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Summary

Objective: Survival probability predictions in critically ill patients are mainly used to measure the efficacy of intensive
care unit (ICU) treatment. The available models are functions induced from data on thousands of patients. Eventually,
some of the variables used for these purposes are not part of the clinical routine, and may not be registered in some
patients. In this paper, we propose a new method to build scoring functions able to make reliable predictions, though
functions whose induction only requires records from a small set of patients described by a few variables.

Methods: We present a learning method based on the use of support vector machines (SVM), and a detailed study
of its prediction performance, in different contexts, of groups of variables defined according to the source of information:
monitoring devices, laboratory findings, and demographic and diagnostic features.

Results: We employed a data set collected in general ICUs at 10 units of hospitals in Spain, 6 of which include coro-
nary patients, while the other 4 do not treat coronary diseases. The total number of patients considered in our study was
2501, 19.83% of whom did not survive. Using these data, we report a comparison between the SVM method proposed
here with other approaches based on logistic regression (LR), including a second-level recalibration of release III of the
acute physiology and chronic health evaluation (APACHE, a scoring system commonly used in ICUs) induced from the
available data. The SVM method significantly outperforms them all from a statistical point of view. Comparison with
the commercial version of APACHE III shows that the SVM scores are slightly better when working with data sets of
more than 500 patients.

Conclusions: From a practical point of view, the implications of the research reported here may be helpful to address
the construction of cheap and reliable prediction systems in accordance with the peculiarities of ICUs and kinds of
patients.
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1. Introduction

Survival probability predictions in critically ill patients
are mainly used to measure the efficacy of intensive care
unit (ICU) treatment. Risk stratification of patients allows
comparison of the observed outcomes versus accepted stan-
dards provided by probability prediction functions. The
importance of ICU assessment should be borne in mind,
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as it is estimated that critical care consumes 10% to 12%
of all healthcare costs. Moreover, the average daily cost
per patient in ICUs was about $3000 in the USA in 2001
[1]. On the other hand, the literature also shows that prog-
noses have constituted an important dimension of critical
care, as patients and their families seek predictions about
the duration and outcome of illness [2]. For a very thor-
ough study of the uses of prognostic models in Medicine,
see [3].

The available models for predicting outcomes in ICUs
are usually scoring functions that estimate the probabil-
ity of hospital mortality of critically ill adults [4]. This is
the case of acute physiology and chronic health evaluation
(APACHE) [5], simplified acute physiology score (SAPS)
[6], and mortality probability models (MPM) [2]. These
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predictors were induced from data on thousands of pa-
tients using logistic regression. The data required by these
systems is gathered for each patient in a set of variables
that can be split into 3 groups according to the source of
information: monitoring devices, laboratory findings, and
demographic and diagnostic features.

For instance, APACHE III inputs include age, 16 acute
physiologic variables that use the worst values from the
first 24 hours in the ICU (temperature, heart rate, blood
pressure, respiratory rate, oxygenation, acid-base status,
serum sodium, serum blood urea nitrogen, serum crea-
tinine, serum albumin, serum bilirubin, serum glucose,
white cell count, hematocrit, itemized Glasgow coma score,
and urine output), preexisting functional limitations, ma-
jor comorbidities, and treatment location immediately prior
to ICU admission.

A major limitation to regular use of these predictors
is the high cost of data collection. In fact, some of the
variables required do not eventually form part of the clini-
cal routine, and may not be recorded in some patients. In
addition, other variables are not automatically included
in a computerized database of patients. Therefore, care-
ful records of data for every patient would need the as-
sistance of specialized personnel for manual data entry,
which would increase the costs of ICU cares [7, 8]. Notice
that although the quality of data would theoretically be
guaranteed, a number of studies have found significant in-
terobserver variability in collecting data [4]. Furthermore,
in order to be useful, these prediction functions need to
be frequently updated. They must somehow capture the
newest treatments and practices.

This paper provides a pair of tools that overcome these
difficulties and make predictors more usable. First, we
propose a new method to efficiently build effective scoring
functions. In fact, it is acknowledged that one way to im-
prove the calibration consists in building local models, as
the accuracy of predictors is very sensitive to patient pop-
ulation changes [4], although the problem is actually how
to obtain sufficient data records to build robust predictors.
The method proposed here is able to learn functions that
accurately predict the probability of survival of patients;
however, the induction of these functions does not require
records from thousands of patients.

We shall see that, using the appropriate method, build-
ing new predictors may be better than re-calibrating heavy
predictors like APACHE. Moreover, we shall show that it
is possible to build customized prediction systems in accor-
dance with the peculiarities of ICUs and patients. These
predictors could be reliable, and their construction and
use could be economically feasible, given that they would
require only a small number of variables. Notice that pre-
dictors built with a small number of variables could be used
even for retrospective studies where the available data is
reduced.

The second contribution of the paper is a study of the
relevance of the variables involved in predictions. The aim
is to gain insight into the factors that contribute to the ac-

tual prediction capabilities in different meaningful medical
contexts. We shall discuss the role of groups of variables in
units with and without coronary patients, and in patients
aggregated according to their treatment location imme-
diately prior to ICU admission. Surprisingly, we found
that most of the prediction capability can be achieved us-
ing only a group of basic clinical variables. This group is
made up of demographic and diagnostic data, adding sim-
ple tests or observations that are routinely recorded for
ICU admissions. Additionally, we identify which groups
of variables are more or less useful, depending on the con-
text. For instance, the detection of multi-organ failures is
related to laboratory findings more than monitoring, which
would be more predictive in coronary patients.

In the next section we shall present a novel prediction
method. It makes intensive use of the so-called support
vector machines (SVM), a powerful family of algorithms
for learning classification and regression tasks [9]. The
method requires two stages: the first one was described
in [10], while the second stage utilizes a grid search to
optimize model parameters of SVM [11].

