
 1

Automated test data generation using a Scatter Search approach  

Raquel Blanco(1)*, Javier Tuya(1), Belarmino Adenso-Díaz(2) 
(1)Department of Computer Science, (2)Department of Management Science 

University of Oviedo 

Campus de Viesques, Gijón, Asturias, 33204 Spain 

{rblanco | tuya | adenso}@uniovi.es 

Abstract 

The techniques for the automatic generation of test cases try to efficiently find a small set of 

cases that allow a given adequacy criterion to be fulfilled, thus contributing to a reduction in the 

cost of software testing. In this paper we present and analyze two versions of an approach based 

on the Scatter Search metaheuristic technique for the automatic generation of software test cases 

using a branch coverage adequacy criterion. The first test case generator, called TCSS, uses a 

diversity property to extend the search of test cases to all branches of the program under test in 

order to generate test cases that cover these. The second, called TCSS-LS, is an extension of the 

previous test case generator which combines the diversity property with a local search method 

that allows the intensification of the search for test cases that cover the difficult branches. We 

present the results obtained by our generators and carry out a detailed comparison with many 

other generators, showing a good performance of our approach. 

Keywords: Software testing, automatic test case generation, branch coverage, Scatter Search, 

Local Search, metaheuristic search techniques. 

1 Introduction 

Software testing is the process of executing a program in order to find faults, thus helping 

developers to improve the quality of the product when the discovered faults are solved and 

reducing the cost produced by these faults. A software test consists of a set of test cases, each of 

which is made up of the input of the program, called test data, and the output that must be 

obtained. As the target of software testing is to find faults, a test is successful if an error is 

found. 

Testing is a very important, though expensive phase in software development and maintenance; 

it has been estimated that software testing entails between 30 percent [28] and 50 percent [4] of 
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software development. A challenging part of this phase entails the generation of test cases. This 

generation is crucial to the success of the test because it is impossible to achieve a fully tested 

program given that the number of test cases needed for fully testing a software program is 

infinite [46], and a suitable design of test cases will be able to detect a great number of faults. 

For these reasons, the techniques for automatic generation of test cases try to efficiently find a 

small set of cases that allow an adequacy criterion† to be fulfilled, thus reducing the cost of 

software testing [22][51] and resulting in more efficient testing of software products . 

The search for an optimal solution in the test case generation problem has a great computational 

cost and for this reason these techniques try to obtain near optimal solutions. As a consequence, 

they have attracted growing interest from many researchers in recent years. On the other hand, 

the nature of Software Engineering problems is ideal for the application of metaheuristic 

techniques, as is shown in the work of Harman & Jones [27], and besides they obtain good 

results in test case generations [38]. The search space of solutions in test case generation is very 

large and many metaheuristic techniques explore a region closer to a specific solution. The 

metaheuristic technique known as Scatter Search [24] has obtained good results in many 

combinatorial problems, including the set covering problem [50], routing problems [5][52] and 

the project scheduling problem [64]. These problems have a similar structure as the problem we 

deal here: they are modelled by means of a graph and their objective is to find a set of solutions 

that allow covering the requirements represented by this graph according to several constraints. 

So the use of Scatter Search to explore the wide search space of solutions of software testing 

seems to be a promising research area.  

Scatter Search [24] is an evolutionary method that works on a population of solutions of the 

problem to be solved (the definition of a solution depends on the specific problem), which are 

stored in a set of solutions (Reference Set). The solutions in this set are combined looking for 

new solutions that hopefully are better than the original ones. The Reference Set stores the best 

solutions that have been generated so far. To determine whether a solution is good, not only its 

quality (cost) but also its diversity in the set of solutions is considered. The diversity of the set 

of solutions is a general concept which indicates the difference among their members in relation 

to certain attribute. A diverse set of solutions allows by the mating of its members a wider 

search space to be explored in order to find solutions. In our case, the solutions are the test data, 
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which must be diverse enough to cover the situations required to fulfill a decision coverage 

criterion. 

The rest of the paper is organized as follows. The next section presents an overview of related 

studies on the automation of test case generation that use metaheuristic search techniques. 

Section 3 details our Scatter Search approaches for the automatic generation of test cases called 

TCSS and its extension, TCSS-LS. In Section 4 we present the results of our generators and 

carry out a comparison with the generators developed by other authors. Finally, Section 5 

presents the conclusions of this paper. 

2 Background 

The test data adequacy criteria used in software testing can be divided into structural testing, 

fault-based testing and error-based testing [65]. Structural testing uses a coverage measure to 

specify the test requirements. Fault-based testing tries to detect faults in the program. Error-

based testing checks the program at certain points that we know to be problematic. Depending 

on the source of information used for test case selection, the above criteria can be also divided 

into program-based, which generate test cases from the code of the program under test, and 

specification-based, which generate test cases from the program specification. 

Several approaches have been used for the automation of test cases generation for program-

based structural testing. Among these approaches, we may distinguish between random 

generation [48], static techniques [16] and dynamic techniques [31]. The random technique 

generates test cases randomly and is widely used to perform comparisons with other techniques. 

This technique has been refined by Adaptive Random Testing [11][12][13], which incorporates 

procedures that aim to obtain an even distribution of test cases. Static techniques generate test 

cases from several constraints based on the input variables of the program under test. Some 

recent studies use constraint solvers [7][34] and constraint logic programming [26][43]. The 

static techniques have several problems, such as the treatment of loops, the resolution of 

computed storage locations or their computational cost [8][41][44]. 

Dynamic techniques carry out a direct search of test cases by means of the execution of the 

program under test, which has been previously instrumented. As the value of all variables is 

known at runtime, many of the problems relating to the static techniques can be avoided [41]. 

Most dynamic techniques use metaheuristic search techniques (Genetic Algorithms, Genetic 

Programming, Simulated Annealing, Tabu Search, Scatter Search, etc.). The application of 

metaheuristic algorithms to solve problems in Software Engineering was proposed by the 

SEMINAL network (Software Engineering using Metaheuristic INnovative ALgorithms) and is 

widely explained in [14]. One of these applications is software testing, in which the testing 
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problem is treated as a search or optimization problem, as is shown in several surveys [38][41]. 

Besides, as has been pointed out previously, this problem is ideal for the application of 

metaheurístic techniques [27]. 

The most widely used metaheuristic technique in this yield is Genetic Algorithms [25]. This 

technique is based on the principles of genetics and Darwin’s theory of evolution. The Genetic 

Algorithm operates on a population which is improved in each iteration of the search by means 

of the use of three natural processes: selection, crossover and mutation. This technique is used 

in many papers to achieve several coverage criteria: Jones et al. [29][30], Miller et al. [45], 

Pargas et al. [51] and Sthamer [54] use Genetic Algorithms to obtain branch coverage, Michael 

et al. [44] to achieve condition-decision coverage, Ahmed & Hermadi [1], Bueno & Jino [8], 

Lin & Yeh [36] and Watkins & Hufnagel [60] to reach path coverage, Wegener et al. [62] to 

obtain several coverage criteria, and Girgis [23] to obtain def-use coverage. Other papers that 

apply Genetic Algorithms to generate test cases are the works of Watkins et al. [61], which use 

two Genetic Algorithms to generate test suites that are then used to train a series of decision tree 

in order to create rules for classifying test cases, Alshraideh & Bottaci [3], which use this 

metaheuristic technique to cover string predicates, Del Grosso et al. [15], which generate test 

cases that detect buffer overflows and Ngo & Tan [47], which present an approach for infeasible 

path detection and integrates it with a test data generator that adopts the test data generation 

technique based on Genetic Algorithms proposed by Tonella [55]. 

