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Abstract. We define and study the notion of an indexed frame. This
is a bi-dimensional structure consisting of a Cartesian product equipped
with relations which only relate pairs if they coincide in one of their com-
ponents. We show that these structures are quite ubiquitous in modal
logic, showing up in the literature as products of Kripke frames, subset
spaces, or temporal frames for STIT logics. We show that indexed frames
are completely characterised by their ‘orthogonal’ relations, and we pro-
vide their sound and complete logic. Using these ‘orthogonality’ results,
we provide necessary and sufficient conditions for an arbitrary Kripke
frame to be isomorphic to certain well-known bi-dimensional structures.

1 Introduction

This text is concerned with a certain type of bi-dimensional relational structure
which shows up in multiple areas of modal logic. The ubiquity of these structures,
we wish to argue, should motivate an independent study of their properties and
their logic, towards which we take the first steps in this paper.

In the text we will call these structures indexed frames. Let us start off by
providing two distinct (but ultimately equivalent) definitions of what we mean
by that.

Definition 1. By indexed frame we refer indistinctly to any of the following
structures:

(IF1) Frames (W1 ×W2, R1, R2) where R1 and R2 are binary relations on
W1 ×W2 such that (w1, w2)Ri(w′1, w′2) implies wj = w′j for i 6= j;

(IF2) Tuples (W1,W2, R
1, R2) where, for i 6= j, Ri = {Riw : w ∈ Wj} is a

family of binary relations on Wi indexed by the elements of Wj.

It is straightforward to see how these two definitions refer to the same type of
structure. Given a frame of the form (IF1), we define w2R

1
ww
′
2 iff (w,w2)R1(w,w′2)

and w1R
2
ww
′
1 iff (w1, w)R2(w′1, w) to obtain a frame of the form (IF2); con-

versely, given a frame in the form (IF2) we obtain a (IF1) frame by setting
(w1, w2)Ri(w′1, w′2) iff wj = w′j and wiR

i
wjw

′
i.

Having these bi-dimensional structures at hand, one can interpret formulas
over a bi-modal language

φ ::= p|⊥|(φ ∧ φ)|¬φ|�1φ|�2φ
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with respect to pairs in W1 ×W2 as follows:
(IF1) (w1, w2) |= �iφ iff (w1, w2)Ri(w′1, w′2) implies (w′1, w′2) |= φ;
(IF2) (w1, w2) |= �1φ iff w1R

1
w2
w′1 implies (w′1, w2) |= φ;

(w1, w2) |= �2φ iff w2R
2
w1
w′2 implies (w1, w

′
2) |= φ.

It can be easily seen how these semantics are equivalent.
We start this paper by illustrating that indexed frames show up quite often

in the literature. In order to put forward this argument, we provide in the next
section examples of well-known models in different areas of modal logic which
are indexed frames. In Section 3 we show that the property of ‘orthogonality’
(i.e., the fact that each point in the model is uniquely determined by the pair of
connected components to which it belongs) is necessary and sufficient to char-
acterize indexed frames, and we use this property to provide their sound and
complete logic. In Section 4 we enrich our language with modalities �1 and
�2 which fix w2 (resp. w1) and quantify over all points in W1 (resp. W2). We
provide the sound and complete logic for this extended language. In Section 5,
we come back to the examples presented in Section 2 with the results on or-
thogonality previously discussed, showing necessary and sufficient conditions for
a bi-relational Kripke frame to be isomorphic to several well-known types of
indexed frames. We conclude in Section 6.

The proofs of some minor Propositions and Lemmas have been moved to the
Appendix; this is indicated with the symbol �A.

2 Examples of indexed frames

Let us see some well-known structures that are either indexed frames or gener-
ated subframes thereof. We will use the term “indexed relation” to informally
refer to a relation defined on a Cartesian product that respects one of the coor-
dinates.

Example 1 (Products). [?, Chapter 3] The product of two Kripke frames (W1, R1)
and (W2, R2) (wherein Ri is a binary relation defined on Wi for i = 1, 2) is the
frame

(W1, R1)× (W2, R2) = (W1 ×W2, RH , RV ),

where RH and RV are binary relations on W1 ×W2 (called the ‘horizontal’ and
‘vertical’ relations respectively) defined as:

(w1, w2)RH(w′1, w′2) iff w2 = w′2 and w1R1w
′
1, and

(w1, w2)RV (w′1, w′2) iff w1 = w′1 and w2R2w
′
2

Products very closely adjust to the (IF1) definition. In fact, indexed frames can
be seen as a generalization of products. Indeed, a product can be seen as an (IF2)
indexed frame (W1,W2, R

1, R2) with the extra property that, for all w1, w
′
1 ∈W1

and w2, w
′
2 ∈W2, R1

w2
= R1

w′2
and R2

w1
= R2

w′1
.

It is of note that, while the logic of bidimensional products of frames (as stud-
ied in [?]) contains axioms making both modalities interact (such as ♦1♦2p ↔
♦2♦1p), this will not the case for the logic of indexed frames.
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Example 2 (Subset spaces). In its most basic form [?], a subset space is a tuple
consisting of a set X and some collection O of nonempty subsets of X.

