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a b s t r a c t

A clustering method to group independent fuzzy random variables observed on a sample
by focusing on their expected values is developed. The procedure is iterative and based
on the p-value of a multi-sample bootstrap test. Thus, it simultaneously takes into account
fuzziness and stochastic variability. Moreover, an objective stopping criterion leading to
statistically equal groups different from each other is provided. Some simulations to show
the performance of this inferential approach are included. The results are illustrated by
means of a case study.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Experimental data are often affected by several sources of uncertainty, namely, randomness, vagueness, imprecision,
ambiguity, etc. Probability and statistics have proved to be sound theories to handle with uncertainty due to randomness,
while fuzzy sets are increasingly used to deal with imprecision or vagueness of the data (see, for instance, [11,24,28]).

Fuzzy random variables (FRV) arose to model experiments in which both randomness and imprecision are present (see,
for instance, [4,21,31]). They have been used in various areas like forestry, hydrology and economics (see, for instance,
[1,5,10]).

The theory of FRVs in Puri and Ralescu’s sense [31] is fully meaningful when the results of the random experiments are
‘purely fuzzy’, and the aim is to obtain conclusions regarding the fuzzy data. Nevertheless, there are other experiments in
which the aim is focused on a real-valued random variable, although for any reason this variable cannot be precisely ob-
served, and only a fuzzy perception is available. A common approach to handle these kinds of experiments is based on
the extension principle [32]. Namely, the statistical procedures are developed from the corresponding ones for the underly-
ing real-valued random variable, and the uncertainty due to the ill-observation is propagated through the extension princi-
ple (see, for instance [13]).

Statistical inference with fuzzy components has been tackled from different perspectives in the literature (see, for in-
stance, [2,13,16,17,25–27,30]). In this paper, precise statistical models for fuzzy data (and not for any real-valued underlying
variable) will be considered. Then Puri and Ralescu’s concept of FRV [31] is employed (i.e., a FRV is identified with a random
element whose values are fuzzy sets).

The aim here is to develop clustering methods for grouping features when the available data is a k� n matrix of fuzzy sets
obtained from the observation of k independent FRVs on n independent statistical units.
. All rights reserved.
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Fig. 1. Different types of clustering approaches.
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The common purpose of any cluster analysis is to find a priori unknown groups. The assumption is that the elements of
the dataset (objects or variables) within a cluster are in some sense more similar to each other than to objects or variables in
other clusters. The position of our problem within a general scheme of different types of clustering approaches is shown in
Fig. 1.

The focus here is on hierarchical clustering of variables, which is useful, for instance, to replace a class of closely related
variables by a single representative, or a combination, for subsequent analysis [15]. The similarity between variables is typ-
ically measured by their correlation, although different proposals have been made in the literature depending on the nature
of the considered variables (see, for instance, [19,3,12,23]).

In this work, we will find clusters of fuzzy features by comparing the sample means and by taking into account the sto-
chastic variability. Several (fuzzy) clustering of fuzzy data have been developed (see, for instance, [14] and the references
therein). A first attempt to develop a clustering method for random variables gathering both the imprecision and the statis-
tical variability has been advanced in [9] and will be recalled in Section 4. However, the final solution of the approach in [9]
had not statistical significance. The aim of this paper is to present a computationally feasible method that overcomes this
problem.

Classical clustering procedures based on distances computed from the fuzzy data matrix do not take into account the sto-
chastic variability. Thus, in order to consider the relative statistical variability we propose to develop a procedure inspired
from the ideas in [23] based on the p-value of a multi-sample test for the expectations of FRVs (see [16]). This approach is
interesting in different settings. For instance, in sociological surveys, people are often asked to answer questions about a to-
pic using a discrete scale from 1 to 5, 1 meaning ‘‘total disagreement” (or ‘‘the worst option”), and 5 meaning ‘‘total agree-
ment” (or ‘‘the best option”). However, if people are allowed to express the ‘‘degree of precision’ of their opinions, the sample
information is more expressive. This kind of sample information may be properly described by means of fuzzy sets as shown
in the example of Section 6. The technique presented in Section 4 is useful to group either questions which produce similar
mean responses, or people with similar mean perceptions about the topic.

The main advantage of the approach we propose is that an objective stopping criterion for the iterative clustering is ob-
tained. Thus, it is not necessary to fix the number of clusters, and when the process concludes, statistically equal groups dif-
ferent from each other are obtained.

