+ F

⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 d 0 0
−d 0 0 0

⎞
⎟⎟⎠ ,

is isomorphic to JP (2).

Denote x =

⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 d 0 0
−d 0 0 0

⎞
⎟⎟⎠. The central element z in K(J) is z = [x−, x+].

The inner derivation R(x)2 acts on M2+2(tF [d]) as multiplication by α. Hence
M2+2(tF [d]) is a bimodule over J of level α.

Let e =

⎛
⎜⎜⎝
t 0 0 0
0 t 0 0
0 0 t 0
0 0 0 t

⎞
⎟⎟⎠. Then we have

Lemma 3.5. e · J is an irreducible J-subbimodule of M2+2(tF [d]).

Proof. First notice that [e,

(
a 0
h at

)
] = 0, which implies that D(e,

(
a 0
h at

)
) = 0.

Hence we need only to check that (e · J) · x ⊆ e · J .

Now eR(x)2 = αe. That’s why we need to consider only (e ·
(
a 0
h at

)
)x. As

above, [e, x] = α

(
0 0
tk 0

)
, where k =

(
0 1
−1 0

)
. Now,

[

(
a 0
0 at

)
,

(
0 0
tk 0

)
] = t[

(
a 0
0 at

)
,

(
0 0
k 0

)
] = t

(
0 0

atk − ka 0

)
,
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atk − ka ∈ H. Commuting

(
0 0
h 0

)
with

(
0 0
k 0

)
we get 0. This proves that

(e.J).J ⊆ e.J .
The even part of this bimodule e.J0̄ is the regular irreducible bimodule over

J0̄ = M2(F )(+). Hence, if eJ has a proper subbimodule, then it has to be contained
in the odd part and, thus, be killed by J1̄. Let v ∈ eJ1̄ be an element killed by J1̄.

Let e1 =

(
e11 0
0 e11

)
, e2 =

(
e22 0
0 e22

)
be the orthogonal idempotents from J0̄.

We have JD(v, [J1̄, J1̄] ⊆ JD(vJ1̄, J1̄) = (0). In particular e1D(v, e1 − e2) = 0,
which implies that v lies in the Peirce component {e1, eJ1̄, e1}+{e2, J1̄, e2}. Hence,

v = e

(
0 0
h 0

)
, h ∈ H(2). Now (e

(
0 0
h 0

)
)x = 0 implies h = 0. The lemma is

proved.

Definition 3.6. We will denote this bimodule as R(α). It is easy to see that R(0)
is the regular bimodule.

Consider the J-bimodule V = M2+2(tF [d]/tdF [d]), dimFV = 16. We will iden-
tify R(α) with the subbimodule of V generated by ē = e+M2+2(tdF [d]).

Lemma 3.7. The J-bimodule S(α) = V/R(α) is irreducible.

Proof. Consider a composition series of V/R(α) with irreducible factors. Suppose
that it has more than one factor. Then all these factors have dimensions < 8. We
have shown above that for each α, J has at most two irreducible finite-dimensional
unital Jordan bimodules of level α. One of these irreducible bimodules is R(α). Let
V ′ be another irreducibe J-bimodule of level α, dimFV

′ < 8. Let q be the length
of the composition series of V/R(α).

Notice that D(J0̄, J0̄) � sl2 and that

dimF {v ∈ V/R(α) | D(J0̄, J0̄)v = (0)} = q.dimF {v ∈ V ′ | D(J0̄, J0̄)v = (0)}.

However,

{v ∈ V |D(J0̄, J0̄)v = (0)} = {t

⎛
⎜⎜⎝
ξ 0 0 0
0 ξ 0 0
0 0 η 0
0 0 0 η

⎞
⎟⎟⎠},

hence dim{v ∈ V/R(α) |D(J0̄, J0̄)v = (0)} = 1. This proves the lemma.

Lemma 3.8. R(α) �� S(α).

Proof. The modules K̄(R(α)) and K̄(S(α)) over P̂ (3) have different sets of weights.

Remark 3.9. If α �= 0, then the bimodule V is indecomposable ([13]).

We have proved the following theorem.

Theorem 3.10. The only finite-dimensional unital irreducible Jordan bimodules
over JP (2) are R(α), R(α)op, S(α), S(α)op, α ∈ F .
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4. Irreducible bimodules over Mm+n(F )(+)
, m ≥ n, n+m ≥ 3

We have already mentioned in Section 3 that the only irreducible unital Jor-

dan bimodules over Mn(F )+, n ≥ 2, are the regular bimodule and

(
0 H(n)
0 0

)
,(

0 0
H(n) 0

)
,

(
0 K(n)
0 0

)
,

(
0 0

K(n) 0

)
.

The corresponding irreducible modules over the TKK Lie algebra

sl(2n) = K(Mn(F )(+))

are the regular module and

(
0 H(2n)
0 0

)
,

(
0 0

H(2n) 0

)
,

(
0 K(2n)
0 0

)
,

(
0 0

K(2n) 0

)
.

For n ≥ 3 all these modules are not isomorphic. For n = 2,

(
0 K(n)
0 0

)
�(

0 0
K(n) 0

)
. Hence, if n ≥ 3, there are 5 nonisomorphic irreducible unital bi-

modules over Mn(F )(+). Over M2(F )(+) there are only 4.
If one of the numbers m,n is even, then Mm+n(F ) is equipped with a superin-

volution. Hence, we can repeat the construction above and get 5 non-isomorphic
unital irreducible Jordan bimodules over Mm+n(F )(+).

Definition 4.1. Let A = A0̄ + A1̄ be an associative superalgebra. A graded
mapping � : A → A, A�

ī
= Aī, is called a pseudoinvolution if (ab)� = (−1)|a||b|b�a�,

a�� = (−1)|a|a, for any a, b ∈ A0̄ ∪ A1̄.

Example 4.2. For A = Mm+n(F ),

(
a b
c d

)�

=

(
at −ct

bt dt

)
is a pseudoinvolution.

Let � : A → A be a pseudoinvolution. Then A(+) → M2(A)(+) is still an
embedding of Jordan superalgebras. Let W be a subspace of A such that for
arbitrary elements w ∈ W , a ∈ A,

(C1) aw + (−1)|a||w|wa� ∈ W.

Then Wup =

(
0 W
0 0

)
is a Jordan bimodule over {

(
a 0
0 a�

)
, a ∈ A}.

Similarly, if W is a subspace of A and for arbitrary elements w ∈ W , a ∈ A, we
have

(C2) a�w + (−1)|a||w|wa ∈ W.

Then W down =

(
0 0
W 0

)
is a Jordan bimodule over {

(
a 0
0 a�

)
| a ∈ A} � A(+).

Notice that the conditions, (C1) and (C2) are different.

Now we will give some examples of such subspaces. LetW1 = {
(
K(m) b
−bt H(n)

)
,

b ∈ Mm,n(F )}. A straightforward computation shows that it satisfies (C1). Simi-

larly, W2 = {
(
H(m) b
bt K(n)

)
, b ∈ Mm,n(F )} satisfies (C1). The subspaces W3 =

{
(
H(m) b
−bt K(n)

)
, b ∈ Mm,n(F )} and W4 = {

(
K(m) b
bt H(n)

)
, b ∈ Mm,n(F )}

satisfy (C2).
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So, together with the regular bimodule we have 5 irreducible unital bimodules
(plus the 5 opposite) over Mm+n(F )(+) (they are not isomorphic).

Now let V be an irreducible unital Jordan bimodule, J = Mm+n(F )(+), L =

K(J) = {
(
a b
c d

)
}, a ∈ M2m(F ), d ∈ M2n(F ), tr(a) = tr(d).

Then

H = {

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝
α1

. . .

α2m

⎞
⎟⎠ 0

0

⎛
⎜⎝
β1

. . .