One can interpret formulas of a bimodal language including � and K modal-
ities on a subset space with respect to a pair (x, U) such that x ∈ U and U ∈ O
as follows:

x, U |= Kφ iff y, U |= φ for all y ∈ U
x,U |= �φ iff x, V |= φ for all V ⊆ U such that x ∈ V & V ∈ O.

The semantics above naturally defines two indexed relations on the graph OX :=
{(x, U) : x ∈ U & U ∈ O}, namely:

(x, U) ≡K (y, V ) iff U = V ;
(x, U) ≥� (y, V ) iff x = y and U ⊇ V

Clearly, the standard Kripke semantics on the frame (OX ,≡K ,≥�) (let us call
this a subset space frame) are the exact semantics above, and moreover this
subset space frame is (a generated subframe of) an indexed frame.

Example 3 (Social Epistemic Logic). Social Epistemic Logic (SEL) is a multi-
modal framework to model knowledge within social networks, introduced in [?].
Its language contains, in addition to atomic propositional variables p, q..., nom-
inal variables n,m, ..., an artefact borrowed from Hybrid Logic [?]. It has oper-
ators Kφ and Fφ to express things such as “I know φ” and “all my friends φ”,
and, in addition, it presents an operator @nφ for each nominal n to express “φ
is true of the agent named by n”.

The models for SEL are of the form (W,A, {∼a}a∈A, {�w}w∈W , V ), where
each ∼a is an ‘epistemic indistinguishability’ equivalence relation for agent a on
the set of possible worlds W , and each �w is a ‘social’ symmetric and irreflexive
relation, representing which pairs of agents in the set A are ‘friends’ at world w.
The valuation V assigns subsets of W × A to propositional variables p and, for
a nominal n, V (n) is of the form W × {a} for some a; it is then said that “n is
the name of a”, denoted a = nV .

For the semantics, we read formulas with respect to a pair of a world and
an agent as follows: (w, a) |= Kφ iff (v, a) |= φ for all v such that w ∼a v;
(w, a) |= Fφ iff (w, b) |= φ for all b such that a �w b, and (w, a) |= @nφ iff
(w, nV ) |= φ.

(W,A, {∼a}a∈A, {�w}w∈W ) is clearly an (IF2) indexed frame and even the
@n modality can be interpreted via the “indexed” relation: (w, a)Rn(v, b) iff
w = v and b = nV .

Its equivalent (IF1) form is (W ×A,∼,�), where (w, a) ∼ (v, b) iff a = b and
w ∼a v, and (w, a) � (v, b) iff w = v and a �w b.

Example 4 (STIT logic). The logic of seeing-to-it-that or STIT was studied in
[?] and has shown up in the literature with many variations; in most cases, the
different models for STIT are quite explicitly indexed frames, or present indexed
relations. The one we showcase here is (a slightly simplified version of) a Kamp
frame, discussed in [?,?].

A Kamp frame is a tuple (W,O, {∼t}t∈T , {∼t,i}t∈T,i∈Agt), where each world
has a ‘timeline’ associated to it, this being a linear order O(w) = (Tw, <w). T is



4 P. Balbiani & S. Fernández González

the union of all the Tw’s. For each t, the relations ∼t and ∼t,i are equivalence
relations defined on the set {w : t ∈ Tw}.

Sentences in a language including a necessity operator �, agency operators
[i] for i ∈ Agt and a temporal operator G are read with respect to pairs (t, w)
such that t ∈ Tw as follows:

(t, w) |= �φ iff (t, w′) |= φ for all w′ ∼t w;
(t, w) |= [i]φ iff (t, w′) |= φ for all w′ ∼t,i w;
(t, w) |= Gφ iff (t′, w) |= φ for all t′ >w t.
While this does not exactly adjust to the definitions of indexed frame above,

one sees how this structure can be defined as (a generated subframe of) the (IF2)
indexed frame

(W,T, {∼t}t∈T , {∼t,i}t∈T,i∈Agt, {<w}w∈W ).

(We are slightly bending our definition of ‘indexed frame’ here and allowing for
multiple families of relations indexed by the elements of T .)

We can easily ‘rewrite’ these relations to be defined on (a subset of) W × T
in the (IF1) way:

(t, w) ≡� (t′, w′) iff t = t′ & w ∼t w′
(t, w) ≡i (t′, w′) iff t = t′ & w ∼t,i w′
(t, w) ≺G (t′, w′) iff w = w′ & t <w t

′

All the frames showcased in this section share one property: namely that of
orthogonality. We explain and study this in the next section.

3 Orthogonal frames

The relations R1 and R2 in an indexed frame (W1×W2, R1, R2) are “orthogonal”
to each other, in the sense that there cannot be two distinct points connected by
both R1 and R2. Indeed, if there is an Ri path from (w1, w2) to (w′1, w′2) (i.e. if
they belong to the same Ri-connected component), then wj = w′j for j 6= i and,
in consequence, if there are both R1 paths and R2 paths between these pairs,
then (w1, w2) = (w′1, w′2). In the present section we shall see that this property
fully characterises indexed frames.

For the rest of this paper, given a relation R, we let R∗ denote the least
equivalence relation containing R, i.e., the equivalence relation induced by the
connected components of R. By IdW we refer to the identity relation {(w,w) :
w ∈W}.

