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Abstract
An essential aspect of the study of shapes is the symmetry because of its importance from a theoretical point of view and its
applicability in multiple real-life problems. In this manuscript, the axial symmetry of 2D star-shaped sets is analyzed. For
such a purpose, different measures of axial symmetry of a star-shaped set are proposed and the concept of a best symmetry
axis is also introduced. By means of them, families of symmetry measures for star-shaped sets quantifying the degree of
symmetry of a set of that class are introduced. All of them are discussed in detail, providing their main properties and the
existence of at least a best axis of symmetry, which could be not unique, for any star-shaped set. Some examples illustrate the
concepts and results of the manuscript.

Keywords Kernel of a star-shaped set · Measure of axial symmetry · Radial function · Star-shaped set · Steiner point ·
Symmetry axis

1 Introduction

Star-shaped sets come up naturally in many fields, particu-
larly in geometry (see, for instance, [19] or [30]), as well as
in functional analysis (see, for instance, [3]), computational
geometry (see, for instance, [16] or [28]), approximation the-
ory (see, for instance, [21]), optimization (see, for instance,
[17] or [20]), etc. The notion of star-shapedness is a general-
ization of that of convexity. The idea is to consider sets where
the visibility of every point is guaranteed at least from one
point in the set, not requiring the visibility from every point.
The study of the geometry of star-shaped sets started at the
beginning of the 20th century and is still actively developing
(see, for instance, [4, 5] or [15]) because of its numerous
applications (see, for instance, [6, 8] or [11]).
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For a detailed and rigorous review of the fundamental
mathematical notion of star-shapedness and a board spectrum
of applications, the reader is referred, for instance, to [15].

One of the questions of interest related to star-shaped sets
is symmetry. Symmetry of convex sets, mainly central sym-
metry, has been study in depth (see, for instance, [33, 34] or
[32]). Awide variety of geometric and analytic constructions
that quantify various concepts of symmetry for convex sets
has been developed due to the application in a huge number
of interrelated problems on symmetry. Thework presented in
[32] contains a detailed and rigorous analysis of those pro-
cedures to quantify symmetry of convex bodies. An affine
measure of symmetry is defined as an affine invariant contin-
uous function on the space of convex bodies provided with a
suitable metric topology. That mapping tries to quantify the
degree of symmetry of a convex set and reaches its smallest
(or largest) value at symmetric convex sets. Some examples
of applicability of axial symmetry of convex sets to image
analysis are, for instance, [22] and [23].

Our aim is the study of measures of axial symmetry of 2D
star-shaped sets, that is, relaxing the condition of convexity
and considering only the star-shapedness requirement.

The study of measures of axial symmetry of a 2D star-
shaped set that is developed in this manuscript is strongly
related to the notions of kernel, Steiner point, support func-
tion and radial function. The kernel of a star-shaped set is
made up of all points from which every point of the star-
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shaped set is visible. Different characterizations of the kernel
of a star-shaped set have been developed like, for instance,
those in [4, 13, 31] or [14]. The Steiner point of the kernel
will play a relevant role in order to relate star-shaped sets to
radial functions. The Steiner point of a set can be viewed as
the mass center of such a set. The Steiner point was intro-
duced by R. Steiner for convex polytopes of R2 in [29], and
it was extended to convex polytopes of Rn by B. Grünbaum
in [9] (see also [10]). It has been generalized to convex bod-
ies of finite-dimensional vector spaces by G.C. Shephard in
[26]. The Steiner point is defined in terms of the so-called
support function. The radial function quantifies the distance
from the origin to the frontier of a star-shaped set when the
origin belongs to its kernel, in the direction given by a point
of the unit sphere.

In the manuscript, we introduce measures of the degree of
symmetry of a star-shaped set about a line and the concept of
best symmetry axis for a star-shaped set. By means of them,
measures of axial symmetry on the class of star-shaped sets
are also defined.

We will introduce measures of axial symmetry about a
line,measures of axial symmetry and the concept of best sym-
metry axis. All of them will be discussed in detail, providing
the main properties and characteristics, and the existence of
at least a best axis of symmetry for any star-shaped set.

The structure of the paper is the following. In Sect. 2, we
collect the concepts and basic results that we need for the
development of the manuscript. Section3 is devoted to the
introduction of measures of the degree of symmetry of a star-
shaped set about a line and the concept of best symmetry axis
for a star-shaped set. These conceptswill lead to the definition
of measures of axial symmetry on the family of star-shaped
sets. Different results which justify the correctness of those
definitions are developed in this section of the manuscript.
In Sect. 4, relevant properties of the above-mentioned mea-
sures are developed. Examples illustrating the concepts and
results of the paper are included in Sect. 5. Finally, Sect. 6
summarizes the main contributions of this manuscript.

2 Preliminaries

The concepts needed for the development of the manuscript
are included in this section.

Let α ∈ R, y, z ∈ R
2 and A, B ⊂ R

2. The Minkowski
addition of A and B is the set A + B = {a + b ∈ R

2 | a ∈
A, b ∈ B}, A + z will denote the set A + {z}, and αA will
be the set {αa ∈ R

2 | a ∈ A}. If P is a real square matrix of
order 2, PA will be the set {Pa ∈ R

2 | a ∈ A}. Moreover,
[y, z]will stand for the set {λy+ (1−λ)z | λ ∈ [0, 1]}. Such
a set and the corresponding sets (y, z] (when λ ∈ [0, 1)),
[y, z) (when λ ∈ (0, 1]) and (y, z) (when λ ∈ (0, 1)) are
referred to as intervals.

The open ball of radius ε > 0 centered at a ∈ R
2, whenwe

consider the usual Euclidean metric on R
2, will be denoted

by Bε(a). The interior of the set A in the usual topology of
R
2 will be denoted by A◦.
The unit sphere in R

2 will be represented by S1, that is,
S1 = {u ∈ R

2 | ‖u‖ = 1}, where ‖ · ‖ stands for the usual
Euclidean norm on R2.

The scalar product in R2 will be denoted by 〈·, ·〉.
Wewill denote byO(2,R) the set of real orthogonalmatri-

ces of order 2, that is, the set of 2×2 matrices with elements
in R which are orthogonal matrices.

The concept of star-shaped set is essential in themanuscript.

Definition 1 A set A ⊂ R
2 is said to be a star-shaped set if

there exists a ∈ A such that l ∩ A is an interval for any line
l with a ∈ l.

Basically, a set A is star-shaped if there exists a point in
A from which it is possible to “see” all points of A. That
is equivalent to the existence of a point a ∈ A such that
[a, x] ⊂ A for all x ∈ A.

A relevant rolewill be played by the kernel of a star-shaped
set.

Definition 2 Let A ⊂ R
2 be a star-shaped set. The kernel of

A, denoted by Ker A, is the set Ker A = {a ∈ A | l ∩ A is
an interval for any line l with a ∈ l}.

The kernel of a star-shaped set A is made up of the points
of the set from which all the points of A are visible.