β2n

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

|
2m∑
i=1

αi =

2n∑
j=1

βj = 0}

is a Cartan subalgebra of [L0̄, L0̄],

L = Ĥ +
∑
α∈∆

Lα, Ĥ = H + Fz, z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝
n

. . .

n

⎞
⎟⎠ 0

0

⎛
⎜⎝
m

. . .

m

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As shown in Section 3, ∆(J) = {wi − wj , 1 ≤ i �= j ≤ 2n, vp − vq, 1 ≤ p �= q ≤
2m, wi−vp, vp−wi}. Let ∆(V ) denote the set of nonzero weights of the irreducible
L-module K̄(V ) with respect to H. Then, ∆(V ) ⊆ ∆(J).

Let γ : Λ → R be a functional such that |γ(w1)| > |γ(w2)| > |γ(w3)| > |γ(w4)| ≥
max{|γ(wi)|, |γ(vp)|, i ≥ 4, 1 ≤ p ≤ 2m} and γ(w1) > 0, γ(w2) < 0, γ(w4) < 0,
−γ(w2) >

1
2 (γ(w1) + γ(w3)).

Notice that such functional exists, because n ≥ 2.
We have

L = L− + Ĥ + L+, where L− =
∑

γ(λ)<0

Lλ, L+ =
∑

γ(λ)>0

Lλ.

Let K̄(V )β �= (0) and γ(β) = maxγ(∆(V )). Then, as we have seen before, z
(central element) acts irreducibly on K̄(V )β, which implies that z acts as a scalar
α on K̄(V ). We will refer to this α as the level of the module V .

The module K̄(V ) is uniquely determined (up to isomorphism) by β and by the
level.

Let’s denote qwi−vp =

(
0 eip
0 0

)
, for 1 ≤ i ≤ 2m, 1 ≤ p ≤ 2n, and qvp−wi

=(
0 0
eip 0

)
. Then [qwi−vj , qvj−wi

] =

(
eii 0
0 epp

)
= hwi+vp .

Lemma 4.3. If W is a root graded module over L and W±wi±wj
= (0), for arbitrary

1 ≤ i, j ≤ 2m, then WL = (0).

Proof. The weight space W±w1±v1 is killed both by qw2−v1 and by q−w2+v1 ; hence
it is killed by hw2+v1 = [qw2−v1 , q−w2+v1 ]. Similarly, V±w1±v1 is killed by qw2−v2

and by q−w2+v2 ; hence it is killed by hw2+v2 = [qw2−v2 , q−w2+v2 ].
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Now hv1−v2 = hw2+v1 − hw2+v2 kills W±w1±v1 , but 〈v1 − v2 | ± w1 ± v1〉 = ±1.
Hence W±w1±v1 = (0).

Hence, W =
∑

W±vp±vq and hence L1̄W = (0), which implies LW = (0). The
lemma is proved.

Lemma 4.4. There are 5 possibilities for the highest weight λ: 2w1, w1 − w2,
−2w2, w1 + w3, −w2 − w4.

Proof. If K̄(V )2w1
�= (0), then 2w1 is clearly the highest weight.

If K̄(V )2w1
= (0), then, since all K̄(V )2wi

are conjugate via the Weyl group,
then K̄(V )2wi

= (0) for an arbitrary 1 ≤ i ≤ 2m. If K̄(V )w1−w2
�= (0), then

w1 − w2 is the highest weight.
If K̄(V )w1−w2

= (0), then K̄(V )wi−wj
= (0) for an arbitrary 1 ≤ i �= j ≤ 2m. If

K̄(V )2w1
= (0), K̄(V )w1−w2

= (0) and K̄(V )−2w2
�= (0), then −2w2 is the highest

weight. In case that it is zero, then, as above, K̄(V )−2wi
= (0) for an arbitrary

1 ≤ i ≤ 2m. Similarly, if K̄(V )2w1
= (0), K̄(V )w1−w2

= (0), K̄(V )−2w1
= (0) and

(0) �= K̄(V )w1+w3
, then w1 + w3 is the highest weight.

Finally, if K̄(V )2w1
=(0), K̄(V )w1−w2

= (0), K̄(V )−2w1
= (0), (0) = K̄(V )w1+w3

and K̄(V )−w2−w4
�= (0), then the highest weight is −w2 − w4. If K̄(V )β = (0), for

β = 2w1, w1 − w2,−2w2, w1 + w2,−w2 − w4, then by Lemma 4.3 LK̄(V ) = (0), a
contradiction. The lemma is proved.

Remark 4.5. If m = 2, then w1 + w3 = −w2 − w4.

It is easy to see that Ĥ = H + Fz = H + Fhwi+vp , for arbitrary i, p.

Lemma 4.6. In the cases λ = 2w1, w1 −w2, −2w3 in Lemma 4.4 the action of Ĥ
on K̄(V ) is uniquely determined. If n ≥ 3, then in the cases λ = w1+w3, −w2−w4

the action of Ĥ is also uniquely determined. If n = 2 and λ = w1+w3 = −w2−w4,
then there are two ways in which Ĥ can act on K̄(V ).

Proof. Suppose that λ = 2w1, K̄(V )2w1
�= (0). We have K̄(V )2w1

qw3−v1 = (0) and
K̄(V )2w1

qv1−w3
= (0). Hence K̄(V )2w1

hw3+v1 = (0) which determines the action

of Ĥ on K̄(V ).
Now suppose that K̄(V )2wi

= (0) for 1 ≤ i ≤ 2m, λ = w1−w2 and K̄(V )w1−w2
�=

(0). Again K̄(V )w1−w2
qw3−v1 =K̄(V )w1−w2

qv1−w3
= (0). Hence K̄(V )w1−w2

hw3+v1

= (0), which determines uniquely the action of Ĥ on K̄(V ).
Let K̄(V )2wi

= K̄(V )wi−wj
= (0), for arbitrary 1 ≤ i �= j ≤ 2m, λ = −2w2,

K̄(V )−2w2
�= (0). As above, K̄(V )−2w2

qw3−v1 = K̄(V )−2w2
qv1−w3

= (0); hence

K̄(V )−2w2
hw3+v1 = (0) and the action of Ĥ is uniquely determined.

Let m ≥ 3 and λ = w1 + w3. Then

K̄(V )w1+w3
qw2−v1 = K̄(V )w1+w3

qv1−w2
= (0),

which determines the action of Ĥ over K̄(V ).
With the same assumptions, let λ = −w2 − w4. Then

K̄(V )−w2−w4
qw3−v1 = K̄(V )−w2−w4

qv1−w3
= (0),

and the action of Ĥ is determined by the fact that K̄(V )−w2−w4
hw3+v1 = (0).

Now suppose that m = 2, λ = w1 + w3 = −w2 − w4.
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Case 1. K̄(V )w1+v1 = (0).

In this case, K̄(V )w1+w3
q−w3+v1 = K̄(V )w1+w3

qw3−v1 = (0). Hence the action

of Ĥ is determined since K̄(V )w1+w3
hw3+v1 = (0).

Case 2. K̄(V )w1+v1 �= (0).

In this case, K̄(V )w1+v1 generates K̄(V ). The action of Ĥ on K̄(V ) is determined
by its action on K̄(V )w1+v1 . We have

K̄(V )w1+v1qw2−v2 = K̄(V )w1+v1qv2−w2
= (0),

so the action of Ĥ on K̄(V )w1+v1 is determined. The lemma is proved.

From Lemma 4.6 it follows that there are at most 5 (up to opposites) unital
irreducible Jordan bimodules over Mm+n(F )(+). Since we have described 5 such
bimodules at the beginning of this section, it implies the following theorem.

Theorem 4.7. The only finite-dimensional unital irreducible Jordan bimodules
over Mm+n(F )(+), m+n ≥ 3, are the regular bimodule, Wup

1 , Wup
2 , W down

3 , W down
4

and their opposites.

5. Unital irreducible bimodules over M1+1(F )(+)

In [7] unital bimodules over M1+1(F ) were studied. Here a new approach, that
is included for completeness, is given.