Throughout the paper, we use a data set collected in
general ICUs at 10 units of hospitals in Spain, 6 of which
include coronary patients, while the other 4 do not treat
coronary diseases. The total number of patients consid-
ered in our study was 2501, 19.83% of whom did not sur-
vive. Using these data, we report a comparison between
the SVM method with other approaches based on logistic
regression (LR), including a second-level recalibration of
APACHE induced from the available data.

2. Predicting probabilities with SVM

This paper addresses the task of predicting probabili-
ties from the point of view of Machine Learning. In order
to induce such predictions, we collect training sets with de-
scriptions of patient states and their outputs codified by
‘+1’ when the patient has survived, and ‘−1’ otherwise.
As there are two classes, the initial temptation is to tackle
this learning task as a binary classification. However, we
shall try to extract from the data all the useful knowledge
represented by probabilities of survival.

In the following subsections, we discuss different op-
tions to learn probabilities from the point of view of SVM,
including the approach presented in [10]. This approach
stresses the idea that the severity of illness can be seen as
a ranking computed from patients’ records; probabilities
are thus just a mapping from rankings onto a [0, 1] scale.
After providing a detailed explanation of this approach,
we devote a subsection to discussing the readability of the
models thus obtained. Finally, we make an experimen-
tal comparison of the SVM approaches versus other two
learners based on LR.

2.1. The core idea of the method
The misclassification rate (or accuracy) is commonly

used in Machine Learning to measure the performance of
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predictors in classification tasks. However, this measure is
not adequate when classes are very unbalanced and thus
is rarely used in medical contexts like survival prediction.
Instead, the area under a receiver operating characteristic
(ROC) curve (AUC for short) is often used. This amount
can be interpreted as the degree of coherence between a
continuous output (such as the probability) and a binary
classification. It should be stressed that this coherence is
established in terms of orderings. For this purpose, con-
tinuous outputs or scores are used to rank available cases.

Within this context, Hanley and McNeil showed in [12]
that the AUC is the probability of a correct ranking; in
other words, it is the probability that a randomly chosen
subject of class ‘+1’ is (correctly) ranked with greater out-
put than a randomly chosen subject of class ‘−1’. There-
fore, the AUC coincides with the value of the Wilcoxon-
Mann-Whitney statistic. This observation is crucial in the
method presented in the following subsections. Notice that
from this point of view, the AUC would not be a measure
of the discriminant power of a classifier. If the threshold of
probability to decide a class is 0.6 or 0.5, the rate of suc-
cessful classifications will be different, but the AUC will
remain invariable, since it only depends on the ranking
induced by the probability. We shall return to this issue
later, in Section 2.4, when presenting a formal definition
of the AUC as a measure of the quality of a ranking.

In addition to probabilities, there are other possible
ways to map cases of a classification task into continuous
values. For instance, SVM learn hypotheses that return
positive values for cases of one class, and negative values
for the other class. Hence, in order to learn a probability
distribution using SVM, it is necessary to transform these
scores or continuous outputs into probabilities. But this
is precisely what the method presented by Platt in [13]
does. The core idea is to fit a sigmoid using a maximum
likelihood procedure.

The novelty of the method reported in this paper is
that, in order to fit a sigmoid to the SVM outputs using
Platt’s method, it is better to optimize the AUC than to
minimize the error rate with a classification SVM. For this
reason, in the next section we shall discuss how to optimize
the area under the ROC curve (AUC) using a support
vector method [14, 15], and how to then obtain probability
predictions. The rationale behind this approach is that
the quality of the sigmoid fit depends on the quality of
the ranking of the scores. Thus, if most of the cases with
a higher score than a given one of class y have a class
greater than y, then the task of the sigmoid can be easily
accomplished, and the performance of the final probability
is improved.

As explained in the introduction, the method proposed
in this paper comprises two stages. Once we have defined
a parametrized learning algorithm, such as the SVM out-
lined above, we shall use a grid search to optimize the set of
parameters involved in the learning process. This mecha-
nism has been successfully used in many Machine Learning
applications; in [11] the authors describe its use in learn-

ing mortality prediction models for percutaneous coronary
interventions. We shall explain this important stage of the
method later, in the experimental comparison.

2.2. The goodness of probability predictions
Let us now present the formal setting used in the re-

mainder of the paper to describe both the learning algo-
rithms and the measures of the goodness of probability
estimations. As explained above, the probabilities may be
considered as a ranking of the severity of illness; from this
perspective, the AUC is a measure of the quality of prob-
abilities. However, there is another, more direct measure
of the quality of probabilities, the Brier score, which will
be presented here.

Let S = {(x1, y1), . . . , (xn, yn)} be a training set for a
learning task in which a function (or hypothesis) is sought
that is able to return outputs yi from points xi of an input
space X . An important issue when we are learning is to
fix the way in which we are going to measure the quality
of the result. Formally, given S, the aim of learning is
to find a hypothesis h (from a given hypotheses space)
that minimizes the average loss extended over the set of
independently identically distributed (i.i.d.) test sets S′,
usually represented by ∆(h, S′).

In the survival prediction task, training and test exam-
ples have no probability attached, they are labeled with +1
or −1. Therefore, we shall assume that the true class prob-
ability, Prtrue(y = +1|x), is 1 when the class of x, y, is
+1, and 0 otherwise. In this context, there is basically one
standard loss function: the average quadratic deviation.
In symbols, the probability loss is given by

∆Pr(h, S′) =
1
|S′|

∑
x′i∈S′

(h(x′i)− pi)2 (1)

where the hypothesis h returns the estimation of the prob-
ability h(x) = Pr(y = +1|x), and pi stands for the ob-
served probability of the i-th case, pi = Prtrue(y = +1|xi).

The measurement in Equation (1) is frequently used
in medicine and meteorology, and is known as the Brier
[16] index or score. If the number of possible outputs is
greater than two, the estimated probabilities can be seen
as a vector, and the Mean Square of the Euclidean (MSE)
distance from predicted and observed probabilities is then
used. It can be seen that, in the survival prediction task,
the MSE is 2 times the Brier score.