Some simulations to illustrate the performance of the clustering algorithm and a case study will be also shown.
The rest of the manuscript is organized as follows. In Section 2 some preliminary concepts and results concerning FRVs

are recalled. In Section 3 the clustering criterion is established. Since it is based on the bootstrap multi-sample hypothesis
test for the expectations FRVs, the testing procedure is briefly explained. In Section 4 we introduce the iterative procedure to
get the clusters on the basis of the p-value of the test. Some simulation studies are shown in Section 5. In Section 6 the iter-
ative procedure is illustrated by means of real-life experiment, and a comparison with some basic hierarchical clustering
algorithms is carried out. Finally, some concluding remarks and open problems are gathered in Section 7.
2. Preliminaries

Let FcðRÞ denote the class of fuzzy numbers U : R! ½0;1� whose b-levels Ub are nonempty compact intervals of R, for all
b 2 ½0;1�, where Ub ¼ fx 2 RjUðxÞP bg for all b 2 ð0;1�, and U0 is the closure of fx 2 RjUðxÞ > 0g. Zadeh’s extension principle
[31] allows us to endow the space FcðRÞ with a sum and a product by a scalar satisfying
ðU þ VÞb ¼ Ub þ Vb ¼ fuþ vju 2 Ub;v 2 Vbg and ðkUÞb ¼ kUb ¼ fkuju 2 Ubg
for all U;V 2FcðRÞ, k 2 R and b 2 ½0;1�.
The multi-sample tests for FRVs in the literature (see, for instance, [25,16]) are established in terms of the ðW ;uÞ-distance

[6] defined by
Du
WðU;VÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
½0;1�

Z
½0;1�
½fUðb; kÞ � fV ðb; kÞ�2dWðkÞduðbÞ

s
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for all U;V 2FcðRÞ, where fUðb; kÞ ¼ ksupUb þ ð1� kÞinf Ub. The weighting measures W and u can be formalized as proba-
bility measures on ð½0;1�;B½0;1�Þ (B½0;1� being the Borel r-field on [0,1]), where W is assumed to be associated with a nonde-
generate distribution, and u is assumed to have a strictly increasing distribution function on [0,1] (although these
assumptions do not entail in fact a stochastic meaning for W and u). In [29] it is shown that Du

W is invariant to rigid motions
if, and only if, the first moment of W is 1/2, and in this case, Du

W may be alternatively written as
Du
W ðU;VÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
½0;1�
ðmidUa �midVaÞ2 þ hWðsprUa � sprVaÞ2duðaÞ

s
;

where mid stands for the center of any interval, spr for the half of the length, and hW ¼
R
½0;1�ð2t � 1Þ2dWðtÞ. It can be shown

that 0 < hW 6 1. Thus, the measure W determines the relative importance of the squared distance between the spreads in
relationship with the squared distance between the centers through the weight hW . Since 0 < hW 6 1 the importance of
the spreads should be no greater than that of the mid-points. If W is chosen to be the Lebesgue measure, then the relative
importance of the spreads is hW ¼ 1=3. On the other hand, u weights the importance of the level sets. For instance, the Lebes-
gue measure assigns the same importance to every a-level u, however to give more mass to a-levels close to 1 a different
distribution (usually a Beta one) may be chosen. Further discussions and a generalization of this metric for the multi-dimen-
sional setting can be found in [29].

If ðX;A; PÞ is a probability space, a (FcðRÞ-valued) fuzzy random variable (FRV) [31] is a mapping X : X!FcðRÞ so that
the set-valued b-level mappings Xb : X!KcðRÞ are random sets for all b 2 ½0;1�, that is, the Xb are Borel-measurable map-
pings when the Hausdorff metric is considered on KcðRÞ ¼ fnonempty compact intervals of Rg. Equivalently, a FRV can be
defined as a Borel-measurable function w.r.t. the Du

W -metric (see [7,20]). We will say that a FRV is simple if the cardinality of
XðXÞ is finite.

The expected value (or mean) of an integrably bounded FRV X (that is, X satisfying maxfjinf X0j; jsupX0jg 2 L1ðX;A; PÞ,
where X0 stands for the 0-level or support of X), is the unique EðXÞ 2FcðRÞ such that ðEðXÞÞb is the Aumman integral of
the random set Xb for all b 2 ½0;1� (see [31]), that is,
ðEðXÞÞb ¼ fEðf Þjf : X! R; f 2 L1; f 2 Xb; a:s:� ½P�g
¼ ½Eðinf XbÞ; EðsupXbÞ� for all; b 2 ½0;1�:
If X is a FRV so that maxfjinf X0j; jsupX0jg 2 L2ðX;A; PÞ, the ðW ;uÞ-variance of X (see [22,20]) is given by:
VarðXÞ ¼ Eð½Du
WðX; EðXÞÞ�

2Þ:
In this work we will make use of the variance to quantify the variability of the fuzzy values of the FRV about its expected
value. As it is mentioned in the introduction, the nature of the values of the random elements considered here is purely fuzzy,
and the statistical aim refers to these values. Then, the distance-based variance is meaningful as a measure of the error of
approximating the fuzzy values by their expected value. However, when the aim concerns an imprecisely observed under-
lying real-valued variable, one may also consider an imprecise variance (interval or fuzzy-valued) by propagating the uncer-
tainty due to the imperfect observation process.
3. Clustering criterion: the multi-sample test

The goal in this paper is to develop a method to group k independent FRVs by focusing on the expected value. Formally, let
ðX;A; PÞ be a probability space and let Xi : X!FcðRÞwith i ¼ 1; . . . ; k be k independent simple FRVs. The objective is to find
groups Cl � f1; . . . ; kg in such a way that the FRVs in each group have the same population expected value, that is,
i1; . . . ikl

2 Cl whenever EðXi1 Þ ¼ � � � ¼ EðXikl
Þ.

Since it is unusual to know population expected values, some inferential technique should be applied to check the equal-
ity of population means from a sample. A sample of k FRVs ðX1; . . . ;XkÞ on n independent statistical units can be arranged in
a fuzzy data matrix f~xi;jgj¼1;...;n

i¼1;...;k with ~xi;j 2FcðRÞ. It should be noticed that this matrix is the result of a random generation
process of fuzzy data. Formally, for each i ¼ 1; . . . ; k we consider a simple random sample Xi;1; . . . ;Xi;n, that is, a set of inde-
pendent FRV distributed as Xi.

In order to test whether the expected values of kl FRVs are equal we can employ the multi-sample bootstrap test in [16]
based on the decomposition of the variability. Let C ¼ fi1; . . . ; ikC

g � f1; . . . ; kg be a generic set of indices with cardinality kC .
The sample mean and the sample variance corresponding to each population are given by
Xi ¼
1
n
ðXi;1 þ � � � þXi;nÞ and bS2

i ¼
1
n

Xn

k¼1

Du
W ðXi;j;XiÞ

� �2
and the overall mean corresponding to the group C is given by
XC ¼
1
kC
ðXi1 þ � � � þXikc

Þ:
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Let a be the significance level. The basic statistic T to test the null hypothesis H0 : EðXi1 Þ ¼ � � � ¼ EðXikC
Þ is inspired by the

classical analysis of variance (ANOVA) test statistic. To be precise, since the Du
W allows us to decompose the overall variability

as the sum of the variability between the groups plus the variabilities within the groups, T is
T ¼
P

i2Cn½Du
WðXi;XCÞ�2P

i2C

Pn
j¼1½D

u
W ðXi;j;XiÞ�2

:

Large values of this statistic would imply that the difference between the sample means of the groups is relatively too large
and the null hypothesis should be rejected. In [16] it is shown that the asymptotic distribution of this statistic is not efficient
to compute the critical values, and a bootstrap procedure is suggested.

The bootstrap statistic T� is defined as follows. Let the bootstrap populations with a common fuzzy mean be defined for
each i 2 C as a new FRV Y�i taking on values Xi;1 þX�i; . . . ;Xi;n þX�i, where X�i is the (fuzzy) sum of all the available sample
means in C but without the ith one. Then, we will resample from these new populations, that is, for any i 2 C we draw a sam-
ple of n independent observations Y�i1; . . . ;Y�in from Y�i . The bootstrap test statistic is given by
T� ¼
P

i2Cn½Du
WðY�i ;Y�CÞ�

2P
i2C

Pn
j¼1 Du

WðY�i;j;Y�i Þ
h i2 :
The p-value of the bootstrap test is the probability of T� > T . The distribution of the bootstrap statistic can be approximated,
as usual, by Monte Carlo simulation. The Monte Carlo approximation requires to simulate ðY�i;1; . . . ;Y�i;nÞ from each bootstrap
population Y�i a large numbers of times B in order to obtain a large sample of values of the statistic fT�1; . . . ; T�Bg close enough
to the population distribution. The usual values of B range from 1000 to 10,000. Thus, the p-value is approximately the pro-
portion of values in T�1; . . . ; T�B greater than or equal to the value of the statistic T. The null hypothesis of equality of popula-
tion means will be rejected whenever the bootstrap p-value is lower than a.
4. Clustering method

In the time series context, [23] shows the use of the p-value of a two-sample test in order to get a matrix of similarities to
apply later a hierarchical clustering. Based on the same idea, we propose to use the p-value to cluster FRVs.

