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A B S T R A C T

In this paper, we consider the recently-introduced Yajima–Oikawa–Newell (YON) system
describing the nonlinear resonant interaction between a long wave and a short wave. It extends
and generalises the Yajima–Oikawa (YO) and the Newell (N) systems, which can be obtained
from the YON system for special choices of the two non-rescalable, arbitrary parameters that
it features. Remarkably, for any choice of these latter constants, the YON system is integrable,
in the sense of possessing a Lax pair. New families of solutions, including the bright and dark
multi-solitons, as well as the breathers and the higher-order rogue waves are systematically
derived by means of the 𝜏-function reduction technique for the two-component KP and the
KP-Toda hierarchies. In particular, we show that the condition that the wave parameters have
to satisfy for the rogue wave solution to exist coincides with the prediction based on the stability
spectra for base-band instability of the plane wave solutions. Several examples from each family
of solutions are given in closed form, along with a discussion of their main properties and
behaviours.

. Introduction

In this paper, we study the recently-introduced Yajima–Oikawa–Newell (YON) system [1,2], modelling the resonant interaction
etween a short wave 𝑆 and a long wave 𝐿:

i𝑆𝑡 + 𝑆𝑥𝑥 + (i𝛼 𝐿𝑥 + 𝛼2𝐿2 − 𝛽 𝐿 − 2𝛼|𝑆|2)𝑆 = 0 , (1a)

𝐿𝑡 = 2(|𝑆|2)𝑥 . (1b)

ere, 𝑆 is a complex variable representing the complex amplitude of the short wave, 𝐿 is a real variable representing the amplitude
f the coupled long wave envelope, subscripts denote partial differentiation, and 𝛼 and 𝛽 are two arbitrary, non-rescalable, real
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parameters. Remarkably, system (1) is integrable – in the sense of possessing a Lax pair [1] – for any choice of the parameters 𝛼
and 𝛽. In particular, it is an integrable generalisation of both the Yajima–Oikawa (YO) model [3,4],

i𝑆𝑡 + 𝑆𝑥𝑥 − 𝐿𝑆 = 0 , (2a)

𝐿𝑡 = 2(|𝑆|2)𝑥 , (2b)

which is obtained by setting 𝛼 = 0 and 𝛽 = 1 in (1), and the Newell (N) model [5,6],

i𝑆𝑡 + 𝑆𝑥𝑥 + (i𝐿𝑥 + 𝐿2 − 2𝜎|𝑆|2)𝑆 = 0 , (3a)

𝐿𝑡 = 2𝜎(|𝑆|2)𝑥 , 𝜎2 = 1 , (3b)

which is obtained by setting 𝛼 = 𝜎 and 𝛽 = 0 and by substituting the field 𝐿 with 𝜎 𝐿 in (1), and where the parameter 𝜎 acts as
a sign that splits the system in two different cases, similarly to the focusing and defocusing regimes of the nonlinear Schrödinger
(NLS) equation. The Yajima–Oikawa system has seen numerous applications in different fields of physics, such as sonic-Langmuir
waves [3], capillary–gravity waves [4], water waves [7,8] and, most remarkably, in multiscale analysis whenever one combines a
branch of optical nature with one of mechanical nature [9–12]. Being a generalisation of it, the YON system has the potential to be
seful for modelling more general cases, although research on this front is still in progress. In [2], the authors provide an argument

for the YON system playing a role in modelling stratified fluids (see also [13,14]), or short wave-long wave coupling in the presence
of tension contrasting gravity and a short wave length comparable to the fluid’s depth. Finally, the YON system can be regarded as a
reduction of an auxiliary system used to study the Yajima–Oikawa system in [15], although some of its properties, such as stability,
o not translate fully through this reduction.

In this work, we construct and study families of soliton and rogue-wave solutions of the YON model (1). Multiple methods have
een employed throughout the years to generate solutions of integrable systems. Some of the most prominent of these take advantage
f the Lax pair formulation, such as the inverse scattering method [16–20], and Bäcklund [21,22] or Darboux transformations [23–

25]. However, the Hirota bilinear method [26–29] has two important features that distinguish it from the previous ones: it is not
 spectral method, as it does not need a Lax pair formulation for the system in order to apply it (albeit its applicability for systems
hat are not Lax-integrable is unclear [30–32]); and it is not analytical in its nature, but algebraic.

The specific approach we will employ in the present work is the method of 𝜏-functions [33–35], which allows one to use the
Kadomtsev–Petviashvili (KP) equation [36] and the discrete KP (dKP) equation, also known as Hirota–Miwa (HM) equation [29,37]
to rewrite the corresponding bilinear forms as elements of the KP hierarchy. Many systems have been studied through this approach
in the last two decades, notably including several multicomponent systems. In particular, it has been successfully applied to obtain
solutions of both the Yajima–Oikawa [38] and Newell [39] systems, although it had not yet been applied to the new YON system.
Some periodic, rational, bright and dark soliton, and peakon solutions of the YON system have been previously obtained via an

nsatz approach in [2]; some bright and dark (anti-dark, grey, black) soliton solutions, as well as some breather solutions have
also been derived via a traditional Hirota approach [40]. The method that we adopt in the present work will allow us to generate
systematically and study in greater depth families of solutions encompassing all the previously known solutions, as well as new
families of solutions (especially of rogue waves) not known previously in the literature. Moreover, we show that rogue wave regimes
do coincide with the predictions made in [1] based on the system’s stability spectra (see [41]), analogously to what was shown
in [42] for the vector NLS system (see also [43]), as the onset of rogue waves is closely related to the stability behaviour of plane
waves, with base-band instability being identified as one of the main ingredients (see [44,45]).

Finally, it is worth remarking that other extensions the Yajima–Oikawa system exist, including extensions as vector [46] and
matrix [47] systems. Also, some additional kinds of solutions appear for Yajima–Oikawa that have not yet seen a translation into
the YON system, including periodic-background solutions [48].

In Section 2 we introduce the direct Hirota bilinearisation of the YON system, which we use to generate the general 𝑁-bright-
oliton solutions of the system, along with the properties of these solutions, such as soliton amplitude and velocity, and phase shift
esulting from the collision of solitons. Furthermore, to illustrate the technique, we rederive the general bright soliton solution

through the method of 𝜏-functions.
In Section 3 we use the method of 𝜏-functions to relate the bilinear form of the system to the KP-Toda hierarchy to generate the

general 𝑁-dark-soliton solution of the system, for which we also compute its corresponding properties.
In Section 4 we employ the same formalism to obtain the general 𝑁-breather solution of the system, along with the range of

arameters that enable its existence.
In Section 5 we take advantage of the breather solutions to explicitly write the general 𝑁-rogue-wave solution of the system,

both in differential form and using elementary Schur polynomials.

2. Bright solitons

We start our investigation of the solutions of the YON system (1) by deriving the bright soliton solutions, understood as solitons
propagating on a zero background. We will first use the traditional Hirota bilinear method to generate the general 𝑁-bright-soliton
solution, and then repeat the construction with the 𝜏-functions method, to better illustrate how the latter works and allow the reader
o better understand its employment in the more complicated cases of the dark soliton, breather, and rogue wave solutions.
2
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Before starting with the Hirota bilinear method, it is convenient to replace 𝐿 with 𝐿∕𝛼 and 𝛽 = 2𝛼 𝛿, so that we can rewrite (1)
as

i𝑆𝑡 + 𝑆𝑥𝑥 + (i𝐿𝑥 + 𝐿2 − 2𝛿 𝐿 − 2𝛼|𝑆|2)𝑆 = 0 , (4a)

𝐿𝑡 = 2𝛼(|𝑆|2)𝑥 . (4b)

We will bilinearise (4) by introducing the variable transformations

𝐿 = i
(

log
𝑓 ∗

𝑓

)

𝑥
, 𝑆 =

𝑔
𝑓
, (5)

where 𝑓 and 𝑔 are complex functions and 𝑓 ∗ denotes the complex conjugate of 𝑓 . The rationale behind the form of 𝐿 is to ensure
he resulting quantity is real, plus balancing the natural degree of derivatives.

The application of (5) into (4b) entails

i
(

log
𝑓 ∗

𝑓

)

𝑡𝑥
= 2𝛼

(

𝑔 𝑔∗
𝑓 𝑓 ∗

)

𝑥
. (6)

By integrating with respect to 𝑥, we get

i
(

log
𝑓 ∗

𝑓

)

𝑡
= 2𝛼 𝑔 𝑔

∗

𝑓 𝑓 ∗ + 𝐶1 , (7)

where 𝐶1 is an arbitrary integration constant. That takes us to
i𝐷𝑡𝑓 ⋅ 𝑓 ∗ = −2𝛼 𝑔 𝑔∗ − 𝐶1𝑓 𝑓 ∗ , (8)

where we have made use of the Hirota bilinear operator defined by [27]

𝐷𝑛
𝑥𝐷

𝑚
𝑡 (𝑎 ⋅ 𝑏) =

(

𝜕
𝜕 𝑥 − 𝜕

𝜕 𝑥′
)𝑛( 𝜕

𝜕 𝑡 −
𝜕
𝜕 𝑡′

)𝑚
𝑎(𝑥, 𝑡)𝑏(𝑥′, 𝑡′)||

|

|𝑥=𝑥′ ,𝑡=𝑡′
, (9)

along with its antisymmetry and the property
𝜕
𝜕 𝑥 log 𝑎

𝑏
=
𝐷𝑥𝑎 ⋅ 𝑏
𝑎𝑏

(10)

for arbitrary differentiable functions 𝑎 and 𝑏. By setting 𝐶1 = 0 in (8), we get the first of our bilinear equations,

i𝐷𝑡𝑓 ⋅ 𝑓 ∗ = −2𝛼|𝑔|2 . (11)

In a similar way, by substituting (5) into (4a) and after some tedious computations, we obtain the relation
(i𝐷𝑡 +𝐷2

𝑥)𝑔 ⋅ 𝑓
𝑓 2

−
𝑔
𝑓
(𝐷2

𝑥 − 2i𝛿 𝐷𝑥)𝑓 ⋅ 𝑓 ∗ + 2𝛼 𝑔 𝑔∗
𝑓 𝑓 ∗ = 0 . (12)

By decoupling (12), we obtain two additional bilinear equations,

(i𝐷𝑡 +𝐷2
𝑥)𝑔 ⋅ 𝑓 = 0 , (13a)

(𝐷2
𝑥 − 2i𝛿 𝐷𝑥)𝑓 ⋅ 𝑓 ∗ + 2𝛼|𝑔|2 = 0 . (13b)

We can use the previous bilinear Eq. (11) to rewrite (13b) as

i𝐷𝑡𝑓 ⋅ 𝑓 ∗ = (𝐷2
𝑥 − 2i𝛿 𝐷𝑥)𝑓 ⋅ 𝑓 ∗ . (14)

Summarising, the YON system transforms into a system of three Hirota bilinear equations:

(i𝐷𝑡 +𝐷2
𝑥)𝑔 ⋅ 𝑓 = 0 , (15a)

i𝐷𝑡𝑓 ⋅ 𝑓 ∗ = (𝐷2
𝑥 − 2i𝛿 𝐷𝑥)𝑓 ⋅ 𝑓 ∗ , (15b)

i𝐷𝑡𝑓 ⋅ 𝑓 ∗ = −2𝛼|𝑔|2 . (15c)

2.1. Traditional Hirota construction of bright solitons

Following Hirota’s procedure, we can set the variables 𝑓 and 𝑔 in the form

𝑓 = 1 + 𝜖2𝑓2 + 𝜖4𝑓4 +⋯ = 1 +
∞
∑

𝑛=1
𝜖2𝑛𝑓2𝑛 , (16)

𝑔 = 𝜖 𝑔1 + 𝜖3𝑔3 + 𝜖5𝑔5 +⋯ =
∞
∑

𝜖2𝑛−1𝑔2𝑛−1 , (17)
3

𝑛=1
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where 𝑓𝑖, 𝑔𝑖 are arbitrary functions and 𝜖 is a formal parameter of expansion for 𝑓 and 𝑔. We then substitute the formal series (16)
into our bilinear Eqs. (15). In order to obtain the bright-soliton solution we can assume

𝑓4 = 𝑓6 = ⋯ = 0 , 𝑔3 = 𝑔5 = ⋯ = 0 . (18)

After this choices, to the lowest order in 𝜖 our bilinear Eqs. (15) yield

(i𝐷𝑡 +𝐷2
𝑥)𝑔1 ⋅ 1 = 0 , (19a)

(𝐷2
𝑥 − 2i𝛿 𝐷𝑥)𝑓2 ⋅ 1 + (𝐷2

𝑥 − 2i𝛿 𝐷𝑥)1 ⋅ 𝑓 ∗
2 = −2𝛼 𝑔1𝑔∗1 , (19b)

i𝐷𝑡𝑓2 ⋅ 1 + i𝐷𝑡1 ⋅ 𝑓 ∗
2 = −2𝛼 𝑔1𝑔∗1 . (19c)

From (19a) we get

i
𝜕 𝑔1
𝜕 𝑡 +

𝜕2𝑔1
𝜕 𝑥2 = 0 , (20)

which gives us a solution

𝑔1 = 𝛾1𝑒
𝜉1 , 𝜉1 = 𝑘1𝑥 + i𝑘21𝑡 + 𝜉1,0 , (21)

with 𝑘1 the corresponding wave number, 𝜉1,0 an arbitrary initial phase (corresponding to a translation in space and time) and 𝛾1 an
arbitrary complex parameter.