2.3. Optimizing accuracy plus a sigmoidal transforma-
tion

The straightforward approach to the ICU problem is a
binary classification SVM followed by a sigmoid estimated
using Platt’s method [13]. Thus, given the training set S,
we can use a transformation φ defined from input points in
X into a feature space H, where classes should be mostly
separable by means of a linear function. As is well known,
H must have an inner product 〈•, •〉, and

K(xi, xj) = 〈φ(xi), φ(xj)〉 (2)
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is called the kernel function of the transformation. We
shall use the radial basis function (RBF) kernel, which is
defined by

K(xi, xj) = e−
‖xi−xj‖

2

2σ2 . (3)

The work of the SVM consists in solving the following
convex optimization problem:

min
w,ξ

1
2
〈w,w〉+ C

n∑
i=1

ξi,

s.t. yi(〈w, φ(xi)〉+ b) ≥ 1− ξi, (4)
ξi ≥ 0, i = 1, . . . , n.

Then, the classification is accomplished by the hypothesis

sign(〈w, φ(xi)〉+ b). (5)

It can be seen that the kernel and the vector α = (αi :
i = 1, . . . , n) of Lagrange multipliers define the implemen-
tation of function (5) computed from input space points x
as follows:

sign(〈w, φ(x)〉+ b) = sign

(
n∑
i=1

αiyiK(xi,x) + b

)
. (6)

According to (4), the aim of this function is to max-
imize the margin (between classes) and to minimize the
training loss. In fact, the sum of the so-called slack vari-
ables,

∑n
i=1 ξi, is an upper bound of misclassifications

of (6) on the training set. It is acknowledged that the func-
tion (6) thus obtained has good classification accuracy on
unseen cases.

In order to compute the probabilistic outputs, we get
rid of the sign function and only consider the continuous
outputs

fac(x) = 〈w, φ(x)〉+ b =
n∑
i=1

αiyiK(xi,x) + b. (7)

Platt’s method then fits a sigmoid to estimate probabili-
ties:

hac(x) = Pr(y = +1|x) =
1

1 + eAac·fac(x)+Bac
. (8)

Figure 1 depicts the fit of this sigmoid to the data set
of all patients (2501) in all the available units. Since this
figure is just drawn to illustrate the learning process, the
train and test sets used are the same. Notice that the
frequencies of fac values follow a bell-shape distribution,
with most individuals having positive values, which means
that they have a survival prediction.

2.4. Optimizing the AUC instead of accuracy
When classification predictions are made comparing

the values returned from patients’ descriptions x by a

rating function with a threshold, as in SVM classifica-
tion (see Equations (5, 6)), then the performance of these
predictions can be assessed using the AUC. According to
its probabilistic interpretation, the complementary of this
amount (1-AUC) can be used as a loss function. Thus, if
g is a hypothesis, its loss evaluated on a test set S′ is

∆AUC(g, S′) = Pr(g(x′i) ≤ g(x′j)|y′i > y′j)

=

∑
i,j:y′i>y

′
j

1g(x′i)≤g(x′j)∑
i,j 1y′i>y′j

. (9)

Let us stress that the explicit objective of the SVM pre-
sented in the preceding section is not to minimize Equa-
tion (9). Paper [17] provides a detailed statistical analysis
of the difference between maximizing the AUC and mini-
mizing the error rate in binary classification tasks.

In [18], Herbrich et al. presented a direct approach that
solves a general ranking problem which is applicable to
maximizing the AUC. The core idea is that if a hypothesis
f : φ(X ) → R is linear and has to fulfill that f(φ(xi)) >
f(φ(xj)), since yi > yj , then

f(φ(xi)) > f(φ(xj))⇔ f(φ(xi)− φ(xj)) > 0. (10)

Notice that this statement converts ordering constraints
into classification constraints (with one class), though now
the input space is X × X and each pair (xi,xj) is repre-
sented by the difference φ(xi)− φ(xj). According to this
approach, the aim is to find a hypothesis f(x) = 〈w, φ(x)〉
such that w solves the following convex optimization prob-
lem:

min
w,ξ

1
2
〈w,w〉+ C

∑
i,j:yi>yj

ξi,j ,

s.t. 〈w, φ(xi)〉 − 〈w, φ(xj)〉 ≥ 1− ξi,j , (11)
ξi,j ≥ 0, ∀i, j : yi > yj .

For each x of the input space, the hypothesis thus
found returns

f(x)=〈w, φ(x)〉 =
∑
yi>yj

αi,j(K(xi,x)−K(xj ,x)), (12)

where αi,j are once again the Lagrange multipliers com-
puted by the optimizer.

Unfortunately, this approach leads to dealing with one
constraint for each element of the data set

S̄ = {(xi,xj ; +1) : yi = +1 > yj = −1}, (13)

whose size is the number of positive (class +1) examples
times the number of negatives, #pos×#neg, i.e. O(n2)
when the size of S is only n. This means that some appli-
cations become intractable, although the approach (or a
simplified version of it) has been successfully used on other
occasions [19, 20].

To mitigate the difficulties caused by the size of data
sets, Herbrich’s approach cannot be directly reformulated
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Figure 1: The fit of the sigmoid to the data set of all patients (2501). The horizontal axis represents the outputs of an SVM. Each ‘*’ mark
is the average posterior probability for all examples falling into a bin of width 0.2. The sigmoidal function is the estimation computed by
Platt’s method [13] (the output values are labeled on the left vertical side), while the bell-shaped function is the histogram for Pr(f(x)) for
all the examples. Frequencies are labeled on the right

in a straightforward way as an optimization problem with
a small number of constraints. The main problem is that
the loss function (1-AUC) (see Equation (9)) cannot be
expressed as a sum of disagreements or errors produced
by each input xi.