The symbol S will stand for the class of compact star-
shaped sets A of R2 such that (Ker A)◦ 	= ∅.

It is known that if A ∈ S, Ker A is a convex subset of R2

(see [31]).
Let B be the class of non-empty bounded convex subsets

of R2.

Definition 3 The support function of a set B ∈ B is the map-
ping γ (·, B) : S1 → R, with γ (u, B) = supb∈B〈u, b〉 for all
u ∈ S1.

Recall that for any x ∈ R
2 and any u ∈ S1, there exist

ax ∈ R and x ′ ∈ R
2 such that x = axu + x ′ and 〈u, x ′〉 = 0.

Thus, ax = 〈u, x〉. The number ax is said to be the scalar
orthogonal projection of x onto the line passing through the
point (0, 0) ∈ R

2 with direction u (see Fig. 1, left).
Given B ∈ B and u ∈ S1, γ (u, B) = supb∈B〈u, b〉 =

supb∈B ab (see Fig. 1, right).
The Steiner point of a non-empty bounded convex set will

be key in the manuscript.

Definition 4 The Steiner point mapping is s : B −→ R
2,

with

s(B) = 2
∫
S1
uγ (u, B) dμ
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Fig. 1 Scalar orthogonal projection of the point x onto the line deter-
mined by (0, 0) and u (left), support function of the set B at u ∈ S1

(right)

for all B ∈ B, where μ is the measure on S1 proportional to
the Lebesgue measure, satisfying that μ(S1) = 1.

The Steiner point of B ∈ B, s(B), can be viewed as the
mass center of B.

The Steiner point mapping has been widely studied (see,
for instance, [1, 2, 24] or [27] for the most relevant properties
of the Steiner point mapping). It holds that,

1) for all K ∈ B, s(K ) ∈ K ,
2) for all K , L ∈ B and for all λ,μ ∈ R, s(λK + μL) =

λs(K ) + μs(L),
3) the Steiner point mapping commutes with affine isome-

tries, i.e., for all K ∈ B and for all affine isometry f : R2 →
R
2, it holds that s( f (K )) = f (s(K )).
Note that for any A ∈ S, it holds that Ker A belongs to

B, and so, it is possible to consider the Steiner point of that
set.

Given A ∈ S, let Ã = A− s(Ker A) = {a− s(Ker A) ∈
R
2 | a ∈ A}. Since rigid-body transformations do not change

the shape of the body, we have that Ã ∈ S.
Let us consider the set S1 = {A − s(Ker A) | A ∈ S}.
Let us prove that if T = {A ∈ S | s(Ker A) = (0, 0)},

then S1 = T . Trivially, T ⊂ S1; conversely, the defi-
nition of the kernel of a star-shaped set ensures that for
all A ∈ S, Ker (A − s(Ker A)) = Ker A − s(Ker A),
and property 2) of the Steiner point mapping provides that
s(Ker (A − s(Ker A))) = s(Ker A) − s(Ker A) = (0, 0).
As a consequence, S1 ⊂ T , and so, both sets are equal.

Now, let us consider the so-called radial function of a star-
shaped set in T .

Definition 5 Given A ∈ T , the radial function of A is the
mapping ρA : S1 −→ R, with ρA(u) = sup {α ≥ 0 | αu ∈
A} for all u ∈ S1.

A set in the class T is uniquely determined by its radial
function, in the sense that given A, B ∈ T , then A = B if
and only if ρA = ρB .

Thus, we can consider on T the metric dT : T ×T → R,
given by

dT (A, B) = sup
u∈S1

|ρA(u) − ρB(u)| = ‖ρA − ρB‖∞,

for all A, B ∈ T .
On the unit sphere S1, we will consider the metric d :

S1 × S1 → R, with d(u1, u2) equal to the angle determined
by u1 and u2, that is, the angle given by the vectors

−−→
Ou1 and−−→

Ou2 for all u1, u2 ∈ S1, where O = (0, 0) (see [31]).
It is known that for any A ∈ T , the mapping ρA : S1 −→

R is Lipschitz with respect to the metric d on S1. Moreover,
if A ∈ T and r , R > 0 satisfy that r B1(O) ⊂ A ⊂ RB1(O),
it holds that

|ρA(u1) − ρA(u2)| ≤ R

((
R

r

)2

− 1

) 1
2

d(u1, u2) (1)

for all u1, u2 ∈ S1 (see [31]).
Thus, the mapping ρA is continuous with respect to the

metric d on S1 for any A ∈ T . Moreover, it holds that
ρA(u) > 0 for all u ∈ S1; in fact, there exists mA > 0
such that ρA(u) ≥ mA for all u ∈ S1.

Wewill denote byC(S1) the class of continuousmappings
f : S1 → Rwith respect to the metric d on S1. Note that for
any A ∈ T , it holds that ρA ∈ C(S1).

On the space C(S1), we will consider the L p-norms with
respect to the measure μ given by

‖ f ‖p =
(∫

S1
| f (u)|p dμ

)1/p

if p ∈ [1,∞), and

‖ f ‖∞ = sup
u∈S1

| f (u)|.

The corresponding dp-metrics are given by dp( f , g) = ‖ f −
g‖p, that is,

dp( f , g) =
(∫

S1
| f (u) − g(u)|p dμ

)1/p

if p ∈ [1,∞),

and

d∞( f , g) = sup
u∈S1

| f (u) − g(u)|.

One key element of our approach to axial symmetry will
be the following mapping.

Consider θ ∈ [0, π ]. Let fθ : R2 → R
2 be the mapping

which produces a symmetry about the line passing through
the origin andwith slope equal to tan(θ), that is, y = (tan θ)x ,
with the agreement that when θ = π/2, the line is x = 0.
This mapping is given by fθ (a) = Rθa for all a ∈ R

2, with
Rθ the matrix

Rθ =
(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
∈ O(2,R).
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3 Measures of Axial Symmetry and the Best
Axis of Symmetry

In this section, measures of the degree of symmetry of a star-
shaped set about a line and the concept of best symmetry axis
for a star-shaped set are introduced. On the basis of those
elements, measures of axial symmetry on S are also defined.
Different results which justify the correctness of those defi-
nitions are developed in this section of the manuscript.

Next, we justify the particular translation of a star-shaped
set in S that we have considered to define the class T . Basi-
cally, if a star-shaped set A has a symmetry axis l, we will
see that l is also a symmetry axis of the kernel of A, and so,
the Steiner point of that kernel is in l.

Proposition 1 Let A ∈ S be symmetric about a line l. Then,
l is a symmetry axis of Ker A.