Genetic Programming has been used in the work of Emer & Vergilio [21], which present an 

approach called GPBT (Genetic Programming Based Testing) to create alternatives of the 

program under test and describes how this approach can help the tester in selection and 

evaluation of test data sets, and by Vergilio & Pozo [58], which apply the Grammar-Guided 

Genetic Programming (GGGP) approach to the classification task in the context of data mining 

of relational databases and the selection of test cases using the mutation testing adequacy 

criterion in the context of software testing. Simulated annealing has been used by Tracey et al. 

[56] to generate test cases based on the system specifications and to test exceptions, and by 

Waeselynck et al. [59], which investigate measures of landscape to apply this technique to test 

generation. Tabu Search has been used to obtain branch coverage in the works of Díaz et al. 

[19][20] and to obtain branch, path and loop coverage by Díaz [17]. Bueno et al. [9] present a 

new algorithm called Simulated Repulsion to generate diverse test data, according the diversity 

measures proposed in their work, and evaluate the effect of diversity on data flow coverage and 

mutation testing. McMinn & Holcombe [42] describe a hybrid solution that combines the 

principles of evolutionary algorithms with an extended chaining approach to find test cases that 
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cover a target. Bühler & Wegener [10] describe the application of evolutionary algorithms to the 

automation of functional testing. 

The aforementioned papers focus on the description of the proposed solution, the majority of 

comparisons being carried out using a random algorithm. Only a few works perform a 

comparison with other algorithms. The following papers present several approaches based on 

different metaheuristic techniques (Genetic Algorithms are used in all the studies) and carries 

out a comparison of these. Mansour & Salame [37] apply Genetic Algorithms and Simulated 

Annealing to generate test cases to achieve path coverage and also carries out a comparison with 

Korel’s Algorithm [31]. Xiao et al. [63] obtain test cases for the condition-decision coverage 

using the metaheuristic techniques Genetic Algorithms, Simulated Annealing, Genetic 

Simulated Annealing and Simulated Annealing with Advanced Adaptive Neighbourhood. Li et 

al. [35] study the application of Genetic Algorithm and Hill Climbing to regression test case 

prioritization and investigates their effectiveness in comparison with three greedy algorithms. 

Alba & Chicano [2] generate test cases to reach condition coverage using two Genetic 

Algorithms and two approaches based on Evolutionary Strategies. 

Another metaheuristic technique that can be applied to automatic test case generation is Scatter 

Search [24][33] (see section 3.1 below). This technique has been used to solve many problems, 

as is shown in [39]. However, the only papers that use the Scatter Search technique to automate 

the generation of test cases are the works of Blanco et al. [6] and Sagarna & Lozano [53], which 

use this technique to obtain branch coverage. The approaches adopted in these works differ in 

several aspects to the Scatter Search technique, such as the selection of the node used in each 

iteration of the search process, the contents of the sets of solutions used by the technique to 

generate the new solutions of the problem to solve, the updating process of these sets of 

solutions and their size. In this paper we describe two versions of a Scatter Search approach to 

obtain branch coverage called TCSS and TCSS-LS. TCSS is a refined version of the 

preliminary approach described in [5]. Both TCSS and TCSS-LS differ from the approach 

presented in [53] in the use of the Scatter Search technique, since they use Scatter Search from 

the beginning of the search of test cases, whereas the work described in [53] proposes to begin 

the search with an Estimation of Distribution Algorithm (EDA) and to use the Scatter Search to 

increase the branch coverage obtained by the EDA. 

3 Scatter Search approach to software testing 

In this section we explain our adaptation of the Scatter Search technique to the automatic 

generation of test cases to obtain branch coverage. Section 3.1 briefly explains the Scatter 

Search technique. In Section 3.2 we present the general aspects of our Scatter Search approach 

for automatic test case generation, called TCSS. Section 3.3 shows the search process of new 
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test cases (new solutions), while Sections 3.4, 3.5 and 3.6 explain the methods that appear in 

this search process. Finally, Section 3.8 describes the use of the local search method of the 

TCSS-LS version. 

3.1 Scatter Search technique 

As said in section 1, Scatter Search [24] is an evolutionary method that works on a set of 

solutions, called the Reference Set, which stores the best solutions that have been generated so 

far. The solutions in this set are combined in order to obtain new ones, trying to generate each 

time better solutions, according to quality and diversity criteria. 

The basic scheme of the Scatter Search algorithm can be seen in Figure 1 [33]. The Scatter 

Search algorithm begins by using a diversity generation method to generate P diverse solutions, 

to which an improvement method is applied. Then the Reference Set is created with the best 

solutions from P and the most diverse in relation to the solutions already in the Reference Set. 

As new solutions are generated, the algorithm produces subsets of the Reference Set using a 

subset generation method, and applies a solution combination method in order to obtain new 

solutions, to which an improvement method is applied. Then a Reference Set update method 

evaluates the new solution to verify whether they can update the Reference Set, as they are 

better than some solutions stored in the set. If so, the best solutions are included in the 

Reference Set and the worst solutions are dropped. So, the final solution of the problem to solve 

is stored in the Reference Set. 

------- FIGURE 1 ------ 

3.2 TCSS: A Scatter Search approach to test coverage 

Our Scatter Search approach, called TCSS (Test Coverage Scatter Search) has given rise to two 

versions: a first version of TCSS which is based on a preliminary approach described in [6] and 

a second version that uses a local search method to intensify the search of test cases that can 

cover the most difficult branches, which is called TCSS-LS (Test Coverage Scatter Search – 

Local Search). 

Both versions of TCSS work on the control flow graph associated with the program under test. 

The control flow graph is a directed graph G=(N, E, s, e), where N is a set of nodes, E is a set of 

directed edges aij = (ni,nj) ∈N x N, s ∈ N is the initial node and e ∈ N is the output node of the 

graph. Each node n ∈ N represents a linear sequence of computations for the program under test 

and has its own Reference Set. Each arch aij represents the transfer of the execution control of 

the program from node ni to node nj when the associated arch decision is true. By means of this 
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control flow graph, it is possible to determine the branches covered by the test cases generated, 

since the program under test has been instrumented to know the followed path. 

An example of control flow graph generation can be seen in Figure 2. Node 0 represents the 

initialization of the variable “value” and the control statement “if (x1>4)”. The two exit edges 

indicate the true evaluation and the false evaluation of the node decision. Node 1 corresponds to 

the control statement “if (x2<5 && x3<10)” and also has two exit edges. Node 2 joins the two 

statements included in the “if” part of the control statement of node 1 and the node 3 joins the 

statements of the “else” part. Node 4 represents the end of block if-else. Finally, node 5 

represents the statements of “else” part of node 0. By means of this control flow graph, it is 

possible to determine paths that start in the root node and finish in a leaf node. These paths 

represent one possibility of ending the program and each of them is formed by the nodes 

reached during the execution of the program. The three paths of the example program are (0-1-

2-4), (0-1-3-4) and (0-5). This control flow graph has three types of nodes: root node which 

marks the beginning of the execution of the program (node 0), branch node which represents a 

branch of the program (nodes 1, 2, 3 and 5) and non-branch node which represents the start or 

end of a block (node 4). 