Following a different procedure, Joachims recently pro-
posed a multivariate approach in [14, 15] to solve this prob-
lem with a convex optimization problem that converges
using only a few constraints.

The optimization problem is:

min
w,ξ

1
2
〈w,w〉+ Cξ,

s.t. 〈w,
∑
yi>yj

(1− y′i,j)(φ(xi)− φ(xj))〉 (14)

≥ ∆AUC((1, . . . , 1)(y′i,j))− ξ,
∀y′i,j ∈ {+1,−1}#pos·#neg − {(1, . . . , 1)}.

Despite the enormous potential number of constraints,
the algorithm proposed in [14, 15] converges in polynomial
time. Moreover, it only requires a small set of constraints.
However, the most interesting result is that the solution w
of problem (14) is also the same as that of the optimization
problem (11). Additionally, the slack variables in both
cases are related by

ξ = 2
∑
yi>yj

ξi,j . (15)

Finally, the multivariate SVM returns a function fAUC

of the form
fAUC(x) = 〈w, φ(x)〉. (16)

Then Platt’s method can fit a sigmoid to transform the
output of fAUC into a probability.

hAUC(x)=Pr(y = +1|x)=
1

1 + eAAUC ·fAUC(x)+BAUC
(17)

2.5. Regression is a baseline approach
Considering that probabilities are real numbers, regres-

sion algorithms must constitute an initial attempt to learn
them. However, the regression approach ignores the fact
that the aim is to obtain a probability; therefore, this ap-
proach should only be considered as a baseline.

To rewrite the learning task as a regression problem,
all training examples of class −1 are labeled as 0. More-
over, in order to maintain the uniformity of approach with
preceding subsections, we consider the regression based on
support vectors and subsequently use the so-called support
vector regression (SVR). Although there are least squares
SVR, we use the standard version; i.e. a learner of a func-
tion

fRe(x) =
n∑
i=1

(α−i − α
+
i )K(xi,x) + b∗, (18)

where K is once again the RBF (3) kernel, and αi are the
Lagrange multipliers of the solution to the convex opti-
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mization problem:

min
w,ξ

1
2
〈w,w〉+ C

n∑
i=1

(ξ+i + ξ−i ),

s.t. (〈w, φ(xi)〉+ b)− yi ≤ ε+ ξ+i ,

yi − (〈w, φ(xi)〉+ b) ≤ ε+ ξ−i , (19)
ξ+i , ξ

−
i ≥ 0, i = 1, . . . , n.

However, given that nothing forces fRe (18) outputs to
be in [0, 1], we set the hypothesis output to 1 whenever
fRe returns values above 1, and to 0 for fRe values below
0. Finally, in symbols, we have the hypothesis

hRe(x) = max{0,min{1, fRe(x)}}. (20)

2.6. Readability of models
After reading the formulas presented in the preceding

sections, it is clear that the predictors obtained by training
the SVM algorithms are black-boxes that hide the way in
which variables operate. This is also the case of models
obtained using artificial neural networks, like in [21] for
instance.

We think that the achievements in performance, mea-
sured by objective tests, are the main merit of predictors;
nevertheless, users sometimes want to read and understand
the model. An option to mitigate this problem might be to
use more readable knowledge representations to describe
the models. This is the case of [22], where the authors
show how a classification tree can be used for prognosis in
ICU. In [23], the predictor is a set of decision rules. No-
tice that, in addition to the benefits of readability, these
explicit languages of knowledge representation exploit an
economy of variables. Thus, in [23], the authors stress the
fact that the prediction models obtained by a rule learner
require the collecting of less data than other conventional
predictors.

To address the interpretability of our models, we ex-
plored another path. We shall discuss the interactions of
meaningful sets of variables, explicitly computing the dif-
ferences in prediction performance achieved by SVM learn-
ers with and without those sets of variables. Moreover, we
shall compute performance differences in several medical
contexts. The aim is to gain insight into the prediction
mechanism of the models proposed in this paper.

Nonetheless it is worth mentioning that readability is
not always present in popular ICU predictors. It is notice-
able that APACHE III is not at all readable. As far as it
is possible to say without unveiling the commercial secret
of the APACHE III formula, predictions are computed in
two stages. First the acute physiology score (APS) is de-
termined: this is an integer score of the severity of patients
defined as the sum of rules of parabolic functions associ-
ated with raw data from laboratory findings and monitor-
ing devices. Then, a 2nd-degree polynomial is fitted using
logistic regression; the monomials are built using APS and
the other demographic and diagnostic variables.

2.7. Experimental evaluation of learning approaches
In order to evaluate the learning approaches presented

in previous sections, we compared them experimentally.
Let us recall that the SVM approaches are: SVM fol-
lowed by Platt’s fit of a sigmoid, the accuracy optimizer
described in Subsection 2.3, which will be represented sim-
ply by SVM; the multivariate version, aimed at optimizing
the AUC1 (Subsection 2.4), SVMAUC for short; and finally
the regression approach, SVR (Subsection 2.5).

The second group of learners used in these experiments
employ logistic regression. The most representative mem-
ber of this group is the commercial system APACHE III;
we used the customization described in [24], which was
developed to improve its performance in Spain. First of
all, we should point out that comparison of SVM learn-
ers versus APACHE III is unfair, since APACHE III was
trained with a cohort of 17440 patients from 40 different
hospitals in the USA [5]; the Spanish version used records
of 10929 patients from 86 ICUs; while the available data
sets in our experiments only included 2501 patients. Nev-
ertheless, the comparison is useful to test whether or not
the scores achieved by SVM methods are good enough to
be considered for future learning tasks.