Proof Let f l : R
2 → R

2 be the mapping with f l(x) the
symmetric point of x about the line l, for all x ∈ R

2. Recall
that f l is an affine transformation.

If the result is false, there exists x ∈ Ker A such that
f l(x) /∈ Ker A. Note that f l(x) ∈ A since A is symmet-
ric about l. Thus, there exists y ∈ A and λ ∈ [0, 1] with
λ f l(x) + (1 − λ)y /∈ A. Since A is symmetric about l,
f l(λ f l(x) + (1 − λ)y) /∈ A. Because f l is an affine trans-
formation, f l(λ f l(x) + (1 − λ)y) = λx + (1 − λ) f l(y).
Observe that f l(y) ∈ A since y ∈ A and A is symmetric
about l, which implies that x /∈ Ker A, and so a contradic-
tion. ��
Corollary 2 Let A ∈ S be symmetric about a line l. Then,
s(Ker A) ∈ l and A− s(Ker A) has a symmetry axis which
contains the point (0, 0).

Proof It is well-known that if B ⊂ R
2 is a symmetric region

about l, then its Steiner point is located in l, and so, Proposi-
tion 1 proves the first part. For the second part, it is sufficient
to take the axis l − s(Ker A). ��

Note that if A is symmetric about a line, then A−s(Ker A)

is symmetric about a line which contains the point O =
(0, 0). That is the reason to consider T = {A − s(Ker A) |
A ∈ S} = {A ∈ S | s(Ker A) = (0, 0)} to introduce
in a first step measures of axial symmetry. Observe that for
those sets, the search of axis of symmetry is reduced to lines
passing through the point (0, 0). Note that for elements in
T , the radial function is well-defined. Moreover, in a similar
way, if A − s(Ker(A)) is symmetric about a line l, then A
is symmetric about the line l + s(Ker(A)).

Proposition 3 Let A ∈ T and θ ∈ [0, π ]. It holds that
fθ (A) ∈ T .

Proof Since fθ is an homeomorphism and A is compact,
fθ (A) is compact.

Note that multiplying Rθ by A implies the application of
an orthogonal transformation given by the matrix Rθ to A.
Since rigid-body transformations do not change the shape of
the body, we have that fθ (A) is a star-shaped set.

Let us see that Ker fθ (A) = fθ (Ker A).
Let fθ (a) be an element in Ker fθ (A). Consider l a

line passing through a. Then fθ (l) is a line such that
fθ (a) ∈ fθ (l), and so, fθ (l) ∩ fθ (A) is an interval. Apply-
ing the orthogonal transformation f −1

θ , we have that l ∩ A
is an interval. Then, a is an element in Ker A and so,
Ker fθ (A) ⊂ fθ (Ker A). On the other hand, consider a
an element in Ker A. Let l be a line passing through fθ (a).
Since f −1

θ (l) is a line passing through a, f −1
θ (l) ∩ A is an

interval. Thus, l ∩ fθ (A) is an interval and so, fθ (a) is an
element in Ker fθ (A). Therefore, Ker fθ (A) = fθ (Ker A).

Since an orthogonal transformation preserves norms, we
have that ( fθ (K ))◦ = fθ ((K )◦) for any K ⊂ R

2. Hence,

(Ker fθ (A))◦ = ( fθ (Ker A))◦ = fθ ((Ker A)◦),

which implies that fθ (A) ∈ S since (Ker fθ (A))◦ 	= ∅.

Note that A ∈ T , and so, (0, 0) = s(Ker A). Since fθ is
linear, it holds that (0, 0) = fθ ((0, 0)) = fθ (s(Ker A)).
Moreover, fθ is an orthogonal transformation, and so,
property 3) of the Steiner point mapping ensures that
(0, 0) = fθ ((0, 0)) = fθ (s(Ker A)) = s( fθ (Ker A)) =
s(Ker fθ (A)). Thus, fθ (A) ∈ T . ��

The above result permits to consider the radial function of
the set fθ (A) for any A ∈ T and any θ ∈ [0, π ].

The following result characterizes the radial function of
the set fθ (A) in terms of the radial function of A.

Proposition 4 Let A ∈ T and θ ∈ [0, π ]. It holds that
ρ fθ (A)(u) = ρA( fθ (u)) for all u ∈ S1.

Proof Note that Rθ ∈ O(2,R), thus fθ (u) ∈ S1 for all
u ∈ S1. Since Rθ satisfies that R−1

θ = Rθ , fθ is a linear
orthogonal transformation with fθ = f −1

θ . Now, for all u ∈
S1, ρ fθ (A)(u) = sup {α ∈ R | αu ∈ fθ (A)} = sup {α ∈ R |
α fθ (u) ∈ A} = ρA( fθ (u)), which proves the result. ��

Observe that an element A ∈ T is symmetric about a line
if it is invariant under a reflection about such a line. Thus,
A ∈ T is symmetric about the line y = (tan θ)x if the radial
function takes “the same values on both sides” of the line
(see Fig. 2). This fact motivates the following definition.

Definition 6 Let A ∈ T and let p ∈ [1,∞]. Define the
mapping ∇ p

A : [0, π ] → R, with

∇ p
A(θ) = 1

‖ρA‖p
dp(ρA, ρ fθ (A))

for all θ ∈ [0, π ]. The mapping ∇ p
A is said to be the measure

of axial symmetry of order p of the set A.
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Fig. 2 Symmetry axis (dotted line) of star-shaped set A ∈ T . Note that
ρA( fθ (u)) = ρA(u) for all u ∈ S1

Observe that the line determined by the angle θ is a sym-
metry axis of A ∈ T if and only if ∇ p

A(θ) = 0, regardless of
the value of p.

The quantity∇ p
A(θ) can be interpreted as a measure of the

axial symmetry of A with respect to the line determined by
the angle θ and passing through the point (0, 0). The lower
∇ p

A(θ), the greater the symmetry of A about y = (tan θ)x .
The value of p can be viewed as a permissiveness index of

the lackof symmetry. Thegreater p, the lower the permissive-
ness. If we take p = ∞, and so ∇∞

A (θ) is d∞(ρA, ρ fθ (A)) =
supu∈S1 |ρA(u) − ρ fθ (A)(u)| except for a normalization fac-
tor, the measure of lack of axial symmetry of A is taken as
the highest lack of symmetry between the points ρA(u) and
ρ fθ (A)(u) when u ranges all the sphere S1.

On the contrary, if we take p = 1, the measure of lack of
symmetry is

∫
S1

|ρA(u) − ρ fθ (A)(u)| dμ

except for a normalization factor, and so the measure is the
average of the lack of axial symmetry between ρA(u) and
ρ fθ (A)(u) when u ranges all the sphere S1.

Clearly, the abovemeasures of axial symmetry about a line
can be extended to elements of S by defining for all A ∈ S,

∇ p
A(θ) = ∇ p

A−s(Ker(A))(θ), (2)

where ∇ p
A(θ) quantifies the degree of symmetry of A with

respect to the line with slope θ passing through the point
s(Ker(A)).

Note that∇ p
A can be defined for any angle z ∈ R by taking

∇ p
A(z) = ∇ p

A(α) with z = α + [ z
π
]π where α ∈ [0, π ] and

[·] stands for the integer part function. Of course, working on
a compact set instead of the real line offers clear advantages
from mathematical and computational points of view.

