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RESUMEN en español (máximo 4000 caracteres) 

En el contexto de análisis de datos, las funciones de agregación se utilizan para fusionar la 
información de diferentes fuentes en un único valor. En esta dirección, es razonable considerar 
una naturaleza aleatoria en los valores agregados, ya que usualmente corresponden a 
diferentes observaciones de magnitudes dentro de una población. Siguiendo esta idea, este 
trabajo se centra en la definición y estudio de agregaciones de estructuras aleatorias. 

En primer lugar, se introduce el concepto de agregación de variables aleatorias adaptando la 
monotonía y las condiciones de contorno haciendo uso de órdenes estocásticos. La elección 
del orden estocástico es crucial, siendo la mejor alternativa el orden estocástico usual. Se hace 
un estudio en profundidad de las principales familias de agregaciones de variables aleatorias y 
algunas propiedades clásicas de funciones de agregación para este nuevo concepto. 

En segundo lugar, se trabaja con diferentes casos particulares de agregaciones de variables 
aleatorias que son de especial interés. En particular, se considera un operador de fusión lineal 
ordenado e inducido en el contexto de estimación de la media, se prueban resultados sobre el 
comportamiento asintótico de los pesos óptimos acumulados de L-estadísticos, se definen 
agregaciones de variables aleatorias que ordenan las variables de entrada comparando sus 
funciones de distribución, se estudia el comportamiento de capacidades aleatorias uniformes y 
se resuelve un problema de minimización que permite realizar un tipo específico de 
aproximaciones de agregaciones de variables aleatorias. 

Posteriormente, se hace un estudio del comportamiento de algunas funciones de agregación y 
funciones asociadas cuando sus entradas son variables aleatorias haciendo uso de órdenes 
estocásticos. Primero se prueban resultados sobre la reducción de la variabilidad, respecto al 
orden estocástico convexo, que sucede al aplicar algunas funciones promedio. Se concluye 
también que, para muchas medidas de variabilidad, estas toman valores más grandes cuando 
el vector aleatorio asociado es más disperso o tiene una dependencia negativa más fuerte. 

El concepto de agregación de variables aleatorias se extiende a otras estructuras aleatorias, 
dedicando más atención al caso de elementos aleatorios sobre conjuntos parcialmente 
ordenados y acotados, vectores aleatorios, procesos estocásticos y conjuntos aleatorios. 
Además de la construcción de dichos conceptos, se concluye que varias propiedades de 
vectores aleatorios o procesos estocásticos se preservan al aplicar la misma función de 
agregación a, respectivamente, cada una de las componentes o de índices asociados. 
Respecto a los conjuntos aleatorios, se define un orden estocástico de localización para los 
mismos. 

Finalmente, algunos de los métodos desarrollados se aplican a problemas que involucran 
datos, ya sean reales o simulados. En particular, se estudian dos problemas de predicción con 
datos de temperatura y humedad, se estudia el comportamiento de contrastes de hipótesis 
relacionados con la uniformidad de capacidades aleatorias, el orden estocástico dispersivo, el 
orden estocástico convexo y el orden estocástico supermodular y se estudian mediante 



                                                                 

 

simulación métodos de estimación para la media de variables aleatorias simétricas con 
dimensión variable. 

RESUMEN en Inglés 
 

In the context of data analysis, aggregation functions are used to fuse information from different 
sources into a unique value. In this direction, it is reasonable to consider a random behavior in 
the aggregated values, since usually they are related to different observations of quantities over 
a population. Following this idea, the work is focused on the definition and study of aggregations 
of random structures.  
 
Firstly, the concept of aggregation of random variables is introduced, adapting the monotonicity 
and the boundary conditions by using stochastic orders. The choice of the stochastic order is 
crucial, with the usual stochastic order being the best alternative. A detailed study of the main 
families of aggregations of random variables and some classic properties of aggregation 
functions for the new concept is made.  
 
Secondly, some particular cases of aggregations of random variables that are of special interest 
are considered. In particular, an induced linear fusion operator is considered in the context of 
mean estimation, some results about the asymptotic behavior of the optimal cumulative weights 
of L-estimators are proved, aggregations of random variables that order the inputs by means of 
their distribution functions are defined, properties of uniform random capacities are studied and 
a minimization problem that allows to define a particular type of approximation for aggregations 
of random variables is solved.  
 
Posteriorly, a behavioral study of some aggregation functions, when their inputs are random 
variables, is made by using stochastic orders. First, it is concluded that some families of mean 
functions reduce the variability, with respect to the convex stochastic order, when applied to 
random vectors. It is also concluded that many variability measures take greater values when 
the associated random vector has more variability or less positive dependence. Although these 
results are intuitive, formal results in this regard cannot be found in the literature.  
 
The notion of aggregation of random variables is extended to other random structures, with the 
cases of random elements on bounded posets, random vectors, stochastic orders and random 
sets being the ones studied more in detail. In addition to the construction of such notions, it is 
concluded that many properties of random vectors and random processes are preserved when 
the same usual aggregation function is applied componentwise or pointwise, respectively. For 
random sets, a location stochastic order is defined.  
 
Finally, some of the developed methods are applied to real or simulated data. In particular, two 
prediction problems regarding temperature and humidity are addressed, the behavior of 
hypothesis tests related with the uniformity of random capacities, the dispersive stochastic 
order, the convex stochastic order and the supermodular order are studied and flexible-
dimensional methods for estimating the mean of symmetric random variables are explored 
using simulation. 
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Chapter 1

State of art and motivation

Contents
1.1 Probability in Aggregation Theory . . . . . . . . . . . . . . . 2

1.2 When random structures must be considered? . . . . . . . . 4

1.3 Why random structures must be considered? . . . . . . . . . 5

1.4 Parallelisms between Statistics and Aggregation Theory . . . 7

1.5 Why random structures are not considered? . . . . . . . . . 9

1.6 Structure and main objectives . . . . . . . . . . . . . . . . . 10

Classical aggregation functions are functions that take n real numbers over a
real interval and return another value over the same interval, fulfilling monotonicity
and some boundary conditions. These functions are usually used in data analysis,
in problems such as the prediction or estimation of quantities of interest. From the
perspective of Statistics, the available data can be considered to be observations of
random variables. However, it is hard to find in the literature examples in this regard,
in Aggregation Theory the data are usually considered to be just real numbers. This
idea was the starting point for the study of aggregations of random variables, in
which randomness is assumed to be present in both the input and the output of the
aggregation function.

This very first chapter serves as an introduction to the thesis and explains in
detail the motivation behind the idea of aggregation of random structures. Although

1
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the idea has been considered tangentially in the literature [228, 269], to the best
knowledge of the author, an exhaustive study of the notion has not been done until
now. Thus, in the subsequent sections, some important initial questions are ad-
dressed. For instance,

• When should the probabilistic approach be considered?

• What are the benefits of such an approach?

• Why is this approach not the usual one in the literature?

In addition, the structure of the document is disclosed.

1.1 Probability in Aggregation Theory

As commented before, probability has been considered sporadically in the litera-
ture in Aggregation Theory, with different approaches. Firstly, it should be noted
that the word aggregation is used in the literature with different meanings. For
instance, in Probability Theory, there are some stochastic processes that consider
aggregation with the meaning of the incorporation of elements to a cluster. This
is the case of aggregation of Markov chains [291], aggregation of spaces areas in
kinetic aggregation processes [10] or the random-time aggregation in partial adjust-
ment models [178]. These cases, although with the term aggregation appearing, are
not related to the approach followed in this work.

A reasonable amount of papers has been published regarding the so-called ag-
gregation of probabilities. In this case, the inputs of the aggregations are proba-
bilities of an event of interest or distribution functions. For instance, the weighted
arithmetic mean of distribution functions is related to the mixture of random vari-
ables. Aggregation of probabilities has application in decision making [19, 91],
geoscience [4] or energy consumption [316]. Some alternatives, such as aggregating
density functions [216], mass functions [330, 331] or distribution functions [163]
are considered. The reader is also referred to [67, 116, 251] for more information
in this regard.

Some aggregations of probabilities can be linked to aggregations of random
structures, see Section 3.1.3, but the concepts are quite different. In aggregation
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of probabilities, even when working with distribution functions, there is not depen-
dence structure between the possible random elements associated with the distri-
butions. They have distribution functions as input for the aggregation, while, for
instance, in the aggregation of random variables, the inputs are random variables.
Of course, any random variable has an associated distribution function, but they are
totally different mathematical notions. In addition, in many applied problems, the
solution should be a particular random element, not a distribution. Moreover, many
random structures, such as random graphs or random sets, do not have an associated
distribution function.

Moving now to proper aggregation of random structures, one can find some
examples in the literature, dealing mostly with random variables. Moreover, in
general, it is considered only the case of usual aggregation functions with random
inputs, that is, the composition of a measurable aggregation function A and a random
vector X⃗ , A ◦ X⃗ . It turns out that the result is a random variable and it will be a
particular type of aggregation of random variables.

Most studies in this direction are devoted to determining properties of the
aggregation function by means of the expectation of its value when the inputs
are random variables. For instance, Chapter 10 in [149] is a clear example in
this regard. It considers mainly the case of independent standard uniform ran-
dom variables as the inputs of the aggregation function, and then computes the
expectation of many indices and measures related to the aggregation. Some effort
has been made to derive this type of properties for the Choquet and Sugeno inte-
grals [117, 150, 193, 226, 227, 228, 230, 269].

Although previous papers are interesting, they do not provide a general theory
of aggregation of random variables, they just consider some particular distribution
for the inputs and compute expectations. There are many other cases of interest,
considering non-uniform or dependent random variables. Moreover, the theory of
aggregation of random variables developed in this thesis is wider than the one of
the previous approach. As will be seen in Section 3.2, there are many aggregations
of random variables that are not just the composition of usual aggregation functions
and random vectors.

Finally, many examples of the use of aggregation functions applied to random
variables can be found in Statistics. The arithmetic mean, the median and other
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statistics are particular cases of aggregation functions. In general, almost any loca-
tion measure [59] is an internal aggregation function (see Definition 2.8). However,
again the study is often restricted to the composition of random vectors, having in-
dependent and identically distributed components in most of the cases, and location
measures. Some additional parallelisms between Statistics and Aggregation Theory
will be explored in Section 1.4.

Another important remark to make is that the general approaches given in [182,
197] do not include aggregations of random structures. They consider a partially
ordered set (S,≤) with a minimum and maximum element and the componentwise
order for vectors of elements in S. Even in the simplest case of random variables,
having bounded spaces restricts the applicability, since many random variables have
a non-bounded support. Moreover, when working with random variables, a stochas-
tic order, see Section 2.3.5, should be considered. Stochastic orders are not antisym-
metric, since they are defined in terms of the distribution of the random variables
and there are different random variables with the same distribution. It should also
be kept in mind that, when working with random vectors, it is usually not enough
to have the ordering of the components for the ordering of the random vectors to be
fulfilled.

1.2 When random structures must be considered?

The two main applied problems that justify the consideration of random structures
in Aggregation Theory are prediction and estimation problems. These problems of-
ten have as initial data some measurements of a quantity of interest. If one follows
the usual approach of Statistics [278], the measurements have been made over a
random population. The values obtained are the result of several observations of
such a quantity on a sample, which is a subset of the population. Then, the mea-
surement process is, in fact, a random experiment and, therefore, the available data
can be considered to have random behavior.

In prediction problems, several random quantities X1, . . . ,Xn,Y are considered.
Then, the objective is to try to determine the value of Y when the values of X1, . . . ,Xn

are given. If there is a positive dependence between X1, . . . ,Xn and Y , then it makes



5 1.3. WHY RANDOM STRUCTURES MUST BE CONSIDERED?

sense to use an aggregation function A to fuse the values of X1, . . . ,Xn, obtaining the
prediction of Y as A(X1, . . . ,Xn). The positive dependence between X1, . . . ,Xn and
Y is ensured, for instance, in many time series models [68, 243].

In this direction, aggregation functions are commonly used as ensembles. Sup-
pose that one has n different prediction models for Y , each of them based on differ-
ent techniques. In that scenario, it is reasonable to assume a positive dependence
between the predictions of the prediction models. Therefore, predictions can be
fused using an aggregation function to obtain a final prediction that overcomes the
limitations of the initial prediction models [5, 284, 320]. The reader is referred to
Section 4.1.1 for a detailed literature study of the use of aggregation functions as
ensembles in time series.

In estimation problems, the most prominent example is the case of mean esti-
mation. Suppose that there is a quantity of interest and one has a vector of observa-
tions of such a quantity perturbed by a random noise with mean 0. Then, estimating
the mean of the associated random variable is equivalent to trying to determine the
value of the quantity of interest. Many of the usual mean estimators are, in fact,
aggregation functions [218, 278, 287, 288, 286]. The most remarkable examples
are the arithmetic mean, the median, the maximum, the minimum or more general
OWA operators.

It must be noticed that aggregation functions are used in other applications
rather than prediction or estimation problems. For instance, t-norms are used to
model intersection in Fuzzy Set Theory [100] and copulas are a powerful tool to
model the dependence between random variables [118, 253], both being particular
cases of aggregation functions. In these cases, a probabilistic approach is not ad-
equate. Moreover, aggregation functions are often used in multi-criteria decision
making [238], in which the opinion of experts sometimes cannot be seen as random
values.

1.3 Why random structures must be considered?

As explained in the latter section, it is reasonable to consider randomness when
dealing with prediction and estimation problems. However, it remains to clarify
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the benefits of such an approach. Notice that by introducing random structures, the
mathematical complexity increases, so its inclusion should be justified.

Focusing on random variables, they are measurable functions from a proba-
bility space (Ω,F ,P) to the real numbers endowed with the Borel σ -algebra, see
Section 2.3.1. The probability space serves as an underlying structure that allows
one to model the behavior of the population, not only the observed values. More-
over, the probability space is supposed to be the same for all the considered random
elements, so it serves as a common structure that models their joint variation.

The first consequence of considering a probability approach is the notion of
dependence. When just working with observations, it is not possible to take into
account the possible relation between the inputs, whereas in many cases the values
increase and decrease together. This is especially relevant in some applications such
as the use of aggregation functions as ensembles in prediction problems, since, if the
prediction models are reasonably good, they are going to have a strong and positive
dependence.

Even when working with only one random variable, the variability cannot be
properly modeled without random variables. Of course, one can compute some
variability measures for a particular sample, but the results, without probability
methods, cannot be extended to the population. Therefore, the information obtained
might not be useful for a different observation of the same random variable.

In some applications, a training dataset is used to estimate some parameters of
aggregation functions. Then, the fitted aggregation function is applied to new data
to obtain a prediction or estimation of a quantity. Notice that, in this case, there
are two sources of randomness. The first one is the randomness of the inputs of
the aggregation function. The second one is the randomness associated with the
estimation of the parameters, since they inherit the random behavior of the data that
have been used to fit them. Without a probability approach, the possible relation
between the fitted parameters and the input random variables, which appear, for
instance, in time series, cannot be considered. This dependence can lead to some
strange scenarios (see Example 3.21). Focusing on estimation, the probabilistic ap-
proach is crucial, since almost all properties of estimators cannot be defined without
randomness (see Section 2.4.2).

Regardless of the latter considerations, there are some data analysis techniques
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that are of interest and that, as being part of Statistics, require a probabilistic ap-
proach. For instance, the construction of confidence intervals, useful in order to
give a set of possible values for a quantity, and hypothesis testing, which allows
one to extend conclusions from the sample to the population, are only possible with
random variables [278].

Finally, notice that another benefit of considering random variables is that there
are properties of usual aggregation functions that only arise with a probabilistic
approach, as can be seen in Chapter 10 in [149].

1.4 Parallelisms between Statistics and Aggregation
Theory

As commented before, when aggregation functions are used in prediction and es-
timation problems, the considered approaches are usually equivalent to existing
methods in Statistics. For instance, measures such as the Mean Squared Error or
the Mean Absolute Error are used in both areas to measure the distance between the
prediction/estimation and the real value. Since they share a common objective, Ag-
gregation Theory and Statistics have independently developed some methods that
are equivalent.

The most remarkable example is the use of the Ordered Weighted Averaging
(OWA) operators, introduced in [327]. For computing these aggregation functions,
the values of the inputs are ordered from the smallest to the greatest and then a
convex linear combination is applied. From the side of Statistics, the approach of
ordering samples and then computing a linear combination of the resulting values
is a common procedure, see [104]. The resulting functions are called L-statistics.
Some foundational papers can be found in the literature [218, 287, 288, 286], much
older than the ones of OWA operators, which also give mathematical results on the
behavior of such quantities. Of course, OWA operators can be seen as a particular
case of L-statistics obtained when the linear combination is convex. For instance,
the function given by

1
2

max(⃗x)+
1
2

min(⃗x),
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for any x⃗ ∈ Rn is both an OWA operator and an L-statistic.

Another common point is the computation of quantities by minimizing a sort of
dissimilarity measure between the input vector and the output value. For instance,
it is known that the value y that minimizes

n

∑
i=1

(y− xi)
2,

for any x⃗ ∈ Rn is the arithmetic mean y = 1
n ∑

n
i=1 xi. This approach is known in

Aggregation Theory as aggregation based on penalties, see [75, 78, 304] and Sec-
tion 6.6 in [149]. In Statistics, the same approach was considered before in the
so-called extremum estimators [9, 11], which include, as particular cases, GMM
estimators [166] and M-estimators [315].

Updating the result of the prediction or estimation is also a common point in
some works on Statistics and Aggregation Theory. For instance, in Aggregation
Theory, the notions of associativity [285] and recursivity [110] are really important
to ease the computation of the aggregation. In Statistics, online estimation [175,
198, 332] also focuses on the update of a given estimation. The most remarkable
example is the one concerning the arithmetic mean, since one has that

1
n

n

∑
i=1

xi =
xn +(n−1)

( 1
n−1 ∑

n−1
i=1 xi

)
n

.

It should be remarked that, even with all these points in common, there are
many differences between Aggregation Theory and Statistics. As already com-
mented before, Statistics considers a probability approach, while Aggregation The-
ory does not. On the other hand, the variety of functions that are considered in Ag-
gregation Theory is wider than in Statistics, functions such as Choquet and Sugeno
Integrals or t-norms are rarely used in Statistics.

Since some parts of Aggregation Theory and Statistics have common objec-
tives and share methodological approaches, it is reasonable to try to combine both
fields. For instance, some Statistical methods could be improved by using some
involved aggregation functions or ideas from Aggregation Theory. In addition, Ag-
gregation Theory, when used in data analysis, will also benefit from a probability
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approach, as explained in the latter sections. Thinking about Statistics and Aggre-
gation Theory as two different and independent branches of Mathematics can be a
restriction when trying to develop better methods for data analysis.

1.5 Why random structures are not considered?

Although the benefits of considering random structures in data analysis are clear,
as commented before, only a few papers and works consider this approach in Ag-
gregation Theory. The reasons behind the absence of such a consideration are not
simple, but some comments can be made.

Aggregation functions are used in many areas of Mathematics. However, an
exhaustive study of such functions as a proper branch has been done mostly by
the fuzzy set community. This fact can be verified by considering the authors of
the most prominent books in the area [45, 49, 149], being all of them related to
fuzzy sets. Fuzzy sets were introduced in [219] and generalize the concept of set
by considering a membership function µA : S → [0,1] that gives to each element
s ∈ S a degree of membership to A, µA(s). This degree of membership can be used
to model imprecise data. For instance, if A is a set consisting of tall people, for
a woman being 1.70 meters tall, it is not clear if the woman belongs to A or not.
However, if a fuzzy set is considered, the woman can have a membership degree
between 0 and 1 that reflects the subjectivity of the classification. Important types
of functions in this regard are t-norms and t-conorms, which are used to define,
respectively, the intersection and union of fuzzy sets [192]. It turns out that t-norms
and t-conorms are increasing and fulfill the boundary conditions in 0 and 1. In [192],
a generalization of them, aggregation functions, was introduced.

Therefore, it is quite natural for people from the fuzzy set community to be
more interested in extending aggregation functions to deal with fuzzy concepts
rather than to random structures. Many papers can be found with the first of the
approaches [165, 275, 335]. Moreover, since the membership function takes values
between [0,1], just as a probability measure, a deep discussion about the interpre-
tation about the necessity and semantics of fuzzy sets was made in the initial years.
The theory of fuzzy sets was the subject of intense debate, see Section 2.4 in [52],
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since some authors stated that Probability Theory was enough to achieve anything
Fuzzy Set Theory could do [87, 212]. By some authors, see [57, 200], current
consensus is that both theories deal with uncertainty. Fuzzy sets works with vague-
ness and Probability Theory with randomness, the first one being the imprecision of
data, while the second the differences between the repetition of the same (random)
experiment.

Although there is part of the community devoted to imprecise probability [237],
fuzzy random variables [272] or to merge Probability Theory with fuzziness [281],
this is not the case of researchers in Aggregation Theory, that might be reticent
to use a fully probability approach in Aggregation Theory rather than a fuzzy one.
Another possible reason is the expertise of researchers in Aggregation Theory. Most
of them are computer scientists or mathematicians focused on artificial intelligence.
Just a few experts on Probability Theory are nowadays working in the area, so it is
possible that some involved notions of Probability Theory are not familiar to them.

It must be mentioned that, during the three years of preparation of this thesis,
the approach of considering random structures in Aggregation Theory has been
discussed in detail with many researchers in Aggregation Theory, with very positive
feedback.

1.6 Structure and main objectives

The objective of this thesis is to state a theory of aggregation of random variables,
study its utility and derive some applied methods to solve problems related to data
analysis. In particular, three main objectives can be distinguished.

The definition and study of the concept of aggregation for different ran-
dom structures. Adapting the monotonicity and the boundary conditions of usual
aggregation functions to random structures is not straightforward. Therefore, it is
necessary to construct a formal definition of such concepts for the considered ran-
dom structures. The most usual ones, random variables, random vectors, stochas-
tic processes and random sets require special attention. The proposed definitions
should be studied in detail and the consequences of the chosen alternative for each
case should be studied. Moreover, prominent families must be defined, focusing on
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their semantics. For random structures such as random vectors and stochastic pro-
cesses, the study of the preservation of some properties throughout the aggregation
process should be addressed.

The definition of new aggregation operators, the study of their proper-
ties and their use in applied problems. Using the theoretical basis established in
the latter point, some aggregation of random variables can be defined and used in
applied problems. The definition of such aggregations should be stated and their
mathematical properties should be studied. In addition, their applicability should
be illustrated in some examples with real or simulated data.

The extension of the behavioral study of aggregation functions by means
of random variables. Finally, using the probability approach, some properties of
usual aggregations and related functions could be proved, following a similar idea
as in Chapter 10 in [149]. In addition, the semantics and applicability of the proved
results should be addressed.

The structure of the thesis is designed to answer the latter objectives. In Chap-
ter 2, the basic notions that are needed for the development of the thesis are ad-
dressed, focusing mainly on Aggregation Theory, Probability Theory and Statistics.
Then, Chapter 3 is devoted to the definition of aggregation of random variables,
as well as to the study of some relevant families and properties of the introduced
notion. Subsequently, several prominent examples of aggregations of random vari-
ables are given in Chapter 4. Its main properties are stated, with a focus on its
applicability. Chapter 5 contains the results on stochastic inequalities considering
aggregation functions and related functions, such as penalty functions and variabil-
ity measures. The construction given in the first chapter is extended in Chapter 6,
providing the definition of aggregations of random structures different from ran-
dom variables. Chapter 7 is focused on the experimental part, including several
applications of the defined aggregations of random variables and other developed
techniques to real and simulated data.

Therefore, in order to clarify the structure of the thesis, in Figure 1.1 the re-
lationship between different chapters and sections is detailed. For instance, it is
recommended to read Section 4.1 before reading Section 7.6. Leaving aside the
preliminaries, Chapter 3 serves as the basis for the rest of the chapters, so it is
recommended to start from there.
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Chapter 2

Chapter 3

Section 4.1

Section 4.2

Section 4.3

Section 4.4

Section 4.5

Section 5.1

Section 5.2 Section 5.3

Chapter 6

Section 7.1

Section 7.2

Section 7.3

Section 7.4

Section 7.5

Section 7.6

Figure 1.1: Scheme of the structure of chapters and sections of the thesis.

Regarding the three main objectives stated above, Chapters 3 and 6 are related
to the definition of the concept of aggregation of random structures, Chapters 4
and 7 are associated with the definition of new aggregation operators and their use
in applied problems. The results regarding the behavioral study of aggregation func-
tions using random variables are provided in Chapter 5.
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This section is devoted to explaining the basic concepts necessary for the cor-
rect development of the thesis. The considered topics are diverse, so many different
definitions and notions have to be introduced. In particular, after some initial no-
tions given in Section 2.1, the basics about Aggregation Theory, in Section 2.2,
Probability Theory, in Section 2.3, and Statistics, in Section 2.4, are provided.

2.1 Some initial notions

Some initial notations and conventions have to be fixed before introducing more in-
volved concepts. The symbols in brackets {} are used to define sets. The cardinality
of a set S will be denoted as |S|. The usual set operations such as the union ∪, the
intersection ∩, the Cartesian product ×, the subtraction \ of sets will be considered
along the thesis with the usual definition. Sometimes, for the Cartesian product of
n copies of the same set S×·· ·×S, the notation Sn will be considered. In addition,

13
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the complementary of a subset of another set S, B ⊆ S, will be denoted as B. Al-
though most of the time the words such that will be explicitly written, sometimes
the shortcut | will be used with the same meaning.

The set of real, integers and natural numbers will be denoted, respectively, as
R, Z and N. If only positive real numbers, including 0, are considered, it will be
denoted as R+. Given a set S, the set consisting of all the subsets of S, i.e. the parts
of S, will be denoted by P(S). In general, any ordered finite collection of elements
of a set S will be denoted as a vector s⃗ ∈ S. In a vector space, the vectors v⃗ will be
considered as column vectors, while their transposes v⃗ t as row vectors.

The shortcut [n] will be used to denote {1, . . . ,n}, with n ∈ N. A permutation
π over [n] is a bijection from [n] to [n] and represents an order of the elements in [n].

Many orders are going to be considered along the thesis. In many cases, the
same symbol ≤ will be used with different meanings, whenever it does not lead to
confusion. In general, it will refer to the usual order between real numbers or, when
dealing with vectors, to the lattice or componentwise order of them.

Functions will be introduced as f : S → A, where S and A are, respectively, the
domain and the image of f . Given B ⊆ S, f (B) will be used to denote the subset of
A such that a ∈ f (B) if there exists b ∈ B with f (b) = a. The notation f−1 will be
used for the pre-image or anti-image of f , that is, if C ⊆ A, then f−1(C) is a subset
of S such that s ∈ f−1(C) if f (s) ∈ C. The symbol ◦ denotes the composition of
functions.

The notation (xs,s ∈ S) is used to denote a collection of elements indexed using
the elements of S. If S = N, the collection is a sequence. The usual notion of
sequence convergence is considered, denoting as limn→∞ xn the limit if it exists. If
the elements of the sequence are real functions, ( fs,s∈ S), the sequence is said to be
uniformly convergent over A if for any ε ∈ R+ there exists m ∈ N such that for any
k ∈ N with k > m, it holds that | fk(t)− limn→∞ fn(t)| < ε . The limits of functions
of real numbers, denoted as limt→t0 f (t), are defined in the usual way.

Regarding the axioms for set theory, the here-considered approach is the usual
one in modern mathematics, the Zermelo-Fraenkel axioms together with the axiom
of choice (ZFC), see [289].

In the following sections, some brief notions about matrices, Topology and
properties of functions are provided.
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2.1.1 Matrices

A square matrix of dimension n
(
Mi, j, i, j ∈ [n]

)
, usually denoted just by M, is a

collection of n2 real values indexed over [n]2. The trace tr(M) and the determinant
|M| are defined as usual. The inverse matrix of M, if it exists, is the (unique) matrix
such that M−1M = MM−1 = In, where In denotes the identity matrix of dimension n
and the usual product of matrices is considered. The power of Mk is defined as the
product of M by itself k times. In addition, the transpose of M, i.e. the interchange
of rows and columns, will be denoted as Mt . The reader is referred to [319, 290] for
more detailed information about matrices.

Notice that real vectors can be seen as matrices with just one column. Through-
out the thesis, the notation 1⃗ and 0⃗ will be used to refer to the vector with all ele-
ments equal to 1 and 0, respectively. Given a squared matrix M, its infinite norm is
defined as ||M||∞ = maxi∈[n]∑

n
j=1 |Mi, j|.

Two particular types of matrices will be of interest. The first one is the class
of positive semi-definite matrices. Recall that a squared matrix M is said to be
symmetric if Mi, j = M j,i for any i, j ∈ [n].

Definition 2.1 [58] A squared symmetric matrix M of dimension n is said to be
positive semi-definite if for any x⃗ ∈ Rn, x⃗ tMx⃗ ≥ 0.

If the inequality is strict, then the matrix is positive definite. There are other
characterizations of positive semi-definiteness by using eigenvalues or principal mi-
nors, see [58]. Another relevant type of matrix that will appear are the persymmetric
matrices, which fulfill Mi, j = Mn+1− j,n+1−i for any i, j ∈ [n]. The inverse of any in-
vertible persymmetric matrix is also persymmetric [142]. The next result will be of
interest for the proof of Proposition 4.11.

Lemma 2.2 [155] Let A and B be two squared matrices such that A and A−B are
invertible. Then,

(A−B)−1 = A−1 +A−1B(A−B)−1,

(A−B)−1 =
∞

∑
k=0

(
A−1B

)k
A−1.
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2.1.2 Topology

A topological space consists of a set S and a topology τ that includes some subsets
of S, called open sets, which fulfill some particular properties. Formally,

Definition 2.3 [248] Let S be a set. Then, τ ⊆ P(S) is a topology of S if

• /0,S ∈ τ ,

• For any arbitrary collection (Oi, i ∈ I) with Oi ∈ τ for any i ∈ I, ∪i∈IOi ∈ τ ,

• For any O1, . . . ,On with n ∈ N, ∩n
i=1Oi ∈ τ .

The pair (S,τ) is called a topological space. Given a point p ∈ S, N is a neigh-
borhood of p if there exists O ∈ τ such that p ∈ O ⊆ N. The complementary of
any open set is called a closed set. The closure of a set B, cl B, is the smallest
closed set that contains B. A particular type of sets, compact sets, will be of special
importance.

Definition 2.4 [248] Let (S,τ) be a topological space. Then, K ⊆ S is said to
be compact if, for any collection (Oi, i ∈ I) such that Oi ∈ τ for every i ∈ I and
K ⊆ ∪i∈IOi, there exists a finite subset of I, I0 ⊆ I, such that K ⊆ ∪i∈I0Oi.

Therefore, a compact set is a set K such that, for any open cover of K, there
always exists a finite subcover of K. A set C ⊆ S is said to be connected if there
do not exist two non-empty open sets O1 and O2 such that O1 ∩O2 = /0 and C =

O1 ∩O2 [248]. In R, connected sets are bounded and unbounded intervals.
Some topologies can be constructed considering a distance (see Chapter 8

in [248]). If this is the case, the topological space is called metrizable. If the asso-
ciated distance d implies that any Cauchy sequence, i.e. a sequence (xn,n ∈ N) for
which for any ε ∈ R+ there exists N ∈ N such that for any n,m ∈ N with n,m > N
it holds d(xn,xm) < ε , is convergent, then the topological space is said to be com-
pletely metrizable. In addition, a topological space (S,τ) is said to be separable if
there exists a countable set A such that A∩O ̸= /0 for any O ∈ τ . Separable and
completely metrizable topological spaces are known as Polish spaces [141]. For
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metrizable spaces, the closure of a set contains the limit of all convergent sequences
contained in the set.

For the set Rn, both the Euclidean distance, d(⃗x, y⃗) =
√

∑
n
i=1(xi − yi)2, and

the Manhattan distance, dM (⃗x, y⃗) = maxi∈[n] |xi − yi|, generate the so-called usual
topology of Rn. This topological space is Polish [141].

2.1.3 Some properties of real functions

Consider a real function from the Cartesian product of the real line f : Rn → R.
Some properties of this type of functions are disclosed in this section. The here-
presented properties can be found in many sources, for instance [295, 312]. Firstly,
the terms positive and negative are going to be used in the non strict sense, i.e. 0 is
both positive and negative. If 0 is excluded, then it will be used the terms strictly
positive or strictly negative.

A real function is continuous if limx⃗→x⃗0 f (⃗x) = f (⃗x0) for any x⃗ ∈ Rn. For
functions f : R → R, if the latter property holds for limits approaching from the
left (right), the function is said to be left-continuous (right-continuous).

If it exists, the partial derivative of a function f : Rn → R is defined as

∂

∂xi
f (⃗x) = lim

h→0

f (⃗x+ h⃗ei)− f (⃗x)
h

,

where e⃗i is the vector that takes the value 1 in the i-th position and 0 in the rest.
If partial derivatives can be computed for any x⃗ ∈ Rn, it is said that the function
is differentiable. If f : R → R, the unique partial derivative will be denoted by
f ′. Similarly, the second partial derivatives ∂ 2

∂xi∂x j
f (⃗x) and ∂ 2

∂ 2x2
i

f (⃗x) are defined by
considering two subsequent partial derivatives.

A function f : Rn → R is said to be increasing if f (⃗x) ≤ f (⃗y) whenever x⃗ ≤
y⃗. The term strictly increasing will be reserved for the case f (⃗x) < f (⃗y). If f is
differentiable, then it is increasing if and only if its partial derivatives are positive.
Similarly, f is said to be (strictly) decreasing if − f is (strictly) increasing.

In addition, a function f : Rn → R is convex if f (λ x⃗+(1−λ )⃗y) ≤ λ f (⃗x)+
(1−λ ) f (⃗y) for any x⃗, y⃗ ∈Rn and λ ∈ [0,1]. If the latter inequality is strict, then f is
said to be strictly convex. If, when a value for n−1 of the components of the vector
is fixed, the resulting univariate function is convex, f is said to be componentwise
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convex. If the second partial derivatives of f exists, then f is convex if and only if
the Hessian matrix H (⃗x), defined as H (⃗x)i, j =

∂ 2

∂xi∂x j
f (⃗x) for any i, j ∈ [n] is positive

semi-definite for any x⃗ ∈ Rn. If H (⃗x)i,i is positive for any x⃗ ∈ Rn and i ∈ [n], then
f is componentwise convex. Similarly, f is said to be (strictly, componentwise)
concave if − f is (strictly, componentwise) negative.

A (permutation) symmetric function f : Rn → R is defined as a function that
satisfies f (x1, . . . ,xn) = f (xπ(1), . . . ,xπ(n)) for any permutation π : [n]→ [n].

A function f : Rn → R is supermodular if f (⃗x)+ f (⃗y) ≤ f (⃗x∨ y⃗)+ f (⃗x∧ y⃗)
for all x⃗, y⃗ ∈Rn, where ∨ and ∧ denote, respectively, the componentwise maximum
and minimum. If − f is supermodular, then f is said to be submodular.

A contraction is a function f : Rn → Rn such that, for any x⃗, y⃗ ∈ Rn, it holds
that ∑

n
i=1(xi − yi)

2 ≥ ∑
n
i=1( f (xi)− f (yi))

2.
Finally, it is worth introducing the notation for the Riemann-Stieltjes integral.

Given two real functions f ,g : I →R in a real interval I, such an integral is denoted
as ∫

I
f (x)dg(x).

This integral is defined in terms of the limit of sequences involving the sums

n

∑
i=1

f (xi)(g(xi)−g(xi−1)) ,

where x0 ≤ ·· · ≤ xn are the points associated with a partition of I. Notice that, if
g(x) = x, then the result is the usual Riemann integral. The reader is referred to [74]
for more information in this regard.

2.2 Aggregation Theory

Aggregation Theory is devoted to studying the fusion of information by means of
particular functions called aggregation functions. The first ideas of aggregation
were born related to the concept of averages or means. It is possible to find work
about means by Cauchy in the 19th century [84], considering a mean to be a func-
tion that is bounded between the minimum and the maximum. More recently, Kol-
mogorov defined a mean as a continuous, increasing, symmetric, associative and
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idempotent function [108, 196], which turns out to be the class of quasi-arithmetic
means [73].

From another different perspective, aggregation functions also appear as a gen-
eralization of some operators that were relevant in Fuzzy Set Theory [234]. In this
direction, the formal definition of aggregation function was proposed in [192], re-
quiring the function to be increasing and to fulfill some boundary conditions. This
general definition, which is the usual consideration in the present, includes functions
that are used in very different topics such that Fuzzy Set Theory [190], decision
making [229], data analysis [170] and dependence modeling [118, 253].

2.2.1 Aggregation functions

An aggregation function is typically referred to as a function that summarizes sev-
eral values by a single number. In addition, any aggregation function should in-
crease if all its arguments increase (monotonicity), and returns the supremum or the
infimum when, respectively, the inputs are all the supremum or the infimum of the
interval.

Throughout the thesis, I will be used to denote a closed (bounded or not) in-
terval of the real line R. The classical definition of aggregation function involves a
bounded interval.

Definition 2.5 [45] Let I = [a,b] be a non-empty bounded real interval. A function
A : In → I is said to be an aggregation function if

1. Is increasing,

2. A(a, . . . ,a) = a,

3. A(b, . . . ,b) = b.

Conditions 2 and 3 are known, respectively, as the lower and upper boundary
conditions. Many aggregation functions, such as t-norms, t-conorms, copulas, null-
norms or uninorms consider I to be the unit interval [0,1]. In fact, some approaches
consider I to always be the unit interval, see [49].
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However, sometimes it is necessary to aggregate values over unbounded inter-
vals, typically the real line R. This case is especially relevant in the approach of this
thesis, since many important families of random variables have unbounded support.
For instance, Gaussian and exponential random variables take values, respectively,
in R and R+.

Definition 2.6 [149] Let I be a non-empty real interval. A function A : In → I is
said to be an aggregation function if

1. Is increasing,

2. inf⃗x∈In A(⃗x) = inf I,

3. sup⃗x∈In A(⃗x) = sup I.

The boundary conditions for the unbounded case are not straightforward and
deserve a detailed explanation. In the approach given in [149], it is considered
the extended real line R̄ = [−∞,∞] = R∪{−∞,∞}, where −∞ and ∞ are two new
elements that are added to R. The usual order for real numbers is also extended to
these new elements by stating −∞ < x < ∞ for any x ∈ R.

With the latter consideration, the boundary conditions are well-defined even
for unbounded intervals. They can be interpreted as the image of the aggregation
having the same minimum (maximum) as the interval, if it exists, while not having a
lower (upper) bound if the interval does not have a lower (upper) bound. Moreover,
it is possible to rewrite such boundary conditions as follows.

2. For any x ∈ I, there exists x⃗ ∈ In such that A(⃗x)≤ x,

3. For any x ∈ I, there exists x⃗ ∈ In such that A(⃗x)≥ x,

which are trivially equivalent to the other ones using that A is increasing.
Finally, there are cases where the number of inputs is not fixed. For instance,

the maximum can be defined for any finite number of values. In that direction,
extended aggregations are considered.

Definition 2.7 [149] Let I be a non-empty real interval. A function A : ∪n∈NIn → I
is said to be an extended aggregation function if any function A(n) : In → I defined
as A(n)(⃗x) = A(⃗x) for all x⃗ ∈ In is an aggregation function.
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Notice that any extended aggregation can be seen as a collection of usual ag-
gregation functions, one for each dimension of the inputs. However, typically the
aggregation functions associated with an extended aggregation function are defined
by the same procedure and share a common structure. Sometimes, for instance in
the case of nullnorms and uninorms (see Definitions 2.18 and 2.19), they can be
defined by using a recursive formula.

The notation A will be used for both aggregations and extended aggregations
whenever it does not lead to confusion. Given an extended aggregation A, the ag-
gregation functions associated with a fixed cardinality n ∈ N will be denoted as
A(n) (just as in Definition 2.7). In addition, the convention of unary aggregation
functions [149] will be considered, which states that A(1)(x) = x for any x ∈ I.

2.2.2 Properties of aggregation functions

In the literature, there are a huge number of properties that have been defined and
studied for aggregation functions. Some of the typical properties have already been
defined in Section 2.1.3, such as (permutation) symmetry or convexity, but others
are particular to the theory of aggregation.

By the classification given in the main reference books [45, 49, 149], any aggre-
gation function can be disjunctive, conjunctive or an average if, respectively, takes
values smaller than the minimum, values greater than the maximum or takes values
between the minimum and the maximum. If the aggregation is not included in any
of the latter families, it is called mixed. For instance, copulas (see Section 2.3.2),
are disjunctive and weighted arithmetic means are averages. The most important
family in the approach given in this thesis is the case of averaging functions, also
known as means. The property of being between the maximum and the minimum
is usually called internality.

Definition 2.8 [149] An aggregation function A : In → I is said to be internal if
min(⃗x)≤ A(⃗x)≤ max(⃗x) for any x⃗ ∈ In.

It is well-known that, for aggregation functions, internality is equivalent to
another relevant property, the idempotence. Intuitively, an aggregation function is
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idempotent if the image of a constant vector is equal to the value of any of its
components.

Definition 2.9 [149] An aggregation function A : In → I is said to be idempotent if
A(x, . . . ,x) = x for any x ∈ I.

Proposition 2.10 [149] An aggregation function is internal if and only if it is idem-
potent.

Idempotence, equivalently internality, is often required when using aggrega-
tion functions in applied problems related to fusion of prediction models, since it is
reasonable to think that, if all models agree in one value, the aggregated prediction
should be that value. Another property that is often relevant is to have the aggrega-
tions to have a good behavior when a linear transformation is made to the inputs. In
general, one should expect coherent aggregation when there is a change in the units
or a constant value is added to the fused information.

Definition 2.11 [149] An aggregation function A : In → I is said to be interval
scale invariant if A(µ⃗1+λ x⃗) = µ +λA(⃗x) for any x⃗ ∈ In, µ ∈R, λ ∈R+ such that
µ⃗1+λ x⃗ ∈ In.

For example, the arithmetic mean and the maximum are interval scale invariant,
whereas copulas are not. Notice that any of the latter properties can also be defined
for any extended aggregation function by requiring the aggregation functions asso-
ciated with the different cardinalities of the inputs to hold that property. In addition,
there are some properties that are only defined for them, such as associativity.

Definition 2.12 [149] An extended aggregation function A : ∪n∈NIn → I is said to
be associative if

A(2)
(

A(n)(⃗x),A(m)(⃗y)
)
= A(n+m)(⃗x, y⃗),

for any x⃗ ∈ In, y⃗ ∈ Im and n,m ∈ N.

Notice that any associative extended aggregation function can be computed by
iteratively applying the associated aggregation function of dimension n = 2. For
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instance, the maximum is associative since max(x1,x2,x3) = max(x1,max(x2,x3)).
Another related notion is the recursivity [110, 143] in which the applied function
may change with the value of n. For instance, the arithmetic mean is recursive, since

A(n)(x1, . . . ,xn) =
1
n

n

∑
i=1

xi =
1
n

n−1

∑
i=1

xi +
1
n

xn =
n−1

n
A(n−1)(x1, . . . ,xn−1)+

1
n

xn.

Another notion defined for extended aggregation functions is the existence or
not of a neutral element. Roughly speaking, a neutral element is a value that can be
ignored when computing the aggregated value.

Definition 2.13 [149] Let A : ∪n∈NIn → I be an extended aggregation function.
Then, if there exists e ∈ I such that A(x1, . . . ,xi−1,e,xi+1, . . . ,xn) = A(x1, . . . ,xi−1,

xi+1, . . . ,xn) for any n, i ∈ N such that i ≤ n and x1, . . . ,xi−1,xi+1, . . . ,xn ∈ I, then e
is said to be a neutral element of A.

For instance, if the maximum of positive numbers is considered, then 0 is a
neutral element, since max(0,x) = x for any x ∈ R+. The neutral element, if it
exists, is unique [149] when A(1)(x) = x for any x ∈ I. On the other hand, there
exists a type of elements, the annihilators, that have the opposite behavior. If the
value is included among the inputs, then the output value is equal to the annihilator
element.