From (19b) and (19c) we get
𝜕2𝑓2
𝜕 𝑥2 − 2i𝛿 𝜕 𝑓2

𝜕 𝑥 +
𝜕2𝑓 ∗

2

𝜕 𝑥2 + 2i𝛿
𝜕 𝑓 ∗

2
𝜕 𝑥 = −2𝛼 𝑔1𝑔∗1 , (22a)

i
𝜕 𝑓2
𝜕 𝑡 − i

𝜕 𝑓 ∗
2
𝜕 𝑡 = −2𝛼 𝑔1𝑔∗1 . (22b)

We can plug the expression for 𝑔1 obtained above into (22) to get
𝜕2𝑓2
𝜕 𝑥2 − 2i𝛿 𝜕 𝑓2

𝜕 𝑥 +
𝜕2𝑓 ∗

2

𝜕 𝑥2 + 2i𝛿
𝜕 𝑓 ∗

2
𝜕 𝑥 = −2𝛼|𝛾1|2𝑒𝜉1+𝜉

∗
1 , (23a)

i
𝜕 𝑓2
𝜕 𝑡 − i

𝜕 𝑓 ∗
2
𝜕 𝑡 = −2𝛼|𝛾1|2𝑒𝜉1+𝜉

∗
1 . (23b)

For these equations we can try an Ansatz

𝑓2 = 𝐴2𝑒
𝜉1+𝜉∗1 , 𝑓 ∗

2 = 𝐴∗
2𝑒
𝜉1+𝜉∗1 , (24)

and after substituting we get that

𝐴2 =
2𝛼|𝛾1|

2(i𝛿 + 𝑘∗1)

(𝑘1 + 𝑘∗1)
2(𝑘1 − 𝑘∗1)

. (25)

Putting everything together, for a single soliton we can write it as

𝑓 = 1 +
2𝛼|𝛾1|

2(i𝛿 + 𝑘∗1)

(𝑘1 + 𝑘∗1)
2(𝑘1 − 𝑘∗1)

𝑒𝜉1+𝜉
∗
1 =

|

|

|

|

|

|

|

|

|

|

i𝛿 + 𝑘∗1
𝑘1 + 𝑘∗1

𝑒𝜉1+𝜉
∗
1 1

−1 −
2𝛼|𝛾1|

2

𝑘∗21 − 𝑘21

|

|

|

|

|

|

|

|

|

|

, (26a)

𝑓 ∗ = 1 + 2𝛼|𝛾1|
2(i𝛿 − 𝑘1)

(𝑘1 + 𝑘∗1)
2(𝑘1 − 𝑘∗1)

𝑒𝜉1+𝜉
∗
1 =

|

|

|

|

|

|

|

|

|

|

i𝛿 − 𝑘1
𝑘1 + 𝑘∗1

𝑒𝜉1+𝜉
∗
1 1

−1 −
2𝛼|𝛾1|

2

𝑘∗21 − 𝑘21

|

|

|

|

|

|

|

|

|

|

, (26b)

𝑔 = 𝛾1𝑒
𝜉1 =

|

|

|

|

|

|

|

|

|

|

|

|

|

i𝛿 + 𝑘∗1
𝑘1 + 𝑘∗1

𝑒𝜉1+𝜉
∗
1 1 𝑒𝜉1

−1 −
2𝛼|𝛾1|

2

𝑘∗21 − 𝑘21
0

0 −𝛾1 0

|

|

|

|

|

|

|

|

|

|

|

|

|

, 𝜉1 = 𝑘1𝑥 + i𝑘21𝑡 + 𝜉1,0 . (26c)

Upon getting back to the 𝑆 and 𝐿 variables through the change (5), the formulae above provide the one-soliton solution. For
xample, for the short wave we have

𝑆 =
𝑔
𝑓

=
𝛾1𝑒𝜉1

1 + 2𝛼|𝛾1|2(i𝛿+𝑘∗1 ) 𝑒𝜉1+𝜉
∗
1

(27)
4

(𝑘1+𝑘∗1 )
2(𝑘1−𝑘∗1 )
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Fig. 1. 1-bright-soliton solution with 𝛼 = 1, 𝛽 = 2, 𝑘1 = 2 + 𝑖, 𝛾1 = 2 + 𝑖.

and

|𝑆|2 =
𝑔 𝑔∗
𝑓 𝑓 ∗ =

|𝛾|2𝑒𝜉1+𝜉
∗
1

(

1 + 2𝛼|𝛾1|2(i𝛿+𝑘∗1 )
(𝑘1+𝑘∗1 )

2(𝑘1−𝑘∗1 )
𝑒𝜉1+𝜉

∗
1

) (
1 + 2𝛼|𝛾1|2(i𝛿−𝑘1)

(𝑘1+𝑘∗1 )
2(𝑘1−𝑘∗1 )

𝑒𝜉1+𝜉
∗
1

) . (28)

We can denote 𝑘1 = 𝑘(𝑟)1 + i𝑘(𝑖)1 and get back to the original variables in (1) to write explicitly the general form of the one-bright-soliton
solution as

𝑆(𝑥, 𝑡) =
8𝑒i(𝑘

∗2
1 𝑡+𝑘∗1𝑥)𝑘(𝑖)1

(

𝑘(𝑟)1
)2
𝛾1

8𝑒4𝑘
(𝑖)
1 𝑘

(𝑟)
1 𝑡𝑘(𝑖)1

(

𝑘(𝑟)1
)2

+ |𝛾1|
2𝑒2𝑘

(𝑟)
1 𝑥[𝛽 − 2(𝑘(𝑖)1 + i𝑘(𝑟)1 )𝛼]

, (29a)

𝐿(𝑥, 𝑡) = −
64𝑒2𝑘

(𝑟)
1 (2𝑘(𝑖)1 𝑡+𝑥)𝑘(𝑖)1

(

𝑘(𝑟)1
)4

|𝛾1|
2

64𝑒8𝑘
(𝑖)
1 𝑘

(𝑟)
1 𝑡

(

𝑘(𝑖)1
)2 (

𝑘(𝑟)1
)4

− 16𝑒2𝑘(𝑟)1 (2𝑘(𝑖)1 𝑡+𝑥)𝑘(𝑖)1
(

𝑘(𝑟)1
)2

|𝛾1|
2(2𝑘(𝑖)1 𝛼 − 𝛽) + |𝛾1|

4𝑒4𝑘
(𝑟)
1 𝑥(4𝛼2|𝑘1|

2 − 4𝛼 𝛽 𝑘(𝑖)1 + 𝛽2)
, (29b)

where we have set 𝜉1,0 = 0 without loss of generality, as it can be absorbed by 𝛾1 (see Fig. 1).
Both 𝑆 and 𝐿 are solitons moving with velocity

𝑉 = 2𝑘(𝑖)1 , (30)

so that 𝐿(𝑥, 0) = 𝐿(𝑥 + 𝑉 𝑡, 𝑡) for every 𝑥 and 𝑡 (and the same applies for |𝑆(𝑥, 𝑡)|).
When 𝑡 = 0, both |𝑆| and |𝐿| have their maximum at

𝑥max = 1
4𝑘(𝑟)1

log

⎛

⎜

⎜

⎜

⎝

64
(

𝑘(𝑖)1
)2 (

𝑘(𝑟)1
)4

|𝛾1|
4(4𝛼2|𝑘1|

2 − 4𝛼 𝛽 𝑘(𝑖)1 + 𝛽2)

⎞

⎟

⎟

⎟

⎠

, (31)

with the soliton in 𝐿 having an amplitude

𝐴𝐿 =
4
(

𝑘(𝑟)1
)2

−sgn(𝑘(𝑖)1 )
√

4𝛼2|𝑘1|
2 − 4𝛼 𝛽 𝑘(𝑖)1 + 𝛽2 + (2𝛼 𝑘(𝑖)1 − 𝛽)

, (32)

where sgn(𝑘(𝑖)1 ) denotes the sign of 𝑘(𝑖)1 , while the amplitude of |𝑆| satisfies

𝐴2
𝑆 = −𝑘(𝑖)1 𝐴𝐿 (33)

as a direct consequence of the property
𝐿(𝑥, 𝑡)

|𝑆(𝑥, 𝑡)|2
= − 1

𝑘(𝑖)1
. (34)

Note that all the formulae above reduce nicely to the Newell case 𝛽 = 0 for every value of the parameters. However, for the
Yajima–Oikawa case 𝛼 = 0, the amplitude 𝐴𝐿 in (32) diverges whenever 𝑘(𝑖)1 < 0. That, together with the expression for the velocity
(30) indicates that Yajima–Oikawa admits only bright solitons travelling to the right direction.
5
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Fig. 2. 2-bright-soliton solution with 𝛼 = 1, 𝛽 = 2, 𝑘1 = 2 + 𝑖, 𝑘2 = 1 − 2𝑖, 𝛾1 = 2 + 𝑖, 𝛾2 = 1 + 2𝑖.

One can check that the bright-soliton solutions obtained in [2] are subcases of the Hirota soliton for the special choice 𝑘(𝑖)1 = 𝛽∕2𝛼,
so that the velocity of the soliton is exactly 𝑉 = 𝛽∕𝛼. Note that this reduction does not work well for the Yajima–Oikawa case 𝛼 = 0,
which is not covered by [2].

Through a similar process, we can compute the two-bright-soliton solutions by assuming 𝑓4 and 𝑔3 are also nonzero in (16). By
doing that, one ends up with the expressions

𝑓 =

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

i𝛿+𝑘∗1
𝑘1+𝑘∗1

𝑒𝜉1+𝜉
∗
1

i𝛿+𝑘∗2
𝑘1+𝑘∗2

𝑒𝜉1+𝜉
∗
2 1 0

i𝛿+𝑘∗1
𝑘2+𝑘∗1

𝑒𝜉2+𝜉
∗
1

i𝛿+𝑘∗2
𝑘2+𝑘∗2

𝑒𝜉2+𝜉
∗
2 0 1

−1 0 − 2𝛼|𝛾1|2

𝑘∗21 −𝑘21
−

2𝛼 𝛾∗1 𝛾2
𝑘∗21 −𝑘22

0 −1 −
2𝛼 𝛾∗2 𝛾1
𝑘∗22 −𝑘21

− 2𝛼|𝛾2|2

𝑘∗22 −𝑘22

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

, (35a)

𝑓 ∗ =

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

i𝛿−𝑘1
𝑘1+𝑘∗1

𝑒𝜉1+𝜉
∗
1

i𝛿−𝑘2
𝑘1+𝑘∗2

𝑒𝜉1+𝜉
∗
2 1 0

i𝛿−𝑘1
𝑘2+𝑘∗1

𝑒𝜉2+𝜉
∗
1

i𝛿−𝑘2
𝑘2+𝑘∗2

𝑒𝜉2+𝜉
∗
2 0 1

−1 0 − 2𝛼|𝛾1|2

𝑘∗21 −𝑘21
−

2𝛼 𝛾∗1 𝛾2
𝑘∗21 −𝑘22

0 −1 −
2𝛼 𝛾∗2 𝛾1
𝑘∗22 −𝑘21

− 2𝛼|𝛾2|2

𝑘∗22 −𝑘22

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

, (35b)

𝑔 =

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

i𝛿+𝑘∗1
𝑘1+𝑘∗1

𝑒𝜉1+𝜉
∗
1

i𝛿+𝑘∗2
𝑘1+𝑘∗2

𝑒𝜉1+𝜉
∗
2 1 0 𝑒𝜉1

i𝛿+𝑘∗1
𝑘2+𝑘∗1

𝑒𝜉2+𝜉
∗
1

i𝛿+𝑘∗2
𝑘2+𝑘∗2

𝑒𝜉2+𝜉
∗
2 0 1 𝑒𝜉2

−1 0 − 2𝛼|𝛾1|2

𝑘∗21 −𝑘21
−

2𝛼 𝛾∗1 𝛾2
𝑘∗21 −𝑘22

0

0 −1 −
2𝛼 𝛾∗2 𝛾1
𝑘∗22 −𝑘21

− 2𝛼|𝛾2|2

𝑘∗22 −𝑘22
0

0 0 −𝛾1 −𝛾2 0

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

, (35c)

where 𝜉𝑗 = 𝑘𝑗𝑥 + i𝑘2𝑗 𝑡 + 𝜉𝑗 ,0 for 𝑗 = 1, 2, 𝑘1 and 𝑘2 are the wave numbers, 𝜉1,0 and 𝜉2,0 are the initial phases, and 𝛾1 and 𝛾2 are two
arbitrary complex parameters (see Fig. 2).

One can study the phase shift via the changes of variable 𝑋 = 𝑥 + 2𝑘(𝑖)1 and 𝑋 = 𝑥 + 2𝑘(𝑖)2 , where 𝑘(𝑖)1 and 𝑘(𝑖)2 are the imaginary
parts of 𝑘1 and 𝑘2, in order to make ‘‘stationary’’ the first and second soliton, respectively. That way one can make 𝑡 go to ±∞ to
collapse it into a one-soliton solution, and then study the difference in phase between the two asymptotic one-soliton solutions. The
phase shift 𝜑12 for the first soliton in the 2-soliton solution then takes the form

𝜑12 = 𝜒 1
𝑘(𝑟)1

log

⎡

⎢

⎢

⎢

⎢

[

(

𝑘(𝑖)1 − 𝑘(𝑖)2
)2

+
(

𝑘(𝑟)1 − 𝑘(𝑟)2
)2

] [
(

𝑘(𝑖)1 + 𝑘(𝑖)2
)2

+
(

𝑘(𝑟)1 + 𝑘(𝑟)2
)2

]

[

(

𝑘(𝑖)1 − 𝑘(𝑖)2
)2

+
(

𝑘(𝑟)1 + 𝑘(𝑟)2
)2

] [
(

𝑘(𝑖)1 + 𝑘(𝑖)2
)2

+
(

𝑘(𝑟)1 − 𝑘(𝑟)2
)2

]

⎤

⎥

⎥

⎥

⎥

6

⎣ ⎦
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a

b

p

𝜏

= 𝜒 2
𝑘1 + 𝑘∗1

log

[

(𝑘21 − 𝑘
2
2)(𝑘

∗2
1 − 𝑘∗22 )

(𝑘∗21 − 𝑘22)(𝑘
2
1 − 𝑘

∗2
2 )

]

, (36a)

where 𝑘1 = 𝑘(𝑟)1 + i𝑘(𝑖)1 , 𝑘2 = 𝑘(𝑟)2 + i𝑘(𝑖)2 , and the sign 𝜒 is

𝜒 = sgn[𝑘(𝑟)2 (𝑘(𝑖)2 − 𝑘(𝑖)1 )] . (36b)

The corresponding shift 𝜑21 for the second soliton can be obtained by simply swapping the subindices 1 and 2 in the formulae
bove. Note the formulae for the phase shifts do not depend either on the parameters 𝛼 and 𝛿 in (4) or on the complex parameters
𝛾1,2.

Further solitons can be added to the solution by taking more nonzero terms in 𝑓 and 𝑔. The resulting 𝑓 and 𝑔 have similar forms
as above, by extending the size of the determinant by 2 for each soliton added, so the 𝑁-soliton solution has the form

𝑓 =
|

|

|

|

|

𝐴 𝐼𝑁
−𝐼𝑁 𝐵

|

|

|

|

|

, (37a)

𝑔 =
|

|

|

|

|

|

|

𝐴 𝐼𝑁 𝑐𝜉
−𝐼𝑁 𝐵 0𝑁×1
01×𝑁 𝑟𝛾 0

|

|

|

|

|

|

|

, (37b)

where 𝐼𝑁 denotes the 𝑁 ×𝑁 identity matrix, 0𝑖×𝑗 denotes the 𝑖 × 𝑗 matrix of zeroes, and the 𝑁 ×𝑁 matrices 𝐴 and 𝐵 are defined
y

𝐴𝑖𝑗 =
i𝛿 + 𝑘∗𝑗
𝑘𝑖 + 𝑘∗𝑗

𝑒𝜉i+𝜉
∗
𝑗 , 𝐵𝑖𝑗 = − 2𝛼 𝛾∗𝑖 𝛾𝑗

𝑘∗2𝑖 − 𝑘2𝑗
, (38a)

where, as before, 𝜉𝑗 = 𝑘𝑗𝑥 + i𝑘2𝑗 𝑡 + 𝜉𝑗 ,0, the 𝑘𝑖 are the wave numbers, the 𝜉𝑗 ,0 are the initial phases, the 𝛾𝑗 are arbitrary complex
arameters, the column vector 𝑐𝜉 satisfies (𝑐𝜉 )𝑖 = 𝑒𝜉𝑖 , 𝑖 = 1,… , 𝑁 , and the row vector 𝑟𝛾 satisfies (𝑟𝛾 )𝑖 = −𝛾𝑖.

The soliton solutions above coincide with the ones obtained for the Newell system in [39] when setting 𝛽 = 0 and 𝛼 = 1, and
with the solutions for Yajima–Oikawa obtained in [38] upon setting 𝛼 = 0 and 𝛽 = 1. Similarly to the 1-soliton case, in the reduction
𝛼 = 0 solitons are only allowed to travel in the right direction.