Let {e, f, x, y} be the standard base of J = M1+1(F )(+); that is, e =

(
1 0
0 0

)
,

f =

(
0 0
0 1

)
, x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
. Thus J0̄ = Fe + Ff , J1̄ = Fx + Fy,

[x, y] = e− f .
For arbitrary scalars α, β, γ ∈ F define a 4-dimensional J-bimodule, denoted

V (α, β, γ), with a base v, w ∈ V0̄, z, t ∈ V1̄ and the multiplication table

ve = v, we = 0, ze =
1

2
z, te =

1

2
t,

vf = 0, wf = w, zf =
1

2
z, tf =

1

2
t,

vx = z, wx = (γ − 1)z − 2αt, zx = αv, tx =
1

2
((γ − 1)v − w),

vy = t, wy = 2βz − (γ + 1)t, zy =
1

2
(γ + 1)v +

1

2
w, ty = βv.

Remark 5.1. The operators R(x)2, R(y)2, R(x)R(y) = R(y)R(x) act on V (α, β, γ)
as α, β, γ, respectively.

Lemma 5.2. V (α, β, γ) is a Jordan bimodule over J .

Proof. Choosing an appropriate base in J1̄ we will assume that γ = 0. Let us
embed M1+1(F )(+) into M2+2(F )(+) via

e ≡
(
I 0
0 0

)
, f ≡

(
0 0
0 I

)
, x ≡

(
0 I
A 0

)
, y ≡

(
0 B
I 0

)
,

where A =

(
0 0
0 2α

)
, B =

(
2β 0
0 0

)
, I =

(
1 0
0 1

)
.
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Let v =

(
E 0
0 0

)
, E =

(
0 1
0 0

)
. Then the J-submodule generated by the ele-

ment v is V (α, β, 0). The lemma is proved.

Remark 5.3. It is easy to see that v = {e, v, e}, w = vU(x, y), z = vx, t = vy.

Lemma 5.4. If γ2 − 4αβ − 1 �= 0, then the bimodule V (α, β, γ) is irreducible. If
γ2 − 4αβ − 1 = 0, then Fw + Fwx is the only proper subbimodule of V (α, β, γ).

Proof. Let V ′ be a nonzero subbimodule of V (α, β, γ). First we will notice that
V ′ ∩ V0̄ �= (0). Indeed, otherwise V ′x = V ′y = (0). We apply the Jordan iden-
tity V ′(R(x)R(e)R(y) − R(y)R(e)R(x) − R([x, y]e) − R(xe)R(y) + R(ye)R(x) −
R([x, y])R(e)) = (0) and we get V ′ = (0). If {e, V ′, e} �= (0), then v ∈ V ′ and
therefore V ′ = V . If {e, V ′, e} = (0), then V ′

0̄ = Fw. We have wU(x, y) =

vU(x, y)2 = (γ2 − 1 − 4αβ)vm. Hence, if γ2 − 1 − 4αβ �= 0 we still get V ′ = V .
The lemma is proved.

For α, β, γ ∈ F such that γ2 − 1 − 4αβ = 0, denote V (f)(α, β, γ) = Fw + wJ1̄,
V (e)(α, β, γ) = V (α, β, γ)/V (f)(α, β, γ).

Theorem 5.5. Every irreducible finite-dimensional unital Jordan J-bimodule is
isomorphic to one of V (α, β, γ) , γ2−1−4αβ �= 0 or V (f)(α, β, γ) or V (e)(α, β, γ),
if γ2 − 1− 4αβ = 0 or its opposite.

Proof. Let V be an irreducible finite-dimensional Jordan J-bimodule. Up to passing
to an opposite, we can assume that V is in the normal form, V0̄ = {e, V0̄, e} +
{f, V0̄, f}, V1̄ = {e, V1̄, f}.

The operators R(x)2, R(y)2, R(x)R(y) +R(y)R(x) commute with the action of
J ; hence by Schur’s Lemma they act as scalars α, β, γ, respectively.

Let W be a subspace of {e, V0̄, e}. We claim that U = W +WU(J1̄, J1̄) +WJ1̄
is a J-bimodule.

Indeed, WJ1̄ ⊆ {e, V1̄, f}, WU(J1̄, J1̄) ⊆ {f, V0̄, f}. Hence each summand
W , WU(J1̄, J1̄), WJ1̄ is invariant under the multiplication by J0̄. Furthermore,
R(J1̄)R(J1̄) ⊆ U(J1̄, J1̄) +D(J1̄, J1̄) +R(J0̄). Hence WR(J1̄)R(J1̄) ⊆ U and, more
generally, WR(J)R(J) ⊆ U .

It remains to show that WU(J1̄, J1̄)R(J1̄) ⊆ WJ1̄. We have U(J1̄, J1̄) ⊆
R(J1̄)R(J1̄) +R(J0̄).

By the identity 4 (see the Introduction),

R(J1̄)R(J1̄)R(J1̄) ⊆ R(J)R(J) +D(J1̄, J1̄)R(J1̄).

Since D(J1̄, J1̄) acts as multiplication by scalars, the claim follows.
Similarly, if W ⊆ {f, V0̄, f}, then W +WU(J1̄, J1̄)+WJ1̄ is a J-bimodule. Since

V is irreducible it follows that dimF {e, V0̄, e} ≤ 1, dimF {f, V0̄, f} ≤ 1, dimFV1̄ ≤ 2.
Suppose that 1 + 4αβ − γ2 �= 0. We will show that V � V (α, β, γ). As we

have seen above, V0̄ �= (0). The operator U(x, y)2 acts on V0̄ as multiplications by
γ2 − 4αβ − 1. Hence both {e, V0̄, e} and {f, V0̄, f} are different from zero. Choose
0 �= v ∈ {e, V0̄, e}. Let w = vU(x, y) ∈ {f, V0̄, f}.

We claim that the elements vx and vy are linearly independent. Indeed, suppose
that vy = ξvx, ξ ∈ F . Then vR(y)R(x) = ξαv and

vU(x, y) = v(R(x)R(y)−R(y)R(x)−R(e− f))

= v(R(x)R(y) +R(y)R(x)− 2R(y)R(x)−R(e− f)) ∈ Fv,
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a contradiction. Hence v, w, vx, vy is a base of V with the multiplication table as
in V (α, β, γ).

Now let 1+4αβ−γ2 = 0. Then V0̄U(x, y)2 = (0). Suppose that {e, V0̄, e} �= (0),
0 �= v ∈ {e, V0̄, e}. If w = vU(x, y) �= 0, then V is generated by w,wU(x, y), wx, wy;
but wU(x, y) = 0, which implies dimFV0̄ ≤ 1, a contradiction. Hence vU(x, y) = 0.
In this case V � V (e)(α, β, γ). If {e, V0̄, e} = (0), {f, V0̄, f} �= (0), then V �
V (f)(α, β, γ). The theorem is proved.

6. Irreducible bimodules over Josp(m, 2r)

Recall that the Jordan superalgebra Josp(m, 2r) is the superalgebra of symmet-
ric elements of Mm+2r(F )(+) with(

a b
c d

)�

=

(
In 0
0 U

)(
at −ct

bt dt

)(
In 0
0 U−1

)
,

where U =

(
0 −Ir
Ir 0

)
. Therefore, J0̄ =

(
H(m) 0

0 H(M2r(F ), Symp)

)
.

In this case, ∆(J) = {0 �= ±wi ± wj , 1 ≤ i, j ≤ 2m, 0 �= ±vp ± vq, 1 ≤ p ≤ q ≤
4r, ±wi ± vp, 1 ≤ i ≤ 2m, 1 ≤ p ≤ 4r}. Therefore, ∆(J) coincides with the set of
roots of the Lie superalgebra K(J).

As in the case of JP (n)- bimodules, four examples appear naturally:
(1) the regular bimodule V = Josp(m, 2r),
(2) the bimodule Skew(Mm+2r(F ), �),
(3)-(4) their opposites.
The aim now is to prove that there are no more irreducible J-bimodules, J =

Josp(m, 2r).

Lemma 6.1. There are no irreducible J-bimodules V such that V J1̄ = (0).

Proof. Notice first that J0̄ = [J1̄, J1̄] +F1. Indeed, [J1̄, J1̄] is a subspace of J0̄ that
is invariant with respect to all derivations.

For

(
0 b
c 0

)
,

(
0 b′

c′ 0

)
∈ J1̄, we have

[

(
0 b
c 0

)
,

(
0 b′

c′ 0

)
] =

(
bc′ − b′c 0

0 cb′ − c′b

)
.