Definition 2.14 [149] Let A : ∪n∈NIn → I be an extended aggregation function.
Then, if A(⃗x) = a for any x⃗ ∈ ∪n∈NIn such that a ∈ {x1, . . . ,xn}, then a is said to be
an annihilator element of A.

An example of an annihilator element is 0 in the geometric mean. Similarly
as with neutral elements, if there exists an annihilator element, it is unique [149].
However, it is possible to have both a neutral and an annihilator element for the
same aggregation. For instance, the maximum over the unit interval has as neutral
element 0 and as annihilation element 1.
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2.2.3 Families of aggregation functions

In the development of this thesis, some particular families of aggregation func-
tions will appear. This section is devoted to introducing them and providing their
main properties. Many aggregation functions are defined using a weighting vector,
which is just a vector with positive components that sum 1. More precisely, a vec-
tor w⃗ ∈ Rn is said to be a weighting vector if w⃗ ∈ [0,1]n and fulfills ∑

n
i=1 wi = 1.

In some parts of this thesis, such as Sections 4.1 and 4.2, positivity of the weights
will be dropped. In that case, the term generalized weighting vector will be used.
One of the families, which definition implies a weighting vector, are the weighted
quasi-arithmetic means. They are obtained by generalizing the arithmetic mean,
considering a function h that changes the scale of the inputs and a weighting vector.

Definition 2.15 [73] An aggregation function A : In → I is said to be a weighted
quasi-arithmetic mean if it can expressed as,

A(⃗x) = h−1

(
n

∑
i=1

wih(xi)

)
, ∀⃗x ∈ In,

with h : I →R being a real-valued strictly monotone function and w⃗ being a weight-
ing vector.

Weighted quasi-arithmetic means are also known as the Kolmogorov-Nagumo
means [73]. They include, among others, weighted arithmetic means, weighted
geometric means, weighted harmonic means and weighted power means, which
have, respectively, the following expressions.

WAM(⃗x; w⃗) =
n

∑
i=1

wixi, WGM(⃗x) =
n

∏
i=1

xwi
i ,

WHM(⃗x; w⃗) =
1

∑
n
i=1

wi
xi

, WPM(⃗x; w⃗, p) =

(
n

∑
i=1

wix
p
i

) 1
p

,

with p ∈ [∞,−∞] and the inputs x⃗ restricted to R+ in all cases but the weighted
arithmetic mean. When p is −∞ or ∞, the aggregation is, respectively, the minimum
and the maximum.

Another family that uses a weighting vector but also considers the ordering of
the inputs are the Ordered Weighted Averaging (OWA) operators.
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Definition 2.16 [327] An aggregation function A : In → I is said to be an Ordered
Weighted Averaging if it can be expressed as,

A(⃗x) =
n

∑
i=1

wixπ(i),

where π : [n]→ [n] denotes a permutation such that xπ(1) ≤ ·· · ≤ xπ(1) and w⃗ is a
weighting vector.

Any OWA operator will be denoted by OWA(⃗x; w⃗). When w⃗ = (1,0, . . . ,0),
the OWA operator behaves as the minimum and, when w⃗ = (0, . . . ,0,1), as the
maximum. As has been discussed in Section 1.4, it has a deep relation with convex
linear combinations of order statistics, which will be introduced in Section 2.3.2.5.

With an adequate choice of the weights, they are robust to outliers. In partic-
ular, trimmed means, which are defined as the average of the central values of the
ordered sample, are particular types of OWA operators. Moreover, the median, both
for an even and an odd number of inputs, is an OWA operator.

In other scenarios, the arguments of the aggregation are ordered by means of
an auxiliary vector. This is the case of the Induced Ordered Weighted Averaging.

Definition 2.17 [328] Let w⃗ ∈Rn be a weighting vector. Consider the permutation
π⃗y : [n]→ [n] such that π⃗y(⃗y)1 ≤ ·· · ≤ π⃗y(⃗y)n and, if there is any draw in y⃗, replace
the associated values of x⃗ by their average. Then, the Induced Ordered Weighted
Averaging (IOWA) has the following expression:

IOWA(⃗x, y⃗; w⃗) =
n

∑
i=1

wiπ⃗y(⃗x)i.

Notice that the IOWA operator is an aggregation function only when the vector
y⃗ is fixed, since a change of the order of the variables could make the monotonicity
not hold. However, a correct choice of the vector that induces the order can be
interesting from an applied point of view. The reader is referred to Section 4.1.1
for more information about the applicability of this type of functions in time series
forecasting.

Both weighted quasi-arithmetic means and OWA operators contain, as special
cases, the maximum and the minimum. Other families, nullnorms and uninorms,
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also generalize the maximum and the minimum. Rather than an explicit expression,
their definitions consider the interval I to be the unit interval [0,1], a flexible number
of inputs and impose some properties.

Definition 2.18 [149] An extended aggregation function A : ∪n∈N[0,1]n → [0,1] is
said to be a nullnorm if it is symmetric, associative and has an annihilator element
a ∈ [0,1].

Definition 2.19 [149] An extended aggregation function A : ∪n∈N[0,1]n → [0,1]
is said to be an uninorm if it is symmetric, associative and has a neutral element
e ∈ [0,1].

Nullnorms and uninorms will be denoted, respectively, by N and U . If the
annihilator element or the neutral element must be explicitly stated, the notation Na

and Ue will be used. Notice that, as already introduced in Section 2.2.2, annihilator
and neutral elements are unique.

The structure of nullnorms and uninorms has a very strong relation with t-
norms and t-conorms. Since the general case will not be of interest in this thesis,
the reader is referred to [149] for more information in this regard. The particular
case that will be considered is the one of idempotent nullnorms and uninorms, which
have easier characterizations.

Proposition 2.20 [100] Let N :∪n∈N[0,1]n → [0,1] be an idempotent nullnorm with
annihilator element a ∈ [0,1]. Then,

N(x,y) =


max(x,y) if x,y < a,

min(x,y) if x,y > a,

a elsewhere.

Proposition 2.21 [100] Let U : ∪n∈N[0,1]n → [0,1] be an idempotent uninorm with
neutral element e ∈ [0,1]. Then, there exists a decreasing function g : [0,1]→ [0,1]
with g(e) = e such that:

U(x,y) =


min(x,y) if y < g(x),

min(x,y) or max(x,y) if y = g(x),

max(x,y) if y > g(x).
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Figure 2.1: Structure of an idempotent nullnorm with annihilator element a (left)
and an idempotent uninorm with neutral element e (right).

It should be noted that, while the expression in Proposition 2.20 is a charac-
terization, the expression given by Proposition 2.21 it is not. That is, not every
decreasing function g : [0,1]→ [0,1] with g(e) = e leads to an idempotent uninorm.

Although the latter results only give the structure when the number of inputs is
2, the associativity allows to construct the value of the nullnorm or uninorm just by
the recursive application of the bidimensional case. For instance, for dimension 3
one can write N(x1,x2,x3) = N(N(x1,x2),x3) and U(x1,x2,x3) = U(U(x1,x2),x3).
An example of such structures can be found in Figure 2.1.

2.2.4 Capacities and related integrals

This section is devoted to introducing other relevant families of aggregation func-
tions, the Choquet and Sugeno Integrals, and the main concepts that are necessary
to define them, capacities. Moreover, many properties and measures related to ca-
pacities will be provided, since they will be relevant in Section 4.3.

A capacity is a generalization of the concept of measure in which the additivity
is replaced by monotonicity with respect to the inclusion order. Throughout the the-
sis, only finite capacities associated with the set [n] = {1, . . . ,n} and the σ -algebra
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(see Definition 2.34) consisting of all the subsets of [n], P([n]), will be considered.

Definition 2.22 [48, 146] A function µ : P([n]) → [0,1] is said to be a capacity
(of dimension n) if the following conditions are fulfilled:

• µ( /0) = 0,

• µ(A)≤ µ(B) for any A,B ⊆ [n] such that A ⊆ B.

Throughout the thesis, all capacities will be normalized, i.e. µ([n]) = 1. Capac-
ities are also known in the literature as fuzzy measures [48] or as particular types of
games [146]. The relaxation of additivity allows one to consider scenarios in which
the elements that are being considered can interact. In some cases, it is convenient
to represent capacities in the so-called Mobius representation.

Definition 2.23 [48, 146] Let µ : P([n])→ [0,1] be a capacity. Then, the Mobius
representation of µ is a function Mµ : P([n])→ [0,1] such that

Mµ(A) = ∑
B⊆A

(−1)|A|−|B|
µ(B),

for any A ⊆ [n].

This representation characterizes the capacity, since two Mobius representa-
tions are equal if and only if the capacities are the same [48]. From the Mobius
representation, one can obtain the capacity by computing

µ(A) = ∑
B⊆A

Mµ(B),

for any A ⊆ [n].
In the following, two descriptive quantities that will be of interest in the sub-

sequent study are introduced. Firstly, the Orness of the Choquet integral (see Defi-
nition 2.27), measures how far the aggregation is from the minimum depending on
the capacity.

Definition 2.24 [48] Let µ : P([n])→ [0,1] be a capacity. Then, the Orness of Cµ ,
O(Cµ), is defined as

O(Cµ) =
1

n−1 ∑
A⊂[n]

(n−|A|)!|A|!
n!

µ(A).
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Secondly, the nonmodularity index measures the deviation from the modular
property (see [48]) for each subset.

Definition 2.25 [48] Let µ : P([n])→ [0,1] be a capacity. Then the nonmodularity
of A ⊆ [n], dµ(A), is defined as

dµ(A) = µ(A)− 1
|A| ∑i∈A

(µ({i})+µ(A\{i})) .

Another useful concept is the notion of linear extension of a capacity. Given a
capacity µ : P([n])→ [0,1], an ordering of the elements of P([n]), A1, . . . ,A2n such
that µ(A1) ≤ ·· · ≤ µ(A2n) is said to be a linear extension. From the definition of
capacities, there exist restrictions about the possible linear extensions. For instance,
for n = 2, if there are no repeated values, only the cases µ( /0)≤ µ({1})≤ µ({2})≤
µ({1,2}) and µ( /0) ≤ µ({2}) ≤ µ({1}) ≤ µ({1,2}) are possible. The number of
linear extensions increases at a very high rate with n [96, 146]. There are many
families of capacities, most of them related to conditions that ease their structure,
thus restricting the study to a particular family of capacities simplifies computations.
They will be of interest in Section 4.3.3.

Definition 2.26 [48] Let µ : P([n])→ [0,1] be a capacity. Then,

• If µ(A) = µ(B) for each A,B ⊆ [n] such that |A| = |B|, µ is said to be sym-
metric,

• If µ(A) ≤ µ(B) for each A,B ⊆ [n] such that |A| ≤ |B|, µ is said to be bal-
anced,

• If µ(A) = 1−µ(Ā) for any A ⊆ [n], µ is said to be auto-dual,

• If µ
(
∪m

i=1Ai
)
≥ ∑B⊆[m](−1)|B|+1µ (∩i∈BAi), for each A1, . . . ,Am ⊆ [n] with

1 < m ∈ N, µ is said to be a belief measure,

• If µ(A∪B) = max(µ(A),µ(B)) for any A,B ⊆ [n], µ is said to be a possibility
measure,

• If µ(A) ∈ {0,1} for any A ⊆ [n], µ is said to be a 0-1 capacity.
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In Aggregation Theory, the main application of capacities is their use in the so-
called Choquet and Sugeno integrals. These aggregation functions take into account
the possible interaction between the different inputs and are widely used in many
applications [147, 151, 183].

Definition 2.27 [149] Let µ be a capacity of dimension n. Then, the Choquet inte-
gral of x⃗ with respect to µ is defined as

Cµ (⃗x) =
n

∑
i=1

(
xπ(i)− xπ(i−1)

)
µ(Aπ(i)),

with π being a permutation of [n] such that xπ(1) ≤ ·· · ≤ xπ(n), with the convention
xπ(0) = 0 and Aπ(i) = {π(i), . . . ,π(n)}.

Definition 2.28 [149] Let µ be a capacity of dimension n. Then, the Sugeno inte-
gral of x⃗ with respect to µ is defined as

Sµ (⃗x) = max
i∈[n]

(
min

(
xπ(i),µ(Aπ(i)

))
,

with π being a permutation of [n] such that xπ(1) ≤ ·· · ≤ xπ(n) and Aπ(i) = {π(i), . . . ,
π(n)}.

2.2.5 Another notions of aggregation

Aggregation functions, while initially defined for real values, have been extended
and adapted to many different scenarios. For instance, the aggregation of differ-
ent mathematical objects such as graphs [122], elements in bounded lattices [182],
vectors [235] or fuzzy sets [311] have been considered in the literature.

In other scenarios, the concept has been generalized by relaxing the condition
of monotonicity [47, 322]. Moreover, there are also some papers dealing with dif-
ferent philosophies among the concept of aggregation [241, 266].

2.2.5.1 Weak monotonicity

In some cases, the monotonicity of aggregation functions is a strong restriction that
reduces applicability. In this direction, some papers have shown that relaxing the
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monotonicity for some families of aggregation functions can improve the results
of classical aggregations for some tasks. For instance, the reader is referred to
the generalization of the Choquet Integral, see [114], and its applicability to clas-
sification [220, 221] or image analysis [112], or to the use of t-norm based pre-
aggregations in Knowledge-Based Systems [308]. The usual consideration is to
replace monotonicity with directional monotonicity.

Definition 2.29 [47] Let A : In → I be a function and r⃗ ∈ Rn. A is said to be
directionally monotone with respect to r⃗ if

A(⃗x+ c⃗r)≥ A(⃗x),

for any x⃗ ∈ In and any c ∈ R+ such that x⃗+ c⃗r ∈ In.

A particular case is weak monotonicity, which is directional monotonicity with
respect to the vector of ones 1⃗ ∈ Rn [322]. Trivially, any interval scale invariant
function is weakly increasing. The notion of pre-aggregation function follows the
same idea as the definition of aggregation function, but replacing monotonicity by
directional monotonicity.

Definition 2.30 [76] A function PA : [0,1]n → [0,1] is said to be a pre-aggregation
function if

1. There exists r⃗ ∈ Rn such that PA is directionally monotone with respect to r⃗,

2. PA(0, . . . ,0) = 0,

3. PA(1, . . . ,1) = 1.

Of course, the latter definition can be easily adapted to any real interval I, as
well as to inputs of different size, just by considering the same ideas as in Sec-
tion 2.2.1. Any aggregation function is a pre-aggregation function for any positive
vector r⃗ ∈ R+n. The properties introduced in Section 2.2.2 can be extended for
pre-aggregation functions.

For instance, the function PA : R2 →R given by PA(x1,x2) =−0.1x1+1.1x2 is
a pre-aggregation function that is increasing with respect to r⃗ = (1,1). In addition,
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it is idempotent and interval scale invariant. However, it is not internal. Notice that
Proposition 2.10 holds for aggregations, but not for pre-aggregation functions.

A particular case that will be of interest is the case of the OWA operator with
possibly negative weights, for which the set of directions for which the function is
directionally increasing can be found in Proposition 4.3 in [50].

Proposition 2.31 [50] Let PA : In → I be a pre-aggregation function defined as

PA(⃗x) = max

{
0,min

{
n

∑
i=1

wixπ(i)

}}
,

where π : [n]→ [n] denotes the permutation such that xπ(1) ≤ ·· · ≤ xπ(1) and w⃗ ∈Rn

a vector such that ∑
n
i=1 wi = 1. Then, PA is directionally increasing with respect to

r⃗ if ri ≥ 0 for any i ∈ [n] and
n

∑
i=1

rσ(i)wi ≥ 0,

for any possible permutation σ : [n]→ [n].

Notice that the original result also requires ∑
n
i=1 ri = 1, but it is clear that mul-

tiplying the values of r⃗ by a positive constant does not change the sign of the com-
ponents or the sign of the associated sums.

2.2.5.2 Aggregation on bounded posets

Another technique that can be used to generalize aggregation functions is to change
the type of elements that are being aggregated. Since monotonicity is defined in
terms of the usual order between vectors, it is natural to consider a general ordered
set.

Definition 2.32 [102] Let S be a set and let ≤ be a binary relation. It is said that
≤ is a total order if the following conditions are fulfilled for any a,b,c ∈ S:

1. (Reflexivity) a ≤ a,

2. (Antisymmetry) a ≤ b, a ≤ b =⇒ a = b,

3. (Transitivity) a ≤ b, b ≤ c =⇒ a ≤ c,
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4. (Completeness) a ̸≤ b =⇒ b ≤ a.

The pair (S,≤) is said to be a totally ordered set. However, in many cases, the
binary relation lacks completeness, all elements cannot be pairwise compared. A
binary relation that fulfills conditions 1, 2 and 3 is called a partial order [102] and
(S,≤) is said to be a partially ordered set or poset. A subset U ⊆ S is said to be an
upper (lower) set if for any a,b ∈ S such that a ∈U and b ≥ (≤)a, then b ∈U .

A poset (S,≤) is said to be bounded if there exist two elements 0,1 ∈ S such
that 0≤ x ≤ 1 for any x ∈ S. They are denoted by (S,≤,0,1). By slightly adapting
the monotonicity and the boundary conditions, aggregation functions can be defined
for bounded posets.

Definition 2.33 [197] Let (S,≤,0,1) be a bounded poset. A function A : Sn → S is
said to be an aggregation function if

1. A(x1, . . . ,xn)≤ A(y1, . . . ,yn) for any x1, . . . ,xn,y1, . . . ,yn ∈ S such that xi ≤ yi

for any i ∈ [n],

2. A(0, . . . ,0) = 0,

3. A(1, . . . ,1) = 1.

2.3 Probability Theory

Probability Theory is a branch of Mathematics that is devoted to study randomness,
including random events, random elements and probability distributions. It is the
basis of Statistics and it uses concepts from other areas such as measure theory,
functional analysis and topology.

One of the first known works on Probability Theory is due to Al-Kindi in the
ninth century, using frequency analysis applied to break ciphers [3]. More recently,
the first book devoted to Probability Theory is De Rationiis in Ludo Aleae in 1657,
written by Christian Huygens and mainly based on the works of Pascal and Fermat
on problems related to tossing coins or throwing dice [109]. After some years, Jacob
Bernoulli published Ars Conjectandi, proving fundamental results for Probability
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Theory such that the law of big numbers [294]. One of the first attempts to extend
Probability Theory beyond games of chance such as tossing coins or card games
was made by Pierre Simon Laplace in 1812 with the book Théorie Analytique des
Probabilités [205], including applications to life insurance and mortality. However,
was Andréi Nikoláyevich Kolmogórov the one who established the modern the-
ory of probability in his book entitled Foundations of the Probability Theory [195]
in 1933. He gave a mathematical structure, the probability space, that allows one
to have well-defined measurements of random experiments, known as random ele-
ments. This approach permits to work with variables instead of just working with
probability distributions.

In the last century, Probability Theory has been extended in many directions
with the appearance of a huge number of branches that focus on different aspects
of probability. In this section, the concepts about Probability Theory that will be
necessary for the presented results are provided. Although some of the notions are
widely known, they will be introduced in order to have a self-contained document
and to fix the notation. In particular, basic notions about probability spaces and ran-
dom elements (Subsection 2.3.1), random vectors and copulas (Subsection 2.3.2),
stochastic processes (Subsection 2.3.3), random sets (Subsection 2.3.4) and stochas-
tic orders (Subsection 2.3.5) are provided.

2.3.1 Probability spaces and random elements

The axiomatic formulation of Probability Theory considers probability spaces as
the main concept. Given a set Ω, often called the sample space, the set of subsets
for which the probability can be computed is called the σ -algebra of the probability
space. It is defined as follows.

Definition 2.34 [23] Let Ω be a set and F ⊆ P(Ω) be a set of subsets of Ω. F is
said to be a σ -algebra if the following conditions are fulfilled:

• Ω ∈ F ,

• If B ∈ F , then B ∈ F ,

• If B1,B2, · · · ∈ F , then
(
∪∞

i=1Bi
)
∈ F .
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The set of all subsets of Ω, denoted as P(Ω), is an example of a simple σ -
algebra. The pair (Ω,F ) is called a measurable space. The elements of F are
usually referred to as the measurable sets of the measurable space. Sometimes, it is
necessary to construct a σ -algebra that contains some particular collection of sets.
In this regard, the next result shows that this can be done univocally.

Proposition 2.35 [23] Let C be a set of subsets of Ω. Then, there exists a unique
σ -algebra over Ω, F , such that C ⊆ F and F is minimal with respect to this
property.

This σ -algebra, denoted by σ(C ), is known as the σ -algebra generated by C .
More precisely, σ(C ) can be constructed by considering countable unions, inter-
sections and complements of elements in C . One of the most prominent examples
is the Borel σ -algebra, which is generated by the open sets of a given topology. In
addition to the σ -algebra, any probability space has a probability measure.

Definition 2.36 [278] Let (Ω,F ) be a measurable space. A function P : F →
[0,1] is said to be a probability measure if it fulfills the following properties:

• P(Ω) = 1,

• If B1,B2, . . . is a pairwise disjoint sequence of measurable sets, then

P(∪∞
i=1Bi) =

∞

∑
i=1

P(Bi) .

The trio (Ω,F ,P) is known as a probability space. There are many different
probability spaces, some of them being very restrictive. For instance, if Ω is finite,
it is not possible to define continuous random variables. In general, a desirable
property is completeness.

Definition 2.37 [23] A probability space (Ω,F ,P) is said to be complete if for any
B0 ⊆ Ω such that there exists B ∈ F that fulfills B0 ⊆ B and P(B) = 0, B0 ∈ F .



CHAPTER 2. PRELIMINARIES 36

Any probability space (Ω,F ,P) can be extended to a complete probability
space (Ω,F0,P0) such that F ⊆ F0 and P(B) = P0(B) for any B ∈ F [23]. Oth-
erwise stated, all probability spaces will be complete. One of the most used proba-
bility spaces is the unit interval with the Lebesgue measure, see [66]. In this case,
Ω = [0,1] and the probability measure is the Lebesgue measure λ , defined as

λ (B) = inf

{
∞

∑
k=1

vol(Ck)

∣∣∣∣∣ Ck is an open interval ∀k ∈ N and B ⊆ ∪∞
k=1Ck

}
,

where vol stands for the volume. The σ -algebra consists of sets B ⊆ [0,1] such that
λ (A) = λ (A∩B)+λ (A∩B) for any A ⊆ [0,1].

Given a probability space, random elements are functions from the probability
space to another measurable space that fulfills a property related to the involved
σ -algebras. Recall that, given a function f : S1 → S2, f−1 denotes the pre-image,
that is, f−1(B) = {x ∈ S1 | f (x) ∈ B}.

Definition 2.38 [60] Let (Ω,F ,P) be a probability space and let (S,G ) be a mea-
surable space. Then, a function X : Ω → S such that X−1(B) ∈ F for any B ∈ G is
called a random element.

The latter property is known in measure theory as measurability. When the ran-
dom element is constant, it is said to have a degenerate distribution and is generally
denoted by its value in the set S.

The most prominent example of random elements, random variables, is ob-
tained by considering (S,G ) as the real numbers with the Borel σ -algebra associ-
ated with the usual topology of real numbers. In this direction, it is known that,
given two random variables X and Y , its sum and its product are measurable [93].
Moreover, the set {ω ∈ Ω | X(ω)≤ Y (ω)} is also measurable [93].

Notice that any random element X induces a probability measure PX in the
measurable space (S,G ). In particular, PX(B) = P(X−1(B)) for any B ∈ G . This
probability measure is known as the distribution of X . In the following, PX(B) will
simply be denoted as P(X ∈ B). If PX({s}) > 0, the element s ∈ S is said to be a
probability mass point of X .

Two random elements are said to have the same distribution, often denoted
by X =st Y (in an abuse of notation), if P(X ∈ B) = P(Y ∈ B) for any B ∈ G . A
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stronger property is to be almost surely equal, denoted by X =a.s. Y , which means
that P(X =Y )=P({w∈Ω | X(w)=Y (w)})= 1. Of course, X =a.s. Y =⇒ X =st Y .

In general, to check if two random elements have the same distribution, it is
necessary to check the probability for all measurable subsets. However, in some
cases, a shortcut can be used.

Definition 2.39 [119] Let S be set and S ⊆ P(S). Then, S is said to be a π-
system if

• Ω, /0 ∈ S ,

• A∩B ∈ S for any A,B ∈ S .

The following is a slight modification of Theorem A.1.5. in [119].

Theorem 2.40 Let (Ω,F ,P) be a probability space, S a π-system of S and con-
sider the measurable space (S,σ(S )). If X ,Y : Ω → S are two random elements
such that P(X ∈B) =P(Y ∈B) for any B∈S , then they have the same distribution.

The last result ensures that if the probabilities of X and Y coincide in the π-
system, then they do so in the σ -algebra generated by the π-system.

Sometimes, one is interested in assuring that a particular function is a random
element. In this direction, similarly as in Proposition 2.35, one can define a σ -
algebra in this regard.

Proposition 2.41 [23] Let X : Ω → S be a function and let (S,G ) be a measurable
space. Then, there exists a unique σ -algebra, F , such that X is a random element
with respect to any probability space of the form (Ω,F ,P) and minimal with respect
to this property.

This σ -algebra is said to be generated by X and it is denoted as σ(X). It can be
constructed by considering the σ -algebra generated by the pre-images of the subsets
of G .

Although the unit interval endowed with the Lebesgue measure is sufficient
in many cases, since it allows to define sequences of random variables, sometimes



CHAPTER 2. PRELIMINARIES 38

bigger probability spaces are needed. In particular, two properties that will be nec-
essary in some specific cases will be considered. The first one allows one to have
a biyection in the probability space that links any two random elements with the
same distribution. This type of biyections are called measure preserving functions
and can be interpreted as symmetries in the probability space.

Definition 2.42 [186] Let (Ω,F ,P) be a probability space and let φ : Ω → Ω

be a measurable function. Then, φ is said to be a measure preserving function if
P(φ−1(B)) = P(B) for any B ∈ F .

In order to have the desirable property that will be used in Theorem 3.26, it is
necessary to consider hyperfinite probability spaces. Hyperfinite probability spaces,
which are particular cases of Loeb probability spaces [186], are constructed by us-
ing non-standard analysis methods [280] (although the result is a proper standard
probability space [184]). In terms of cardinality, a hyperfinite probability space
(Ω,F ,P) for which Ω is not finite is equivalent to the uncountable product of the
unit interval with the Lebesgue measure (see the remark on page 5 of [184]). The
reader is referred to references [184, 185, 187, 186, 280] for more information in
this regard.

Theorem 2.43 [184] Let (Ω,Σ,P) be a hyperfinite probability space. Then, given
two random variables X and Y such that X =st Y , there exists a bijective measure
preserving function φ : Ω → Ω such that X =a.s Y ◦φ .

The function φ in the latter result does not have an easy expression. The reader
is referred to page 134, Proposition 9.2 in [184] for a constructive proof. Another
property of interest is the saturation property, defined as follows.

Definition 2.44 [187] A probability space (Ω,Σ,P) is said to have the saturation
property if, given a pair of Polish spaces T1 and T2, for any probability measure µ

in T1×T2 and a random element X : Ω → T1 such that its distribution coincides with
the (marginal) distribution of µ over T1, there exists a random element Y : Ω → T2

such that (X ,Y ) has distribution µ .
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The reader is referred to Section 2.1.2 for a definition of Polish spaces. Any
probability space that fulfills the saturation property is called a saturated probability
space. Using results in [185], it can be stated that any hyperfinite probability space
is saturated [186]. In fact, this is true for any Loeb space [187].

2.3.2 Random vectors and copulas

Although different random elements will be considered along this thesis, the at-
tention will be focused mainly on random vectors, which are finite collections of
random elements whose image is contained in the real line. In particular, the basics
about random vectors, their distribution, first moments, dependence modeling and
sorted samples are explained.

2.3.2.1 Random vectors

As mentioned before, the most prominent example of a random element is the ran-
dom variable, obtained by considering the real numbers with the Borel σ -algebra
associated with the usual topology in R. In fact, this σ -algebra, denoted by B, can
be generated by a smaller family of sets [278],

B= σ ({(−∞,r) | r ∈ R}) .

In many cases, working with more than one random variable is necessary.
Therefore, often random vectors should be considered, which are vectors in which
each component is a random variable. In this case, the Borel σ -algebra associated
with the usual topology of Rn will be denoted as Bn.

Definition 2.45 [278] Let (Ω,F ,P) be a probability space. Then, a function X⃗ :
Ω → Rn is a random vector if X⃗−1(B) ∈ F for any B ∈ Bn.

In fact, for having the measurability with respect to (Rn,Bn), it is enough to
have the measurability of each of the components with respect to (R,B). In the
following, all random vectors will be considered of dimension n unless otherwise
stated. The random variables associated with the components of a random vector are
commonly known as their marginals. There are some properties of random vectors
that are defined in terms of its marginals.
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Definition 2.46 [295] Let X⃗ and Y⃗ be two random vectors. Then,

• X⃗ is said to be exchangeable if it has the same distribution as any permutation
of its components,

• X⃗ and Y⃗ are in the same Fréchet class if they have the same marginal distri-
butions.

Any random vector, as a random element, induces a probability measure on
(Rn,Bn). In general, it is useful to work with the distribution and survival functions,
defined as follows.

Definition 2.47 [253] Let X⃗ be a random vector. Then,

• The distribution function of X⃗ is the function F⃗X : Rn → [0,1] defined as
F⃗X(x1, . . . ,xn) = P(X1 ≤ x1, . . . ,Xn ≤ xn),

• The survival (or reliability) function of X⃗ is the function F̄⃗X : Rn → [0,1]
defined as F̄⃗X(x1, . . . ,xn) = P(X1 > x1, . . . ,Xn > xn).

For simplicity, the subscript in F⃗X and F̄⃗X will be omitted when the associated
random vector or random variable is clear. Both the distribution and the survival
function characterize the distribution of the random vector. Therefore, if two ran-
dom vectors X⃗ and Y⃗ have the same distribution or survival function, then they have
the same distribution. In the univariate case, distribution and survival functions are
easy to characterize.

Proposition 2.48 [278] Let F : R → [0,1] and F̄ : R → [0,1] be two functions.
Then,

• F is the distribution function of a random variable if and only if it is increas-
ing, right-continuous, limx→−∞ F(x) = 0 and limx→∞ F(x) = 1,

• F̄ is the survival function of a random variable if and only if it is decreasing,
left-continuous, limx→−∞ F(x) = 1 and limx→∞ F(x) = 0.
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Moreover, it is clear that, in the univariate case, FX(x)+ F̄X(x) = 1 holds for
any random variable X and x ∈ R. In addition, the quantile function can be defined
for random variables.

Definition 2.49 [278] Let X be a random variable with distribution function F.
Then, its quantile function is defined as

F−1(p) = inf{x ∈ R | p ≤ F(x)}.

When the distribution function F is strictly increasing, the quantile function
F−1 is its inverse. Similar characterizations as in Proposition 2.48 can be done for
random vectors, but they are not as simple. However, they can be derived from the
latter result and Theorem 2.67.

If there exists m ∈ R such that m−X =st X −m, then it is said that X is sym-
metric with respect to m. It is easy to show that in that case m is the median of X ,
i.e. F−1(0.5) =m, and that the expectation of X , see the subsequent Definition 2.54,
also equals m if it exists.

Also related to distribution functions, a distortion is a continuous increasing
function h : [0,1]→ [0,1] such that h(0) = 0 and h(1) = 1. One of the main prop-
erties of any distortion is that the composition of a distribution function and a dis-
tortion is again a distribution function. In this regard, they have been used widely
in reliability theory. See, for instance, [12, 252]. A special type of distortions will
be of relevance for some of the results presented in Section 5.1, since they preserve
the symmetry of distributions.

Definition 2.50 [41] A distortion h is said to be centrally symmetric if h(t) = 1−
h(1− t) for any t ∈ [0,1].

Notice that if a distortion h is centrally symmetric and X is symmetric, h(FX(t))
is the distribution function of a symmetric random variable.

The most usual classification of random vectors is between discrete and contin-
uous. In the first case, probabilities can be computed just by doing (maybe infinite)
sums, although in the second one integrals of density functions appear.
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Definition 2.51 [278] Let X⃗ be a random vector. Then, it is discrete if there exists
a sequence (⃗xk,k ∈ N)⊂ Rn, such that

∞

∑
k=1

P(X⃗ = x⃗k) = 1.

Definition 2.52 [278] Let X⃗ be a random vector. Then, it is continuous if its
distribution function F is absolutely continuous, that is, if there exists a function
f : Rn → R such that

F(x1, . . . ,xn) =
∫ x1

−∞

· · ·
∫ xn

−∞

f (t1, . . . , tn)d⃗t.

The function f is called the density function. A function f :Rn →R is a density
function of a random vector if and only if it is positive and fulfills

∫
Rn f (⃗x)d⃗x =

1. It must be noted that there exist random vectors that are neither discrete nor
continuous.

Another concept that will be useful is the notion of support of a random vector,
which is, roughly speaking, the set of values that the random vector takes that are
relevant in order to compute probabilities. In fact, it is the support of the probability
measure generated by the random vector.

Definition 2.53 [262] Let X⃗ be a random vector. Then, the support (or range) of
X⃗ , denoted as S(X⃗), is the smallest closed set such that P(X ∈ S(X⃗)) = 1.

The existence of such a closed set is ensured (see Theorem 2.1 in [262]). No-
tice that there are other notions of support in the literature (see page 40, Remark
3 in [278]), which are based on the points in which the distribution function is in-
creasing. However, Definition 2.53 is equivalent to considering the closure of such
a notion and it is more useful for the purposes of this work.

Typically, some quantities are computed to summarize the behavior of random
variables and vectors. For the location, the most usual one is the expectation (or
mean), defined as follows.

Definition 2.54 [278] Let X be a random variable. Then, its expectation, if it exists,
is the value

E[X ] =
∫
R

xdF(x).
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The integral in the latter definition is a Riemann-Stieltjes integral, see Sec-
tion 2.1.3. The condition of existence of the expectation is necessary since it is
possible to have a non-convergent integral. When the random variable is discrete,
then the formula simplifies to

E[X ] =
∞

∑
k=1

xkP(X = xk),

and, if the random variable is continuous, to the expression

E[X ] =
∫
R

x f (x)dx.

Regarding the variability of random variables, the main related quantity is the
variance, defined as the expectation of the squared difference between the variable
and its expectation.

Definition 2.55 [278] Let X be a random variable. Then, its variance, if it exists,
is defined as Var(X) = E

[
(X −E[X ])2].

Higher variance values imply greater variability. Sometimes, the square root
of the variance, known as the standard deviation, is considered. In other cases, it is
of interest to study the joint variability of two random variables. In order to do that,
it is usually considered the covariance.

Definition 2.56 [278] Let X and Y be two random variables. Then, their covari-
ance, if it exists, is defined as Cov(X ,Y ) = E [(X −E[X ])(Y −E[Y ])].

However, covariance depends not only on the dependence of the involved ran-
dom variables but also increases if the variables are more disperse. In order to
overcome this problem, the Pearson correlation coefficient, which normalizes the
covariance by using the standard deviations of the involved random variables, is
often used.

Definition 2.57 [278] Let X and Y be two random variables. Then, their Pearson
correlation coefficient, if it exists, is defined as ρX ,Y = Cov(X ,Y )√

Var(X)Var(Y )
.
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If ρX ,Y = 0, then X and Y are said to be linearly independent. A stronger related
notion is independence, defined as follows.

Definition 2.58 [278] Let X⃗1, . . . , X⃗m be random vectors. Then, it is said that they
are independent if P(X⃗1 ∈ B1, . . . , X⃗m ∈ Bm) = ∏

m
i=1 P(X⃗i ∈ Bi) for any B1, . . . ,Bm ∈

Bm.

Independence can also be characterized by the factorization of the distribution
function as the product of the distribution functions of the marginals. Transforma-
tions of independent random vectors are independent [278]. Independence implies
linear independence. In the following result, the main properties about expectation,
variance, covariance and Pearson correlation coefficient are briefly exposed.

Theorem 2.59 [278] Let X and Y be two random variables and λ ∈ R. Then,

• E[λ ] = λ ,

• E[X +Y ] = E[X ]+E[Y ],

• E[λX ] = λE[X ],

• If X and Y are independent, then Var(X +Y ) = Var(X)+Var(Y ),

• Var(λX) = λ 2Var(X),

• Cov(X ,X) = Var(X),

• Cov(X +λ ,Y ) = Cov(X ,Y ) = Cov(Y,X),

• Cov(λX ,Y ) = λCov(X ,Y ),

• ρX ,Y ∈ [0,1],

• ρX+λ ,Y = ρλX ,Y = ρX ,Y = ρY,X ,

• If X and Y are independent, Cov(X ,Y ) = ρX ,Y = 0.

The vector that contains the expectations of the components of a random vector
is called its mean vector [278]. In addition, the variability and dependence of a
random vector can be summarized using a matrix known as the covariance matrix.
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Definition 2.60 [224] Let X⃗ be a random vector. Then, its covariance matrix, if it
exists, is the square matrix (Σi, j, i, j ∈ [n]) such that Σi, j = Cov(Xi,X j).

The diagonal of the covariance matrix contains the variance of the marginals.
The covariance matrix of any random vector is positive semi-definite [224], see
Definition 2.1.

2.3.2.2 Conditional probabilities

On some occasions, there is prior knowledge of the outcome of the random experi-
ment associated with the probability space. In order to compute probabilities given
this knowledge, the concept of conditional probability is introduced.

Definition 2.61 [191] Let (Ω,F ,P) be a probability space and A,B ∈F such that
P(B) > 0. Then, the conditional probability of A given B, denoted as P(A | B) is
defined as

P(A | B) =
P(A∩B)

P(B)
.

Similarly, the conditional distribution of a random vector given B is defined as

F⃗X | B(⃗x) = P(X⃗ ≤ x⃗ | B) = P(X⃗−1((−∞,x1]×·· ·× (−∞,xn]) | B).

Moreover, the set B can also be associated with another random vector. In
particular,

F⃗X | Y⃗∈B(⃗x) = P(X⃗ ≤ x⃗ | Y⃗ ∈ B) = P(X⃗−1((−∞,x1]×·· ·× (−∞,xn]) | Y⃗−1(B)).

If B is just a point, it will be denoted as F⃗X | Y⃗ =⃗y. For continuous random
vectors, it is possible to define a conditional density function.

Definition 2.62 [191] Let (X⃗ ,Y⃗ ) be a continuous random vector with density func-
tion f . Denote by f⃗Y the density function of Y⃗ . Then, the conditional density of X⃗
given that Y⃗ = y⃗, fX⃗ | Y⃗ =⃗y, is defined as

fX⃗ | Y⃗ =⃗y(⃗x) =
f (⃗x, y⃗)
f⃗Y (⃗y)

,

whenever f⃗Y (⃗y)> 0.
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Using the latter conditional density, a conditional distribution function can be
computed. In the general setting, where Y⃗ may be neither discrete nor continuous,
it is not easy to know for which values of y⃗ the distribution function F⃗X | Y⃗ =⃗y is
well defined. At least, see Section 8.3 in [191], it is known that it is almost surely
well-defined.

Theorem 2.63 [191] Let X⃗ and Y⃗ be two random vectors of dimensions, respec-
tively, n and m. Then, there exists C ⊆ Rm such that P(⃗Y ∈ C) = 1 and F⃗X | Y⃗ =⃗y is
well-defined for any y⃗ ∈C.

In the following, all conditional distributions will be considered to be well-
defined. Notice that conditional probabilities and the conditional density define
a probability measure, but not a random element. However, it is common to use
[X⃗ | B], [X⃗ | Y⃗ ∈ B] or [X⃗ | Y⃗ = y⃗] to denote a random vector with the considered
conditional distribution. Moreover, it is possible to define a conditional expectation
that is actually a random variable [191].

Definition 2.64 [191] Let X⃗ and Y⃗ be two random vectors. Denote by E[X⃗ | y⃗] the
expectation of [X⃗ | Y⃗ = y⃗]. Then, the conditional expectation of X⃗ given Y⃗ is the
random variable E[X⃗ | Y⃗ ].

Notice that the randomness of E[X⃗ | Y⃗ ] is a consequence of the randomness of
Y⃗ . A related notion is the mixture of distributions, which is defined as the convex
linear combination of distribution functions.

Definition 2.65 [233] Let X⃗1, . . . , X⃗m be random vectors. Then, Y⃗ is said to be a
mixture of X⃗1, . . . , X⃗m if there exists a random vector Z⃗ that takes values over the
permutations of the vector (1,0, . . . ,0) and is independent of X⃗1, . . . , X⃗m such that

Y =
m

∑
i=1

ZiX⃗i.

It is easy to show that the distribution function of the mixture Y can be ex-
pressed as F⃗Y (⃗x) = ∑

m
i=1 P(Zi = 1)F⃗Xi

(⃗x) for any x⃗ ∈ R.
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2.3.2.3 Copulas

The distribution of any random vector can be decomposed into two parts, the dis-
tribution of its marginals and the dependence between them. The dependence can
be expressed by means of copulas, which are distribution functions with standard
uniform marginals (see Definition 2.70).

Definition 2.66 [253] A function C : [0,1]n → [0,1] is a copula if the following
conditions are fulfilled:

• ∀⃗x ∈ [0,1]n, C(⃗x) = 0 if there exists i ∈ [n] such that xi = 0,

• ∀⃗x ∈ [0,1]n, C(⃗x) = xi if there exists i ∈ [n] such that x j = 1 for every j ̸= i,

• ∀⃗x, y⃗ ∈ [0,1]n such that x⃗ ≤ y⃗ it holds

∑
z⃗∈V[⃗x,⃗y]

sgn(⃗z)C(⃗z)≥ 0,

where [⃗x, y⃗] is the n-dimensional prism with corner vertices x⃗ and y⃗, V[⃗x,⃗y]

denotes the set of vertices of [⃗x, y⃗] and

sgn(⃗z) =

1 if zk = xk for an even number of k’s,

−1 if zk = xk for an odd number of k’s.

Copulas have all the information about the dependence between the compo-
nents in the associated random vector. In fact, the relation between multivariate
distributions and copulas is stated by the Sklar Theorem, given below.

Theorem 2.67 [253, 298] Let X⃗ be a random vector with marginal distributions
F1, . . . ,Fn and joint distribution function F. Then, there exists a copula C : [0,1]n →
[0,1] such that

F(x1, . . . ,xn) =C (F1(x1), . . . ,Fn(xn)) , ∀⃗x ∈ Rn.

In addition, if F1, . . . ,Fn are continuous, the copula is unique.
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Similarly, any joint survival function F̄ can be decomposed as F̄(x1, . . . ,xn) =

C̄ (F̄1(x1), . . . , F̄n(xn)) for any x⃗ ∈ Rn, where F̄1, . . . , F̄n and C̄ is a copula, usually
called the survival copula of the random vector.

If the marginal distributions F1, . . . ,Fn are not continuous, then there exists a
unique subcopula C′ defined over F1(R)× ·· · × Fn(R) such that F(x1, . . . ,xn) =

C′ (F1(x1), . . . ,Fn(xn)) for any x⃗ ∈R. The reader is referred to [105] for more infor-
mation in this regard.

Any copula is a continuous function [106, 118, 253]. Prominent examples
of copulas are the product copula C∏(⃗x) = ∏

n
i=1 xi, which leads to independence,

and the minimum copula Cmin(⃗x) = min(⃗x), which is associated with comonotone
(perfectly positive dependent) random variables. In the bivariate case, the case of
the Łukasiewicz t-norm CL(x1,x2) = max(0,x1 + x2 − 1) is also relevant, which is
associated with countermonotone (perfectly negative dependent) random variables.
In addition, any copula fulfills

max

(
0,1−n+

n

∑
i=1

xi

)
≤C(⃗x)≤ min(⃗x),

which is known as the Fréchet Hoeffding bounds [118, 253].
When the copula of Theorem 2.67 can be chosen to be the same for two random

vectors, it is said that they have the same copula, which means that they share the
same dependence structure. It is worth noting that if two random vectors have
the same marginals distributions and copula, they also have the same distribution.
Furthermore, it is important to mention that an increasing transformation of the
marginals of a random vector does not change its copula [253].