2.2. 𝜏-Functions construction of bright solitons

In what follows, we will derive the general 𝑁-bright-soliton solution via the KP hierarchy reduction method. We start with
-functions expressed by Gram determinants in two-component KP hierarchy

𝐹𝑛,𝑚 =
|

|

|

|

|

𝐴(𝑛) 𝐼𝑁
−𝐼𝑁 𝐵(𝑚)

|

|

|

|

|

, 𝐹𝑛,𝑚 =
|

|

|

|

|

𝐴′(𝑛) 𝐼𝑁
−𝐼𝑁 𝐵(𝑚)

|

|

|

|

|

, (39a)

𝐺𝑛,𝑚 =

|

|

|

|

|

|

|

|

𝐴(𝑛) 𝐼𝑁 𝛷𝑇
𝑛

−𝐼𝑁 𝐵(𝑚) 0𝑁×1

01×𝑁 −𝛹̄ (𝑘)
𝑚 0

|

|

|

|

|

|

|

|

, 𝐻𝑛,𝑚 =

|

|

|

|

|

|

|

|

𝐴(𝑛) 𝐼𝑁 0𝑁×1

−𝐼𝑁 𝐵(𝑚) 𝛹 (𝑘)𝑇
𝑚

−𝛷̄𝑛 01×𝑁 0

|

|

|

|

|

|

|

|

, (39b)

Here 𝑛, 𝑚 are integers, the block matrices 𝐴(𝑛), 𝐴′(𝑛), 𝐵(𝑚) and the row vectors 𝛷𝑛, 𝛷̄𝑛 𝛹𝑚, 𝛹̄𝑚 are defined by

𝐴(𝑛) = (

𝑎𝑖𝑗 (𝑛)
)

1≤𝑖,𝑗≤𝑁 , 𝐴′(𝑛) =
(

𝑎′𝑖𝑗 (𝑛)
)

1≤𝑖,𝑗≤𝑁
, (40a)

𝐵(𝑚) = (

𝑏𝑖𝑗 (𝑚)
)

1≤𝑖,𝑗≤𝑁 , (40b)

𝛷𝑛 =
(

𝜙1(𝑛),… , 𝜙𝑁 (𝑛)
)

, 𝛷̄𝑛 =
(

𝜙̄1(𝑛),… , 𝜙̄𝑁 (𝑛)
)

, (40c)

𝛹𝑚 =
(

𝜓1(𝑚),… , 𝜓𝑁 (𝑚)
)

, 𝛹̄𝑚 =
(

𝜓̄1(𝑚),… , 𝜓̄𝑁 (𝑚)
)

, (40d)

where 𝑎𝑖𝑗 (𝑛), 𝑎′𝑖𝑗 (𝑛), 𝜙𝑖(𝑛), 𝜙̄𝑖(𝑛), 𝜓𝑖(𝑚) and 𝜓̄𝑖(𝑚) are defined as

𝜙𝑖(𝑛) = (𝑝𝑖)𝑛𝑒𝜉𝑖 , 𝜙̄𝑗 (𝑛) = (−𝑝̄𝑗 )−𝑛𝑒𝜉𝑗 , (41a)

𝜓𝑖(𝑚) =
(

𝑞𝑖
)𝑚 𝑒𝜂𝑖 , 𝜓̄𝑗 (𝑚) =

(

−𝑞𝑗
)−𝑚 𝑒𝜂̄𝑗 . (41b)

𝑎𝑖𝑗 (𝑛) =
𝑝̄𝑗 − 𝜇
𝑝𝑖 + 𝑝̄𝑗

(

−
𝑝𝑖
𝑝̄𝑗

)𝑛
𝑒𝜉𝑖+𝜉𝑗 , 𝑎′𝑖𝑗 (𝑛) = − 𝑝𝑖 + 𝜇

𝑝𝑖 + 𝑝̄𝑗

(

−
𝑝𝑖
𝑝̄𝑗

)𝑛
𝑒𝜉𝑖+𝜉𝑗 , (41c)

𝑏𝑖𝑗 (𝑚) = 𝜈
𝑞𝑖 + 𝑞𝑗

(

−
𝑞𝑖
𝑞𝑗

)𝑚
𝑒𝜂𝑖+𝜂̄𝑗 , (41d)

with

𝜉𝑖 = 𝑝𝑖𝑥1 + 𝑝2𝑖 𝑥2 + 𝜉𝑖,0, 𝜉𝑗 = 𝑝̄𝑗𝑥1 − 𝑝̄2𝑗𝑥2 + 𝜉𝑗 ,0, (42a)
7

𝜂𝑖 = 𝑞𝑖𝑦1 + 𝜂𝑖,0, 𝜂̄𝑗 = 𝑞𝑗𝑦1 + 𝜂̄𝑗 ,0, (42b)
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𝜏

t

w

where 𝜇 , 𝜈 , 𝑝𝑖, 𝑝̄𝑗 , 𝜉𝑖,0, 𝜉𝑗 ,0, 𝑞𝑖, 𝑞𝑗 , 𝜂𝑖,0, ̄𝜂𝑗 ,0 (𝑖, 𝑗 = 1,… , 𝑁) are free complex parameters. The 𝜏-functions defined above satisfy the
following bilinear equations in the two-component KP hierarchy [49–51].

(𝐷𝑥2 −𝐷
2
𝑥1
)𝐺𝑛,𝑚 ⋅ 𝐹𝑛,𝑚 = 0, (43a)

(𝐷2
𝑥1

+𝐷𝑥2 + 2𝜇 𝐷𝑥1 )𝐹𝑛,𝑚 ⋅ 𝐹𝑛,𝑚 = 0, (43b)

𝐷𝑦1𝐹𝑛,𝑚 ⋅ 𝐹𝑛,𝑚 + 𝜈 𝐺𝑛,𝑚𝐻𝑛,𝑚 = 0. (43c)

Now we start the reduction process. First, we carry out the dimension reduction. By performing row and column operations, two
-functions 𝐹𝑛,𝑚 and 𝐹𝑛,𝑚 can be rewritten as

𝐹𝑛,𝑚 =
|

|

|

|

|

𝐴̃𝑛,𝑚 𝐼𝑁
−𝐼𝑁 𝐵̃𝑛,𝑚

|

|

|

|

|

, 𝐹𝑛,𝑚 =
|

|

|

|

|

|

𝐴̃′
𝑛,𝑚 𝐼𝑁

−𝐼𝑁 𝐵̃𝑛,𝑚

|

|

|

|

|

|

(44)

where 𝐴̃𝑛,𝑚, 𝐴̃′
𝑛,𝑚 and 𝐵̃𝑛,𝑚 are 𝑁 ×𝑁 matrices whose elements defined by

𝑎̃𝑖𝑗 (𝑛) =
𝑝̄𝑗 − 𝜇
𝑝𝑖 + 𝑝̄𝑗

(

−
𝑝𝑖
𝑝̄𝑗

)𝑛
, 𝑎̃′𝑖𝑗 (𝑛) = − 𝑝𝑖 + 𝜇

𝑝𝑖 + 𝑝̄𝑗

(

−
𝑝𝑖
𝑝̄𝑗

)𝑛
, (45a)

𝑏̃𝑖𝑗 (𝑚) = 𝜈
𝑞𝑖 + 𝑞𝑗

(

−
𝑞𝑖
𝑞𝑗

)𝑚
𝑒𝜁𝑖+𝜁 𝑗 , (45b)

with

𝜁𝑖 = 𝜂𝑖 + 𝜉𝑖 = 𝑞𝑖𝑦1 + 𝑝̄𝑖𝑥1 − 𝑝̄2𝑖 𝑥2 + 𝜂𝑖,0 + 𝜉𝑖,0, (45c)

𝜁 𝑗 = 𝜂̄𝑗 + 𝜉𝑗 = 𝑞𝑗𝑦1 + 𝑝𝑗𝑥1 + 𝑝2𝑗𝑥2 + 𝜂̄𝑗 ,0 + 𝜉𝑗 ,0. (45d)

Imposing the reduction conditions

𝑞𝑖 = − 𝑝̄
2
𝑖
2
, 𝑞𝑖 =

𝑝2𝑖
2
, (46)

the following relations hold

𝜕𝑥2𝐹𝑛,𝑚 = 2𝜕𝑦1𝐹𝑛,𝑚, 𝜕𝑥2𝐹𝑛,𝑚 = 2𝜕𝑦1𝐹𝑛,𝑚, (47)

which implies

𝐷𝑥2𝐹𝑛,𝑚 ⋅ 𝐹𝑛,𝑚 = −2𝜈 𝐺𝑛,𝑚𝐻𝑛,𝑚. (48)

Next, we carry out the complex conjugate reduction. Note that the determinant defining 𝐻𝑛,𝑚 remains unchanged upon replacing
he block matrix 𝐴(𝑛) by 𝐴′(𝑛). Additionally, since by means of (48) we have removed every derivative with respect to 𝑦1, we can

treat it as a constant. Assume that 𝑥1, 𝜈 are real, 𝜇, 𝑥2, 𝑦1 are purely imaginary, and

𝑝̄𝑖 = 𝑝∗𝑖 , 𝜉𝑖,0 = 𝜉∗𝑖,0, 𝜂̄𝑖,0 = 𝜂∗𝑖,0. (49)

Then, one can check that

𝑎∗𝑖𝑗 (𝑛) = −𝑎′𝑗 𝑖(−𝑛), 𝑏∗𝑖𝑗 (𝑚) = −𝑏𝑗 𝑖(−𝑚), (50)

which implies

𝐹 ∗
𝑛,𝑚 = 𝐹−𝑛,−𝑚, 𝐺∗

𝑛,𝑚 = (−1)1−𝑛𝐻−𝑛,−𝑚. (51)

Therefore, by setting 𝑛 = 𝑚 = 0, 𝜇 = −i𝛿, 𝜈 = 𝛼 and applying the variable transformations

𝑥1 = 𝑥, 𝑥2 = i𝑡, i.e., 𝜕𝑥1 = 𝜕𝑥, 𝜕𝑥2 = −i𝜕𝑡, (52)

and

𝐹0,0 = 𝑓 , 𝐹0,0 = 𝑓 ∗, 𝐺0,0 = 𝑔 , 𝐻0,0 = −𝑔∗, (53)

the bilinear Eqs. (43a), (48) and (43b) are then transformed into the target ones (15) exactly.
Consequently, we can let 𝑒𝜂𝑖 = 𝛾∗𝑖 , 𝑒𝜂̄𝑖 = 𝛾𝑖, 𝑝𝑖 = 𝑘𝑖 for 𝑖 = 1,… , 𝑁 and redefine 𝐴(0) = 𝐴, 𝐵(0) = 𝐵, 𝛷0 = 𝑐𝜉 , 𝛷̄0 = 𝑐∗𝜉 , 𝛹̄0 = −𝑟𝛾 ,

𝛹0 = −𝑟∗𝛾 , so that the 𝑁-bright-soliton solution to the YON system (4) can take the form of the following theorem, which coincides
ith the previous formulae (37).

Theorem 1. The YON system (4) possesses the 𝑁-bright-soliton solution (5), where the determinants 𝑓 , 𝑓 ∗ and 𝑔 are given by

𝑓 =
|

|

|

|

|

𝐴 𝐼𝑁
−𝐼𝑁 𝐵

|

|

|

|

|

, 𝑔 =

|

|

|

|

|

|

|

𝐴 𝐼𝑁 𝑐𝜉
−𝐼𝑁 𝐵 0𝑁×1

|

|

|

|

|

|

|

,

8

|

01×𝑁 𝑟𝛾 0
|
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s
t
a

where 𝐼𝑁 is the 𝑁 ×𝑁 identity matrix, 0𝑖×𝑗 is the 𝑖 × 𝑗 matrix of zeroes, 𝐴 and 𝐵 are 𝑁 ×𝑁 matrices whose entries are

𝑎𝑖𝑗 =
𝑘∗𝑗 + i𝛿
𝑘𝑖 + 𝑘∗𝑗

e𝜉𝑖+𝜉
∗
𝑗 , 𝑏𝑖𝑗 = − 2𝛼 𝛾∗𝑖 𝛾𝑗

𝑘∗2𝑖 − 𝑘2𝑗
.

The matrices 𝑐𝜉 and 𝑟𝛾 are defined by
𝑐𝜉 = (e𝜉1 ,… , e𝜉𝑁 ), 𝑟𝛾 = (−𝛾1,… ,−𝛾𝑁 ),

with 𝜉𝑖 = 𝑘𝑖𝑥 + i𝑘2𝑖 𝑡 + 𝜉𝑖,0. The parameters 𝑘𝑖, 𝜉𝑖,0 and 𝛾𝑖 for 𝑖 = 1,… , 𝑁 are arbitrary complex constants.

3. Dark solitons

In the previous section we derived the bright soliton solutions. Now we will construct dark soliton solutions (by which we mean
oliton solutions on a constant non-zero background). In order to do so, we will have to modify the change of variables we used for
he bilinearisation. In the bright case, we just wrote a change of variable on a zero background, however now we need to explicitly
ccount for the plane wave

𝑆 = 𝜌𝑒i[𝑞 𝑥−(𝑞2+2𝜌2)𝑡] , 𝐿 = 𝓁 . (55)

where 𝜌 and 𝓁 are the amplitudes of 𝑆 and 𝐿 in the plane wave and 𝑞 is the wave number of 𝑆. To account for it, we can modify
our previous change of variables (5) into

𝑆 = 𝜌
𝑔
𝑓
𝑒i[𝑞 𝑥−(𝑞2+2𝜌2)𝑡] , 𝐿 = 𝓁 + i

(

log
𝑓 ∗

𝑓

)

𝑥
. (56)

by which, we get the following bilinear equations

(i𝐷𝑡 + 2i𝑞 𝐷𝑥 +𝐷2
𝑥)𝑔 ⋅ 𝑓 = 0 , (57a)

i𝐷𝑡𝑓 ⋅ 𝑓 ∗ = [𝐷2
𝑥 − 2i(𝛿 − 𝓁)𝐷𝑥]𝑓 ⋅ 𝑓 ∗ , (57b)

i𝐷𝑡𝑓 ⋅ 𝑓 ∗ = 2𝛼 𝜌2(|𝑓 |2 − |𝑔|2) . (57c)

From (4b) we get

i
(

log
𝑓 ∗

𝑓

)

𝑥𝑡
= 2𝛼 𝜌2

(

𝑔 𝑔∗
𝑓 𝑓 ∗

)

𝑥
. (58)

By integrating it with respect to 𝑥 we get

i
(

log
𝑓 ∗

𝑓

)

𝑡
= 2𝛼 𝜌2 𝑔 𝑔

∗

𝑓 𝑓 ∗ + 𝐶1 , (59)

entailing

i𝐷𝑡𝑓 ⋅ 𝑓 ∗ = −2𝛼 𝜌2𝑔 𝑔∗ − 𝐶1𝑓 𝑓 ∗ . (60)

In this case we will set 𝐶1 = −2𝛼 𝜌2 to obtain

i𝐷𝑡𝑓 ⋅ 𝑓 ∗ = 2𝛼 𝜌2(|𝑓 |2 − |𝑔|2) , (61)

which will be one of our bilinear equations. Introducing the change of variables in (4b), we have,

i
(

𝑔
𝑓

)

𝑡
+ (𝑞2 + 2𝛼 𝜌2 − 𝓁2 + 2𝛿𝓁) 𝑔

𝑓
+ 2i𝑞

(

𝑔
𝑓

)

𝑥
+
(

𝑔
𝑓

)

𝑥𝑥
−
𝑔
𝑓

(

log
𝑓 ∗

𝑓

)

𝑥𝑥

+
𝑔
𝑓

[

𝓁 + i
(

log
𝑓 ∗

𝑓

)

𝑥

]2
− 2i𝛿 𝑔

𝑓

[

𝓁 + i
(

log
𝑓 ∗

𝑓

)

𝑥

]