Hence the projections of the right hand side on H(m) and on H(M2r(F ), Symp)
both may have nonzero traces. The examination of allD(J0̄, J0̄)-invariant subspaces
of J0̄ yields that [J1̄, J1̄] = {a ∈ J0̄ : tr(a) = 0} and J0̄ = [J1̄, J1̄] + F1.

So V J1̄ = (0) implies that D(V, J0̄) = D(V, [J1̄, J1̄]) = (0). In particular,
uR(x)R(a) = uR(xa) for arbitrary elements u ∈ V , x ∈ J , a ∈ J0̄.

Let x = e1, a = e2 be the identity elements of H(m), H(M2r(F ), Symp), respec-
tively. Then V R(e1)R(e2) = 0 implies V = {e1, V, e1} + {e2, V1, e2}. Both Peirce
components {e1, V, e1} and {e2, V, e2} are J-bimodules; hence only one of them
is not equal to zero. Let V = {e1, V, e1}. Then {J1̄, V, J1̄} ⊆ {e2, V, e2} = (0).
This implies V R([J1̄, J1̄]) = (0). Hence dimFV = 1 and V e1 = (0) or V e2 =
(0). But we have noticed above that the projections of [J1̄, J1̄] on H(m) and to
H(M2r(F ), Symp) both have nonzero traces, a contradiction. The lemma is proved.

Lemma 6.2. If V is an irreducible J-bimodule, J = Josp(m, 2r), then K(V )w1+v1

�= (0).
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Proof. If K(V )w1+v1 = (0), then the classification of irreducible J0̄-bimodules (see
Chapter 2) implies that a bimodule of type iii) cannot appear. So V = {e1, V, e1}+
{e2, V, e2}. Since J1̄ = {e1, J, e2}, it follows that V J1̄ = (0), which contradicts
Lemma 6.1. The lemma is proved.

Let’s consider a functional γ : ∆ → Z such that γ(w1) > γ(v1) > 0 and γ(v1) >
|γ(vi)| if i > 1, γ(v1) > |γ(wj)| if j > 1.

If K(V )2w1
�= (0), then 2w1 is the highest weight of K(V ). If K(V )2w1

= (0)
and K(V )w1+v1 �= (0), then w1 + v1 is the highest weight of K(V ). This implies

Theorem 6.3. The only finite-dimensional unital irreducible Jordan bimodules
over Josp(m, 2r) are the regular bimodule, the bimodule Skew(Mm+2r(F ), �) and
their opposites.

7. Irreducible bimodules over Jordan superalgebras of superforms

7.1. r-vectors. In this section we will discuss a construction which is similar to
Jacobson’s r-vectors (see [1]).

Let V = V0̄+V1̄ be a vector (super)space equipped with a nondegenerate super-
symmetric form. We assume that V1̄ �= (0).

Let v1, . . . , vn be an orthonormal basis of V0̄ and let w1, . . . , w2m be a basis of
V1̄ such that (w2i−1|w2i) = 1, 1 ≤ i ≤ m, where all other products are zero.

Let C be the Clifford algebra of V . The products vi11 · · · vinn wk1
1 · · ·wk2m

2m , where
0 ≤ i1, . . . , in ≤ 1; k1, . . . , k2m are non negative integers, form a basis of C.

Consider the subspace Cr =
∑

i≤r V · · ·V︸ ︷︷ ︸
i

as the span of all basic products of

length ≤ r.

C0 = F1 ⊆ C1 ⊆ C2 ⊆, · · · ; C =
⋃
r≥0

Cr.

Let J = F1 + V be the Jordan superalgebra of the superform ( | ).
Lemma 7.1. If r is odd, then Cr is a J-bimodule.

Proof. Let v, u1, . . . , ur ∈ V0̄ ∪ V1̄. We need to verify that

u1 · · ·urv + (−1)|u1···ur||v|vu1 · · ·ur ∈ Cr.

Indeed,

u1 · · ·urv + (−1)|u1···ur||v|vu1 · · ·ur

=

r∑
k=1

(−1)1+k+|uk+1···ur||v|u1 · · ·uk−1(ukv + (−1)|uk||v|vuk)uk+1 · · ·ur ∈ Cr.

The lemma is proved.

If r < 0, then we let Cr = (0).

Lemma 7.2. For every odd r ≥ 1, Cr/Cr−2 is an irreducible J-bimodule.

Proof. Let M be a subbimodule of Cr, which strictly contains Cr−2.

Let 0 �= a =
∑

αvi11 · · · vinn wk1
1 · · ·wk2m

2m ∈ M , i1, . . . , in = 0 or 1; 0 ≤ k1, . . . , k2m
∈ Z and i1 + · · · + in + k1 + · · · + k2m = r − 1 or r. Suppose also that a has the
minimal number of nonzero summands among all such elements.

For elements x, y ∈ J0̄ ∪ J1̄ let D(x, y) denote the derivation of C given by
D(x, y) : c → c(xy − (−1)|x||y|yx)− (−1)|c||xy|(xy − (−1)|x||y|yx)c.
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It is easy to see that

vi11 · · · vinn wk1
1 · · ·wk2m

2m D(w2i−1, w2i) = (k2i−1 − k2i)v
i1
1 · · · vinn wk1

1 · · ·wk2m
2m .

Using the Vandermonde argument and the minimal number of summands in a,
we conclude that k2i−1 − k2i is the same in all summands in a.

Furthermore

vi11 · · · vinn wk1
1 · · ·wk2m

2m D(w2i−1, w2i−1)
k2i

= ±(k2i)!v
i1
1 · · · vinn wk1

1 · · ·wk2i−1+k2i

2i−1 w
k2i+1

2i+1 · · ·wk2m
2m .

Applying appropriate powers of the derivations D(w2i−1, w2i−1), 1 ≤ i ≤ m,
we can assume that w2, . . . , w2m are not involved in the expression of a; that is,
k2 = k4 = · · · = k2m = 0 in every summand.

Suppose that is �= 0. Then

vi11 · · · vinn wk1
1 wk3

3 · · ·wk2m−1

2m−1 D(vs, w1)

= ±vi11 · · · vis−1

s−1 v
is+1

s+1 · · · vinn wk1+1
1 wk3

3 · · · .
Hence we can assume that in each summand i1 = i2 = · · · = in = 0.

If k2s−1 ≥ 1, s ≥ 2, then

wk1
1 wk3

3 · · ·wk2m−1

2m−1 D(w2s, w1) = ±wk1+1
1 wk3

3 · · ·wks−1
2s−1 · · · .

This implies that wr−1
1 ∈ M or wr

1 ∈ M .
If wr

1 ∈ M , then [wr
1, w2] = rwr−1

1 ∈ M . If wr−1
1 ∈ M , then wr

1 = wr−1
1 w1 ∈ M .

Hence both elements wr−1
1 and wr

1 lie in M .

Now consider an arbitrary basic element b = vi11 · · · vinn wk1
1 wk2

2 · · ·wk2m
2m , i1+ · · ·+

in + k1 + · · ·+ k2m = s = r − 1 or r. Then

ws
1D(w2, w2)

k2D(w2, w3)
k3+k4D(w4, w4)

k4D(w2, w5)
k5+k6D(w6, w6)

k6

· · ·D(w2, v1)
i1D(w2, v2)

i2 · · ·D(w2, vn)
in

is a nonzero multiple of b modulo Cr−2. This proves that M = Cr. The lemma is
proved.

Let u be an even vector, V ′ = V + Fu. We will extend the superform to V ′ via
(u|u) = 1 and (u|V ) = 0.

Denote C ′
r =

∑
i≤r V

′ · · ·V ′︸ ︷︷ ︸
i

. If r is even, then C ′
r+1/C

′
r−1 is an irreducible

J ′ = F1 + V ′-bimodule.

Lemma 7.3. If r is even, then uCr/uCr−2 is an irreducible J = F1+V -bimodule.