If the copula is absolutely continuous, then one can consider the density copula
c : [0,1]n → R as the function such that C(⃗x) =

∫⃗
0≤⃗t≤⃗x c(⃗t)d⃗t.

Example 2.68 [118] Consider the following examples of copulas.

• A copula C is said to be a Farlie-Gumbel-Morgenstern copula if C(x,y) =
xy+λx(1− x)y(1− y) for any x,y ∈ [0,1], where λ ∈ [−1,1],

• A copula C is said to be a Gaussian copula if its density copula has the ex-
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pression

c(x1, . . . ,xn) =
1√
|R|

exp

−1
2

Φ−1(x1)

. . .

Φ−1(xn)


t

(R−1 − I)

Φ−1(x1)

. . .

Φ−1(xn)


 ,

where R is a positive definite matrix, I is the identity matrix and Φ−1 is the
quantile function of a standard Gaussian distribution,

• A copula C is said to be a T-copula if its density copula has the expression:

c(x1, . . . ,xn) =
fν ,R(t−1

ν (x1), . . . , t−1
ν (xn))

∏
n
i=1 fν(t−1

ν (xi))
,

where R is a positive definite matrix with constant diagonal equal to 1, t−1

is the quantile function of a standard Student’s t-distribution, fν is the den-
sity function of a standard Student’s t-distribution and fν ,R is the distribution
function of a multivariate Student’s t-distribution with mean vector 0⃗ and dis-
persion matrix R.

2.3.2.4 Relevant families of probability distributions

This section is devoted to briefly introduce the distributions of random variables and
random vectors that are going to be considered in some results and examples, which
can be found in [176, 177, 201]. Bernoulli distribution is one of the most simple
cases.

Definition 2.69 A random variable X is said to have Bernoulli distribution if P(X =

0) = 1− p and P(X = 1) = p with p ∈ [0,1].

Moving to continuous distributions, one of the most relevant cases is the uni-
form distribution. Given a set, a (continuous) uniform distribution is an absolutely
continuous probability distribution such that its density function is constant on the
set and 0 everywhere else. Recall that λ (A) denotes the Lebesgue measure on Rn

of A ⊆ Rn. Formally, the following definition will be considered.
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Definition 2.70 Given a bounded and Lebesgue-measurable subset A ⊂ Rn with
Lebesgue measure λ (A)> 0, a uniform distribution over A is defined as the proba-
bility measure P:

P(B) =
λ (B∩A)

λ (A)
,

for each Borel-measurable subset B ⊆ Rn.

The particular case of A being the unit interval [0,1] is known as the standard
uniform distribution. Sums of independent standard uniform random variables fol-
low the Irwin-Hall distribution.

Definition 2.71 Let X be a random variable with density function

f (x) =
1

(m−1)!

⌊x⌋

∑
k=0

(−1)k m!
k!(m− k)!

(x− k)m−1,

if x ∈ [0,m] and f (x) = 0 elsewhere, where ⌊x⌋ denotes the integer part of x and
m ∈ N. Then, X is said to have Irwin-Hall distribution.

Proposition 2.72 [225] Let X1, . . . ,Xm be m independent random variables with
standard uniform distribution. Then, ∑

m
i=1 Xi has Irwin-Hall distribution with pa-

rameter m.

In addition, the order statistics of independent standard uniform random vari-
ables (see subsequent Section 2.3.2.5), follow Beta distributions.

Definition 2.73 Let X be a random variable with density function

f (x) =
xα−1(1− x)β−1

B(α,β )
,

if x ∈ [0,1] and f (x) = 0 elsewhere, with α,β ∈R+, B(α,β ) = Γ(α+β )
Γ(α)Γ(β ) and Γ(x) =∫

∞

0 tx−1e−tdt. Then, X is said to have Beta distribution and it is denoted as X ∼
B(α,β ).
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For random vectors, the most prominent distribution is the multivariate Gaus-
sian distribution. A continuous random vector X⃗ has a multivariate Gaussian distri-
bution if any linear combination of its components has univariate Gaussian distri-
bution [224]. The distribution of this type of vectors is characterized by its mean
vector µ⃗ and its covariance matrix Σ.

Definition 2.74 Let X⃗ be a random vector with density function

f (⃗x) =
1√
|2πΣ|

exp
(
− (⃗x− µ⃗) tΣ−1(⃗x− µ⃗)

2

)
,

for any x⃗ ∈R where µ⃗ ∈Rn and Σ is a positive semi-definite matrix. Then, X⃗ is said
to have multivariate Gaussian distribution and it is denoted as X⃗ ∼ N (⃗µ,Σ).

For dimension 1, Gaussian random variables with null mean and variance equal
to one are called standard Gaussian random variables. A generalization of Gaussian
random variables can be done by considering a shape parameter, as the generalized
Gaussian distribution does.

Definition 2.75 [120] Let X be a random variable with density function

f (x) =
β

2αΓ

(
1
β

) exp
(
−
(
|x−µ|

α

))
,

for any x ∈ R with µ ∈ R and α,β ∈ R+. Then, X is said to have generalized
Gaussian distribution.

Another distribution related to the standard Gaussian distribution, which ap-
pears in some hypothesis tests and is equivalent to the first one when its parameter
ν goes to infinite, is the Student’s t-distribution.

Definition 2.76 Let X be a random variable with density function

f (x) =
Γ
(

ν+1
2

)
√

πrΓ
(

ν

2

) (1+
x2

ν

)− ν+1
2

,

for any x ∈ R with ν ∈ R+. Then, X is said to have Student’s t-distribution with ν

degrees of freedom.
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Similarly, the Chi-squared distribution is also related to the standard Gaussian
distribution. In particular, the sum of the square of independent Gaussian random
variables has this type of distribution.

Definition 2.77 Let X be a random variable with density function

f (x) =
1

2
k
2 Γ
( k

2

)x
k
2−1e−

x
2 ,

for any x ∈ R with k ∈ N. Then, X is said to have Chi-squared distribution with k
degrees of freedom.

The Chi-squared distribution is a particular case of a more general distribution,
the Gamma distribution.

Definition 2.78 Let X be a random variable with density function

f (x) =
β α

Γ(α)
xα−1eβx,

for any x ∈ R with α,β ∈ R+ Then, X is said to have Gamma distribution with
shape parameter α and rate parameter β and it is denoted as X ∼ Γ(α,β ).

For random variables taking values over the positive real numbers, one of the
most well-known distributions is the exponential distribution.

Definition 2.79 Let X be a random variable with density function

f (x) = λe−λx,

for any x ∈ R+ and f (x) = 0 elsewhere with λ ∈ R+. Then, X is said to have
exponential distribution with parameter λ and it is denoted as X ∼ Exp(λ ).

The Laplace distribution is a version of the exponential distribution that also
considers negative values.

Definition 2.80 Let X be a random variable with density function

f (x) =
1

2b
exp
(
−|x−µ|

b

)
,

for any x ∈ R with µ ∈ R and b ∈ R+. Then, X is said to have Laplace distribution
with location parameter µ and scale parameter b.
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Finally, some distributions are defined in terms of trigonometrical functions.

Definition 2.81 Let X be a random variable with density function

f (x) =
1
4s

(
sech

(
x−µ

2s

))2

,

for any x ∈R with µ ∈R, b ∈R+ and sech denoting the hyperbolic secant function.
Then, X is said to have logistic distribution.

Definition 2.82 [115] Let X be a random variable with density function

f (x) =
1
2

sech
(

π

2
x
)
,

for any x ∈ R with sech denoting the hyperbolic secant function. Then, X is said to
have hyperbolic secant distribution.

2.3.2.5 Order statistics

In the literature, many methods involve the ordering, from the smallest to the great-
est, of the values of independent and identically distributed random variables X1, . . . ,

Xn. These are known as order statistics and are denoted as X(1), . . . ,X(n), where
X(1) = min(X1, . . . ,Xn) and X(n) = max(X1, . . . ,Xn).

The distribution functions of the order statistics are easy to compute, since they
have a simple expression in terms of the distribution function of the marginals.

Proposition 2.83 [104] Let X1, . . . ,Xn be independent and identically distributed
random variables. Then, the distribution function of the order statistic X(k), denoted
as F(k), is

F(k)(x) =
n

∑
i=k

(
n
i

)
F(x)i(1−F(x))n−i =

n

∑
i=k

n!
i!(n− i)!

F(x)i(1−F(x))n−i,

where F(t) denotes the distribution function of X1.

If the distribution is continuous, then the joint density of all order statistics is
n! f (x)n on the set {⃗x ∈ Rn | x1 ≤ ·· · ≤ xn} [104].
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The most studied distribution in the field of order statistics is the uniform dis-
tribution, generally over the unit interval, since the order statistics have simple dis-
tributions and some quantities, such as linear combinations of them, can also be
easily characterized. In particular, the order statistics follow Beta distributions.

Proposition 2.84 [104] Let U1, . . . ,Un be a sequence of independent random vari-
ables with standard uniform distribution. Then, U(k) has Beta distribution with
parameters α = k and β = n+1− k.

In addition, more involved results about linear combinations of the order statis-
tics of uniform random variables can be proved. In the simplest case, the linear
coefficients are strictly positive. The following is Equation (6.5.5) in [104].

Proposition 2.85 [104] Let U(1), . . . ,U(n) be the order statistics of a sequence of
n standard uniform random variables and a1, . . . ,an > 0. Then, the distribution
function of T = ∑

n
i=1 aiU(i) has the following expression,

FT (x) = 1−
m

∑
i=1

(ci − x)n

ci ∏ j ̸=i(ci − c j)
Ix∈[0,c1],

where ci =∑
n
k=i ak, I denotes the indicator function and m is the largest integer such

that x ≤ cm.

Unfortunately, if any of the coefficients of the linear combination is 0, the
expression is more complicated.

Proposition 2.86 [104] Let U(1), . . . ,U(n) be the order statistics of a sample of n
standard uniform random variables and a1, . . . ,an ≥ 0. Denote as an1, . . . ,ank the
coefficients such that ani > 0 with i ∈ [k]. Then, the distribution function of T =

∑
n
i=1 aiU(i) have the following expression,

FT (x) = 1−
m

∑
i=1

g(n1−ni−1−1)
i (cni,x)
(ni −ni−1 −1)!

Ix∈[0,c1],

where ci = ∑
n
k=i ak, I denotes the indicator function, m is the largest integer such

that x ≤ cm and g(s)i (c,x) denotes

g(s)i (c,x) =
∂ s

∂cs
(c− x)n

c∏ j ̸=i(c− c j)
.
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However, in many situations, the distribution is not uniform. In these cases,
many asymptotic results have been developed. In the following, a result that com-
bines the results of [306], which gives a convenient definition of the involved se-
quence, and [307], in which the uniform convergence part is proved, is provided.

Theorem 2.87 [306, 307] Let X1, . . . ,Xn be a sequence of independent and identi-
cally distributed random variables with density function f and cumulative distribu-
tion function F such that f is continuous and strictly positive in F−1(0,1) and there
exists ε > 0 for which limx→∞ |x|ε [1−F(x)+F(−x)] = 0. Then, for any δ > 0,

lim
n→∞

(n+2)Cov
(
X((n+1)q),X((n+1)p)

)
=

(1− p)q
f (F−1(p)) f (F−1(q))

,

uniformly for p,q ∈ [δ ,1−δ ] such that p ≤ q.

As a consequence, the inverse of the covariance matrix of the order statistics,
when n goes to infinity, can be approximated as Σ−1 ∼ (n+ 1)(n+ 2)DQD [306],
where D is a diagonal matrix satisfying that Di,i = f

(
F−1( i

n+1)
)

for any i ∈ [n] and
Q is the matrix:

Q =


2 −1 0 0 0 . . .

−1 2 −1 0 0 . . .

0 −1 2 −1 0 . . .

0 0 −1 2 −1 . . .
...

...
...

...
... . . .

 . (2.1)

The inverse matrix of Q has a simple structure. In particular, (Q−1)i, j =
i(n+1− j)

n+1 for any i, j ∈ [n] (see [173]).

2.3.3 Stochastic processes

Random vectors can be seen as finite collections of random variables. In some
contexts, it is necessary to consider sets of random variables, defined in the same
probability space and indexed over a particular set, that can have infinite cardinality.
These sets of random variables are known as stochastic processes.
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Definition 2.88 [168, 213, 261] Let T be a set. A stochastic order process T is a
collection of random variables (Xt , t ∈ T ) defined in the same probability space.

The index set is denoted by T since it is usually referred to time. Typically, it is
chosen to be R+ or N, representing, respectively, continuous or discrete time. How-
ever, the set T can be, in fact, any set such as a graph [282] or the real plane [324].

For each ω ∈ Ω, (Xt(ω), t ∈ T ) can be seen as a function from T to the real
numbers. Each of such values is called a sample path of the stochastic order, which
is similar to the concept of observation of a random variable or random vector.
Sometimes, the properties of sample paths, such as continuity, are especially rele-
vant.

Notice that, if a finite subset of the index set T0 ⊆ T is considered, the collection
(Xt , t ∈ T0) can be seen as a random vector. The distributions associated with these
random vectors are known as the finite-dimensional distributions of the stochastic
process. In addition, any consistent collection of finite-dimensional distributions
characterizes the distribution of a stochastic process by the Kolmogorov Extension
Theorem [194].

When the stochastic process is indexed by time, both in the cases T = N and
T = R+, many properties can be defined.

Definition 2.89 [153, 261] Let (Xt , t ∈ N) be a stochastic process. Then,

• If P(Xtn ∈ Bn | Xt1 ∈ B1, . . . ,Xtn−1 ∈ Bn−1) = P(Xtn ∈ Bn | Xtn−1 ∈ Bn−1) for any
n ∈ N, B1, . . . ,Bn ∈ B and t1, . . . , tn ∈ N such that t1 ≤ ·· · ≤ tn for which such
a conditional probability exists, then (Xt , t ∈ N) is said to fulfill the Markov
property,

• If (Xt1, . . . ,Xtn)=st (Xt1+k, . . . ,Xtn+k) for any t1, . . . , tn,n,k∈N, then (Xt , t ∈N)
is said to be stationary,

• If E[Xt ] = E[X1] for any t ∈ N and

1
n

n

∑
t=0

Xt →a.s E[X1],

then (Xt , t ∈ N) is said to be (mean) ergodic,
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• If E[Xn | X1, . . . ,Xn−1] = (≤,≥)Xn−1, then (Xt , t ∈ N) is said to be a martin-
gale (supermartingale, submartingale).

When considering a continuous time, similar notions can be introduced.

Definition 2.90 [153, 168, 261] Let (Xt , t ∈ R+) be a stochastic process. Then,

• If P(Xtn ∈ Bn | Xt1 ∈ B1, . . . ,Xtn−1 ∈ Bn−1) = P(Xtn ∈ Bn | Xtn−1 ∈ Bn−1) for any
n ∈N, B1, . . . ,Bn ∈B and t1, . . . , tn ∈R+ such that t1 ≤ ·· · ≤ tn for which such
a conditional probability exists, then (Xt , t ∈ R+) is said to fulfill the Markov
property,

• If (Xt1, . . . ,Xtn) =st (Xt1+k, . . . ,Xtn+k) for any n ∈N and t1, . . . , tn,k ∈R+, then
(Xt , t ∈ R+) is said to be stationary,

• If E[Xt ] = E[X0] for any t ∈ R+ and

lim
T→∞

1
T

∫ T

0
Xtdt =a.s E[X0],

then (Xt , t ∈ R+) is said to be (mean) ergodic,

• If E[Xtn | Xt1, . . . ,Xtn−1 ] = (≤,≥)Xtn−1 , for any t1, . . . , tn ∈ R+ such that t1 ≤
·· · ≤ tn, then (Xt , t ∈ R+) is said to be a martingale (supermartingale, sub-
martingale),

• (Xt , t ∈ R+) is said to fulfill the reflection principle if P
(
sup0≤t≤s Xt ≥ a

)
=

2P(Xs ≥ a) for any a,s ∈ R+.

These properties have clear and relevant interpretations regarding the behavior
of the stochastic process.

Markov property states that, given some values of the stochastic process, the
future values depend only on the last known value. This is usually interpreted as
the past and future being conditionally independent given the value of the present.
The most remarkable examples are Markov chains, both in discrete and continu-
ous time [255], or other processes such as the Brownian motion or the Ornstein-
Uhlenbeck process [211]. In the case of discrete Markov chains, when T = N, a
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value λ ∈ R is said to be an absorbent state if P(Xn = λ | Xk = λ ) = 1 for any
n,k ∈ N such that k < n.

Stationary stochastic processes are temporary homogeneous, thus their distri-
bution does not change with time. This is a relevant property in time series analysis,
since it allows to apply methods that have been fitted using past data to new values,
since one expects a similar behavior. Some examples of stationary processes are the
Ornstein-Uhlenbeck process or some types of ARMA models [156].

Ergodicity is related to the estimation of a constant mean in the process. Of
course, the mean can be estimated when having independent observations of the
process, but in many applied cases this is not possible. However, in an ergodic pro-
cess the mean can be estimated just by considering one observation and computing
the associated sum or integral. For instance, any stationary process (Xt , t ∈ R+)

for which Cov(X0,Xh) goes to 0 fast enough when t goes to infinity is ergodic (see
condition [3.1.15] in [156]). On the other hand, the Brownian motion is not ergodic.
Finally, a process is a martingale if, given some values of the process, the expecta-
tion of the future only depends on the latest known value and is equal to that value.
Brownian motion is a martingale, while the Ornstein-Uhlenbeck process is not.

2.3.4 Random sets

Random sets are a generalization of random vectors in which the values they take
are subsets rather than elements of the considered space. These type of random
structures can appear when dealing with imprecise observations [236] or with sets
defined by stochastic processes [144]. They have applications in different areas [53,
240, 336]

The most usual ones are the so-called closed random sets over Rn, considering
as the set of values

Fn = {C ⊆ Rn | C is closed}.

Along this thesis, all random sets will be considered to be closed, non-empty
and Effros measurable.

Definition 2.91 [239] Given a probability space (Ω,F ,P), a function SX : Ω→ Fn
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is a Effros measurable random set if

{ω ∈ Ω | SX(ω)∩O ̸= /0} ∈ F ,

for any open set O ⊆ Rn.

The distribution of any random set can be determined by the capacity func-
tional, which is the probability of intersecting compact sets. As a consequence of
the Choquet Theorem, see [254], the following result holds.

Theorem 2.92 Let SX and SY be two random sets of dimension n. Then, if P(SX ∩
K ̸= /0) = P(SY ∩K ̸= /0) for any compact K ⊆ Rn, SX and SY have the same distri-
bution.

For any random set, it is possible to compute the probability of intersecting or
being contained in any open or closed set. In addition, the infimum and supremum
of random sets are random variables. The following is a particular case of Theorem
2.27 in [239].

Theorem 2.93 Let S be a bounded random set. Then, inf⃗x∈Rn S is a random vari-
able.

A classical problem in random set theory is to study the selections of a given
random set. A selection of SX is a random vector X⃗ such that P(X⃗ ∈ SX) = 1 [254].
Intuitively, it is the result of choosing a random element that is (almost surely)
contained in the random set. The most easy way to obtain a selection is by applying
a selection operator, defined as follows.

Definition 2.94 [239] A function f : Fn → Rn is said to be a selection operator if
it is measurable and f (C) ∈C for every C ∈ Fn.

Obviously, f (SX) is always a selection of the random set SX . It is known that
there exists always a sequence of selection operators such that the closure of their
composition with a random set equals the random set.

Proposition 2.95 [239] There exists a sequence of selection operators { fi, i ∈ N}
such that C = cl{ fi(C), i ∈ N} for any C ∈ Fn.
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Of course, one has, under the conditions of the latter result, that SX = cl{ fi(SX),

i ∈ N}. Recall that the closure of a set C is defined as the limit points of C, where x⃗
is a limit point of C if it can be expressed as x⃗ = lim j→∞ x⃗ j with {⃗x j, j ∈ N} ⊆C.

The notion of expectation, well established for random vectors, is not straight-
forward for random sets. One of the most used ones is the selection expectation,
defined by considering integrable selections. Consider the p-norm for random vec-
tors defined as E

[
||X⃗ ||p2

]
, where || · ||2 denotes the Euclidean norm.

Definition 2.96 [239] Let SX be a random set and X⃗ a selection of SX . X⃗ is said to
be a p-integrable selection of SX if E

[
||X⃗ ||p2

]
is finite.

A random set SX is p-integrable if there exists at least one p-integrable selec-
tion. For simplicity, 1-integrability will simply be denoted as integrability. Any
p-integrable random set can be expressed as the closure of p-integrable selections
as follows.

Proposition 2.97 [239] Let SX be a p-integrable random set. Then, there exists a
sequence of p-integrable selections (X⃗i, i ∈ N) such that SX = cl{X⃗i, i ∈ N}.

Moreover, any p-integrable selection of SX can be approximated by a sequence
that is a modification of the latter one.

Theorem 2.98 [239] Let SX be a random set and (X⃗i, i ∈ N) a sequence of p-
integrable selections such that SX = cl{X⃗i, i ∈N}. Then, for any p-integrable selec-
tion X⃗ of SX and any ε > 0, there exists a finite measurable partition A1, . . . ,Am of
Ω such that:

E

[
X⃗ −

m

∑
i=1

IAiX⃗i

]
< ε,

where I denotes the indicator function.

It is important to remark that, for p= 2, the latter result implies the convergence
in L2 of the sequence. This, in turn, implies convergence in distribution [222], see
the paragraph right before Proposition 2.107. Finally, the selection expectation can
be introduced.
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Definition 2.99 [254] Let SX be an integrable random set. Then, the selection
expectation is defined as:

E[SX ] = cl{E[X⃗ ] | X⃗ integrable selection of SX}.

2.3.5 Stochastic orders

Stochastic orders are relations between probability distributions that aim to order
them, typically, in terms of location, variability or dependence. They can be seen
as stronger versions of inequalities regarding the expectation, the variance or the
Pearson correlation coefficient, respectively.

Since any random element induces a probability distribution, stochastic orders
are usually used to order random elements. However, there are some of them, such
as Statistical Preference, that order random variables but not distributions.

Actually, it is not easy to find a proper definition of a general stochastic order
in the literature, even in the main reference book on the topic [295]. In order to
clarify the concept, the following definition will be used.

Definition 2.100 Let (Ω,Σ,P) be a probability space and let (S,F) be a measurable
space. Denote by L the set of all measurable functions from Ω to S. A binary relation
≤so⊆ L×L is a stochastic order if:

• For any f ,g,h ∈ L such that f ≤so g and g ≤so h, it holds f ≤so h,

• For any f ,g ∈ L, f ≤so g and g ≤so f holds if and only if f and g have the
same distribution.

That is, the notion of stochastic order is similar to the one of partial order (see
Section 2.2.5.2) but considers classes of equivalence with respect to having the same
distribution for the reflexivity and the antisymmetry.

Although the latter definition is stated in terms of random elements, most
stochastic orders are defined for random vectors or random variables. In the sub-
sequent sections, the main three types of stochastic orders (location, variability and
dependence) are introduced.
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2.3.5.1 Location stochastic orders

Typical stochastic orders consider the location of the variables as the criterion for
the order. In fact, the most used stochastic order, the usual stochastic order, is
defined in terms of expectations of increasing functions.

Definition 2.101 Let X⃗ and Y⃗ be two random vectors. If E[ϕ(X⃗)] ≤ E[ϕ (⃗Y )] for
any measurable increasing function ϕ : Rn → R such that E[ϕ(X⃗)] and E[ϕ (⃗Y )]
exist, then X⃗ is said to be smaller than or equal to Y⃗ in the usual stochastic order
and it is denoted as X⃗ ≤st Y⃗ .

For random variables, the usual stochastic order is also known as Stochastic
Dominance and it is equivalent to the pointwise ordering of the distribution function,
that is, X ≤st Y ⇐⇒ FX(x)≥ FY (x)∀x ∈ R [295].

A simple way to construct two random vectors ordered by means of the usual
stochastic order is to consider X⃗ and Y⃗ such that P(X⃗ ≤ Y⃗ ) = 1. If this is the case,
it is said that X⃗ is almost surely smaller than or equal to Y⃗ and it is denoted as
X⃗ ≤a.s. Y⃗ . Trivially, X⃗ ≤a.s. Y⃗ =⇒ X⃗ ≤st Y⃗ .

In addition to the comparison of expectations of increasing functions, there are
two other main equivalent definitions for the usual stochastic order, given in the
following result.

Theorem 2.102 [295] Let X⃗ and Y⃗ be two random vectors. Then, the following
statements are equivalent.

1. X⃗ ≤st Y⃗ ,

2. P(X⃗ ∈U)≤ P(⃗Y ∈U) for any upper set U ⊆ Rn,

3. There exist two random vectors defined in the same probability space ˆ⃗X and
ˆ⃗Y such that ˆ⃗X =st X⃗ , ˆ⃗Y =st Y⃗ and ˆ⃗X ≤a.s.

ˆ⃗Y .

If the usual stochastic order holds between two random vectors, it also holds for
the associated marginals [295]. That is, if X⃗ ≤st Y⃗ , then Xi ≤st Yi for any i ∈ [n]. The
other implication is not true in general, but it holds when having the same copula.
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Proposition 2.103 [295] Let X⃗ and Y⃗ be two random vectors with the same copula
such that Xi ≤st Yi for any i ∈ [n]. Then, X⃗ ≤st Y⃗ .

The usual stochastic order has good properties with respect to conditional dis-
tributions. In particular, if the conditional distributions are ordered for each possible
value of another random vector, then the non-conditional distributions are also or-
dered.

Proposition 2.104 [295] Let X⃗ , Y⃗ and Z⃗ be three random vectors. If [X⃗ | Z⃗ = z⃗]≤st

[⃗Y | Z⃗ = z⃗] for any z⃗ ∈ S(⃗Z), then X⃗ ≤st Y⃗ .

A more involved result can be proved by considering random variables depend-
ing on a parameter.

Theorem 2.105 [295] Let X(θ) be a random variable depending on a parameter.
Let ΘX and ΘY be two random variables with the same support. Then, if X(θ1)≤st

X(θ2) whenever θ1 ≤ θ2 and ΘX ≤st ΘY , it holds that X(ΘX)≤st X(ΘY ).

Another relevant property is that the usual stochastic order is closed under the
application of an increasing function.

Proposition 2.106 [295] Let X⃗ and Y⃗ be two random vectors such that X⃗ ≤st Y⃗ and
consider a measurable increasing function f : Rn → Rm. Then, f (X⃗)≤st f (⃗Y ).

Finally, the usual stochastic order is preserved when considering sequences of
random vectors. In the following X⃗n →d X⃗ will denote convergence in distribu-
tion ( limn→∞ F⃗Xn

(⃗t) = F⃗X (⃗t) for any t⃗ ∈ Rn), Xn →a.s. X will denote almost surely
convergence (P(limn→∞ X⃗n = X⃗) = 1) and Xn →L2 X will denote convergence in L2

(limn→∞ E[(Xn −X)2] = 0) [222, 278].

Proposition 2.107 [295] Let (X⃗n,n ∈ N) and (⃗Yn,n ∈ N) be two sequences of ran-
dom vectors such that X⃗n ≤st Y⃗n for any n ∈ N. If X⃗n →d X⃗ and Y⃗n →d Y⃗ , then
X⃗ ≤st Y⃗ .
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Since almost surely convergence and convergence in L2 imply convergence in
distribution [278], latter result also holds for those cases. Obviously, there exist
cases where the random quantities cannot be ordered in the usual stochastic order.
In order to avoid such limitations, weaker stochastic orders can be used. The most
common alternative to the usual stochastic order is the increasing convex stochastic
order, defined as follows.

Definition 2.108 [295] Let X⃗ and Y⃗ be two random vectors. If E[ϕ(X⃗)]≤ E[ϕ (⃗Y )]
for any measurable increasing convex (symmetric increasing convex) function ϕ :
Rn → R such that E[ϕ(X⃗)] and E[ϕ (⃗Y )] exist, then X⃗ is said to be smaller than or
equal to Y⃗ in the increasing convex (symmetric increasing convex) stochastic order
and it is denoted as X⃗ ≤icx (≤sym−icx)⃗Y .

Throughout this thesis, the increasing convex stochastic order will be referred
to as simply the increasing convex order. Trivially, the usual stochastic order implies
the increasing convex order. In addition, it is also clear that X⃗ ≤icx Y⃗ =⇒ E[X⃗ ] ≤
E [⃗Y ]. Similarly to the case of the usual stochastic order, there are some equivalent
conditions for the increasing convex order.

Theorem 2.109 [295] Let X⃗ and Y⃗ be two random vectors. Then, the following
statements are equivalent.

1. X⃗ ≤icx Y⃗ ,

2. There exist two random vectors ˆ⃗X and ˆ⃗Y defined in the same probability space
holding ˆ⃗X =st X⃗ , ˆ⃗Y =st Y⃗ and E

[
ˆ⃗Y
∣∣∣ ˆ⃗X
]
≥ ˆ⃗X.

Moreover, if X⃗ and Y⃗ are random variables (denoted as X and Y ), then the
following statement is also equivalent.

3.
∫

∞

x F̄X(t)dt ≤
∫

∞

x F̄Y (t)dt, ∀x ∈ R.

On the other hand, sometimes it is necessary to have location stochastic orders
that are stronger than the usual stochastic order. One of the cases that is relevant
in reliability theory [256], is the cumulative hazard order, denoted by X⃗ ≤ch Y⃗ . Its
definition, which is restricted to positive random vectors, is quite complicated and
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involves integrals of failure rates. The reader is referred to Section 6.C in [295] to
more information in this regard. The main result of interest states that this order is
stronger than the usual stochastic order in the multivariate case and equivalent in
the univariate one.

Proposition 2.110 [295] Let X⃗ and Y⃗ be two random vectors. Then, X⃗ ≤ch Y⃗ =⇒
X⃗ ≤st Y⃗ . Moreover, if X and Y are two random variables, X ≤ch Y ⇐⇒ X ≤st Y .

There are also many other notions of location stochastic orders. In the next
definition, some of them are briefly introduced.

Definition 2.111 Let X⃗ and Y⃗ be two random vectors. Then,

• [199] If Xi ≥st Yi for any i ∈ [n], it is said that X⃗ is smaller than or equal to Y⃗
in the componentwise stochastic order and it is denoted as X⃗ ≥cst Y⃗ ,

• [199] If for any λ1, . . . ,λn ∈ R+, ∑
n
i=1 λiXi ≤st ∑

n
i=1 λiYi, it is said that Y⃗ has

Linear Stochastic Dominance over X⃗ and it is denoted by X⃗ <LSD Y⃗ ,

• [279] When X⃗ and Y⃗ are defined in the same probability space, if P(X⃗ < Y⃗ )+
1
2P(X⃗ = Y⃗ ) > 0.5 (componentwise), it is said that Y⃗ is statistically preferred
to X⃗ and it is denoted as X⃗ ≤SP Y⃗ ,

• [295] If P(X⃗ = t⃗)P(⃗Y = s⃗)≤ P(X⃗ = t⃗ ∧ s⃗)P(⃗Y = t⃗ ∨ s⃗) holds for any t⃗, s⃗ ∈Rn,
then X⃗ is said to be smaller than or equal to Y⃗ with respect to the likelihood
ratio order (for discrete random vectors) and it is denoted as X⃗ ≤lr Y⃗ .

It will also be of interest to consider some extensions of the usual stochastic
order to other types of random elements. For stochastic processes, it is defined as
the comparison of finite-dimensional distributions.

Definition 2.112 [295] Let (Xt , t ∈ T ) and (Yt , t ∈ T ) be two stochastic processes
on the same index set. Then, if

(Xt1, . . . ,Xtn)≤st (Yt1, . . . ,Ytn),

for any n ∈ N and t1, . . . , tn ∈ T , is said that (Xt , t ∈ T ) is smaller than or equal to
(Yt , t ∈ T ) in the usual stochastic order (for stochastic processes) and it is denoted
by (Xt , t ∈ T )≤st (Yt , t ∈ T ).
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The reader is referred to Section 6.B.7 in [295] for some examples of stochastic
processes ordered in this sense, including Markov and renewal processes.

The usual stochastic order for stochastic processes has an equivalent charac-
terization as Condition 3 in Theorem 2.102. Similarly as for random vectors, the
notation (Xt , t ∈ T ) ≤a.s. (Yt , t ∈ T ) is used to denote Xt ≤ Yt for all t ∈ T with
probability 1.

Theorem 2.113 [295] Let (Xt , t ∈ T ) and (Yt , t ∈ T ) be two stochastic processes
on the same index set. Then, (Xt , t ∈ T )≤st (Yt , t ∈ T ) if and only if there exist two
stochastic processes (X̂t , t ∈ T ) and (Ŷt , t ∈ T ) such that (X̂t , t ∈ T ) =st (Xt , t ∈ T ),
(Ŷt , t ∈ T ) =st (Yt , t ∈ T ) and (X̂t , t ∈ T )≤a.s. (Ŷt , t ∈ T ).

Moving to random sets, the closest notion of a location stochastic order that
can be found in the literature is the paper by Montes et al. [242]. They provide
several definitions of stochastic relations involving sets of distribution functions and
p-boxes, relevant in the context of imprecise probabilities [236]. These relations can
be straightforwardly adapted to random intervals. In the next definition, Definition 4
and Proposition 3 in [242] are partially adapted to introduce some of these relations
for random intervals.

Definition 2.114 [242] Let IX = [X1,X2] and IY = [Y1,Y2] be two random intervals.
Then, the following relations are defined:

• If X2 ≤st Y1, then it is said that IY (FSD1)-stochastically dominates IX and it
is denoted as IX ≤FSD1 IY ,

• If X1 ≤st Y1, then it is said that IY (FSD2)-stochastically dominates IX and it
is denoted as IX ≤FSD5 IY ,

• If X2 ≤st Y2, then it is said that IY (FSD5)-stochastically dominates IX and it
is denoted as IX ≤FSD5 IY .

However, none of the relations are, at the same time, transitive, reflexive and
antisymmetric with respect to the classes of equivalence related to having the same
distribution (see Remark 1 in [242]), so they are not stochastic orders in the sense
of Definition 2.100.
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2.3.5.2 Variability stochastic orders

In some cases, it is not interesting to order the distributions in terms of location but
to consider the variability. One of the classical variability stochastic comparisons is
the dispersive order.

Definition 2.115 [295] Let X and Y be two random variables with quantile func-
tions F−1 and G−1. Then, X is said to be smaller than or equal to Y in the dispersive
order, denoted as X ≤disp Y , if

F−1(p)−F−1(q)≤ G−1(p)−G−1(q) for any 0 < q ≤ p < 1.

Note that X ≤disp Y holds if and only if the transformation φ : F−1 ◦G, for
which X =st φ(Y ), is increasing and fulfills

φ(x)−φ(y)≤ x− y, whenever x ≤ y,

with both x,y ∈ R (see Section 3.B in [295] for details). In addition, this is equiva-
lent to requiring φ to be an increasing contraction (see Section 2.1.3).

The dispersive order implies the inequality of variances. Another common
alternative is to use convexity to define stochastic comparisons based on variabil-
ity. Between the most used, one can find convexity, componentwise convexity and
symmetric convexity.

Definition 2.116 [295] Let X⃗ and Y⃗ be two random vectors of dimension n. If
E[ϕ(X⃗)]≤ E[ϕ (⃗Y )] for any measurable convex (componentwise convex, symmetric
convex) function ϕ : Rn → R such that E[ϕ(X⃗)] and E[ϕ (⃗Y )] exist, then X⃗ is said
to be smaller than or equal to Y⃗ in the convex (componentwise convex, symmetric
convex) stochastic order and it is denoted as

X⃗ ≤cx [≤ccx,≤scx] Y⃗ .

Trivially, the componentwise convex order implies the convex order, which in
turn implies both the symmetric convex and increasing convex orders. For random
variables, all the orders introduced in Definition 2.116 are equivalent. In addition,
if E[X ] = E[Y ], then X ≤disp Y implies that X ≤cx Y .
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Since the functions f (⃗x) = ±xi with i ∈ [n] are convex, then X⃗ ≤cx Y⃗ implies
that E[X⃗ ] = E [⃗Y ]. Similarly, since f (x) = x2 is convex, then X ≤cx Y implies that
Var(X⃗)≤ Var(⃗Y ). In addition, the convex order has similar characterizations to the
ones for the increasing convex order in Theorem 2.109.

Theorem 2.117 [295] Let X⃗ and Y⃗ be two random vectors. Then, the following
statements are equivalent.

1. X⃗ ≤cx Y⃗ ,

2. There exist two random vectors ˆ⃗X and ˆ⃗Y such that ˆ⃗X =st X⃗ , ˆ⃗Y =st Y⃗ and
E
[

ˆ⃗Y
∣∣∣ ˆ⃗X
]
= ˆ⃗X.

Moreover, if X⃗ and Y⃗ are random variables (denoted as X and Y ), then the
following statement is also equivalent.

3. E[X ] = E[Y ] and
∫

∞

x F̄X(t)dt ≤
∫

∞

x F̄Y (t)dt, ∀x ∈ R.

2.3.5.3 Dependence stochastic orders

For comparisons of random vectors in terms of dependence, different orders have
been considered in the literature. One of the most used is the supermodular order.
It is used to compare vectors whose distributions are members of the same Fréchet
class.

Definition 2.118 [295] Let X⃗ and Y⃗ be two random vectors that are members of
the same Fréchet class. If E[ϕ(X⃗)] ≤ E[ϕ (⃗Y )] for any supermodular function ϕ :
Rn → R such that E[ϕ(X⃗)] and E[ϕ (⃗Y )] exist, then X⃗ is said to be smaller than or
equal to Y⃗ in the supermodular order, and it is denoted as X⃗ ≤sm Y⃗ .

The supermodular order implies the inequality of the Pearson correlation co-
efficient. One can find a large number of results that describe conditions such that
two random vectors are ordered with respect to the supermodular order. For exam-
ple, results can be found for multivariate Gaussian distributions (Example 9.A.20
in [295]), exchangeable vectors with FGM copulas (Theorem 5 in [63]) or ex-
changeable multivariate Bernoulli random vectors (Theorem 2.11 [97]).



69 2.4. STATISTICS

It is also a known fact that for bivariate random vectors, the supermodular order
is equivalent to the PQD order [295], defined as follows.

Definition 2.119 [295] Let X⃗ and Y⃗ be two random vectors that are in the same
Fréchet class with distribution functions, respectively, F and G. Then, X⃗ is said to
be smaller than or equal to Y⃗ in the positive quadrant dependent order, and it is
denoted as X⃗ ≤PQD Y⃗ if F (⃗x)≤ G(⃗x) for any x⃗ ∈ Rn.

When n > 2, the supermodular order implies the PQD order, but the other
implication does not hold [295].

2.4 Statistics

Statistics refers to the field of Mathematics that deals with data analysis by using
Probability Theory as a basis. It includes descriptive statistics, estimation of param-
eters, prediction of quantities or tests for hypothesis, among others methods.

The first use of the term is attributed to Girolamo Ghilini in 1633 and is derived
from the Italian phrase ragione di stato [260]. Statistics, as a noun, was popularized
by Gottfried Achenwall in 1749 [1]. Among other main contributors to Statistics,
it is possible to find Pierre-Simon Laplace [317], Carl Friedrich Gauss [296], Karl
Pearson [318], Ronald Fisher [202] and Jerzy Neyman [137].

In Statistics, data are associated with the observation of quantities of interest
over a subset (the sample) of a bigger population of study. In this direction, Statistics
can be separated into two big parts. The first one, Descriptive Statistics, focuses on
summarizing and representing the given data without trying to conclude anything
about the population. On the other hand, Statistical Inference tries to extrapolate
the information from the sample to the population.

In particular, data are assumed to be observations of a random variable or vector
that describes the behavior of the population. Therefore, Statistics can use the tools
of Probability Theory in order to define and study the proposed methods.

For the purposes of this thesis, it is necessary to briefly introduce some sta-
tistical measures for samples, as well as the basics of the theory of estimation and
hypothesis testing.
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2.4.1 Statistical measures

In Descriptive Statistics, the values of a sample are usually summarized by comput-
ing the so-called statistical measures. In this section, the basic statistical measures
regarding location and variability are given.

In the case of location, the main ones that are of interest for this thesis are
the sample mean and the sample median. The first one is another name for the
arithmetic mean (denoted by x̄) of the sample, while the second one coincides with
the central value of the data, when n is odd, and the average between the central
values when n is even. Regarding variability measures, one of the most used is the
sample variance [278], defined as

σ̂
2(⃗x) =

1
n−1

n

∑
i=1

(xi − x̄)2 =
1

2n(n−1)

n

∑
i, j=1

(xi − x j)
2.

Another relevant variability measure is the sample Gini mean difference [303],
which focuses on the absolute value of the differences in the sample,

G(⃗x) =
1

n(n−1)

n

∑
i=1

n

∑
j=1

|xi − x j|.

Finally, another usual option is the range of the data [278], defined as

R(⃗x) = max(⃗x)−min(⃗x).

2.4.2 Estimation

In Statistics, it is common to have an expression for the distribution function of a
random quantity X depending on some unknown parameters θ , which are associ-
ated with a particular statistical model. Denoting the set of possible values for the
unknown parameters θ as Θ, an estimator of θ is a measurable function from the
random sample to Θ that does not depend on the value of θ .

Definition 2.120 [278] Consider X1(θ), . . . ,Xn(θ) identically distributed random
variables with (marginal) distribution function Fθ depending on some unknown pa-
rameters θ ∈ Θ. An estimator is any measurable function T : Rn → Θ that does not
depend on the value of the unknown parameters.
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The value T (X1(θ), . . . ,Xn(θ)) takes for a particular observation of the sample
is called an estimation of θ . Although many estimators can be defined for a set of
parameters, there are desirable properties that estimators can fulfill. One of them
is to require the estimator to be unbiased, i.e. the expected value of the estimator
equals the real value of the parameter.

Definition 2.121 [278] Consider X1(θ), . . . ,Xn(θ) identically distributed random
variables with (marginal) distribution function Fθ depending on some unknown pa-
rameters θ ∈ Θ. An estimator T : Rn → Θ of θ is said to be unbiased if

E[T (X1(θ), . . . ,Xn(θ))] = θ .

For instance, it is well-known that the arithmetic mean is an unbiased estimator
of the expectation and the sample variance is an unbiased estimator of the variance.
Another relevant property is efficiency, which focuses on the distance between the
real value of the parameter and its estimation. In particular, it is defined in terms
of the expectation of the square of the difference between the estimation and the
real value of the parameters, i.e. E

[
||T (X1(θ), . . . ,Xn(θ))−θ ||22

]
. This quantity is

known as the Mean Squared Error (MSE).

Definition 2.122 [278] Consider X1(θ), . . . ,Xn(θ) identically distributed random
variables with (marginal) distribution function Fθ depending on some unknown pa-
rameters θ ∈ Θ and let T1,T2 : Rn → Θ be two estimators of θ . Then, it is said that
T1 is more efficient than T2 if

E
[
||T1(X1(θ), . . . ,Xn(θ))−θ ||22

]
≤ E

[
||T2(X1(θ), . . . ,Xn(θ))−θ ||22

]
, ∀θ ∈ Θ,

and there exists θ0 ∈ Θ such that

E
[
||T1(X1(θ0), . . . ,Xn(θ0))−θ0||22

]
< E

[
||T2(X1(θ0), . . . ,Xn(θ0))−θ0||22

]
.