− 2𝛼 𝜌2 𝑔 𝑔
∗

𝑓 𝑓 ∗
𝑔
𝑓

= 0 , (62a)

entailing
(i𝐷𝑡 + 2i𝑞 𝐷𝑥 +𝐷2

𝑥 + 2𝛼 𝜌2)𝑔 ⋅ 𝑓
𝑓 2

−
𝑔
𝑓
(𝐷2

𝑥 − 2i(𝛿 − 𝓁)𝐷𝑥)𝑓 ⋅ 𝑓 ∗ + 2𝛼 𝜌2𝑔 𝑔∗
𝑓 𝑓 ∗ = 0 . (62b)

By decoupling (62b), we obtain the bilinear equations

(i𝐷𝑡 + 2i𝑞 𝐷𝑥 +𝐷2
𝑥)𝑔 ⋅ 𝑓 = 0 , (63a)

(𝐷2
𝑥 − 2i(𝛿 − 𝓁)𝐷𝑥)𝑓 ⋅ 𝑓 ∗ = 2𝛼 𝜌2(|𝑓 |2 − |𝑔|2) . (63b)

We can use the previous bilinear Eq. (61) to rewrite the latter as

i𝐷𝑡𝑓 ⋅ 𝑓 ∗ = [𝐷2
𝑥 − 2i(𝛿 − 𝓁)𝐷𝑥]𝑓 ⋅ 𝑓 ∗ . (64)
9
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Summarising, by using the change of variable (56) we were able to rewrite the YON system as

(i𝐷𝑡 + 2i𝑞 𝐷𝑥 +𝐷2
𝑥)𝑔 ⋅ 𝑓 = 0 , (65a)

i𝐷𝑡𝑓 ⋅ 𝑓 ∗ = [𝐷2
𝑥 − 2i(𝛿 − 𝓁)𝐷𝑥]𝑓 ⋅ 𝑓 ∗ , (65b)

i𝐷𝑡𝑓 ⋅ 𝑓 ∗ = 2𝛼 𝜌2(|𝑓 |2 − |𝑔|2) . (65c)

To derive dark soliton solutions, we start with the following bilinear equations in the KP-Toda hierarchy

(𝐷𝑥2 − 2𝑎𝐷𝑥1 −𝐷
2
𝑥1
)𝜏𝑛,ℎ+1 ⋅ 𝜏𝑛,ℎ = 0 , (66a)

(𝐷𝑥2 − 2𝑏𝐷𝑥1 +𝐷
2
𝑥1
)𝜏𝑛,ℎ ⋅ 𝜏𝑛+1,ℎ = 0 , (66b)

[(𝑎 − 𝑏)𝐷𝑥−1 + 1]𝜏𝑛,ℎ ⋅ 𝜏𝑛+1,ℎ = 𝜏𝑛,ℎ+1𝜏𝑛+1,ℎ−1 , (66c)

with 𝑛 and ℎ arbitrary integers, which admit a Gram-type solution [50,51].

𝜏𝑛,ℎ = |𝑚𝑛,ℎ𝑖𝑗 |

1≤𝑖,𝑗≤𝑁
, (67a)

with

𝑚𝑛,ℎ𝑖𝑗 = 𝛿𝑖𝑗 +
i(𝑘𝑖 − 𝑏)
𝑘𝑖 + 𝑘̄𝑗

(

−
𝑘𝑖 − 𝑏
𝑘̄𝑗 + 𝑏

)𝑛(

−
𝑘𝑖 − 𝑎
𝑘̄𝑗 + 𝑎

)ℎ

𝑒𝜉𝑖+𝜉𝑗 , (67b)

where

𝜉𝑖 =
1

𝑘𝑖 − 𝑎
𝑥−1 + 𝑘𝑖𝑥1 + 𝑘2𝑖 𝑥2 + 𝜉𝑖,0 , 𝜉𝑖 =

1
𝑘̄𝑖 + 𝑎

𝑥−1 + 𝑘̄𝑖𝑥1 − 𝑘̄2𝑖 𝑥2 + 𝜉𝑖,0 , (68)

and 𝑎, 𝑏, 𝑘𝑖 𝑘̄𝑖, 𝜉𝑖,0 and 𝜉𝑖,0 are arbitrary complex parameters. By imposing the constraint condition
1

𝑘𝑖 − 𝑎
+ 1
𝑘̄𝑖 + 𝑎

= 1
2𝛼(𝑎 − 𝑏)𝜌2

(𝑘2𝑖 − 𝑘̄
2
𝑖 ) , (69)

which we can rewrite as
2𝛼(𝑎 − 𝑏)𝜌2

(𝑘𝑖 − 𝑎)(𝑘̄𝑖 + 𝑎)
= 𝑘𝑖 − 𝑘̄𝑖 , (70)

to the 𝑁-soliton solutions, then the 𝜏-functions satisfy
(

(𝑎 − 𝑏)𝐷𝑥−1 −
1

2𝛼 𝜌2𝐷𝑥2

)

𝜏𝑛,ℎ = 𝐶1𝜏𝑛,ℎ , (71)

where 𝐶1 is an arbitrary constant. By introducing (71) into (66c) and setting 𝐶1 = 0, we get

(𝐷𝑥2 + 2𝛼 𝜌2)𝜏𝑛,ℎ ⋅ 𝜏𝑛+1,ℎ = 2𝛼 𝜌2𝜏𝑛,ℎ+1𝜏𝑛+1,ℎ−1 . (72)

After adding this constraint, we can set 𝑛 = −1 and ℎ = 0 in the three KP bilinear equations to get

(𝐷𝑥2 − 2𝑎𝐷𝑥1 −𝐷
2
𝑥1
)𝜏−1,1 ⋅ 𝜏−1,0 = 0 , (73a)

(𝐷𝑥2 − 2𝑏𝐷𝑥1 +𝐷
2
𝑥1
)𝜏−1,0 ⋅ 𝜏0,0 = 0 , (73b)

(𝐷𝑥2 + 2𝛼 𝜌2)𝜏−1,0 ⋅ 𝜏0,0 = 2𝛼 𝜌2𝜏−1,1𝜏0,−1 . (73c)

By taking 𝑎 = i𝑞 and 𝑏 = i(𝛿 − 𝓁) being purely imaginary and 𝑥2 = i𝑡, as well as choosing 𝑘̄𝑖 = 𝑘∗𝑖 and 𝜉𝑖,0 = 𝜉∗𝑖,0, it can be readily
checked that 𝜏𝑛,𝑘 = 𝜏∗−𝑛−1,−𝑘 and 𝜉𝑖 = 𝜉∗𝑖 . Hence, by introducing

𝑓 = 𝜏−1,0 , 𝑔 = 𝜏−1,1 , (74)

it follows that

𝑓 ∗ = 𝜏0,0 , 𝑔∗ = 𝜏0,−1 . (75)

With that, the bilinear equations above become

(i𝐷𝑡 + 2i𝑞 𝐷𝑥 +𝐷2
𝑥)𝑔 ⋅ 𝑓 = 0 , (76a)

i𝐷𝑡𝑓 ⋅ 𝑓 ∗ = (𝐷2
𝑥 − 2i(𝛿 − 𝓁)𝐷𝑥)𝑓 ⋅ 𝑓 ∗ , (76b)

i𝐷𝑡𝑓 ⋅ 𝑓 ∗ = 2𝛼 𝜌2(|𝑓 |2 − |𝑔|2) , (76c)

which are exactly the Eqs. (57) that we obtained for the YON system.
That means that we can adapt the solutions (67) as solutions of the YON system through the following theorem.
10
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Fig. 3. 1-dark-soliton solution with 𝛼 = −1, 𝛿 = 3, 𝑘1 = 1 + 𝑖, 𝜌 = 1, 𝓁 = 1, 𝑞 = 1.

Theorem 2. The YON system (4) possesses the 𝑁-dark-soliton solution (56), where the determinants 𝑓 and 𝑔 are given by

𝑓 =
|

|

|

|

|

𝛿𝑖𝑗 −
i𝑘∗𝑗 − 𝛿 + 𝓁

𝑘𝑖 + 𝑘∗𝑗
𝑒𝜉𝑖+𝜉

∗
𝑗
|

|

|

|

|𝑁×𝑁

, (77a)

𝑔 =
|

|

|

|

|

𝛿𝑖𝑗 +
i𝑘∗𝑗 − 𝛿 + 𝓁

𝑘𝑖 + 𝑘∗𝑗

𝑘𝑖 − i𝑞
𝑘∗𝑖 + i𝑞 𝑒

𝜉𝑖+𝜉∗𝑗
|

|

|

|

|𝑁×𝑁

, (77b)

𝜉𝑖 = 𝑘𝑖𝑥 + i𝑘2𝑖 𝑡 + 𝜉𝑖,0 , (77c)

where 𝑘𝑗 are the wave numbers of the solitons, 𝜉𝑖,0 are the initial phases, and the parameters are subject to the constraint
2i𝛼(𝑞 − 𝛿 + 𝓁)𝜌2

|𝑘𝑗 − i𝑞|2
= 𝑘𝑗 − 𝑘∗𝑗 . (78)

Furthermore, if we set 𝑘𝑗 = 𝑘(𝑟)𝑗 + i𝑘(𝑖)𝑗 , the constraint can be rewritten as

𝑘(𝑟)𝑗 = ±
⎛

⎜

⎜

⎝

𝛼(𝑞 − 𝛿 + 𝓁)𝜌2

𝑘(𝑖)𝑗
−
(

𝑘(𝑖)𝑗 − 𝑞
)2⎞

⎟

⎟

⎠

1
2

. (79)

The 1-dark-soliton solution is then given by

𝑓 = 1 −
i𝑘∗1 − 𝛿 + 𝓁

𝑘1 + 𝑘∗1
𝑒𝜉1+𝜉

∗
1 , (80a)

𝑔 = 1 +
i𝑘∗1 − 𝛿 + 𝓁

𝑘1 + 𝑘∗1

𝑘1 − i𝑞
𝑘∗1 + i𝑞 𝑒

𝜉1+𝜉∗1 , (80b)

𝜉1 = 𝑘1𝑥 + i𝑘21𝑡 + 𝜉1,0 , (80c)

where 𝑘1 is the (complex) wave number of the soliton and 𝜉1,0 is an initial phase, and where the parameters must satisfy the
constraint condition

2i𝛼(𝑞 − 𝛿 + 𝓁)𝜌2

|𝑘1 − i𝑞|2
= 𝑘1 − 𝑘∗1 . (81)

By taking 𝑘1 = 𝑘(𝑟)1 + i𝑘(𝑖)1 , we can rewrite the constraint condition as

𝑘(𝑟)1 = ±
(

𝛼(𝑞 − 𝛿 + 𝓁)𝜌2

𝑘(𝑖)1
−
(

𝑘(𝑖)1 − 𝑞
)2

)
1
2

. (82)

As with the bright case, the dark solitons move with a velocity 𝑉 = 2𝑘(𝑖)𝑗 , that is, they satisfy 𝐿(𝑥, 𝑡) = 𝐿(𝑥 + 2𝑘(𝑖)𝑗 𝑡, 0) and
|𝑆(𝑥, 𝑡)| = |𝑆(𝑥 + 2𝑘(𝑖)𝑗 𝑡, 0)| (see Figs. 3 and 4).

The phase shift for the 2-dark-soliton solution can be written explicitly by denoting 𝑘1 = 𝑘(𝑟)1 + i𝑘(𝑖)1 and 𝑘2 = 𝑘(𝑟)2 + i𝑘(𝑖)2 and
proceeding as in the bright case, that is, moving with the velocity of one of the solitons to make it stationary, so that for 𝑡 → ±∞
11
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Fig. 4. 2-dark-soliton solution with 𝛼 = 2, 𝛿 = −3, 𝑘1 =
√

2 + 2i, 𝑘2 =
√

6 + i, 𝜌 = 1, 𝓁 = 1, 𝑞 = 1.

the solution collapses into a one-soliton solution. For the first soliton, the phase shift reads

𝜑12 =
1

2𝑘(𝑟)1
log

⎛

⎜

⎜

⎜

⎝

(

𝑘(𝑖)1 − 𝑘(𝑖)2
)2

+
(

𝑘(𝑟)1 + 𝑘(𝑟)2
)2

(

𝑘(𝑖)1 − 𝑘(𝑖)2
)2

+
(

𝑘(𝑟)1 − 𝑘(𝑟)2
)2

⎞

⎟

⎟

⎟

⎠

= 1
𝑘1 + 𝑘∗1

log

(

(𝑘∗1 + 𝑘2)(𝑘1 + 𝑘
∗
2)

(𝑘1 − 𝑘2)(𝑘∗1 − 𝑘
∗
2)

)

.

(83)

The formula for the phase shift 𝜑21 of the second soliton can be written by simply exchanging indices 1 and 2 in (83). Note the
formulae for the phase shifts do not depend either on the parameters 𝛼 and 𝛿 in (4) or on the background constants 𝜌, 𝑞 and 𝓁.

4. Breathers and rogue waves

To derive the breather solutions, the target bilinear Eqs. (57) and variable transformation (56) remain the same, but we will
start with slightly different 𝜏-functions in the extended KP hierarchy [51,52]

𝜏𝑛,ℎ = |𝑚𝑛,ℎ𝑖𝑗 |

1≤𝑖,𝑗≤𝑁
, (84a)

where

𝑚𝑛,ℎ𝑖𝑗 =
2
∑

𝑝,𝑟=1

𝑐𝑖𝑝𝑐𝑗 𝑟i(𝑘𝑖𝑝 − 𝑏)
𝑘𝑖𝑝 + 𝑘̄𝑗 𝑟

(

−
𝑘𝑖𝑝 − 𝑏

𝑘̄𝑗 𝑟 + 𝑏

)𝑛(

−
𝑘𝑖𝑝 − 𝑎

𝑘̄𝑗 𝑟 + 𝑎

)ℎ

𝑒𝜉𝑖𝑝+𝜉𝑗 𝑟 , (84b)

with

𝜉𝑖𝑝 =
1

𝑘𝑖𝑝 − 𝑎
𝑥−1 + 𝑘𝑖𝑝𝑥1 + 𝑘2𝑖𝑝𝑥2 + 𝜉𝑖𝑝,0 , (85a)

𝜉𝑗 𝑟 = 1
𝑘̄𝑗 𝑟 + 𝑎

𝑥−1 + 𝑘̄𝑗 𝑟𝑥1 − 𝑘̄2𝑗 𝑟𝑥2 + 𝜉𝑗 𝑟,0 , (85b)

and 𝑘𝑖𝑝, 𝑘𝑗 𝑟, 𝑘̄𝑖𝑝, 𝑘̄𝑗 𝑟, 𝑐𝑖𝑝, 𝑐𝑗 𝑟, 𝜉𝑖𝑝,0, 𝜉𝑗 𝑟,0 arbitrary complex parameters. It can be shown above tau functions satisfy the same set of
bilinear Eqs. (66).