An appealing matter in the axial symmetry analysis is the
search of possible axes of symmetry, or the search of the best
axes of symmetry. Roughly speaking, for a set A ∈ T and
p ∈ [1,∞], the line determined by the angle θ is a better
axis of symmetry than the line determined by the angle θ ′ if
∇ p

A(θ) ≤ ∇ p
A(θ ′).

As a consequence of this, we introduce the following def-
inition.

Definition 7 Let A ∈ T and p ∈ [1,∞]. The line determined
by the angle θ̂ passing through the point (0, 0) is said to be
a best axis of symmetry of order p of the set A, if ∇ p

A(θ̂) ≤
∇ p

A(θ) for all θ ∈ [0, π ].
Byusing formula (2), the concept of best axis of symmetry

can be extended to star-shaped sets in S. For those elements,
the best axis is given by the angle θ̂ and the point s(Ker(A)).

For simplicity, results will be developed for axial sym-
metry measures on T , the counterpart on S being direct by
means of formula (2).

The following results prove the existence of, at least, a
best symmetry axis for any A ∈ T .

Proposition 5 Let u ∈ S1 and θ, θ ′ ∈ [0, π ]. It holds that

d( fθ (u), fθ ′(u)) = 2|θ − θ ′|.

Proof Since u ∈ S1, there exists α ∈ [0, 2π) with u =
(cosα, sin α)t . Thus,

fθ (u) = Rθu =
(
cos 2θ sin 2θ
sin 2θ − cos 2θ

) (
cosα

sin α

)

= (cos(2θ − α), sin(2θ − α))t .

In a similar way,

fθ ′(u) = (cos(2θ ′ − α), sin(2θ ′ − α))t .

Since Rθ is orthogonal, ‖ fθ (u)‖ = ‖u‖ = ‖ fθ ′(u)‖ = 1.
Therefore, the cosine of the angle determined by fθ (u) and
fθ ′(u) is

〈 fθ (u), fθ ′(u)〉
= cos(2θ − α) cos(2θ ′ − α) + sin(2θ − α) sin(2θ ′ − α)

= cos(2θ − 2θ ′),

which derives the result. ��
Proposition 6 Let A ∈ T and p ∈ [1,∞]. The mapping
∇ p

A : [0, π ] → R
2 is continuous.

Proof Let θ, θ ′ ∈ [0, π ]. Consider the case p ∈ [1,∞).
By Proposition 4,

∇ p
A(θ) = 1

‖ρA‖p
dp(ρA, ρA ◦ fθ ),
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and so,

|∇ p
A(θ) − ∇ p

A(θ ′)|
= 1

‖ρA‖p
|dp(ρA, ρA ◦ fθ ) − dp(ρA, ρA ◦ fθ ′)|

≤ 1

‖ρA‖p
dp(ρA ◦ fθ , ρA ◦ fθ ′)

= 1

‖ρA‖p
(

∫
S1

|ρA( fθ (u)) − ρA( fθ ′(u))|p dμ)1/p.

Since the radial function of A is Lipschitz with respect to the
metric d on S1, there exists a constant MA > 0 such that

|ρA( fθ (u)) − ρA( fθ ′(u))| ≤ MAd( fθ (u), fθ ′(u))

for any u ∈ S1. Note that formula (1) ensures that MA can

be taken as R(( Rr )2 − 1)
1
2 , where R, r > 0 are any values

satisfying that r B1(O) ⊂ A ⊂ RB1(O).

Thus, we have that

|∇ p
A(θ) − ∇ p

A(θ ′)|
≤ 1

‖ρA‖p
MA(

∫
S1
d( fθ (u), fθ ′(u))p dμ)1/p.

By Proposition 5,

d( fθ (u), fθ ′(u)) = 2|θ − θ ′|,

which implies that

|∇ p
A(θ) − ∇ p

A(θ ′)| ≤ 1

‖ρA‖p
MA2|θ − θ ′|,

and so the result is proved when p ∈ [1,∞).
Consider p = ∞. Reasoning in a similar way, we obtain

that

|∇∞
A (θ) − ∇∞

A (θ ′)| ≤ 1

‖ρA‖∞
d∞(ρA ◦ fθ , ρA ◦ fθ ′)

= 1

‖ρA‖∞
sup
u∈S1

|ρA( fθ (u)) − ρA( fθ ′(u))|

≤ 1

‖ρA‖∞
MA sup

u∈S1
d( fθ (u), fθ ′(u))

≤ 1

‖ρA‖∞
MA2|θ − θ ′|,

which derives the result in this case, and so the proof. ��
As a consequence, we prove the existence of best symme-

try axes.

Proposition 7 Let A ∈ T and let p ∈ [1,∞]. There exists at
least one value θ̂ ∈ [0, π ] such that ∇ p

A(θ̂) ≤ ∇ p
A(θ) for all

θ ∈ [0, π ].

Proof Proposition 6 assures that ∇ p
A is a continuous func-

tion on a compact set, which guarantees the existence of a
minimum of the mapping. ��

From now on, given A ∈ T and p ∈ [1,∞], we are
denoting by θ̂A,p a value in [0, π ] such that ∇ p

A(θ̂A,p) ≤
∇ p

A(θ) for all θ ∈ [0, π ].
Next, we define the measure of axial symmetry of order

p on T .

Definition 8 Let p ∈ [1,∞]. Define themapping	p : T →
R with 	p(A) = ∇ p

A(θ̂A,p) for all A ∈ T . The mapping 	p

is said to be the measure of axial symmetry of order p on T .

Themapping	p quantifies for each element of T its axial
symmetry degree. For each element A in T , the lower the
value of	p(A), the larger its axial symmetry. In fact, A ∈ T
is symmetric about a line if and only if 	p(A) = 0 for any
p ∈ [1,∞]. Clearly, 	p can be defined on S by taking for
each A ∈ S the set A − s(Ker(A)), which is in T .

4 On theMeasures of Axial Symmetry

Relevant properties of themeasures of axial symmetry of a set
A ∈ T , that is,∇ p

A, and of themeasures of axial symmetry on
T , that is, 	p, are developed in this part of the manuscript.
Extensions to the class S are clear by means of the above
comments.

We remind the concept of equicontinuity of a family of
functions.

Definition 9 A family of functions { fα}α∈C defined on a set
I ⊂ R

m and with values in R
n is said to be equicontinuous,

when for all ε > 0 there exists δ > 0 such that for all
x, y ∈ I with ‖x − y‖ < δ, and for all α ∈ C , we have that
‖ fα(x) − fα(y)‖ < ε.

The following result says that when a sequence {Am}m ⊂
T is convergent in the dT -metric, the family of functions
{∇ p

Am
}m is equicontinuous.

Proposition 8 Let Am, A ∈ T , m ∈ N, such that limm→∞
dT (Am, A) = 0. Then, the sequence of mappings {∇ p

Am
}m is

equicontinuous for all p ∈ [1,∞].
Proof According to the proof of Proposition 6, for all ele-
ments Am ∈ {Am}m , θ, θ ′ ∈ [0, π ] and p ∈ [1,∞], it holds
that

|∇ p
Am

(θ) − ∇ p
Am

(θ ′)|

≤ 1

‖ρAm‖p
Rm

((
Rm

rm

)2

− 1

) 1
2

2|θ − θ ′|,
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where rm and Rm are any positive real numbers satisfying
that rm B1(O) ⊂ Am ⊂ RmB1(O).