For example, the arithmetic mean is the most efficient estimator of the mean for
Gaussian random variables [278]. The MSE, under some conditions, has a lower
bound on the set of all estimators, known as the Frechet-Cramer-Rao bound [99,
130, 276]. The reader is referred to Section 8.3 in [278] for more properties such as
sufficiency, completeness and consistence.
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There is a direct connection between some aggregation functions and estima-
tors of the centrality. The most relevant example is, again, the arithmetic mean
as a mean estimator. Another prominent example is the use of OWA operators to
estimate the expected value [72]. The reader is referred to some foundational pa-
pers [218, 287, 288, 286] and to some developments of such estimators in recent
years [2, 121, 203].

Also related to estimation, the distribution function of a random variable can
be approximated by, given a sample, computing the empirical distribution function.
Roughly speaking, the empirical distribution function is the distribution function
associated with choosing uniformly a value from the sample.

Definition 2.123 [278] Let X1, . . . ,Xn be a sequence of random variables. The em-
pirical distribution function is defined as:

F̂(x) =


0 if x < X(1),

k
n if X(k) ≤ x < X(k+1), k ∈ [n−1],

1 if X(n) ≤ x.

The empirical distribution function converges to the distribution function if the
random variables have the same distribution and are independent. In addition, there
are more involved results regarding the rate and the uniformity of the convergence,
(see [257]).

2.4.3 Hypothesis testing

Another relevant part of Statistics is devoted to developing statistical tests in order
to decide whenever a hypothesis can be assumed to be true or not. Given a random
sample (X1, . . . ,Xn), a statistical test considers a null hypothesis and an alternative
hypothesis. The random sample is assumed to fulfill the null hypothesis, and, under
that assumption, the probability of having less or equally compatible samples is
computed. This value is known as the p-value, and, if it is below a certain threshold
known as significance level and usually considered as 0.05, the null hypothesis is
rejected and the alternative accepted. The reader is referred to Chapter 3 in [181] or
Chapter 9 in [278] for more information in this regard.
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In the following, the statistical tests that will be relevant for the development
of the thesis are briefly explained.

The one sample Kolmogorov-Smirnov test compares the empirical distribution
function with a theoretical one by computing the supremum of the difference of
both functions. The null hypothesis is that the sample follows a given theoretical
distribution. Thus, small p-values will imply the rejection of that hypothesis [55].
Similarly, the two-sample Kolmogorov-Smirnov test is defined using two empirical
distribution functions instead [55].

The one-sample Wilcoxon test, also known as the Mann-Whitney test, com-
pares the number of values in the sample that are below and above a certain fixed
value to determine whether that fixed value is central or not. The null hypothesis,
in the case considered in this thesis, will be that the central location is equal to a
particular value [321]. It is also possible to modify the test to compare the central
value of two different populations.

The Cabilio-Masaro symmetry test is based on the difference between the sam-
ple mean and the sample median typified by the sample variance. If the difference
is big enough, the null hypothesis of symmetry is rejected [77].

Another important problem is to discriminate whenever the usual stochastic
order between two random variables holds, for which different hypothesis testing
procedures have been developed [20, 232, 313]. In the case of the increasing convex
order in the univariate case, there exist also several alternatives [18, 217, 333].
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In the study of the aggregation of random structures, the most simple case is to
consider random variables. Aggregation of random variables is not only interesting
because of its simplicity, it is also relevant due to the fact that, in most cases, random
data take real numbers as values.

In this chapter, the basics of aggregations of random variables are disclosed.
There are two main objectives. The first one is to study in detail the definition of
aggregation of random variables, considering different alternatives. In addition, the
scenarios that the considered definition can model are studied. The second objective
is to provide a general framework that will serve as the theoretical basis for the
studies and the results in the rest of the chapters.

In particular, the different possibilities for a definition of aggregations of ran-
dom variables will be studied in Section 3.1. Using the adequate definition, some
relevant families of aggregations of random variables are defined in Section 3.2. Fi-
nally, in Section 3.3 some additional properties of aggregations of random variables
are introduced.
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3.1 Definition of aggregation of random variables

As explained in Chapter 1, to the best knowledge of the author, there does not exist
a notion of aggregation of random variables in the literature. Some particular works
focused on usual aggregation functions with random inputs (see [117, 150, 193, 226,
227, 228, 230, 269]), but none of them establish a proper definition in probabilistic
terms.

Therefore, the first step in the study of the aggregation of random variables
is to construct the concept itself. This construction is the most important part of
the thesis, since the concept is the basis of the rest of the results and particular
cases. A non adequate notion of aggregation of random variables could lead to bad
theoretical properties that would not allow the theory to be developed.

In this sense, the definition of aggregation of random variables has been refined
in last years, mainly with respect to the boundary conditions. The first definition
was given in [29], in which the boundary conditions were introduced in terms of the
supremum and infimum of the set Ln

I (Ω) (which will be defined later). A detailed
explanation of the boundary conditions was given later in [39]. Finally, the current
form of the definition, see Definition 3.6, expresses the boundary conditions in a
simple but equivalent manner and was introduced in [26].

The main notions about the definition of aggregations of random variables are
addressed in this section. In particular, the construction process of such functions
is described, explaining each of the necessary steps such as the construction of the
domain and the image, the choice of the adequate stochastic order and the boundary
conditions. Some direct implications of the definition are also provided.

3.1.1 A general definition

For defining aggregations of random variables, a reasonable technique is to try to
extend Definition 2.5 to the probabilistic setting. In this regard, it is necessary to
define the following three elements.

• A set of random vectors, related to an interval,

• A monotonicity condition,
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• Boundary conditions.

The set of random vectors is easy to construct. Considering a probability space
(Ω,F ,P) and a real interval I (bounded or not), consider the following set.

Ln
I (Ω) =

{
X⃗ : Ω → In

∣∣∣ X⃗ is measurable
}
.

These sets are just the random vectors defined from the considered probability
space to the Cartesian product of the interval I. If n = 1, L1

I (Ω) will be denoted
as LI(Ω). In addition, (Ω) will be dropped whenever it does not lead to confusion,
denoting them simply as LI and Ln

I .
For monotonicity, it is necessary to have an order between random vectors. Of

course, as introduced in Section 2.3.5, stochastic orders are defined to fulfill this
purpose. In particular, it is natural to consider a location stochastic order, since
they order random vectors with degenerate distribution just as the componentwise
order orders usual vectors. In addition, it is necessary to have the stochastic order
defined for any possible dimension of the random vectors. At this point, it will
be considered a general location stochastic order ≤so. Therefore, any candidate
for being an aggregation of random variables A should satisfy A(X⃗) ≤so A(⃗Y ) if
X⃗ ≤so Y⃗ .

Finally, it is necessary to establish the boundary conditions. If the interval is
bounded, i.e. I = [a,b], then they can be defined by stating that A(X⃗) =a.s. a when-
ever X⃗ =a.s. a⃗1 and A(X⃗)a.s. = b whenever X⃗ =a.s. b⃗1. If the interval is unbounded,
the same reasoning as in Definition 2.6 can be applied. The set LR can be extended
with two new elements, −∞,∞ such that −∞ ≤so X ≤so ∞ for any X ∈ LR. Then,
the considered boundary conditions will be the following.

• infX⃗∈Ln
I
A(X⃗) = infLI ,

• supX⃗∈Ln
I
A(X⃗) = supLI .

Similarly to the case for degenerate vectors, the boundary conditions can be
rewritten in a simpler form.

• For any X ∈ LI , there exists X⃗ ∈ I such that A(X⃗)≤so X ,
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• For any X ∈ LI , there exists X⃗ ∈ Ln
I such that A(X⃗)≥so X .

Adding all these elements, aggregations of random variables can be defined as
follows.

Definition 3.1 [29] Let (Ω,Σ,P) be a probability space, ≤so a stochastic order
and I a real non-empty interval. An aggregation function of random variables (with
respect to ≤so) is a function A : Ln

I (Ω)→ LI(Ω) which satisfies:

1. For any X⃗ ,Y⃗ ∈ Ln
I such that X⃗ ≤so Y⃗ , A(X⃗)≤so A(⃗Y ),

2. For any X ∈ LI , there exists X⃗ ∈ Ln
I such that A(X⃗)≤so X,

3. For any X ∈ LI , there exists X⃗ ∈ Ln
I such that A(X⃗)≥so X.

3.1.2 On the choice of the stochastic order

In Definition 3.1, the aggregation of random variables with respect to a generic
stochastic order is given. However, the properties of the notion are quite sensitive
to the choice of such a stochastic order. If a strong stochastic order is chosen, then
there are few pairs of X⃗ ,Y⃗ ∈ Ln

I such that X⃗ ≤so Y⃗ , but is hard for A(X⃗) ≤so A(⃗Y )
to be fulfilled. On the contrary, if a weak stochastic order is chosen, the condition
A(X⃗) ≤so A(⃗Y ) is easier to be verified, while the number of X⃗ ,Y⃗ ∈ Ln

I such that
X⃗ ≤so Y⃗ increases.

Therefore, it is necessary to establish a criterion for choosing the stochastic
order. Of course, it could depend on the particular case or field of application.
However, a reasonable property that is generally desirable is to be able to use usual
aggregation functions to define aggregations of random variables. That is, given an
aggregation function Â : I → In, it should be fulfilled that any A : Ln

I → LI defined as
A(X⃗) = Â◦ X⃗ is an aggregation of random variables with respect to the considered
stochastic order.

In this direction, it is necessary to choose a stochastic order that is closed when
an increasing function is applied. Specifically, it should hold that X⃗ ≤so Y⃗ =⇒
f (X⃗)≤so f (⃗Y ) for any measurable increasing function f : Rn → R.
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Sadly, there are many location stochastic orders that do not fulfill this property.
This is the case, for instance, of the componentwise stochastic order and the Linear
Stochastic Dominance.

Example 3.2 [29] Consider two bivariate random vectors X⃗ = (X1,X2) and Y⃗ =

(Y1,Y2), such that P(X1 = 1,X2 = 1) = P(X1 = 0,X2 = 0) = 0.5 and P(Y1 = 0,Y2 =

0) = 0.16, P(Y1 = 0,Y2 = 1) = P(Y1 = 1,Y2 = 0) = 0.24 and P(Y1 = 1,Y2 = 1) =
0.36. It is immediate that X1 ≤st Y1 and X2 ≤st Y2, so X⃗ ≤cst Y⃗ . On the other
hand, when aggregating the random vectors using the minimum function, it holds
that P(min(X1,X2) = 1) = 0.5 and P(min(Y1,Y2) = 1) = 0.36. Thus, min(X⃗) ̸≤cst

min(⃗Y ).

Example 3.3 [29] Consider two bivariate random vectors X⃗ = (X1,X2) and Y⃗ =

(Y1,Y2), such that P(X1 = 0,X2 = 0) = P(X1 = 0,X2 = 0.5) = P(X1 = 0.5,X2 =

0) = P(X1 = 0.5,X2 = 0.5) = 0.25 and P(Y1 = 0,Y2 = 1) = P(Y1 = 1,Y2 = 0) = 0.5.
Now, consider the positive linear combinations of the components αX1 +βX2 and
αY1 +βY2, with α,β ∈ R+. Notice that αY1 +βY2 takes the values α and β with
the same probability 0.5 and αY1 + βY2 takes four equiprobable values, 0, α

2 , β

2
and α+β

2 . For any positive values of α and β , αX1 + βX2 ≤st αY1 + βY2 always
holds. Therefore, X⃗ ≤LSD Y⃗ . On the other hand, when applying the minimum to both
random vectors, one has P(min(X1,X2) = 0) = 0.75 and P(min(Y1,Y2) = 0) = 1.
Thus, min(X⃗) ̸≤LSD min(⃗Y ).

The intuition behind the reason why the latter stochastic orders are not suitable
is immediate. The componentwise stochastic order does not keep into consideration
the dependence between the random variables, while the Linear Stochastic Domi-
nance only cares about the linear dependence. Therefore, the lack of consideration
of the dependence structure of the random vectors does not allow one to have the
order preserved when applying an increasing function.

Moving to stronger stochastic orders does not guarantee the preservation of the
order either. For instance, some counterexamples can be found for the likelihood
ratio order.

Example 3.4 Let X⃗ = (X1,X2) and Y⃗ = (Y1,Y2) be two random vectors such that
P(X1 = 0,X2 = 0) = P(X1 = 0,X2 = 1) = P(X1 = 1,X2 = 0) = P(X1 = 1,X2 = 1) =
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0.25 and P(Y1 = 0,Y2 = 0) = 0, P(Y1 = 1,Y2 = 0) = 0.3 and P(Y1 = 0,Y2 = 1) =
P(Y1 = 1,Y2 = 1) = 0.35. To prove that X⃗ ≤lr Y⃗ , it is necessary P(X⃗ = t⃗)P(⃗Y =

s⃗) ≤ P(X⃗ = t⃗ ∧ s⃗)P(⃗Y = t⃗ ∨ s⃗) to hold for any t⃗, s⃗ ∈ {0,1}2. If t⃗ ≤ s⃗, then the latter
condition always holds. The rest of the cases can be found in Table 3.1, thus it is
concluded that X⃗ ≤lr Y⃗ . However, if the aggregation function defined as A(x1,x2) =

0.75x1 +0.25x2 is considered, one has

P(A(X⃗) = 0.75)P(A(⃗Y ) = 0.25) = 0.25 ·0.35 = 0.0875,

P(A(X⃗) = 0.25)P(A(⃗Y ) = 0.75) = 0.25 ·0.3 = 0.075,

and therefore, A(X⃗) ̸≤lr A(⃗Y ).

t⃗ s⃗ P(X⃗ = t⃗)P(⃗Y = s⃗) t⃗ ∧ s⃗ t⃗ ∨ s⃗ P(X⃗ = t⃗ ∧ s⃗)P(⃗Y = t⃗ ∨ s⃗)
(1,0) (0,0) 0 (0,0) (1,0) 0.075
(1,0) (0,1) 0.0875 (0,0) (1,1) 0.0875
(0,1) (0,0) 0 (0,0) (0,1) 0.0875
(0,1) (1,0) 0.075 (0,0) (1,1) 0.0875
(1,1) (0,0) 0 (0,0) (1,1) 0.0875
(1,1) (0,1) 0.0875 (0,1) (1,1) 0.0875
(1,1) (1,0) 0.075 (1,0) (1,1) 0.0875

Table 3.1: Comparison of products of probabilities for the likelihood ratio order of
Example 3.4.

Similar counterexamples, which are not going to be disclosed here, can be
found for other location stochastic orders such as the hazard rate order, the weak
hazard rate order or the orthant orders, whose definition can be found in [295].

Another possible option could be the Statistical Preference. However, it is not
a stochastic order with respect to Definition 2.100, since it does not fulfill any of the
required properties. It is easy to prove that the relation given in Definition 2.111 is
preserved under the application of an increasing measurable function [29] and that
the relation is complete for random variables. Considering other similar definitions
(see [279]), it is possible to have the completeness also for random vectors, but
by sacrificing the preservation with respect to increasing functions. Due to the
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latter reasons, the Statistical Preference is not adequate to be used in Definition 3.1.
However, it could be possible to work with Statistical Preference by considering the
approach given in [266].

On the other hand, it is well-known that the usual stochastic order is closed
under increasing functions (see Proposition 2.106). In addition, by applying Propo-
sition 2.110, one has that for any measurable increasing function f : Rn → R and
any random vectors X⃗ and Y⃗ ,

X⃗ ≤ch Y⃗ =⇒ X⃗ ≤st Y⃗ =⇒ f (X⃗)≤st f (⃗Y ) ⇐⇒ f (X⃗)≤ch f (⃗Y ).

In this direction, the cumulative hazard order is preserved under the application
of increasing functions, thus it is adequate for being ≤so in Definition 3.1. However,
this stochastic order is stronger than the usual stochastic order, so its applicability
is smaller. Moreover, it is only defined for positive random vectors [295], which is
not always the case when dealing with real data. Another option is to impose some
conditions about the copulas of the compared random vectors. In this direction, the
same dependence structure usual stochastic order is defined.

Definition 3.5 [39] Let X⃗ and Y⃗ be two random vectors with joint distribution func-
tions F and G and marginal distributions F1, . . . ,Fn and G1, . . . ,Gn. It is said that
X⃗ is smaller than or equal to Y⃗ in the same dependence structure stochastic order,
denoted by X⃗ ≤sd−st Y⃗ if X⃗ ≤st Y⃗ and they share the same unique subcopula C′

defined over F1(R)×·· ·×Fn(R) such that

F(x1, . . . ,xn) =C′(F1(x1), . . . ,Fn(xn)), G(x1, . . . ,xn) =C′(G1(x1), . . . ,Gn(xn)),

for any x⃗ ∈ Rn.

Notice that if X⃗ ≤sd−st Y⃗ , then (F1(X1), . . . ,Fn(Xn)) =st (G1(Y1), . . . ,Gn(Yn))

where F1, . . . ,Fn and G1, . . . ,Gn are the distribution functions of the components of,
respectively, X⃗ and Y⃗ [39].

This stochastic order is stronger than the usual stochastic order, while it is
equivalent for random variables. Therefore, it could be a choice for ≤so in Defini-
tion 3.1. However, similarly to the cumulative hazard order, since it is stronger than
the usual stochastic order, its applicability is smaller.
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The latter considerations are summarized in Table 3.2. It is concluded that the
best option is to consider the usual stochastic order as the one that should be used
to aggregate random variables. Then, the definition for this particular case will be
the following.

Stochastic order Monotonicity Restrictions/Drawbacks
≤cst No No
≤LSD No No
≤lr No No
≤SP Yes It is not transitive
≤st Yes No
≤ch Yes Positive values

≤sd−st Yes Same dependence structure

Table 3.2: Monotonicity with respect to applying an increasing function and restric-
tions/drawbacks for the considered stochastic orders.

Definition 3.6 [26, 29] Let (Ω,Σ,P) be a probability space and I a real non-empty
interval. An aggregation function of random variables (with respect to ≤st) is a
function A : Ln

I (Ω)→ LI(Ω) which satisfies:

1. For any X⃗ ,Y⃗ ∈ Ln
I such that X⃗ ≤st Y⃗ , A(X⃗)≤st A(⃗Y ),

2. For any X ∈ LI , there exists X⃗ ∈ Ln
I such that A(X⃗)≤st X,

3. For any X ∈ LI , there exists X⃗ ∈ Ln
I such that A(X⃗)≥st X.

The latter definition will be considered the main one for the aggregation of
random variables. That is, when referring to an aggregation of random variables,
it will be assumed to be with respect to the usual stochastic order unless otherwise
stated.

3.1.3 Some implications of the definition

Definition 3.6 is a non restrictive definition, as will be seen in Section 3.2, but im-
poses some immediate properties that any aggregation of random variables should
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fulfill. The first one is that, if two random vectors have the same distribution, then
the aggregated values also have the same distribution.

Lemma 3.7 Let A : Ln
I → LI be an aggregation of random variables. Then, for any

X⃗ ,Y⃗ ∈ Ln
I such that X⃗ =st Y⃗ , A(X⃗) =st A(⃗Y ).

Proof: Since X⃗ ≤st Y⃗ , then A(X⃗)≤st A(⃗Y ). Similarly, since X⃗ ≥st Y⃗ , then A(X⃗)≥st

A(⃗Y ). It is concluded that A(X⃗) =st A(⃗Y )

Notice that this does not imply that A(X⃗) =a.s. A(⃗Y ) holds whenever X⃗ =a.s. Y⃗ .
Another important fact is that any aggregation of random variables leads to the def-
inition of a function that can be seen as an aggregation of probability distributions.
In this direction, the following set is introduced.

I n =
{

P : Bn → [0,1]
∣∣∣ ∃X⃗ ∈ Ln

I such that P⃗X = P
}
,

where Bn denotes the Borel σ -algebra associated with Rn. Their elements will be
denoted as P⃗X with X⃗ ∈ Ln

I . The notation I will be used for the case I 1.

Proposition 3.8 Let A : Ln
I → LI be an aggregation of random variables. Then, the

function Ad : I n → I given by Ad(P⃗X) = PA(X⃗) fulfills

1. For any P⃗X , P⃗Y ∈ I n such that P⃗X ≤st P⃗Y , Ad(P⃗X)≤st Ad(P⃗Y ),

2. For any PX ∈ I , there exists P⃗X ∈ I n such that Ad(P⃗X)≤st PX ,

3. For any PX ∈ I , there exists P⃗X ∈ I n such that Ad(P⃗X)≥st PX .

Proof: Recall that P⃗X denotes the probability measures induced by the random
vector X⃗ and, since Lemma 3.7 holds, Ad is well-defined. Notice that the usual
stochastic order, as stated in Section 2.3.5, can be used both for random variables
and probability measures over Bn.

For monotonicity, since P⃗X ≤st P⃗Y , then X⃗ ≤st Y⃗ , which in turn implies that
A(X⃗)≤st A(⃗Y ). Therefore, Ad(P⃗X) = PA(X⃗) ≤st PA(⃗Y ) = Ad(P⃗Y ).

For the boundary conditions, for any X ∈ LI there exists X⃗ ∈ Ln
I such that

A(X⃗) ≤st X . Then, there exists P⃗X ∈ I n such that Ad(P⃗X) = PA(X⃗) ≤ PX . For the
upper bound, the proof is analogous.
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The natural question that arises is whenever any function Ad(P⃗X) = PA(X⃗) ful-
filling the conditions established in Proposition 3.8 can be used as a way to define
an aggregation of random variables. Although this case is more difficult, since ev-
ery random vector has an associated probability measure but a probability measure
can be associated with many random vectors, it is possible.

Proposition 3.9 Let Ad : I n → I be a function that fulfills conditions 1, 2 and 3
in Proposition 3.8. Consider a function φ : I → LI such that φ(PX) =st X for any
X ∈ LI . Then, the function A : Ln

I → I given by A(X⃗) = φ(Ad(P⃗X)) for any X⃗ ∈ Ln
I is

an aggregation of random variables.

Proof: The function is well-defined since P⃗X ∈I n, Ad : I n →I and φ : I → LI .
For monotonicity, if X⃗ ≤st Y⃗ , then P⃗X ≤st P⃗Y , which in turn implies Ad(P⃗X) ≤st

Ad(P⃗Y ) and φ(Ad(P⃗X))≤st φ(Ad(P⃗Y )). For the boundary conditions, for any X ∈ LI

consider P⃗X ∈ I n such that Ad(P⃗X)≤st PX . Then, φ(Ad(P⃗X))≤st φ(PX) =st X . For
the upper bound, the proof is analogous.

A way to construct the function φ will be provided in Proposition 3.20. Notice
that this equivalence between the aggregation of random variables and the aggre-
gation of probability measures over Rn is not possible just by using real functions
applied to random vectors (see Section 7.6 in [292]).

When the interval is bounded, it is also possible to define a usual aggrega-
tion function by taking the expectation of the image of an aggregation of random
variables over degenerate random vectors, as the following result states.

Proposition 3.10 Let I = [a,b] be a bounded real interval and let A : Ln
I → LI be an

aggregation of random variables. Then, the function Â : In → I defined as Â(⃗x) =
E[A(X⃗)] with X⃗ being any random vector such that X⃗ =a.s. x⃗ is an aggregation
function.

Proof: For degenerate random vectors, it holds X⃗ =a.s. Y⃗ ⇐⇒ X⃗ =st Y⃗ , therefore
Lemma 3.7 ensures the same expectation for each possible choice of X⃗ =a.s. x⃗. In
addition, it is clear that if x⃗ ∈ In, then X⃗ ∈ Ln

I and if X ∈ LI , E[X ] ∈ I. Therefore, Â
is well-defined.
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For monotonicity, if x⃗ ≤ y⃗, any random vectors X⃗ and Y⃗ such that X⃗ =a.s. x⃗ and
Y⃗ =a.s. y⃗ fulfill X⃗ ≤a.s. Y⃗ , thus X⃗ ≤st Y⃗ . Then, A(X⃗)≤st A(⃗Y ) and Â(⃗x) = E[A(X⃗)]≤
E[A(⃗Y )] = Â(⃗x).

For the boundary conditions, for any x ∈ I one can consider X =a.s. x and then
there exists X⃗1 ∈ Ln

I such that A(X⃗1)≤st X . Moreover, one can consider X⃗2 =a.s. a⃗1
for which it is clear that X⃗2 ≤st X⃗1. Then, A(X⃗2) ≤st A(X⃗1) ≤st X , thus Â(a⃗1) =
E[A(X⃗2)]≤ E[A(X⃗1)]≤ E[X ] = x. For the upper bound, the proof is analogous.

A similar construction could be done using a fixed quantile of A(X⃗) instead of
the mean. Unfortunately, for unbounded intervals, the latter result is not true, since,
even if for any X ∈ LI there exists X⃗ ∈ Ln

I such that A(X⃗)≤st X , there could not exist
any choice of X⃗ with degenerate distribution. The construction of such aggregations
of random variables is not intuitive, but a simple example can be provided.

Example 3.11 Let A : Ln
R → LR be the function defined as:

A(X1,X2) =

X1 if S(X1) has not a lower bound,

max(0,X1) if S(X1) has a lower bound.

The monotonicity is easy to verify, since x and max(x,0) are increasing, x ≤
max(0,x) for any x ∈ R and if X1 and X2 are two random variables such that S(X1)

has a lower bound and S(X2) has not a lower bound, it is clear that X1 ̸≤st X2.
For the lower boundary condition, for any X ∈ LR, if Y is an exponential random
variable independent of X, it holds that X −Y ≤st X. Moreover, since S(X −Y )
has not a lower bound, it holds that A(X −Y,X −Y ) = X −Y ≤st X. For the up-
per boundary condition, it is clear that A(max(0,X),X) = max(0,X) ≥st X with
(max(0,X),X) ∈ L2

R.

However, if one considers X =a.s. −1, there is not any degenerate random vec-
tor (X1,X2) such that A(X1,X2) ≤st X, since any degenerate random vector has a
bounded support and then A(X1,X2) = max(0,X1) ̸≤st −1.

The opposite problem, i.e. the construction of an aggregation of random vari-
ables by means of a usual aggregation function, will be studied in Section 3.2.1.
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3.2 Families of aggregations of random variables

Although not evident at first glance, Definition 3.6 is a very flexible definition. In
particular, it allows many types of functions to be considered as aggregations of ran-
dom variables that go beyond the application of a fixed real function. This flexibility
is caused mainly by the fact that the usual stochastic order, which focuses on the
distributions but not the actual random vectors, is used to define the monotonicity
and the boundary conditions. This has its own benefits and some drawbacks.

Firstly, the flexibility of the definition allows one to define aggregations of
random variables that permit, for instance, to apply a real function after identifying
the distribution of the inputs, to consider a change of the dependence between the
inputs and the output and to work with randomly behaved parameters [26]. As it
will be seen in the subsequent sections, these particular cases have clear semantics
and fields of application. They offer the possibility of considering other perspectives
when aggregating data.

On the other hand, there is the possibility of having aggregations of random
variables with non-intuitive definitions, without a clear semantic about the param-
eters or expressions and without applicability to data. For instance, recall the ag-
gregation of random variables given in Example 3.11. This function fulfills all the
axioms of being an aggregation of random variables, but its definition in terms of
the boundaries of the supports of the random variables decreases its applicability
to data. In general, one does not know about the existence or not of bounds of the
support of the underlying random variable by just having some observations.

This section is devoted to exploring the limits of the definition of aggregation
of random variables by defining families that are intuitive, with good properties and
that focus on different probability concepts to define the aggregations. In addition,
several results that increase the mathematical understanding of their structure are
given.

3.2.1 Induced and degenerate aggregations

The most prominent, simple and intuitive type of aggregations of random variables
one could think are usual aggregation functions applied to random vectors. That is,
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aggregation functions with random inputs.
In this direction, the next result is one of the most relevant in order to have a co-

herent theory of aggregation of random variables. It will be called the Composition
Theorem (of aggregation of random variables).

Theorem 3.12 [29] Let Â : In → I be a measurable aggregation function. Then, the
function A : Ln

I → LI defined as A(X⃗) = Â◦ X⃗ is an aggregation of random variables.

Proof: Notice that, for any X⃗ ∈ Ln
I , X⃗ : Ω → In and, since Â : In → I, then Â(X⃗) :

Ω → I. The measurability of Â(X⃗) is a consequence of the measurability of both X⃗
and Â. Therefore, Â(X⃗) ∈ LI and A is well-defined.

For monotonicity, since the usual stochastic order is closed under increasing
functions, see Proposition 2.106, then X⃗ ≤st Y⃗ implies Â(X⃗)≤st Â(⃗Y ).

For the boundary conditions, suppose that I has a lower bound a. If X⃗ =st

(a, . . . ,a), by the boundary conditions of Â, one has Â(X⃗) =st a.
If I has not a lower bound, consider X ∈ LI . For each integer k ∈ I∩Z, consider

x⃗k ∈ In such that Â(⃗xk) < k, which exists by the boundary conditions of Â. Then,
define the function h : I → In as h(x) = x⃗k if x ∈ [k,k+ 1)∩ I. Notice that, since
[k,k + 1)∩ I is a measurable set for any k ∈ Z, h is a measurable function. In
addition, since its image is In, one has h(X) ∈ Ln

I . By construction, A(h(X))≤a.s. X
and it is concluded that for any X ∈ LI there exists X⃗ ∈ Ln

I such that A(X⃗)≤st X .
For the upper bound, the proof is analogous. It is concluded that A is an aggre-

gation of random variables.

Notice that the aggregation function is required to be measurable, a property
that may not be satisfied. More in detail, any increasing function from Rn to R is
Lebesgue measurable (see Theorem 4.4 in [152]), which is not enough since (Borel)
measurability is needed. However, the examples of increasing functions that are not
measurable are pathological and uncommon, mainly defined artificially by means
of non-measurable sets, (see again [152]). In fact, all the aggregation functions
introduced in Section 2.2.3 are measurable.

Throughout the rest of the thesis, this type of aggregations of random variables
will be called induced.
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Definition 3.13 [29] Let A : Ln
I → LI be an aggregation of random variables. If

there exists an aggregation function Â : In → I such that A(X⃗) = Â ◦ X⃗ for any
X⃗ ∈ Ln

I , it is said that A is induced (by Â).

There are as many induced aggregations of random variables as there are mea-
surable aggregation functions. For instance, those induced by the arithmetic mean
or OWA operators are widely used as estimators in Statistics [72, 278].

Another simple family of aggregations of random variables are the degenerate
ones, for which the image can always be associated with a non-random real number.

Definition 3.14 [26, 31] Let A : Ln
I → LI be an aggregation of random variables. If

A(X⃗) has degenerate distribution for any X⃗ ∈ Ln
I , A is said to be degenerate.

An easy way to define a degenerate aggregation of random variables is to use
the expectation or the quantiles to the different random variables. For instance, it
can be proved that

A(X⃗) =
1
n

n

∑
i=1

E[Xi],

is a degenerate aggregation of random variables if the interval I is bounded. Other-
wise, it is not. Moreover, there does not exist any degenerate aggregation of random
variables over unbounded intervals.

Proposition 3.15 Let I be an unbounded interval. Then, there does not exist any
degenerate aggregation of random variables A : Ln

I → LI .

Proof: Consider X to be a random variable with support I. Then, since for any
X⃗ ∈ Ln

I the random variable A(X⃗) has degenerate distribution, it holds that neither
A(X⃗) ≤st X nor A(X⃗) ≥st X can hold. Therefore, the boundary conditions are not
fulfilled.

These aggregations appear in prediction problems, in which in the last step of
the process a single value (not a distribution) should be used as the prediction. For
instance, a conditional expected value is often used as a point prediction in time
series models such as, for instance, the ARMA model, see Chapter 3 in [156].
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3.2.2 Conditionally determined aggregations

When using an aggregation of random variables in applied prediction or estimation
problems, a desirable property is to be able to compute the value of the aggrega-
tion given an observation of the input random vector. Any aggregation of random
variables that fulfills this property will be called conditionally determined. Working
with conditional distributions, this is equivalent to requiring the conditional distri-
bution of A(X⃗) given any value of X⃗ to be degenerate.

Definition 3.16 [26] Let A : Ln
I → LI be an aggregation of random variables. It

is said that A is conditionally determined if for any X⃗ ∈ Ln
I and x⃗ ∈ In for which

[A(X⃗) | X⃗ = x⃗] is well defined, [A(X⃗) | X⃗ = x⃗] has degenerate distribution.

Being conditionally determined can be interpreted as having the value of the
output of the aggregation totally determined when knowing the input random vector
and its value. Notice that, unlike induced aggregations, the value could change
depending on the input random vector. In the following examples, two conditionally
determined aggregations are provided.

Example 3.17 • [26] Given a fixed value z ∈ I, let A : Ln
I → LI be the aggrega-

tion of random variables given by A(X⃗)=max(X⃗) if X⃗ ≤st z⃗1, A(X⃗)=min(X⃗)

if X⃗ ≥st z⃗1 and A(X⃗) = z⃗1 otherwise. A, which can be seen as a generalization
of nullnorms, is conditionally determined,

• Let A : Ln
I → LI be the aggregation of random variables given by A(X1,X2) =

1
2E[X1] +

1
2X2. A, which is the average between the expectation of the first

variable and the value of the second, is conditionally determined.

Conditional determination appears naturally in some areas of Statistics. For
mean estimation, the function applied to the random sample varies depending on
the distribution. For instance, the most efficient estimator for Gaussian distribu-
tions is the arithmetic mean and, for uniform distributions, is the average between
the maximum and the minimum [278]. In this direction, conditionally determined
aggregations allow one to introduce prior information of the distribution of the ag-
gregated data into the aggregation process. In applications, such information can
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be estimated using prior data. The reader is referred to Sections 4.4.3 and 7.4 for
the definition and application in a prediction problem of a conditionally determined
aggregation based on distribution functions. In the following result, two alternative
characterizations of this type of aggregations of random variables are given.

Theorem 3.18 [26] Let A : Ln
I → LI be an aggregation of random variables. The

following statements are equivalent.

(1) A is conditionally determined,

(2) For any X⃗ ∈ Ln
I , there exists Y ∈ LI such that Y =a.s. A(X⃗) and Y is measurable

with respect to σ(X⃗),

(3) There exists a measurable family of functions
(

GX⃗ , X⃗ ∈ Ln
I

)
fulfilling A(X⃗)=a.s.

GX⃗ ◦ X⃗ for any X⃗ ∈ Ln
I .

Proof: Suppose that A fulfills (1). For any X⃗ ∈ Ln
I , let CX⃗ ⊆Rn be the set for which

[A(X⃗) | X⃗ = x⃗] is well-defined for any x⃗ ∈ CX⃗ and P(X⃗ ∈ CX⃗) = 1, which exists
by Theorem 2.63. Define GX⃗ : In → I as the function such that GX⃗ (⃗x) = λ with
λ the value that [A(X⃗) | X⃗ = x⃗] takes with probability 1 if x⃗ ∈ CX⃗ and GX⃗ (⃗x) = 0
otherwise. Since P(X⃗ ∈CX⃗) = 1, it is concluded that A(X⃗) =a.s. GX⃗ ◦ X⃗ for any X⃗ ∈
Ln

I . For measurability, notice that GX⃗ (⃗x) = E[A(X⃗) | X⃗ = x⃗] if x⃗ ∈CX⃗ and GX⃗ (⃗x) = 0
otherwise and that the conditional expectation is measurable, see Definition 2.64.
Then, (3) holds.

Suppose that (3) holds. For any B ∈ B, (GX⃗(X⃗))−1(B) = X⃗−1
(

G−1
X⃗
(B)
)
∈

σ(X⃗). Then, (2) holds.
Suppose that (2) holds. Then, given X⃗ = x⃗, one has that X⃗−1(⃗x) is a measurable

set that does not contain any other measurable set (in σ(X⃗)). Then, Y should take
a unique value on X⃗−1(⃗x). That is, [Y | X⃗ = x⃗] has degenerate distribution if well-
defined. Since A(X⃗) =a.s. Y , the same holds for A(X⃗). Then, A is conditionally
determined and (1) is fulfilled.

The third point in the last result gives a comprehensible characterization of
conditional determination. Firstly, the random vector X⃗ is identified and then a
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particular function, GX⃗ , is selected and applied to X⃗ to obtain the output random

variable. Of course, not all choices of
(

GX⃗ , X⃗ ∈ Ln
I

)
are suitable for defining an

aggregation of random variables. Measurability, monotonicity and the boundary
conditions should be guaranteed.

Notice that induced and degenerate aggregations of random variables are con-
tained in conditionally determined ones. In particular, if GX⃗ = Â with Â being a
usual aggregation function for all X⃗ ∈ Ln

I , then A is induced. Similarly, if for any
X⃗ ∈ Ln

I one has that GX⃗ only takes one value, A is degenerate.

3.2.3 Randomly induced aggregations

Conditional determination imposes that the values that the input random vector
takes allow one to compute the value of the output random variable. However, there
are cases where this is not true. It is possible to have randomness in the aggrega-
tion process itself, leading to having a non determined output even with determined
inputs. In this direction, the concept of random aggregation of random variables is
introduced as a negation of conditional determination.

Definition 3.19 [26, 31] Let A : Ln
I → LI be an aggregation of random variables. It

is said that A is random if it is not conditionally determined.

That is, A is random if there exist X⃗ ∈ Ln
I and x⃗ ∈ In such that the conditional

distribution of [A(X⃗) | X⃗ = x⃗] is well-defined and non-degenerate [31]. One par-
ticular example of interest is the construction of aggregations of random variables
by aggregations of distributions (see Proposition 3.9). In the following, a partic-
ular case that considers an internal continuous aggregation function over [0,1] is
provided.

Proposition 3.20 [33] Let I be a real interval, U a standard uniform random vari-
able and Â : [0,1]n → [0,1] an internal continuous aggregation function. Then, if for
each random vector X⃗ = (X1, . . . ,Xn) with marginal distribution functions F1, . . . ,Fn

the function A : Ln
I → LI is defined as

A(X⃗) =
(
Â(F1, . . . ,Fn)

)−1
(U),

then A is an aggregation of random variables.
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Proof: Since Â is an aggregation function, Â(F1, . . . ,Fn) is increasing. Moreover,
since Â is continuous, Â(F1, . . . ,Fn) is right-continuous, the limit in −∞ is 0 and the
limit in ∞ is 1. Therefore, Â(F1, . . . ,Fn) is a distribution function. In particular, it is
the distribution function of A(X⃗).

For monotonicity, let X⃗ and Y⃗ be two random vectors with marginal distri-
bution functions F1, . . . ,Fn and G1, . . . ,Gn such that X⃗ ≤st Y⃗ . Then, the marginals
are also ordered with respect to the usual stochastic order, so Fi(x) ≥ Gi(x) for
each x ∈ R and i ∈ [n]. Then, since Â is increasing, one has Â(F1(x), . . . ,Fn(x)) ≥
Â(G1(x), . . . ,Gn(x)) for all x ∈ R. Therefore, it is concluded that A(X⃗)≤st A(⃗Y ).

For the boundary conditions, if the interval I has a lower bound a, then it is clear
that A(a, . . . ,a) = a and the boundary conditions are fulfilled. If not, let X⃗ ∈ LI with
distribution function F . Then, consider the random vector (X , . . . ,X). Then, it is
clear that A(X⃗) has distribution function Â(F, . . . ,F) =F (since Â is idempotent, see
Proposition 2.10). Therefore, A(X⃗) =st X and both boundary conditions are met.

This type of aggregations of random variables will be called distribution-based
(on Â). Notice that, if Â is a weighted arithmetic mean, then the latter aggrega-
tion function is equivalent to a mixture. Continuity of Â is a necessary condition,
since Â(F1, . . . ,Fn) needs to be a distribution function. If it is not continuous, then
Â(F1, . . . ,Fn) could not be right-continuous or its limit limx→∞ Â(F1(x), . . . ,Fn(x))
could not be 1. However, internality is not necessary. For instance, the product can
be used as the aggregation Â. Unfortunately, a general proof for the case of non-
internality is not known, since the boundary conditions for the unbounded case are
hard to prove.

Leaving aside distribution-based aggregations of random variables, random ag-
gregations of random variables is a huge family that includes many useless and
counterintuitive examples. In the following, a useful and understandable particular
case is studied, the aggregations with random parameters.

Random parameters appear in many real life situations. One of the most im-
portant scenarios is the one in which the parameters of a family of aggregation func-
tions are fitted using data (see, for instance, Chapter 5 in [170], Section 5.2 in [49]
or [21, 22]). If the training data are considered as realizations of random variables,
then the fitted parameters also have a random behavior. In addition, there are sce-
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narios in which the theoretical parameters are considered to be random (see [14]).
In the construction of aggregations of random variables with random parame-

ters, one may think of modeling the random parameters by considering a random
vector. However, this choice is not adequate in terms of monotonicity, as illustrated
in the following example.

Example 3.21 [26] Let U1,U2 and U3 be three standard independent uniform ran-
dom variables. Consider the function A : L2

I → LI such that A(X1,X2) = U1X1 +

(1−U1)X2. It can be seen as a weighted arithmetic mean with countermonotone
(with perfect negative dependence) and uniform weights. However, the monotonic-
ity cannot be fulfilled because (U1,U2) =st (U2,U3) but

A(U1,U2) =U2
1 +(1−U1)U2 ̸=st U1U2 +(1−U1)U3 = A(U2,U3).

As illustrated in the latter example, the main problem of random parameters
fixed as a random vector is that one can have inputs with the same distribution but
a different dependence with the random parameters, resulting in a different output
distribution, which breaks the monotonicity.

A solution for this is to fix the distribution of the random parameters and their
dependence with the inputs and construct, for each of the cases, a random vector
fulfilling these properties. Some sufficient conditions are given in the next result.

Theorem 3.22 [26] Let I be a real interval, Â : In ×Rd → I a measurable function
and (⃗λX⃗ , X⃗ ∈ Ln

I ) a family of random vectors such that:

(1) For any z⃗ ∈Rd , the function B̂⃗z : In → I defined as B̂⃗z(x1, . . . ,xn) = Â(x1, . . . ,xn,

z1, . . . ,zd) is an aggregation function,

(2) If I does not have a lower (upper) bound, for any x ∈ I there exists x⃗ ∈ In such
that Â(⃗x,⃗z)< (>)x for any z⃗ ∈ Rd ,

(3) λ⃗X⃗ has the same distribution for any X⃗ ∈ Ln
I ,

(4) For any X⃗ ,Y⃗ ∈ Ln
I such that X⃗ ≤st Y⃗ , [X⃗ | λ⃗X⃗ = z⃗] ≤st [⃗Y | λ⃗⃗Y = z⃗] for any

z⃗ ∈ S(⃗λX⃗).
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Then, the function A : Ln
I → LI defined as A(X⃗) = Â(X⃗ ,⃗λX⃗) is an aggregation

of random variables.

Proof: Noticing that, since Â is measurable and its image is I, it is clear that
A : Ln

I → LI is well-defined.
For monotonicity, consider X⃗ ,Y⃗ ∈ Ln

I such that X⃗ ≤st Y⃗ . Notice that, since λ⃗X⃗
and λ⃗⃗Y have the same distribution, then S(⃗λX⃗) = S(⃗λ⃗Y ). Using that B̂⃗z is increasing
for any z⃗ ∈ Rd , B̂⃗z([X⃗ | λ⃗X⃗ = z⃗]) ≤st B̂⃗z([⃗Y | λ⃗⃗Y = z⃗]) for any z⃗ ∈ S(λX⃗). Finally,
since λX⃗ =st λ⃗Y , applying Proposition 2.104 and 3 in Theorem 2.102, one has that
A(X⃗) = Â(X⃗ ,⃗λX⃗) = B̂⃗

λX⃗
(X⃗)≤st B̂⃗

λ⃗Y
(⃗Y ) = Â(⃗Y ,⃗ λ⃗Y ) = A(⃗Y ).

For the boundary conditions, suppose that I has a lower bound a. If X⃗ =st

(a, . . . ,a), by the boundary conditions of B̂⃗z one has that B̂⃗z(X⃗) =st a for any z⃗ ∈Rd ,
thus A(X⃗) =st a.