A first attempt to consider the p-values to cluster FRVs is described in [9] and can be summarized as follows. Let
Xi;1; . . . ;Xi;n be the sample of independent FRV distributed as Xi for each i ¼ 1; . . . ; k. In these conditions we can apply pair-
wise the two-samples tests in [25] for each i1; i2 2 f1; . . . ; kg. Thus, we denote by pi1 ;i2 the p-value of the test
H0 : EðXi1 Þ ¼ EðXi2 Þ. According to [23] we use the similarity measure dði1; i2Þ ¼ 1� pi1 ;i2 to obtain a hierarchical clustering
method with any of the usual linkage criteria. Since the p-value of the two-sample test can be interpreted as a kind of ‘‘rel-
ative distance” between the population expected values, this clustering procedure agrees with the original target of grouping
fuzzy random variables with similar expected values.

Since both the variables and the individuals are independent, the procedure may be used to cluster either the variables or
the individuals. Nevertheless, this preliminary approach only considers the inferential process in a first stage (to obtain the
matrix of similarities to be used in all the hierarchical process), and it is not possible to guarantee that the elements clustered
at any other stage are really statistically equal. For this reason, we introduce a new iterative method.

If the aim is clustering, for instance, the variables, once we have linked two variables, we have a group with a sample of
size 2� n (2 data of n individuals). Then, we can apply again the two-sample test to compare the new cluster with other
variable (for which we have a sample of size n), because the independence of the variables and the individuals assures that
the available data for the new group is again a random sample. However, if we compare groups with very different sample
sizes (as 2� n versus n), the two-sample test is not efficient (Beren–Fisher problem). In contrast, we will employ the multi-
sample test which produces much more suitable results.

The procedure we propose here consists in starting with the singleton groups Cl ¼ flg and computing the symmetric ma-
trix of p-values obtained from the bootstrap tests H0 : EðXi1 Þ ¼ EðXi2 Þ for all i1; i2 2 f1; . . . ; kg. If there is any p-value greater
than or equal to the fixed significance level a, then the corresponding groups should be linked. Otherwise, the groups would
be pairwise different at this significance level, and the process should terminate. At each stage, we should link the two
groups of variables with the greatest p-value (whenever it be greater than or equal to a) and start again the process by con-
sidering the new group.

The stopping criterion of the iterative clustering procedure is then determined by the significance level, that is, by the
probability of type I error that we are willing to tolerate. The usual levels in Statistics that allow us to balance the probability
of type I and II ranges from 0.01 to 0.1.

The naive implementation of this procedure implies a high computational cost, because it is necessary to approximate the
distributions of the bootstrap statistics by Monte Carlo and it entails the computation of many distances between fuzzy sets
(between/within variability). However, in Proposition 4.1 we will show an alternative expression of the ‘‘between variability
within each group C” that will allow us to compute most of the necessary quantities in terms of some other ones computed at
the beginning of the process. In order to introduce the decomposition some further notation is required.
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Let X>i ¼ Xi;1 þ � � � þXi;n be the overall sum on each sample i ¼ 1; . . . ; k, X>C ¼ X>i1 þ � � � þX>ikc
be the overall sum in a group

C and S2>
C ¼

P
i2C
bS2

i be the sample variance sum in the group C.
The aim of Proposition 4.1 is to decompose the ‘‘between variability within any group C” for each simulation considered

for the Monte Carlo approximation of the distribution of the bootstrap statistic. Thus, consider a simulated sample
ðX�i;1; . . . ;X�i;nÞ of i.i.d. FRVs from fXi;1; . . . ;Xi;ng for each i 2 C. If we set Y�i;j ¼ X�i;j þX�i for all i 2 C and j ¼ 1; . . . ;n then,
ðY�i;1; . . . ;Y�i;nÞ is a sample of i.i.d. random variables from the bootstrap population Y�i defined in Section 3. Let ~0 be the null
fuzzy set (i.e., the characteristic set of the singleton {0}). The next result can be proved by using the expression of the metric
Du

W in terms of the support functions (see [20]).

Proposition 4.1. The between variability within any group C � f1; . . . ; kg can be decomposed as follows:

(i)
P

i2Cn Du
WðXi;XCÞ

� �2 ¼
P

i2C
1
n Du

W ðX>i ; ~0Þ
h i2

� 1
nkC

Du
WðX>C ; ~0Þ

h i2
,

(ii)
P

i2Cn Du
WðY�i ;Y�CÞ

� �2 ¼
P

i2C
1
n

h
Du

WðX�i
>;X>i Þ

i2
� 1

nkC

h
Du

WðX�C
>;X>C Þ

i2
.