------- FIGURE 2 ------ 

The goal of TCSS is to generate test cases that allow all the branches of the program to be 

covered. This general goal is divided in subgoals, each of which consists in finding test cases 

that reach a particular branch node of the control flow graph. For instance, the goals of the 

control flow graph in the Figure 2 are nodes 1, 2, 3 and 5 (the root node is always reached and 

the node 4 is always reached when a test case achieves the node 2 or the node 3). Each decision 

of the program generates two branch nodes which represent the true evaluation and the false 

evaluation of the decision. Therefore, if all the branch nodes of the control flow graph have at 

least one test case that reaches them, we can conclude that all the branches of the program have 

been covered and all the decisions have been evaluated in their two alternatives. 

The nodes of the control flow graph store information during the process of test case generation 

to reach the subgoals. This information allows the covered branches to be known and is used to 

make progress in the search process. The root node and each branch node store this information 

in an own set of solutions, called Reference Set. Unlike the original Scatter Search algorithm, 

our approach has several Reference Sets. Each Reference Set is called Sk, where k is the number 

of the node, and is formed by Bk elements Tk
c = < x k

c,pk
c, fbk

c,fck
c>, c ∈ {1..Bk}, where: 
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• x k
c is a solution, i.e., a test case that reaches node nk. Each solution x k

c consists of a 

set of given values for the input variables (x1, x2,..., xn) of the program under test that 

satisfy the decisions of the previous nodes to node nk on the path that has been covered. 

For primitive data types the elements of the solution x k
c =(x1, x2,…, xn) take the value 

of the variable, in the case of arrays each of their positions is an element of the solution, 

and when structures are used each of their components is an element of the solution. 

• pk
c is the path covered by the solution (test case), i.e., the sequence of the nodes of the 

control flow graph reached by the solution.  

• fbk
c is the distance to the sibling node, i.e.,  the node whose input decision is the 

negation of the node nk decision (the distance between two nodes is defined in Section 

3.5). This distance indicates how close the solution came to cover the sibling node. 

• fck
c is the distance to the child node that has not been reached by the solution (the 

distance between two nodes is defined in Section 3.5). This distance indicates how close 

the solution came to cover the child node. 

The control flow graph of Figure 2 with the information stored in the Reference Sets of the root 

node and the branch nodes can be seen in Figure 3. Note that the node 4 does not contain set Sk. 

------- FIGURE 3 ------ 

The set of solutions of a node nk (Sk) has a maximum size Bk. This size is different for each 

node nk and depends on the complexity of the source code situated below node nk, which is 

calculated by the cyclomatic complexity [40] of the control flow graph of the program, with 

node nk as the root node. This value is multiplied by a fixed factor. Thus, a reasonable number 

of solutions to generate new solutions are available. The different sizes of the sets Sk are a result 

of the division of the problem into subgoals. The solutions stored in a node nk are used to make 

progress in the search process by means of the combinations that generate new solutions; TCSS 

tries to reach the nodes located at lower levels than node nk in the control flow graph with these 

combinations. Therefore the sets Sk of the nodes nearer to the root of the control flow graph are 

larger in size than the sets Sk of the nodes nearer to the leaves. 

TCSS will try to make the sets as diverse as possible using a diversity function. Thus it tries to 

explore a wide search space in order to find solutions that can cover different branches of the 

program. The diversity of a solution of a set Sk is a measure related to the path covered by all 

solutions of the set. 
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3.3 Search process 

The goal of TCSS is to obtain maximum branch coverage, i.e., to find solutions that allow 

coverage of all the nodes of the control flow graph. As these solutions are stored in the nodes, 

our goal is therefore for all the nodes to have at least one element in their set Sk. However, this 

goal cannot be reached when the program under test has unfeasible branches. Therefore, TCSS 

also stops its execution when a maximum number of test cases has been generated. Initially, the 

sets Sk are empty and they are filled by the generator by means of its iterations. Figure 4 shows 

the scheme of the TCSS search process. 

------- FIGURE 4 ------ 

In each iteration, TCSS selects a node to generate new solutions. The root node is chosen at the 

first iteration and random solutions are generated in its set Sk. In subsequent iterations, the 

generator selects a node and generates new solutions by means of the combination of several 

solutions of its set Sk. The selected node fulfils the following conditions:  

• It has not been evaluated, i.e., it has not been used to generate new solutions. 

• Its parents have been already evaluated. 

• Among all candidates, it has the greater number of elements in its set of solutions Sk. 

If the selected node does not have at least two solutions to perform the combinations, a 

backtracking process, which is not considered in the original Scatter Search algorithm, is carried 

out. This backtracking process uses a Mutation method in the first version of TCSS and a Local 

Search method in the TCSS-LS version. Section 3.7 explains the backtracking process. 

TCSS tries to select a node from the top of the control flow graph that has a larger number of 

solutions in its set Sk than the other nodes, because it can contain more diverse solutions due to 

having more paths below these. On the other hand, the different sizes of the sets Sk also help in 

the selection of the node to evaluate, as the top nodes have more solutions because they can 

store more elements. 

The instrumented program under test is executed with each new solution and the sets Sk of the 

nodes reached in this execution are updated. Then the selected node is marked as evaluated and 

a new node is chosen to generate new solutions. 

The final solution of the generator consists of the sets of values for the input variables that cover 

the branches of the control flow graph, which are in the sets Sk, the branch coverage reached 

and the time consumed in the search process. 
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3.4 Generation of new solutions 

When TCSS selects a node nk to generate new solutions, it chooses a constant number of 

elements Tk
c = < x k

c,pk
c, fbk

c, fck
c > from the set Sk of this node nk that has not been used to 

generate new solutions. The generator tries to select solutions ( x k
c) that cover different paths 

(pk
c) and have less distance to the sibling node (fbk

c). Thus, TCSS attempts to generate diverse 

solutions that can cover the branch of the sibling node. As the solutions that cover a node can be 

stored in the set Sk of the child node reached, TCSS converts the problem of covering the other 

child node into a problem of covering the sibling node. 

Then all possible pairs ( x k
j, x k

h), j≠h, are formed to carry out the following combinations, 

element by element: x k
ji+∆i, x k

ji-∆i, x k
hi+∆i, x k

hi-∆i, where ∆i=| x k
ji- x k

hi|/2 and the index i 

covers all input variables. These combinations have been also used in [6][53] and are based on 

the linear combinations of Laguna & Marti [32], which uses the first three combinations and 

include a random element in the calculation of ∆i. Each new solution is checked to determine 

whether its values overflow the ranges of the input variables. In that case, the value of the input 

variable that overflows the range is substituted by the limit of the range. 

Using these combinations, TCSS tries to generate solutions further from the original ones and 

solutions situated between them. Furthermore, the solution selection criteria attempt to combine 

diverse solutions (they cover different paths) which are closer so as to cause a branch jump. 

3.5 Calculation of distances 

In order to calculate the distances fbk
c and fck

c of a node nk, TCSS instruments the decisions of 

the nodes of the program under test. When a solution reaches a node nk, TCSS calculates fbk
c 

using the input decision of the sibling node and calculates fck
c using the input decision of the 

child node that has not been reached by the solution (the sibling node of the child node reached 

by the solution). For instance, if the solution x 1
1 in Figure 3 reaches nodes 1 and 2, the distance 

fb1
1 is calculated with the input decision of node 4 (!(x1>4)) and the distance fc1

1 is calculated 

with the input decision of node 3 (!(x2<5 && x3<10)). The definition of distances fbk
c and fck

c 

is shown in Table 1. These distances are based on those in [31][57]. 