Proof. We have uCr ⊆ C ′
r+1 and uCr−2 ⊆ C ′

r−1. We need to show that for arbitrary
elements x ∈ uCr \ uCr−2 and y ∈ uCr, there exists an operator W from the
multiplication algebra U1(J) such that (x+ uCr−2)W = y + uCr−2. Since the J ′-
bimodule C ′

r+1/C
′
r−1 is J ′-irreducible, there exists an operator W ′ in U1(J

′) such
that xW ′ ∈ y + C ′

r−1.
The operator W ′ is a sum of products of multiplication operators, and in each

summand the element u occurs an even number of times.
For an arbitrary element v ∈ V , uv = 0, u2 = 1 imply R(u)R(v)R(u) = 0. Hence

from the Jordan identity it follows that W ′ ∈
∑

i≥0 R(u)2iM(J). But xR(u)2 = x.

Hence, without loss of generality, we can assume that W ′ ∈ U1(J). Now xW ′−y ∈
uCr ∩ C ′

r−1 = uCr−2. The lemma is proved.
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7.2. Graded modules over orthosymplectic algebras. The TKK Lie super-
algebra of J is L = K(J) = OSP (n + 1, 2m). The root system of L is ∆ =
{±ui ± uj , i �= j;±ωp ± ωq, p �= q;±2ωp;±ui ± ωp; 1 ≤ i �= j ≤ n+ 1; 1 ≤ p, q ≤ m}
if n is odd or all the same plus {±ui, 1 ≤ i ≤ n+ 1} if n is even.

The short grading of L which corresponds to the TKK-structure is J+ = L1 =∑
(α|u1)=1 Lα, J

− = L−1 =
∑

(α|u1)=−1 Lα, [J
−, J+] = L0 =

∑
(α|u1)=0 Lα.

The following elements form a basis of the Cartan subalgebra H of L0̄:

hui
=

⎛
⎝

(
eii 0
0 −eii

)
0

0 0

⎞
⎠ hwj

=

⎛
⎝ 0 0

0

(
ejj 0
0 −ejj

) ⎞
⎠ ,

for a root element a ∈ Lα, [hui
, a] = (ui|α)a, [hwj

, a] = (wj |α)a.
We remark also that 〈Lui−wj

, L−ui+wj
〉 = F (hui

+ hwj
).

Proposition 7.4. For an arbitrary t ≥ 2 there exists no more than one irre-
ducible finite-dimensional graded bimodule M = M−1 +M0 +M1 over L such that
MLt

−2w1
�= (0), MLt+1

−2w1
= (0).

Proof. Let ∆̃ be the set of H-weights of M . If λ ∈ ∆̃, then (λ|hui
) ∈ Z and

(λ|hwj
) ∈ Z. Hence λ =

∑n+1
i=1 αiui +

∑m
j=1 βjωj , αi, βj ∈ Z. Since M = M−1 +

M0 +M1 it follows that α1 = −1, 0, 1.
The Weyl group permutes u1, . . . , un+1 and for an arbitrary pair 1 ≤ i �= j ≤ n+1

the mapping ui → −ui, uj → −uj , uk → uk, k �= i, j also lies in the Weyl group.

Hence, for any weight λ ∈ ∆̃ and for any i, 1 ≤ i ≤ n + 1, the coefficient αi is
−1, 0, 1.

Lemma 7.5. Let λ =
∑

αiui+
∑

βjωj ∈ ∆̃, αi = 1, βj ≥ 0. Then λ−ui+ωj ∈ ∆̃.

Proof. Since αi = 1, it follows that MλLui−ωj
= (0). If MλL−ui+ωj

= (0) as well,
then Mλ〈Lui−ωj

, L−ui+ωj
〉 = (0), which implies (λ|hui

+ hωj
) = 0, (λ|ui +ωj) = 0,

αi + βj = 0, a contradiction. The lemma is proved.
The Weyl group acts on w1, . . . , wm by permutations and, for any j, 1 ≤ j ≤ m,

contains the mapping ωj → −ωj , ωk → ωk, k �= j.

Lemma 7.6. Let s = max{
∑

|αi| +
∑

|βj | :
∑

αiui +
∑

βjωj ∈ ∆̃}. Then

sw1 ∈ ∆̃.

Proof. Let γ =
∑

αiui +
∑

βiωj ∈ ∆̃,
∑

|αi| +
∑

|βj | = s, and among all such
weights the coefficient β1 is maximal.

Let |αi| = max(|αk|, 1 ≤ k ≤ n+ 1}. Without loss of generality, we can assume

that αi ≥ 0. If αi ≥ 1, then γ − ui + ω1 ∈ ∆̃, which contradicts the maximality of
β1. Hence, α1 = · · · = αk+1 = 0, γ =

∑m
i=1 βiωi,

∑
|βi| = s.

Again, without loss of generality we assume that β2 ≥ 0, . . . , βm ≥ 0. Let
βj ≥ 1, 2 ≤ j ≤ m. Then γ + ωj − u1 /∈ ∆̃ by maximality of s.

Since (γ|u1 + ωj) �= 0 it follows that γ − ωj + u1 ∈ ∆̃. Again by Lemma 7.5 we
eliminate ui and increase β1, a contradiction. Hence, β2 = · · · = βm = 0, γ = sω1.
The lemma is proved.

There exists a functional f : Λ =
∑n+1

i=1 Zui +
∑m

j=1 Zωj → Z such that ±f(ui),

±f(ωj) are distinct and f(ω1) = max{|f(ui)|, |f(ωj)|}. This functional defines a
partial order in Λ making sw1 the highest weight of M . This proves the lemma.

Licensed to University de Oviedo. Prepared on Thu Nov 15 07:24:26 EST 2012 for download from IP 156.35.62.18/156.35.192.4.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Let r be odd and consider the irreducible module K̄(Cr/Cr−2) over L = K(J).
The subspace L−2ωi

acts on (Cr/Cr−2)
+ as D(ω2i, ω2i). We have JD(ω2i, ω2i) =

Fω2i, CrD(ω2i, ω2i)
r = Fωr

2i, CrD(ω2i, ω2i)
r+1 = 0. Hence [(Cr/Cr−2)

+, J−]Lr+1
−2ωi

= F [(ωr
2i)

+, ω−
2i] �= (0) in K̄(Cr/Cr−2), but K̄(Cr/Cr−2)L

r+2
−2ωi

= (0). Similarly, for

an even r we have K̄(uCr/uCr−2)L
r+1
−2ωi

�= (0), but K̄(uCr/uCr−2)L
r+2
−2ωi

= (0).

Now let B be an irreducible unital finite-dimensional J-module, M = K̄(V ),
MLs

−2ω1
�= (0), MLs+1

−2ω1
= (0), s ≥ 2. If s is even, then by Proposition 7.4,

B � Cs−1/Cs−3; if s is odd, then B � uCs−1/uCs−3.
We proved the following theorem.

Theorem 7.7. The only finite-dimensional unital irreducible Jordan bimodules
over J = F1 + V are Cr/Cr−2 if r is odd and uCr/uCr−2 if r is even.

8. Jordan superalgebras of rank ≥ 3

In this chapter we consider Jordan superalgebras whose even part contains 3
pairwise orthogonal idempotents. We prove the following theorem, which extends
the result by N. Jacobson [1].

Theorem 8.1. Let J be a finite-dimensional simple Jordan superalgebra whose even
part contains 3 pairwise orthogonal idempotents. Then its universal multiplicative
enveloping algebra U(J) is finite-dimensional and semisimple.

The theorem applies to Jordan superalgebras of the types JP (n), n ≥ 3; Q(n)(+),

n ≥ 3; Josp(n, 2m), n+m ≥ 3; M
(+)
m+n, m+ n ≥ 3, and to the exceptional Jordan

superalgebra K10.
By the result of A.S. Shtern [16], U(K10) � M4+6(F )⊕M6+4(F ). Therefore, in

what follows we assume that the superalgebra J is special.
In [11] we have already proved the assertion for the universal special enveloping

algebra S(J). Now we will prove it for U1(J).

8.1. Finite dimension of U1(J).

Proposition 8.2. dimFU1(J) < ∞.