Definition 2. A birelational Kripke frame (W,R1, R2) is orthogonal if there
exist equivalence relations ≡1 and ≡2 on W satisfying:

(O1) Ri ⊆≡i, i = 1, 2;
(O2) ≡1 ∩ ≡2= IdW .

A frame (W,R1, R2) is said to be full orthogonal if there exist equivalence rela-
tions ≡1 and ≡2 on W satisfying (O1), (O2) and

(O3) ≡1 ◦ ≡2= W 2.
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We leave it to the reader to check that:

Lemma 1. (W,R1, R2) is orthogonal if and only if R∗1 ∩R∗2 = IdW .

Note that, if such a pair of equivalence relations exists, it is not necessarily
unique: consider the frame (W,R1, R2) where W = N2 and R1 = R2 = IdW ; the
pair of equivalence relations (≡1,≡2), where (n1, n2) ≡i (m1,m2) iff ni = mi

satisfies properties O1 – O3; however, the pair (W 2, IdW ) does as well.

Proposition 1. (W,R1, R2) is isomorphic to an indexed frame if and only if it
is full orthogonal.

Proof. Let (W1×W2, R1, R2) be an indexed frame. Then the relations (w1, w2) ≡i
(w′1, w′2) iff wj = w′j (where {i, j} = {1, 2}) satisfy O1, O2, and O3.

Conversely, suppose such relations exist, and let [w]i denote the equivalence
class of w under ≡i. By O2 and O3, given any pair (w, v) ∈W 2, there is exactly
one element in the intersection [w]2 ∩ [v]1: let xw,v denote this unique element.
Consider the frame (W/≡2 ×W/≡1 ,R1,R2), where

([w]2, [v]1)Ri([w′]2, [v′]1) if and only if xw,vRixw′,v′ .

This in an indexed frame, for if xw,vR1xw′,v′ , then xw,v ≡1 xw′,v′ , and since
v ≡1 xw,v ≡1 xw′,v′ ≡1 v

′, this gives [v]1 = [v′]1. We reason analogously for R2.
It is isomorphic to (W,R1, R2) via the map f([w]2, [v]1) = xw,v. For injectivity,
note that if xw,v 6= xw′,v′ , then either w 6≡2 w

′ or v 6≡1 v
′. For surjectivity, note

that w = xw,w for all w ∈W . Finally, note that we have defined the map in such
a way that ([w]2, [v]1)Ri([w′]2, [v′]1) iff f([w]2, [v]1)Rif([w′]2, [v′]1).

Definition 3. Given two Kripke-complete unimodal logics L1 and L2 we say
that a birelational frame (W,R1, R2) is a [L1, L2]-frame if (W,Ri) |= Li, for
i = 1, 2.

Recall that the fusion logic L1⊕L2 is the least normal modal logic containing
the axioms and rules of L1 for �1 and of L2 for �2 and that:

Theorem [?, Thm. 4.1]. L1 ⊕ L2 is the logic of [L1, L2]-frames.
We have:

Proposition 2. An orthogonal [L1, L2]-frame (W,R1, R2) is a generated sub-
frame of a full orthogonal [L1, L2]-frame. �A

Proposition 3. The fusion logic L1 ⊕ L2 is the logic of orthogonal [L1, L2]-
frames.

Proof. The proof in [?, Thm. 4.1] of the fact that

the logic of frames (W,R1, R2) such that (W,Ri) |= Li for i = 1, 2 is the
fusion L1 ⊕ L2
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utilises the construction of a dovetailed frame in order to prove that any formula
φ consistent in L1⊕L2 is satisfiable in an [L1, L2]-frame. It is a recursive process
done as follows: first, one obtains a consistent formula in the language of L1 by
rewriting φ with ‘surrogate’ propositional variables p1

♦2ψ1
, ..., p1

♦2ψn
in place of

its maximal subformulas preceded by ♦2. Then one constructs a rooted L1-frame
satisfying φ. Whenever a point in this frame satisfies a surrogate variable p1

♦2ψ
,

one rewrites ψ in the language of L2 by using surrogates q2
♦1θ1

, ..., q2
♦1θn

and
makes this point the root of an L2-frame satisfying this formula. One repeats
this process, alternating between L1-formulas and L2-formulas until one obtains
a rooted frame satisfying φ at the root.

We point the interested reader to [?] for more precise details about this
construction; for clarity, we provide a simple example from [?], using the formula
φ = p ∧ ♦1(¬p ∧ ♦2p) ∧ ♦2(¬p ∧ ♦1(p ∧ ♦2p)).

We rewrite φ as p ∧ ♦1(¬p ∧ q2) ∧ r2, where q2 is a ‘surrogate’ for ♦2p, r2

for ♦2(¬p ∧ q1), q1 for ♦1(p ∧ s2), and s2 for ♦2p.
We construct a rooted L1-frame satisfying the rewritten formula (top left of

Fig. 1); we make the node satisfying r2 into the root of an L2-frame satisfying
its surrogate formula ♦2(¬p ∧ q1) and the q2 node into frame satisfying ♦2p
(top right); we then proceed similarly with q1 (bottom left) and finally with s2

(bottom right) to find a [L1, L2]-frame satisfying φ at its bottom point.