If I has not a lower bound, consider X ∈ LI . For each k ∈ I∩Z, consider x⃗k ∈ In

such that Â(⃗x,⃗z) < x for any z⃗ ∈ Rd , which exists by hypothesis. Then, define the
function h : I → In as h(x) = x⃗k if x ∈ [k,k+1)∩ I. Notice that since h is measurable
and its image is In, one has that h(X) ∈ Ln

I . By construction, A(h(X))≤a.s. X and it
is concluded that for any X ∈ LI there exists X⃗ ∈ Ln

I such that A(X⃗) ≤st X . For the
upper bound, the proof is the same.

An aggregation of random variables constructed as in Theorem 3.22 will be
said to be randomly induced (by Â and (⃗λX⃗ , X⃗ ∈ Ln

I )). This result can be seen as
a Composition Theorem for randomly induced aggregations of random variables,
since it generalizes Theorem 3.12.

The conditions imposed over (⃗λX⃗ , X⃗ ∈ Ln
I ) might seem very strong, but a simple

case in which they hold is when X⃗ and λ⃗X⃗ are independent for any X⃗ ∈ Ln
I . Notice

that these types of structures can be defined in a probability space that fulfills the
saturation property introduced in Definition 2.44. More involved cases maybe can
be found by fixing a vector copula (see [125]) between X⃗ and λ⃗X⃗ . For the second
condition of the theorem, it is enough to consider, for instance, the aggregation B̂⃗z

to be internal for any z⃗ ∈ Rd .
Using Theorem 3.22 it is possible to overcome the problems in Example 3.21

to define aggregations of random variables with random parameters.
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Example 3.23 [31] Let (UX⃗ , X⃗ ∈ Ln
R) be a family of standard uniform random vari-

ables such that UX⃗ is independent of X⃗ for any X⃗ ∈ Ln
R. Consider the function

A : Ln
R → LR that takes a random vector X⃗ and returns the random variable

A(X⃗) =
(

max(X⃗)−min(X⃗)
)

UX⃗ +min(X⃗).

Then, using Theorem 3.22, A is an aggregation of random variables. This ag-
gregation can be seen as a generalization of the estimation procedure for a uniform
random variable. Given a vector of independent and identically distributed ran-
dom variables X1, . . . ,Xn, the maximum likelihood estimators of the parameters of
a uniform distribution are the minimum and the maximum of the sample [72, 278].
If the uniform distribution is constructed using the estimations, it coincides with
A(X⃗). Notice that, in this case, general random vectors and not only independent
and identically distributed random variables can be considered.

3.2.4 Aggregations with the same distribution

With a closer look at Definition 3.6, the monotonicity focuses on the distribution of
X⃗ and A(X⃗), but not on the dependence between them. In particular, monotonicity
imposes that X⃗ =st Y⃗ implies A(X⃗) =st A(⃗Y ), as already proved in Lemma 3.7,
but it does not impose neither that X⃗ =st Y⃗ implies (X⃗ ,A(X⃗)) =st (⃗Y ,A(⃗Y )) nor
that X⃗ =a.s. Y⃗ implies A(X⃗) =a.s. A(⃗Y ) (see Section 3.3.3 for some extensions of
monotonicity in this direction). This allows some particular types of aggregation of
random variables to be defined.

Example 3.24 [26] Let A : Ln
I → LI be an induced aggregation. Consider U a

uniform random variable. For any X⃗ ∈ Ln
I , define B(X⃗) = F−1

A(X⃗)
(U), where F−1

A(X⃗)

is the quantile function of A(X⃗). Trivially, B(X⃗) =st A(X⃗). Therefore, B : Ln
I → LI

is an aggregation of random variables. However, B is not induced. Moreover, B
is random, because the value of the output random variable depends on U but not
necessarily on the value of X⃗ .

In the latter example, B is a random aggregation of random variables in which
the outputs have the same distribution as another one, but the dependence between
them and the inputs is different. The next definition formalizes the idea.
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Definition 3.25 [26] Let A,B : Ln
I → LI be two aggregations of random variables.

If A(X⃗) =st B(X⃗) for any X⃗ ∈ Ln
I , it is said that A and B have the same distribution.

Unfortunately, constructing an aggregation of random variables with the same
distribution as another one is not interesting, in general, since its applicability is
quite limited. However, a particular type, the aggregations with the same distribu-
tion as a conditionally determined one, can be characterized in terms of measure
preserving functions and appear in some contexts regarding time series. In the fol-
lowing result, the extension of the family of conditionally determined aggregations
of random variables is studied by considering the aggregations that have the same
distribution.

Theorem 3.26 [26] Let (Ω,F ,P) be a hyperfinite probability space and let A :
Ln

I (Ω)→ LI(Ω) be an aggregation of random variables. The following properties
are equivalent.

(1) A has the same distribution as a conditionally determined aggregation of ran-
dom variables,

(2) There exists a family of measure preserving transformations
(

φX⃗ , X⃗ ∈ Ln
I

)
and

random vectors
(

Z⃗X⃗ , X⃗ ∈ Ln
I

)
such that A(X⃗) ◦φX⃗ =a.s. Z⃗X⃗ and Z⃗X⃗ is measur-

able with respect to σ(X⃗) for any X⃗ ∈ Ln
I ,

(3) For any X⃗ ∈ Ln
I , if SX⃗ denotes the set of probability of mass points of X⃗ and SA(X⃗)

denotes the probability of mass points of A(X⃗), there exists L : SX⃗ → SA(X⃗) such
that:

∑
x⃗∈L−1(x)

P(X⃗ = x⃗)≤ P(A(X⃗) = x),

for any x ∈ SA(X⃗).

Proof: Suppose that (1) holds. Then, there exists a conditionally determined ag-
gregation of random variables B : Ln

I → LI such that B(X⃗) =st A(X⃗) for any X⃗ ∈ Ln
I .

Then, (2) holds by using Theorem 2.43 and (1)⇒ (2) in Theorem 3.18.
Suppose that (2) holds. For any X⃗ ∈ Ln

I , since φX⃗ is a measure preserving
transformation, A(X⃗) =st A(X⃗)◦φX⃗ . Applying (2)⇒ (1) in Theorem 3.18, A(X⃗)◦
φX⃗ is conditionally determined and (1) holds.
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Suppose that (1) holds. Applying (1)⇒ (3) in Theorem 3.18, for any X⃗ ∈ Ln
I ,

there exists a measurable function GX⃗ such that GX⃗(X⃗) =st A(X⃗). Define L : SX⃗ →
SA(X⃗) as L(⃗x) = GX⃗ (⃗x). Then,

P(A(X⃗) = x) = P
(

X⃗ ∈ G−1
X⃗
(x)
)
≥ P

(
X⃗ ∈ L−1(x)

)
= ∑

x⃗∈L−1(x)

P(X⃗ = x⃗),

for any x ∈ SA(X⃗). It is concluded that (3) holds.

Suppose that (3) holds. Decompose the distribution function of X⃗ as F⃗X =

λ F⃗X | X⃗∈SX⃗
+(1−λ )F⃗X | X⃗ ̸∈SX⃗

, where λ = P(X⃗ ∈ SX⃗). Notice that F⃗X | X⃗ ̸∈SX⃗
is con-

tinuous (not necessarily absolutely continuous), so FX1 | X⃗ ̸∈SX⃗
is continuous. Con-

sider the following function,

F0 =
(

FA(X⃗)−λFL(X⃗) | X⃗∈SX⃗

) 1
1−λ

.

Trivially, F0 is right-continuous, limx→−∞ F0(x) = 0 and limx→∞ F0(x) = 1.
Moreover, since ∑x⃗∈L−1(x)P(X⃗ = x⃗) ≤ P(A(X⃗) = x), F0 is increasing, thus is a dis-
tribution function.

Consider the function GX⃗ : Rn → R defined as:

GX⃗ (⃗x) =

L(⃗x) if x⃗ ∈ SX⃗ ,

F−1
0

(
FX1 | X⃗ ̸∈SX⃗

(x1)
)

otherwise.

The function GX⃗ is measurable, since SX⃗ is countable and F−1
0 ◦FX1 | X⃗ ̸∈SX⃗

is

measurable. Moreover, if one computes the distribution function of GX⃗(X⃗):

FGX⃗ (X⃗) = λFGX⃗ (X⃗) | X⃗∈SX⃗
+(1−λ )FGX⃗ (X⃗) | X⃗ ̸∈SX⃗

=

= λFL(X⃗) | X⃗∈SX⃗
+(1−λ )F

F−1
0

(
FX1 | X⃗ ̸∈SX⃗

(X1 | X⃗ ̸∈SX⃗ )
) ∣∣∣∣ X⃗ ̸∈SX⃗

=

= λFL(X⃗) | X⃗∈SX⃗
+(1−λ )F0 =

= λFL(X⃗) | X⃗∈SX⃗
+
(

FA(X⃗)−λFL(X⃗) | X⃗∈SX⃗

) 1−λ

1−λ
= FA(X⃗).

where it has been used that, since FX1 | X⃗ ̸∈SX⃗
is continuous, FX1 | X⃗ ̸∈SX⃗

(X1 | X⃗ ̸∈ SX⃗)

has standard uniform distribution and, therefore, F−1
0 (FX1 | X⃗ ̸∈SX⃗

(X1 | X⃗ ̸∈ SX⃗)) has
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distribution function F0. It is concluded that there exists a family of measurable
functions (GX⃗ , X⃗ ∈ Ln

I ) such that, for any X⃗ ∈ Ln
I , GX⃗(X⃗) =st A(X⃗) and, applying

(3)⇒ (1) in Theorem 3.18, that (1) holds.

The change in dependence between the inputs and the output can be expressed
in terms of the measure preserving transformations that appear in the second charac-
terization of the latter result. These transformations play a very important role in the
study of stationary time series by Ergodic Theory [268]. Any real-valued stationary
process over the integers is associated with a measure preserving transformation
(see 1.3 (g) in [101] or 1.2.B in [268]). In particular, if (Xn,n ∈ N) is a stationary
stochastic process, there exists a measure-preserving transformation φ : Ω→Ω such
that Xn+1 = Xn◦φ for any n∈N. Therefore, an induced aggregation of random vari-
ables applied to Xk, . . . ,Xk+n−1 and Xk+1, . . . ,Xk+n produces two different outputs
with the same distribution that are linked by the measure preserving transformation
φ .

Informally, the last characterization in Theorem 3.26 says that if it is possible
to find functions that fit the probability mass points of the inputs in the probabil-
ity mass points of the outputs, then the aggregation of random variables has the
same distribution as a conditionally determined one. The most simple example of
a scenario in which this does not happen is when a degenerate random vector has
associated an aggregated random variable that is continuous.

3.2.5 Relationship between the families

Given the definitions of the different families, this section is devoted to studying
the relationship between them. Leaving aside the trivial fact that random and con-
ditionally determined aggregations are two disjoint subsets that cover all possible
aggregations of random variables, all the relations between the families are stated
in the next result.

Proposition 3.27 [26, 29] Let A : Ln
I → LI be an aggregation of random variables.

Then,
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(1) If I consists in more than one real number, then A cannot be induced and de-
generate,

(2) A is almost surely equal to an induced aggregation if and only if is conditionally
determined and is almost surely equal to a randomly induced aggregation,

(3) A has the same distribution as an induced aggregation of random variables if
and only if it has the same distribution as a conditionally determined and a
randomly induced aggregations of random variables,

(4) If A has the same distribution as a conditionally determined aggregation of
random variables and it is randomly induced, then it is induced,

(5) If A has the same distribution as a degenerate aggregation of random variables,
then it is degenerate.

Proof: For (1), consider A to be induced by Â. If I is not just one point, then
the boundary conditions of Â imply that there exist x⃗, y⃗ ∈ In such that Â(⃗x) ̸= Â(⃗y).
Consider the random vector X⃗ such that P(X⃗ = x⃗) = P(X⃗ = y⃗) = 0.5. Then, it is
clear that A(X⃗) has not degenerate distribution, thus A cannot be degenerate.

For (2), proving that being induced implies being conditionally determined and
randomly induced is straightforward. If A is almost surely equal to a randomly in-
duced aggregation, then A(X⃗) =a.s. Â(X⃗ ,⃗λX⃗) for any X⃗ ∈ Ln

I with Â : In ×Rd → I
and (⃗λX⃗ , X⃗ ∈ Ln

I ) as in Theorem 3.22. If A is also conditionally determined, ap-
plying (3) in Theorem 3.18 one also has A(X⃗) =a.s. GX⃗(X⃗) for any X⃗ ∈ Ln

I . Then,
Â(X⃗ ,⃗λX⃗) =a.s GX⃗(X⃗). The expectation E[Â(⃗x,⃗λX⃗)], since equals GX⃗ (⃗x), always ex-
ists for any x⃗ ∈ In and X⃗ ∈ Ln

I . In addition, since λ⃗X⃗ has the same distribution for all
X⃗ ∈ Ln

I , E[Â(⃗x,⃗λX⃗)] always takes the same value for a fixed x⃗ ∈ In and any X⃗ ∈ Ln
I .

Then, define B̂ : In → I as B̂(⃗x) = E[Â(⃗x,⃗λX⃗)]. Since Â is increasing in the first
n components, E[Â(⃗x1,⃗λX⃗)] ≤ E[Â(⃗x2 ,⃗λX⃗)] if x⃗1 ≤ x⃗2. If I has a lower bound a,
then it is clear that E[Â(a⃗1,⃗λX⃗)] = a. If I does not have a lower bound, for any
x ∈ I there exists x⃗ ∈ In such that Â(⃗x,⃗z)< x for any z⃗ ∈Rd . Then, E[Â(⃗x,⃗λX⃗)]< x.
Proceeding similarly for the upper bound, it is concluded that B̂ is increasing and
fulfills the boundary conditions, thus is an aggregation function. It is concluded that



CHAPTER 3. AGGREGATION OF RANDOM VARIABLES 100

A(X⃗) =a.s. GX⃗(X⃗) =a.s B̂◦ X⃗ with B̂ being an aggregation function. Therefore, it is
almost surely equal to an induced aggregation of random variables.

The proof of (3) is equivalent as the latter one but replacing =a.s. by =st .
For (4), consider for any x⃗ ∈ In the random vector X⃗ such that P(X⃗ = x⃗) = 1.

Then, since A has the same distribution as a conditionally determined aggregation
of random variables, A(X⃗) should be degenerate. But, since it is randomly induced,
one has that A(X⃗) = Â(X⃗ ,λX⃗). Recall that λ⃗X⃗ has the same distribution for any X⃗ ∈
Ln

I . If the distribution of λX⃗ is not degenerate, then there exists a function B̂ : In → I
such that B̂(⃗x) = Â(⃗x,⃗z) for any z⃗ ∈ Rd . If λX⃗ is degenerate with P(⃗λX⃗ = z⃗) = 1,
then define B̂ : In → I as B̂(⃗x) = Â(⃗x,⃗z). In both cases, it is clear that A(X⃗) = B̂(X⃗)

and A is induced.
Finally, for (5) consider B a degenerate aggregation of random variables such

that A(X⃗) =st B(X⃗) for any X⃗ ∈ Ln
I . If for any X⃗ ∈ Ln

I there exists x ∈ I such that
P(B(X⃗) = x) = 1, then it is straightforward that P(A(X⃗) = x) = 1 and, therefore, A
is degenerate.

It is worth commenting that point (1) is an adaptation of Proposition 3.4.
in [31], while the rest of the points can be found in [26]. In addition, point (4),
with a slight modification, implies the non-trivial implication of point (2). For fin-
ishing to understand all the relationship between the families, it remains to see if
there exists a conditionally determined aggregation such that it has the same distri-
bution as an induced one, but it is not induced. An example in this regard can be
constructed using countermonotone random variables.

Example 3.28 [26] Let A : Ln
I → LI be an aggregation of random variables defined

as A(X⃗)=max(X⃗) for any X⃗ such that max(X⃗) is not continuous and A(X⃗)=Y with
Y being a random variable that has the same distribution as max(X⃗) and such that
Y and max(X⃗) are countermonotone if max(X⃗) is continuous. Then, A has the same
distribution as the induced random variable max(X⃗), is conditionally determined
since A(X⃗) can be expressed as a function of max(X⃗), that is a function of X⃗ , but is
not induced.

With all the relationships between the different families studied already, they
are represented in Figure 3.1, in which each family is associated with a subset of



101 3.2. FAMILIES OF AGGREGATIONS OF RANDOM VARIABLES

the plane and in which the intersection of these sets represents the intersection of
the families.

Degenerate

Induced

=st induced

Conditionally determined

=st as conditionally determined

=st as randomly induced

Randomly induced

Figure 3.1: Representation of families of aggregations of random variables. The
notation =st stands for “same distribution as” [26].

In addition, the study is also useful for identifying the different scenarios that
aggregations of random variables can model. In particular, it has been seen that, in
addition to aggregations with random inputs, it is possible to identify the random
vector that is being aggregated in order to change the function that is applied, to
change the dependence between the inputs and the output and to consider random
parameters. In Figure 3.2, a representation of the resulting aggregations of random
variables that appear when considering the different scenarios is provided.
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Identify the random vector

Change the dependence Random parameters

Conditionally determined

=st induced
Randomly
induced

All

All

=st ran-
domly
induced

=st conditionally
determined

Figure 3.2: Families of aggregations of random variables associated with identi-
fying the random vector, considering random parameters and changing the depen-
dence. The notation =st stands for “same distribution as” [26].

3.3 Additional properties

In the last section, some properties, mainly related to probabilistic construction
methods, have been used to define some families of aggregations of random vari-
ables. In this section, a different approach is considered, extending or studying the
impact of well-known properties of aggregation functions to aggregations of ran-
dom variables. In particular, many different definitions for idempotence and inter-
nality are given in Section 3.3.1, the consequences of associativity and recursivity
in random series are studied in Section 3.3.2 and some extensions of monotonicity
are provided in Section 3.3.3.

3.3.1 Idempotence and internality

Idempotence and internality are defined in terms of equalities and inequalities.
When considering random variables, inequalities can be interpreted in terms of the
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usual stochastic order, almost surely statements, conditional distributions or other
perspectives such as working with expectations. In these sections, some concepts of
idempotence and internality for aggregations of random variables are defined and
their implications are studied.

3.3.1.1 Idempotence

The idea behind idempotence is “if the inputs are the same, the output is also the
same”. Although for real values the concept is clear, for random variables this could
be interpreted in different ways. In the next definition, five different alternatives are
considered.

Definition 3.29 [33] Let I be a real interval and consider a function f : Ln
I → LI .

Then,

• If f (X⃗) =a.s. X1 for any X⃗ ∈ Ln
I such that X1 =a.s. · · ·=a.s. Xn, f is said to be

almost surely idempotent,

• If f (X⃗) =st X1 for any X⃗ ∈ Ln
I such that X1 =st · · · =st Xn, f is said to be

idempotent in distribution,

• If P( f (X⃗) = λ | X1 = · · · = Xn = λ ) = 1 for any X⃗ ∈ Ln
I and λ ∈ I such

that [ f (X⃗) | X1 = · · · = Xn = λ ] is well-defined, f is said to be conditionally
idempotent,

• If E[ f (X⃗) | X1 = · · · = Xn = λ ] = λ for any X⃗ ∈ Ln
I and λ ∈ I such that

[ f (X⃗) | X1 = · · · = Xn = λ ] is well-defined, f is said to be martingale idem-
potent,

• If P( f (X⃗) = λ ) = 1 for any X⃗ ∈ Ln
I such that P(Xi = λ ) = 1 for any i ∈ [n], f

is said to be degenerate idempotent.

Almost surely idempotence and idempotence in distribution work with equal-
ities between random variables. On the other hand, conditionally idempotence and
martingale idempotence focus on the values the random variables take. Finally,
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degenerate idempotence is just the classical definition of idempotence restricted to
degenerate random vectors.

Some notions of idempotence are stronger than others. In the next result, the
implications between the definitions are stated. It should be noted that, at this point,
the function f : Ln

I → LI is a general one, not an aggregation of random variables.
Therefore, in the next result monotonicity is not used.

Proposition 3.30 [33] Let I be a real interval and consider a function f : Ln
I → LI .

Then,

1. f is conditionally idempotent =⇒ f is almost surely idempotent,

2. f is conditionally idempotent =⇒ f is martingale idempotent,

3. f is almost surely idempotent =⇒ f is degenerate idempotent,

4. f is idempotent in distribution =⇒ f is degenerate idempotent.

Proof:

1. If X1 =a.s. · · · =a.s. Xn, then P(X1 = · · · = Xn) = 1. Since for any λ ∈ I
P( f (X⃗) = λ | X1 = · · ·= Xn = λ ) = 1, then

P( f (X⃗) = X1 | X1 = · · ·= Xn = λ ) = P( f (X⃗) = X1 | X1 = λ ) = 1,

for any λ ∈ I (if well defined). Applying Theorem 2.63, it is concluded that
f (X⃗) =a.s. X1.

2. If P( f (X⃗) = λ | X1 = · · · = Xn = λ ) = 1, then trivially E[ f (X⃗) | X1 = · · · =
Xn = λ ] = λ .

3. If P(Xi = λ ) = 1 for any i ∈ [n], then X1 =a.s. · · ·=a.s. Xn so f (X⃗) =a.s. X1 and
P( f (X⃗) = λ ) = 1.

4. If P(Xi = λ ) = 1 for any i ∈ [n], then X1 =st · · · =st Xn so f (X⃗) =st X1 and
P( f (X⃗) = λ ) = 1.
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It is concluded that the strongest properties are conditionally idempotence and
idempotence in distribution. The weakest is the degenerate idempotence. Martin-
gale idempotence, although it seems to be the least intuitive notion of idempotence,
has an interesting implication related to the convex stochastic order.

Proposition 3.31 [33] Let A : Ln
I → LI be a martingale idempotent function. Then,

[Xi | X1 = · · ·= Xn]≤cx [A(X⃗) | X1 = · · ·= Xn],

for any i ∈ [n]

Proof: Notice that

E
[
[A(X⃗) | X1 = · · ·= Xn]

∣∣∣ [Xi | X1 = · · ·= Xn] = λ

]
=

= E[A(X⃗) | X1 = · · ·= Xn = λ ] = λ .

The result holds by applying 2 in Theorem 2.117.

Finally, it is possible to prove that aggregations of random variables induced
by idempotent aggregations are conditionally idempotent.

Proposition 3.32 [33] Let A be an aggregation of random variables induced by an
idempotent aggregation function. Then, A is conditionally idempotent.

Proof: Let Â be the idempotent aggregation function that induces A. If X1 = · · ·=
Xn = λ , then Â(λ , . . . ,λ ) = λ , thus P(A(X⃗) = λ | X1 = · · ·= Xn = λ ) = 1 whenever
it is well-defined.

3.3.1.2 Internality

This section is devoted to developing a similar study as the latter for internality.
The idea behind being internal is “to be between the minimum and the maximum”.
Again, five different notions can be defined following this idea.

Definition 3.33 [33] Let f : Ln
I → LI be a function. Then:



CHAPTER 3. AGGREGATION OF RANDOM VARIABLES 106

• If min(X⃗) ≤a.s. f (X⃗) ≤a.s. max(X⃗) for any X⃗ ∈ Ln
I , f is said to be almost

surely internal,

• If min(X⃗) ≤st f (X⃗) ≤st max(X⃗) for any X⃗ ∈ Ln
I , f is said to be internal in

distribution,

• If mini∈[n]P(Xi ≤ λ )≤ P( f (X⃗)≤ λ )≤maxi∈[n]P(Xi ≤ λ ) for any X⃗ ∈ Ln
I and

λ ∈ I, f is said to be internal in probability,

• If S( f (X⃗)) ⊆
[
inf∪n

i=1S(Xi),sup∪n
i=1S(Xi)

]
, f is said to be internal in sup-

port,

• If for any X⃗ ∈ Ln
I such that P(X⃗ ∈ λ⃗ ) = 1 with λ⃗ ∈ In holds P( f (X⃗)∈ [min(⃗λ ),

max(⃗λ )]) = 1, f is said to be degenerate internal.

For the first two properties, the maximum and minimum operators are applied
to the random vectors and the aggregation is compared, using almost surely inequal-
ities or the usual stochastic order, with them. The third and fourth alternatives take
the maximum and minimum over distribution functions or the support of the ran-
dom variables. Again, there is a notion for just the usual internality when working
with degenerate distributions.

As in the other case, some implications between the introduced properties can
be proved without using monotonicity.

Proposition 3.34 [33] Let f : Ln
I → LI be a function. Then:

1. f is almost surely internal =⇒ f is internal in distribution,

2. f is internal in probability =⇒ f is internal in distribution,

3. f is internal in distribution =⇒ f is internal in support,

4. f is internal in support =⇒ f is degenerate internal.

Proof:

1. It is held trivially from the fact that X ≤a.s. Y =⇒ X ≤st Y .
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2. Let F (⃗t), Fmin(t) and Fmax(t) be the distribution functions of X⃗ , min(X⃗)

and max(X⃗). In addition, denote as F1, . . . ,Fn the distribution functions of
X1, . . . ,Xn. Similarly, denote as F̄ (⃗t), F̄min(t), F̄max(t), F̄1, . . . , F̄n the associ-
ated survival functions.

One has that Fmax(t) = F(t⃗1) = C (F1(t), . . . ,Fn(t)), with C being a copula
of X⃗ . By the upper Fréchet Hoeffding bound, it is known that C ≤ min. In
addition, one has that F̄min(t) = F̄(t⃗x) = C̄ (F̄1(t), . . . , F̄n(t)), with C̄ being a
survival copula of X⃗ . By the upper Fréchet Hoeffding bound, it is known that
C̄ ≤ min. Therefore,

Fmax(λ )≤ min
i∈[n]

Fi(λ ) = min
i∈[n]

P(Xi ≤ λ )

and,

Fmin(λ ) = 1− F̄min(λ )≥ 1−min
i∈[n]

F̄i(λ ) = max
i∈[n]

P(Xi ≤ λ ).

It is concluded that if

min
i∈[n]

P(Xi ≤ λ )≤ P( f (X⃗)≤ λ )≤ max
i∈[n]

P(Xi ≤ λ ),

then Fmax(λ )≤ P( f (X⃗)≤ λ )≤ Fmin(λ ), thus min(X⃗)≤st A(X⃗)≤st max(X⃗).

3. Recall that the support of any random variable is a closed set. Suppose that
there exists t ∈ R such that t < infUn

i=1S(Xi) but t ∈ S( f (X⃗)). Then, there
exists ε > 0 such that P( f (X⃗)∈ (t−ε, t+ε))> 0 but P(Xi ∈ (t−ε, t+ε)) = 0
for every i ∈ [n]. Moreover, it holds FXi(t+ε) = 0. Comparing the cumulative
distribution functions of f (X⃗) and min(X⃗):

Ff (X⃗)(t + ε)≥ P( f (X⃗) ∈ (t − ε, t + ε))> 0

Fmin(X⃗)(t + ε)≤
n

∑
i=1

FXi(t + ε) = 0.

It is concluded that min(X⃗) ̸≤st f (X⃗), which is a contradiction to the fact of f
being internal in distribution. If there exists t ∈R such that t > supUn

i=1S(Xi)

but t ∈ S( f (X⃗)), the contradiction can be reached similarly.
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4. Notice that if P(X = λ ) = 1, S(X) = {λ}.

It is concluded that the strongest notions of internality are almost surely inter-
nality and internality in probability. It is easy to construct almost surely internal and
internal in probability aggregations of random variables just by considering, respec-
tively, induced aggregations of random variables by internal aggregation functions
and distribution-based aggregations of random variables.

Proposition 3.35 [33] Let A : Ln
I → LI be an aggregation of random variables in-

duced by an internal aggregation function. Then, A is almost surely internal.

Proof: Let Â : In → I be the internal aggregation function that induces A. Since
min(⃗x) ≤ Â(⃗x) ≤ max(⃗x) for any x⃗ ∈ In, then min(X⃗) ≤a.s. A(X⃗) ≤a.s. max(X⃗) for
any X⃗ ∈ Ln

I .

Proposition 3.36 [33] Let A : Ln
I → LI be a distribution-based aggregation of ran-

dom variables. Then, A is internal in probability.

Proof: Let A be distribution-based on Â. For any X⃗ ∈ Ln
I with marginal distribution

functions F1, . . . ,Fn, A(X⃗) has as distribution function Â(F1, . . . ,Fn). Since Â is
internal, see Proposition 3.20, then mini∈[n]Fi(t)≤ Â(F1, . . . ,Fn)(t)≤ maxi∈[n]Fi(t)
for any t ∈ I, so A is internal in probability.

3.3.1.3 Relationship between idempotence and internality

For increasing functions, idempotence and internality are equivalent (see Proposi-
tion 2.10). In this section, the implications between the notions of idempotence and
internality, when the function is an aggregation of random variables, are studied.

Proposition 3.37 [33] Let A : Ln
I → LI be an aggregation of random variables.

Then,

1. A is degenerate idempotent ⇐⇒ A is degenerate internal,
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2. A is idempotent in distribution =⇒ A is internal in distribution,

3. A is almost surely idempotent =⇒ A is internal in distribution,

4. A is almost surely internal =⇒ A almost surely idempotent,

5. A is internal in probability =⇒ A is idempotent in distribution.

Proof:

1. Let X⃗ ∈ Ln
I be a random vector such that P(X⃗ = λ⃗ ) = 1 with λ⃗ ∈ In. For the

first implication, using monotonicity one has that, since min(⃗λ )⃗1 ≤st X⃗ ≤st

min(⃗λ )⃗1, then A(min(⃗λ )⃗1) = min(⃗λ ) ≤st A(X⃗) ≤st max(⃗λ ) = A(max(⃗λ )⃗1).
Therefore, P(A(X⃗) ∈ [min(⃗λ ),max(⃗λ )]) = 1. For the second implication, if
λ⃗ = (λ , . . . ,λ ), then min(⃗λ ) = λ ≤st A(X⃗)≤st λ = max(⃗λ ), thus P(A(X⃗) =

λ ) = 1.

2. Starting from min(X⃗ )⃗1≤st X⃗ ≤st max(X⃗ )⃗1, as a consequence of monotonicity
and idempotence in distribution it holds

min(X⃗) =st A(min(X⃗ )⃗1)≤st A(X⃗)≤st A(max(X⃗ )⃗1) =st max(X⃗).

3. Similarly as the previous case,

min(X⃗) =a.s. A(min(X⃗ )⃗1)≤st A(X⃗)≤st A(max(X⃗ )⃗1) =a.s. max(X⃗),

and the result follows since X =a.s. Y =⇒ X =st Y .

4. If X1 =a.s. · · ·=a.s. Xn, then min(X⃗) =a.s. max(X⃗) =a.s. X1. Since min(X⃗)≤a.s

A(X⃗)≤a.s. max(X⃗), then A(X⃗) =a.s. X1.

5. Denote as F1, . . . ,Fn the distribution functions of X1, . . . ,Xn. If X1 =st · · ·=st

Xn, then F1(t) = · · · = Fn(t) = mini∈[n]Fi(t) = maxi∈[n]Fi(t) for any t ∈ R.
Then,

F1(t) = min
i∈[n]

Fi(t)≤ FA(X⃗)(t)≤ max
i∈[n]

Fi(t) = F1(t),

for any t ∈ R, thus A(X⃗) =st X1.
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As a consequence of this result, there is an equivalence between internality in
support and degenerate internality for aggregations of random variables.

Corollary 3.38 [33] Let A : Ln
I → LI be an aggregation of random variables. Then,

A is internal in support if and only if A is degenerate internal.

Proof: The first implication has been proved in Proposition 3.34. For the second
one, using Proposition 3.37, any degenerate internal aggregation of random vari-
ables is degenerate idempotent. Consider X⃗ ∈ Ln

I . If inf∪n
i=1S(Xi) =−∞ the condi-

tion over the infimum is fulfilled. Otherwise, suppose inf∪n
i=1S(Xi) = a >−∞. Us-

ing monotonicity, since a⃗1≤st X⃗ , then a=a.s. A(a⃗1)≤st A(X⃗) and P(A(X⃗)≥ a) = 1.
Similarly, it is obtained that P(A(X⃗) ≤ b) = 1 with b = sup∪n

i=1S(Xi). Therefore,
S(A(X⃗))⊆ [a,b] =

[
inf∪n

i=1S(Xi),sup∪n
i=1S(Xi)

]
.

All the proved implications can be found in the diagram in Figure 3.3. The
strongest properties are conditionally idempotence, almost surely internal and in-
ternal in probability. It is important to remark again that aggregations of random
variables induced by idempotent/internal aggregation functions are conditionally
idempotent and almost surely internal and distribution-based aggregations of ran-
dom variables are internal in probability (Propositions 3.32, 3.35 and 3.36).

Conditionally idempotent Almost surely internal Internal in probability

Martingale idempotent Almost surely idempotent Idempotent in distribution

Internal in distribution

Internal in support Degenerate internal

Degenerate idempotent

Figure 3.3: Implications between idempotence and internality notions for aggrega-
tions of random variables with respect to the usual stochastic order [33].
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3.3.1.4 Counterexamples for the rest of implications

Propositions 3.30, 3.34 and 3.37 give some relations between the different proper-
ties. However, nothing has been said about the rest of possible implications. In the
following, counterexamples for some of the implications that are not given in the
diagram of Figure 3.3 can be found.

Example 3.39 [33] Degenerate internality does not imply internality in distribu-
tion. Consider the degenerate aggregation of random variables A : L2

R → LR de-
fined by A(X1,X2) =

1
2E [X1 +X2]. It is degenerate internal. But if X1 and X2 are

two standard uniform distributions, then

min
i∈{1,2}

P(Xi ≤ λ ) = max
i∈{1,2}

P(Xi ≤ λ ) = λ .

Therefore, if A is internal in distribution, A(X1,X2) should have standard uni-
form distribution, which is not true since A(X1,X2) =a.s

1
2 .

Example 3.40 [33] Martingale idempotence does not imply degenerate idempo-
tence. Consider A : L2

R → LR defined as A(X1,X2) =
1
2 (X1 +X2 +YX1,X2), where

YX1,X2 is a non-degenerate random variable with mean 0 and independent of X1 and
X2. This aggregation of random variables is martingale idempotent but not condi-
tionally idempotent, since if X1 = X2 = λ , then[

1
2
(X1 +X2 +YX1,X2))

∣∣∣∣ X1 = X2 = λ

]
= λ +

YX1,X2

2
,

which has mean λ but does not equal λ with probability one.

Example 3.41 [33] Conditional idempotence does not imply almost surely inter-
nality. Consider an interval I and, for each random vector X⃗ ∈ L2

I , a random vari-
able YX⃗ independent of X⃗ and with the same distribution as max(X⃗). Define the
aggregation of random variables A : L2

I → LI as,

A(X⃗) =

max(X⃗) if X1 = X2,

YX⃗ if X1 ̸= X2.
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It is conditionally idempotent since

[A(X⃗) | X1 = X2 = λ ] = max(λ ,λ ) = λ .

However, if X1 =a.s. 0 and X2 has standard uniform distribution, max(X⃗) =

X2 and A(X1,X2) is independent of X2 and holds A(X1,X2) =st max(X1,X2), so
A(X1,X2) =st X2. It is clear that P(A(X1,X2) > X2) = 0.5. Then, A is not almost
surely internal.

Example 3.42 [33] Neither conditionally idempotence nor almost surely internal-
ity implies idempotence in distribution. Consider the aggregation of random vari-
ables induced by the maximum. It is conditionally idempotent and almost surely
internal by Propositions 3.32 and 3.35. Consider two random variables X1 and X2

with the same non-degenerate distribution and independent. Then, it is clear that
max(X1,X2) ̸=st X1.

Example 3.43 [33] Internality in probability does not imply almost surely idem-
potence. Consider the aggregation of random variables distribution-based on the
maximum and constructed using the standard uniform random variable U. It is in-
ternal in probability by applying Proposition 3.36. Consider X1 a random variable
independent of U and with non-degenerate distribution. One has A(X1,X1) =st X1,
thus A(X1,X1) has non-degenerate distribution and it is independent of X1. It is
concluded that A(X1,X1) ̸=a.s. X1.

The negation of the rest of the implications can be deduced from the latter
ones and from Propositions 3.30, 3.34 and 3.37. For instance, suppose that inter-
nality in distribution implies almost surely idempotence. Then, since internality in
probability implies internality in distribution, it should hold that internality in prob-
ability implies almost surely idempotence. This is not true, as has been shown in
Example 3.43.

In this direction, it can be concluded that in Figure 3.3 all the implications
between the different properties are represented. The implications that cannot be
deduced from transitivity are false.
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3.3.2 Associativity and recursivity

Associativity and recursivity are intrinsically related to the Markov property of
stochastic processes. Consider (Xn,n ∈N) to be a sequence of independent random
variables with the same distribution and independent. Then, given an associative ex-
tended aggregation function A : ∪n∈NIn → I, the sequence (A(n)(X1, . . . ,Xn),n ∈ N)
fulfills the Markov property.

Proposition 3.44 [30] Let (Xn,n ∈ N) be a sequence of independent random vari-
ables and let A : ∪n∈NIn → I be an associative aggregation function. Then, the
sequence (A(n)(X1, . . . ,Xn),n ∈ N) is a Markov chain.

Proof: Denote Zn = A(n)(X1, . . . ,Xn). Then, applying associativity, one has Zn+1 =

A(2)(Zn,Xn+1). Given the value of Zn, Zn+1 is a function of Xn+1. For any k ≤
n, Zk is a function of X1, . . . ,Xk. Since X1, . . . ,Xk are independent of Xn+1 and
transformations of independent variables are also independent [278], it is concluded
that Zn+1 and Zk with k ∈ [n−1] are conditionally independent given Zn, that is, the
Markov property holds.

The last result also holds if recursivity [110] is considered. With this approach,
annihilator elements can be seen as absorbent states.

Proposition 3.45 [30] Let (Xn,n ∈ N) be a sequence of independent random vari-
ables and let A : ∪n∈NIn → I be an extended associative aggregation function. If a
is an annihilator element of A, then a is an absorbent state of (A(n)(X1, . . . ,Xn))n∈N.

Proof: Since A(2)(a,x) = a, one has that the probability of A(n)(X1, . . . ,Xn) = a
given A(n−1)(X1, . . . ,Xn−1) = a is 1.

On the other hand, if the random variables have the same distribution, the neu-
tral elements of the aggregation restart the evolution of the Markov chain.

Proposition 3.46 [30] Let (Xn,n ∈ N) be a sequence of independent random vari-
ables with the same distribution and let A : ∪n∈NIn → I be an associative aggrega-
tion function. Then, if e is a neutral element of A,[

A(n)(Xk+1, . . . ,Xk+n)
∣∣∣ A(n)(X1, . . . ,Xk) = e

]
=st A(n)(X1, . . . ,Xn),
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for any k,n ∈ N.

Proof: Since A(2)(e,x) = x, given A(k)(X1, . . . ,Xk) = e, A(k+n)(X1, . . . ,Xk+n) =

A(n)(Xk+1, . . . ,Xk+n). The random variables in (Xn,n ∈ N) have the same distribu-
tion, thus A(n)(Xk+1, . . . ,Xk+n) has the same distribution as A(n)(X1, . . . ,Xn).

This equivalence between associative extended aggregation functions on some
particular type of random sequences and Markov chains will be especially relevant
in Sections 5.1.3 and 5.1.4 , in the particular case of idempotent nullnorms and
uninorms.

3.3.3 Another notions of monotonicity

Some of the non-intuitive behaviors of aggregations of random variables are possi-
ble because monotonicity only takes into account the distribution of the input and
the output, not the values that they take for different values of Ω or their depen-
dence. In this section, alternative notions of monotonicity are presented. They are
focused on other approaches rather than on the change in the used stochastic order,
since this has already been studied in Section 3.1.2.

The first one will be conditional monotonicity. For conditionally determined
aggregation functions, it is possible that, when the value of the input random vector
increases, the value of the output random variable decreases. For instance, this
happens for some random vectors in the aggregation of random variables given in
Example 3.28. In this direction, conditional monotonicity is defined in order to
impose a positive relation between the values that the input random vector and the
output random variable take.

Definition 3.47 [39] Let A : Ln
I → LI be a conditionally determined aggregation of

random variables. Then, A is said to be conditionally monotone if [A(X⃗) |X⃗ = x⃗]≤st

[A(X⃗) |X⃗ = y⃗] for any X⃗ ∈ Ln
I and x⃗, y⃗ ∈ In such that x⃗ ≤ y⃗ and the latter conditional

distributions are well-defined.

Notice that ≤a.s. could be written instead of ≤st , since both [A(X⃗) |X⃗ = x⃗] and
[A(X⃗) |X⃗ = y⃗] have degenerate distribution. This property can be seen as a sort
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of comonotonicity between the initial random vector and the output random vari-
able. Another interpretation is that conditional monotone aggregations applied over
observations of the random vectors are increasing functions from vectors to real
numbers. This will be especially relevant for prediction problems, in which mono-
tonicity regarding the input values and the prediction outcome is usually needed.
If the aggregation of random variables is not conditionally determined, the depen-
dence can also be considered as follows.

Definition 3.48 Let A : Ln
I → LI be an aggregation of random variables. Then, A is

said to be jointly monotone if (X⃗ ,A(X⃗)) ≤st (⃗Y ,A(⃗Y )) for any X⃗ ,Y⃗ ∈ Ln
I such that

X⃗ ≤ Y⃗ .

Notice that, using monotonicity, one has X⃗ ≤st Y⃗ and A(X⃗)≤st A(⃗Y ), but they
do not imply (X⃗ ,A(X⃗))≤st (⃗Y ,A(⃗Y )), since the dependence between the input ran-
dom vector and the output random variables should be taken into account. It can be
proved that induced aggregations fulfill both properties.

Proposition 3.49 Let A : Ln
I → LI be an induced aggregation of random variables.

Then, A is conditionally and jointly monotone.

Proof: Since A is induced, it is conditionally determined. Let Â : In → I be the
aggregation function that induces A. Then, using the monotonicity of Â,

[A(X⃗) |X⃗ = x⃗] = Â(⃗x)≤ Â(⃗y) = [A(X⃗) |X⃗ = y⃗],

for any X⃗ ∈ Ln
I and x⃗, y⃗ ∈ In such that x⃗ ≤ y⃗ and the latter conditional distributions

are well-defined. Therefore, A is conditionally monotone.
If X⃗ ≤st Y⃗ , applying 3 in Theorem 2.102, consider ˆ⃗X and ˆ⃗Y such that ˆ⃗X =st X⃗ ,

ˆ⃗Y =st Y⃗ and ˆ⃗X ≤a.s.
ˆ⃗Y . Then, using the monotonicity of Â, it is clear that

(X⃗ ,A(X⃗)) =st (
ˆ⃗X , Â( ˆ⃗X))≤a.s. (

ˆ⃗Y, Â( ˆ⃗Y )) =st (⃗Y ,A(⃗Y )),

for any X⃗ ,Y⃗ ∈ Ln
I such that X⃗ ≤st Y⃗ .

Notice that there are examples of aggregations of random variables that are
conditionally monotone or jointly monotone but are not induced. For instance, the
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aggregations given in Example 3.11 and Example 3.23 are, respectively, condition-
ally monotone and jointly monotone, but none of them are induced.

Moving to weaker notions of monotonicity, a similar concept as directionally
monotone pre-aggregations can be defined for the aggregation or random variables.

Definition 3.50 Let (Ω,Σ,P) be a probability space and I a real non-empty in-
terval. A pre-aggregation function of random variables (with respect to ≤st) is a
function A : Ln

I (Ω)→ LI(Ω) which satisfies:

1. There exists r⃗ ∈ Rn such that A(X⃗)≤st A(X⃗ + c⃗r) for any X⃗ ∈ Ln
I and c ∈ R+

such that X⃗ + c⃗r ∈ Ln
I ,

2. For any X ∈ LI , there exists X⃗ ∈ I such that A(X⃗)≤st X,

3. For any X ∈ LI , there exists X⃗ ∈ Ln
I such that A(X⃗)≥st X.

Similarly as in the case of aggregation functions, it is possible to define a notion
of induced pre-aggregation function by proving a Composition Theorem for them.