For each m ∈ N, take rm and Rm as follows,

rm = sup{r > 0 | r B1(O) ⊂ Am} and

Rm = inf{R > 0 | Am ⊂ RB1(O)}.

Because of the compactness of Am , such supremum and infi-
mum are a maximum and a minimum, respectively. Define
in a similar way rA and RA for the set A.

Note that for all u ∈ S1,

ρA(u) = ρA(u) − ρAm (u) + ρAm (u)

≤ ‖ρA − ρAm‖∞ + ρAm (u),

and so,

sup
u∈S1

ρA(u) − sup
u∈S1

ρAm (u) ≤ ‖ρA − ρAm‖∞.

Similarly,

sup
u∈S1

ρAm (u) − sup
u∈S1

ρA(u) ≤ ‖ρA − ρAm‖∞.

Since lim
m→∞ dT (Am, A) = lim

m→∞ ‖ρAm − ρA‖∞ = 0, we

obtain that lim
m→∞ Rm = RA.

Taking infima instead of suprema in the above develop-
ment leads to lim

m→∞ rm = rA.

Thus, there are r0 = inf {rm}m > 0 and R0 =
sup {Rm}m > 0 real numbers, such that for all Am , θ, θ ′ ∈
[0, π ], and p ∈ [1,∞], we have that

|∇ p
Am

(θ) − ∇ p
Am

(θ ′)|

≤ 1

‖ρAm‖p
R0

((
R0

r0

)2

− 1

) 1
2

2|θ − θ ′|.

On the other hand, the condition lim
m→∞ ‖ρAm −ρA‖∞ = 0

implies that lim
m→∞ ‖ρAm −ρA‖p = 0 for all p ∈ [1,∞] since

‖ρAm −ρA‖p ≤ ‖ρAm −ρA‖∞. Therefore, lim
m→∞ ‖ρAm‖p =

‖ρA‖p for any p ∈ [1,∞]. Thus, there exists ρ0,p =
inf {‖ρAm‖p}m > 0. This implies that

|∇ p
Am

(θ) − ∇ p
Am

(θ ′)| ≤ 1

ρ0,p
R0((

R0

r0
)2 − 1)

1
2 2|θ − θ ′|

for all m ∈ N, θ, θ ′ ∈ [0, π ] and p ∈ [1,∞]. That is, the
family {∇ p

Am
}m is equicontinuous whatever value of p. ��

Under the above conditions, we will see that the sequence
{∇ p

Am
}m tends to ∇ p

A in the pointwise convergence for any
value p ∈ [1,∞].

Proposition 9 Let Am, A ∈ T , m ∈ N, such that limm→∞
dT (Am, A) = 0. It holds that lim

m→∞ ∇ p
Am

(θ) = ∇ p
A(θ) for all

θ ∈ [0, π ] and p ∈ [1,∞].
Proof It has been seen in the proof of Proposition 8, that
lim

m→∞ ‖ρAm‖p = ‖ρA‖p for all p ∈ [1,∞]. On the other

hand,

|dp(ρAm , ρ fθ (Am )) − dp(ρA, ρ fθ (A))|
≤ dp(ρAm , ρA) + dp(ρ fθ (Am ), ρ fθ (A)),

and by Proposition 4,

dp(ρAm , ρA) = dp(ρ fθ (Am ), ρ fθ (A)).

Thus,

|dp(ρAm , ρ fθ (Am )) − dp(ρA, ρ fθ (A))|
≤ 2dp(ρAm , ρA) = 2‖ρAm − ρA‖p

≤ 2‖ρAm − ρA‖∞ = 2dT (ρAm , ρA).

Therefore,

lim
m→∞ |dp(ρAm , ρ fθ (Am )) − dp(ρA, ρ fθ (A))| = 0.

The above conclusions imply that

lim
m→∞ ∇ p

Am
(θ) = lim

m→∞
1

‖ρAm‖p
dp(ρAm , ρ fθ (Am ))

= 1

‖ρA‖p
dp(ρA, ρ fθ (A)) = ∇ p

A(θ)

for all θ ∈ [0, π ] and p ∈ [1,∞]. ��
Now, we prove that the measures of axial symmetry of

order p on T are continuous.

Proposition 10 The mapping 	p : T → R is continuous
with respect to the metric dT on T for all p ∈ [1,∞].
Proof It is well-known that a convergent sequence of
equicontinuous mappings on a compact set converges uni-
formly (see, for instance, [7]). Therefore, by Proposition 8
and9, {∇ p

Am
}m converges uniformly to∇ p

A .As a consequence,

lim
m→∞ min

θ∈[0,π ] ∇
p
Am

(θ) = min
θ∈[0,π ] ∇

p
A(θ),

equivalently,

lim
m→∞ 	p(Am) = 	p(A).

��
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It is important to remark that conditions to guarantee the
continuity of 	p can be strongly weakened as we will see
in Proposition 13. In such a result, we will analyze condi-
tions for that continuity permitting rotations, symmetries and
homotheties of star-shaped sets. Before that, we will see that
those transformations do not entail changes of the measures
of symmetry 	p with p ∈ [1,+∞].

The first result proves that themeasures of axial symmetry
are invariant under the product by a nonzero scalar.

Proposition 11 Let A ∈ T and λ ∈ R \ {0}, it holds that

i) λA ∈ T ,

ii) ∇ p
λA(θ) = ∇ p

A(θ) for all θ ∈ [0, π ] and p ∈ [1,∞],
iii) 	p(λA) = 	p(A) for all p ∈ [1,∞].

The proof of Proposition 11 is included in Appendix A.
Below we relate the product of an orthogonal matrix by a

star-shaped set and the measures of axial symmetry. We will
see that axial symmetry measures on T are invariant under
the product by orthogonal matrices.Moreover, the axial sym-
metry measures∇ p

A and∇ p
P A, with A ∈ T and P ∈ O(2,R),

will be related.
Let P ∈ O(2,R). If det(P) = −1, where det stands for

the determinant, there exists an angle α such that

P =
(
cosα sin α

sin α − cosα

)
.

On the other hand, if det(P) = 1, there exists an angle α

such that

P =
(
cosα − sin α

sin α cosα

)
.

Proposition 12 Let A ∈ T and P ∈ O(2,R). Then,

i) P A ∈ T ,

ii) ∇ p
P A(θ) =

⎧⎪⎪⎨
⎪⎪⎩

∇ p
A(α − θ) if P =

(
cosα sin α

sin α − cosα

)
,

∇ p
A(θ − α) if P =

(
cosα − sin α

sin α cosα

)
,

for

all θ ∈ [0, π ] and p ∈ [1,∞],with∇ p
A(α−θ) = ∇ p

A(μ)

whereμ ∈ [0, π ] andα−θ = μ+[α−θ
π

]π , and similarly,
∇ p

A(θ − α),
iii) 	p(PA) = 	p(A) for all p ∈ [1,∞].