Proof. Let V be a free unital J-bimodule. We will denote R(a) = RV (a) and show
that there is m ≥ 1 such that

U1(J) = 〈R(J)〉 =
m∑

k=1

R(J) · · ·R(J)︸ ︷︷ ︸
k

.

This will imply that dimU1(J) < (dimJ)m+1.
Let d = dimFJ0̄.
We say that an operator R(a1) · · ·R(ak), ai ∈ J0̄ ∪ J1̄, is irreducible if it does

not lie in
∑k−1

i=1 R(J) · · ·R(J)︸ ︷︷ ︸
i

.

Step 1 (Jacobson). If ai ∈ J0̄, 1 ≤ i ≤ k, and R(a1) · · ·R(ak) is irreducible, then
k ≤ 2d. Indeed, suppose that k ≥ 2d+ 1. An element

R(a1) · · ·R(ak) +
k−1∑
i=1

R(J) · · ·R(J)︸ ︷︷ ︸
i

∈
k−1∑
i=1

R(J) · · ·R(J)︸ ︷︷ ︸
i

/
k−1∑
i=1

R(J) · · ·R(J)︸ ︷︷ ︸
i

is skew-symmetric in d+ 1 elements a1, a3, a5, . . . , a2d+1.
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Step 2. Suppose that ai ∈ J0̄ ∪ J1̄ and the operator R(a1) · · ·R(ak) is irreducible.
Then |{i |1 ≤ i ≤ k, ai ∈ J0̄}| ≤ 3d.

If ai, ai+1 ∈ J0̄ then “push” them to the left via the Jordan identity. If ai, ai+1 ∈
J1̄ then “push” them to the right via the Jordan identity.

We will get

R(a1) · · ·R(ak)

∈
∑

R(b1) · · ·R(br)(

t∏
i=1

R(xi)R(ci))R(z1) · · ·R(zs) +

k−1∑
i=1

R(J) · · ·R(J)︸ ︷︷ ︸
i

,

and for each summand r+2t+s = k; b1, . . . , br, c1, . . . , ct ∈ J0̄; x1, . . . , xt, z1, . . . , zs
∈ J1̄, and b1, . . . , br, x1, . . . , xt, c1, . . . , ct, z1, . . . , zs is a permutation of a1, . . ., ak.

The expression
∏t

i=1 R(xi)R(ci) is skew-symmetric in c1, . . . , ct modulo∑2t−1
j=1 R(J) · · ·R(J)︸ ︷︷ ︸

j

. Hence t ≤ d. By Step 1, r ≤ 2d. This implies the asser-

tion.

Step 3. Let J = Josp(n,m) or JP (n), n ≥ 3. Then

U1(J) =

4d+2∑
k=1

R(J) · · ·R(J)︸ ︷︷ ︸
k

.

Indeed, consider an irreducible operator

R(b1) · · ·R(br)(

t∏
i=1

R(xi)R(ci))R(z1) · · ·R(zs);

b1, . . . , br, c1, . . . , ct ∈ J0̄; x1, . . . , xt, z1, . . . , zs ∈ J1̄.
As we have seen above r ≤ 2d, t ≤ d. From the identity (4) it follows that

R(J1̄)R(J1̄)R(J1̄) ⊆ R(J) +R(J)R(J) +D(J1̄, J1̄)R(J1̄).

From Lemma 2.3(1) it follows that L0̄ = K(J0̄), hence D(J1̄, J1̄) ⊆ R(J0̄) +
D(J0̄, J0̄). This shows that s ≤ 2. The claim is proved.

From now on, J = Mp+q(F )(+), p ≥ q, p+ q ≥ 3 or J = Qn(F )(+), n ≥ 3.
In view of the above, it is sufficient to consider only irreducible operators of the

type

R(b1) · · ·R(br)(

t∏
i=1

R(wi)R(ci))R(z1) · · ·R(zν)(

µ∏
i=1

D(xi, yi);

b1, . . . br, c1, . . . , ct ∈ J0̄; w1, . . . , wt, z1, . . . , zν , x1, y1, . . . , xµ, yµ ∈ J1̄, ν ≤ 2, r ≤
2d, t ≤ d.

Our aim is to bound the number µ.

Step 4. Let e1, . . . , en be a frame of J0̄; that is, e1, . . . , en are pairwise orthogonal
idempotents and n is maximal with this property.

Two orthogonal idempotents e, f ∈ J0̄ are said to be strongly connected (see [1])
if there exists an element ae,f ∈ {e, J0̄, f} such that a2e,f = e + f . In this case we
denote e ∼ f .

If J = Q(n)(+), then all the idempotents e1, . . . , en are strongly connected.
If J = Mp+q(F )(+),ei = eii, then e1, . . . , ep are strongly connected and so are
ep+1, . . . , ep+q.
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An element x ∈ J1̄ is said to be Peirce homogeneous if x ∈
⋃

1≤i,j≤n Ji,j , where

Jij = {ei, J, ej}.
Without loss of generality all the elements x1, y1, . . . , xµ, yµ can be assumed to

be Peirce homogeneous.
Let us prove a few statements about inner derivations of Peirce homogeneous

elements.
1) If x, y ∈ J1̄ don’t lie in the same Peirce component, then D(x, y) ∈ D(J0̄, J0̄).
Indeed, if Peirce homogeneous elements x, y do not lie in the same component,

then there exists k, 1 ≤ k ≤ n, such that ek kills one of them but does not kill any
other.

Let ek ·x = αx, α = 1 or 1
2 , ek ·y = 0. Then D(x, y) = D( 1

αek ·x, y) = D( 1
αek, xy)

by the identity (2).
2) If i, j, k are distinct and ei ∼ ej , then

D((J1̄)ik, (J1̄)ik) ⊆ D((J1̄)jk, (J1̄)jk) +D(J0̄, J0̄).

Indeed, since ei and ej are strongly connected, there exists aij ∈ (J0̄)ij such that
a2ij = ei+ej . We have {aij , xik, aij} = 0, which implies aij · (aij ·xik) =

1
2a

2
ij ·xik =

1
4xik.

Denote x′
jk = 4aij · xik. We have

D(xik, yik) = D(aij · x′
jk, yik)

= D(x′
jk, aij · yik) +D(aij , x

′
jkyik) ∈ D((J1̄)jk, (J1̄)jk) +D(J0̄, J0̄).

3) If ei ∼ ej , then D((J1̄)ii, (J1̄)ii) ⊆ D((J1̄)jj , (J1̄)jj) +D(J0̄, J0̄).
Indeed, (J1̄)jj = {aij , (J1̄)ii, aij} (see [1]). For two arbitrary elements xii ∈

(J1̄)ii, yjj ∈ (J1̄)jj we have

D({aij , xii, aij}, yjj) = D(2aij · (aij · xii)− a2ij · xii, yjj) = 2D(aij · (aij · xii), yjj).

Applying the identity (2) twice, we get

D(aij · (aij · xii), yjj) = D(xii, aij · (aij · yjj)) mod D(J0̄, J0̄),

which proves the claim.
4) If x, y are Peirce homogeneous odd elements which do not lie in the same

Peirce component, then

R(x)R(y) ∈ 1

2
U(x, y) +R(J0̄) +D(J0̄, J0̄).

Indeed, R(x)R(y) = 1
2 (D(x, y) + U(x, y) +R(xy)).

Now it remains to refer to 1).
5) Suppose that all the idempotents e1, . . . , en are strongly connected (the case

JQ(n)). Then for arbitrary elements x12, x
′
12 ∈ (J1̄)12, y13, y

′
13 ∈ (J1̄)13, z23, z

′
23 ∈

(J1̄)23, we have D(x12, x
′
12)D(y13, y

′
13)D(z23, z

′
23) =

∑
(operators each containing

≤ 5 odd multiplications).
Indeed, IdV =

∑
1≤i,j≤n U(ei, ej). It is sufficient to prove that each

U(ei, ej)D(x12, x
′
12)D(y13, y

′
13)D(z23, z

′
23) can be represented as a sum of such oper-

ators. If j /∈ {1, 2, 3}, then we can find 1 ≤ k �= l ≤ 3 such that i /∈ {k, l} and move
the D((J1̄)kl, (J1̄)kl) component to the left. However, U(ei, ej)D((J1̄)kl, (J1̄)kl) =
(0).