Theorem 3.51 Let Â : In → I be a measurable pre-aggregation function. Then, the
function A : Ln

I → LI defined as A(X⃗)= Â◦ X⃗ = Â(X⃗) is a pre-aggregation of random
variables.

Proof: Notice that, for any X⃗ ∈ Ln
I , X⃗ : Ω → In and, since Â : In → I, then Â(X⃗) :

Ω → I. The measurability of Â(X⃗) is a consequence of the measurability of both X⃗
and Â. Therefore, Â(X⃗) ∈ LI and A is well-defined.

For the directional monotonicity, there exists r⃗ ∈Rn such that Â(⃗x)≤ Â(⃗x+ c⃗r)
for any x⃗ ∈ I and c ∈R+ such that x⃗+ c⃗r ∈ In. It is clear that for any X⃗ ∈ Ln

I and c ∈
R+ such that X⃗ + c⃗r ∈ Ln

I , Â(X⃗)≤a.s. Â(X⃗ + c⃗r) and, therefore, A(X⃗)≤st A(X⃗ + c⃗r).
For the boundary conditions, the proof is equivalent to the one in Theorem 3.12

The Induced Ordered Linear Fusion (IOLF) operator will be a particular case
of a pre-aggregation of random variables studied in Section 4.1.
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In the last chapter, a general theory of aggregations of random variables has
been presented. The theory proposes a flexible definition that fits in many different
scenarios. In addition, many properties, defined with an abstract approach, have
been provided. This chapter is devoted to define and study particular aggregations of
random variables, related functions and properties that are relevant in topics such as
time series forecasting, prediction, estimation or random generation. Although the
approach and field of application change drastically for each of the cases, they are
all contained in the theory of aggregation of random variables previously developed.

Firstly, the Induced Ordered Linear Fusion (IOLF) operator will be introduced
as a generalization of the use of the IOWA operator in time series forecasting (Sec-
tion 4.1). Then, some techniques used in Aggregation Theory are applied to study
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the asymptotic behavior of the optimal weights of L-statistics for mean estimation
(Section 4.2). Later on, uniform random capacities are considered, as a way to study
random generators of capacities. In addition, they allow one to define randomly in-
duced versions of the Choquet and Sugeno integrals (Section 4.3). Subsequently,
Stochastically Ordered Aggregation operators, which are conditionally determined
aggregations of random variables (with respect to ≤sd−st) that order the inputs by
considering their distribution but not their particular values, are defined and studied
(Section 4.4). Finally, the approximation of a random variable by means of mini-
mizing the expected value of the absolute difference when a copula is fixed and the
monotonicity of such a problem is disclosed (Section 4.5).

4.1 The Induced Ordered Linear Fusion operator

In time series forecasting, there are many methods and techniques used to make
predictions. In order to obtain more robust and precise predictions, sometimes more
than one model is trained and the predictions are fused using an ensemble. In many
cases, the ensemble is an aggregation function.

This section is devoted to defining the IOLF operator, a generalization of the
IOWA operator that deals with negative weights and that will be of interest as an
ensemble for time series predictions. Firstly, a literature review on the use of ag-
gregation functions in time series is provided and the usual approach in the use of
the IOWA operator in this regard is explained. Secondly, the operator is defined and
its properties are studied, focusing on its use as a mean estimator when a sample of
non-identically distributed and possibly dependent random variables is given.

This operator will be used in an applied problem related to temperature and
humidity prediction in Section 7.6.

4.1.1 Aggregation functions in time series forecasting

The main motivation for the definition of the IOLF operator is to generalize the
IOWA operator as an ensemble method in time series forecasting. In the following,
a survey on the topic of aggregation functions as ensemble methods for time series is
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provided. The literature review has been carried out through the search engines Sco-
pus, Web of Science and Google Scholar. The most important keywords used have
been time series, prediction, forecast, ensemble, aggregation, fusion, weighted aver-
aging, ordered weighted averaging, induced weighted averaging, OWA and IOWA.
It has been used forward (snowball) and backward reference searching, considering
papers that cite or are cited by relevant works.

The use of ensembles in time series has been deeply investigated in the liter-
ature. Some surveys focused on the topic have been published in recent years, for
instance, see [5, 284, 320]. Technically, models based on decision trees such as ran-
dom forests and boosted decision trees are particular types of ensembles (see [249]).
However, the initial prediction models are weak predictors of the same type, while
when aggregation functions are used, strong prediction models based on different
techniques are usually considered.

For instance, the authors of [158] combine machine learning models using
weighted arithmetic means in an application regarding financial data. The different
architectures of the models make the ensembled model more flexible and, therefore,
to have better accuracy than the initial models. Aggregation functions are widely
used as ensembles in the literature [5]. For instance, the authors in [172] give a
method that constructs confidence intervals based on aggregation functions. A com-
parative study between different alternatives of linear aggregation functions is made
in [206]. In the considered datasets, the Ordered Weighted Averaging outperforms
the weighted arithmetic mean.

Another aggregation function that is used in this regard is the Induced Ordered
Weighted Averaging (IOWA), in which the predictions are ordered by, typically, the
precision in the previous times. This technique is quite popular, with applications in
safety monitoring [61, 309], logistic [210], economy [154, 174, 207, 337], energy
resources [208, 215, 310] or climatology [209, 338]. The approach permits to rear-
range the prediction models dynamically as time changes. Another alternative of a
time-dependent ensemble is explored in [86], in which a weighted arithmetic mean
with dynamic weights is proposed.

Other ensemble methods focus on how the initial prediction models are trained.
Bagging ensemble (see [5]), uses different bootstrap samples to train the prediction
models and then applies a weighted arithmetic mean. Note that bootstrap sampling
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in time series is not easy due to the dependence between observations. Thus, block
bootstrap [204] should be used. In these models, the diversity of the predictors is
due not only to differences in the architecture but also to differences in the training
samples.

Not all ensembles are aggregation functions. The predictions of the initial mod-
els can be used as inputs of a machine learning model that gives the final prediction.
The authors in [273] use, for instance, Support Vector Regression. In [271], a Com-
biner is proved to have better behavior than different weighted-based aggregation
functions for medical data. However, these ensemble models lack the explainability
of weighted-based aggregation functions, as pointed out in [283].

In Table 4.1 a brief summary of some of the latter papers is presented, fo-
cusing on the used ensemble methods, the conclusions of the research and some
relevant comments. Notice that WAM, OWA, IOWA and SVR stand for, respec-
tively, Weighted Arithmetic Mean, Ordered Weighted Averaging, Induced Ordered
Weighted Averaging and Support Vector Regression.

4.1.2 The usual procedure of IOWA in time series forecasting

In this section, the usual procedure for the IOWA operator applied to time series
forecasting is briefly explained. Let x1, . . . ,xT be a finite sequence of numbers.
In addition, let p1, . . . , pn be n different prediction models for the latter sequence.
For each t ∈ {2, . . . ,T}, they give the predictions p⃗t = (p1,t , . . . , pn,t). The fused
prediction pt by the IOWA operator is defined as:

pt = IOWA(p⃗t , y⃗t ; w⃗), (4.1)

where w⃗ is a weighting vector and y⃗t = (y1,t , . . . ,yn,t) is defined as the precision of
the prediction in the last time step,

yi,t =

1−
∣∣∣xt−1−pi,t−1

xt−1

∣∣∣ if
∣∣∣xt−1−pi,t−1

xt−1

∣∣∣< 1,

0 if
∣∣∣xt−1−pi,t−1

xt−1

∣∣∣≥ 1.
(4.2)

This approach is similar to the best yesterday’s model introduced in [328],
where the predictions of one day are ordered using the absolute difference between
the last prediction and the observed value, for all the prediction models.
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Ref Ensemble model/s Comments/Conclusions
[61] WAM, IOWA IOWA outperforms WAM
[206] WAM, OWA OWA outperforms WAM
[158] WAM Ensemble outperforms initial models
[172] Based on the Mean Focuses on confidence intervals
[309] IOWA Ensemble outperforms initial models
[210] IOWA Learning the weights improves the results
[207] IOWA Ensemble outperforms initial models
[154] WAM, IOWA Accuracy-based WAM has better results
[337] IOWA Ensemble outperforms initial models
[208] IOWA Ensemble outperforms initial models
[310] IOWA Ensemble outperforms initial models
[215] Based on IOWA Ensembles outperform initial models
[209] IOWA Ensemble outperforms initial models
[338] IOWA Uses bootstrap
[273] SVR SVR ensemble outperforms other models
[271] Combiner, others Combiner outperforms other ensembles
[283] WAM, Median, Mode Mode outperforms other ensembles

Table 4.1: Table summarizing the ensemble models used and the relevant conclu-
sions or comments from some of the reviewed articles [35].

Linking this problem to the classical estimation of random samples, it can be
seen as a more general case in which the random variables are not necessarily in-
dependent and with the same distribution. A reasonable assumption is to consider
the sequence of observations as a random sequence (X1, . . . ,XT ) and the prediction
models, for each time t ∈ {2, . . . ,T}, as a random vector P⃗t = (P1,t , . . . ,Pn,t). An-
other intuitive condition is to consider that, on average, the prediction models give
the correct value of the time series. That is, E[Pi,t | Xt ] = Xt for any i ∈ [n]. In addi-
tion, for each time t ∈ {2, . . . ,T} there is also an additional random vector Y⃗t , which
is used to determine the permutation of the input values in the IOWA operator.

In order to construct the IOWA operator, one has to determine the weights.
The classical way to optimize such a choice is to solve the following optimization
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problem:

Minimize
T

∑
t=1

(
xt −

n

∑
i=1

wiπ⃗yt (⃗xt)i

)2

, (4.3)

Subject to
n

∑
i=1

wi = 1 and w1, . . . ,wn ≥ 0.

which minimizes the Mean Squared Error in the considered sample. This problem is
similar to the one presented in Theorem 4.6 when using the sample covariance ma-
trix and the sample mean as estimators, but removing the positivity of the weights.

4.1.3 Definition and properties

The optimization problem defined in Equation 4.3 can be modified by not imposing
positive values on the weights. By doing that, the feasible region in the optimization
problem is bigger and a closed expression for its solution (see Theorem 4.6) can be
computed. This consideration, which might be interesting for some applications,
leads to an extension of the IOWA operator that will be called the Induced Ordered
Linear Fusion.

Definition 4.1 [35] Consider a generalized weighting vector w⃗ ∈ Rn such that

∑
n
i=1 wi = 1 and the permutation π⃗y : [n]→ [n] such that π⃗y(⃗y)i = y(i) and, if there

is any draw in y⃗, replace the associated values of x⃗ by their average. Then, the
Induced Ordered Linear Fusion (IOLF) has the following expression:

IOLF(⃗x, y⃗; w⃗) = w⃗ t
π⃗y(⃗x),

Trivially, any IOWA is an IOLF operator.

4.1.3.1 Initial properties and semantic of negative weights

Negative weights, although they are a simple way to extend the IOWA operator, in-
crease substantially the complexity of properties, interpretation and applicability of
the resulting function. Firstly, many of the properties related to being an aggregation
function, monotonicity and the boundary conditions, are not longer true. Therefore,
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it is necessary to work with weaker alternatives of these properties. Secondly, the
semantics of negative weights are not intuitive and should be studied. Finally, neg-
ative weights allow to capture more complex dependence structures between the
aggregated values. These three points should be discussed in detail.

Starting with the properties, ratio scale invariance and idempotence remain to
hold for the IOLF, since the condition ∑

n
i=1 wi = 1 is not changed. Therefore, the

IOLF operator is weakly monotone. Moreover, following the same procedure as
in the case of the OWA operators with negative weights (see Proposition 2.31), the
IOLF operator with weights w⃗ ∈ Rn is directionally increasing with respect any
positive vector r⃗ ∈ Rn such that:

n

∑
i=1

rπ(i)wi > 0,

for any possible permutation π . Therefore, if I = R, the IOLF operator is a pre-
aggregation function.

However, if the interval is not the real line, the negative weights do not allow
the IOLF operator to be a pre-aggregation function. For instance, if I = [0,1] and
w⃗ = (−0.5,1.5), then:

IOLF((1,1),(0,2);(−0.5,1.5)) =−0.5 /∈ [0,1].

Nevertheless, focusing on the main purpose, when predicting values of time series,
the prediction models typically do not give predictions on a bounded interval but the
real line [213]. For the cases in which it is mandatory to have the result in a specific
interval, it is possible to consider a function from the real line to the interval. In the
previous case, one can transform the predictions into the real line using the inverse
of the sigmoid function [62] and apply the procedure there.

However, even considering R as the interval, having negative weights does not
allow the IOLF to be monotone, making it impossible to be an aggregation func-
tion. The non-monotonicity may be unintuitive, since if the prediction of one of
the prediction models increases, it is expected that the fused prediction will also
increase. However, as will be seen later, this proposal could be better from a sta-
tistical point of view, even in the case the monotonicity is not preserved. Allowing
negative weights expands the feasible region in the problem stated in Equation 4.3.
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Therefore, a better optimal solution is expected. Also notice that pre-aggregations,
even with the loss of monotonicity, are starting to be used in applied problems (see
[112, 220, 221, 308]). In Section 7.6, numerical results will show that the best al-
ternative for the considered datasets is a weighted arithmetic mean with negative
weights, outperforming the rest of classical alternatives.

Moving to interpretability, there are clear difficulties in having a good semantic
of negative weights. For the IOWA operator, the value of wi can be interpreted as
the importance of the prediction of the model with the i-th best prediction in the
previous time step. For the OWA and WAM operators, the value of wi is related
to the importance of the i-th model or the i-th smallest prediction. Although the
loss of semantics when using negative weights is evident, it is possible to interpret
the absolute value of wi as the importance of the prediction of the model associated
with the i-th component of the ordered vector, considering also as important models
the ones with a bad expected prediction.

From the point of view of probability, the optimal weights that will be ob-
tained in Theorem 4.6 contain negative values if there is a strong positive partial
correlation, see the paragraph right after the result. A strong positive dependence
has consequences in terms of monotonicity. If just the prediction with an associ-
ated negative weight is considered, it is true that the aggregation decreases if the
prediction increases. However, since a negative optimal weight implies a positive
dependence, one can expect that an increase in the prediction implies an increase in
the rest of the predictions, and therefore, an increase in the final aggregation. Fol-
lowing the interpretation in terms of covariance matrices, negative weights appear
as a way to fine-tune co-increasing sets of predictions. In general, one can expect
this behavior since, if all prediction models are adequate, they should increase and
decrease together.

4.1.3.2 Probabilistic properties

In the following, it will be assumed that the predictions of the different models can
be modeled as random variables. Of course, before moving on to more involved
results, it is necessary to prove that the IOLF operator applied to random vectors
is itself a random variable. Recall that a generalized weighting vector is any real
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vector w⃗ such that ∑
n
i=1 wi = 1.

Proposition 4.2 [35] Let X⃗ and Y⃗ be two random vectors and let w⃗ ∈Rn be a gen-
eralized weighting vector. Then, the function IOLF(X⃗ ,Y⃗ ; w⃗) is a random variable.

Proof: Firstly, prove that π⃗Y (X⃗) is a random vector. Consider the probability space
(Ω,F ,P) on which X⃗ and Y⃗ are defined. It suffices to prove that any component
is a measurable function from Ω to R. In particular, it is enough to prove that
π⃗Y (X⃗)−1

i ((∞,a]) ∈ F for any a ∈ R and i ∈ [n] [66].
Consider the case in which π⃗Y (⃗Y )i =Yk. Then, π⃗Y (X⃗)−1

i ((∞,a]) =X−1
k ((∞,a]).

Since X⃗ is a random vector, this set belongs to F .
This only happens if Yj1 < · · · < Yji < · · · < Yjn with ( j1, . . . , jn) being a per-

mutation of [n] such that ji = k. Consider the following set,

Bi
k = {ω ∈ Ω | ∃π : [n]→ [n] with π(i) = k and Yπ(1) ≤ ·· · ≤ Yπ(n)} ,

which belongs to F by applying recursively that the intersection of measurable sets
is measurable and that the set {ω ∈ Ω | X(ω) ≤ Y (ω)} is measurable for any pair
of random variables X and Y [93].

Then, considering all the possible cases:

π⃗Y (X⃗)−1
i ((∞,a]) = ∪n

k=1
(
X−1

k ((∞,a])∩Bi
k
)
.

Since it is the (finite) union of measurable sets, then π⃗Y (X⃗)−1
i ((∞,a]) ∈ F for

any i ∈ [n] and π⃗Y (X⃗) is a random vector. Thus, any linear combination of their
components is a random variable, and in particular it holds for IOLF(X⃗ ,Y⃗ ; w⃗).

As a direct consequence of the latter result and Theorem 3.51, it is concluded
that the IOLF operator, when the vector y⃗ is fixed, is a pre-aggregation of random
variables. In the following, two extreme cases in which the expected value with
respect to Y⃗ of the IOLF operator has a simple expression are provided.

Proposition 4.3 [35] Let X⃗ and Y⃗ be two random vectors and w⃗∈Rn a generalized
weighting vector. The following statements hold:
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1. If Y⃗ and X⃗ are independent, then:

E
[
IOLF(X⃗ ,Y⃗ ; w⃗)

∣∣∣ X⃗
]
=

n

∑
k=1

ŵkXk,

ŵk =
n

∑
i=1

wiP(Yk = Y(i)).

2. If Y⃗ and X⃗ are independent and Y⃗ is exchangeable, then

E
[
IOLF(X⃗ ,Y⃗ ; w⃗)

∣∣∣ X⃗
]
=

n

∑
k=1

1
n

Xk.

Proof: If X⃗ and Y⃗ are independent, the distribution of [Xk | Yk =Y(i)] is the same as
the distribution of Xi for any i,k ∈ [n]. Thus, the distribution function of a compo-
nent of π⃗Y (X⃗)i can be expressed as

F
π⃗Y (X⃗)i

=
n

∑
k=1

P
(
Yk = Y(i)

)
FXk | Yk=Y(i) =

n

∑
k=1

P
(
Yk = Y(i)

)
FXk ,

for any i ∈ [n]. Then, for a fixed value of X⃗ , computing the expectation leads to the
following expression:

E
[
IOLF(X⃗ ,Y⃗ ; w⃗)

∣∣∣ X⃗
]
= E

[
n

∑
i=1

wiπ⃗Y (X⃗)i

∣∣∣ X⃗

]
=

=
n

∑
i=1

wiE
[
π⃗Y (X⃗)i

∣∣∣ X⃗
]
=

n

∑
i,k=1

wiP
(
Yk = Y(i)

)
Xk =

n

∑
k=1

ŵkXk.

For the second point, notice that if Y⃗ is exchangeable, then P
(
Yk = Y(i)

)
= 1

n
for any i,k ∈ [n].

It is important to remark that the most interesting cases are the intermediate
ones, in which the order induced by Y⃗ is not the same as the order induced by X⃗ and
neither X⃗ and Y⃗ are independent.

The mean vector and the covariance matrix of IOLF(X⃗ ,Y⃗ ; w⃗), in terms of the
random vector π⃗Y (X⃗), have easy expressions based on the properties of the mean
and variance of a linear transformation of a random vector. Their proof is straigh-
forward and thus omitted.
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Proposition 4.4 [35] Consider two random vectors X⃗ and Y⃗ and let w⃗ ∈ Rn be a
generalized weighting vector. Then, IOLF(X⃗ ,Y⃗ ; w⃗) satisfies

E
[
IOLF(X⃗ ,Y⃗ ; w⃗)

]
= w⃗ t

µ⃗,

Var
[
IOLF(X⃗ ,Y⃗ ; w⃗)

]
= w⃗ t

Σw⃗,

where µ⃗ and Σ denote, respectively, the mean vector and the covariance matrix of
π⃗Y (X⃗).

4.1.3.3 Mean estimation using the IOLF operator

In this section, the applicability of the IOLF operator over random variables in the
estimation of a common mean is studied. Notice that the main motivation is that
the random variables will be associated with the predictions of several time series
forecasting models and the common mean can be identified as the real value of the
time series at that time.

In this direction, consider a random vector X⃗ for which the mean of every
component is equal to the same value µ . Decompose X⃗ = µ⃗1+ Z⃗, being Z⃗ a noise
random vector for which the mean of all components is 0 and µ the parameter to be
estimated. In addition, it will be considered that Y⃗ does not depend on µ , because in
this case it might be tempting to use Y⃗ to estimate it. Finally, it is assumed that the
covariance matrix of π⃗Y (X⃗) is invertible. No additional considerations are made for
X⃗ and Y⃗ , the involved random variables can be dependent and may have different
distributions. This is a very flexible scheme in which the prediction models can
have a quite different behavior and can be correlated. In the simplest case, they may
be a collection of 2n independent and identically distributed random variables.

In the rest of this section, it will be denoted E
[
π⃗Y (X⃗)

]
− µ⃗1 as ∆⃗, i.e. the drift

with respect to the common mean. In addition, the covariance matrix of π⃗Y (X⃗) will
be denoted as Σ. With this change of notation and noticing that the elements of w⃗
sum 1, the expressions of Proposition 4.4 have the following form:

E
[
IOLF(X⃗ ,Y⃗ ; w⃗)

]
= µ + ∆⃗

tw⃗,

Var
[
IOLF(X⃗ ,Y⃗ ; w⃗)

]
= w⃗ t

Σw⃗.
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Notice that, since ∑
n
i=1 π⃗Y (X⃗) = ∑

n
i=1 Xi, then it holds that ∑

n
i=1 ∆i = 0. In

addition, it is clear that E
[(

µ − IOLF(X⃗ ,Y⃗ ; w⃗)
)2
]
= w⃗ t

(
Σ+ ∆⃗⃗∆ t

)
w⃗. Looking

at E
[
IOLF(X⃗ ,Y⃗ ; w⃗)

]
, IOLF(X⃗ ,Y⃗ , w⃗) is an unbiased estimator for µ if and only if

∆⃗ tw⃗ = 0, i.e. ∆⃗ and w⃗ are orthogonal. In the following result, two elementary
situations where this property holds are provided.

Proposition 4.5 [35] Let X⃗ be a random vector with all components having the
same mean µ . Let Y⃗ be a random vector and let w⃗ ∈Rn be a generalized weighting
vector. Then,

1. If Y⃗ and X⃗ are independent and Y⃗ is exchangeable, then IOLF(X⃗ ,Y⃗ ; w⃗) is an
unbiased estimator for µ ,

2. If the components of X⃗ are symmetric, independent and have the same dis-
tribution, X⃗ =a.s. Y⃗ and w⃗ satisfies wk = wn−k+1 for any k ∈ [n− 1], then
IOLF(X⃗ ,Y⃗ ; w⃗) is an unbiased estimator for µ .

Proof: The first statement is a direct consequence of 2 in Proposition 4.3, since in
this case ∆⃗ = 0⃗.

For the second one, since X⃗ =a.s. Y⃗ and the components of X⃗ are independent
and have the same distribution, IOLF

(
X⃗ ,Y⃗

)
is a linear combination of the order

statistics of X⃗ . Moreover, since the distribution is symmetric, it holds that ∆k =

−∆n−k+1 for any k ∈ [n]. Thus, since wk = wn−k+1 for any k ∈ [n], w⃗ t ∆⃗ = 0.

In general, it is preferred to sacrifice the unbiased property of the estimator
to reduce the Mean Squared Error. Since negative weights are allowed, a closed
expression of the optimal weights can be found by using Lagrange multipliers.

Theorem 4.6 [35] Let X⃗ be a random vector with all components having the same
mean µ . Let Y⃗ be a random vector. Then, the generalized weighting vector w⃗ ∈ Rn

which minimizes E
[(

µ − IOLF(X⃗ ,Y⃗ ; w⃗)
)2
]

is:

w⃗ =

(
Σ+ ∆⃗⃗∆ t

)−1
1⃗

1⃗t
(

Σ+ ∆⃗⃗∆ t
)−1

1⃗
. (4.4)
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Proof: Express E
[(

µ − IOLF(X⃗ ,Y⃗ ; w⃗)
)2
]
= w⃗ t

(
Σ+ ∆⃗⃗∆

)
w⃗ as w⃗ tΣw⃗+

(
w⃗ t ∆⃗

)2
.

Then, consider the following optimization problem:

Minimize w⃗ t
Σw⃗+

(
w⃗ t

∆⃗

)2
,

Subject to 1⃗ tw⃗ = 1.

Noticing that
(

w⃗ t ∆⃗
)2

= w⃗ t ∆⃗⃗∆ tw⃗ and using Lagrange multipliers [277], the expres-
sion is the following

w⃗ t
(

Σ+ ∆⃗⃗∆
t
)

w⃗−λ

(⃗
1 tw⃗−1

)
.

Deriving by w⃗ and making it equal to 0,

2
(

Σ+ ∆⃗⃗∆
t
)

w⃗−λ 1⃗ = 0, w⃗ =
λ

2

(
Σ+ ∆⃗⃗∆

t
)−1

1⃗.

Then, substituting in the restriction,

λ

2
1⃗ t
(

Σ+ ∆⃗⃗∆
t
)−1

1⃗ = 1,
λ

2
=

1

1⃗ t
(

Σ+ ∆⃗⃗∆ t
)−1

1⃗
,

w⃗ =

(
Σ+ ∆⃗⃗∆ t

)−1
1⃗

1⃗ t
(

Σ+ ∆⃗⃗∆ t
)−1

1⃗
.

The matrix Σ+ ∆⃗ t ∆⃗ is equivalent to a sort of covariance matrix with respect
to the real value of the components of the ordered random vector π⃗Y (X⃗). Then,

negative optimal weights appear if some sums of the rows of
(

Σ−1 + ∆⃗ t ∆⃗
)−1

are
negative. Since the diagonal elements must be positive (since the matrix is positive
semi-definite), negative weights imply negative non-diagonal elements of the latter
matrix. In the case of covariance matrices, negative elements of the inverse matrix
are related to positive conditional correlations and its magnitude to the strength
of the dependence [224, 282]. A similar interpretation can be made in this case,
negative weights are associated with large positive conditional correlations between
the variables of the ordered random vector π⃗Y (X⃗).
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Notice that if the sample covariance matrix and the sample mean are used to
estimate Σ and ∆⃗, the here-presented problem is equivalent to Equation 4.3, but
without the requirement of positive weights. In addition, this result gives a closed
expression of the optimal weights, which is useful both for proving properties and
for facilitating calculations. For instance, the Mean Squared Error of the optimal
estimator can be computed.

Corollary 4.7 [35] Let X⃗ be a random vector with all components having the same
mean µ . Let Y⃗ be a random vector. Then, for all possible values of w⃗ ∈Rn verifying

that ∑
n
i=1 wi = 1, the minimum value of E

[(
µ − IOLF(X⃗ ,Y⃗ ; w⃗)

)2
]

is

E
[(

µ − IOLF(X⃗ ,Y⃗ ; w⃗)
)2
]
=

1

1⃗ t
(

Σ+ ∆⃗⃗∆ t
)−1

1⃗
.

Proof: The expectation is straightforward to compute using Theorem 4.6,

E
[(

µ − IOLF(X⃗ ,Y⃗ ; w⃗)
)2
]
= w⃗ t

(
Σ+ ∆⃗⃗∆

)
w⃗ =

=
1⃗ t
(

Σ+ ∆⃗⃗∆ t
)−1

1⃗ t
(

Σ+ ∆⃗⃗∆ t
)−1

1⃗

(
Σ+ ∆⃗⃗∆

) (
Σ+ ∆⃗⃗∆ t

)−1
1⃗

1⃗ t
(

Σ+ ∆⃗⃗∆ t
)−1

1⃗
=

=
1

1⃗ t
(

Σ+ ∆⃗⃗∆ t
)−1

1⃗
.

Finally, some cases in which the weights computed in Theorem 4.6 lead to an
unbiased estimator are provided.

Proposition 4.8 [35] Let X⃗ be a random vector with all components having the
same mean µ . Let Y⃗ be a random vector. If one of the following conditions are
fulfilled:

1. ∆⃗ = 0⃗,
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2. X⃗ = Y⃗ and the components of X⃗ are independent and symmetric.

Then, the generalized weighting vector with the expression given in Theo-
rem 4.6 makes IOLF(X⃗ ,Y⃗ ; w⃗) an unbiased estimator of µ .

Proof: Recall that w⃗ t ∆⃗ = 0 is a sufficient condition for the IOLF operator to be an
unbiased estimator of µ . If ∆⃗ = 0⃗, then w⃗ t ∆⃗ = 0 regardless of the expression of w⃗.

For the other case, without loss of generality, suppose that µ = 0. The com-
ponents of π⃗Y (X⃗) coincide with the order statistics of X⃗ . Then, (X(i),X( j)) =st

−(X(n+1−i),X(n+1− j)) and, as a consequence, Σ is persymmetric [142].
Thus, since the inverse of a persymmetric matrix is persymmetric [142], Σ−1

is also persymmetric. Then, the weights that minimize the variance, which are
w⃗ = Σ−1⃗1

1⃗Σ−1⃗1
holds that wi = wn+1−i for any i ∈ [n]. Also, it holds that ∆i = −∆n+1−i

for any i ∈ [n], Then, w⃗ t∆ = 0. The result follows by noticing that if the weights
minimize the variance and w⃗ t∆ = 0, they also minimize the Mean Squared Error.

4.2 L-statistics in mean estimation of symmetric ran-
dom variables

This section is devoted to providing methods that use extended pre-aggregation
functions for mean estimation of symmetric distributions. Recall that aggregations
of random variables induced by OWA operators (Definition 2.16) are a particular
type of linear combination of order statistics, also known as L-statistics [164].

Consider a quantity of interest µ ∈ R and assume that several measures of
this quantity, perturbed by symmetric noise, are given. The result is a sequence of
random variables X1, . . . ,Xn in which all variables are independent, with the same
symmetric distribution and mean µ ∈ R.

Suppose that one wants to estimate µ using the order statistics of X1, . . . ,Xn.
Of course, this approach is a particular case of the one given in Section 4.1 for the
IOLF operator. Then, the optimal L-statistic for mean estimation can be found by
optimizing the weights as in Theorem 4.6.
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Corollary 4.9 [37] Let X1, . . . ,Xn be independent and identically distributed ran-
dom variables with expectation µ . Then, the generalized weighting vector w⃗ ∈ Rn

which minimizes E
[(

µ −∑
n
i=1 wiX(i)

)2
]

is

w⃗ =

(
Σ+ ∆⃗⃗∆ t

)−1
1⃗

1⃗ t
(

Σ+ ∆⃗⃗∆ t
)−1

1⃗
, (4.5)

where Σ denotes the covariance matrix of the order statistics of X1, . . . ,Xn and ∆⃗ ∈
Rn is the vector defined as ∆i = E[X(i)]−µ for any i ∈ [n].

Proof: Apply Theorem 4.6 considering Y⃗ = X⃗ .

Notice that the resulting operator may have negative weights. Therefore, it is
not an aggregation of random variables but a pre-aggregation of random variables,
just as the IOLF operator was. In addition, if the noise is multiplied by a scalar
quantity, both Σ and ∆⃗⃗∆ t are multiplied by the square of the quantity, so the optimal
weights remain the same.

The optimal weights basically depend on the noise distribution and the sample
size, since they characterize the order statistics of the sample. Since the objective
is to construct an extended pre-aggregation, it is necessary to explore the relation
between weights for the same distribution but different dimension. However, com-
paring two vectors of different lengths is not straightforward. Inspired by the EVR-
OWA theory to derive weights [140], the following function can be defined.

Definition 4.10 [37] Let w⃗ ∈ Rn be a generalized weighting vector. Then, its cu-
mulative weight function W :

{
0, 1

n , . . . ,
n−1

n ,1
}
→ R is defined as W

( k
n

)
= ∑

k
i=1 wi

for any k ∈ [n] and W (0) = 0.

In the following, the optimal cumulative weight function for a fixed distribution
and a sample size n will be denoted as W (n). The graphical representation of the
cumulative weights for some classical distributions suggests a sort of convergence.
For instance, when working with the hyperbolic secant or the logistic distribution
and sample sizes close to 20, the behavior of the cumulative weights seems to be
distributed in a common line (see Figure 4.1).
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Figure 4.1: Cumulative optimal weights of the logistic (left) and hyperbolic secant
(right) distributions for n ∈ {18,19,20,21,22} [36].

4.2.1 Convergence of optimal cumulative weights

As illustrated in Figure 4.1, the cumulative weights for different sample sizes seem
to fit to a common line. This section is devoted to showing that, under certain
conditions for a symmetric distribution, the optimal cumulative weights actually
converge to a function defined in the interval [0,1]. This convergence is based on
the convergence of order statistics.

Recall that, roughly speaking, the inverse of the covariance matrix of the order
statistics can be approximated as Σ−1 ∼ (n+ 1)(n+ 2)DQD, Q being the matrix
given in Equation 2.1 and D the diagonal matrix satisfying that Di,i = f

(
F−1( i

n+1)
)

for any i ∈ [n]. Although this formula is interesting, a formal result regarding this
convergence is needed. In particular, if a uniform fast convergence of

nCov
(
X(nq),X(np)

)
f
(
F−1(p)

)
f
(
F−1(q)

)
,

when p,q ∈ (0,1) is assumed, the elements of Σ−1 converge uniformly, and, more-
over, it is possible to obtain a dominated sequence if some elements are not consid-
ered. The next proposition establishes the convergence of the inverse of the covari-
ance matrix of the order statistics.
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Proposition 4.11 [37] Let X1, . . . ,Xn be a sequence of continuous, independent and
identically distributed random variables with density function f (x) and cumulative
distribution F(x) such that f (x) is bounded and strictly positive on F−1((0,1)).
Suppose that

lim
n→∞

k(n)(n+1)2 ((n+2) f
(
F−1 (p)

)
f
(
F−1 (q)

)
Σ(n+1)p,(n+1)q − p(1−q)

)
= 0,

uniformly for p,q ∈ (0,1) such that p ≤ q for a sequence k(n) such that

lim
n→∞

k(n)
(

min
i∈[n]

f
(

F−1
(

i
n+1

)))2

= ∞.

Then, for any ε > 0 there exists m ∈ N such that for any m ≤ n ∈ N,∣∣∣∣ 1
(n+1)(n+2)

(
Σ
−1)

i, j − (DQD)i, j

∣∣∣∣< ε

k(n)
(
mini∈[n] f

(
F−1

( i
n+1

)))2 ,

for any i, j ∈ [n], being Q and D the matrices defined previously.

Proof: Consider any ε > 0. For a fixed n, the possible values of p and q are,
respectively, p = i

n+1 and q = j
n+1 with i, j ∈ [n]. Using the uniform limit of the

hypothesis, for any ε0 > 0, there exists m ∈ N such that for any m ≤ n ∈ N the
quantity:

k(n)(n+1)2
∣∣∣∣(n+2) f

(
F−1

(
i

n+1

))
f
(

F−1
(

j
n+1

))
Σi, j −

1
n+1

(
Q−1)

i, j

∣∣∣∣ ,
is strictly smaller than ε0, where 1 ≤ i ≤ j ≤ n and has been used that (Q−1)i, j =
i(n+1− j)

n+1 for any i, j ∈ [n]. Then, since f (x) is strictly positive on F−1((0,1)) the
latter expression is equivalent to:∣∣∣(n+2)(n+1)Σi, j −

(
(DQD)−1)

i, j

∣∣∣< ε0

f
(
F−1

( i
n+1

))
f
(

F−1
(

j
n+1

))
(n+1)k(n)

.

Therefore, it is possible to write (n+ 2)(n+ 1)Σ = (DQD)−1 − ε1X , where
ε1 =

ε0
J(n)2(n+1)k(n) , J(n) denotes mini∈[n] f

(
F−1 ( i

n+1

))
, J(n)> 0 by hypothesis and∣∣Xi, j

∣∣< 1 for any i, j ∈ [n]. Using Lemma 2.2,

1
(n+2)(n+1)

Σ
−1 =

(
(DQD)−1 − ε1X

)−1
=

=
∞

∑
k=0

(DQDε1X)k DQD = DQD+
∞

∑
k=1

(DQDε1X)k DQD.
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Considering the infinite norm for matrices and denoting as M the supremum
of f (x) over F−1((0,1)), which exists since f is bounded over F−1((0,1)), it is
obtained the following inequality for the second term in the previous sum:∣∣∣∣∣

∣∣∣∣∣ ∞

∑
k=1

(DQDε1X)k DQD

∣∣∣∣∣
∣∣∣∣∣
∞

≤
∞

∑
k=1

||D||2(k+1)
∞ ||Q||k+1

∞ ||X ||k∞ε
k
1 ≤

≤ 4M2
∞

∑
k=1

(
4nM2

ε1
)k
.

Now, set ε0 ≤ min{T,1}min{ε,1}
32(max{M,1})4 , with T = infn∈N k(n)J(n)2, which exists since

limn→∞k(n)J(n)2 = ∞. Therefore,

ε1 ≤
min{T,1}min{ε,1}

32(n+1)k(n)J(n)2 (max{M,1})4 ,∣∣∣∣∣
∣∣∣∣∣ ∞

∑
k=1

(DQDε1X)k (DQD)

∣∣∣∣∣
∣∣∣∣∣
∞

< 4M2
∞

∑
k=1

(
min{T,1}min{ε,1}

8k(n)J(n)2 (max{M,1})2

)k

≤

≤ 4M2

min{T,1}min{ε,1}
8k(n)J(n)2(max{M,1})2

1− min{T,1}min{ε,1}
8k(n)J(n)2(max{M,1})2

≤
ε

2k(n)J(n)2

1− 1
8

=
4

7k(n)J(n)2 ε <
ε

k(n)J(n)2 .

The absolute value of any element of a matrix is less than or equal to the infinite
norm of the matrix, thus for any ε > 0 there exists m ∈N such that for any m ≤ n ∈
N: ∣∣∣∣ 1

(n+1)(n+2)
(
Σ
−1)

i, j − (DQD)i, j

∣∣∣∣< ε

k(n)J(n)2 ,

for any i, j ∈ [n].

In Proposition 4.11, some strong assumptions have been made. The first one is
the convergence of the presented sequence. According to Theorem 2.87, the differ-
ence must converge to 0, but including the factor k(n)(n+1)2 implies a requirement
for faster convergence. In addition, a fast convergence with respect to the vanishing
of the density function at the extremes of the support is required. The second one
is the uniform convergence rate. Using Theorem 2.87, the uniform convergence on
any closed interval contained in (0,1) is guaranteed, but not on (0,1) itself.
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The following theorem states the convergence of the cumulative weights, de-
noted as

(
W (n),n ∈ N

)
, when the distribution is fixed and some requirements are

fulfilled. More precisely, fast convergence and uniform convergence of the order
statistics are needed, as well as some properties of the density function.

Theorem 4.12 [37] Let X1, . . . ,Xn be a sequence of continuous, independent and
identically distributed random variables with support S, density function f and cu-
mulative distribution F such that f is bounded, continuous, with second derivative
on S and strictly positive on F−1((0,1)). Suppose that:

• There exists a sequence k(n) such that

lim
n→∞

k(n)
(
mini∈[n] f

(
F−1 ( i

n+1

)))
n3 = ∞,

satisfying that for any p,q ∈ (0,1), p ≤ q:

lim
n→∞

k(n)(n+1)2 ((n+2) f
(
F−1 (p)

)
f
(
F−1 (q)

)
Σ(n+1)p,(n+1)q −

− p(1−q)) = 0,

uniformly,

• The integral ∫ 1

0
f
(
F−1(x)

)( d2

dx2 f
(
F−1(x)

))
dx,

is finite,

• The limit

lim
x→infS

f (x)
F(x)

(
2 f (x)− f

(
F−1 (2F(x))

))
,

is not oscillatory.

Then, the sequence of optimal cumulative weights
(

W (n),n ∈ N
)

satisfy W (n)(0) =

0, W (n)(1) = 1 for any n ∈N and for any q ∈ (0,1)∩Q with irreducible fraction a
b :

lim
n→∞

W (nb) (q) =
L+

∫ q
0 f
(
F−1(x)

)( d2

dx2 f
(
F−1(x)

))
dx

2L+
∫ 1

0 f (F−1(x))
(

d2

dx2 f (F−1(x))
)

dx
,
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if limx→infS
f (x)
F(x)

(
2 f (x)− f

(
F−1(2F(x)

))
) = L is finite and lim

n→∞
W (nb) (q) = 0.5

otherwise.

Proof: If X is symmetric, similarly as in Proposition 4.8, then ∆i = −∆n+1−i for
any i∈ [n], which implies w⃗ t∆= 0. Therefore, the expression of the optimal weights
given in Corollary 4.9 can be reduced to w⃗ = Σ−1⃗1

1⃗ tΣ−1⃗1
.

Notice that it is possible to express

W (n)
(

k
n

)
=

∑
k
i=1 ∑

n
j=1
(
Σ−1)

i, j

∑
n
i=1 ∑

n
j=1 (Σ

−1)i, j
,

for any k ∈ [n].
For clarity, denote as Σ(n)−1 the inverse of the covariance matrix of the order

statistics of dimension n. Then, consider the sequence
(

W (nb) (q) ,n ∈ N
)

defined
as:

W (nb) (q) =
∑

na
i=1 ∑

nb
j=1
(
Σ(nb)−1)

i, j

∑
nb
i=1 ∑

nb
j=1 (Σ(nb)−1)i, j

,

where a
b is the irreducible fraction of q. Divide by (nb+ 1)(nb+ 2) the numerator

and the denominator in the latter expression.
Firstly, express the limit of the new numerator as:

lim
n→∞

(
na

∑
i=1

nb

∑
j=1

(DQD)i, j +

(
na

∑
i=1

nb

∑
j=1

(
Σ(nb)−1)

i, j

(nb+1)(nb+2)
− (DQD)i, j

))
.

Secondly, applying Proposition 4.11, there exists m ∈ N such that for any m ≤
n ∈ N the absolute value of the second term can be bounded as follows:∣∣∣∣∣ na

∑
i=1

nb

∑
j=1

(
Σ(nb)−1)

i, j

(nb+1)(nb+2)
− (DQD)i, j

∣∣∣∣∣≤ na

∑
i=1

nb

∑
j=1

ε

k(n)J(n)2 =
abεn2

k(n)J(n)2 ,

where J(n) =
(
mini∈[n] f

(
F−1 ( i

n+1

)))
.

Suppose that this term is negligible in the limit compared to the other terms
(this will be proved in (*)). For simplicity, denote f (F−1(x)) as φ in the next two
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equations. Then,

lim
n→∞

na

∑
i=1

nb

∑
j=1

(DQD)i, j = lim
n→∞

φ

(
1

n+1

)(
2φ

(
1

n+1

)
−φ

(
2

n+1

))
+

+
na

∑
i=2

φ

(
i

n+1

)(
2φ

(
i

n+1

)
−φ

(
2

n+1

)
−φ

(
i−1
n+1

))
.

The limit of the latter line can be expressed in terms of an integral, that is
convergent by hypothesis, and the second derivative of f , which is finite:

lim
n→∞

na

∑
i=2

φ

(
i

n+1

)(
2φ

(
i

n+1

)
−φ

(
i+1
n+1

)
−φ

(
i−1
n+1

))
=

= lim
n→∞

1
n

na

∑
i=2

φ

(
i

n+1

)(
2φ
( i

n+1

)
−φ

( i+1
n+1

)
−φ

( i−1
n+1

)
1/n2

)
1
n
=

= lim
n→∞

1
n

∫ q

0
f
(
F−1 (x)

)( d2

dx2 f
(
F−1 (x)

))
dx.