•

•

•

••

•

•

•

•

••

•

••

••

p, r2

¬p, q2

p

¬p

p

¬p¬p, q1

p

p

¬p¬p

pp

¬p

p, s2 p

1. 2.

3. 4.

Fig. 1. ‘Dovetailed’ construction of a frame for p∧♦1(¬p∧♦2p)∧♦2(¬p∧♦1(p∧♦2p)).

For our current purposes it suffices to point out that the ‘dovetailed’ frames
obtained by this method are always orthogonal, for this construction does not
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allow for two distinct points x and y to be reachable from each other by both
R1 and R2. As an immediate consequence of Propositions 2 and 3:

Theorem 1. The logic of [L1, L2]-indexed frames is the fusion L1 ⊕ L2.

4 Orthogonal structures

In the definition for full orthogonal frames (Def. 2) we demand the existence of
equivalence relations which are supersets of the two given relations and satisfy
the properties of full orthogonality. These relations are not made explicitly part
of the structure and are not taken into account when defining the logic.

In this section we consider structures (X,R1, R2,≡1,≡2) satisfying O1, O2
and O3, and we study the logic of these frames when we add modal operators
to our language to explicitly account for the orthogonal equivalence relations.

Let us first note the following fact:

Lemma 2 (Generalized orthogonal frames). If (W,R1, R2) is a Kripke
frame such that there exist equivalence relations ≡1 and ≡2 on W satisfying

(O1) Ri ⊆≡i,
(O2) ≡1 ∩ ≡2= IdW , and
(O3’) ≡1 ◦ ≡2=≡2 ◦ ≡1,

then (W,R1, R2) is a disjoint union of full orthogonal frames. �A

Definition 4. An orthogonal structure is a tuple (W,R1, R2,≡1,≡2), where
(W,R1, R2) is a birelational Kripke frame and ≡1 and ≡2 are equivalence re-
lations on W satisfying (O1), (O2), and (O3’) above. A standard orthogonal
structure satisfies moreover (O3) ≡1 ◦ ≡2= W 2.

A tuple satisfying (O1) and (O3’) is called a semistructure.

We define a semantics for (semi)structures (W,R1,2,≡1,2) with respect to a
language containing operators �i and �i for i = 1, 2 as follows:

w |= �iφ iff, for all v, wRiv implies v |= φ;
w |= �iφ iff, for all v, w ≡i v implies v |= φ.

A very standard canonical model argument shows that:

Proposition 4. The sound and complete logic of semistructures is

K�1 +K�2 + S5�1 + S5�2 + �1�2φ↔ �2�1φ+ �iφ→ �iφ.

Moreover, if L1 and L2 are canonical unimodal logics, the logic of semistruc-
tures (W,R1,2,≡1,2) such that (W,Ri) |= Li for i = 1, 2 is

L1 + L2 + S5�1 + S5�2 + �1�2φ↔ �2�1φ+ �iφ→ �iφ.

�A
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Let us call these logics Loga and LogL1L2
a respectively. Let us now see that

Loga is also the logic of orthogonal structures (and, in turn, of “standard” struc-
tures).

Recall that a bounded morphism between Kripke frames F = (W,R1, ..., Rn)
and F ′ = (W ′, R′1, ..., R′n) is a map f : W → W ′ satisfying the forth condition
(wRiv implies f(w)R′if(v)) and the back condition (w′Rif(v) implies there is
an w ∈ f−1(w′) such that wRiv). If the bounded morphism is surjective, then
every formula which is refutable in F ′ can be refuted in F . (See [?, Thm. 3.14]
for details).

We shall show that a semistructure is always the image of a bounded mor-
phism departing from an orthogonal structure, which in turn will let us prove
that the logic of orthogonal structures is the above.

The proof below utilises the notion of a matrix enumeration. Given sets I
and X, an I-matrix enumeration of X is a map f : I × I → X such that, for
any fixed i0 ∈ I, both maps

j ∈ I 7→ f(i0, j) ∈ X and j ∈ I 7→ f(j, i0) ∈ X

are surjective.

Lemma 3. If |I| ≥ |X|, there exists an I-matrix enumeration of X. �A

With this:

Proposition 5. A semistructure is a bounded morphic image of an orthogonal
structure.

Proof. Let (W,R1,2,≡1,2) be a semistructure. Let I be a set of indices with the
same cardinality as W .

Let us consider the quotient set W/≡1∩≡2 . Let us fix a matrix enumeration
f[w] : I × I → [w] of each equivalence class [w] ∈ W/≡1∩≡2 . We use wij as a
shorthand for f[w](i, j). Note that it is always the case that w ≡k wij for k = 1, 2.

We define the following relations on the set W ′ = W/≡1∩≡2 × I2:
([w], i1, i2) ≡′1 ([v], j1, j2) iff w ≡1 v and i2 = j2;
([w], i1, i2) ≡′2 ([v], j1, j2) iff w ≡2 v and i1 = j1;
([w], i1, i2)R′1([v], j1, j2) iff wi1i2R1vj1j2 and i2 = j2;
([w], i1, i2)R′2([v], j1, j2) iff wi1i2R2vj1j2 and i1 = j1.