Suppose that i, j ∈ {1, 2, 3}. If i = j, then we can repeat the trick with 1 ≤
k, l ≤ 3, i /∈ {k, l}.
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Let i = 2, j = 3. By 4) and the identity (3),

D(x12, x
′
12)D(y13, y

′
13) ∈ U((J1̄)12, (J1̄)13)R((J1̄)12)R((J1̄)13)

+
∑

(operators containing < 4 odd multiplications).

Move D(z23, z
′
23) to the right of U((J1̄)12, (J1̄)13). However, U(e2, e3)U(J12, J13)

D(z23, z
′
23) = (0).

Step 5. Now we are ready to finish the case J = Q(n)(+), n ≥ 3.

Consider
∏µ

i=1 D(xi, yi); the xi, yi are Peirce homogeneous elements; xi and
yi lie in the same Peirce component. If at least 3 derivations D(xi, yi) lie in⋃n

k=1D((J1̄)kk, (J1̄)kk), then move them to the left. By 3) it is sufficient to consider

D((J1̄)11, (J1̄)11)D((J1̄)22, (J1̄)22)D((J1̄)33, (J1̄)33),

but this product is equal to 0.
Hence ≤ 2 factors lie in

⋃n
k=1 D(Jkk, Jkk).

Let µ ≥ 5. Without loss of generality we can assume that D(xi, yi), 1 ≤ i ≤ 3,
do not lie in

⋃n
k=1 D(Jkk, Jkk). By 2) it is sufficient to consider

D((J1̄)12, (J1̄)12)D((J1̄)13, (J1̄)13)D((J1̄)23, (J1̄)23)

and then use 5).
Hence we can assume µ ≤ 4. The case of Q(n)(+) is finished.
Now let J = Mp+q(F )(+), p ≥ 2, q ≥ 1. Then (J1̄)ij is 2-dimensional, (J1̄)ij =

F ēij + F ēji, where ēij is the matrix having the element (i, j), 1 ≤ i ≤ p, p + 1 ≤
j ≤ p+ q, equal to one and the rest of the elements equal to zero; the matrix ēji is
defined similarly.

Step 6. D(ēij , ēij) = RV (ēij)
2 = 0, and similarly D(ēji, ēji) = 0.

Indeed, choose 1 ≤ k ≤ p, k �= i. Then ēij = eik · ēkj and D(ēij , ēij) =
D(eik · ēkj , ēij) = D(eik, [ēkj , ēij ]) +D(ēkj , eik · ēij) = 0.

This proves the claim.

Step 7.

D((J1̄)ij , (J1̄)ij)
2 = FD(ēij , ēji)

2

= FR(ēij)R(ēji)R(ēij)R(ēji) + FR(ēji)R(ēij)R(ēji)R(ēij)

= FR(ēij)(U(ēji, ēij) +R(ēij)R(ēji) +R([ēji, ēij ]))R(ēji)

+FR(ēji)(U(ēij , ēji) +R(ēji)R(ēij) +R([ēij , ēij ]))R(ēij)

⊆ U(ēji, ēij)R(J1̄)R(J1̄) +
∑

(operators containing < 4 odd multiplications).

Step 8. D(J1̄, J1̄)
4 ⊆ Span of operators containing < 8 odd multiplications.

Indeed, by part 2) of Step 4 it is sufficient to consider

D((J1̄)1,p+1, (J1̄)1,p+1)
2D((J1̄)2,p+1, (J1̄)2,p+1)

2

⊆ U((J1̄)1,p+1, (J1̄)1,p+1)U((J1̄)2,p+1, (J1̄)2,p+1).(

4∑
i=1

R(J)i).
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Now apply identity (5) to the product of two U -operators and notice that

V ((J1̄)1,p+1, (J1̄)2,p+1) ⊆ R(J) +D(J0̄, J0̄)

by 1). This proves the claim.
We showed that µ ≤ 7. The proposition is proved.

8.2. Complete reducibility. As above, we consider a special simple finite dimen-
sional Jordan superalgebra of rank ≥ 3.

Proposition 8.3. Every unital Jordan J-bimodule is completely reducible.

Part 1. J = JP (n) or J = Q(n)(+), n ≥ 3.

Let A be an alternative superalgebra with a superinvolution σ : A → A. An
alternative A-bimodule equipped with a linear transformation τ : V → V is called
an involutive alternative bimodule over (A, σ) if the linear transformation A+V →
A+ V , a+ v → σ(a) + τ (v) is a superinvolution of the split extension A+ V .

In this case, Hn(V, τ ) = {(vij)1≤i,j≤n ∈ Mn(V ), vij ∈ V, vji = τ (vij)} is a
bimodule over Hn(A, σ) = {(aij)1≤i,j≤n ∈ Mn(A), aij ∈ A, aji = σ(aij)}.

The following theorem is an analog of N. Jacobson’s coordinatization theorem
[1].

Theorem 8.4 (see [9]). Let J be a unital Jordan superalgebra, 1 =
∑n

i=1 ei, where
e1, . . . , en are pairwise orthogonal, strongly connected idempotents of J0̄. Let n ≥ 3
and let V be a unital J-bimodule. Then there exists an alternative superalgebra A
with an involution σ such that Hn(A, σ) � J and a unital involutive alternative
module (W, τ ) over (A, σ) such that V � Hn(W, τ ) as an Hn(A, σ)-bimodule. Fur-
thermore, the subspace of symmetric elements H(A+W,σ+ τ ) is in the associative
center of A+W .

It is easy to see that:
(I) If (W, τ ) is an irreducible involutive (A, σ)-bimodule, then Hn(W, τ ) is an

irreducible Hn(A, σ)-bimodule.
(II) If (W, τ ) is a completely reducible (A, τ )-bimodule, then Hn(W, τ ) is a com-

pletely reducible (A, τ )-bimodule.
We have

JP (n) � Hn(M1+1(F ), σ),

(
a b
c d

)σ

=

(
d −b
c a

)
,

Q(n)(+) � Hn(B, σ), B = (F + Fv1)⊕ (F + Fv2), v21 = 1, v22 = −1,

B0̄ = F ⊕ F, B1 = Fv1 + Fv2, (α+ βv1)
σ = α+ βv2, (α+ βv2)

σ = α+ βv1.

Lemma 8.5. Let (W, τ ) be an involutive alternative bimodule over (A, σ). If W is
completely reducible (as an A-bimodule), then (W, τ ) is completely reducible as an
involutive (A, τ )-bimodule.

Proof. We only need to prove thatW is the sum (not necessarily direct) of involutive
irreducible A-bimodules. We have W =

∑
Wi, with each Wi an irreducible A-

bimodule. If W σ
i = Wi, then Wi is an involutive irreducible A-bimodule. If W σ

i ∩
Wi = (0), then Wi + W σ

i is an involutive irreducible bimodule. This implies the
assertion.
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Pisarenko [15] proved that an alternative module over a simple finite-dimensional
associative superalgebra, different from M1+1(F ), is associative and completely
reducible. The assertion is no longer true for M1+1(F )-bimodules.

Lemma 8.6. Let V be a unital alternative bimodule over the superalgebra A =

M1+1(F ). Let us assume that the element e21 =

(
0 0
1 0

)
lies in the associative

center of A+ V . Then V is an associative bimodule.

Proof. We have [e21, A](A+ V,A+ V,A+ V ) = (0) (example 6, page 144 of [19]).
But [e21, e12] = 1; hence (A+ V,A+ V,A+ V ) = 0, that is, A+ V is associative.

If J = JP (n), n ≥ 3, then A = M1+1(F ). For the e21 =

(
0 0
1 0

)
we have

eσ21 = e21; hence it lies in the associative center of A+V . Now complete reducibility
of J-bimodules follows from Lemma 8.6.

In the case J = Q(n)(+) all alternative modules over B are associative and
completely reducible by Pisarenko’s result.

Part 2. J = Josp(m, 2n) or Mm+n(F )(+).