Applying the same process to the denominator, the following is obtained:

lim
n→∞

W (nb) (q) = lim
n→∞

f
(
F−1 ( 1

n+1

))(
2 f
(
F−1 ( 1

n+1

))
− f

(
F−1 ( 2

n+1

)))
+

2 f
(
F−1

( 1
n+1

))(
2 f
(
F−1

( 1
n+1

))
− f

(
F−1

( 2
n+1

)))
+

+1
n
∫ q

0 f
(
F−1(x)

)( d2

dx2 f
(
F−1(x)

))
dx

+1
n
∫ 1

0 f (F−1(x))
(

d2

dx2 f (F−1(x))
)

dx
,

where it has been used that f
(
F−1 ( 1

n+1

))
= f

(
F−1 ( n

n+1

))
and f

(
F−1 ( 2

n+1

))
=

f
(
F−1 (n−1

n+1

))
, as a consequence of the symmetry of the distribution. Thus, if

lim
n→∞

n f
(

F−1
(

1
n

))(
2 f
(

F−1
(

1
n

))
− f

(
F−1

(
2
n

)))
=

= lim
x→infS

f (x)
F(x)

(
2 f (x)− f

(
F−1(2F(x)

))
) = L,

the first case of the result is obtained. If the limit diverges, the integral terms are
negligible and one has 0.5 as the limit. Notice that it has been assumed that the
latter limit cannot be oscillatory.
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(*) In order to end the proof only remains to prove that the term bounded by
abεn2

k(n)J(n)2 is negligible with respect to the other terms in the denominator. Notice that
the integral can be expressed, integrating by parts:∫ 1

0
f
(
F−1(x)

)( d2

dx2 f
(
F−1(x)

))
dx = lim

q→1
f
(
F−1(q)

)( d
dx

f
(
F−1(q)

))
− lim

q→0
f
(
F−1(q)

)( d
dx

f
(
F−1(q)

))
−
∫ 1

0

(
d
dx

f
(
F−1(x)

))2

dx.

Applying the symmetry of the distribution, the first and the second terms (with
sign) equal the same value. If the latter expression is different from 0, then the term

abεn2

k(n)J(n)2 is negligible with respect to the integral divided by n.
Otherwise, if f ′(x) = 0 then f (x) is constant and strictly positive. But then L ̸=

0 (moreover, the associated limit diverges), thus the term abεn2

k(n)J(n)2 is also negligible.
If f ′(x) ̸= 0, then the latter expression is 0 if and only if limx→infS f (x) ̸= 0 and in
this case also the limit associated with L diverges.

The previous result only makes sense for the rational numbers on [0,1]. How-
ever, it can be extended to real numbers over the unit interval straightforwardly by
considering its continuous extension.

Theorem 4.12 allows one to expect a smaller difference between the fitting
function and the exact solution when the sample size increases. This is very im-
portant since, in general, it is not easy to derive the explicit expression of the latter
limit because the integrals can be hard to compute. In the next two examples, the
limit is computed for the simple cases of the hyperbolic secant and standard logistic
distributions.

Example 4.13 [37] Consider a random variable defined as Y = µ + λX, µ,λ ∈
R with X having a hyperbolic secant distribution. The density, distribution and
quantile functions of X are, respectively, f (x) = 1

2sech
(

π

2 x
)
, F(x) = 2

π
arctan

(
e

π

2 x
)

and F−1(x) = 2
π

ln
(
tan
(

π

2 x
))

. The limit L equals 0,

lim
x→−∞

πsech
(

π

2 x
)

4arctan
(

e
π

2 x
)
sech

(
π

2
x
)
−

tan
(

2arctan
(

e
π

2 x
))

tan2
(

2arctan
(

e
π

2 x
))

+1

= 0,
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since the first fraction converges and the second term tends to 0. Then,

d2

dx2
1
2

sech
(

ln
(

tan
(

π

2
x
)))

=
d
dx

π

2
cos(πx) =−π2

2
sin(πx),

and therefore the integral term in Theorem 4.12 is the following:

∫ x

0
−π4

4
sech

(
ln
(

tan
(

π

2
t
)))

sin(πt)dt =
1

8π
(sin(2πx)−2πx) .

It is concluded that the limit function is g(x) = x− 1
2π

sin(2πx).

Example 4.14 Consider a random variable defined as Y = µ +λX, µ,λ ∈ R with
X having a standard logistic distribution. The density, distribution and quantile
functions of X are, respectively, f (x) = 1

4sech2 ( x
2

)
, F(x) = 1

2

(
1+ tanh

( x
2

))
and

F−1(x) =−2tanh−1(1−2x). First, compute the limit L.

lim
x→−∞

sech2 ( x
2

)
2
(
1+ tanh

( x
2

)) (1
2

sech2
(x

2

)
− 1

2
sech2

(
−tanh−1

(
1−2tanh

(x
2

))))
.

Noticing that the limit of the first fraction is 1 and the second term tends to 0,
the latter limit equals 0. Secondly, the second derivative of f

(
F−1(x)

)
should be

computed
d2

dx2
1
4

sech2 (−tanh−1(1−2x)
)
=

d
dx

1−2x =−2.

Finally, ∫ x

0
−1

2
sech2 (−tanh−1(1−2x)

)
dt = 2

(
x3/3− x2/2

)
.

Thus, the limit function is g(x) = 3x2 −2x3.

Finally, the asymptotic convergence of the estimators built with the limits of
the optimal cumulative weights to the real value of the mean is stated. In partic-
ular, the obtained estimator converges in L2 to µ under the same conditions as in
Theorem 4.12.
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Proposition 4.15 [37] Under the conditions of Theorem 4.12, it holds:

n

∑
i=1

(
W
(

i
n

)
−W

(
i−1

n

))
X(i) →L2 µ.

with W : [0,1]→ R defined as

W (t) =
L+

∫ t
0 f
(
F−1(x)

)( d2

dx2 f
(
F−1(x)

))
dx

2L+
∫ 1

0 f (F−1(x))
(

d2

dx2 f (F−1(x))
)

dx
.

if limx→infS
f (x)
F(x)

(
2 f (x)− f

(
F−1(2F(x)

))
) = L is finite and W (0) = 0,W (1) = 1

and W (t) = 0.5 for any t ∈ (0,1) otherwise.

Proof: Since both the function W (t) and the distribution are symmetric, it is clear
that the expectation of the estimator is µ for any sample size. It remains to prove
that its variance converges to 0.

Suppose that limx→infS
f (x)
F(x)

(
2 f (x)− f

((
F−1(2F(x)

)))
= L is finite. Denote

as λ the finite quantity in the denominator of W (t). Then, using the same notation
as the previous proof, the variance can be decomposed as follows.

Var

(
n

∑
i=1

(
W
(

i
n

)
−W

(
i−1

n

))
X(i)

)
=

L2

λ 2 Σ(n)1,1 +Σ(n)n,n+

+
L

λ 2

n−1

∑
i=2

(Σ(n)1,i +Σ(n)n,i +Σ(n)i,1 +Σ(n)i,n)×

×

(∫ j
n

j−1
n

f
(
F−1(x)

)( d2

dx2 f
(
F−1(x)

))
dx

)
+

+
1

λ 2

n

∑
i, j=1

(∫ i
n

i−1
n

f
(
F−1(x)

)( d2

dx2 f
(
F−1(x)

))
dx

)
×

×

(∫ j
n

j−1
n

f
(
F−1(x)

)( d2

dx2 f
(
F−1(x)

))
dx

)
Σ(n)i, j

The limit of the three summands is 0.
First summand. If L = 0, the first summand is 0. Suppose that L ̸= 0. In that

case, using the uniform convergence of the covariance matrix of the order statistics
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one has,

lim
n→∞

L2

λ 2 Σ(n)1,1 =
L2

λ 2 lim
n→∞

1
n+2

1
n

(
1− 1

n

)
f
(
F−1

(1
n

))2 ≤

≤ L2

λ 2 lim
n→∞

1
n

1
n

(
1− 1

n

)
f
(
F−1

(1
n

))2 =
L2

λ 2 lim
x→infS

F(x)
F(x)(1−F(x))

f (x)2 ≤

≤ L2

λ
lim

x→infS

F(x)2

f (x)2 =
L2

λ 2 lim
x→infS

F(x)2

f (x)2

(
2 f (x)− f

((
F−1(2F(x)

)))2

(2 f (x)− f ((F−1(2F(x))))2 =

=
1

λ 2 lim
x→infS

(
2 f (x)− f

((
F−1(2F(x)

)))2

The latter limit is 0 if limx→infS f (x) = 0, which should holds since, if not,
limx→infS

f (x)
F(x)

(
2 f (x)− f

((
F−1(2F(x)

)))
is not finite. A similar reasoning can be

applied to limn→∞
L2

λ
Σ(n)n,n, thus the limit of the first summand is 0.

Second summand. If L = 0, the first second is 0. Suppose that L ̸= 0. Using
the inequality Σ(n)1,i ≤

√
Σ(n)1,1Σ(n)i,i, which holds as a consequence of the pos-

itive semi-definiteness of Σ(n), and the hyphotesis of uniform convergence of the
covariances of the order statistics, it is possible to express

lim
n→∞

L
λ 2

n−1

∑
i=2

Σ(n)1,i

(∫ j
n

j−1
n

f
(
F−1(x)

)( d2

dx2 f
(
F−1(x)

))
dx

)
≤

≤ lim
n→∞

L
√

Σ(n)1,1

λ 2

n−1

∑
i=2

√
Σ(n)i,i

(∫ j
n

j−1
n

f
(
F−1(x)

)( d2

dx2 f
(
F−1(x)

))
dx

)
<

< lim
n→∞

L
√

Σ(n)1,1

λ 2
√

n+2

∫ 1

0

√
p(1− p)

f (F−1(p))2 f
(
F−1(p)

)( d2

d p2 f
(
F−1(p)

))
d p =

= lim
n→∞

L
√

Σ(n)1,1

λ 2√n

∫ 1

0

√
p(1− p)

(
d2

d p2 f
(
F−1(p)

))
d p ≤

≤ lim
n→∞

L
√

Σ(n)1,1

λ 2√n

∫ 1

0

(
d2

d p2 f
(
F−1(p)

))
d p.

By symmetry, the value of the integral is limp→0 2
(

d
d p f

(
F−1(p)

))
. This limit

is finite since, if S is bounded the derivative of f exists in the minimum of S and,
if S is unbounded, it is clear that limx→−∞ f ′(x) = 0. In addition, as proven for the
first summand, limn→∞ L2Σ(n)1,1 = 0. Therefore, the second summand equals 0.
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Third summand. Changing again the covariances of the order statistics by its
limits and the sums for integrals, the following expression is obtained.

lim
n→∞

1
λ 2

n

∑
i, j=1

(∫ i
n

i−1
n

f
(
F−1(x)

)( d2

dx2 f
(
F−1(x)

))
dx

)
×

×

(∫ j
n

j−1
n

f
(
F−1(x)

)( d2

dx2 f
(
F−1(x)

))
dx

)
Σ(n)i, j = lim

n→∞

1
λ 2(n+2)

×

×
∫ 1

0

∫ 1

0
p(1−q)

(
d2

d p2 f
(
F−1(p)

))( d2

dq2 f
(
F−1(q)

))
d pdq ≤

≤ lim
n→∞

1
λ 2n

(∫ 1

0

(
d2

d p2 f
(
F−1(p)

))
d p
)2

.

The integral is convergent by the same previous arguments. Therefore, the
limit of the whole expression goes to 0.

It remains the case when limx→infS
f (x)
F(x)

(
2 f (x)− f

((
F−1(2F(x)

)))
diverges.

In this case, the estimator is just 1
2

(
X(n)+X(1)

)
and its variance is

1
4
(Σ(n)1,1 +Σ(n)1,n +Σ(n)n,1 +Σ(n)n,n) .

Proceeding similarly as in the first summand of the other case,

lim
n→∞

1
4

Σ(n)1,1 ≤
1
4

lim
x→infS

F(x)2

f (x)2 =

=
1
4

lim
x→infS

[
F(x)2

f (x)2
1

(2 f (x)− f ((F−1(2F(x))))2

](
2 f (x)− f

((
F−1(2F(x)

)))2
.

The part between the brackets goes to 0, since its inverse goes to infinite, and
the limit of the other part is finite, thus it is concluded that the limit is 0. The
happens for the rest of terms. Since the mean of the estimator converges is µ and
the variance converges to 0, the result holds.

The assumptions of the latter results are strong. However, as will be seen in
Section 7.2, simulations reveal that convergence is achieved for typical distributions
(see Figure 7.1). In addition, estimation methods based on the latter results have a
good behavior, as it will be seen in Table 7.3.
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4.3 Uniform random capacities

In applied problems [51, 145, 147, 167, 325], the necessity of generating random
capacities appears. In this direction, many studies and algorithms have been devel-
oped in the literature in this regard [43, 44, 46, 51, 95, 96, 148, 167]. In general,
the main objective of these algorithms is to obtain a fast random generation of ca-
pacities that is uniform over the set of all capacities. However, there are no well
established methods to test if a random generator of capacities is generating them
uniformly or not.

In this section, uniform random capacities are studied. Firstly, their use in or-
der to define randomly induced versions of the Choquet and Sugeno integrals is
explored. Secondly, many properties of uniform capacities and uniform distribu-
tions regarding some families of capacities are studied. These properties will be of
interest in Section 7.3 in order to test the uniformity of some random generators of
capacities.

A random capacity can be seen as a random vector of dimension 2n such that
each of its components is associated with a subset of [n]. Denoting the random ca-
pacity as µ , its values can be expressed as (µ( /0),µ({1}), . . . ,µ([n])). Any random
capacity µ fulfills, with probability 1, that µ( /0) = 0, µ([n]) = 1 and µ(A) ≤ µ(B)
whenever A ⊆ B. A random capacity is said to be uniform if its distribution ful-
fills Definition 2.70, with A being the set of all capacities of a given dimension. In
the following, the values µ( /0) = 0 and µ([n]) = 1 will be ignored, since they are
constant, thus it will be considered a random vector of dimension 2n −2.

4.3.1 The randomly induced Choquet and Sugeno integrals

Capacities are used as parameters for some aggregation functions such as the Cho-
quet and Sugeno integrals. Therefore, it is natural to consider randomly induced
Choquet Cµ and Sugeno Sµ integrals. If one considers the random capacity to be
independent of the input random vector, the following result can be proved.

Proposition 4.16 Let (µX⃗ , X⃗ ∈ Ln
I ) be a family of random capacities such that

µX⃗ =st µY⃗ for any X⃗ ,Y⃗ ∈ Ln
I with X⃗ and µX⃗ being independent for any X⃗ ∈ Ln

I .
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Then, the function A : Ln
I → LI defined by A(X⃗) =CµX⃗

(X⃗) is an aggregation of ran-
dom variables.

Proof: Consider Theorem 3.22 with (⃗λX⃗ , X⃗ ∈ Ln
I ) = (µX⃗ , X⃗ ∈ Ln

I ).

Firstly, it is necessary to prove that CµX⃗
(X⃗) is a random variable. Consider the

probability space (Ω,F ,P) and B ∈ B. The sets Mπ = {ω ∈ Ω | Xπ(1)(ω)≤ ·· · ≤
Xπ(n)(ω)} are measurable for any permutation π [93]. For a particular permutation,
the Choquet integral equals the function ∑

n
i=1
(
Xπ(i)−Xπ(i−1)

)
µX⃗(Aπ(i)) (see Def-

inition 2.27). Since the function is defined in terms of sums and multiplications of
measurable functions,(

n

∑
i=1

(
Xπ(i)−Xπ(i−1)

)
µX⃗(Aπ(i))

)−1

(B) ∈ F .

Considering all the permutations,

(
CµX⃗

(X⃗)
)−1

(B) =
⋃
π

( n

∑
i=1

(
Xπ(i)−Xπ(i−1)

)
µX⃗(Aπ(i))

)−1

(B)

∩Mπ

 ,

which is a measurable set since it is the result of finite unions and intersections of
measurable sets.

Then, notice that Condition (1) in Theorem 3.22 is fulfilled. Condition (2)
holds noticing that the Choquet Integral is internal for any possible value of µ . Con-
dition (3) holds by hypothesis and Condition (4) is fulfilled using the independence
between X⃗ and µX⃗ for any X⃗ ∈ Ln

I . Then, it is concluded that A is an aggregation of
random variables.

Using a similar proof, an equivalent result can be stated for the Sugeno integral.

Proposition 4.17 Let (µX⃗ , X⃗ ∈ Ln
I ) be a family of random capacities such that

µX⃗ =st µY⃗ for any X⃗ ,Y⃗ ∈ Ln
I with X⃗ and µX⃗ being independent for any X⃗ ∈ Ln

I .
Then, the function A : Ln

I → LI defined by A(X⃗) = SµX⃗
(X⃗) is an aggregation of ran-

dom variables.
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Proof: The proof is analogous to the one of Proposition 4.16. In this case, the
expression of the Sugeno integral for a fixed permutation π is

Sµ (⃗x) = max
i∈[n]

(
min

(
xπ(i),µX⃗(Aπ(i)

))
,

and again one has that(
max
i∈[n]

(
min

(
xπ(i),µX⃗(Aπ(i)

)))−1

(B) ∈ F ,

since it can be decomposed in terms of maximums and minimums of measurable
functions [93]. The rest of the proof is equivalent.

4.3.2 Properties of uniform capacities

The uniform distribution over the set of capacities is not simple to study, since the
geometry of that set is difficult to work with. The set of all capacities of dimension
n, which is a 2n − 2 dimensional order polytope, will be denoted as Pn. All its
vertices are 0-1 capacities. One description of this distribution can be done in terms
of the set of linear extensions.

Lemma 4.18 [27] Let µ be a random capacity of dimension n. Then, its density
function is fµ (⃗x) =

|Le|
(2n−2)! if x⃗ ∈ Pn and fµ (⃗x) = 0 otherwise.

Proof: Divide the unit hyper-cube of dimension 2n−2 in the possible (2n−2)! or-
derings of the values. Each subset has a measure of 1

(2n−2)! . Then, add the measures

of all the possible linear extensions to obtain that the measure of Pn is |Le|
(2n−2)! .

However, as explained in Section 2.2.4, the number of linear extensions does
not have a closed algebraic expression. Therefore, the latter expression of the den-
sity function is not operational. In the next result, a characterization in terms of the
order statistics of the random capacity is given.

Proposition 4.19 [27] Let µ be a random capacity of dimension n. Then, it has
uniform distribution if and only if the following conditions are fulfilled:
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• All linear extensions appear with the same probability,

• The order statistics of µ and the linear extension are independent,

• The order statistics of µ have the same distribution as the order statistics of
a vector of 2n −2 independent standard uniform random variables.

Proof: Firstly, prove that the conditions are necessary. Denote as µ|π the (random)
value of the random uniform capacity µ when the linear extension π is fixed.

• Since the distribution is uniform, for any linear extension π ∈ Le, P(π) equals
the Lebesgue measure associated with the linear extension divided by the
Lebesgue measure of Pn. This value, 1

|Le| , is the same for each possible per-
mutation.

• Computing the density function of µ given a linear extension π ∈ Le,

fµ|π (⃗x) =
fµ (⃗x)
P(π)

=
(2n −2)!

|Le|
|Le|= (2n −2)!,

for each x⃗ ∈ [0,1]2
n−2 with xπ(1) ≤ ·· · ≤ xπ(2n−2) and 0 otherwise.

Denote as o(µ|π) the order statistics of µ given the linear extension π . Since
the order of the elements of µ|π is given by π , then o(µ|π) is a non-random
permutation of the values of µ|π . Then, the associated density function,
fo(µ|π), equals the one of the order statistics of 2n −2 standard random vari-
ables [104]. Therefore,

fo(µ|π)(⃗x) = (2n −2)!,

for each x⃗ ∈ [0,1]2
n−2 with x1 ≤ ·· · ≤ x2n−2 and 0 otherwise.

Therefore, the conditional distribution of the order statistics of µ given a lin-
ear extension is always the same, and therefore, the order statistics of µ and
the linear extension are independent.

• Since the order statistics of µ and the linear extension are independent, the
latter conditional density is the actual density of the order statistics of µ ,
which is the one of the order statistics of a collection of 2n − 2 independent
standard uniform random variables.
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It remains to prove that these conditions are sufficient. The density function of
µ can be expressed as

fµ (⃗x) = ∑
π∈Le

P(π) fµ|π (⃗x).

The density function of the order statistics of a collection of 2n−2 independent
standard uniform random variables is (2n −2)!. Using that the linear extension and
the order statistics of µ are independent, one has that

fo(µ|π)(⃗x) = (2n −2)!,

for each x⃗ ∈ [0,1]2
n−2 with x1 ≤ ·· · ≤ x2n−2 and 0 otherwise.

Using again that, given a linear extension, the order statistics are just a deter-
ministic permutation of the values of the fuzzy measure,

fµ|π (⃗x) = (2n −2)!.

for each x⃗ ∈ [0,1]2
n−2 with xπ(1) ≤ ·· · ≤ xπ(2n−2) and 0 otherwise.

Finally, using that all linear extensions have the same probability, which should
be 1

|Le| ,

fµ (⃗x) = ∑
π∈Le

P(π) fµ|π (⃗x) =
(2n −2)!

|Le|
,

for each x⃗ ∈ Pn.

Trivially, the second and third conditions can be combined into one.

Corollary 4.20 [27] Let µ be a random capacity of dimension n. Then, it has
uniform distribution if and only if the following conditions are fulfilled:

• All linear extensions appear with the same probability,

• Given any linear extension, the order statistics of µ have the same distribution
as the order statistics of a vector of 2n − 2 independent standard uniform
random variables.
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4.3.2.1 Symmetry and inequality properties

Using the characterizations of the latter section, several properties related to the
symmetry and inequalities between the measure of subsets can be proved.

Proposition 4.21 [27] Let µ be a random capacity of dimension n with uniform
distribution. Then, the following conditions are fulfilled:

• The random vector (µ({1}), . . . ,µ({n})) is exchangeable,

• µ(A) =st µ(B) for each A,B ⊆ [n] with |A|= |B|,

• µ(A)≤st µ(B) for each A,B ⊆ [n] with |A| ≤ |B|,

• The dual capacity of µ has the same distribution as µ .

Proof:

• Consider the function πi, j : Pn → Pn that, for fixed i, j ∈ [n], takes a capacity
and returns another capacity following the formula

πi, j(µ)(A) =


µ(A) if i ∈ A, j ∈ A,

µ(A) if i /∈ A, j /∈ A,

µ({ j}∪ (A\{i})) if i ∈ A, j /∈ A,

µ({i}∪ (A\{ j})) if i /∈ A, j ∈ A.

Since the latter function is just a permutation of two elements of [n] in ev-
ery subset, it is a Lebesgue-measure preserving bijection on the polytope Pn.
Since µ has uniform distribution, which is just the Lebesgue measure scaled
by a constant, πi, j(µ) has the same distribution as µ . The random vector
(πi, j(µ)({1}), . . . ,πi, j(µ)({n})) is the random vector (µ({1}), . . . ,µ({n}))
when the components i and j are interchanged. Since πi, j(µ) and µ have
the same distribution, the same holds for (πi, j(µ)({1}), . . . ,πi, j(µ)({n})) and
(µ({1}), . . . ,µ({n})). Since this is true for any i, j ∈ [n], the random vectors
are exchangeable.
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• Consider A,B ⊆ [n] with |A| = |B|. Since they have the same cardinality,
A\(A∩B) and B\(A∩B) have the same cardinality, thus they can be repre-
sented as A\(A∩B) = {a1, . . . ,ak} and B\(A∩B) = {b1, . . . ,bk} with k =

|A| − |A∩B|. Proceeding as in the latter case, it holds that µ(B) = πa1,b1 ◦
· · · ◦πak,bk(µ)(A) has the same distribution as µ(A).

• Consider A,B ⊆ [n] such that |A| ≤ |B|. Then, there exists B′ ⊆ [n] such
that |B′| = |B| and A ⊆ B′. Since A ⊆ B′, it is clear that for any linear
extension µ(A) ≤ µ(B′). Therefore, P(µ(A) ≤ µ(B′)) = 1, which implies
µ(A)≤st µ(B′). Using the previous point, µ(B′) =st µ(B), so it is concluded
that µ(A)≤st µ(B′) =st µ(B).

• Consider the function φ : Pn → Pn that takes a capacity and returns the dual
of the capacity, that is, φ(µ)(A) = 1 − µ(Ā) for any A ⊆ [n]. This func-
tion is a biyection [48]. In addition, since the function is the result of the
composition of a permutation of the indices associated with a subset of [n]
and its complementary and a biyective linear function, which preserves the
Lebesgue measure (see Chapter 11, Section 2.1 in [111]), φ preserves the
Lebesgue measure. Then φ is a Lebesgue-measure preserving bijection on
Pn. The property is established in a similar way to the previous cases.

It should be remarked that exchangeability can only be achieved between sub-
sets of the same cardinality when the cardinal is 1 and n− 1 (see Corollary 4.22).
For instance, if the cardinality is 2, the dependence between µ({1,2}) and µ({1,3})
is not the same as the dependence between µ({1,2}) and µ({3,4}), since the inter-
section of {1,2} and {1,3} and the intersection of {1,2} and {3,4} have different
cardinality.

As a direct consequence of the last result, the following corollaries arise.

Corollary 4.22 [27] Let µ be a random capacity of dimension n with uniform dis-
tribution. Then, the random vector (µ([n]\{1}), . . . ,µ([n]\{n})) is exchangeable.

Corollary 4.23 [27] Let µ be a random capacity of dimension n with uniform dis-
tribution. Then, the capacity E[µ] is symmetric and autodual.
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The expectation of a uniform random capacity coincides with the centroid of
the polytope Pn. The last result can also be found in [237], described in these terms.

4.3.2.2 Distribution of the measure of subsets

The next results aim to determine the type of distribution each of the random vari-
ables µ(A) has. Recall the definition of mixture given in Definition 2.65.

Proposition 4.24 [27] Let µ be a random capacity of dimension n with uniform
distribution. Then, the distribution of µ(A) is a mixture of Beta distributions for
any A ⊂ [n] with A ̸= /0.

Proof: Fix A ⊂ [n] with A ̸= /0. For each permutation π : [2n]→ P([n]) in the set
of linear extensions, µ(A) behaves as the π−1(A)-th order statistic in a sample of
2n −2 independent standard uniform random variables. In particular,

[µ(A)|π]∼ Beta(π−1(A),2n −1−π
−1(A)),

fµ(A)|π(x) =
xπ−1(A)−1(1− x)2n−2−π−1(A)

B(π−1(A),2n −1−π−1(A)))
, x ∈ [0,1].

where B(·, ·) denotes the Beta function.
Thus, the total density is of the form

fµ(A)(x) =
1
|Le| ∑

π∈Le

xπ−1(A)−1(1− x)2n−2−π−1(A)

B(π−1(A),2n −1−π−1(A)))
, x ∈ [0,1],

which is a mixture of Beta distributions.

In general, since the exact distribution of the measure of the subsets is not
known (it is a mixture of Beta distributions but the parameters are not known), it is
hard to compute the distribution of associated quantities. However, it can be stated
that the Orness has a symmetric distribution.

Corollary 4.25 [27] Let µ be a random capacity of dimension n with uniform dis-
tribution. Then, O(Cµ) has a symmetric distribution with respect to 0.5.
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Proof: The sum of the Orness of a capacity and its dual is always one. Since µ

has the same distribution as its dual random capacity µ̂ , one has that O(Cµ) =st

1−O(Cµ̂) =st 1−O(Cµ). Then, 0.5−O(Cµ) =st O(Cµ)−0.5.

This, of course, implies that E[O(Cµ)] = 0.5, a feature that was already known
by the fact that E[µ] is autodual.

4.3.2.3 Distance to the closest 0-1 capacity

More involved results can be proved for the smallest distance from the uniform
random capacity to the closest 0-1 capacity. Notice that 0-1 capacities are the (only)
vertices of the polytope of capacities, thus being of special interest. In the next
lemma, the closest 0-1 capacity to a general capacity is characterized.

Lemma 4.26 [27] Let µ be a capacity of dimension n. Denote as P0,1
n the set of

0-1 capacities of dimension n, then:

min
µ̂∈P0,1

n

(
∑

A⊆[n]
|µ(A)− µ̂(A)|

)
= ∑

A⊆[n]
(0.5−|µ(A)−0.5|) .

Proof: Consider the 0-1 capacity defined as µ̂(A) = 0 if µ(A)≤ 0.5 and µ̂(A) = 1
if µ(A)> 0.5. It is a capacity since µ̂( /0) = 0, µ̂([n]) = 1 and, by the monotonicity
of µ , the case µ̂(A) = 0, µ̂(B) = 1 with B ⊆ A is not possible. This 0-1 capacity is
the closest since, by construction, the closest value between 0 and 1 for each subset
is being chosen.

The distribution of the latter expression can be computed by using the Irwin-
Hall distribution (see Definition 2.71).

Proposition 4.27 [27] Let µ be a random capacity of dimension n with uniform
distribution. Then, the (Manhattan) distance to the closest 0-1 capacity has the
distribution of an Irwin-Hall random variable with n = 2n −2 divided by 2.

Proof: By Lemma 4.26, given a linear extension π , one has:

∑
A⊆[n]

(0.5−|[µ(A)|π]−0.5|) =
2n−2

∑
i=1

(
0.5−

∣∣X(i)−0.5
∣∣) ,
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where X1, . . . ,X2n−2 are independent random variables with standard uniform dis-
tribution. Changing the order of the summands,

∑
A⊆[n]

(0.5−|[µ(A)|π]−0.5|) =
2n−2

∑
i=1

(0.5−|Xi −0.5|) .

The distribution of |Xi −0.5| is uniform in [0,0.5] as well as the distribution
of 0.5− |Xi −0.5|. That is, for any linear extension, the minimum distance is the
sum of 2n − 2 independent uniform random variables on [0,0.5]. The result holds
by realizing that multiplying by 2 an Irwin-Hall distribution is obtained, see Propo-
sition 2.72.

Finally, it is possible to compute the probability that a 0-1 capacity is the closest
0-1 capacity to a uniform random capacity.

Proposition 4.28 [27] Let µ be a uniform capacity and µ ′ a 0-1 capacity. Then,
the probability of µ ′ being the closest 0-1 capacity to µ is

0.52n−2 (2n −2)!
S!(2n −2−S)!

|L′
e|

|Le|
,

where L′
e is the set of linear extensions of µ ′ and S is the number of non-empty

subsets with measure µ ′ equal to 0.

Proof: If the linear extension of µ is not in L′
e, then the probability that µ ′ is

the closest 0-1 measure is 0. In other case, consider a fixed π ∈ L′
e. Applying

Proposition 4.19, the conditional probability given π can be computed as:

P
(
X(1) ≤ 0.5, . . . ,X(S) ≤ 0.5,X(S+1) > 0.5, . . . ,X(2n−2) > 0.5

)
=

= P
(
X(S) ≤ 0.5,X(S+1) > 0.5

)
=

= P
(
X(S) ≤ 0.5,X(S+1) ≤ 1

)
−P

(
X(S) ≤ 0.5,X(S+1) ≤ 0.5

)
=

= P(X(S) ≤ 0.5)−P(X(S+1) ≤ 0.5),

where X(1), . . . ,X(2n−2) are the order statistics of a sample of 2n − 2 independent
uniform random variables. By using the distribution function of the order statistics
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given in Proposition 2.83,

P(X(S) ≤ 0.5)−P(X(S+1) ≤ 0.5) =

=
2n−2

∑
i=S

(2n −2)!
i!(2n −2− i)!

0.5i0.52n−2−i −
2n−2

∑
i=S+1

(2n −2)!
i!(2n −2− i)!

0.5i0.52n−2−i =

= 0.52n−2 (2n −2)!
S!(2n −2−S)!

.

The result follows by doing the average between all the possible linear exten-
sions.

4.3.3 More properties for some particular families of capacities

The set of all capacities is hard to deal with, mainly because of the difficulty of
working with the linear extensions. In this section, the study is restricted to some
families of capacities in which their characteristics allow one to prove more results.

4.3.3.1 Balanced capacities

For balanced capacities, the monotonicity is extended to a stronger condition, since
the measure of subsets is ordered with respect to the cardinality. This allows us to
compute the exact number of possible linear extensions.

Proposition 4.29 [27] Let Lb
e be the set of the linear extensions of balanced capac-

ities of dimension n. Then,

|Lb
e |=

n−1

∏
k=1

(
n!

k!(n− k)!

)
!.

Proof: Any possible linear extension of a balanced capacity can be expressed as
n− 1 permutations of the measures of subsets of the same cardinality since A ⊆
B =⇒ µ(A) ≤ µ(B). For a cardinality k ∈ [n− 1], there exist n!

k!(n−k)! different
subsets of [n] with that cardinality. The number of permutations of a collection of

n!
k!(n−k)! elements is

(
n!

k!(n−k)!

)
!. The result follows by considering the combination

of all possible permutations of each of the subsets with the same cardinality.
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Let µb be a random capacity with uniform distribution over the set of all bal-
anced capacities. Its density, proceeding as in the general case, has the following
expression:

fµ (⃗x) =
(2n −2)!

|Lb
e |

=
(2n −2)!

∏
n−1
k=1

(
n!

k!(n−k)!

)
!
,

for any x⃗ ∈ Pb
n , where Pb

n is the polytope of balanced capacities.
Moreover, it is also possible to know all the positions of a subset in the linear

extensions.

Lemma 4.30 [27] Consider A ⊂ [n] with |A|= m. Then, the position of A over all
the linear extensions is equally distributed between the positions ml + 1 and mu,
with expressions

ml =
m−1

∑
k=1

n!
k!(n− k)!

, mu =
m

∑
k=1

n!
k!(n− k)!

.

Proof: It will be proved by induction. For m = 1, the position of A should be
between the first n subsets, that is, between 1l +1 = ∑

0
k=1

n!
k!(n−k)! +1 = 1 and 1u =

∑
1
k=1

n!
k!(n−k)! =

n!
1!(n−1)! = n. Suppose that it is true for m−1. Then, since the subsets

of cardinality m should be between subsets of cardinality m− 1 and m+ 1 in any
linear extension, one has that ml = (m−1)l +

n!
(m−1)!(n−m+1)! and mu = (m−1)u +

n!
m!(n−m)! , thus the result holds.

Notice that ∑
n−1
k=1

n!
k!(n−k)! = 2n−2. Using the latter results, the exact distribution

of the measure of each subset can be determined.

Proposition 4.31 [27] Let µb be a uniform balanced random capacity of dimension
n and A ⊂ [n] such that A ̸= /0. Then, the density function of µb(A) has the following
expression:

fµb(A)(x) =
|A|!(n−|A|)!

n!

∑
|A|
k=1

n!
k!(n−k)!

∑
i=∑

|A|−1
k=1

n!
k!(n−k)!+1

xi−1(1− x)2n−2−i

B(i,2n −1− i)
,

where B(·, ·) denotes the Beta function.
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Proof: Proceeding as in Proposition 4.24, it is obtained that

fµb(A)(x) =
1

|Lb
e |

∑
π∈Lb

e

xπ−1(A)−1(1− x)2n−2−π−1(A)

B(π−1(A),2n −1−π−1(A)))
.

Using Lemma 4.30, the equation simplifies to the following expression,

fµb(A)(x) =
|A|!(n−|A|)!

n!

∑
|A|
k=1

n!
k!(n−k)!

∑
i=∑

|A|−1
k=1

n!
k!(n−k)!+1

xi−1(1− x)2n−2−i

B(i,2n −1− i)
.

The latter density consists of a mixture of n!
|A|!(n−|A|)! Beta distributions, each

of them associated with one order statistic of a sample of 2n − 2 uniform random
variables in the positions between ∑

|A|−1
k=1

n!
k!(n−k)! +1 and ∑

|A|
k=1

n!
k!(n−k)! . In addition,

the exact distribution of the Orness can be derived for this family.

Proposition 4.32 [27] Let µb be a uniform random balanced capacity of dimension
n. Then, O(Cµ) has the following distribution function:

FO(Cµ )(x) = 1−
m

∑
i=1

(ci − x)n

ci ∏ j ̸=i(ci − c j)
Ix∈[0,c1],

where ci = ∑
n
k=i ak, ai =

1
n−1

m!(n−m)!
n! if i ∈

{
∑

m−1
k=1

n!
k!(n−k)! +1, . . . ,∑m

k=1
n!

k!(n−k)!

}
, I

denotes the indicator function and m is the largest integer such that x ≤ cm.

Proof: Since for all the linear extensions the subsets are ordered with respect to its
cardinality and the coefficients in the linear combination of the Orness only depend
on the cardinality, one has that [O(Cµ)|π] has the same distribution for each π ∈ Lb

e .

For a particular linear extension, therefore for all of them, using the third point
of Proposition 4.19 and Lemma 4.30, one has

1
n−1 ∑

A⊂[n]

(n−|A|)!|A|!
n!

µ(A) =st aiX(i),
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where X(1), . . . ,X(2n−2) are the order statistics of a sample of independent uniform
random variables and the coefficients a1, . . . ,an are defined as:

ai =
1

n−1
m!(n−m)!

n!
, if i ∈

{
m−1

∑
k=1

n!
k!(n− k)!

+1, . . . ,
m

∑
k=1

n!
k!(n− k)!

}
.

Then, since all ai are strictly positive, apply Proposition 2.85 to obtain the
result.

A similar result can be stated when computing the non-modularity index of the
whole set. In this case, it is necessary to compute the distribution of the following
random variable.

1− 1
n ∑

i∈A
µb({i})+µb([n]\{i}).

Notice that the latter expression is a linear combination with negative coeffi-
cients plus a constant. The main limitation regarding reproducing the last result is
that there are coefficients of associated linear combination of the order statistics that
are 0.

Proposition 4.33 [27] Let µb be a uniform random balanced capacity of dimension
n. Then, dµb([n]) has the following distribution function,

Fdµb([n])
(x) =

m

∑
i=1

g(n1−ni−1−1)
i (cni,1− x)
(ni −ni−1 −1)!

Ix∈[1−c1,1],

where ci = ∑
n
k=i ak with ai =

1
n if i ∈ {1, . . . ,n,2n −2−n+1, . . . ,2n −2}, I denotes

the indicator function, m is the largest integer such that 1− x ≤ cm and g(s)i (c,x)
denotes

g(s)i (c,x) =
∂ s

∂cs
(c− (1− x))n

c∏ j ̸=i(c− c j)
.

Proof: Proceeding similarly to Proposition 4.32 but using Proposition 2.86 instead
of Proposition 2.85, the distribution function of 1

n ∑i∈A µb({i})+µb([n]\{i}) = 1−
dµb(N) is

F1−dµb(N)(x) = 1−
m

∑
i=1

g(n1−ni−1−1)
i (cni,x)
(ni −ni−1 −1)!

Ix∈[0,c1],
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The result holds by realizing that, if X is a continuous random variable, then
F1−X(x) = 1−FX(1− x).

4.3.3.2 Belief measures

The family of belief measures is easy to deal with, since it has a convenient charac-
terization in terms of the Mobius transform.

Proposition 4.34 [48, 146] A capacity µ is a belief measure if and only if Mµ(A)≥
0 for any A ⊆ [n].

Recall that if a random vector has a uniform distribution over a subset, any
linear bijective transformation of such a random vector also has uniform distribu-
tion on the image of the subset, (see Chapter 11 in [111]). Therefore, the Mobius
transform of a uniform random belief measure has uniform distribution over the set
of Mobius transforms with positive values. Its density function can be computed.

Proposition 4.35 [27] Let µbel be a uniform random belief measure. Then, the den-
sity function of the Mobius transform of µbel is fM(µbel)(⃗x) = (2n−2)!I

∑
n
i=1 xi=1, x⃗>⃗0.

Proof: First, notice that the transformation between the usual representation and
the Mobius transform is linear, thus a random belief measure has uniform distribu-
tion if and only the Mobius transform also has uniform distribution.

The volume of the set of Mobius transforms of belief measures is defined as the
set of 2n − 1 positive values (each one associated with one of the non-null subsets
of N) such that their sum equals 1.

The volume (as a subspace of R2n−2) equals the density function of an Irwin-
Hall variable with x = 1 and m = 2n −1. That is:

fS2n−2(1) =
1

(2n −2)!

⌊1⌋

∑
k=0

(−1)k (2n −1)!
k!(2n −1− k)!

(1− k)2n−1 =

=
1

(2n −2)!

(
(2n −1)!

0!(2n −1)!
(1−0)2n−1 − (2n −1)!

1!(2n −1)!
(1−1)2n−1

)
=

1
(2n −2)!

.

Therefore, the density should be equal to the inverse of that quantity.



159 4.3. UNIFORM RANDOM CAPACITIES

Using the expression of the density, it is possible to prove that the measure of
any subset follows a Beta distribution with known parameters.

Proposition 4.36 [27] Let µbel be a uniform random belief measure. Then, for any
A ⊂ [n] with A ̸= /0, µbel(A)∼ Beta(2|A|−1,2n −2|A|).

Proof: Using the transformation from the Mobius transform and the capacity, one
can obtain

fµbel(A)(t) = f∑B⊆A Mµbel (B)
(t) = f

∑
2|A|−1
i=1 Xi

∣∣∣∣ ∑
2n−1
i=1 Xi=1

(t) =

=

f
∑

2|A|−1
i=1 Xi,∑

2n−1
i=1 Xi

(t,1)

f
∑

2n−1
i=1 Xi

(1)
=

f
∑

2|A|−1
i=1 Xi

(t) f
∑

2n−1
i=2|A|

Xi
(1− t)

f
∑

2n−1
i=1 Xi

(1)
,

where X1, . . . ,X2n−1 are independent standard uniform random variables.

The densities in the numerator can be computed by using Proposition 2.72:

f
∑

2|A|−1
i=1 Xi

(t) =
1

(2|A|−2)!

⌊t⌋

∑
k=0

(2|A|−1)!t2|A|−2

k!(2|A|−1− k)!
=

t2|A|−2

(2|A|−2)!

f
∑

2n−1
i=2|A|

Xi
(1− t) =

1
(2n −2|A|−1)!

⌊1−t⌋

∑
k=0

(2n −2|A|)!(1− t)2n−2|A|−1

k!(2n −2|A|− k)!
=

=
(1− t)2n−2|A|−1

(2n −2|A|−1)!
,

and the probability in the denominator, as stated in the proof of Proposition 4.35, is
1

(2n−2)! . Therefore, the density function is

fµbel(A)(t) = (2n −2)!
t2|A|−2

(2|A|−2)!
(1− t)2n−2|A|−1

(2n −2|A|−1)!
=

t2|A|−2(1− t)2n−2|A|−1

B(2|A|−1,2n −2|A|)
,

where B(·, ·) is the Beta function. It is concluded that µbel(A)∼ Beta(2|A|−1,2n −
2|A|).
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4.3.3.3 Possibility measures

Possibility measures can be expressed as the measure of the singletons (since the
rest of the values can be obtained by computing the maximum). In addition, the
measure of one of the singletons should be 1.

In this direction, the set of possibility measures can be expressed as {⃗x ∈
[0,1]n | max(⃗x) = 1}. The volume of this subset (in dimension n−1) is computed
in the next result.

Lemma 4.37 [27] The Lebesgue measure of dimension n−1 of

S = {⃗x ∈ [0,1]n | max(⃗x) = 1},

is λ (S) = n (with n ≥ 2).

Proof: Express S as S = ∪n
i=1Si with Si = {⃗x ∈ [0,1]n | xi = 1}. Trivially, the

(n−1)-Lebesgue measure of Si is 1 for each i ∈ [n]. In addition, for each i, j ∈ [n],
Si ∩ S j = {⃗x ∈ [0,1]n | xi = x j = 1}, which has measure 0. Therefore, the measure
of S is the sum of the measures of S1, . . . ,Sn and the result holds.

Therefore, the density function of the measure of the singletons is

fµp({i}),...,µp({n})(⃗x) =
1
n
IS,

and the rest of measures are totally determined by the ones of the singletons. The
following proposition simplifies future computations.