Proposition 4.1 states that, for any group C, the between variability can be computed in terms of the overall sum in each of
the populations in C of their distances to the fuzzy set 0 and a unique new distance. In the same way, the between variability
for each bootstrap sample can be computed in terms of the distances of the overall sums of the sample and the resample and
a new term. Then, if the resample process for all the Monte Carlo approximations is made at the beginning, we can compute
in a first step the corresponding distances for the k populations and the computational effort of the naive approach is sub-
stantially improved.

On the basis of the previous comments and this proposition, the clustering algorithm can be applied in practice as follows.
In a first step the significance level determining the stopping criterion and the initial solution is fixed. In a second step all the
resamples to make the Monte Carlo approximation are drawn. Next, the basic quantities of the decomposition of the ‘‘between
variability” stated in Proposition 4.1 for the k population (Step 3) and the corresponding bootstrap samples (Step 4) are
respectively computed (note that the ‘‘between variability” corresponding to the bootstrap samples Y�i is simply written in
Proposition 4.1 in terms of X�i ). Then, the p-values of the bootstrap tests are computed (Step 5). A p-value greater than the
significance level implies that the involved groups are statistically equal and should be linked. In this case, two groups with
the greatest p-value are linked and the process starts again with this new solution. Otherwise the algorithm ends. That is:

Clustering algorithm

Step 1. Fix a significance level a, the number of bootstrap replications B and consider the singleton clusters fig with
i ¼ 1; . . . ; k.

Step 2. Obtain B samples of i.i.d. random variables ðXb�
i;1; . . . ;Xb�

i;nÞ ðb ¼ 1; . . . ;BÞ from ðXi;1; . . . ;Xi;nÞ for each i ¼ 1; . . . ; k.
Step 3. For each cluster C compute X>C , S2

C

>
and DC ¼ ½DðX>C ; e0Þ�2=n.

Step 4. For each cluster C and each b ¼ 1; . . . ;B, compute the overall sum and sample variance sum of each resample b, that
is, Xb�>

C , S2b�>
C and Db�

C ¼ ½DðXb�>
C ;X>C Þ�

2=n.
Step 5. For each pair of clusters C1 and C2 compute the associate p-value pC1 ;C2

by using Monte Carlo method as follows:
1. Set countC1 ;C2 ¼ 0 and compute the value of the k-sample test statistic
T ¼
ðDC1 þ DC2 Þ � ½DðX

>
C1
þX>C2

; ~0Þ�2=ðnðkC1 þ kC2 ÞÞ
S2>

C1
þ S2>

C2

:

2. For each b ¼ 1; . . . ;B compute the value of the bootstrap statistic
Tb� ¼
ðDb�

C1
þ Db�

C2
Þ �

DðXb�>
C1
þXb�>

C2
;X>C1

þX>C2
Þ2

ðnðkC1
þkC2

ÞÞ

S2b�>
C1
þ S2b�>

C2

:

3. For each b ¼ 1; . . . ;B, IF Tb� > T , THEN countC1 ;C2 ¼ countC1 ;C2 þ 1.
4. Compute the bootstrap p-value pC1 ;C2

¼ countC1 ;C2=B.

Step 6. Find the greatest p-value Gp and label by CA and CB one of the couples with this p-value.
Step 7. IF Gp P a, THEN link the groups CA and CB in a new group C ¼ CA [ CB and compute the quantities in Steps 2 and 4

for this new group, that is,
X>C ¼ X>CA
þX>CB

; S2>
C ¼ S2>

CA
þ S2>

CB
; and DC� ¼ ½DðX>C ; ~0Þ�

2
=n;

and for each b ¼ 1; . . . B,

Xb�>
C ; S2b�>

C ; and Db�
C ¼ ½DðXb�>

C ;X>C Þ�
2
=n:

Finally, compute the p-values between the new group and the other ones as in Step 5.1–4 and GO TO Step 6;
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ELSE Stop.
The next theorem shows that the clusters obtained by applying this approach are statistically pairwise different, and the

FRVs within each cluster are statistically equal in mean.

Theorem 4.1. The above Clustering algorithm generates groups C1 . . . Cm such that

(1) for all l1 – l2 2 f1; . . . ;mg there exists i1 2 Cl1 and i2 2 Cl2 so that li1
– li2

at the fixed significance level a;
(2) all the FRVs Xi in the cluster Cl have the same (fuzzy) expected value ll at the fixed significance level a.