However, it may also be argued that SVM learners
have an advantage over APACHE III, since they have been
trained in our data set, while APACHE only sees the data
for testing. For this reason, we built a second-level re-
calibration of the APACHE III using the same data sets
used for SVM learners (see Table 1): the coefficients of
APACHE III formula were induced on each learning task.
Notice that this version could be called a local APACHE
III. In the experiments, we shall refer to this learner as
LRAPS. Additionally, to test whether possible differences
between SVM and logistic regression families arise from
the use of APS, we shall use a logistic regression algorithm
applied to the same raw data used by SVM learners; this
algorithm will be represented by LR. The implementation
of logistic regression used in all cases is described in [25]2.

To estimate the performance of the algorithms described
in the preceding section, we used data collected from ICUs
at 10 different Spanish hospitals, 6 of which include coro-
nary patients. It is acknowledged among the medical com-
munity that coronary diseases generally have a lower mor-
tality risk than other critical illnesses. Hence, from a learn-
ing perspective, it makes sense to differentiate between
ICUs with and without coronary patients.

The data were organized in 13 different training sets,
one for each single unit, two collecting the data from non
coronary/coronary ICUs respectively, and the last one con-
taining all the data; see Table 1. Each patient in these
data sets was described by the same set of variables used
by APACHE III. However, to be handled both by SVM

1Software available at (Accessed: September 2, 2008)
http://svmlight.joachims.org/svm struct.html

2Software available at (Accessed: September 2, 2008)
http://www.csie.ntu.edu.tw/∼cjlin/liblinear
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Data sets
Codes 1 2 3 4 5 6 7 8 9 10 NC C ALL
# patients 108 189 194 194 195 239 269 297 337 479 919 1582 2501

Table 1: Size (number of patients) and codes of data sets used in the experiments. The first 10 sets correspond to the intensive care units
separately. The 11-th data set (NC) is formed by non coronary patients: those from units coded 2, 3, 6 and 8. Units including coronary
patients (1, 4, 5, 7, 9, 10) are grouped in the data set coded by C. Finally, the 13-th data set is the set of ALL patients. Notice that data
sets are sorted by number of patients

SVMAUC SVM SVR LR LRAPS APACHE III

1 0.786± 0.037 0.788± 0.056 0.751± 0.063 0.729± 0.054 0.825± 0.046 0.829± 0.041
2 0.775± 0.032 0.759± 0.024 0.725± 0.042 0.778± 0.032 0.751± 0.038 0.764± 0.054
3 0.746± 0.043 0.745± 0.038 0.687± 0.032 0.731± 0.045 0.684± 0.035 0.768± 0.046
4 0.794± 0.045 0.782± 0.051 0.794± 0.032 0.779± 0.045 0.698± 0.065 0.837± 0.041
5 0.851± 0.048 0.848± 0.045 0.836± 0.044 0.833± 0.024 0.766± 0.048 0.880± 0.036
6 0.768± 0.032 0.743± 0.031 0.736± 0.033 0.760± 0.022 0.762± 0.024 0.775± 0.035
7 0.824± 0.036 0.786± 0.044 0.822± 0.044 0.802± 0.048 0.831± 0.032 0.891± 0.039
8 0.846± 0.010 0.843± 0.024 0.824± 0.025 0.848± 0.024 0.829± 0.016 0.868± 0.021
9 0.792± 0.015 0.802± 0.024 0.817± 0.015 0.815± 0.018 0.802± 0.027 0.813± 0.024
10 0.782± 0.025 0.721± 0.021 0.729± 0.049 0.763± 0.045 0.775± 0.027 0.779± 0.024
NC 0.809± 0.020 0.799± 0.017 0.784± 0.025 0.798± 0.018 0.789± 0.020 0.807± 0.016
C 0.824± 0.021 0.806± 0.024 0.813± 0.020 0.816± 0.018 0.812± 0.020 0.826± 0.013

ALL 0.824± 0.007 0.819± 0.009 0.822± 0.009 0.820± 0.008 0.809± 0.009 0.823± 0.015

Table 2: AUC estimated by a 10-fold cross-validation for the learners described in the text and, for the commercial system APACHE III,
computed using the data available as the test set. The first column reports the code of the data set described in Table 1

SVMAUC SVM SVR LR LRAPS APACHE III

1 0.173± 0.013 0.168± 0.016 0.188± 0.024 0.186± 0.018 0.140± 0.017 0.147± 0.014
2 0.182± 0.008 0.190± 0.007 0.222± 0.009 0.191± 0.012 0.190± 0.011 0.170± 0.021
3 0.171± 0.009 0.182± 0.011 0.209± 0.006 0.191± 0.015 0.193± 0.012 0.159± 0.017
4 0.107± 0.007 0.110± 0.006 0.118± 0.005 0.120± 0.008 0.129± 0.013 0.096± 0.012
5 0.104± 0.007 0.105± 0.009 0.131± 0.010 0.121± 0.009 0.135± 0.008 0.108± 0.012
6 0.156± 0.008 0.156± 0.008 0.178± 0.008 0.158± 0.009 0.158± 0.007 0.146± 0.009
7 0.100± 0.006 0.109± 0.006 0.114± 0.004 0.106± 0.010 0.101± 0.011 0.085± 0.011
8 0.125± 0.005 0.121± 0.007 0.129± 0.006 0.125± 0.009 0.130± 0.007 0.113± 0.005
9 0.113± 0.002 0.112± 0.005 0.122± 0.003 0.116± 0.006 0.123± 0.007 0.107± 0.006
10 0.110± 0.005 0.121± 0.004 0.120± 0.005 0.118± 0.008 0.118± 0.005 0.122± 0.007
NC 0.146± 0.005 0.146± 0.005 0.167± 0.005 0.149± 0.006 0.151± 0.006 0.143± 0.006
C 0.108± 0.004 0.113± 0.006 0.126± 0.003 0.110± 0.005 0.110± 0.005 0.109± 0.005

ALL 0.121± 0.002 0.122± 0.003 0.133± 0.003 0.123± 0.002 0.124± 0.002 0.122± 0.005

Table 3: Brier scores estimated by a 10-fold cross-validation for the learners described in the text and, for the commercial system APACHE
III, computed using the data available as the test set. The first column reports the code of the data set described in Table 1
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and logistic regression algorithms, we codified each dis-
crete variable using as many new binary variables (with
values 0 and 1) as the number of possible values of the
original variable, setting only the variable corresponding
to the discrete value actually taken by the original variable
to ‘1’. There is one exception: the three components of
the Glasgow coma score (eye, verbal and motor responses)
were used in their original numeric form. The idea is to
take advantage of the ordered relation between their values
and the severity of the illness of the patient.