Moreover, if we impose the constraint conditions
1

𝑘𝑖1 − 𝑎
− 1
𝑘𝑖2 − 𝑎

= − 1
2𝛼(𝑎 − 𝑏)𝜌2

(𝑘2𝑖1 − 𝑘
2
𝑖2) , (86)

1
𝑘̄𝑖1 + 𝑎

− 1
𝑘̄𝑖2 + 𝑎

= − 1
2𝛼(𝑎 − 𝑏)𝜌2

(𝑘2𝑖1 − 𝑘
2
𝑖2) , (87)

which we can rewrite as
2𝛼(𝑎 − 𝑏)𝜌2

(𝑘𝑖1 − 𝑎)(𝑘𝑖2 − 𝑎)
= 𝑘𝑖1 + 𝑘𝑖2 , (88)

−
2𝛼(𝑎 − 𝑏)𝜌2

= 𝑘𝑖1 + 𝑘𝑖2 , (89)
12
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𝑁

I

then the 𝜏-functions satisfy

(𝑎 − 𝑏)𝜕𝑥−1𝜏𝑛,ℎ = 1
2𝛼 𝜌2 𝜕𝑥2𝜏𝑛,ℎ , (90)

so that (66c) becomes

(𝐷𝑥2 + 2𝛼 𝜌2)𝜏𝑛,ℎ ⋅ 𝜏𝑛+1,ℎ = 2𝛼 𝜌2𝜏𝑛,ℎ+1𝜏𝑛+1,ℎ−1 . (91)

In order to satisfy the complex conjugate condition, we choose 𝑥1, 𝑥−1 to be real, 𝑥2, 𝑎 and 𝑏 purely imaginary, and we let
𝑐𝑗 𝑟 = 𝑐∗𝑗 𝑟, 𝑘̄𝑗 𝑟 = 𝑘∗𝑗 𝑟, 𝜉𝑗 𝑟,0 = 𝜉∗𝑗 𝑟,0, for 𝑗 = 1,… , 𝑁 , 𝑟 = 1, 2. Then it can be easily shown that

(

𝑚𝑛,ℎ𝑖𝑗
)∗

= 𝑚−𝑛−1,−ℎ
𝑗 𝑖 , 𝜏∗𝑛,ℎ = 𝜏−𝑛−1,−ℎ. (92)

By using that relation, if we define

𝑓 = 𝜏−1,0 , 𝑔 = 𝜏−1,1 , (93)

then we have that

𝑓 ∗ = 𝜏0,0 , 𝑔∗ = 𝜏0,−1 . (94)

which coincides with the transformations (74)–(75). Hence, we can proceed as in the dark soliton case by setting 𝑥2 = i𝑡, 𝑎 = i𝑞
and 𝑏 = i(𝛿 − 𝓁) to arrive at the same set of bilinear Eqs. (57). With that, we complete the reduction process and can present the

-breather solution through the following theorem.

Theorem 3. The YON system (1) admits the 𝑁-breather solution (56), where the determinants 𝑓 and 𝑔 are given by

𝑓 =
|

|

|

|

|

|

2
∑

𝑝,𝑟=1

𝑎𝑖𝑝𝑎∗𝑗 𝑟[−i𝑘∗𝑗 𝑟 + 𝛿 − 𝓁]

𝑘𝑖𝑝 + 𝑘∗𝑗 𝑟
𝑒𝜉𝑖𝑝+𝜉

∗
𝑗 𝑟
|

|

|

|

|

|𝑁×𝑁

, (95a)

𝑔 =
|

|

|

|

|

|

2
∑

𝑝,𝑟=1

𝑎𝑖𝑝𝑎∗𝑗 𝑟[−i𝑘∗𝑗 𝑟 + 𝛿 − 𝓁]

𝑘𝑖𝑝 + 𝑘∗𝑗 𝑟
i𝑞 − 𝑘𝑖𝑝
i𝑞 + 𝑘𝑗 𝑟

𝑒𝜉𝑖𝑝+𝜉
∗
𝑗 𝑟
|

|

|

|

|

|𝑁×𝑁

, (95b)

𝜉𝑖𝑝 = 𝑘𝑖𝑝𝑥 + i𝑘2𝑖𝑝𝑡 + 𝜉𝑖𝑝,0 . (95c)

The constraint condition becomes
2𝛼(𝑞 − 𝛿 + 𝓁)𝜌2

(𝑘𝑖1 − i𝑞)(𝑘𝑖2 − i𝑞) = i(𝑘𝑖1 + 𝑘𝑖2) , 𝑖 = 1,… , 𝑁 , . (96)

If we further define 𝑘𝑖𝑝 as

𝑘𝑖𝑝 = 𝑘(𝑟)𝑖𝑝 + i𝑘(𝑖)𝑖𝑝 , 𝑖 = 1,… , 𝑁 , 𝑝 = 1, 2, (97)

then it can be shown that every breather is localised along the direction of the line
(

𝑘(𝑟)𝑖1 − 𝑘(𝑟)𝑖2
)

𝑥 + 2
(

𝑘(𝑟)𝑖1 𝑘
(𝑖)
𝑖1 + 𝑘(𝑟)𝑖2 𝑘

(𝑖)
𝑖2

)

𝑡 = 0 , (98a)

and periodic along the direction of the line
(

𝑘(𝑖)𝑖1 − 𝑘(𝑖)𝑖2
)

𝑥 +
(

𝑘(𝑟)2𝑖1 − 𝑘(𝑟)2𝑖2 − 𝑘(𝑖)2𝑖1 + 𝑘(𝑖)2𝑖2

)

𝑡 = 0 . (98b)

We close this section by showing an example of a 1-breather solution for the simple case where we set all the 𝑐1𝑝 = 1, 𝜉1𝑝,0 = 0.
n that case, the 𝜏-functions are given by

𝑓 = 𝑒𝜁1+𝜁
∗
1

𝑘11+𝑘∗11

𝑘∗11+i(𝛿−𝓁)
𝑘∗12+i(𝛿−𝓁)

+ 𝑒𝜁1
𝑘11+𝑘∗12

𝑘∗11+i(𝛿−𝓁)
𝑘∗12+i(𝛿−𝓁)

+ 𝑒𝜁
∗
1

𝑘12+𝑘∗11
+ 1

𝑘12+𝑘∗12
, (99a)

𝑔 =
𝛩1(𝛩∗

1 )
−1𝑒

𝜁𝑖+𝜁∗𝑗

𝑘11+𝑘∗11

𝑘∗11+i(𝛿−𝓁)
𝑘∗12+i(𝛿−𝓁)

+ 𝛩1𝑒𝜁1
𝑘11+𝑘∗12

𝑘∗11+i(𝛿−𝓁)
𝑘∗12+i(𝛿−𝓁)

+
(𝛩∗

1 )
−1𝑒𝜁

∗
1

𝑘12+𝑘∗11
+ 1

𝑘12+𝑘∗12
, (99b)

with

𝛩1 =
𝑘11 − i𝑞
𝑘12 − i𝑞 , (99c)

and

𝜁1 = (𝑘11 − 𝑘12)𝑥 + (𝑘211 − 𝑘212)i𝑡 , (99d)

in which these parameters need to satisfy the constraint condition (96) with 𝑖 = 1. One typical example of breather solution is
illustrated in Fig. 5.

The 𝜏-functions of the 2-breather solution can be obtained by taking 𝑁 = 2 in Theorem 3, but these formulae are too tedious
and we will omit them for the purpose of this paper. An example is illustrated in Fig. 6 with selected parameters.
13
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Fig. 5. 1-breather solution for the parameters 𝛼 = 1, 𝑞 = 3,𝓁 = 2, 𝛿 = 1, 𝜌 = 1, 𝑘11 = 1 − 0.5i, 𝑘12 = 0.45647 + 2.0878i.

5. Rogue wave solutions

In this section we will construct rogue wave solutions making use of the 𝜏-functions machinery. In line with the scientific
literature on exact solutions of integrable systems (and potentially with a little abuse of terminology), here we understand rogue
waves as rationally-decaying, localised solutions, whose maximum does not propagate in space and time, and which appear as the
limiting case for the breather solutions. In order to do so, we will first introduce a new object that we denote 𝑚(𝑛,ℎ) as

𝑚(𝑛,ℎ) =
i(𝑘 − 𝑏)
𝑘 + 𝑘̄

(

−𝑘 − 𝑏
𝑘̄ + 𝑏

)𝑛 (

−𝑘 − 𝑎
𝑘̄ + 𝑎

)ℎ
𝑒𝜉+𝜉 , (100)

and

𝜉 = 𝑘𝑥1 + 𝑘2𝑥2 +
1

𝑘 − 𝑎
𝑥−1 + 𝜉0, (101a)

𝜉 = 𝑘̄𝑥1 − 𝑘̄2𝑥2 +
1

𝑘̄ + 𝑎
𝑥−1 + 𝜉0, (101b)

where 𝑘, 𝑘̄, 𝜉0, 𝜉0, 𝑎 and 𝑏 are arbitrary complex parameters. With that, we can define the matrix elements of our Gram-type solution
as

𝑚(𝑛,ℎ)
𝑖𝑗 = 𝑖𝑗𝑚(𝑛,ℎ), (102)

where 𝑖 and 𝑗 are differential operators with respect to 𝑘 and 𝑘̄ respectively,

𝑖 =
1
𝑖!
[

𝑓1(𝑘)𝜕𝑘
]𝑖 , 𝑗 =

1
𝑗!

[

𝑓2(𝑘̄)𝜕𝑘̄
]𝑗 , (103)

and 𝑓1(𝑘), 𝑓2(𝑘̄) are arbitrary functions that will be determined in Section 5.1 via the dimensional reduction process described
in [53,54]. Since the operators  and  commute with the bilinear operators 𝐷 , 𝐷 and 𝐷 , it can be easily seen that for any
14
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Fig. 6. 2-breather solution for the parameters 𝛼 = 1, 𝑞 = 3,𝓁 = 2, 𝛿 = 1, 𝜌 = 1, 𝑘11 = 0.5 + i, 𝑘21 = 1.4386 + 0.011416i, 𝑘12 = 1 + i, 𝑘22 = 0.6838 − 0.13355i.

permutation of the indices (𝑖1, 𝑖2,… , 𝑖𝜈 ,… , 𝑖𝑁 ; 𝑗1, 𝑗2,… , 𝑗𝜅 ,… , 𝑗𝑁 ), the determinant

𝜏𝑛,ℎ = det
(

𝑚(𝑛,ℎ)
𝑖𝜈 ,𝑗𝜅

)

1≤𝜈 ,𝜅≤𝑁 (104)

satisfies the set of bilinear Eqs. (66).

5.1. Rogue waves in differential formulation

Following the generalised dimensional reduction technique developed in [54], we introduce the linear differential operator

 = (𝑎 − 𝑏)𝐷𝑥−1 −
1

2𝛼 𝜌2𝐷𝑥2 . (105)

In the following section, we will show that the dimensional reduction condition

𝜏𝑛,ℎ = 𝐶 𝜏𝑛,ℎ, (106)

for some constant 𝐶, is satisfied.
It can be checked that

𝑚(𝑛,ℎ)
𝑖𝑗 = 𝑖𝑗𝑚(𝑛,ℎ) = 𝑖𝑗

[

1(𝑘) +2(𝑘̄)
]

𝑚(𝑛,ℎ), (107)

where

1(𝑘) =
(𝑎 − 𝑏)
𝑘 − 𝑎

+ 1
2𝛼 𝜌2 𝑘

2, 2(𝑘̄) =
(𝑎 − 𝑏)
𝑘̄ + 𝑎

− 1
2𝛼 𝜌2 𝑘̄

2 . (108)
15
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w

g

c

Using the Leibniz rule, the operator relations [54]

𝑖1(𝑘) =
𝑖

∑

𝑝=0

1
𝑝!

[(

𝑓1𝜕𝑘
)𝑝 1(𝑘)

]

𝑖−𝑝, (109a)

𝑗2(𝑘̄) =
𝑗
∑

𝑟=0

1
𝑟!

[(

𝑓2𝜕𝑘̄
)𝑟 2(𝑘̄)

]

𝑗−𝑟, (109b)

where both of them are to be understood as operators, hold, which entails

𝑚(𝑛,ℎ)
𝑖𝑗 =

𝑖
∑

𝑝=0

1
𝑝!

[(

𝑓1𝜕𝑘
)𝑝 1(𝑘)

]

𝑚(𝑛,ℎ)
𝑖−𝑝,𝑗 +

𝑗
∑

𝑟=0

1
𝑟!

[(

𝑓2𝜕𝑘̄
)𝑟 2(𝑘̄)

]

𝑚(𝑛,ℎ)
𝑖,𝑗−𝑟. (110)

In order for the reduction process to be applied, we will assume that the algebraic equations

′
1(𝑘) = 0, ′

2(𝑘̄) = 0, (111)

which are equivalent to the cubic equations

𝑘(𝑘 − 𝑎)2 + (𝑎 − 𝑏)𝛼 𝜌2 = 0, 𝑘̄(𝑘̄ + 𝑎)2 − (𝑎 − 𝑏)𝛼 𝜌2 = 0, (112)

have simple roots 𝑘0 and 𝑘̄0, respectively.
Following the steps for the simple root case in [54], we will need to solve the differential equations

(

𝑓1𝜕𝑘
)2 1(𝑘) = 1(𝑘),

(

𝑓2𝜕𝑘̄
)2 2(𝑘̄) = 2(𝑘̄). (113)

To this end, we assume

𝑓1(𝑘) =
1(𝑘)
 ′

1(𝑘)
, 𝑓2(𝑘̄) =

2(𝑘̄)
 ′

2(𝑘̄)
, (114)

where the prime denotes derivation, for some functions 1(𝑘) and 2(𝑘̄), subject to the constraints 1(𝑘0) = 1 and 2(𝑘̄0) = 1,
hich after some calculations implies that

1(𝑘) =
1(𝑘) ±

√

2
1(𝑘) −2

1(𝑘0)

1(𝑘0)
, (115a)

2(𝑘̄) =
2(𝑘̄) ±

√

2
2(𝑘̄) −2

2(𝑘̄0)

2(𝑘̄0)
, (115b)

entailing

𝑓1(𝑘) = ±

√

2
1(𝑘) −2

1(𝑘0)

′
1(𝑘)

, 𝑓2(𝑘̄) = ±

√

2
2(𝑘̄) −2

2(𝑘̄0)

′
2(𝑘̄)

. (116)

Since both signs yield equivalent rogue wave solutions, we choose the positive sign in the following derivation without loss of
enerality. From conditions (111) and (113), we obtain that

𝑚(𝑛,ℎ)
𝑖𝑗

|

|

|𝑘=𝑘0 ,𝑘̄=𝑘̄0
= 1(𝑘0)

𝑖
∑

𝑝=0,
𝑝∶𝑒𝑣𝑒𝑛

1
𝑝!
𝑚(𝑛,ℎ)
𝑖−𝑝,𝑗

|

|

|𝑘=𝑘0 ,𝑘̄=𝑘̄0
+2(𝑘̄0)

𝑗
∑

𝑟=0,
𝑟∶𝑒𝑣𝑒𝑛

1
𝑟!
𝑚(𝑛,ℎ)
𝑖,𝑗−𝑟

|

|

|𝑘=𝑘0 ,𝑘̄=𝑘̄0
, (117)

as only the even elements in the sums are non-zero.
Since that implies that the matrix elements 𝑚(𝑛,ℎ)

𝑖,𝑗 with even 𝑖 and/or 𝑗 are identical to those with 𝑖 + 1 or 𝑗 + 1, we will restrict
the general determinant (104) to only odd indices, without loss of generality,

𝜏𝑛,ℎ = det
(

𝑚(𝑛,ℎ)
2𝑖−1,2𝑗−1

|

|

|𝑘=𝑘0 ,𝑘̄=𝑘̄0

)

1≤𝑖,𝑗≤𝑁
. (118)

By using the contiguity relation (117) as in [55], we obtain

𝜏𝑛,ℎ =
[

1(𝑘0) +2(𝑘̄0)
]

𝑁 𝜏𝑛,ℎ, (119)

which implies that the 𝜏-function (118) satisfies the dimensional reduction condition (106) with 𝐶 = [1(𝑘0) + 2(𝑘̄0)]𝑁 . The
omplex conjugate reduction: 𝜏𝑛,𝑘 = 𝜏∗−𝑛−1,−𝑘 can be realised by the same conditions: 𝑎 = i𝑞 and 𝑏 = i(𝛿 − 𝓁), 𝑥2 = i𝑡 and 𝑘̄ = 𝑘∗.