Proof. Concerning (1), let Cl1 and Cl2 be two clusters of the final solution. Since the algorithm terminates when the null
hypothesis of equality of expected values of the variables belonging to the joint set is rejected (at the significance level a)
for every pair of clusters, then there exists at least i1 2 Cl1 and i2 2 Cl2 so that li1

–li2
. Otherwise the null hypothesis would

not have been rejected and the algorithm would continue.
On the other hand, let Cl be a cluster of the final solution. If Cl is a singleton, (2) is obvious. Otherwise, Cl was obtained at

the end of an iteration in which the hypothesis of equality of the fuzzy expected values of the variables belonging to this
cluster was not rejected, otherwise the linking criterion would not have been fulfilled. Then, the expected value of all FRVs Xi

in Cl is the same. h

Theorem 4.1 shows the main advantages of the clustering procedure proposed in this paper. In contrast to classical meth-
ods, as hierarchical clustering or k-means clustering approaches, we assure that the groups are statistically equal and differ-
ent from each other. In addition it is not necessary to fix the number of clusters or to apply further procedures to find the
optimal configuration, because it is automatically (and objectively) determined by the probability of type I error that we are
willing to tolerate.

It should be noted that the iterative process prevents us from finding a global significance level of the approach. On the
other hand, the clustering procedure in this section may be also interpreted as a ‘‘post hoc” statistical procedure to determine
equal sub-groups when the hypothesis of equality of all the population means is rejected by the bootstrap multi-sample test.

5. Simulation studies

Simulations in this section are considered to illustrate the statistical validity of the inferential conclusions contained in
Theorem 4.1. Weighted measures W and u have been chosen to be the Lebesgue measure on [0,1]. Each simulation corre-
sponds to 10,000 iterations, the number of bootstrap replications was 1000, and the significance level a was chosen to be
equal to 0.05.

In order to simulate general FRVs the methodology introduced in [18] has been employed. A finite number of n0 ¼ 101
equally spaced alpha cuts ðai ¼ ði� 1Þ=ðn0 � 1Þ; i ¼ 1; . . . ;n0Þ has been fixed. Three FRVs X1;X2 and X3 with different expec-
tations were simulated. In Table 1 the parameters defining these FRVs according to the methodology in [18] are established.
Fuzzy set V in Table 1 stands for the expectation of the corresponding FRV. Concretely, it is recursively defined level-wise by
means of
Table 1
Parame

X1

X2

X3
V1�a1 ¼ Vc þ ½�cl
1; c

r
1� with ck

1 ¼ VkFkða1Þ; k ¼ l; r;

V1�ai
¼ V1�ai�1

þ ½�cl
i; c

r
i � with ck

i ¼ VkFkðaiÞ � ck
i�1; k ¼ l; r; i ¼ 2; . . . ;n0:
On the other hand, C is connected with the way of perturbing the above-defined coefficients. To be precise, a general FRV X is
level-wise defined as follows:
X1�a1 ¼ C0 þ ½�cl
1Tl

i; c
r
1Tr

i �; X1�ai
¼ X1�ai�1

þ ½�cl
iT

l
i; c

r
i T

r
i �; i ¼ 2; . . . ;n0;
where ðC0; Tl
1; . . . ; Tl

n0
; Tr

1; . . . ; Tr
n0
Þ is an R2n0þ1-valued random vector determined by the ð2n0 þ 1Þ-dimensional copula Cp and

with marginal distributions C0 � D0, Tl
i � Dl and Tr

i � Dr , i ¼ 1; . . . ;n0.
Simulations concerning the probabilities of type I error have been firstly developed. In Table 2, k populations with the

same mean (all of them distributed as X1) have been simulated for different values of k, and the frequency distribution of
the obtained number of clusters has been recorded. Since the bootstrap techniques produce suitable results for moderate
ters defining the FRVs for the simulation approach in [18].

V ¼ ½Vc ;Vl;Vr ; Fl; Fr � C ¼ ½D0;Dl;Dr ; Cp�

[3,1,1,Beta(1,1),Beta(1,1)] ½v3;v2=2;v1=
ffiffiffi
2
p

;P�
[4,2,2,Beta(0.5,1),Beta(3,2)] ½Uð0;8Þ;v1=

ffiffiffi
2
p

;v2=2;P�
[5,0.5,0.5,Beta(1,2),Beta(2,1)] ½Nð5;3Þ;v1=

ffiffiffi
2
p

;v3=
ffiffiffi
6
p

;P�



Table 2
Simulations for clustering k variables with equal means. Percentage of the obtained number of clusters ða ¼ 0:05Þ.

k ¼ 5 k ¼ 10 k ¼ 20

1 Cluster 95.36 95.43 95.28
2 Clusters 4.64 4.59 4.72
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sample sizes, we have fixed n ¼ 30. As to be expected, in this case the procedure has a success rate similar to the empirical
size of the bootstrap method.