------- TABLE 1 ------ 

First, each condition of the decision used is evaluated according the values of the input variables 

that constitute the solution. Then, the value of the distances fbk
c and fck

c is calculated. When the 

decision has AND operators, the evaluations of false conditions are added to calculate the 

distances, as these false conditions impede reaching the sibling node. When the decision has OR 

operators, the distance is the minimum value of the evaluation of all conditions, as all conditions 
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are false and the node (sibling or child) is reached when one of them becomes true. When 

negations appear in the decision, De Morgan’s law is used. 

3.6 Updating the sets of solutions 

To update the sets Sk of the nodes reached in an execution of the program under test, TCSS 

checks the sizes of these sets and the state of the nodes. Thus, the following situations are 

considered: 

• The node has been evaluated and its set Sk is not full; the solution is included in the set. 

• The node has been evaluated and its set Sk is full; the solution is not included in the set. 

• The node has not been evaluated and its set Sk is not full; the solution is included in the 

set. 

• The node has not be evaluated and its set Sk is full; first the solution is included in the 

set (provisionally the set exceeds its maximum size) and then the diversity function is 

applied to determine the solution that must leave the set. 

TCSS adds solutions to the sets of evaluated nodes since these new solutions can be used in the 

backtracking process. 

The diversity function is applied over the subset Sp*={Tp*
1,…,Tp*

q} ⊆ Sk, 

Tp*
i=< x p*

i;pp*;fbp*
i;fcp*

i>, which represents the solutions stored in node nk that cover the path 

pp* with more occurrences in the set Sk. The most similar solution to the rest of solutions that 

cover the same path (the less diverse) leaves the set Sk. The diversity value of a solution is 

calculated according the diversity function defined as: 

∑ ∑
= = 









 −
=><

qy ni i

y
p

m
p

pp
m

range
xx

Spxdiv
ii

p
..1 ..1

**
** );;(

*
 

where index y=1..q covers the solutions of Sp*, index i=1..n covers the input variables and rangei 

is the range of values of the input variable i. 

When there are two or more solutions with the same diversity value, TCSS checks the value of 

their distance fb. The solution with the higher value of distance fb, i.e., the further one that can 

cause a branch jump, leaves the set Sk. 

TCSS applies the diversity function over the subset that covers the path with more occurrences 

because it tries to equilibrate the number of solutions that cover different paths, thus achieving 

more diversity. 
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3.7 Backtracking process 

The most difficult situation in the search process occurs when node nk selected to generate new 

solutions does not have at least two solutions in its set Sk to perform the combinations. This 

situation happens when no test case reaches node nk (or only one test case reaches it) and, in 

addition, the other candidates do not have at least two solutions either. As TCSS cannot 

progress in the search process, it therefore applies a backtracking process. This process tries to 

increase the size of the set Sk of node nk by means of the generation of new solutions using the 

parent node. 

TCSS has two options to generate new solutions in the backtracking process: 

• To perform combinations: this option is possible when the parent node has solutions 

that have not been used in previous combinations in its set Sk. In this case, the 

combinations are performed with these solutions. This is the reason why the sets Sk of 

the evaluated nodes accept solutions when they are not full, so the parent node has a set 

of solutions that can be used in the backtracking process. 

• To perform mutation operations: when all solutions of the parent node have been used 

in previous combinations, TCSS select some solutions of the parent node to generate 

new solutions by means of a mutation operation. This mutation operation consists in 

changing the value of some input variable for other random value according to a 

mutation probability. 

The instrumented program under test is executed with each new solution and the sets Sk of the 

nodes reached in this execution are updated as explained in Section 3.6. If any new solution 

reaches node nk, TCSS carries out backtracking again. If the backtracking backs away to the 

root node, the algorithm carries out a regeneration process, as the current solutions do not allow 

the obtaining of total coverage. This regeneration process cleans the sets Sk of the node that 

belong to some path that ends in node nk and randomly generates the solutions of the root node. 

The sets cleaned in the regeneration process store one solution to remember the covered nodes. 

3.8 TCSS-LS: TCSS with a Local Search method 

Comparison of a previous version of TCSS with another approach based on a technique that 

works with a Local Search procedure (Tabu Search) [18] shows that the Tabu Search approach 

is more efficient in the last iterations of the search of test cases, due to the fact that the Local 

Search is focused on finding solutions that reach the nodes that have not yet been covered , 

whereas the Scatter Search approach is more efficient in the first iterations of the search, due to 

the use of the diversity property, which allows  many different branches to be reached with less 

test cases. The behaviour of both techniques suggests the incorporation of a Local Search 
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method in the TCSS generator to improve the search of test cases for some branches in which 

the diversification used by Scatter Search finds it difficult to cover. This incorporation has given 

rise to TCSS-LS. 

TCSS-LS uses a Local Search method in the backtracking process, instead of the mutation 

operations used by TCSS, as this is the point in which TCSS begins to have difficulty to cover 

some specific branches. Thus, TCSS-LS implements an intensification process to try to cover 

the nodes that have not been reached in the diversification process. After those nodes have been 

covered, TCSS-LS uses diversification strategies to cover the rest of the nodes. 

To generate solutions that cover a node nk, the local search method selects a solution (called the 

original solution ( os )) from the set Sk of the parent node and carries out, at the most, 

MAX_ATTEMPT iterations to reach the node nk. This solution has the lower value of the 

distance to the child node to reach (fci
c) in order to try to guide the search. 

In each iteration, TCSS-LS generates 2n new solutions (where n is the number of input 

variables of the solution) from the best solution (called the current solution ( cs )) of the 

previous iteration: 

• ns1 = cs i+δi 

• ns2  = cs i-δi 

where the index i covers all input variables and δi is defined as follows: 
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where jump_reducer is a parameter that is increased to reduce the jump and the maximum 

jumps are: 

• max_rightjump = Upper Range – cs i 

• max_leftjump = cs i – Lower Range 

Then the generator executes the program under test with each new solution and evaluates the 

solutions to determine whether any solution reaches the parent node and improves the value of 

the distance fc of cs in order to use the best one as current solution. If no solution improves 

cs and the local search has not carried out MAX_ATTEMPT iterations from the original 
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solution, TCSS-LS reduces the jump used in δi to generate nearer solutions to cs in the next 

iteration. If the local search has performed MAX_ATTEMPT iterations from the original 

solution and node nk has not been reached, TCSS-LS selects another solution ( os ) from the set 

Sk of the parent node to carry out the search. When all solutions of the parent node have been 

used in the local search method, TCSS-LS performs a backtracking process and uses the 

solutions of another ancestor to reach node nk. The local search finishes when node nk is covered 

or when the backtracking process in this local search backs away to the root node. 

The sets Sk of the nodes reached during the local search are updated as described in Section 3.6, 

except for the node that has the solution os  used in the search. Although the set Sk of this node 

is not updated during the execution of the new solutions, it is updated when the local search 

finishes or selects another os  to continue the search. The os  is replaced with the best new 

solution that improves it. 