We will further introduce expansions of 𝜉0(𝑘) in terms of ln1(𝑘) and of 𝜉0(𝑘̄) in terms of ln2(𝑘̄), following the idea in [56],

𝜉0(𝑘) =
∞
∑

𝑟=1
𝑎̂𝑟 ln

𝑟1(𝑘) , 𝜉0(𝑘̄) =
∞
∑

𝑟=1
𝑎̂∗𝑟 ln

𝑟2(𝑘̄) , (120)

where 𝑎̂𝑟 are arbitrary complex constants.
Putting all the above together, we can construct general rogue wave solutions for the system through the following theorem.
16



Wave Motion 134 (2025) 103511M. Caso-Huerta et al.

a

c
s

i
s

Theorem 4. The YON system (4) possesses the following rogue wave solutions
𝑆 = 𝜌

𝑔
𝑓
𝑒i[𝑞 𝑥−(𝑞2+2𝛼 𝜌2+2𝛿𝓁−𝓁2)𝑡] , 𝐿 = 𝓁 + i

(

log
𝑓 ∗

𝑓

)

𝑥
, (121)

where

𝑓 = 𝜏−1,0, 𝑓 ∗ = 𝜏0,0, 𝑔 = 𝜏−1,1, 𝑔∗ = 𝜏0,−1, (122)

and the elements in the determinant 𝜏𝑛,ℎ = det
(

𝑚̃(𝑛,ℎ)
2𝑖−1,2𝑗−1

)

1≤𝑖,𝑗≤𝑁
are defined by

𝑚̃(𝑛,ℎ)
𝑖,𝑗 =

[

𝑓1(𝑘)𝜕𝑘
]𝑖

𝑖!

[

𝑓2(𝑘̄)𝜕𝑘̄
]𝑗

𝑗!
𝑚(𝑛,ℎ)|

|

|𝑘=𝑘0 ,𝑘̄=𝑘∗0
, (123a)

𝑚(𝑛,ℎ) =
i(𝑘 − 𝑏)
𝑘 + 𝑘̄

(

−𝑘 − 𝑏
𝑘̄ + 𝑏

)𝑛 (

−𝑘 − 𝑎
𝑘̄ + 𝑎

)ℎ
𝑒𝛺 , (123b)

𝛺 = (𝑘 + 𝑘̄)𝑥 + (

𝑘2 − 𝑘̄2
)

i𝑡 +
∞
∑

𝑟=1
𝑎̂𝑟 ln

𝑟1(𝑘) +
∞
∑

𝑟=1
𝑎̂∗𝑟 ln

𝑟2(𝑘̄), (123c)

with 𝑘0 as defined in (112), 𝑏 = i(𝛿 − 𝓁) and 𝑎 = i𝑞. Furthermore, 𝑞, 𝜌 and 𝓁 are arbitrary real parameters and 𝑎̂𝑟 for 𝑟 = 1, 2,… are
rbitrary complex parameters.

Note that even though, in principle, we choose infinitely many arbitrary parameters 𝑎̂𝑟, only the first 2𝑁 − 1 of them enter the
omputation through the derivatives, since 1(𝑘0) = 2(𝑘∗0) = 1. The rationale behind the form of the elements inside the infinite
ums is to cancel out 𝑓1(𝑘) and 𝑓2(𝑘) terms once the derivative is performed.

An important point is that the definition of 𝑘0 via (112) is equivalent to the condition for the existence of rogue waves predicted
n [1] via the analysis of the stability spectrum, hence supporting the general understanding that base-band instability of plane wave
olutions plays a pivotal role in the onset of rogue waves.

5.2. Rogue waves by elementary Schur polynomials

In this subsection, the rogue wave solutions above will be rewritten more explicitly using elementary Schur polynomials.
Following the technique in [54], the extended generator  of the differential operators

[

𝑓1𝜕𝑘
]𝑖 [𝑓2𝜕𝑘̄

]𝑗 is

 =
∞
∑

𝑖=0

∞
∑

𝑗=0

𝜇𝑖

𝑖!
𝜆𝑗

𝑗!
[

𝑓1𝜕𝑘
]𝑖 [𝑓2𝜕𝑘̄

]𝑗 , (124)

which, thanks to the fact that

𝑓1(𝑘) =
(

𝜕 ln1
𝜕 𝑘

)−1
, 𝑓2(𝑘) =

(

𝜕 ln2
𝜕 𝑘

)−1
, (125)

due to (114), can be expressed in terms of 1 and 2 as

 =
∞
∑

𝑖=0

∞
∑

𝑗=0

𝜇𝑖

𝑖!
𝜆𝑗

𝑗!

[

𝜕ln1

]𝑖 [
𝜕ln2

]𝑗
= exp(𝜇 𝜕ln1

+ 𝜆𝜕ln2
). (126)

As stated in [55], it follows that for any function 𝐹 (1,2) we have that

𝐹 (1,2) = 𝐹 (𝑒𝜇1, 𝑒𝜆2). (127)

Applying the relation (127) to 𝑚(𝑛,ℎ) at 𝑘 = 𝑘0, 𝑘̄ = 𝑘̄0, one has

𝑚(𝑛,ℎ)|
|

|𝑘=𝑘0 ,𝑘̄=𝑘̄0
=

i(𝑘(𝜇) − 𝑏)(−1)𝑛+ℎ
𝑘(𝜇) + 𝑘̄(𝜆)

[

𝑘(𝜇) − 𝑎
𝑘̄(𝜆) + 𝑎

]ℎ [𝑘(𝜇) − 𝑏
𝑘̄(𝜆) + 𝑏

]𝑛
×

exp

{

[

𝑘(𝜇) + 𝑘̄(𝜆)] 𝑥 + [

𝑘2(𝜇) − 𝑘̄2(𝜆)] i𝑡 +
∞
∑

𝑟=1

[

𝑎̂𝑟𝜇
𝑟 + 𝑎̂∗𝑟𝜆

𝑟]
}

,
(128)

where we have defined

𝑘(𝜇) ≡ 𝑘(1)||1=𝑒𝜇
, 𝑘̄(𝜆) ≡ 𝑘̄(2)||2=𝑒𝜆

, (129)

by inverting the functional dependence between 𝑘 and 1 and between 𝑘̄ and 2. Since

𝑚(𝑛,ℎ)|
|

|𝑘=𝑘0 ,𝑘̄=𝑘̄0
=

i(𝑘0 − 𝑏)(−1)𝑛+ℎ

𝑘0 + 𝑘̄0

(

𝑘0 − 𝑎
𝑘̄0 + 𝑎

)ℎ (𝑘0 − 𝑏
𝑘̄0 + 𝑏

)𝑛
exp

[(

𝑘0 + 𝑘̄0
)

𝑥 +
(

𝑘20 − 𝑘̄
2
0
)

i𝑡
]

, (130)
17
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we then obtain that
𝑚(𝑛,ℎ)

𝑚(𝑛,ℎ)

|

|

|

|

|𝑘=𝑘0 ,𝑘̄=𝑘̄0

=
𝑘0 + 𝑘̄0

𝑘(𝜇) + 𝑘̄(𝜆)

[

𝑘(𝜇) − 𝑎
𝑘0 − 𝑎

]ℎ [ 𝑘̄(𝜆) + 𝑎
𝑘̄0 + 𝑎

]−ℎ [𝑘(𝜇) − 𝑏
𝑘0 − 𝑏

]𝑛+1 [ 𝑘̄(𝜆) + 𝑏
𝑘̄0 + 𝑏

]−𝑛
×

exp

{

[

𝑘(𝜇) − 𝑘0 + 𝑘̄(𝜆) − 𝑘̄0
]

𝑥 +
[

𝑘2(𝜇) − 𝑘20 − 𝑘̄2(𝜆) + 𝑘̄20
]

i𝑡 +
∞
∑

𝑟=1

[

𝑎̂𝑟𝜇
𝑟 + 𝑎̂∗𝑟𝜆

𝑟]
}

.

(131)

The next step will be to expand the r.h.s of the equation above in a power series in 𝜇 and 𝜆. Using the techniques introduced
in [54], the first term can be expressed as

𝑘0 + 𝑘̄0
𝑘(𝜇) + 𝑘̄(𝜆) =

∞
∑

𝛾=0

(

𝑘1𝑘̄1
(𝑘0 + 𝑘̄0)2

𝜇 𝜆
)𝛾

exp

( ∞
∑

𝑟=1
(𝛾 𝑠𝑟 − 𝑏𝑟)𝜇𝑟 + (𝛾 𝑠∗𝑟 − 𝑏∗𝑟 )𝜆𝑟

)

, (132)

where

𝑘1 =
𝑑 𝑘(𝜇)
𝑑 𝜇

|

|

|

|𝜇=0
, 𝑘̄1 =

𝑑𝑘̄(𝜆)
𝑑 𝜆

|

|

|

|

|𝜆=0
. (133)

The parameters 𝑠𝑟 and 𝑏𝑟 are defined as the expansion coefficients of 𝜇𝑟 and 𝜆𝑟 in the following series expansions:

ln
[

𝑘0 + 𝑘̄0
𝑘1𝜇

𝑘(𝜇) − 𝑘0
𝑘(𝜇) + 𝑘̄0

]

=
∞
∑

𝑟=1
𝑠𝑟𝜇

𝑟, ln
[

𝑘(𝜇) + 𝑘̄0
𝑘0 + 𝑘̄0

]

=
∞
∑

𝑟=1
𝑏𝑟𝜇

𝑟, (134a)

ln
[

𝑘0 + 𝑘̄0
𝑘̄1𝜆

𝑘̄(𝜆) − 𝑘̄0
𝑘̄(𝜆) + 𝑘̄0

]

=
∞
∑

𝑟=1
𝑠∗𝑟𝜆

𝑟, ln
[

𝑘̄(𝜆) + 𝑘0
𝑘0 + 𝑘̄0

]

=
∞
∑

𝑟=1
𝑏∗𝑟𝜆

𝑟, (134b)

where we have chosen 𝑘̄(𝜆) = 𝑘∗(𝜇) and, as a consequence, 𝑘̄0 = 𝑘∗0. Hence, 𝑠∗𝑟 = 𝑠𝑟, 𝑏∗𝑟 = 𝑏𝑟 and the expression (132) is simplified as
𝑘0 + 𝑘̄0

𝑘(𝜇) + 𝑘̄(𝜆) =
∞
∑

𝛾=0

(

𝜇 𝜆
4

)𝛾
exp

( ∞
∑

𝑟=1
(𝛾 𝑠𝑟 − 𝑏𝑟)(𝜇𝑟 + 𝜆𝑟)

)

. (135)

On the other hand, by means of the additional choices 𝑎 = i𝑞, 𝑏 = i(𝛿 − 𝑙), we can perform the following expansions

𝑘(𝜇) − 𝑘0 =
∞
∑

𝑟=1
𝜑(1)
𝑟 𝜇

𝑟, 𝑘2(𝜇) − 𝑘20 =
∞
∑

𝑟=1
𝜑(2)
𝑟 𝜇

𝑟, (136a)

ln
𝑘(𝜇) − 𝑎
𝑘0 − 𝑎

=
∞
∑

𝑟=1
𝜑(3)
𝑟 𝜇

𝑟, ln
𝑘(𝜇) − 𝑏
𝑘0 − 𝑏

=
∞
∑

𝑟=1
𝜑(4)
𝑟 𝜇

𝑟. (136b)

With the help of (136), the remaining terms on the r.h.s. of (131) can be rewritten as

exp

{ ∞
∑

𝑟=1
[𝜑(1)

𝑟 𝑥 + 𝜑
(2)
𝑟 i𝑡 + ℎ𝜑(3)

𝑟 + (𝑛 + 1)𝜑(4)
𝑟 + 𝑎̂𝑟]𝜇𝑟 +

∞
∑

𝑟=1
[𝜑(1)∗

𝑟 𝑥 − 𝜑(2)∗
𝑟 i𝑡 − ℎ𝜑(3)∗

𝑟 − 𝑛𝜑(4)∗
𝑟 + 𝑎̂∗𝑟 ]𝜆

𝑟

}

. (137)

Additionally, we will define

𝑎𝑟 =
1
2
𝜑(4)
𝑟 + 𝑎̂𝑟 − 𝑏𝑟, (138)

so that (131) can be rewritten as

𝑚(𝑛,ℎ)

𝑚(𝑛,ℎ)

|

|

|

|

|𝑘=𝑘0 ,𝑘̄=𝑘̄0

=
∞
∑

𝛾=0

(

𝜇 𝜆
4

)𝛾
exp

( ∞
∑

𝑟=1
(𝑥+𝑟 (𝑛, ℎ) + 𝛾 𝑠𝑟)𝜇𝑟 +

∞
∑

𝑟=1
(𝑥−𝑟 (𝑛, ℎ) + 𝛾 𝑠𝑟)𝜆𝑟

)

=
∞
∑

𝛾=0

(

𝜇 𝜆
4

)𝛾 ∞
∑

𝑖=0
𝑆𝑖(𝒙+(𝑛, ℎ) + 𝛾𝒔)𝜇𝑖

∞
∑

𝑗=0
𝑆𝑗 (𝒙−(𝑛, ℎ) + 𝛾𝒔)𝜆𝑗

=
∞
∑

𝛾=0

∞
∑

𝑖=0

∞
∑

𝑗=0

1
4𝛾
𝑆𝑖(𝒙+(𝑛, ℎ) + 𝛾𝒔)𝑆𝑗 (𝒙−(𝑛, ℎ) + 𝛾𝒔)𝜇𝑖+𝛾𝜆𝑗+𝛾 ,

(139)

where 𝑥±𝑟 (𝑛, ℎ) are defined as

𝑥+𝑟 (𝑛, ℎ) = 𝜑(1)
𝑟 𝑥 + 𝜑

(2)
𝑟 i𝑡 + ℎ𝜑(3)

𝑟 +
(

𝑛 + 1
2

)

𝜑(4)
𝑟 + 𝑎𝑟 , (140a)

𝑥−𝑟 (𝑛, ℎ) = 𝜑(1)∗
𝑟 𝑥 − 𝜑(2)∗

𝑟 i𝑡 − ℎ𝜑(3)∗
𝑟 −

(

𝑛 + 1
2

)

𝜑(4)∗
𝑟 + 𝑎∗𝑟 , (140b)

the infinite vectors 𝒙±(𝑛, ℎ) are defined as 𝒙±(𝑛, ℎ) = (𝑥±𝑟 (𝑛, ℎ)), and the elementary Schur polynomial 𝑆𝑗 (𝒙) is defined via the
generating function [57–59]

∞
∑

𝑆𝑗 (𝒙)𝜀𝑗 = exp
( ∞
∑

𝑥𝑗𝜀
𝑗

)

, (141a)
18
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i

t

(

u

or, equivalently, via the formula

𝑆𝑗 (𝒙) =
∑

𝑙1+2𝑙2+⋯+𝑝𝑙𝑝=𝑗

( 𝑝
∏

𝑖=1

𝑥𝑙𝑖𝑖
𝑙𝑖!

)

, (141b)

where the sum extends over all partitions of 𝑗 of the given form. A more detailed derivation of the elementary Schur polynomials
n the context of this computation can be found in [56].