The proof of Proposition 12 is included in Appendix A.
As we have mentioned before, Propositions 11 and 12

permit to prove the continuity of	p : T → R in Proposition
10 under milder conditions.

Proposition 13 Let Am, A ∈ T , m ∈ N, such that

lim
m→∞

(
inf

λ∈R, P∈O(2,R)
dT (λPAm, A)

)
= 0.

Then, lim
m→∞ 	p(Am) = 	p(A) for all p ∈ [1,∞].

Proof Note that for all ε > 0 there existsm0 such that for all
m ≥ m0,

inf
λ∈R, P∈O(2,R)

dT (λPAm, A) < ε,

and so, there are λm ∈ R and Pm ∈ O(2,R) with
dT (λm Pm Am, A) < ε.

Define Bm = λm Pm Am for any m ∈ N. In accor-
dance with Proposition 11 and Proposition 12, Bm ∈ T and
	p(Bm) = 	p(Am) for all m ∈ N.

By Proposition 10, lim
m→∞ 	p(Bm) = 	p(A) for all p ∈

[1,∞], which proves the result. ��

5 Examples

Some examples illustrating the methods and techniques pro-
posed in this manuscript are developed in this section. The
first example is about a star-shaped set with a unique axis
of symmetry. We will see that the considered measure of
axial symmetry takes on zero at one point of the interval
[0, π ], namely, at the angle of the corresponding symmetry
axis. In the second instance, a star-shaped set with no axes
of symmetry will be considered. The corresponding mea-
sure of axial symmetry is strictly positive at any point. We
will obtain its best axis of symmetry. Regarding the third
example, it contains a star-shaped set with several axes of
symmetry. Thus, the measure of axial symmetry will take on
zero at different points which correspond to the angles which
determine the axes of symmetry. The last example aims to
visualize Proposition 9. Basically, when a sequence of star-
shaped sets converges to another star-shaped set, so does the
corresponding sequence of measures of axial symmetry.

It is well-known that the kernel of a star-shaped polygon
in S can be obtained as follows. Each edge of the polygon
determines a half-plane whose boundary lies on the line with
the edge and that contains points of the interior of the polygon
in a neighborhood of any point of the edge. The kernel of the
polygon is given by the intersection of all those half-planes.

Algorithms for computing thekernel of a star-shapedpoly-
gon have been proposed in scientific literature. To the best
of our knowledge, the first algorithm for that purpose was
given by Michael I. Shamos and Dan Hoey in [25]. It is
based on obtaining the intersection of the above-mentioned
half-planes. A kernel can be found in O(n log n) where n
is the number of vertices. A faster algorithm was given by
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Fig. 3 Graphical representation of star-shaped B (top-left), the kernel
of B (top-right), the Steiner point of the kernel of B (bottom-left) and
the element of T , B − s(Ker B) (bottom-right), in Example 1

Franco P. Preparata an Der T. Lee in [18], with execution
time O(n).

We should indicate that all the computational aspects of
the forthcoming examples were approached with the inter-
active software Octave, version 6.4.0, using the package
matgeom.

Example 1 Consider the star-shaped polygon given by the
vertices (0, 0), (2, 0), (2, 1), (1, 1), (1, 2) and (0, 2). Let
B stand for such a set. The graphical representation of its
frontier appears in Fig. 3, top-left. Clearly, B ∈ S.

The frontier of the kernel of B appears in red color in
Fig. 3, top-right, namely the kernel of B is [0, 1]2.

The Steiner point of the kernel of B is (1/2, 1/2), which
appears in red color in Fig. 3, bottom-left.

Finally, B − s(Ker B) is included in Fig. 3, bottom-right.
Note that B − s(Ker B) ∈ T and any possible symmetry
axis of B − s(Ker B) should contain the point (0, 0), as
Corollary 2 reads.

Let A = B − s(Ker B). The mapping ∇∞
A : [0, π ] → R,

with

∇∞
A (θ) = 1

‖ρA‖∞
d∞(ρA, ρ fθ (A)) for all θ ∈ [0, π ],

was calculated in a mesh of 501 points of the interval [0, π ],
namely, from0 toπ with a step ofπ/500.Note that the values
of the mapping ∇∞

A at θ = 0 and at θ = π are equal since
the line y = (tan θ)x is the same for both angles.

Regarding the radial functions in∇∞
A (θ), that is,ρA, ρ fθ (A) :

S1 → R, the unit sphere S1 was divided by means of a

Fig. 4 Graphical representation of the mapping ∇∞
A with A = B −

s(Ker B) in Example 1. Horizontal axis for angles θ in [0, π ], vertical
axis for values of ∇∞

A (θ)

Fig. 5 Representation of star-shaped set Awith its symmetry axis (left),
and of star-shaped set B with its symmetry axis (right), in Example 1

mesh with 1000 equidistant points. The points of S1 were
parametrized in terms of the corresponding angle of the
interval [0, 2π ]. Thus, this interval was divided with a mesh
containing points from 0 to 2π with a step of 2π/1000.

To calculate the corresponding radial functions at those
points of the unit sphere, the intersection of A with edges
determined by the points (0, 0) and the corresponding u ∈ S1

were calculated.
Wehave taken p = ∞ in themeasure of axial symmetry of

the set A, that is, ∇∞
A , to detect possible lacks of symmetry

“rapidly”, but other values of p, not so sensitive to those
lacks, can be considered at this step.

The graphical representation of ∇∞
A was depicted by

means of linear interpolation at the points of the mesh in
[0, π ]. It appears in Fig. 4.

The minimum value of the mapping is 0, which appears
only once. That indicates the existence of a unique symmetry
axis of A. The value in which the minimum is reached, is the
angle which determines the symmetry axis of A which con-
tains the point (0, 0). That value corresponds to the point
π/4, that is, there exists a unique best axis of symmetry
determined by the angle θ̂A,∞ = π/4. Therefore, the line
y = (tan(π/4))x , that is, y = x , is a symmetry axis of A,
and in this particular case, it is also a symmetry axis of B,
see Fig. 5.

Clearly enough, 	∞(A) = ∇∞
A (θ̂A,∞) = 0.
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Fig. 6 Graphical representation of star-shaped set B (top-left), the ker-
nel of B (top-right), the Steiner point of the kernel of B (bottom-left)
and the element of T , B − s(Ker B) (bottom-right), in Example 2

Fig. 7 Graphical representation of the mapping ∇∞
A with A = B −

s(Ker B) in Example 2. Horizontal axis for angles θ in [0, π ], vertical
axis for values of ∇∞

A (θ)

Example 2 The second example includes a star-shaped set
with no axial symmetries. That is given by the vertices
(−10, 20), (−10, 0), (0,−10), (0, 0), (10, 0), (20, 10) and
(0, 10). Let us denote it by B.