If node nk has not been reached by means of the local search, TCSS-LS uses the new solutions 

stored in the sets Sk to carry out the combinations as the last attempt to cover node nk. Then 

node nk is labelled as evaluated. 

4 Performance analysis 

In this section we present the results obtained by our approach when compared with other 

methods using several benchmark programs and several input ranges to analyze its efficiency. A 

review of the literature was carried out to identify the benchmark programs. Although the 

literature presents many benchmark programs, the selection of a set of such programs to 

compare approaches is not easy because not all of them have been used with the same adequacy 

criterion, their source code is not always available, or the results presented are not complete 

(range and type of input variables, number of test cases generated, time consumed, percentage 

of coverage reached), all of which makes comparison difficult. Table 2 presents the set of 

selected benchmark programs for which the comparison can be carried out according to our 

background research. For each benchmark the table shows a brief description, its abbreviation, 

the number of branches, the nesting level and the cyclomatic complexity. 

------- TABLE 2 ------ 

A comparison of TCSS-LS with TCSS is carried out in Section 4.1 to analyze the improvement 

that TCSS-LS represents. In Section 4.2 we compare the results of TCSS-LS with the results of 

other approaches published so far. As other authors did, we have also compared TCSS and 



 15

TCSS-LS with the most basic procedure, a random algorithm, and the results of the approaches 

based on Scatter Search always outperform the random algorithm. 

In all cases for our experiments, the stopping condition used for the generators TCSS and 

TCSS-LS was that of reaching 100% branch coverage or reaching 200000 generated test cases. 

For each benchmark and each input range, we carried out 10 runs with the generators, taking 

average values. All runs were carried out on a Pentium processor 1.50GHz with a RAM 

memory of 512 MB. 

4.1 TCSS vs TCSS-LS 

The benchmark programs presented in Table 2 were used to compare the behaviour of both 

version of TCSS in terms of the number of test cases generated and the time consumed.  

Whenever possible, each benchmark was executed with both integer and float ranges. 

Each benchmark was executed with three different signed ranges for the integer input variables: 

a low range (L), a medium range (M) and a high range (H) (8, 16 and 32 bits respectively), a 

signed range that uses 32 bits (H) for the float input variables and an unsigned range that uses 8 

bits (L) for the char input variables. Benchmarks CD and TW were not executed with the low 

integer range due to the decision of an “if” statement in the source code that would avoid 

reaching 100% coverage with this range. 

The results obtained by the two generators can be seen in Table 3. Each instance represents a 

benchmark that has been executed with a specific input range and a specific type of input 

variables (C for char variables, F for float variables and I for integer variables). For both 

generators, the percentage of coverage reached, the number of test cases that the generator 

creates to achieve this coverage and the time consumed (in seconds) are shown for each 

instance. Note that the test case generators use a large set of test cases to cover all branches, 

because during the search process they generate test cases that reach branches that had already 

been covered by other test cases; however not all of them form the set of test cases used in the 

test process of the program. To obtain the minimum set of test cases that are executed in the 

program under test to cover all branches during the test process we select a test case from each 

set Sk of a leaf node. For example, TCSS-LS uses 271 test cases to achieve the total coverage of 

the TM program (instance 27 of Table 3), but we select only 12 test cases from the sets Sk, one 

for each leaf node, to test the program, reaching the 100% branch coverage. To perform a 

correct comparison, the number of test cases generated and the time consumed must be 

compared when both generators obtain the same percentage of branch coverage. For this reason, 

when TCSS-LS obtains more coverage than TCSS, the table also shows in brackets the number 
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of test cases generated and the time consumed by TCSS-LS to reach the same coverage obtained 

by TCSS.  

------- TABLE 3 ------ 

The results obtained by the two generators indicate that TCSS-LS always reaches the coverage 

achieved by TCSS. From all 40 instances, TCSS achieves 100% coverage in 23 instances and 

TCSS-LS improves the coverage, reaching 100% in 33 instances. For the remaining 7 instances 

in which both generators do not reach 100% coverage, TCSS-LS increases the coverage 

obtained by TCSS in 5 of these. 

As regards the test cases generated and the time consumed to achieve the same coverage (25 

instances), TCSS-LS requires fewer test cases in 19 instances, in which it consumes less time 

(instances 3, 6, 7, 15-19, 21, 22, 24-29, 34-36). Only in 5 instances it generates a larger number 

of test cases than TCSS (instances 9-11, 20, 31) and in 3 of these, it consumes more time 

(instances 9-11). In these instances, the local search does not cover some nodes that are then 

covered by the solutions generated by means of the new combinations performed after the 

backtracking. Those nodes are successors of a node with an equality condition which contains a 

variable that appears in the decision of the successor nodes. When the local search tries to 

achieve the successor nodes, it generates new solutions modifying only the value of a variable 

of the current solution used (the original solution is stored in the set Sk of parent node). As only 

one variable of the equality condition is modified, it becomes false. The combination of 

solutions modifies the value of both variables in the same proportion, so that equality remains 

true. 

In the 15 instances in which TCSS-LS increases the coverage reached by TCSS, it generates 

fewer test cases to obtain more coverage in 8 instances (instances 1, 2, 4, 5, 12, 30, 32, 33); 

besides, in 7 of these it consumes less time (instances 1, 2, 4, 5, 30, 32, 33). In the remaining 

instances, TCSS-LS generates more test cases to increase coverage, but it requires fewer test 

cases and consumes less time to obtain the maximum coverage achieved by TCSS in 4 instances 

(instances 8, 13, 14, 39), it generates the same number of test cases and consumes the same time 

in 2 instances (instances 38, 40) and only in 1 instance it generates more test cases, though it 

consumes less time than TCSS (instance 37). 

On the other hand, TCSS-LS obtains better results (more coverage, fewer test cases and less 

time) than TCSS in all benchmarks except LR, QFS and TMM. For benchmarks QFS and 

TMM, TCSS only obtains better result in the low range, while for benchmark LR TCSS it 

obtains better results in the three integer ranges. 
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The improvement obtained by TCSS-LS is shown in Figure 5. This figure shows the ratios 

(logarithmic 10 scale) for test cases (CR) and the ratios for time (TR) which relate TCSS to 

TCSS-LS. The rhombus points represent the CR of the instances in which TCSS and TCSS-LS 

achieve the same maximum coverage. The asterisk points represent the CR of the instances in 

which TCSS-LS reaches more coverage than TCSS. The line “time” represents the TR of each 

instance. The ratios are calculated by means of the quotient of the test cases (or time) of TCSS 

divided by the test cases (or time) of TCSS-LS. When the generators do not reach the same 

maximum coverage, the ratios are calculated with the test cases (or time) needed to obtain the 

coverage that both generators are capable of reaching, which always coincides with the 

coverage achieved by TCSS. The instances in Table 3 have been arranged according to input 

range (L, M, H and float range) and benchmark name in order to show in the figure the 

influence of range in the improvement provided by TCSS-LS.  

------- FIGURE 5 ------ 

As shown in Figure 5, TCSS-LS generates fewer test cases and consumes less time for the 

majority of instances (34 of 40). Moreover, the differences between the test cases are large 

when TCSS-LS generates fewer test cases than TCSS (for example, instance 17) and are small 

in the contrary case (for example, instance 31). On the other hand, the ratios also increase with 

the increase in the range of the input variables; hence, the improvement given by TCSS-LS is 

greater for high ranges.  