Performance estimations were made using a 10-fold
stratified cross-validation on each of the data sets, for all
the algorithms except APACHE III. As it was already
trained with a different data set, we used the available
data just to test its predictions. Additionally, the data
was standardized according to the mean and deviation ob-
served on each training fold.

It is important to recall that the AUC achieved by
the Spanish version of APACHE III in our experiments,
82.27% (in percentage) is similar to the amount reported
by Rivera-Fernández et al. in [24]: 81.82%. This fact
supports the representativeness of the sample of critically
ill patients considered in the experiments described here.

Grid search
As is usual when dealing with SVM, the parameter

setting stage is very important. Thus, in order to carry
out the experiments described in this section, we wrapped
each algorithm with a grid search procedure [11]. Thus,
every time an algorithm was trained on a data set T , an
internal two-fold cross validation (repeated 3 times) was
performed to estimate the best combination of parameter
values for T .

The values examined for the regularization parameter
C (see optimization problems in Section 2) ranged from
10−3 to 102, while the values for the RBF kernel parameter
σ ranged from 10−3 to 100, varying the exponents in steps
of 1 in both cases. The grid search mechanism selected
the combination of parameters that minimized a given loss
function in the internal cross validation; this loss function
was the Brier score for all learning algorithms except for
the SVR, which used the mean average deviation (MAD),
commonly used in regression tasks.

The implementation used for logistic regression [25]
also requires a regularization parameter, C. To estimate
the best value for C we used the same search as that used
for SVM with the same range of possible values.

Scores and comparisons
Table 2 show the results obtained in AUC in the ex-

perimental setting described above. Focusing on the re-
sults obtained by the three support vector algorithms, we
can observe that, in general, the best performance (highest
AUC) is achieved by multivariate SVMAUC. In the logistic
regression family, the commercial version of APACHE III
outperforms all the other learners considered, both SVMs

and local logistic regressions. Apart from this, LR per-
forms better than LRAPS, the local APACHE III, the ma-
jority of times: 9 out of 13. However, SVMAUC is superior
to LR in 10 out of 13 data sets. Figure 2 depicts the
differences in AUC multiplied by 100 for ease of reading.
The same conclusions can be achieved if we look at Brier
scores; see Table 3.

Following Demšar in [26], the recommended test for
statistically comparing two classifiers by measuring the
AUC (or other performance measurements like the Brier
score) on multiple data sets is the Wilcoxon signed ranks
test. Using this test, the differences of the commercial
system APACHE III with all the other learners are sta-
tistically significant according to the test with a threshold
p < 0.05. Additionally, we also found statistically signif-
icant differences between SVMAUC and the rest of learn-
ers (p < 0.05); that is, with learners that used the same
training sets as SVMAUC. The differences between LR and
LRAPS are not significant. The same significant differences
appear in the Brier scores reported in Table 3.

Let us stress that, although the optimization problem
posed to SVR is precisely the minimization of the distance
between true and predicted probabilities, a large amount
of data is required to tie the SVMAUC Brier scores. The
underlying reason explaining this behavior may be that the
hypothesis space used by SVR is not adequate to induce
probability distributions from a reduced set of training
data, even with an RBF kernel.

From Figure 2, it can be observed that the differences
mainly appear in the first data sets, i.e. the smallest. SVR
and LR performance was particularly poor in these cases.
Bearing in mind that the rows of Tables 2 and 3 are in as-
cending order of size of the data sets, the trend indicates
that performance in all learners could be improved if more
training cases were available. In fact, when the data set in-
cluded all available patients’ records, the results obtained
were similar to or better than those yielded by APACHE
III. The exceptions are LRAPS in AUC, and SVR in Brier
score.

On the other hand, it can also be observed that, for all
learners, correct survival predictions seem to be slightly
harder to obtain for ICUs without coronary patients (data
set with code NC, including units 2, 3, 6 and 8) than for
ICUs including coronary patients.

3. The role of variables involved in predictions

In this section we attempt to gain insight into the role
played in predictions by the variables used to describe pa-
tients’ records. Let us recall that we recorded the set of
variables employed by APACHE III, the golden standard
in the field. In addition to demographic data and a brief
clinical history, these variables include 16 acute physiologi-
cal records that use the worst values from the first 24 hours
in the ICU. In order to study the prediction capabilities
of these variables, we divided the whole set into 3 groups
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Figure 2: Differences in (AUC ∗ 100) scores achieved by APACHE,
SVMAUC, LR, and LRAPS, see Table 2. The horizontal axis repre-
sents the number of patients used for training, while the vertical axis
represents the differences between couples of those predictors. In all
cases, the differences decrease as the number of training patients in-
crease. Note the scores of SVMAUC when the number of patients
is greater than 500; recall that APACHE III was trained with thou-
sands of cases: 17 thousand in the original version, and almost 11
thousand in the Spanish version

according to the source of information of these variables,
see Table 4.

We labelled the first group of variables with the tag
clinical. In this group, we collect demographic and diag-
nostic data, adding simple tests or observations. Let us
emphasize that the recording of these data can be done
at no cost. The second group of variables, monitoring, is
formed by data supplied by monitoring devices. Finally,
the third group of variables comes from laboratory analy-
ses.