The graphical representations of B, the kernel of B, the
Steiner point of that kernel, which is (−5, 5), and A = B −
s(Ker B), appear in Fig. 6.

All the computational aspects of this instance regarding
the calculations of radial functions, best axes of symmetry
and the measure of axial symmetry are as in Example 1.

The graphical representation of ∇∞
A is included in Fig. 7.

Theminimum value of themapping is 0.2558. That means
that there are not symmetry axes of A, and so, neither has B.

The best axis of symmetry corresponds to the angle in
which the above minimum is reached. In this case, θ̂A,∞ =
0.1194.

Therefore, the line y = (tan(0.1194))x is the best symme-
try axis of A, and the best symmetry axis of B has the same
slope but passing through the point (−5, 5). The graphical

Fig. 8 Representation of star-shaped set A with its best symmetry axis
(left), and of star-shaped set B with its best symmetry axis (right), in
Example 2

representations of A and B jointly with their best symmetry
axes are included in Fig. 8.

In this case, 	∞(A) = ∇∞
A (θ̂A,∞) = 0.2558.

Example 3 The following instance includes a star-shaped
set with multiple axes of symmetry. Consider B the “star”
given by the vertices (−2.5, 5), (−1.25, 1.25), (−5, 2.5),
(−2.5, 0), (−5,−2.5), (−1.25,−1.25), (−2.5,−5),
(0,−2.5), (2.5,−5), (1.25,−1.25), (5,−2.5), (2.5, 0),
(5, 2.5), (1.25, 1.25), (2.5, 5) and (0, 2.5). The graphical
representation of that set appears in Fig. 9, top-left.

The kernel of B is the polygon with vertices (0, 0.8333),
(−0.625, 0.625), (−0.8333, 0), (−0.625,−0.625),
(0,−0.8333), (0.625,−0.625), (0.8333, 0) and (0.625,
0.625). It appears in Fig. 9, top-right.

The Steiner centroid of the kernel is (0, 0), see Fig. 9,
bottom-left, and so A = B − s(Ker B) = B, see Fig. 9,
bottom-right.

All the computational aspects of this example are like
those in Example 1.

Figure 10 contains the graphical representation of ∇∞
A .

That mapping takes on the value 0 at five points, namely,
0, π/4, π/2, 3π/4 and π .

That means that there are four best axes of symmetry
(those of 0 and π are the same). The graphical represen-
tation of those axes, jointly with B, appears in Fig. 11. Note
that θ̂A,∞ = 0, π/4, π/2, 3π/4, π .

Obviously, 	∞(A) = ∇∞
A (θ̂A,∞) = 0.

Example 4 The purpose of this instance is illustrating Propo-
sition 9. Take B ofExample 1 and Bk the star-shaped set given
by the vertices (0, 0), (2+k, 0), (2+k, 1), (1, 1), (1, 2) and
(0, 2)with k > 0. Roughly speaking, the basis of the L-shape
of B is “enlarged” on the right-hand side k units in Bk .

Let A = B − s(Ker B) and Ak = Bk − s(Ker Bk). Note
that Ker(B) = Ker(Bk) = [0, 1] × [0, 1].
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Fig. 9 Graphical representations of star-shaped B (top-left), the kernel
of B (top-right), the Steiner point of the kernel of B (bottom-left) and
the element of T , B − s(Ker B) (bottom-right), in Example 3

Fig. 10 Graphical representation of the mapping ∇∞
A with A = B −

s(Ker B) in Example 3. Horizontal axis for angles θ in [0, π ], vertical
axis for values of ∇∞

A (θ)

It can be seen that lim
k→0+ dT (Ak, A) = 0. ByProposition 9,

it holds that lim
k→0+ ∇ p

Ak
(θ) = ∇ p

A(θ) for any θ ∈ [0, π ] and
any p ∈ [1,∞]. In fact, by the proof of Proposition 10, that
convergence is uniform for any p ∈ [1,∞].

Fig. 11 Representation of star-shaped set B with its symmetry axes in
Example 3

Fig. 12 Graphical representation of B and Bk with k equal to 0.4, 0.3,
0.2, 0.1, 0.05 and 0.01, in Example 4. B in blue color, B0.01 in yellow,
B0.05 in red, B0.1 in magenta, B0.2 in green, B0.3 in cyan and B0.4 in
black

We have taken k equal to 0.4, 0.3, 0.2, 0.1, 0.05 and 0.01
to visualize the result. The graphical representation of B and
Bk for those values of k appears in Fig. 12.

Figure 13 contains the graphical representation of the
mappings ∇∞

Ak
and ∇∞

A for the above values of k. The latter
is represented in blue color (see also Fig. 4). It takes on zero
at the point π/4. The remaining measures of axial symmetry
are strictly positive at any point of the interval [0, π ], note
that Ak does not have any axis of symmetry. Observe that as
k decreases, ∇∞

Ak
tends to be nearer to ∇∞

A as Proposition 9
and 10 indicate. Note that the lower the value of k, the lower
the minimum of ∇∞

Ak
.

Fig. 13 Graphical
representation of ∇∞

Ak
and ∇∞

A
with k equal to 0.4, 0.3, 0.2, 0.1,
0.05 and 0.01 in Example 4. ∇∞

A
in blue color, ∇∞

A0.01
in yellow,

∇∞
A0.05

in red, ∇∞
A0.1

in magenta,
∇∞

A0.2
in green, ∇∞

A0.3
in cyan and

∇∞
A0.4

in black. Horizontal axis
for angles θ in [0, π ], vertical
axis for values of ∇∞

A (θ) (left)
and in a neighborhood of π/4
(right)
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6 Conclusions

Measures of symmetry for convex bodies have been deeply
studied in mathematical literature. To the best of our knowl-
edge, that is not the case when we consider the class of
star-shaped sets. This manuscript tries to fill that gap for the
case of 2D star-shaped sets.

For such a purpose, we propose a family of measures
which quantify the degree of symmetry of a star-shaped set
with respect to a line, that is, a set of axial symmetry mea-
sures. They are based on the comparison of the values that
the radial function of a centered star-shaped set takes on both
sides of the axis. A symmetry about an axis implies that the
radial function should assume the same values on both sides.
A great discrepancy of those values means that the symmetry
about such a line is very poor; on the contrary, similar values
lead to a large degree of symmetry.

On the basis of these measures, we introduce the concept
of best axis of symmetry, as that determined by the angle
which minimizes a measure of axial symmetry, that is, the
angle whose corresponding line shows the largest degree of
axial symmetry. These concepts permit to introduce families
of symmetry measures for star-shaped sets, quantifying the
degree of symmetry of a set of that family.

All the above concepts are studied in detail, proving that
they satisfy adequate properties. Some examples illustrate
the concepts and results of the manuscript.

Appendix A Proofs of Propositions 11 and 12

In this appendix, we include the proofs of Propositions 11
and 12. The first result proves that the measures of axial
symmetry are invariant under the product by a nonzero scalar.
The second shows that axial symmetry measures on T are
invariant under the product by orthogonal matrices.