In order to check that both the number of test cases generated and the time consumed by TCSS-

LS are significantly smaller than the test cases generated and the time consumed by TCSS and 

the number of times that TCSS-LS obtains better results than TCSS is also significant, we 

carried out a statistical analysis with α=0.05. 

The first hypothesis to verify is whether TCSS-LS generates less test cases than TCSS. As the 

test that enables this hypothesis to be verified (the paired t-test) depends on the normality of the 

distributions, the Kolmogorov-Smirnov test is carried out to check the normality of the variable 

DTestCases=TestCasesTCSS-LS - TestCasesTCSS. A very small p-value (<0.001) is obtained, so we 

cannot assume that the variable follows a normal distribution. 

Therefore, the Wilcoxon signed rank test for paired data is applied to verify the null hypothesis 

of median equality (H0:mD=0, H1:mD<0). The p-value obtained by the analysis is smaller than 

0.001<α and therefore the hypothesis H0:mD=0 can be rejected. Besides, the average number of 

test cases generated by TCSS-LS is less than the average generated by TCSS. So we can assume 

that TCSS-LS generates fewer test cases than TCSS. 
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The second hypothesis to verify is whether TCSS-LS consumes less time than TCSS. Again, the 

variable DTime=TimeTCSS-LS - TimeTCSS does not follow a normal distribution and the Wilcoxon 

signed rank test for paired data is applied. Once more, the hypothesis H0:mD=0 can be rejected, 

as the p-value<0.001<α. Besides, the average time consumed by TCSS-LS is also less than the 

average time consumed by TCSS. So we can assume that TCSS-LS consumes less time than 

TCSS. 

We use the McNemar test to verify the third hypothesis that TCSS-LS “wins” more times than 

TCSS. We consider a generator to be better than the other if it achieves a higher percentage of 

branch coverage or if it generates fewer test cases when both generators reach the same 

percentage of branch coverage. In Table 3 it can be seen that TCSS-LS obtains better results 

than TCSS in 34 instances, whereas it obtains worse results in 5 instances. Both generators 

obtain the same result in 1 instance. The p-value obtained is smaller than 0.0001<α and 

therefore the difference between both generators is significant, TCSS-LS obtaining better results 

than TCSS for more instances. 

4.2 TCSS-LS vs other generators 

The most interesting comparison for a generator is the comparison performed with the 

generators of other studies. To carry out this comparison, it is necessary for the generators to 

obtain results for the same coverage criterion and use the same type of input variables and the 

same input range. In this section we compare the results obtained by TCSS-LS and the 

generators of other works by means of the use of the benchmark programs presented in Table 2. 

On the other hand, as previously mentioned, in order to carry out a thorough comparison, it is 

also necessary to know the following results obtained by each generator after its execution: the 

number of test cases generated, the time consumed and the percentage of branch coverage 

reached. Although in some cases the range of input variables is not explicitly indicated, this 

input range can be estimated through the results of the random generator that the studies report 

(instances 3, 5, 6, 34, 41, 44 in Table 4, which is explained below). Unlike the previous section, 

a time comparison cannot be performed, as the time consumed by all generators is not published 

for all instances.  

The results obtained by TCSS-LS in comparison with the results of other approaches are shown 

in Table 4. Once more, the percentage of coverage reached, the test cases generated to achieve 

this coverage and the time consumed (in seconds) by each generator are shown for each instance 

(an instance is again defined by a benchmark, a specific input range and a specific type of input 

variables). For the results of other approaches, the column “Generator” shows the type of 

generator used to execute the corresponding instance and the reference from which these results 
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have been obtained. Once more, a signed input range is used for float and integer variables and 

an unsigned input range is used for char variables. 

------- TABLE 4 ------ 

TCSS-LS reaches 100% coverage in 39 instances and in 30 of these it generates fewer test cases 

than the other generators (instances 2-12, 16, 19-23, 25, 26, 28-30, 32-39). Of the other 9 

instances, it generates fewer test cases than some generators in 2 of these (instances 1 and 27). 

In the remaining instances, TCSS-LS does not achieve 100% coverage (instances 15, 41-44) or 

it generates more test cases than the other generators (instances 13, 14, 17, 18, 24, 31, 40). 

After analyzing the results, TCSS-LS generates fewer test cases to obtain a higher or equal 

percentage of coverage (regardless of the type of input variables and input range) than the other 

generators for the benchmarks BM, CB, CD, LR, QF and TMM. For the remaining benchmarks, 

the following situations can be observed: 

• AF: TCSS-LS generates more test cases than the best generator when the low range is 

used (instance 1), but it generates fewer test cases than the other two generators. 

• ND: TCSS-LS generates more test cases than TSGen. 

• QFS: TCSS-LS generates fewer test cases when the input range is increased. 

• RS: TCSS-LS generates more test cases than the best generator, but it generates fewer 

test cases than the other two generators. 

• TM: TCSS-LS generates fewer test cases than the other generator for all ranges and 

types of input variables except for the low integer range, in which the number of test 

cases generated is similar. 

• TS: TCSS-LS generates fewer test cases than the other generators for small ranges and 

generates more test cases for the high range used. 

• TW: TCSS-LS does not obtain 100% coverage because it does not cover a node with an 

orthogonal condition, which is covered in two of ten runs (this condition is reached in 

all runs when the input range uses 11 bits). TCSS-LS cover the other branches of the 

benchmark with fewer test cases than some generators. However a correct comparison 

cannot be carried out as the number of test cases generated by the other generators for 

the same coverage is not known. 

Figure 6 shows the ratios (logarithmic 10 scale) for the test cases (CR) which relates the best 

generator of the other works for each instance to TCSS-LS (in each instance the generator 

which obtains the best result is compared against TCSS-LS). The rhombus points represent the 

CR of the instances in which TCSS-LS reaches more or equal coverage than the best generator 

of the other works (when TCSS-LS achieves more coverage than the other generator, the ratio is 
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calculated with the test cases generated to obtain the same coverage of that generator). The 

asterisk points represent the CR of the instances in which TCSS-LS reaches less coverage than 

the best generator of the other approaches. These CR are not comparable, since they are 

calculated with test cases that allow different percentage of coverage to be reached. 

------- FIGURE 6 ------ 

As is shown in the figure, TCSS-LS once again generates fewer test cases for the majority of 

instances (32 of 44) and the differences between the test cases are large when TCSS-LS 

generates fewer test cases than the best generator of the other works for each instance (for 

example, instance 16). 

As in the previous subsection, a statistical analysis with α=0.05 was carried out. This analysis 

compares the results of TCSS-LS with the results obtained by the best generator of the other 

works for each instance (again, in each instance the generator which obtains the best result is 

compared against TCSS-LS). Unlike the comparison between TCSS-LS and TCSS, the 

parameter “time consumed” is not checked because it is not presented in the published results of 

most generators. 

The first hypothesis to verify is whether TCSS-LS generates fewer test cases than the best 

generator of the other works for each instance. As in the previous section, the variable DTestCases 

does not follow a normal distribution and the Wilcoxon signed rank test for paired data is 

applied with the same hypothesis. The p-value obtained by the analysis is 0.004<α and therefore 

the hypothesis H0:mD=0 can once again be rejected. Moreover, the average number of test cases 

generated by TCSS-LS is lower than the average generated by the best generators of the other 

works for each instance.  Hence, we can assume that TCSS-LS generates fewer test cases than 

the other generators. 