By equating the coefficients of 𝜇𝑖𝜆𝑗 on both sides of (139) one can check that
𝑚̃(𝑛,ℎ)
𝑖,𝑗

𝑚(𝑛,ℎ)|
|𝑘=𝑘0 ,𝑘̄=𝑘̄0

=
min(𝑖,𝑗)
∑

𝛾=0

1
4𝛾
𝑆𝑖−𝛾 (𝒙+(𝑛, ℎ) + 𝛾𝒔)𝑆𝑗−𝛾 (𝒙−(𝑛, ℎ) + 𝛾𝒔), (142)

where 𝑚̃(𝑛,ℎ)
𝑖,𝑗 is the matrix element given in Theorem 4.

The final ingredient needed for the computation is the gauge freedom of the 𝜏-functions, which ensures that the determinant of
he matrix whose elements are given by (142),

𝜎𝑛,ℎ =
𝜏𝑛,ℎ

(

𝑚(𝑛,ℎ)|
|𝑘=𝑘0 ,𝑘̄=𝑘̄0

)𝑁 , (143)

is also a rational solution to the YON system (4) of the form presented in Theorem 4. With that, we can take the determinant of
142) to present our rewritten solutions via the following theorem.

Theorem 5. The YON system (4) possesses the following rogue wave solutions
𝑆 = 𝜌

𝑔
𝑓
𝑒i[𝑞 𝑥−(𝑞2+2𝛼 𝜌2+2𝛿𝓁−𝓁2)𝑡] , 𝐿 = 𝓁 + i

(

log
𝑓 ∗

𝑓

)

𝑥
, (144)

where

𝑓 = 𝜎−1,0, 𝑓 ∗ = 𝜎0,0, 𝑔 = 𝜎−1,1, 𝑔∗ = 𝜎0,−1, (145)

and the elements in the determinant 𝜎𝑛,ℎ = det
(

𝑚(𝑛,ℎ)
2𝑖−1,2𝑗−1

)

1≤𝑖,𝑗≤𝑁
are given by

𝑚(𝑛,ℎ)
𝑖,𝑗 =

min(𝑖,𝑗)
∑

𝛾=0

1
4𝛾
𝑆𝑖−𝛾 (𝒙+(𝑛, ℎ) + 𝛾𝒔)𝑆𝑗−𝛾 (𝒙−(𝑛, ℎ) + 𝛾𝒔), (146)

with the infinite vectors 𝒙±(𝑛, ℎ) =
(

𝑥±1 (𝑛, ℎ), 𝑥±2 (𝑛, ℎ),…
)

≡
(

𝑥±1 , 𝑥±2 ,…
)

defined by (140), 𝒔 = (𝑠1, 𝑠2,…), and 𝑆𝑗 denoting the 𝑗th
elementary Schur polynomial defined by (141).

Using Theorem 5, we can obtain the first-order rogue wave solution (or fundamental rogue wave) by setting 𝑁 = 1, which gives
s the following 𝜏-functions

𝑓 = 𝑚(−1,0)
11 , 𝑓 ∗ = 𝑚(0,0)

11 , 𝑔 = 𝑚(−1,1)
11 (147a)

where the elements are determined by

𝑚(𝑛,ℎ)
11 = 𝑥+1 𝑥

−
1 + 𝑐0, (147b)

with

𝑐0 =
𝑘1𝑘∗1

(𝑘0 + 𝑘∗0)
2
. (147c)

Fig. 7 illustrates the profile of a first-order rogue wave for a particular choice of parameters.
The second-order rogue wave solution is obtained from Theorem 5 with 𝑁 = 2. In this case, the 𝜏-functions 𝑓 and 𝑔 are given

by

𝑓 =
|

|

|

|

|

|

𝑚(−1,0)
11 𝑚(−1,0)

13

𝑚(−1,0)
31 𝑚(−1,0)

33

|

|

|

|

|

|

, 𝑓 ∗ =
|

|

|

|

|

|

𝑚(0,0)
11 𝑚(0,0)

13

𝑚(0,0)
31 𝑚(0,0)

33

|

|

|

|

|

|

, 𝑔 =
|

|

|

|

|

|

𝑚(−1,1)
11 𝑚(−1,1)

13

𝑚(−1,1)
31 𝑚(−1,1)

33

|

|

|

|

|

|

, (148a)

where the elements are determined by

𝑚(𝑛,ℎ)
11 = 𝑥+1 𝑥

−
1 + 𝑐0, 𝑚(𝑛,ℎ)

13 = 𝑥+1 𝑥̂
−
1 +

𝑐0
2
𝑥̂−2 , (148b)

𝑚(𝑛,ℎ)
33 = 𝑥̂+1 𝑥̂

−
1 +

𝑐0
4
𝑥̂+2 𝑥̂

−
2 +

𝑐0
4
(

𝑥+1 + 2𝑠1
) (
𝑥−1 + 2𝑠1

)

+
𝑐20
16
, 𝑚(𝑛,ℎ)

31 = 𝑥−1 𝑥̂
+
1 +

𝑐0
2
𝑥̂+2 , (148c)

𝑥̂+1 = 1
6
(𝑥+1 )

3 + 𝑥+1 𝑥
+
2 + 𝑥+3 , 𝑥̂−1 = 1

6
(𝑥−1 )

3 + 𝑥−1 𝑥
−
2 + 𝑥−3 , (148d)

𝑥̂+2 =
(

𝑥+1 + 𝑠1
)2 + 2(𝑠2 + 𝑥+2 ), 𝑥̂−2 =

(

𝑥−1 + 𝑠1
)2 + 2(𝑠2 + 𝑥−2 ) , (148e)

with 𝑐 defined as above.
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Fig. 7. First-order rogue wave with parameter values 𝛼 = 1, 𝛿 = −1 (𝛽 = −2), 𝜌 = 1, 𝑞 = 1, 𝓁 = 1, 𝑘0 = 1.1713 − 0.08728i, 𝑘1 = −0.88698 + 0.51361i, 𝑎1 = 0.

Fig. 8. Second-order rogue wave with parameter values 𝛼 = 1, 𝛿 = −1 (𝛽 = −2), 𝜌 = 1, 𝑞 = 1, 𝓁 = 1, 𝑘0 = 1.1713 − 0.08728i, 𝑘1 = −0.88698 + 0.51361i, 𝑎1 = 0,
𝑎3 = 50.

From these explicit expressions, we can see that each 𝜏-function is a polynomial of degree six with respect to the variables 𝑥 and
𝑡. Two representative examples of second-order rogue waves with different parameter values are illustrated in Figs. 8 and 9.

The first of them, Fig. 8, exhibits a second-order rogue wave consisting of three clearly separate fundamental rogue waves
distributed in a triangular array. It can be observed that the geometric patterns for the second-order rogue wave of the YON system
are similar to the ones obtained in [60,61]. The rigorous proof for this fact can be done very similarly to the one given in [62].

In the second solution, Fig. 9, the parameters take the same values as the ones we used for Fig. 8 except for the choice 𝑎3 = 0.
In this case, the individual rogue waves that make up the second-order solution coalesce into a single one, giving rise to what is
typically termed a super rogue wave.
20
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Fig. 9. Second-order rogue wave with parameter values 𝛼 = 1, 𝛿 = −1 (𝛽 = −2), 𝜌 = 1, 𝑞 = 1, 𝓁 = 1, 𝑘0 = 1.1713 − 0.08728i, 𝑘1 = −0.88698 + 0.51361i, 𝑎1 = 𝑎3 = 0.

6. Conclusions

In this paper, we have derived new families of solutions for the YON system. We used both a traditional Hirota approach and the
𝜏-function reduction technique for the two-component KP hierarchy in order to obtain general bright soliton solutions. We further
employed the 𝜏-function reduction for the KP-Toda hierarchy to obtain general families of dark soliton, breather and rogue wave
solutions.

For each family of solutions we provided their main physical features and described their general behaviour.
The higher-order rogue wave solutions match the triangular pattern previously derived for other wave systems, such as the

nonlinear Schrödinger equation [60]. When the individual fundamental rogue waves that make up the higher-order rogue wave
coalesce into one, the resulting structure is a super rogue wave.

The constraints that the parameters must satisfy in order for the rogue wave solutions to exist coincide with the predictions
presented in [1] making use of the base-band instability regimes obtained via the stability spectra of plane waves.

The problem of generating families of solutions for the YON system via spectral methods such as inverse scattering or Darboux-
dressing remains open, and so does the problem of whether one can construct Bäcklund transformations for the YON system by
means of its Hirota bilinear structure in the spirit of [63].

CRediT authorship contribution statement

Marcos Caso-Huerta: Writing – review & editing, Writing – original draft, Methodology, Investigation, Conceptualization. Bao-
Feng Feng: Writing – review & editing, Writing – original draft, Methodology, Investigation, Conceptualization. Sara Lombardo:
Writing – review & editing, Writing – original draft, Methodology, Investigation, Conceptualization. Ken-ichi Maruno: Writing –
review & editing, Writing – original draft, Methodology, Investigation, Conceptualization. Matteo Sommacal: Writing – review &
editing, Writing – original draft, Methodology, Investigation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.
21



Wave Motion 134 (2025) 103511M. Caso-Huerta et al.
Acknowledgements

The work of MC-H was supported by the Progetti di Ricerca di Interesse Nazionale–PRIN (Project No. 2020X4T57A) and the
PRIN funded by the European Union–Next Generation (Project No. 20222NCTCY). The work of BF-F was partially supported by
U.S. Department of Defense (DoD), Air Force for Scientific Research (AFOSR) under grant No. W911NF2010276. MC-H and MS
would like to thank the QJMAM Fund for Applied Mathematics, managed by the IMA, for supporting their attendance to the ICIAM
2023 in Tokyo, facilitating their interaction with B-FF and KM. MC-H, SL and MS would like to thank the Isaac Newton Institute
for Mathematical Sciences, Cambridge, for support and hospitality during the programme Emergent phenomena in nonlinear dispersive
waves, where work on this paper was undertaken. This work was supported by EPSRC grant EP/R014604/1. The work of MC-H and
MS has been carried out under the auspices of the Italian GNFM (Gruppo Nazionale Fisica Matematica), INdAM (Istituto Nazionale
di Alta Matematica), which is gratefully acknowledged.

Data availability

No data was used for the research described in the article.

References

[1] M. Caso-Huerta, A. Degasperis, S. Lombardo, M. Sommacal, A new integrable model of long wave–short wave interaction and linear stability spectra, Proc.
R. Soc. A 477 (2021) 20210408, http://dx.doi.org/10.1098/rspa.2021.0408.

[2] M. Caso-Huerta, A. Degasperis, P. Leal da Silva, S. Lombardo, M. Sommacal, Periodic and solitary wave solutions of the long wave–short wave
Yajima-Oikawa-Newell model, Fluids 7 (7) (2022) 227, http://dx.doi.org/10.3390/fluids7070227.

[3] N. Yajima, M. Oikawa, Formation and interaction of sonic-Langmuir solitons: Inverse scattering method, Progr. Theoret. Phys. 56 (6) (1976) 1719–1739,
http://dx.doi.org/10.1143/PTP.56.1719.

[4] V.D. Djordjevic, L.G. Redekopp, On two-dimensional packets of capillary-gravity waves, J. Fluid Mech. 79 (04) (1977) 703, http://dx.doi.org/10.1017/
S0022112077000408.

[5] D.J. Benney, A general theory for interactions between short and long waves, Stud. Appl. Math. 56 (1) (1977) 81–94, http://dx.doi.org/10.1002/
sapm197756181.

[6] A.C. Newell, Long waves-short waves: A solvable model, SIAM J. Appl. Math. 35 (4) (1978) 650–664, http://dx.doi.org/10.1137/0135054.
[7] M. Funakoshi, M. Oikawa, The resonant interaction between a long internal gravity wave and a surface gravity wave packet, J. Phys. Soc. Japan 52 (6)

(1983) 1982–1995, http://dx.doi.org/10.1143/JPSJ.52.1982.
[8] M. Oikawa, M. Okamura, M. Funakoshi, Two-dimensional resonant interaction between long and short waves, J. Phys. Soc. Japan 58 (12) (1989) 4416–4430,

http://dx.doi.org/10.1143/JPSJ.58.4416.
[9] R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, H.C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, New York, NY, US, 1982.

[10] A. Degasperis, Multiscale expansion and integrability of dispersive wave equations, in: A.V. Mikhailov (Ed.), Integrability, in: Lecture Notes in Physics,
vol. 767, Springer, Berlin/Heidelberg, Germany, 2009, http://dx.doi.org/10.1007/978-3-540-88111-7.

[11] F. Calogero, A. Degasperis, J. Xiaoda, Nonlinear Schrödinger-type equations from multiscale reduction of PDEs. I. Systematic derivation, J. Math. Phys.
41 (9) (2000) 6399–6443, http://dx.doi.org/10.1063/1.1287644.

[12] F. Calogero, A. Degasperis, J. Xiaoda, Nonlinear Schrödinger-type equations from multiscale reduction of PDEs. II. Necessary conditions of integrability
for real PDEs, J. Math. Phys. 42 (6) (2001) 2635–2652, http://dx.doi.org/10.1063/1.1366296.

[13] R.H.J. Grimshaw, The modulation of an internal gravity-wave packet, and the resonance with the mean motion, Stud. Appl. Math. 56 (3) (1977)
http://dx.doi.org/10.1002/sapm1977563241.

[14] C.G. Koop, L.G. Redekopp, The interaction of long and short internal gravity waves: Theory and experiment, J. Fluid Mech. 111 (1981) 367–409,
http://dx.doi.org/10.1017/S0022112081002425.

[15] O.C. Wright, Homoclinic connections of unstable plane waves of the long-wave-short-wave equations, Stud. Appl. Math. 117 (1) (2006) 71–93,
http://dx.doi.org/10.1111/j.1467-9590.2006.00345_117_1.x.

[16] C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19 (19) (1967) 1095–1097,
http://dx.doi.org/10.1103/PhysRevLett.19.1095.

[17] M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, The inverse scattering transform–Fourier analysis for nonlinear problems, Stud. Appl. Math. 53 (4) (1974)
249–315, http://dx.doi.org/10.1002/sapm1974534249.