We have also considered three main populations with different mean values (distributed as X1, X2 and X3, respectively).
The results of the bootstrap procedure depend on both the sample size and the distance between the population means. We
have fixed the distance between the different means and we have considered several sample sizes in order to observe the
improvement. We have simulated three FRVs from the first population, four from the second and two from the third. In Table
3 we have recorded the frequency distribution of the obtained number of clusters. We see that the results are better for large
sample sizes. However, it should be noted that the applied method implies that the larger the sample size is, the higher the
fragmentation.

6. Experimental results

From a survey about the personal experience as graduate students of different people, we have collected the answers to
15 questions which seems to be a representative sample of the perception of such people, in the sense of being independent
(which seems to be supported by the sample data) and covering different aspects. Graduate students, graduates, post-grad-
uate students and post-graduates from different degrees and universities have been considered. A total of 58 people were
asked to evaluate the following aspects:

Q.1 Academic standards.
Q.2 Variety of subjects.
Q.3 Teaching methods.
Q.4 Evaluation system.
Q.5 Practice teaching system.
Q.6 Opportunities for specialization.
Q.7 Academic advising.
Q.8 Technical equipment.
Q.9 Stress on practice.

Q.10 Stress on methodology.
Q.11 Internship programs.
Q.12 Relationship with labor market demands.
Q.13 Opportunity of taking part in I+D projects.
Q.14 Contact with the teachers.
Q.15 Contact with other students.

Although, in these kinds of surveys people are often asked to answer in a discrete scale from 1 to 5, (1 meaning ‘‘total
disagreement”, or ‘‘the worst option”, and 5 meaning ‘‘total agreement”, or ‘‘the best option”), people here were allowed
to express the degree of precision of their opinions by using trapezoidal fuzzy sets. In this way, people fixed the 0-level
as the set of all values that they consider compatible with their opinion to a greater or lesser extent, and the 1-level consists
of all the values that they consider completely compatible with their opinion. In Fig. 2 some of the obtained sample values
are shown.

The trapezoidal sample means as well as the dispersion i:e:;bSi ¼
ffiffiffiffiffibS2

i

q� �
of the sample data are gathered in Table 4. At the

first glance, it is difficult to obtain a classification, since the fuzzy values are not easy to rank, and in the procedure both the
fuzzy mean value and the stochastic variability are involved. In Fig. 3 we have represented the scatter plot of the questions
Table 3
Simulations for clustering 9 FRVs with three different means. Percentage of the obtained number of clusters ða ¼ 0:05Þ.

n ¼ 30 n ¼ 50 n ¼ 100

1 Cluster 4.38 0.09 0
2 Clusters 71.97 37.93 3.12
3 Clusters 23.53 60.58 88.82
4 Clusters 0.12 1.40 7.94
5 Clusters 0 0 0.12



Fig. 2. Triangular and trapezoidal fuzzy description of some sample values.

Table 4
Sample means and dispersions.

infðQiÞ0 infðQiÞ1 supðQiÞ0 supðQiÞ1 Dispersion

Q.1 2.98 3.75 4.21 4.47 0.56
Q.2 3.14 3.96 4.31 4.54 0.66
Q.3 2.76 3.59 3.93 4.29 0.77
Q.4 2.19 2.96 3.38 3.92 0.87
Q.5 2.00 2.71 2.95 3.58 1.11
Q.6 2.54 3.22 3.49 3.93 1.30
Q.7 1.75 2.42 2.76 3.44 1.03
Q.8 2.22 2.86 3.31 3.83 1.06
Q.9 1.97 2.62 2.87 3.51 1.20
Q.10 1.81 2.50 2.75 3.42 1.08
Q.11 1.66 2.16 2.31 3.02 1.23
Q.12 1.81 2.47 2.72 3.36 1.13
Q.13 1.86 2.45 2.70 3.34 1.22
Q.14 2.85 3.66 3.83 4.19 1.23
Q.15 3.14 3.99 4.25 4.47 0.88

Fig. 3. Scatter plot. Sample means vs. dispersion.
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by considering a defuzzification of the sample means (according to the 0.5-average criterion [8]) in the x-axis, and the dis-
persion in the y-axis. Since in our approach the means are more important than the variability, we have weighted the x-scale
to better observe the possible clusters. We observe a clear cluster grouping questions 5, 7, 9, 10, 12 and 13. Question 11 has a
lower 0.5-average, although similar dispersion. Questions 4, 6 and 8 are similar in 0.5-average, but more variable in disper-
sion. Finally, questions 1, 2, 3, 14 and 15 have a greater 0.5-average and are less concentrated both in mean and dispersion.