The second hypothesis to verify is whether TCSS-LS “wins” more times than the best 

generators of the other works for each instance. As in the previous section, the McNemar test 

was used to check this hypothesis. TCSS-LS obtains better results than the other generators in 

30 instances and obtains worse results than some generators in 14 instances. The p-value 

obtained is 0.0229<α and therefore TCSS-LS once more obtains better results for more 

instances than the other generators. 

5 Conclusions 

This paper presents two automatic generators of software test cases, called TCSS and TCSS-LS. 

Both generators are based on the metaheuristic technique Scatter Search, while TCSS-LS also 
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uses a Local Search procedure. TCSS and TCSS-LS use the control flow graph associated with 

the program under test and handles a set of solutions in each node of the graph, thus facilitating 

the division of the general goal in subgoal. 

TCSS diversifies the search of test cases by means of the diversity function in order to cover a 

great number of branches, while TCSS-LS diversifies the search in the first iterations and then 

intensifies the search through a Local Search procedure to obtain test cases that cover the most 

difficult nodes. 

In many research studies, it is usual to compare the generators with a random generator or with 

other tailored generators, but a comparison with the generators of other works is not presented 

due to the difficulty of carrying out a complete comparison with other generators, since each 

study uses different benchmarks and different ranges to evaluate the generators and all the data 

needed to perform a comparison (range of the input variables, number of test cases generated, 

percentage of branch coverage achieved, time consumed) is not always available. In spite of this 

difficulty, in this paper we have compared the results of TCSS-LS with the results reported by 

several works for the different benchmarks and input ranges they use. 

The results of the experiments and the statistical studies show that TCSS-LS can be applied to 

the generation of test cases to obtain branch coverage and that it performs statistically better 

than the other test case generators included in the comparison. The results also show that the use 

of several techniques working together, such as Scatter Search and Local Search, improves the 

efficiency of test case generation. 
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Table 3: Results obtained in the experimentation comparing TCSS and TCSS-LS: % coverage 

achieved, test cases generated and time consumed. Each instance is defined by a benchmark 

executed with a specific input range (L for 8 bits, M for 16 bits and H for 32 bits) and a specific 

type of input variable (C for char, F for float and I for integer). The values in brackets are the 

test cases generated and the time consumed by TCSS-LS to reach the same coverage obtained 

by TCSS. 

Table 4: Results obtained in the experimentation comparing TCSS-LS and other generators: % 

coverage achieved, test cases generated and time consumed. Each instance is defined by a 

benchmark executed with a specific input range and a specific type of input variable (C for char, 

F for float and I for integer). 

Figure Captions 

Figure 1: Basic scheme of Scatter Search 

Figure 2: Control flow graph example 

Figure 3: TCSS control flow graph 

Figure 4: TCSS scheme 

Figure 5: Ratios between the test cases generated and time consumed for TCSS and TCSS-LS. 

The ratios are calculated by the quotient TCSS / TCSS-LS 

Figure 6: Ratios between the test cases generated by the best generator of other works and 

TCSS-LS. The ratios are calculated by the quotient best_other_generator / TCSS-LS 
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Benchmark Abbr. 
Number 

of 
Branches 

Nesting 
Level 

Cyclomatic 
Complexity 

Refe- 
rence 

Atof: Converts an array of characters into a 
floating point number. AF 30 2 17 [62] 

BisectionMethod: Calculates the square root 
of a number using the bisection method BM 8 3 5 [49] 

ComplexBranch: An artificial program that 
contains several difficult branches. CB 24 3 14 [62] 

CalDay: Calculates the day of the week CD 22 2 12 [2] 
LineRectangle: Determines the position of a 
line with respect to a rectangle. LR 36 12 19 [20] 

NumberDays: Calculates the number of days 
between two dates. ND 86 10 44 [20] 

QuadraticFormula: Solves a quadratic 
equation. QF 4 2 3 [49] 

QuadraticFormulaSthamer: Determines the 
type of quadratic equations roots: real and 
unequal, real and equal or complex. 

QFS 6 3 4 [54] 

RemainderSthamer: Calculates the 
remainder of a division. RS 18 5 10 [54] 

TriangleMyers: The classical classify 
triangle which determines the following types 
of triangle: equilateral, isosceles, scalene or 
no-triangle. 

TM 12 5 7 [46] 

TriangleMichael: The classify triangle 
problem with a different implementation. TMM 20 6 11 [44] 

TriangleSthamer: A more complete classify 
triangle problem, as it also checks the right 
angles of the triangle. 

TS 26 12 14 [54] 

TriangleWegener: A classify triangle 
problem which determines the following 
types of triangle: equilateral, isosceles, 
orthogonal, obtuse angle or no-triangle. 

TW 26 3 14 [62] 

Table 2: Benchmark programs 

 

 

Table2: Benchmark programs



Results for TCSS Results for TCSS-LS Ins 
tan 
ce 

Bench 
mark 

Type Ran 
ge % Cov. Test 

Cases 
Time 
(sec) 

% Cov. Test 
Cases 

Time 
(sec) 

1 AF C L 97.19 101144 141.1 100.00 17134 (12167) 8.3 (4.7) 
2 BM F H 88.00 52680 39.8 100.00 233 (194) 0.2 (0.2) 
3 CB I L 100.00 6059 30.0 100.00 4740 17.1 
4 CB I M 91.92 121223 608.1 100.00 5385 (3838) 15.2 (10.8) 
5 CB I H 74.23 31211 41.2 100.00 26752 (472) 39.4 (0.8) 
6 CD I M 100.00 38075 8.8 100.00 558 0.6 
7 CD I H 100.00 39209 9.1 100.00 561 0.7 
8 LR F H 97.50 5054 2.4 100.00 5939 (2601) 2.1 (1.2) 
9 LR I L 100.00 1986 1.2 100.00 4213 1.4 

10 LR I M 100.00 1581 1.0 100.00 3538 1.3 
11 LR I H 100.00 2188 1.2 100.00 5818 1.7 
12 ND I L 99.79 98174 193.2 100.00 76271 (76271) 269.1 (269.1) 
13 ND I M 6.17 42410 17.9 100.00 115380 (2992) 361.7 (1.3) 
14 ND I H 2.87 100912 43.3 99.04 148880 (1298) 164.5 (0.6) 
15 QF F H 100.00 26234 3.8 100.00 51 0.0 
16 QF I L 100.00 111 0.0 100.00 49 0.0 
17 QF I M 100.00 26234 3.8 100.00 51 0.0 
18 QF I H 100.00 26234 3.8 100.00 51 0.0 
19 QFS F H 100.00 16024 2.5 100.00 2978 0.3 
20 QFS I L 100.00 618 0.2 100.00 1938 0.2 
21 QFS I M 100.00 25053 3.9 100.00 4409 0.4 
22 QFS I H 100.00 23838 3.7 100.00 604 0.1 
23 RS I L 100.00 101 0.1 100.00 101 0.1 
24 RS I M 100.00 27676 4.8 100.00 482 0.3 
25 RS I H 100.00 27679 4.8 100.00 484 0.3 
26 TM F H 100.00 806 0.3 100.00 406 0.2 
27 TM I L 100.00 368 0.2 100.00 261 0.1 
28 TM I M 100.00 881 0.3 100.00 371 0.2 
29 TM I H 100.00 951 0.2 100.00 607 0.2 
30 TMM F H 96.00 9995 6.2 100.00 4519 (624) 2.4 (0.8) 
31 TMM I L 100.00 1028 0.8 100.00 1568 0.8 
32 TMM I M 99.50 26431 15.2 100.00 5148 (5148) 2.6 (2.6) 
33 TMM I H 92.00 117416 73.6 100.00 29420 (16395) 9.6 (5.2) 
34 TS F H 88.46 886 0.8 88.46 880 0.8 
35 TS I L 100.00 20029 8.8 100.00 18162 4.5 
36 TS I M 88.46 1164 0.9 88.46 1132 0.8 
37 TS I H 88.46 1778 0.9 88.85 6079 (2176) 40.4 (0.9) 
38 TW F H 11.54 4 0.0 96.15 3693 (4) 2.5 (0.0) 
39 TW I M 92.31 3561 2.3 96.92 17487 (1531) 60.5 (1.5) 
40 TW I H 11.54 4 0.0 96.15 2969 (4) 2.1 (0.0) 