Let us see that this is an orthogonal structure. Indeed,
(O1) ([w], i1, i2)R′k([v], j1, j2) implies wi1i2Rkvj1j2 and il = jl (for k 6= l),

which in turn implies wi1i2 ≡k vj1j2 and il = jl. This means that w ≡k v and
il = jl, and thus ([w], i1, i2) ≡′k ([v], j1, j2).

(O2) If ([w], i1, i2) ≡′k ([v], j1, j2) for k = 1 and 2, then i1 = j1, and i2 = j2,
and (w, v) ∈≡1 ∩ ≡2, which implies [w] = [v]. Therefore, ≡′1 ∩ ≡′2= IdW ′ .

(O3’) If ([w], i1, i2)(≡′1 ◦ ≡′2)([u], j1, j2), then w(≡1 ◦ ≡2)u. This, plus prop-
erty (O3’) of the semistructure, implies that there exists some v′ such that
w ≡2 v

′ ≡1 u. But then

([w], i1, i2) ≡′2 ([v′], i1, j2) ≡′1 ([u], j1, j2).
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This shows that (≡′1 ◦ ≡′2) ⊆ (≡′2 ◦ ≡′1); the converse inclusion is analogous.
Finally, the map

([w], i1, i2) ∈W/≡1∩≡2 × I2 7→ wi1i2 ∈W

is a bounded morphism. For the forth condition, ([w], i1, i2) ≡′k ([v], j1, j2) im-
plies wi1i2 ≡k vj1j2 and ([w], i1, i2)R′k([v], j1, j2) implies wi1i2Rkvj1j2 , by defini-
tion. For the back condition, if wR1vj1j2 , then there exists an index i ∈ I such
that f[w](i, j2) = w, and, by definition,

([w], i, j2)R′1([v], j1, j2).
An analogous argument can be made for R2, ≡1 and ≡2.

As a consequence:
Theorem 2. The sound and complete logic of standard orthogonal structures is
Loga,

K�1 +K�2 + S5�1 + S5�2 + �1�2φ↔ �2�1φ+ �iφ→ �iφ.

Proof. Consequence of Propositions 4 and 5.
Remark 1. The construction in the proof above respects many properties of the
Ri relations: for instance, if Ri is reflexive, transitive, symmetric, Euclidean,
etc., then so is R′i. This means that this technique can be used to prove that
LogL1L2

a is the logic of indexed structures (W,Ri,≡i) where (W,Ri) |= Li for a
large family of logics that includes S4, S5, KD45, etc. We conjecture that the
result is true for any pair L1, L2 of Kripke-complete unimodal logics.

Let us now define a semantics for this extended language directly on in-
dexed frames (W1 ×W2, R1, R2), taking advantage of the isomorphism between
indexed frames and full orthogonal frames given in the proof of Proposition 1.
The fact that the isomorphic image of the equivalence classes of the ‘orthogonal’
equivalence relations are sets of the form W1 × {w2} and {w1} ×W2 allows us
to consider the � modalities as coordinate-wise ‘universal modalities’; that is
to say, if we interpret formulas of the extended language on indexed frames as
follows:

(w1, w2) |= �1φ iff (v, w2) |= φ for all v ∈W1, and
(w1, w2) |= �2φ iff (w1, v) |= φ for all v ∈W2,

then we have that:
Proposition 6. Loga is the sound and complete logic of indexed frames for the
language including �i and �i operators. �A

We finish this Section by pointing out the fact that Loga enjoys the Fi-
nite Model Property with respect to semistructures, orthogonal structures and
indexed frames, in the following sense:
Proposition 7. If φ /∈ Loga, then there exists a finite indexed frame refuting
φ. �A

We conjecture that, if L1 and L2 have the Finite Model Property, then for
all φ /∈ LogL1L2

a there exists a finite [L1, L2]-semistructure (perhaps a finite
[L1, L2]-indexed frame) refuting φ; this problem, however, remains open.
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5 Some case studies

In the present section we return to the Examples in Section 2 and, with the
help of our orthogonality results above, we abstract from the “indexed frame”
definition and give necessary and sufficient conditions on orthogonal frames to
be isomorphic to these structures.

Products (Example 1). We have:

Proposition 8. A frame (X,R1, R2) is isomorphic to a product of Kripke frames
if and only if there exist two equivalence relations ≡1 and ≡2 such that:

(O1) Ri ⊆≡i, for i = 1, 2; (O2) ≡1 ∩ ≡2= IdX ;
(O3) ≡1 ◦ ≡2= X2, and (P1) (Ri◦ ≡j) = (≡j ◦Ri), for i 6= j.

Proof. That a product (W1, R2) × (W2, R2) satisfies these properties (with the
equivalence relations (w1, w2) ≡i (v1, v2) iff wj = vj) is trivial.

Now let us consider a frame (W,R1, R2) satisfying the properties above and
let xwv denote the unique element in [w]2 ∩ [v]1 (as in the proof of Prop. 1).
This frame satisfies, for all w,w′, v, v′ ∈W : xwvR1xw′v iff xwv′R1xw′v′ . Indeed,
if xwvR1xw′v, since xw′v ≡2 xw′v′ , then by (P1) there must exist some y such
that xwv′ ≡2 yR1xw′v′ , and this y can be no other than xwv′ . We thus can define
a relation on W/≡2 as [w]2R′1[w′]2 iff xwvR1xw′v for some (equiv.: for all) v. We
proceed similarly to define a relation R′2 on W/≡1 : [v]1R′2[v′]1 iff xwvR1xwv′ for
some (for all) w.