In the following subsections, we shall measure the weight
of these groups of variables when the predictions are sought
in different contexts. We shall discuss contexts defined by
different kinds of ICUs and contexts characterized by the
treatment location of patients immediately prior to ICU
admission.

To measure the weight of a group of variables, we com-

Group Variables

age, sex, mechanical ventilation,
pre-existing comorbidities,
major diagnostic category,

Clinical type of patient (scheduled or urgent
surgery, trauma, medical)

location prior to ICU (other hospital,
ward, scheduled or urgent surgery),

Glasgow coma score

Monitoring temperature, blood pressure,
heart and respiratory rate,

urinary output

gas exchange (PaO2, PaCO2, pH, FiO2),
white cell count, hematocrit,

Laboratory serum: sodium, blood urea nitrogen,
creatinine, albumin, bilirubin, glucose

Table 4: The division of variables used to record the state of ICU
patients into 3 groups according to their source of information

pare the scores in AUC (and in Brier score) achieved by
a learning method (estimated by a 10-fold cross valida-
tion) when using all the variables and when using only
those of the group to be measured. We use two learn-
ing methods for this study: the best option of support
vectors’ family, SVMAUC, and the logistic regression that
uses raw data, LR. Notice that APACHE III or its local
recalibration could not be used here, as the APS would
have no sense if it were computed with a limited number
of variables.

3.1. Groups of intensive care units
From a medical point of view, the most obvious di-

vision between ICUs can probably be stated in terms of
those that include coronary patients or not. Let us re-
call that there are important differences in mortality risk
and treatments applied to patients in both kinds of ICUs.
Therefore, we decided to consider whether there are also
differences in the hypotheses that predict the probabilities
of survival.

Table 5 shows the scores achieved by SVMAUC in these
kinds of units considering different groups of variables de-
fined in Table 4. To contrast the results, we included three
data sets: coronary, non-coronary, and all units. On the
other hand, the groups of variables used were: all vari-
ables, clinical, and clinical plus each one of the other two
groups: laboratory and monitoring. We included clinical
variables as they somehow constitute the basic information
about a patient that it is routinely recorded.

First of all, we observe that the basic clinical variables
provide surprisingly good results when we deal with the
data set of all patients. The differences in AUC with the
whole set of variables are just around 2 points down, while
in the Brier score the gap is around 0.5 when the units of
these scores are multiplied by 102.
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AUC Brier Score

All ICUs Coronary Non-coronary All ICUs Coronary Non-coronary

All 0.824± 0.007 0.824± 0.021 0.809± 0.020 0.121± 0.002 0.108± 0.004 0.146± 0.005
C+M 0.821± 0.008 0.823± 0.022 0.799± 0.021 0.122± 0.001 0.108± 0.004 0.150± 0.005
C+L 0.818± 0.008 0.809± 0.020 0.805± 0.018 0.123± 0.002 0.112± 0.004 0.149± 0.004
C 0.805± 0.010 0.794± 0.022 0.789± 0.021 0.126± 0.002 0.113± 0.004 0.158± 0.004

Table 5: Performance of survival predictions of SVMAUC by groups of ICUs and groups of variables using 10-fold cross validation. Small
differences (in bold) both in the AUC and Brier score indicate that monitoring has more relevancy than laboratory data in units with coronary
patients; in units without these patients, the opposite situation occurs

AUC Brier Score

All ICUs Coronary Non-coronary All ICUs Coronary Non-coronary

All 0.820± 0.008 0.816± 0.018 0.798± 0.018 0.123± 0.002 0.110± 0.005 0.149± 0.006
C+M 0.819± 0.009 0.824± 0.018 0.788± 0.022 0.123± 0.002 0.109± 0.005 0.152± 0.007
C+L 0.811± 0.008 0.799± 0.022 0.803± 0.016 0.125± 0.002 0.113± 0.004 0.147± 0.005
C 0.804± 0.011 0.797± 0.021 0.787± 0.020 0.126± 0.002 0.113± 0.004 0.153± 0.006

Table 6: Performance of survival predictions of LR by groups of ICUs and groups of variables using 10-fold cross validation. Small differences
(in bold) both in the AUC and Brier score indicate that monitoring has more relevancy than laboratory data in units with coronary patients;
in units without these patients, the opposite situation occurs

When we add monitoring or laboratory variables to
the clinical records, we almost reach maximum predictive
capacity. In the data set of patients from all units, the
differences are inappreciable. However, in ICUs with coro-
nary patients, monitoring is more useful for a prediction
task than laboratory variables. In contrast, the opposite
situation is true in units without coronary patients. These
results are consistent when we measure the performance
with AUCs or Brier scores.

Table 6 repeats the same situation, though in this case
measured with LR scores. Notice that the LR scores are
generally worse than those achieved by SVMAUC in Table
5.

3.2. Groups of patients
The second context in which we studied the differences

in the weight of variable groups arose from considering the
treatment location of patients immediately prior to ICU
admission. Table 7 reports the number and percentages
of patients for each location in the whole data set of 2501
patients and the percentage of deaths. Notice that sur-
vival percentages are dramatically different. We accord-
ingly used the situations with higher death rates in order
to further our knowledge of the weight of variables.

Thus, we now consider 3 contexts to study the per-
formance of the groups of variables as we did in the ex-
periments reported in the preceding subsection. Table 8
gathers the results so obtained using SVMAUC, while Ta-
ble 9 reports the scores obtained by LR.

We observe that in the case of patients coming from a
different hospital, no matter whether they come from an

ICU, ward, or any other location in the other hospital, lab-
oratory data are more predictive than monitoring, at least
measured in AUC with SVMAUC. If we learn using LR,
however, these observations could not be induced from the
obtained Brier score, see Table 9. One possible reason for
this behavior is that the number of patients in this situa-
tion is too small, only 179; in these cases (see the scores in
Table 3), the performance of LR decreases dramatically.

On the other hand, for patients who come from a ward
in the same hospital, monitoring devices are more useful to
predict their survival probabilities than laboratory data.