Table 3: Results obtained in the experimentation comparing TCSS and TCSS-LS: % coverage achieved, 

test cases generated and time consumed. Each instance is defined by a benchmark executed with a 

specific input range (L for 8 bits, M for 16 bits and H for 32 bits) and a specific type of input variable (C 

for char, F for float and I for integer). The values in brackets are the test cases generated and the time 

consumed by TCSS-LS to reach the same coverage obtained by TCSS. 

 

Table 3: Results obtained by TCSS and TCSS-LS



TCSS-LS Other approaches Ins 
tan 
ce 

Bench 
mark 

Ty 
pe 

Range 
% 

Cov 
Test 

Cases
Time
(sec)

Generator % 
Cov 

Test 
Cases 

Time
(sec)

EDA [53] 100 7685 
EDA-SS [53] 91.33 570306 

1 AF C 7 bits 100 13509 9.81 

SS [53] 80 1504311 
2 AF C 8 bits 100 17133 8.28 GA [62] 100 35263 
3 BM F 8 bits 100 160 0.17 GA [51] 100 2900 

EDA [53] 100 11930 
EDA-SS [53] 100 24154 

4 CB I 10 bits 100 4650 12.15 

SS [53] 100 38984 
5 CB I 16 bits 100 5384 15.1 GA [62] 100 28978 

dES [2] 97.88 2188 7.47
panES [2] 97.73 2586 23.97
dGa [2] 90.91 304 10.43

6 CD I 32 bits 100 561 0.68

panGA [2] 90.91 75 28.53
7 LR F 100 100 8977 2.69 TSGen [20] 100 29191 58.86
8 LR F 1000 100 6523 2.27 TSGen [20] 100 24606 43.91
9 LR F 100000 100 9922 2.93 TSGen [20] 100 33303 60.69

10 LR I 16 bits 100 3538 1.25 TSGen [18] 100 27312 
11 LR I 24 bits 100 5000 1.53 TSGen [18] 100 65091 
12 LR I 32 bits 100 5817 1.69 TSGen [18] 100 177967 
13 ND I 8 bits 100 76271 269.1 TSGen [20] 100 25765 84.27
14 ND I 16 bits 100 115379 361.6 TSGen [20] 100 28081 96.63
15 ND I 32 bits 99.04 159914 164.5 TSGen [20] 100 65317 251.3
16 QF I 32 bits 100 50 0.02 GA [45] 100 26700 
17 QFS F 100 100 1855 0.19 TSGen [17] 100 746 0.39
18 QFS F 500 100 2296 0.24 TSGen [17] 100 2063 1.14
19 QFS F 1000 100 2681 0.28 TSGen [17] 100 5150 2.91
20 QFS F 2000 100 2680 0.28 TSGen [17] 100 12664 8.76
21 QFS F 10000 100 2675 0.28 TSGen [17] 88.33 15969 11.14

GA [30] 100 1200 22 QFS I 100 100 766 0.11
 GA [54] 100 1373 0.46

23 QFS I 200 100 1833 0.20 GA [54] 100 1975 0.66
24 QFS I 400 100 2961 0.30 GA [54] 100 2642 0.88
25 QFS I 800 100 2073 0.22 GA [54] 100 3408 1.29
26 QFS I 1000 100 2545 R GA [54] 100 4247 1.47

SS [53] 100 141 
EDA-SS [53] 100 2197 

27 RS I 16 bits 100 482 0.28

EDA [53] 100 2360 
28 TM F 100 100 404 0.16 TSGen [20] 100 697 0.39
29 TM F 1000 100 402 0.15 TSGen [20] 100 819 0.47
30 TM F 100000 100 405 0.15 TSGen [20] 100 1435 0.86
31 TM I 8 bits 100 260 0.13 TSGen [20] 100 217 0.11
32 TM I 16 bits 100 370 0.15 TSGen [20] 100 738 0.44
33 TM I 32 bits 100 607 0.15 TSGen [20] 100 19552 21.42
34 TMM I 9 bits 100 705 0.84 GA[51] 100 13200 

EDA-SS [53] 100 3439 
EDA [53] 100 3875 

35 TMM I 10 bits 100 1004 0.93

SS [53] 100 27007 
36 TMM I 32 bits 100 29419 9.64 GA [45] 100 97300 

TSGen [17] 100 12601 30.2
GA [54] 100 17789 8.4
GA [30] 100 18800 
GA-uniformcrossover [29] 100 33696 
GA-doublecrossover [29] 100 40244 

37 TS I 100 100 11881 3.41
 
 
 
 

GA-singlecrossover [29] 100 43824 
38 TS I 200 100 30578 7.23 GA [54] 100 48490 23.5

Table 4: Results obtained by TCSS-LS and other generators



39 TS I 400  100 56911 12.43 GA [54] 100 126943 60.4
SS [53] 100 14188 
EDA-SS [53] 100 14259 

40 TS I 10 bits 100 78987 16.78
 

  EDA [53] 100 22720  
41 TW F 16 bits 96.15 2748 2.16 GA [62] 100 42086 

EDA-SS [53] 100 4250 
EDA [53] 100 6200 

42 TW F 98304 96.15 2170 1.78
 

  SS [53] 100 19357 
SS [53] 100 1108 
EDA-SS [53] 100 3272 

43 TW I 15 bits 96.15 2698 1.89
  
 EDA [53] 100 6150 

44 TW I 16 bits 96.92 17487 60.5 GA [62] 100 16915 
Table 4: Results obtained in the experimentation comparing TCSS-LS and other generators: % coverage 

achieved, test cases generated and time consumed. Each instance is defined by a benchmark executed 

with a specific input range and a specific type of input variable (C for char, F for float and I for integer). 
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Figure 1: Basic scheme of Scatter Search



void function1(int x1, int x2, int x3)
{
   int value = 0;
   if(x1 > 4)
   {
      if(x2 < 5 && x3 < 10)
      {
         value = func2(x2, x3);
         cout << “func2 = “ << value;
      }
      else
      {
         value = func3(x2, x3);
         cout << “func3 =  “ << value;
      }
      return value * 2;
   }
   else
   {
      value = func4(x1);
      return value;
   }
}
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Figure 2: Control flow graph example
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Figure 3: TCSS control flow graph
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Figure 4: TCSS scheme
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Figure 5: Ratios between TCSS and TCSS-LS
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Figure 6: Ratios between TCSS-LS and other generators