The product (W/≡2 , R
′
1) × (W/≡1 , R

′
2) is equal to (W/≡2 ×W/≡1 ,R1,R2),

isomorphic to (W,R1, R2) as per Prop. 1.

Subset spaces (Example 2) Recall the notion of a subset space frame from Ex-
ample 2. We have:

Proposition 9. A frame (W,RK , R�) is isomorphic to a subset space frame if
an only if

(SS1) RK is an equivalence relation;
(SS2) R� is a partial order (i.e. reflexive, transitive and antisymmetric);
(SS3) R� ◦RK ⊆ RK ◦R�,

and there exists an equivalence relation ≡� such that
(O1) R� ⊆≡�;
(O2) RK∩ ≡�= IdW ,

and, moreover,
(SS4) ([RK◦ ≡�](u) ⊇ [RK◦ ≡�](v) and u ≡� v) imply uR�v;
(SS5) [RK◦ ≡�](u) = [≡� ◦RK ](v) implies uRKv.

�A

Social Epistemic Logic (Example 3). Let us define a semantics for Social Epis-
temic Logic on full orthogonal structures (X,RK , RF ,≡A,≡W ), where RK ⊆≡A
and RF ⊆≡W . The equivalence classes of these relations will represent agents
and worlds respectively.
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Recall that the only constraints on a SEL model (W,A,∼,�) are that ∼must
be an equivalence relation and � must be symmetric and irreflexive. Therefore,
via the isomorphism in Prop. 1, one easily sees that:

Lemma 4. Let (X,RK , RF ,≡A,≡W ) be a full orthogonal structure. The full
orthogonal frame (X,RK , RF ) is isomorphic to a SEL frame if and only if, on
top of (O1) – (O3), it satisfies:

(SEL1) RK is an equivalence relation, and
(SEL2) RF is symmetric and irreflexive.

Recall (Prop. 1) that the corresponding isomorphic SEL model will be
(X/≡W , X/≡A ,RK ,RF ), where RK relates two pairs of equivalence classes if an
only if the unique elements in the intersection of each pair are related by RK
(and likewise for RF ).

Now let us consider how a valuation must act upon this model. For a SEL
model we demand that each V (n) must be of the form W ×{a} for some unique
agent a ∈ A. Via the isomorphism outlined above, we can see, for the image of
a valuation V defined on an orthogonal structure (X,RK , RF ,≡A,≡W ) to be
a valid valuation on a SEL model, we want the image of the set V (n) to be
X/≡W × {[y]A} for some y ∈ X. But the pre-image of this set is precisely [y]A.

We thus demand the following property:

(SEL3) V (n) ∈ X/≡A for all n.

For each nominal n and x ∈ X, we let nx denote the unique element in
[x]W ∩ V (n).

Models of SEL must be named. A named model is a model wherein every
agent has a name, i.e., for all a ∈ A, there exists a nominal n such that a = n.
In these isomorphic structures, the notion of named model translates to: for all
y ∈ X, there exists n such that V (n) = [y]A, or, equivalently,

(SEL4) for all x ∈ X, there exists n ∈ Nom such that x ∈ V (n).

With all this we can define a semantics for Social Epistemic Logic on full
orthogonal models (X,RK , RF ,≡A,≡W , V ) where RK , RF and V satisfy the
constraints (SEL1) – (SEL4) above as follows:

x |= Fφ iff xRF y implies y |= φ;
x |= Kφ iff xRKy implies y |= φ;
x |= n iff x ∈ V (n) (iff x = nx);
x |= @nφ iff nx |= φ.
The ‘non-rigid’ variant of SEL [?] assigns different names to agents in each

possible world. This is imposed via the following, weaker, constraint of the valu-
ation: for every nominal n and each world w, there exists a unique agent a ∈ A
such that (w, a) ∈ V (n). In the isomorphic structures above, this translates to a
constraint weaker than (SEL3), namely:

(SEL3’) for each n and each x ∈ X,
the intersection [x]W ∩ V (n) is a singleton.
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A proof of completeness of (standard, rigid) SEL using ‘indexed’ canonical
models was recently given in [?] (it had been proven in [?] with a different
method). Completeness of ‘non-rigid’ SEL was proven in [?] by means of an
involved step-by-step construction, but a proof of this result using canonical
models remains an open problem. We conjecture that the semantics above could
assist in this endeavour.

STIT logic (Example 4). [?] compares three distinct semantics for STIT logic.
One of them, in the form of ‘Kamp frames’, was briefly alluded to in Example
4. Another one, introduced in [?], interprets sentences on T-STIT frames: these
are one-dimensional Kripke frames

(X,≡�, {≡i}i∈Agt,≺G)

wherein two different sorts of relations allow to reason, respectively, about time
(≺G) and necessity/agency (the equivalence relations, with ≡i⊆≡�). These re-
lations are defined to be orthogonal, for they satisfy ‘x ≡� y implies x ⊀G y’.