Proof of Proposition 11.

Proof i) Consider fλ : R2 → R
2, with fλ(x) = λx for all

x ∈ R
2. That is an homomorphism and so, fλ(A) = λA is

compact.
If a ∈ Ker A, for all α ∈ [0, 1] and for all b ∈ A, fλ(αa+

(1 − α)b) = αλa + (1 − α)λb ∈ fλ(A) = λA. As a result,
λA is a star-shaped set and λKer A ⊂ Ker λA.

In a similarway, bymeans of f −1
λ , we have that Ker λA ⊂

λKer A, and so Ker λA = λKer A.
Let us see that (λK )◦ = λ K ◦ for any λ ∈ R\ {0} and any

K ⊂ R
n .

Consider λk ∈ (λK )◦, there exists ε > 0 such that
Bε(λk) ⊂ λK . Let x ∈ B ε

|λ| (k). Then, λx ∈ Bε(λk) ⊂ λK ,
and thus, x ∈ K . Hence, B ε

|λ| (k) ⊂ K and then k ∈ K ◦. As
a consequence, (λK )◦ ⊂ λK ◦. On the other hand, fλ is an
open mapping, and so, λK ◦ ⊂ (λK )◦.

Now, (Ker λA)◦ = (λKer A)◦ = λ(Ker A)◦ 	= ∅. Thus,
λA ∈ S.

We have that s(Ker λA) = s(λKer A). According to
property 2) of the Steiner point, s(Ker λA) = λs(Ker A) =
(0, 0). Thus, λA ∈ T .

i i) Observe that ρλA(u) = λρA(u) for all u ∈ S1 and
λ ∈ (0,∞). When λ ∈ (−∞, 0), ρλA(u) = −λρA(−u) for
all u ∈ S1.

As a consequence, ‖ρλA‖p = |λ| ‖ρA‖p for all p ∈
[1,∞] and λ ∈ R \ {0}. Given θ ∈ [0, π ], it holds that

∇ p
λA(θ) = 1

‖ρλA‖p
dp(ρλA, ρ fθ (λA))

= 1

‖ρλA‖p
dp(ρλA, ρλA ◦ fθ )

= 1

|λ|‖ρA‖p
|λ|dp(ρA, ρA ◦ fθ )

= 1

‖ρA‖p
dp(ρA, ρ fθ (A)) = ∇ p

A(θ),

where the second equality follows from Proposition 4.
Statement i i i) is a consequence of i i). ��

Proof of Proposition 12.

Proof i)Multiplying P by A is an orthogonal transformation
of A given by thematrix P . Since rigid-body transformations
do not change the shape of the body, PA is a compact star-
shaped set.

In a similar way to the proof of Proposition 3, we have that
Ker(PA) = PKer(A) and P(Ker A)◦ = (PKer A)◦ =
(Ker P A)◦. Thus, PA ∈ S. Applying property 3) of
the Steiner point mapping, it holds that s(Ker P A) =
s(PKer A) = Ps(Ker A) = (0, 0). Then, PA ∈ T .

i i) Note that for every u ∈ S1, ρPA(u) = sup {α ∈ R |
αu ∈ PA} = sup {α ∈ R | αP−1u ∈ A} = ρA(P−1u).

Let p ∈ [1,∞), then

∇ p
P A(θ) = 1

‖ρPA‖p
dp(ρPA, ρ fθ (PA))

= 1

‖ρPA‖p
dp(ρPA, ρPA ◦ fθ )

= 1

‖ρA ◦ P−1‖p
dp(ρA ◦ P−1, ρA ◦ P−1 ◦ fθ )

= 1(∫
S1 |ρA(P−1u)|pdμ

) 1
p

×
(∫

S1
|ρA(P−1u) − ρA(P−1 fθ (u))|pdμ

) 1
p

.

Consider themapping g : S1 −→ S1, with g(u) = Pu for all
u ∈ S1. Observe thatμ(g−1(S)) = μ(S) for any measurable
set S ⊂ S1.
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By a change of variable (see, for instance, [12]),

∇ p
P A(θ) = 1(∫

S1 |ρA(u)|pdμ
) 1
p

×
(∫

S1
|ρA(u) − ρA(P−1 fθ (Pu))|pdμ

) 1
p

.

If det(P) = −1,

P =
(
cosα sin α

sin α − cosα

)

for some α and so,

P−1Rθ P =
(
cos 2(α − θ) sin 2(α − θ)

sin 2(α − θ) − cos 2(α − θ)

)

= Rα−θ .

Then,

∇ p
P A(θ) = 1(∫

S1 |ρA(u)|pdμ
) 1
p

×
(∫

S1
|ρA(u) − ρA( fα−θ (u))|pdμ

) 1
p

= 1

‖ρA‖p
dp(ρA, ρA ◦ fα−θ )

= 1

‖ρA‖p
dp(ρA, ρ fα−θ (A))

= ∇ p
A(α − θ).

When det(P) = 1 with

P =
(
cosα − sin α

sin α cosα

)

for some α,

P−1Rθ P =
(
cos 2(θ − α) sin 2(θ − α)

sin 2(θ − α) − cos 2(θ − α)

)

= Rθ−α.

Then,

∇ p
P A(θ) = 1(∫

S1 |ρA(u)|pdμ
) 1
p

×
(∫

S1
|ρA(u) − ρA( fθ−α(u))|pdμ

) 1
p

= 1

‖ρA‖p
dp(ρA, ρA ◦ fθ−α)

= 1

‖ρA‖p
dp(ρPA, ρ fθ−α(A)) = ∇ p

A(θ − α).

Regarding the case p = ∞,

‖ρPA‖∞ = sup
u∈S1

|ρPA(u)| = sup
u∈S1

|ρA(P−1u)|
= sup

u∈S1
|ρA(u)| = ‖ρA‖∞

since {P−1u | u ∈ S1} = S1. Thus,

d∞(ρPA, ρ fθ (PA)) = sup
u∈S1

|ρPA(u) − ρ fθ (PA)(u)|
= sup

u∈S1
|ρPA(u) − ρPA( fθ (u))|

= sup
u∈S1

|ρA(P−1u) − ρA(P−1 fθ (u))|

= sup
u∈S1

|ρA(P−1Pu) − ρA(P−1Rθ Pu)|.

If det(P) = −1, then P−1Rθ P = Rα−θ for some α and
thus,

sup
u∈S1

|ρA(P−1Pu) − ρA(P−1Rθ Pu)|
= sup

u∈S1
|ρA(u) − ρA(Rα−θu)|

= sup
u∈S1

|ρA(u) − ρA( fα−θ (u))|
= sup

u∈S1
|ρA(u) − ρ fα−θ (A)(u)| = d∞(ρA, ρ fα−θ (A)).

Hence, ∇∞
PA(θ) = ∇∞

A (α − θ).
Reasoning in a similar way when det(P) = 1, we obtain

that ∇∞
PA(θ) = ∇∞

A (θ − α) for some α.
i i i) It follows from i i). ��
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