In this case J0̄ is a direct sum of two simple algebras,

J0̄ = {e1, J0̄, e1} ⊕ {e2, J0̄, e2}
with 1 = e1 + e2 and J1̄ = {e1, J1̄, e2}.

We say that a unital Jordan J-bimodule V is in the normal form if V0̄ =
{e1, V0̄, e1} ⊕ {e2, V0̄, e2}, V1̄ = {e1, V1̄, e2}.

Every unital Jordan J-bimodule is the sum of a J-bimodule in the normal form
and the opposite of a J-bimodule in the normal form.

Let V be a finite-dimensional unital Jordan bimodule over J in the normal form.
According to the classification of unital irreducible bimodules (Chapters 4 and

6) we know that every irreducible bimodule in the normal form has two Peirce
components in the even part and the odd part is nonzero.

Consequently, for V = V0̄ + V1̄ we have:
(1) Both Peirce components {e1, V0̄, e1} and {e2, V0̄, e2} are nonzero,
(2) V1̄ �= (0).
Let’s consider the subspace S = RV (J0̄) +DV (J1̄, J1̄) ⊆ EndF (V ).

Lemma 8.7. If S acts completely reducibly on V , then V is a completely reducible
J-bimodule.

Proof. The Peirce component {e1, V0̄, e1} is S-invariant. Let (0) �= W ⊆ {e1, V0̄, e1}
be an irreducible S-module.

Claim 1. Let us show that W̃ = W +WJ1̄ +WU(J1̄, J1̄) is a J-subbimodule of V .
Indeed, R(J1̄)R(J1̄) ⊆ D(J1̄, J1̄) + U(J1̄, J1̄) +R(J0̄). Hence

(WJ1̄)J1̄ ⊆ WS +WU(J1̄, J1̄) ⊆ W +WU(J1̄, J1̄) ⊆ W̃ .

We will prove that WR(J1̄)R(J0̄) ⊆ WR(J1̄). Indeed, if w ∈ W , a ∈ {e2, J0̄, e2},
then D(w, a) = 0, which implies that wR(J1̄)R(a) = wR(J1̄a) ⊆ wR(J1̄).

Now let a ∈ {e1, J0̄, e1}. Then {w, J1̄, a} = (0), which implies that wR(J1̄)R(a)
⊆ wR(a)R(J1̄) + wR(J1̄a) ⊆ WR(J1̄).
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The claim follows from the following inclusions:

U(J1̄, J1̄)R(J0̄) ⊆ R(J0̄)U(J1̄, J1̄) + U(J1̄, J1̄),

U(J1̄, J1̄)R(J1̄) ⊆ R(J1̄)R(J1̄)R(J1̄) +R(J0̄)R(J1̄),

R(J1̄)R(J1̄)R(J1̄) ⊆ D(J1̄, J1̄) +R(J1̄) +R(J0̄)R(J1̄).

Claim 2. W̃ is an irreducible J-bimodule.

Indeed, {e1, W̃ , e1} = W . IfW ′ is a proper J-bimodule of W̃ , thenW ′∩W = (0);
henceW ′

0̄ = {e2,W ′
0̄, e2}, which contradicts property (1) of irreducible J-bimodules.

Let V ′ be the sum of all irreducible subbimodules of V . We have proved that
{e1, V0̄, e1} ⊆ V ′ and similarly, {e2, V0̄, e2} ⊆ V ′. Since there are no nonzero unital
J-bimodules whose even part is zero, we conclude that V/V ′ = (0), that is, V = V ′,
which proves the lemma.

Lemma 8.8. (1) If J = Josp(m, 2n), then S ⊆ RV (J0̄) +DV (J0̄, J0̄).
(2) Let J = Mm+n(F )(+). Let’s denote as xip (respectively xpi) the matrix whose

element (i, p) (respectively (p, i)) is equal to 1 and the rest of the elements are equal
to zero, where 1 ≤ i ≤ m, m+ 1 ≤ p ≤ m+ n.

Let z =
∑

1≤i≤m,m+1≤p≤m+nDV (xip, xpi). Then S ⊆ RV (J0̄)+DV (J0̄, J0̄)+Fz.

Proof. Let L = K̃(J) be the Lie superalgebra that is the universal Tits-Kantor-
Koecher construction of Josp(m, 2n) (orthosymplectic Lie superalgebra). Then the
even part L0̄ is semisimple and L0̄ = J−

0̄
+ [J−

0̄
, J+

0̄
] + J+

0̄
(see [2]), which implies

(1).
The universal TKK-superalgebra of Mm+n(F )(+) is isomorphic to

[M2m+2n(F )(−),M2m+2n(F )(−)] = {
(
a b
c d

)
: a ∈ M2m(F ),

b ∈ M2m,2n(F ), c ∈ M2n,2m(F ), d ∈ M2n(F ), tr(a) = tr(d)}.

Furthermore, J−
0̄
+ [J−

0̄
, J+

0̄
] + J+

0̄
=

(
sl2m 0
0 sl2n

)
and

L0̄ = J−
0̄
+ [J−

0̄
, J+

0̄
] + J+

0̄
+ F

(
2nI2m 0

0 2mI2n

)
,

which implies (2) and proves the lemma.

The two previous lemmas imply complete reducibility of the unital bimodules
over Josp(m, 2n). With respect to the complete reducibility of unital bimodules
over Mm+n(F )(+), it is only needed to prove that the action of z on V is diagonal-
izable.

Lemma 8.9. The linear transformation z is diagonalizable.

Proof. It is easy to see that the linear transformationsDV (xip, xpi) andDV (xjq, xqj)
commute. Consequently we only need to prove that DV (xip, xpi) is diagonalizable.

We will prove that DV (x1,m+1, xm+1,1) is diagonalizable.

Step 1. The inner derivation DJ (x1,m+1, xm+1,1) is diagonalizable since
yDJ (x1,m+1, xm+1,1) = [y, [x1,m+1, xm+1,1]] and [x1,m+1, xm+1,1] = e11+ em+1,m+1

is a diagonal matrix.
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Step 2. Without loss of generality we will assume that m ≥ n. Hence, m ≥ 2.
Let us denote V ′ = {e22, V, e11 + em+1,m+1}. We claim that V ′ generates the J-
bimodule V . Indeed, let V̄ = V/V ′R〈J〉. Then {e22, V̄ , e11 + em+1,m+1} = (0),
which implies {e22, V̄ , e11} = {e22, V̄ , em+1,m+1} = (0).

Since eii is strongly connected to e22 and epp is strongly connected to em+1,m+1,
for 1 ≤ i ≤ m, m + 1 ≤ p ≤ m + n, it follows that {eii, V̄ , epp} = (0). Hence
{e1, V̄ , e2} = (0), where e1 = e11 + · · · + emm, e2 = em+1,m+1 + · · · + em+n,m+n.
From the classification of irreducible J-bimodules we conclude that V̄ = (0).

Step 3. It suffices to prove that D(x1,m+1, xm+1,1) acts diagonally on V ′.
Let A = RV ′(x1,m+1) and B = RV ′(xm+1,1). Hence D(x1,m+1, xm+1,1) = AB +

BA.
We have

A2 = D(x1,m+1, x1,m+1) = 2D(e12.x2,m+1, x1,m+1)

= 2D(e12, [x2,m+1, x1,m+1]) + 2D(x2,m+1, e12.x1,m+1) = 0.

Similarly, B2 = 0.
Furthermore, {x1,m+1, V

′, xm+1,1} = 0. Hence,

UV ′(x1,m+1, xm+1,1) = AB −BA−RV ′([x1,m+1, xm+1,1]) = 0,

which implies that AB −BA = RV ′(e11 − em+1,m+1). Similarly,

UV ′(e11 − em+1,m+1) = 2RV ′(e11 − em+1,m+1)
2 −RV ′(e11 + em+1,m+1) = 0.

Hence (AB −BA)2 = 1
2RV ′(e11 + em+1,m+1) =

1
4IdV ′ and hence

(AB +BA)2 = ABAB +ABBA+BAAB + BABA = (AB −BA)2 =
1

4
IdV ′ .

This implies that DV ′(x1,m+1, xm+1,1) = AB + BA is diagonalizable. The lemma
is proved.
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