In [?] it is shown that both T-STIT frames and Kamp frames satisfy the
same formulas, via an argument which involves transforming one structure into
the other in a truth-preserving manner. However, thanks to the isomorphism
in Prop. 1 (and the (IF1) redefinition of a Kamp frame of Ex. 4) one can go
beyond and show that a Kamp frame is always a T-STIT frame and that a T-
STIT frame is isomorphic to a Kamp frame, wherein the set of ‘timelines’ W is
defined by the connected components of ≺ and the set of ‘moments’ T is given
by the equivalence classes of ≡�.

6 Discussion and future work

We have identified a structure that shows up with relative frequency in different
areas of modal logic; we have argued that an independent study of this structure
is warranted and have taken the first steps towards it.

We have shown that these structures are completely characterised by the
‘orthogonality’ of their relations. Proofs of completeness of frameworks based
on indexed frames are not particularly easy to tackle; as an example, we point
the reader to the completeness proof of SEL in [?]. We hope that the above
observations about orthogonality will help facilitate some of these proofs.

Some work remains to be done and many questions are open. Among these
are the following:

Is LogL1L2
a the logic of orthogonal structures (W,R1, R2,≡1,≡2) such that

(W,Ri) |= Li, for any pair of Kripke-complete logics L1 and L2? Can a formula
φ /∈ LogL1L2

a be refuted in a finite indexed frame whenever L1 and L2 have
the FMP? We conjecture an affirmative answer to these questions, and we plan
further research to resolve them.

Some variations on subset space logics consider families of subsets which are
closed under intersection [?] or which are topologies [?,?, for instance]. What fur-
ther restrictions does one have to add to obtain a result analogous to Prop. 9 for
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these structures? In the latter case, is there a relation between these properties
and the point-free topologies of [?]?

Perhaps the most obvious question: how does one generalise the definitions
and results in this paper to the n-dimensional case? The reader may find that
there are two reasonable generalisations of this framework to the n-th dimension:

(A) (W1 × ...×Wn, R1, ..., Rn) such that (wj)nj=1Ri(vj)nj=1 implies wj = vj
for all j 6= i;

(B) (W1 × ...×Wn, R1, ..., Rn) such that (wj)nj=1Ri(vj)nj=1 implies wi = vi.
Out of these two, we suggest (A) is more appropriate, for it does not make
much sense to apply (B) to n = 1, and (A) is the only one which still generalises
n-dimensional products. Many of the results of this paper may translate
relatively easily to the n-dimensional case, whereas some may not. We plan to
devote future work to this question.
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cussion about STIT logics, some of the fruits of which made it into this paper.

We also extend our gratefulness to the anonymous reviewers of this paper for their
helpful comments and suggestions.

Appendix

Proof of Prop. 2. Given an orthogonal [L1, L2]-frame (W,R1, R2), we extend
W to the set

W ′ = W ∪ {xwv : w, v ∈W,R∗2(w) ∩R∗1(v) = ∅},

i.e., we add one element for each pair of connected components which have an
empty intersection, and we extend the relations Ri as follows:

• if F• |= Li, then R′i = Ri;
• if F◦ |= Li, then R′i = Ri ∪ {(x, x) : x ∈W ′ \W};

where F• is the irreflexive singleton frame ({∗},∅), and F◦ is the reflexive sin-
gleton frame ({∗}, {(∗, ∗)}). (Recall that every logic is satisfied in either F• or
F◦; this is a consequence of a classical result by Makinson [?].)

Note that, in either case, no elements of W are related to any elements of
W ′ \W and thus (W,R1, R2) is a generated subframe of (W ′, R′1, R′2).

We define
≡′1= (R1 ∪ {(v, xwv) : v ∈W})∗, and
≡′2= (R2 ∪ {(w, xwv) : w ∈W})∗.

Note that ≡′1 and ≡′2 satisfy conditions O1 – O3 of Def. 2, and therefore
(W ′, R′1, R′2) is a full orthogonal frame. Finally, for i = 1, 2, (W ′, R′i) is the
disjoint union of the Li-frame (W,Ri) with a family of singleton Li-frames, and
thus it is an Li-frame.
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Proof of Lemma 2. We leave it to the reader to check that (O3’) implies that
≡1 ◦ ≡2 is an equivalence relation. Let W ′ be an equivalence class of ≡1 ◦ ≡2.
Let R′i and ≡′i be the restrictions of Ri and ≡i to W ′. It is routine to check that
(O1) R′i ⊆≡′i, (O2) ≡′1 ∩ ≡′2= IdW ′ , and (O3) ≡′1 ◦ ≡′2= (W ′)2. Each of these is
therefore a full orthogonal frame and (W,R1, R2) is equal to the disjoint union⋃
W ′∈W/≡1◦≡2

(W ′, R′1, R′2).

Proof (sketch) of Prop. 4. This uses the very standard technique of canonical
models; we point the reader to [?, Chapter 4] for full details and we simply offer
a sketch here:

Let X be the set of maximal consistent sets of formulas in the language. We
define the relations xRiy iff, for all φ, �iφ ∈ x implies φ ∈ y and x ≡i y iff, for
all φ, �iφ ∈ x implies φ ∈ y.