The third situation considered is that of patients ad-
mitted to an ICU subsequent to urgent surgery. The scores
of SVMAUC indicate that laboratory findings would be
more useful than monitoring. Once again, however, the
reduced number of data means that the LR scores do not
present any appreciable difference, since in this case mon-
itoring and laboratory variables have the same weight.

3.3. Discussion
We have described three prediction contexts in which

laboratory findings are more useful than monitoring in pre-
dicting survival: units without coronary patients, and pa-
tients coming from other hospitals or from urgent surgery.
In these cases, the risk of death of patients is usually re-
lated to multi-organ (respiratory, renal or hepatic) failure.
The medical way of controlling the evolution of these dis-
eases is by means of laboratory findings, which explains
the results obtained.

On the other hand, monitoring is more useful than lab-
oratory findings for patients coming from a ward in the
same hospital as the ICU under consideration, or for units
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Other Scheduled Urgent
hospital Ward surgery surgery Urgencies Totals

% patients 7.16% 20.03% 15.11% 9.08% 48.58% 100%
# patients 179 501 378 227 1216 2501
% deaths 27.93% 36.53% 7.94% 25.11% 14.49% 19.83%

Table 7: Distribution of patients according to the treatment location immediately prior to ICU admission. In some cases (in bold), the
percentage of deaths is significantly high

AUC Brier Score

Other Hospital Wards Urg. Surgery Other Hosp. Wards Urg. Surgery

All 0.760± 0.037 0.780± 0.018 0.764± 0.023 0.175± 0.009 0.184± 0.005 0.162± 0.005
C+M 0.726± 0.034 0.775± 0.017 0.757± 0.017 0.180± 0.009 0.187± 0.005 0.163± 0.004
C+L 0.746± 0.041 0.764± 0.015 0.772± 0.029 0.179± 0.010 0.190± 0.005 0.160± 0.007
C 0.719± 0.044 0.774± 0.014 0.700± 0.025 0.185± 0.008 0.185± 0.004 0.173± 0.006

Table 8: Performance of survival predictions of SVMAUC by groups of patients and groups of variables using 10-fold cross validation. Small
differences (in bold) both in the AUC and Brier score indicate that laboratory data are more relevant than monitoring in patients from other
hospitals or from urgent surgery, but monitoring variables are more relevant than laboratory data in patients from wards

with coronary patients. In these cases, survival is mostly
threatened by cardiovascular complications, which are con-
trolled by means of monitoring devices.

4. Conclusions

We have presented a reliable learning method for esti-
mating the probability of hospital survival of critically ill
patients. The method consists of a grid search [11] applied
to the algorithm presented in [10], a variant of the stan-
dard procedure using SVM and Platt’s method [13] to fit
a sigmoid. Instead of using an SVM devised to optimize
classification accuracy, we propose the use of a learner that
optimizes the Area Under the ROC Curve (AUC). This can
be done using a multivariate SVM described in [14, 15].

We experimentally compared the results obtained by
this method with other approaches including logistic re-
gression, and with a commercial scoring system trained
with thousands of cases, APACHE III [5, 24]. One of
the learners compared is a second-level recalibration of
APACHE III, LRAPS. In the reported experiments, we
used real data from 10 ICUs at hospitals in Spain that
contain records from 2501 patients. The medical descrip-
tion of each patient includes monitoring variables, clinical
analysis, and demographic and diagnostic features.

The method presented here, SVMAUC, outperforms the
other methods trained with the same data: the standard
SVM approach, logistic regression with raw data, and the
local APACHE LRAPS. Comparison with the commercial
system APACHE III reveals similar scores (in fact slightly
better for SVMAUC) when the number of patients available
for training SVMAUC is higher than 500.

In addition, we have identified a number of medical
contexts in which the weights of monitoring and labora-
tory variables have meaningful differences. These results

have clear medical explanations. Furthermore, we have
established that most of the prediction capability of mod-
els learned from our data can be achieved by means of a
group of basic clinical variables. This group is made up
of demographic and diagnostic data, adding simple tests
or observations that are routinely recorded for ICU admis-
sions.

From a practical point of view, the implication of the
research reported here can be helpful to address the con-
struction of cheap and reliable prediction systems in accor-
dance with the peculiarities of ICUs and kinds of patients.
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AUC Brier Score

Other Hospital Wards Urg. Surgery Other Hosp. Wards Urg. Surgery

All 0.721± 0.028 0.772± 0.016 0.762± 0.027 0.200± 0.011 0.188± 0.007 0.160± 0.007
C+M 0.706± 0.032 0.788± 0.016 0.746± 0.019 0.192± 0.013 0.180± 0.006 0.166± 0.005
C+L 0.735± 0.032 0.761± 0.013 0.747± 0.025 0.191± 0.011 0.190± 0.005 0.165± 0.007
C 0.710± 0.042 0.779± 0.015 0.703± 0.027 0.186± 0.013 0.182± 0.005 0.176± 0.007

Table 9: Performance of survival predictions of LR by groups of patients and groups of variables using 10-fold cross validation. Differences (in
bold) indicate noteworthy relevancies. In most cases, these coincide with those found with SVMAUC; see caption in Table 8 and Subsection
3.2
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data, in: Osmar R. Zäıane, Randy Goebel, David Hand, Daniel
Keim, and Raymond Ng (Eds.): Proceedings of the ACM
SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD), ACM Press, New York, USA, 2002, pp. 133–142.

[20] A. Bahamonde, G. F. Bayón, J. Dı́ez, J. R. Quevedo, O. Luaces,
J. J. del Coz, J. Alonso, F. Goyache, Feature subset selection
for learning preferences: A case study, in: R. Greiner, D. Schu-
urmans (Eds.), Proceedings of the International Conference on
Machine Learning (ICML ’04), Banff, Alberta (Canada), 2004,
pp. 49–56.
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