For comparative purposes, we have applied four clustering procedures, namely,

C1. A classical ‘‘Euclidean-type” distance-based hierarchical clustering (i.e., the similarity between the variables is com-
puted in terms of the sum of the square Du

W -distance between the answer of the different interviewee).
C2. A distance-based hierarchical clustering focused on the fuzzy means (i.e., the similarity between the variables is com-

puted in terms of Du
W -distance between the mean answer of the different respondents).

C3. The hierarchical clustering based on the matrix of similarities provided by the p-value of the two-sample test [9]
explained in Section 4.

C4. The procedure suggested in this paper.

Different linkage criteria were considered for the classical hierarchical clusterings. When different results were obtained,
one close to the intuitive solution in Fig. 3 was chosen. To be precise, we have chosen the Wald linkage for C1 and C2 and
single linkage for C3.
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The results are displayed in Figs. 4–7. C2 and C3 provide us with the same solution than C4 in one of the steps, although
for nonnatural stopping points. In contrast, the results for C1 are completely different (as one may expect, since it is the un-
ique one which does not deal with the means).

The number of cluster is prefixed in none of the procedures, however, while an objective stopping criterion leads auto-
matically to three groups for the C4, further analysis are required to find a suitable cut for the other approaches.

In Table 5 we present the questions in each of the groups determined by C4 (see also Fig. 3). The first group includes the
most highly valued aspect, the second one includes aspect which produces the most indifferent/disperse perception, and the
Fig. 4. Dendrogram of C1.

Fig. 5. Dendrogram of C2.

Fig. 6. Dendrogram of C3.



Fig. 7. Dendrogram of C4 for a ¼ 0:05.

Table 5
Groups of questions with similar mean responses.

Q.1 Academic standards
Q.2 Variety of subjects
Q.3 Teaching methods
Q.14 Contact with the teachers
Q.15 Contact with other students

Q.4 Evaluation system
Q.6 Opportunities for specialization
Q.8 Technical equipment

Q.5 Practice teaching system
Q.7 Academic advising
Q.9 Stress on the practice
Q.10 Stress on methodology
Q.11 Internship programs
Q.12 Relationship with labor market demands
Q.13 Opportunity of taking part in ID projects
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questions with worst response are included in the third group. The conclusions from the applied method can be interpreted
by saying that people consider that the background acquired at the university (standards, subjects, teaching quality, and so
on) is a good one, but the implementation of this background to practice (practice and training systems, useful advising,. . .)
does not fit their expectations.

7. Conclusions

We have suggested a partition algorithm for classifying FRVs based on a statistical test procedure. We explicitly consid-
ered in the clustering process a double source of uncertainty: randomness and fuzziness. In this sense, the main features of
the suggested clustering procedures are:

	 the possibility of applying the clustering algorithms in various observational settings, including some of the usual cate-
gorical data such as subjective judgments, imprecise measurements and so on;

	 the use of fuzzy sets to represent the imprecision or vagueness of data obtained in a random experiment;
	 the use of powerful inferential tools concerning FRVs;
	 the consideration of suitable proximity distances between FRVs and fuzzy data taking into account randomness and

fuzziness.

In contract to classical methods, the approach in this paper leads to statistically equal groups different from each other
with an objective and natural stopping criterion.

Since the clustering method is based on a multi-sample tests for independent FRVs, the approach could be applied also in
the case of samples with different size, and may be also interpreted as a ‘‘post hoc” statistical procedure to determine equal
sub-groups when the hypothesis of equality of all the population means is rejected by the bootstrap multi-sample test.

The performance of the clustering algorithms for FRVs was checked by means of a simulation study and a real-life
application.
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Some future directions related to the research in this paper concern the classification of dependent FRVs, the partition of
FRVs based on fuzzy (nonhierarchical) clustering procedures, the clustering of FRVs based on mixture models, the cluster
analysis of more complex data (e.g., fuzzy random three-ways arrays, fuzzy random time arrays, and so on), along with com-
parative studies.
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