The Truth Lemma shows that, given the valuation V (p) = {x ∈ X : p ∈ x},
it is the case that x |= φ iff φ ∈ x.

We note that the logic LogL1L2
a is canonical, for canonicity is preserved by

fusions [?, Cor. 6] and the addition of Sahlqvist axioms [?, Chapter 4]. This
canonicity ensures that (X,Ri) |= Li; the S5 axioms for the �i’s ensure that
≡i is an equivalence relation; �1�2φ ↔ �2�1φ ensures that (O3’) is satisfied;
finally, the axioms �iφ→ �iφ ensure (O1).

Therefore (X,R1,2,≡1,2) is a semistructure and any consistent formula φ can
be satisfied in it.

Proof of Lemma 3. We simply show the existence of a matrix enumeration
f : X×X → X whenever X is infinite; we leave further details to the reader. Let
{X1, X2} be a partition of X into two sets which are equipotent to X itself (note
that the existence of such partition requires the Axiom of Choice for uncountable
cardinalities [?]). Let f1 : X1 → X and f2 : X2 → X be two surjections. The
map

f(x, y) =
{
fi(x) if x, y ∈ Xi

fj(y) if x ∈ Xi, y ∈ Xj , i 6= j

is the desired enumeration.

Proof of Prop. 6 Soundness is routine. For completeness, given a formula
φ /∈ Loga, it suffices to use Thm. 2 to find a standard orthogonal structure
(W,R1,2,≡1,2) that refutes φ, construct the indexed frame (W/≡2×W/≡1 ,R1,R2)
isomorphic to (W,R1, R2) via Prop. 1 and note that the equivalence relation
([w]2, [v]1) ∼=i ([w′]2, [v′]1) iff xwv ≡i xw′v′ relates two pairs if and only if their
j-th coordinate coincides, for j 6= i.

Proof (sketch) of Prop. 7. This involves a rather standard filtration argu-
ment. (See [?, Chapter 2] for details on this technique).

Given a consistent formula φ, we let (W,R1,2,≡1,2) be a semistructure satis-
fying φ at a point w0, and Γ be a finite set of formulas closed under subformulas
such that φ ∈ Γ , and we define an equivalence relation w ∼Γ v iff for all ψ ∈ Γ ,
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(w |= ψ iff v |= ψ). We define relations in the quotient set W/∼Γ as follows: for
i = 1, 2,
[w]Γ ≡′i [v]Γ iff, for all �iψ ∈ Γ , (w |= �iψ iff v |= �iψ), and
[w]ΓR′i[v]Γ iff [w]Γ ≡′i [v]Γ and for all �iψ ∈ Γ (w |= �iψ implies v |= ψ).

We leave it to the reader to check that the resulting tuple is a semistructure
and a filtration and therefore that [w0]Γ |= φ. We can then use Prop. 5 and
Lemma 2 to obtain an indexed frame satisfying φ.

Proof of Prop. 9. For the left-to-right direction, given a subset space frame
we consider the relations (x, U)RK(y, V ) iff U = V , (x, U)R�(y, V ) iff x = y
and U ⊇ V , and (x, U) ≡� (y, V ) iff x = y. We note that (RK◦ ≡�)(x, U) =
{(x′, U ′) ∈ OX : x′ ∈ U}, and we leave it to the reader to check that this satisfies
all the properties in Prop. 9.

Let us now consider a frame with these properties. We let [.]� and [.]K denote
the equivalence classes of ≡� and RK . Let us define the subset space

X = X/≡�
= {[w]� : w ∈W}

O = {Uv : v ∈W}, where Uv = {[w]� ∈ X : v[RK◦ ≡�]w}.
Note that [w]� ∈ Uv if and only if [w]� ∩ [v]K 6= ∅.
By (O2), an intersection [w]� ∩ [v]K of two equivalence classes is at most

a singleton. Let us map and element ([w]�, Uv) in the graph of (X,O) to the
unique element in [w]�∩[v]K . This is a bijection whose inverse maps each w ∈W
to ([w]�, Uw). We define relations ≡K and ≥� on this graph as in Example 2
and, to show that this map is an isomorphism, it suffices to show that

wRKv iff ([w]�, Uw) ≡K ([v]�, Uv), and
wR�v iff ([w]�, Uw) ≥� ([v]�, Uv).
We start with the second item. From left to right, if wR�v, then [w]� = [v]�

by (O1), and let us see that Uw ⊇ Uv. If [y]� ∈ Uv, then there is a unique
element x ∈ [y]� ∩ [v]K . But since wR�vRKx, it follows by (SS3) that there
must exist some x′ such that wRKx′R�x. Since x′ ≡� x, by (O1), and x ≡� y,
it follows that x′ ∈ [w]K ∩ [y]�, and thus [y]� ∈ Uw. From right to left, it suffices
to see that Uw ⊇ Uv and w ≡� v implies wR�v. But this follows directly from
(SS4), noting that Uw ⊇ Uv implies [Rk◦ ≡�](w) ⊇ [Rk◦ ≡�](v).

For the first item it suffices to show that wRKv iff Uw = Uv. The left-to-
right direction is immediate from the definition of Uw, whereas the right-to-left
direction follows from (SS5).
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