[18] F. Calogero, A. Degasperis, Spectral Transforms and Solitons, North-Holland, Amsterdam, The Netherlands, 1982.
[19] S.P. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of Solitons: The Inverse Scattering Method, in: Monographs in Contemporary

Mathematics, Springer, New York, NY, US, 1984.
[20] M.A. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, first ed., Cambridge University Press, Cambridge, UK, 1991,

http://dx.doi.org/10.1017/CBO9780511623998.
[21] R. Hermann, The Geometry of Non-linear Differential Equations, Bäcklund Transformations, and Solitons, in: Interdisciplinary Mathematics, Math Sci Press,

Brookline, MA, US, 1976.
[22] C. Rogers, W.F. Shadwick, Bäcklund Transformations and their Applications, in: Mathematics in Science and Engineering, Academic Press, New York, NY,

US, 1982.
[23] G. Darboux, Leçons sur la théorie générale des surfaces, Gauthier-Villars, Paris, France, 1912.
[24] V.B. Matveev, M.A. Salle, Darboux Transformations and Solitons, in: Springer Series in Nonlinear Dynamics, Springer, Berlin/Heidelberg, Germany, 1991.
[25] A.Y. Orlov, S. Rauch-Wojciechowski, Dressing method, Darboux transformation and generalized restricted flows for the KdV hierarchy, Phys. D 69 (1–2)

(1993) 77–84, http://dx.doi.org/10.1016/0167-2789(93)90181-Y.
[26] R. Hirota, Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27 (18) (1971) 1192–1194, http:

//dx.doi.org/10.1103/PhysRevLett.27.1192.
[27] R. Hirota, in: A. Nagai, J. Nimmo, C. Gilson (Eds.), The Direct Method in Soliton Theory, Cambridge University Press, Cambridge, UK, 1972,

http://dx.doi.org/10.1017/CBO9780511543043.
[28] R. Hirota, Exact solution of the Sine-Gordon equation for multiple collisions of solitons, J. Phys. Soc. Japan 33 (5) (1972) 1459–1463, http://dx.doi.org/

10.1143/JPSJ.33.1459.
[29] R. Hirota, Discrete analogue of a generalized Toda equation, J. Phys. Soc. Japan 50 (11) (1981) 3785–3791, http://dx.doi.org/10.1143/JPSJ.50.3785.
22

http://dx.doi.org/10.1098/rspa.2021.0408
http://dx.doi.org/10.3390/fluids7070227
http://dx.doi.org/10.1143/PTP.56.1719
http://dx.doi.org/10.1017/S0022112077000408
http://dx.doi.org/10.1017/S0022112077000408
http://dx.doi.org/10.1017/S0022112077000408
http://dx.doi.org/10.1002/sapm197756181
http://dx.doi.org/10.1002/sapm197756181
http://dx.doi.org/10.1002/sapm197756181
http://dx.doi.org/10.1137/0135054
http://dx.doi.org/10.1143/JPSJ.52.1982
http://dx.doi.org/10.1143/JPSJ.58.4416
http://refhub.elsevier.com/S0165-2125(25)00022-8/sb9
http://dx.doi.org/10.1007/978-3-540-88111-7
http://dx.doi.org/10.1063/1.1287644
http://dx.doi.org/10.1063/1.1366296
http://dx.doi.org/10.1002/sapm1977563241
http://dx.doi.org/10.1017/S0022112081002425
http://dx.doi.org/10.1111/j.1467-9590.2006.00345_117_1.x
http://dx.doi.org/10.1103/PhysRevLett.19.1095
http://dx.doi.org/10.1002/sapm1974534249
http://refhub.elsevier.com/S0165-2125(25)00022-8/sb18
http://refhub.elsevier.com/S0165-2125(25)00022-8/sb19
http://refhub.elsevier.com/S0165-2125(25)00022-8/sb19
http://refhub.elsevier.com/S0165-2125(25)00022-8/sb19
http://dx.doi.org/10.1017/CBO9780511623998
http://refhub.elsevier.com/S0165-2125(25)00022-8/sb21
http://refhub.elsevier.com/S0165-2125(25)00022-8/sb21
http://refhub.elsevier.com/S0165-2125(25)00022-8/sb21
http://refhub.elsevier.com/S0165-2125(25)00022-8/sb22
http://refhub.elsevier.com/S0165-2125(25)00022-8/sb22
http://refhub.elsevier.com/S0165-2125(25)00022-8/sb22
http://refhub.elsevier.com/S0165-2125(25)00022-8/sb23
http://refhub.elsevier.com/S0165-2125(25)00022-8/sb24
http://dx.doi.org/10.1016/0167-2789(93)90181-Y
http://dx.doi.org/10.1103/PhysRevLett.27.1192
http://dx.doi.org/10.1103/PhysRevLett.27.1192
http://dx.doi.org/10.1103/PhysRevLett.27.1192
http://dx.doi.org/10.1017/CBO9780511543043
http://dx.doi.org/10.1143/JPSJ.33.1459
http://dx.doi.org/10.1143/JPSJ.33.1459
http://dx.doi.org/10.1143/JPSJ.33.1459
http://dx.doi.org/10.1143/JPSJ.50.3785


Wave Motion 134 (2025) 103511M. Caso-Huerta et al.
[30] J. Hietarinta, Hirota’s bilinear method and its connection with integrability, in: A.V. Mikhailov (Ed.), Integrability, in: Lecture Notes in Physics, vol. 767,
Springer, Berlin/Heidelberg, Germany, 2008, pp. 279–314, http://dx.doi.org/10.1007/978-3-540-88111-7.

[31] M. Jimbo, T. Miwa, Solitons and infinite dimensional Lie algebras, Publ. Res. Inst. Math. Sci. 19 (3) (1983) 943–1001, http://dx.doi.org/10.2977/prims/
1195182017.

[32] L. Li, C. Duan, F. Yu, An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg-de Vries (MKdV)
equation, Phys. Lett. A 383 (14) (2019) 1578–1582, http://dx.doi.org/10.1016/j.physleta.2019.02.031.

[33] Y. Ohta, K. Maruno, B.-F. Feng, An integrable semi-discretization of the Camassa–Holm equation and its determinant solution, J. Phys. A: Math. Theor.
41 (35) (2008) 355205, http://dx.doi.org/10.1088/1751-8113/41/35/355205.

[34] B.-F. Feng, K. Maruno, Y. Ohta, On the 𝜏-functions of the reduced Ostrovsky equation and the 𝐴(2)
2 two-dimensional Toda system, J. Phys. A: Math. Theor.

45 (35) (2012) 355203, http://dx.doi.org/10.1088/1751-8113/45/35/355203.
[35] B.-F. Feng, K. Maruno, Y. Ohta, On the 𝜏-functions of the Degasperis–Procesi equation, J. Phys. A: Math. Theor. 46 (4) (2013) 045205, http:

//dx.doi.org/10.1088/1751-8113/46/4/045205.
[36] B.B. Kadomtsev, V.I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl. 15 (1970) 539.
[37] T. Miwa, On Hirota’s difference equations, Proc. Jpn. Acad. Ser. A Math. Sci. 58 (1) (1982) http://dx.doi.org/10.3792/pjaa.58.9.
[38] J. Chen, Y. Chen, B.-F. Feng, K. Maruno, Y. Ohta, General high-order rogue waves of the (1+1)-dimensional Yajima–Oikawa system, J. Phys. Soc. Japan

87 (9) (2018) 094007, http://dx.doi.org/10.7566/JPSJ.87.094007.
[39] J. Chen, L. Chen, B.-F. Feng, K. Maruno, High-order rogue waves of a long-wave–short-wave model of Newell type, Phys. Rev. E 100 (5) (2019) 052216,

http://dx.doi.org/10.1103/PhysRevE.100.052216.
[40] M. Kirane, S. Stalin, M. Lakshmanan, Bright, dark and breather soliton solutions of the generalized long-wave short-wave resonance interaction system,

Nonlinear Dynam. 110 (1) (2022) 771–790, http://dx.doi.org/10.1007/s11071-022-07667-1.
[41] A. Degasperis, S. Lombardo, M. Sommacal, Integrability and linear stability of nonlinear waves, J. Nonlinear Sci. 28, http://dx.doi.org/10.1007/s00332-

018-9450-5.
[42] A. Degasperis, S. Lombardo, M. Sommacal, Rogue wave type solutions and spectra of coupled nonlinear Schrödinger equations, Fluids 4 (1) (2019) 57,

http://dx.doi.org/10.3390/fluids4010057.
[43] F. Baronio, M. Conforti, A. Degasperis, S. Lombardo, M. Onorato, S. Wabnitz, Vector rogue waves and baseband modulation instability in the defocusing

regime, Phys. Rev. Lett. 113 (2014) 034101, http://dx.doi.org/10.1103/PhysRevLett.113.03410.
[44] F. Baronio, S. Chen, P. Grelu, S. Wabnitz, M. Conforti, Baseband modulation instability as the origin of rogue waves, Phys. Rev. A 91 (3) (2015) 033804,

http://dx.doi.org/10.1103/PhysRevA.91.033804.
[45] S. Chen, L. Bu, C. Pan, C. Hou, F. Baronio, P. Grelu, N. Akhmediev, Modulation instability—rogue wave correspondence hidden in integrable systems,

Commun. Phys. 5 (1) (2022) 297, http://dx.doi.org/10.1038/s42005-022-01076-x.
[46] R. Li, X. Geng, On a vector long wave-short wave-type model, Stud. Appl. Math. 144 (2) (2019) 164–184, http://dx.doi.org/10.1111/sapm.12293.
[47] R. Li, X. Geng, A matrix Yajima–Oikawa long-wave-short-wave resonance equation, Darboux transformations and rogue wave solutions, Commun. Nonlinear

Sci. Numer. Simul. 90 (2020) 105408, http://dx.doi.org/10.1016/j.cnsns.2020.105408.
[48] R. Li, X. Geng, Periodic-background solutions for the Yajima–Oikawa long-wave–short-wave equation, Nonlinear Dynam. 109 (2) (2022) 1053–1067,

http://dx.doi.org/10.1007/s11071-022-07496-2.
[49] C. Gilson, J. Hietarinta, J. Nimmo, Y. Ohta, Sasa-Satsuma higher-order nonlinear Schrödinger equation and its bilinearization and multisoliton solutions,

Phys. Rev. E 68 (1) (2003) 016614, http://dx.doi.org/10.1103/PhysRevE.68.016614.
[50] B.-F. Feng, General N-soliton solution to a vector nonlinear Schrödinger equation, J. Phys. A 47 (35) (2014) 355203, http://dx.doi.org/10.1088/1751-

8113/47/35/355203.
[51] J. Chen, B.-F. Feng, Tau-function formulation for bright, dark soliton and breather solutions to the massive Thirring model, Stud. Appl. Math. 150 (1)

(2023) 35–68, http://dx.doi.org/10.1111/sapm.12532.
[52] B.-F. Feng, R. Ma, Y. Zhang, General breather and rogue wave solutions to the complex short pulse equation, Phys. D 439 (2022) 133360, http:

//dx.doi.org/10.1016/j.physd.2022.133360.
[53] B. Yang, J. Chen, J. Yang, Rogue waves in the generalized derivative nonlinear Schrödinger equations, J. Nonlinear Sci. 30 (6) (2020) 3027–3056,

http://dx.doi.org/10.1007/s00332-020-09643-8.
[54] B. Yang, J. Yang, General rogue waves in the three-wave resonant interaction systems, IMA J. Appl. Math. 86 (2) (2021) 378–425, http://dx.doi.org/10.

1093/imamat/hxab005.
[55] Y. Ohta, J. Yang, General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation, Proc. R. Soc. A 468 (2142) (2012) 1716–1740,

http://dx.doi.org/10.1098/rspa.2011.0640.
[56] B. Yang, J. Yang, Rogue Waves in Integrable Systems, Springer, Cham, Switzerland, 2024.
[57] R. Carroll, Y. Kodama, Solution of the dispersionless Hirota equations, J. Phys. A 28 (1995) 6373–6387, http://dx.doi.org/10.1088/0305-4470/28/22/013.
[58] Y. Kodama, KP Solitons and the Grassmannians. Combinatorics and Geometry of Two-Dimensional Wave Patterns, in: SpringerBriefs in Mathematical

Physics 22, Springer, Singapore, 2017.
[59] B.S. Bychkov, A.V. Mikhailov, Polynomial graph invariants and linear hierarchies, Russ. Math. Surv. 74 (2019) 366.
[60] B. Yang, J. Yang, Rogue wave patterns in the nonlinear Schrödinger equation, Phys. D 419 (2021) 132850, http://dx.doi.org/10.1016/j.physd.2021.132850.
[61] B. Yang, J. Yang, Universal rogue wave patterns associated with the Yablonskii–Vorob’ev polynomial hierarchy, Phys. D 425 (2021) 132958, http:

//dx.doi.org/10.1016/j.physd.2021.132958.
[62] J. Chen, B. Yang, B.-F. Feng, Rogue waves in the massive Thirring model, Stud. Appl. Math. 151 (3) (2023) 1020–1052, http://dx.doi.org/10.1111/sapm.

12619.
[63] R. Hirota, A new form of Bäcklund transformations and its relation to the inverse problem, Progr. Theoret. Phys. 52 (5) (1974) 1498–1512, http:

//dx.doi.org/10.1143/PTP.52.1498.
23

http://dx.doi.org/10.1007/978-3-540-88111-7
http://dx.doi.org/10.2977/prims/1195182017
http://dx.doi.org/10.2977/prims/1195182017
http://dx.doi.org/10.2977/prims/1195182017
http://dx.doi.org/10.1016/j.physleta.2019.02.031
http://dx.doi.org/10.1088/1751-8113/41/35/355205
http://dx.doi.org/10.1088/1751-8113/45/35/355203
http://dx.doi.org/10.1088/1751-8113/46/4/045205
http://dx.doi.org/10.1088/1751-8113/46/4/045205
http://dx.doi.org/10.1088/1751-8113/46/4/045205
http://refhub.elsevier.com/S0165-2125(25)00022-8/sb36
http://dx.doi.org/10.3792/pjaa.58.9
http://dx.doi.org/10.7566/JPSJ.87.094007
http://dx.doi.org/10.1103/PhysRevE.100.052216
http://dx.doi.org/10.1007/s11071-022-07667-1
http://dx.doi.org/10.1007/s00332-018-9450-5
http://dx.doi.org/10.1007/s00332-018-9450-5
http://dx.doi.org/10.1007/s00332-018-9450-5
http://dx.doi.org/10.3390/fluids4010057
http://dx.doi.org/10.1103/PhysRevLett.113.03410
http://dx.doi.org/10.1103/PhysRevA.91.033804
http://dx.doi.org/10.1038/s42005-022-01076-x
http://dx.doi.org/10.1111/sapm.12293
http://dx.doi.org/10.1016/j.cnsns.2020.105408
http://dx.doi.org/10.1007/s11071-022-07496-2
http://dx.doi.org/10.1103/PhysRevE.68.016614
http://dx.doi.org/10.1088/1751-8113/47/35/355203
http://dx.doi.org/10.1088/1751-8113/47/35/355203
http://dx.doi.org/10.1088/1751-8113/47/35/355203
http://dx.doi.org/10.1111/sapm.12532
http://dx.doi.org/10.1016/j.physd.2022.133360
http://dx.doi.org/10.1016/j.physd.2022.133360
http://dx.doi.org/10.1016/j.physd.2022.133360
http://dx.doi.org/10.1007/s00332-020-09643-8
http://dx.doi.org/10.1093/imamat/hxab005
http://dx.doi.org/10.1093/imamat/hxab005
http://dx.doi.org/10.1093/imamat/hxab005
http://dx.doi.org/10.1098/rspa.2011.0640
http://refhub.elsevier.com/S0165-2125(25)00022-8/sb56
http://dx.doi.org/10.1088/0305-4470/28/22/013
http://refhub.elsevier.com/S0165-2125(25)00022-8/sb58
http://refhub.elsevier.com/S0165-2125(25)00022-8/sb58
http://refhub.elsevier.com/S0165-2125(25)00022-8/sb58
http://refhub.elsevier.com/S0165-2125(25)00022-8/sb59
http://dx.doi.org/10.1016/j.physd.2021.132850
http://dx.doi.org/10.1016/j.physd.2021.132958
http://dx.doi.org/10.1016/j.physd.2021.132958
http://dx.doi.org/10.1016/j.physd.2021.132958
http://dx.doi.org/10.1111/sapm.12619
http://dx.doi.org/10.1111/sapm.12619
http://dx.doi.org/10.1111/sapm.12619
http://dx.doi.org/10.1143/PTP.52.1498
http://dx.doi.org/10.1143/PTP.52.1498
http://dx.doi.org/10.1143/PTP.52.1498

	Solitons, breathers and rogue waves of the Yajima–Oikawa-Newell long wave–short wave system
	Introduction
	Bright solitons
	Traditional Hirota construction of bright solitons
	τ-functions construction of bright solitons

	Dark solitons
	Breathers and rogue waves
	Rogue wave solutions
	Rogue waves in differential formulation
	Rogue waves by elementary Schur polynomials

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