Proposition 4.38 [27] A random possibility measure µp has uniform distribution if
and only if the following properties are fulfilled:

• P(µp({i}) = 1) = 1
n for any i ∈ [n],

• Given µp({i}) = 1, the distribution of (µp({ j}), j ̸= i) is the same as n− 1
independent uniform random variables.

Proof: Starting with the necessity of the conditions,
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• P(µp({i}) = 1) is the volume of the set Si defined in the proof of Lemma 4.37
divided by the volume of S, thus equals 1

n for each i ∈ [n].

• Given µp({i}) = 1, the density function of (µp({ j}), j ̸= i) can be computed
as

f[(µp({ j}), j ̸=i) | µp({i})=1](⃗x) =
1
n I⃗x∈[0,1]n−1

1
n

= I⃗x∈[0,1]n−1,

which coincides with the distribution of n− 1 independent uniform random
variables.

For sufficiency, using the second point, the probability of the existence of a
unique i ∈ [n] such that µ({i}) = 1 is 1. Then, the density can be computed as
follows.

fµp({i}),...,µp({n})(⃗x) =
n

∑
i=1

P(µp({i}) = 1)I⃗x∈[0,1]n,xi=1 =

=
n

∑
i=1

1
n
I⃗x∈[0,1]n,xi=1 =

1
n
IS.

As a conclusion of the latter properties, it can be stated that the random variable
that returns the index i ∈ [n] for which µ({i}) = 1 is almost surely well defined and
each index is equiprobable.

Corollary 4.39 [27] Let µp be a uniform random possibility measure. Then, the
events E1, . . . ,En with Ei = {µp({i}) = 1,µp({ j}) ̸= 1 if j ̸= i}, fulfill P(Ei) =

1
n

and P(Ei ∩E j) = 0 for any i, j ∈ [n].

Finally, it is possible to derive the distribution of the measures µ(A),A ⊆ [n].

Proposition 4.40 [27] Let µp be a uniform random possibility measure of dimen-
sion n and A ⊆ [n]. Then, the distribution function of µb(A) has the following dis-
tribution function:

Fµp(A) =


0 if x ≤ 0,
n−|A|

n x|A| if x ∈ (0,1),

1 if x ≥ 1.
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Proof: Since µp(A) =maxi∈A µp({i}), Corollary 4.39 implies that P(µp(A) = 1) =

∑i∈A P(µ{i} = 1) = |A|
n .

If µp(A) ̸= 1, applying point 2 in Proposition 4.38 and that any subset of vari-
ables of independent uniform random variables are also independent uniform ran-
dom variables, it holds that (µ({i}), i ∈ A) have the distribution of |A| independent
uniform random variables.

The distribution of the maximum of |A| independent uniform random variables
has as distribution function F(x) = x|A| if x ∈ [0,1], see Proposition 2.83. This case
occurs with probability n−|A|

n . The result holds by doing the mixture of the two
cases.

4.4 Stochastically Ordered Aggregation Operators

In classical Aggregation Theory, ordering the values of the input vector is a quite
common way to define aggregation functions. Prominent examples are the OWA
and the IOWA operators, as well as the Choquet and Sugeno integrals. Moving to
the stochastic setting, to generalize such operators it is reasonable to define an ag-
gregation of random variables that takes into account the order of the input random
variables. However, as pointed out by Yager in [331], the usual stochastic order
is not a total order in the set of probability distributions, so pairs of incomparable
random variables may appear.

This section is devoted to the definition of aggregations of random variables
based on the stochastic ordering of the components of the input random vector. With
this approach, the whole distribution of the random variables can be used to order
them, while in classical Aggregation Theory only the observations of realizations
are used for the ordering.

The definition of aggregation functions based on partial orders has been studied
in detail in the literature in the case of aggregation of vectors of real numbers [265].
A similar problem appears when dealing with random variables and stochastic or-
ders. An alternative is to order the random variables in terms of their means and
considering admissible permutations (see [264] for the definition of such permu-
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tations). The approach does not have good properties in terms of monotonicity,
although a slight modification of it has good properties when working with multi-
variate Gaussian random vectors. This alternative is not going to be disclosed here,
the reader is referred to Section 3 in [39] for more information in this regard.

In the following sections, a second technique that transforms the initial random
vector into a new one in which its components are ordered in the usual stochastic
order will be used, following a similar approach to the one by Yager in [331]. Its
main properties are studied, as well as the particular case of Stochastically Ordered
Weighting Averagings, which will be of interest in the prediction problem presented
in Section 7.4.

4.4.1 Definition of SOA operators

Stochastically Ordered Aggregations, SOA for short, will be a type of operator that
rely on a transformation that generates a random vector from any given random
vector, ensuring that its components are arranged according to the usual stochastic
order.

Example 4.41 [39] Consider the distribution functions of a uniform distribution
over the interval [0,1], an exponential with λ = 1 and a Chi-squared with 1 degree
of freedom variables. On the left side of Figure 4.2, it can be seen that the lines
intersect, indicating that they are not ordered according to the usual stochastic
order. Ordering the distribution functions pointwise, three new distributions, which
are ordered, appear as shown on the right side of Figure 4.2.

In the following, starting with some distribution functions F1, . . . ,Fn, it will be
denoted as F[1], . . . ,F[n] the distribution functions obtained as the pointwise ordering
of F1, . . . ,Fn, being F[1] the greatest distribution function, which is associated with
smaller values.

With this ordering, a set of ordered distribution functions is obtained. However,
the objective is to work with random variables and their realizations, not with their
distributions. In this direction, the variability of random variables will be considered
by applying to them their distribution functions.
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Figure 4.2: Three different cumulative distribution functions (left) and the cumula-
tive distribution functions obtained by a pointwise ordering (right) [39].

Any random variable X can be expressed as X =a.s. F−1
X (UX), where F−1

X is
its quantile function and UX is a standard uniform random variable (see [253]).
Therefore, the variability of X can be totally explained by UX .

For continuous random variables, the uniform distribution is almost surely
unique and equals FX(X). In the discrete or mixed case, the decomposition X =

F−1
X (UX) is not unique, different uniform variables can be chosen. Moreover, choos-

ing a uniform random variable will not allow conditional monotonicity (see Defi-
nition 3.47). A natural choice in this case can be, again, to consider FX(X) as a
random variable that captures the variability of X .

In conclusion, given a set of random variables, it is possible to first build the
ordered distributions F[1], . . . ,F[n] and then assign them the associated F1(X1), . . . ,

Fn(Xn) to obtain a new random vector that is stochastically ordered. The resulting
random vector will be called the rearrangement increasing stochastically ordering
of the initial one.

Definition 4.42 [39] Let X⃗ be a random vector and π : [n] → [n] a permutation.
Then, the rearrangement increasing stochastically ordered random vector, denoted
as X⃗so,π , is defined as:

X⃗so,π =
(

F−1
[1]

(
Fπ(1)(Xπ(1))

)
, . . . ,F−1

[n]

(
Fπ(n)(Xπ(n)

))
,
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where F[1], . . . ,F[n] are the distribution functions obtained by the pointwise ordering
of F1, . . . ,Fn, the distribution functions of X1, . . . ,Xn.

The semantics of the permutation π should be properly explained. If π(i) = j,
the variability of X j is associated with the distribution F−1

[i] (which is the i-th small-

est). It allows X⃗so,π to be totally determined by X⃗ in the sense that the conditional
distribution of X⃗so,π given a value of X⃗ is degenerate. This will be relevant in applied
problems (see Section 7.4) since any observation of the random vector will have
an associated value of the rearrangement increasing stochastically ordered random
vector.

A Stochastically Ordered Aggregation is a function that takes a random vec-
tors and returns a random variable that is obtained as the composition of a usual
aggregation function and the rearrangement increasing stochastically ordered ran-
dom vector. Formally,

Definition 4.43 [39] Let I be a real interval, A : In → I a measurable aggregation
function and π : [n]→ [n] a permutation. Then, the Stochastically Ordered Aggrega-
tion is a function SOAÂ,π : Ln

I → LI such that for any X⃗ ∈ Ln
I , SOAÂ,π(X⃗) = A◦ X⃗so,π .

Stochastically Ordered Aggregations can be seen as induced aggregations ap-
plied over rearrangement increasing stochastically ordered random vectors.

Example 4.44 [39] Let X⃗ be a random vector with independent components such
that X1 ∼ Exp(1.5) and X2 ∼ U [0,1]. It is easy to see that F2(t) ≤ F1(t) if t ≤ t0
and F1(t)≤ F2(t) if t ≥ t0 with t0 ≈ 0.583. Considering the permutation π such that
π(1) = 2 and π(2) = 1 and Â the arithmetic mean, SOAÂ,π(X⃗) has the following
expression.

SOAÂ,π(X⃗) =


1
2 (X2 +X1) , if 1− e−1.5X1 > t0,X2 ≤ t0,

1
2

(
X2 +

(
1− e−1.5X1

))
, if 1− e−1.5X1 ≤ t0,X2 ≤ t0,

1
2 (−ln(1−X2)+X1) , if 1− e−1.5X1 > t0,X2 > t0,

1
2

(
−ln(1−X2)+

(
1− e−1.5X1

))
, if 1− e−1.5X1 ≤ t0,X2 > t0.
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4.4.2 Monotonicity properties

Definition 4.43 introduces the SOA operators, but its relationship with the concept
of aggregation of random variables, although it seems reasonable, must be proved.
In particular, the main desirable property of the operator is monotonicity with re-
spect to a stochastic order. Firstly, a preliminary result regarding the rearrangement
increasing stochastically ordered random vector will be proved. For it, recall the
definition of ≤sd−st provided in Definition 3.5.

Theorem 4.45 [39] Let X⃗ and Y⃗ be two random vectors such that X⃗ ≤sd−st Y⃗ and
let π : [n]→ [n] be any permutation. Then, X⃗so,π ≤st Y⃗so,π .

Proof: Denote as F1, . . . ,Fn and G1, . . . ,Gn the marginal distribution functions of
X⃗ and Y⃗ . Since X⃗ ≤sd−st Y⃗ implies X⃗ ≤st Y⃗ and therefore Xi ≤st Yi for any i ∈ [n], it
holds that Fi(t)≥ Gi(t) for any i ∈ [n] and t ∈ R. Then, it holds that F[i](t)≥ G[i](t)
for any i ∈ [n] and t ∈ R and also F−1

[i] (t)≤ G−1
[i] (t) for any i ∈ [n] and t ∈ [0,1].

As noted after Definition 3.5, (F1(X1), . . . ,Fn(Xn)) and (G1(Y1), . . . ,Gn(Yn))

have the same distribution. Consider a random vector Z⃗ with the same distribution
as (F1(X1), . . . ,Fn(Xn)) and (G1(Y1), . . . ,Gn(Yn)). Then,

X⃗so,π =st

(
F−1
[1]

(
Zπ(1)

)
, . . . ,F−1

[n]

(
Zπ(n)

))
≤a.s.

≤a.s.

(
G−1
[1]

(
Zπ(1)

)
, . . . ,G−1

[n]

(
Zπ(n)

))
=st Y⃗so,π ,

which implies the usual stochastic order by using Theorem 2.102.

As a consequence of the latter result, it can be proved that Stochastically Or-
dered Aggregations are aggregations of random variables with respect to the same
dependence structure stochastic order.

Corollary 4.46 [39] Any Stochastically Ordered Aggregation SOAÂ,π is an aggre-
gation of random variables with respect to ≤sd−st for any aggregation function
Â : In → I and any permutation π : [n]→ [n].

Proof: Let X⃗ ≤sd−st Y⃗ . Using Theorem 4.45, one has that X⃗so,π ≤st Y⃗so,π for any
permutation π . Since SOAÂ,π(X⃗) = A ◦ X⃗so,π and SOAÂ,π (⃗Y ) = A ◦ Y⃗so,π , applying
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Theorem 3.12, it is concluded that SOAÂ,π(X⃗)≤st SOAÂ,π (⃗Y ). The usual stochastic
order and the same dependence structure usual stochastic order are equivalent for
random variables, thus the monotonicity holds.

If the interval I is bounded, then the boundary conditions are straightforward
to prove. If I does not have a lower bound, let X ∈ LI . Then, using Theorem 3.12,
there exists X⃗ ∈ Ln

I such that Â◦ X⃗ ≤st X . Now, consider a random vector Y⃗ that has
the same copula as X⃗ and has marginal distribution functions F1, . . . ,Fn fulfilling
Fi = F[1] for any i ∈ [n]. It is clear that Y⃗ =st Y⃗so,π for any permutation π and, using
Proposition 2.103, that Y⃗ ≤st X⃗ . Then, A(⃗Y ) =st Â◦Y⃗so,π ≤st Â◦ X⃗ ≤st X . If there is
not an upper bound for I, proceed analogously.

The latter result can be seen as the equivalent result of the Composition Theo-
rem (Theorem 3.12) for Stocastically Ordered Aggregations. This property can be
illustrated in the case of Example 4.44.

Example 4.47 [39] Consider the same conditions as in Example 4.44 and let Y⃗
be a random vector with independent components such that Y1 ∼ Exp(1) and Y2 ∼
U [0.5,1.5]. Trivially, X⃗ ≤st Y⃗ and both random vectors have the same and unique
copula, so X⃗ ≤sd−st Y⃗ . If the distribution of SOAÂ,π(X⃗) and SOAÂ,π (⃗Y ) is simulated,
by plotting their empirical distributions one can observe that they are ordered, see
Figure 4.3. Therefore, SOAÂ,π(X⃗)≤st SOAÂ,π (⃗Y ).

Another interesting monotonicity property that is especially relevant in applied
problems (see Section 7.4), is the conditional monotonicity, introduced in Defini-
tion 3.47. Since distribution, quantile and aggregation functions are all increasing,
this property is easy to prove for any SOA operator.

Proposition 4.48 [39] Any Stochastically Ordered Aggregation SOAÂ,π is condi-
tionally monotone.

Proof: Consider a Stochastically Ordered Aggregation SOAÂ,π : Ln
I → LI and a

random vector X⃗ ∈ Ln
I . Then,[

SOAÂ,π(X⃗)
∣∣∣ X⃗ = x⃗

]
=a.s. A

(
F−1
[1]

(
Fπ(1)(xπ(1))

)
, . . . ,F−1

[n]

(
Fπ(n)(xπ(n)

))
,
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Figure 4.3: Simulated cumulative distribution functions of a Stochastically Ordered
Aggregation of two ordered random vectors with sample size 106 [39].

for any x⃗ ∈ In such that the latter conditional distribution is well-defined.
From the latter expression, it is immediate that [SOAÂ,π(X⃗) | X⃗ = x⃗] has degen-

erate distribution for any x⃗∈ In for which it is well-defined. Moreover, [SOAÂ,π(X⃗) |
X⃗ = x⃗]≤ [SOAÂ,π(X⃗) | X⃗ = y⃗] for any x⃗, y⃗ ∈ In such that x⃗ ≤ y⃗, since it is a compo-
sition of the increasing functions F−1

[1] , . . . ,F
−1
[n] ,F1, . . . ,Fn and Â with a permutation

of the random vector X⃗ .

Similarly as in previous examples, the property can be illustrated for the same
conditions.

Example 4.49 [39] Consider the SOA operator considered in Example 4.44. Rep-
resenting the value that the SOA operator takes with respect to the values of the
input random variables, the surface represented in Figure 4.4 is obtained. As it
can be seen, the function is increasing, thus the value of the Stochastically Ordered
Operator increases with the values assumed by the aggregated variables. Note also
that the boundary condition on (0,0) is satisfied.

Leaving aside monotonicity properties, the following lemma links SOA opera-
tors applied to comonotone random variables with the composition of usual aggre-
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Figure 4.4: Representation of the value of the SOA operator versus the values of the
input random variables in Example 4.44.

gation functions and order statistics.

Lemma 4.50 [39] Let X⃗ be a random vector with continuous comonotone compo-
nents. Then, SOAÂ,π(X⃗) =a.s. Â◦

(
X(1), . . . ,X(n)

)
.

Proof: Since X⃗ has comonotone components, then there exists a uniform random
variable U such that

X⃗ =a.s. (F1(U), . . . ,Fn(U)) .

By construction, the random vector
(

F−1
[1] (U), . . . ,F−1

[n] (U)
)

is a random vector
in which, with probability one, the components are ordered. Therefore,(

X(1), . . . ,X(n)
)
=a.s.

(
F−1
[1] (U), . . . ,F−1

[n] (U)
)
=a.s. X⃗so,π ,

for any permutation π , since the components are continuous. Then, the result holds
by noting that SOAÂ,π(X⃗) = Â◦ X⃗so,π .
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4.4.3 The Stochastically Ordered Weighting Averaging

This section is devoted to the study of a particular case of Stochastically Ordered
Aggregations for which the considered aggregation function is a weighted arith-
metic mean. From a theoretical point of view, this particular choice is interesting
because additional properties can be proved. From a practical one, it is a family
of aggregations of random variables that are parametrized by a permutation and
a weighting vector, which can be easily optimized when working with data (see
Section 7.4). Its definition is a particular case of Definition 4.43.

Definition 4.51 [39] Let w⃗∈ [0,1]n be a weighting vector and π : [n]→ [n] a permu-
tation. The Stochastic Ordered Weighting Averaging (SOWA) operator, SOWAw⃗,π :
Ln

I → LI , associated with w⃗ is defined as

SOWAw⃗,π(X⃗) =
n

∑
k=1

wk

(
X⃗so,π

)
k
,

for any X⃗ ∈ Ln
I .

The weights of the SOWA operator have a relevant role, since they allow more
or less importance to be given to each of the distributions F[1], . . . ,F[n]. For instance,
smaller weights can be given to the extreme distributions, giving less importance to
them. This can be seen as a similar procedure as when using the OWA operator with
greater central weights (see [140]), but instead of reducing the impact of extreme
observations (outliers), it reduces the impact of extreme distributions.

In the following result some linearity properties of the SOWA operator are
proved.

Proposition 4.52 [39] Let w⃗ ∈ [0,1]n be a weighting vector and π : [n] → [n] a
permutation. Then,

• SOWAw⃗,π(λ X⃗) = λSOWAw⃗,π(X⃗) for any random vector X⃗ and λ ∈ R+,

• SOWAw⃗,π(X⃗ +λ 1⃗) = SOWAw⃗,π(X⃗)+λ for any random vector X⃗ and λ ∈ R,

• SOWAw⃗,π(X⃗ +Y⃗ ) = SOWAw⃗,π(X⃗)+SOWAw⃗,π (⃗Y ) for any pair of random vec-
tors with continuous components such that there exists a permutation π̂ for
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which Xπ̂(1) ≤st · · · ≤st Xπ̂(n) and Yπ̂(1) ≤st · · · ≤st Yπ̂(n) are satisfied and the
random variables Xi and Yi are comonotone for any i ∈ [n].

Proof: The first two statements are straightforward to prove from the defini-
tion of SOWA. For the third one, denote as F1, . . . ,Fn, G1, . . . ,Gn and H1, . . . ,Hn

the marginal distribution functions of, respectively, X⃗ , Y⃗ and X⃗ + Y⃗ . Note that,
by hypothesis, Xi and Yi, and therefore Xi with Xi +Yi and Yi with Xi +Yi, are
comonotone for any i ∈ [n]. Thus, there exists a standard uniform random vari-
able such that Xi =a.s F−1

i (Ui), Yi =a.s G−1
i (Ui) and Xi +Yi =a.s H−1

i (Ui) for any
i ∈ [n]. Due to the equivalence between the two expressions for Xi +Yi, it holds that
H−1

i (Ui) =a.s. F−1
i (Ui)+G−1

i (Ui) and H−1
i = F−1

i +G−1
i (almost everywhere) for

any i ∈ [n].
Keeping in mind the considerations about comonotonicity of the continuous

marginals, consider the random vector U⃗ with standard uniform marginal distribu-
tions such that:

U⃗ =a.s (F1(X1), . . . ,Fn(Xn)) =a.s. (G1(Y1), . . . ,Gn(Yn)) =a.s.

=a.s. (H1(X1 +Y1), . . . ,Hn(Xn +Yn)) .

In addition, since the marginals of X⃗ and Y⃗ are ordered in the same order ac-
cording to ≤st , one has H−1

[i] = F−1
[i] +G−1

[i] for any i ∈ [n]. Then,

SOWAw⃗,π(X⃗ + Y⃗ ) =
n

∑
i=1

wiH−1
[i]

(
Uπ(i)

)
=

=
n

∑
i=1

wi

(
F−1
[i]

(
Uπ(i)

)
+G−1

[i]

(
Uπ(i)

))
= SOWAw⃗,π(X⃗)+SOWAw⃗,π (⃗Y ).

Surprisingly, for continuous random vectors, its expected value is the same as
the aggregation of random variables induced by an OWA operator.

Proposition 4.53 [39] Let X⃗ be a random vector with continuous components.
Then E[SOWAw⃗,π(X⃗)] = ∑

n
i=1 wiE

[
X(i)
]
.
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Proof: Noting that the components are continuous, consider U1, . . . ,Un the standard
uniform random variables such that Ui = Fi(Xi) with i ∈ [n]. Then,

E[SOWAw⃗,π(X⃗)] = E

[
n

∑
i=1

wiF−1
[i] (Uπ(i))

]
=

n

∑
i=1

wiE
[
F−1
[i] (Uπ(i))

]
=

=
n

∑
i=1

wi

∫ 1

0
F−1
[i] (t)dt =

∫ 1

0

(
n

∑
i=1

wiF−1
[i] (t)

)
dt.

This expression does not depend on the copula of the random vector. The result
holds since, using Lemma 4.50, for the case of comonotone components, it holds
SOWAw⃗,π(X⃗) =a.s. ∑

n
i=1 wiX(i).

4.5 An approximation for aggregations of random
variables

In recent papers (see [81] and [258]), a minimization problem related to the Gini
mean difference [103] has been studied in detail. In particular, given a random
variable X and a bivariate copula C, they look for a random variable Y such that
the random vector (X ,Y ) has copula C and the quantity E[|X −Y |] is as small as
possible. The quantity E[|X −Y |] can be seen as a distance measure between X
and Y , while its minimum can be seen as a variability measure of X [82], being the
Gini mean difference when Y is an independent copy of X . The solution of such a
problem can be seen as the best approximation of a random variable by another one
when the dependence between them is fixed, so the information that can be used
from the first one in order to determine the second one is restricted.

In this section, a procedure to define aggregations of random variables by solv-
ing such a problem is provided. Firstly, the problem is solved in the general sce-
nario, since in the aforementioned papers only partial solutions under some restric-
tions are given. Secondly, the monotonicity of the solutions of such a problem is
proved, allowing one to define aggregation of random variables.
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4.5.1 A solution to the general problem

As stated in [258], E[|X −Y |] can be expressed as

E[|X −Y |] =
∫

∞

−∞

F(t)+G(t)−2C(F(t),G(t))dt, (4.6)

where F and G denote, respectively, the distribution function of X and Y .
In the aforementioned papers, the problem is restricted by considering that

G(t) should be of the form hθ (F(t)), with (hθ ,θ ∈ Θ) being a family of distortion
functions. In addition, several assumptions are made for both C and X . However, in
order to use the problem to define aggregations of random variables, the solution to
the general problem should be stated.

In the following, considering a random variable X and a copula C, denote as
LX ,C the set of random variables such that, if Y ∈ LX ,C, then (X ,Y ) has copula C.
The objective is to try to find Y ∈ LX ,C such that

E[|X −Y |] = min
Z∈LX ,C

E [|X −Z|] .

For proving the associated theorem, the notion of upper hemicontinuity and an
associated result will be needed.

Definition 4.54 [15] Given two topological spaces A and B, a function H : A →
P(B) is said to be upper hemicontinuous if for any a ∈ A and V an open set such
that H(a) ⊆ V , there exists a neighborhood of a, U, such that H(a′) ⊆ V for any
a′ ∈U.

The following result is a simplified version of Berge Maximum Theorem [54]
that gives conditions for which, given a two-dimensional function, the set of max-
imizers in one of the variables is a non-empty, compact and upper hemicontinuous
set-function with respect to the other variable.

Theorem 4.55 [54] Let f : [0,1]× [0,1]→ R be a continuous function. Then, the
set-valued function defined as H : [0,1]→ P([0,1]) such that

H(x) =
{

y ∈ [0,1]
∣∣∣∣ f (x,y) = max

z∈[0,1]
f (x,z)

}
= argmax

z∈[0,1]
f (x,z),

has non-empty compact values and is upper hemicontinuous.
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The next theorem gives a solution for the general problem. No restrictions
are considered for the distribution of X , the distribution of Y and the copula C.
Minimizing the integrand point by point in Equation (4.6), a possible expression
for G(t) is obtained. Then, using the Berge Maximum Theorem and properties
of copulas, it is possible to prove that the proposed G(t) is indeed a distribution
function.

Theorem 4.56 [32] Let C be a copula. Then, given a random variable X, there
exists a random variable Y such that (X ,Y ) has copula C and

E[|X −Y |] = min
Z∈LX ,C

E[|X −Z|].

Proof: Start by noticing that any copula is a continuous function [106]. Denoting
the distribution function of X and Y as F and G, one has

E [|X −Y |] =
∫

∞

−∞

F(t)+G(t)−2C (F(t),G(t))dt.

Since the values of F(t) and G(t) are in the interval [0,1], it is possible to define
the function h : [0,1]→ [0,1] as

h(x) = max
(

arg min
y∈[0,1]

x+ y−2C(x,y)
)
,

and then determine G(t) = h(F(t)). For this strategy to be valid, the only require-
ment that is needed is that h(F(t)) must be a distribution function for each possible
distribution function F(t). In particular, it is necessary to prove h to be well defined,
increasing, right-continuous and that it fulfills h(0) = 0 and limx→1 h(x) = 1.

• h is well defined. Since C is continuous, x+ y+C(x,y) is also continuous.
Apply Theorem 4.55 to −(x+y+C(x,y)). Then, argminy∈[0,1] x+y−2C(x,y)
is compact and non-empty for any x ∈ [0,1]. Then, the maximum exists and
h is well defined.

• h is increasing. If h is not increasing, there exists x ∈ [0,1] and ε,α > 0
fulfilling x+ε ≤ 1 and h(x)−α ≥ 0 such that h(x+ε) = h(x)−α . Using the
properties of copulas, see Definition 2.66, C(x+ε,h(x))−C(x,h(x))−C(x+
ε,h(x)−α)+C(x,h(x)−α)≥ 0.
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Therefore, one has

x+ ε +h(x)−2C(x+ ε,h(x))− x− ε −h(x)+α +2C(x+ ε,h(x)−α) =

= x+h(x)− (x+h(x)−α)−2(C(x+ ε,h(x))−C(x+ ε,h(x)−α))≤
≤ x+h(x)− (x+h(x)−α)−2(C(x,h(x))−C(x,h(x)−α)) =

= x+h(x)−2C(x,h(x))− (x+h(x)−α −2C(x,h(x)−α))≤ 0,

where the last equality is reached since h(x)∈ argminy∈[0,1] (x+ y−2C(x,y)).

Then, h(x)− α ̸= max
(

argminy∈[0,1] (x+ ε + y−2C(x+ ε,y))
)

and there-
fore h(x+ ε) ̸= h(x)−α . It is concluded that h is increasing.

• h is right continuous. Apply again Theorem 4.55 to obtain that the func-
tion H : [0,1]→ P([0,1]) defined as H(x) = argminy∈[0,1] x+y−C(x,y) has
compact values and is upper hemicontinuous. In addition, there is the relation
h(x) = maxH(x).

Using the same argument that for proving that h is increasing, it is proved that
the values of H are connected, thus they are of the form [a,b]⊆ [0,1].

Since h is increasing, for proving that h is right continuous it is enough to
prove that for any x ∈ [0,1) and ε > 0 there exists δ > 0 such that h(x+δ )−
h(x)< ε .

Consider the notation H(x) = [a,b] and the open set (a − λ ,b + λ ) with
λ < min(a,1− b,ε). Then, using the upper hemicontinuity, there exists a
neighborhood of x, U , such that for any x′ ∈U one has H(x′)⊆ (a−λ ,b+λ ).
Then, for any x′ ∈U , h(x′)≤ b+λ .

Since U is a neighborhood of x, there exists δ0 > 0 such that for any x′ ∈
[0,1] such that |x− x′| < δ0, x′ ∈ U . Therefore, considering δ0 = δ , one has
h(x+δ )−h(x)≤ b+λ −b= λ < ε . It is concluded that h is right continuous.

• h(0) = 0. If x = 0, then 0+ h(0)− 2C(0,h(0)) = h(0) takes the minimum
value if and only if h(0) = 0.

• limx→1 h(x) = 1. Since h(x) is increasing and bounded, the limit limx→1 h(x)
exists. Suppose that limx→1 h(x) = x0 < 1. Using again that h is increasing,
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one has that h(x) ≤ x0 for any x ∈ [0,1]. Now, let x = 1− δ with δ < 1−x0
2 .

Then,

1−δ +h(1−δ )−2C(1−δ ,h(1−δ ))≥
≥ 1−δ +h(1−δ )−2C(1,h(1−δ )) =

= 1−δ −h(1−δ )> 1−δ − x0 >
1− x0

2
.

In addition, if h(1−δ ) is replaced by 1,

1−δ +1−2C(1−δ ,1)≥ 1−δ +1−2(1−δ ) = δ <
1− x0

2
.

This is a contradiction to the fact that h(1 − δ ) < x0, since if its value is
replaced for 1 the value of the objective function is smaller. It is concluded
that limx→1 h(x) = 1.

Notice that in the latter result not only the existence of a solution of the problem
is proved but also a constructive method to determine the distribution function of a
solution is given. However, the result does not say anything about the uniqueness
of the solutions. Maybe another choice of a value in the set-valued function H(x)
can be made. Even with a unique distribution function, it is possible to define two
random variables Y1 and Y2 that are not almost surely equal, fulfill Y1 =st Y2 and
such that (X ,Y1) and (X ,Y2) have the same copula.

4.5.2 Solutions for some particular copulas

In this section, the solution for some particular families of copulas is provided.
For the comonotone case, the random variables X and Y have a perfect positive
dependence. Then, trivially, the minimum of E[|X −Y |] is reached when X =a.s. Y .
However, it is also possible to prove the statement using the introduced technique.

Proposition 4.57 [32] Let C be the comonotone copula. Then, given a random
variable X, for any random variable Y such that X =a.s Y one has that

E[|X −Y |] = min
Z∈LX ,Cmin

E[|X −Z|].
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Proof: The function that should be minimized is x+y−2min(x,y). Computing the
derivative with respect to y, the result is −1 if y < x and 1 if y > x. Therefore, since
the function is continuous, the minimum is reached when y = x. Then, consider
h(x) = x, thus Y has the same distribution as X and it is concluded that X =a.s Y .

However, for the other two main copulas, the solution is not that straightfor-
ward. In particular, the best choice is to consider a degenerate random variable that
takes the median of X as its value.

Proposition 4.58 [32] Let C be the independence or the countermonotone copula.
Then, given a random variable X with distribution function F(t), for any random
variable Y such that Y =a.s. F−1(0.5), one has that

E[|X −Y |] = min
Z∈LX ,C

E[|X −Z|].

Proof: For the independence copula, the function that should be minimized is
x+ y−2xy. Computing the derivative with respect to y, the result is 1−2x, which
is positive when x < 0.5, negative when x > 0.5 and 0 if x = 0.5. Then, h can be
considered to be h(x) = 0 if x < 0.5 and h(x) = 1 otherwise. Therefore, h(F(t))
corresponds to a degenerate random variable with value F−1(0.5).

For the countermonotone copula, the function that should be minimized is x+
y− 2max(x+ y− 1,0). Computing the derivative with respect to y, the result is 1
if x+ y < 1 and −1 otherwise. Then, the minimum is reached in y = 0 or in y = 1.
In the first case, one has that the function is x+ 0− 2max(x+ 0− 1,0) = x and in
the second one x+1−2max(x+1−1,0) = 1− x, thus the minimum is reached in
y = 0 when x < 0.5, in y = 1 when x < 0.5 and at both ends when x = 0.5. For the
rest of the steps, proceed as in the previous case.

Since the median is the solution for the independence and the countermonotone
copula, a natural question is to consider if this also holds for any copula between
them. In particular, since the countermonotone copula is the smallest, this is equiv-
alent to proving the following result.

Proposition 4.59 [32] Let C be a copula such that C(x,y)≤ xy for all x,y ∈ [0,1].
Then, given a random variable X with distribution function F(t), for any random
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variable Y such that Y =a.s. F−1(0.5) one has that

E[|X −Y |] = min
Z∈LX ,C

E[|X −Z|].

Proof: Denote as C1 and C2 the independent and countermonotone copulas. Since
C2 is the smallest copula, one has C2(x,y) ≤C(x,y) ≤C1(x,y) for any x,y ∈ [0,1].
Then, C can be expressed as C(x,y) = λ (x,y)C1(x,y)+ (1− λ (x,y))C2(x,y) with
λ (x,y) ∈ [0,1] for any x,y ∈ [0,1]. Then, the function to minimize is of the form

x+ y−2C(x,y) = x+ y−2(λ (x,y)C1(x,y)+(1−λ (x,y))C2(x,y)) =

= λ (x,y)(x+ y−C1(x,y))+(1−λ (x,y))(x+ y−C2(x,y)) .

Using Proposition 4.58, the minimum of (x+ y−C1(x,y)) and the minimum
(x+ y−C2(x,y)) for any x ∈ [0,1] is reached at the same point, y = 0 if x < 0.5
and y = 1 otherwise. Then, regardless of the value of λ (x,y), the minimum of
x+ y− 2C(x,y) is also reached in y = 0 when x < 0.5 and y = 1 otherwise. Then,
the result is reached by defining h as in the proof of Proposition 4.58.

In addition, a similar result is provided for FGM copulas (see Example 2.68),
is provided.

Proposition 4.60 [32] Let C be an FGM copula with parameter λ ∈ [−1,1]. Then,
given a random variable X with distribution function F(t), for any random variable
Y such that,

• Y =a.s. F−1(0.5) if λ ≤ 0,

• Its distribution function is h(F(t)) with h(x) being the median value between
0, 1

2
2λx(1−x)−1+2x

2λx(1−x) and 1 (when x /∈ {0,1}) if λ > 0,

E[|X −Y |] = min
Z∈LX ,C

E[|X −Z|].

Proof: For λ ≤ 0, the solution is given by Proposition 4.59.
Suppose that λ > 0. The function that should be minimized is x+ y− 2xy−

2λx(1− x)y(1− y). Computing the derivative with respect to y, the result is 1−
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2x−2λx(1− x)(1−2y). Moreover, if the second derivative is computed, the result
is 4λx(1− x), which is positive for any x ∈ [0,1].

The solution (for y) of 1−2x−2λx(1− x)(1−2y) = 0 is y = 1
2

2λx(1−x)−1+2x
2λx(1−x) .

If y ∈ [0,1], then it is the minimum. If y < 0, since the second derivative is positive,
the derivative is positive in [0,1] and therefore the minimum over [0,1] is located in
0. Similarly, if y > 1, the minimum over [0,1] is located in 1.

4.5.3 Approximations of aggregations of random variables

Recall again that the proof of Theorem 4.56 is constructive. In particular, if Y is a
possible solution of the construction problem, it has distribution function h(F(t)),
where F(t) is the distribution function of X and h is defined as the maximum of the
compact set of minimizers of the integrand (point by point) in the objective function,
(see Equation 4.6). In addition, in that result, it is proved that the function h depends
only on the copula and it is increasing. Using these properties, a monotonicity result
regarding the solutions of the problem can be stated.

Proposition 4.61 [32] Consider the same conditions as in Theorem 4.56. If X1

and X2 are two random variables such that X1 ≤st X2, then there exist two random
variables Y1 and Y2 such that:

E[|X1 −Y1|] = min
Z∈LX1,C

E[|X1 −Z|],

E[|X2 −Y2|] = min
Z∈LX2,C

E[|X2 −Z|],

and Y1 ≤st Y2.

Proof: Denote as F1(t) and F2(t) the distribution functions of X1 and X2. Since
X1 ≤st X2, F1(t)≥ F2(t) for any t ∈ R. As proved in Theorem 4.56, the distribution
functions of Y1 and Y2 can be chosen to be h(F1(t)) and h(F2(t)) with h being in-
creasing. Then, one has h(F1(t)) ≥ h(F2(t)) for any t ∈ R and it is concluded that
Y1 ≤st Y2.

The last result can be used to define aggregations of random variables consid-
ering bounded intervals. In particular, given an aggregation of random variables A,



CHAPTER 4. PROMINENT AGGREGATIONS OF RANDOM VARIABLES 180

any function constructed by solving the minimization problem, for a fixed copula
and for each of A(X⃗) with X⃗ ∈ LI , is also an aggregation of random variables.

Corollary 4.62 Let I be a bounded real interval and let A : Ln
I → LI be an aggre-

gation of random variables. Then, there exists an aggregation of random variables
B : Ln

I → LI such that

E[|A(X⃗)−B(X⃗)|] = min
Z∈LA(X⃗),C

E[|A(X⃗)−Z|],

for any X⃗ ∈ Ln
I .

Proof: Consider the function h defined in Theorem 4.56 and consider, for any
X⃗ ∈ Ln

I , the random variable YX⃗ with distribution function h
(

FA(X⃗)

)
such that the

random vector
(

A(X⃗),YX⃗

)
has copula C. Then, applying Theorem 4.56, it holds

E[|A(X⃗)−YX⃗ |] = min
Z∈LA(X⃗),C

E[|A(X⃗)−Z|],

for any X⃗ ∈ Ln
I .

For any X⃗ ∈ Ln
I , define SX⃗ = {ω ∈ Ω | YX⃗(ω) ∈ I}. If SX⃗ has probability 1,

then there exists a random variable ZX⃗ such that YX⃗ =a.s. ZX⃗ and ZX⃗ ∈ LI . If P(YX⃗ <

inf I) > 0 one can consider another random variable Y ′
X⃗
∈ LI defined as Y ′

X⃗
(ω) =

YX⃗(ω) if YX⃗ ∈ I and Y ′
X⃗
(ω) = inf I otherwise. Then, consider the random variable Y ′′

X⃗
such that Y ′

X⃗
=st Y ′′

X⃗
and (Y ′′

X⃗
,A(X⃗)) has copula C. It is clear that E[|A(X⃗)−YX⃗ |] >

E[|A(X⃗)−Y ′′
X⃗
|] and Y 2

X⃗
∈ LI , which is a contradiction. If P(B(X⃗) < sup I) > 0,

proceed analogously.
Then, SX⃗ has probability 1 for any X⃗ ∈ Ln

I and it is possible to define B : Ln
I → LI

as B(X⃗) = ZX⃗ for any X⃗ ∈ Ln
I . This function, since ZX⃗ ∈ LI for any X⃗ ∈ Ln

I , is well
defined. It remains to prove the monotonicity and the boundary conditions of B.
The monotonicity is a direct consequence of Proposition 4.61 and the monotonicity
of A. Since the interval is bounded, it is clear that A(a, . . . ,a) =st B(a, . . . ,a) =st a
and A(b, . . . ,b) =st B(b, . . . ,b) =st b and the boundary conditions hold.

This result cannot be held for unbounded intervals. For instance, notice that
if C is the independent copula, as a consequence of Proposition 4.58, the resulting
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aggregation of random variables would be degenerate, which contradicts Proposi-
tion 3.15.

The construction method explained above could be useful to model scenarios
in which the inputs and outputs have a weak dependence. For instance, consider a
stationary multivariate time series (X⃗n,n ∈N) and Â an aggregation function. If the
quantity of Â(X⃗n) is of interest, a simple prediction problem could be to try to predict
such a quantity by the value of Â(X⃗n−k), that is, to use the value associated with a
previous time. In this direction, if (Â(X⃗n−k), Â(X⃗n)) has copula C, then one could
use Theorem 4.56 to find a solution Y of the minimization problem with X = Â(X⃗n)

and copula C. Notice that, as a consequence of stationarity, both Â(X⃗n−k) and Â(X⃗n)

have the same distribution function F . Therefore, a solution can be computed as
Y = (h ◦F)−1(F(Â(X⃗n−k))), with h as in Theorem 4.56 for any n,k ∈ N such that
k < n. Notice that, since F and h are increasing, the function applied to Â(X⃗n−k) is
increasing and, therefore, the copula of (Y, Â(X⃗n)) is C.
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The probabilistic approach developed in Chapter 3 not only allows new ways to
aggregate random data. Even for usual aggregation functions, working with random
variables makes it possible to study some properties in more detail. This fact is not
new in the literature, Chapter 10 in [149] is devoted to the behavioral analysis of
aggregation functions. This behavioral analysis consists of assuming that the inputs
of the aggregation functions follow a particular distribution and then compute a
quantity of interest, such as its mean. A similar approach, considering uniform
distributions, is used in [267] to define a measure for aggregation functions.

The objective of this chapter is to give some stochastic inequalities that de-
scribe the behavior of aggregation functions and related functions in probabilistic
terms. It is important to remark that this type of results can be proven only when
considering a probabilistic approach. It is not possible to work with concepts such
as variability or dependence without randomness.

In particular, the study will focus on the property of reducing the variability of
some aggregation functions and the location comparison of some variability mea-
sures that are related to aggregation functions based on penalties [78]. For the first
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case, Section 5.1, some cases in which the output of induced aggregations of ran-
dom variables is smaller with respect to the convex stochastic order than the inputs
are provided. These results formally prove the intuition that, when some aggrega-
tion functions are applied, the variability is reduced. For the second case, variability
measures are ordered by location stochastic orders considering that the initial ran-
dom vectors are ordered with respect to a variability stochastic order (Section 5.2)
or by a dependence stochastic order (Section 5.3). These results can be applied to
study the behavior of the minimum of penalty functions and also to define some
hypothesis tests (see Section 7.5).

5.1 Reduction of variability

Let X1, . . . ,Xn be independent and identically distributed random variables with fi-
nite variance. It is a well-known fact that

Var

(
1
n

n

∑
i=1

Xi

)
=

Var(X1)

n
,

so the application of the arithmetic mean induces a reduction of the variance with
respect to the original distribution of each of the random variables X1, . . . ,Xn. How-
ever, it is not possible to find results of this kind in the literature dealing with:

i) Stronger notions of comparisons in terms of variability or dispersion,

ii) Non-independent random variables,

iii) More general families of mean functions.

In this section, formal proofs of intuitions such as, for example, the fact that
averages of central order statistics have less variability than averages of the extreme
ones are provided. On this aim, results describing conditions for a random vector X⃗
and a mean function f in order to satisfy

f (X⃗)≤cx X j,∀ j ∈ [n],

are proved. Recall that ≤cx denotes the convex order, see Definition 2.116. In par-
ticular, the results provided deal with families of weighted quasi-arithmetic means,
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OWA operators, nullnorms and uninorms. To prove such statements, the following
lemma will be used.

Lemma 5.1 [41] Let h1 and h2 be two centrally symmetric distortions such that
h1(t) ≤ h2(t) for any t ∈ [0,0.5], and let X be a symmetric random variable with
distribution function F. Denote as X1 and X2 two random variables with distribution
functions h1(F) and h2(F), respectively. Then,

X1 ≤cx X2.

Proof: Firstly, it is clear that, since h1 and h2 are centrally symmetric and X is
symmetric, both X1 and X2 are symmetric and have the same median m. Therefore,
if it exists, they also have the same mean m.

Consider the integrals

I1(x) =
∫ x

−∞

h1(F(t))dt and I2(x) =
∫ x

−∞

h2(F(t))dt.

Let x ≤ m. In this case, h1(F(t))≤ h2(F(t)) for any t ∈ (−∞,x], and therefore
I1(x)≤ I2(x) holds for any x ≤ m.

Let x≥m. Note that, since X is symmetric, for all t ≥m it holds F(t)= F̄(2m−
t). Moreover, since h1 is centrally symmetric, one has h1(F(t)) = h1(F̄(2m− t)) =
h1(1−F(2m− t)) = 1−h1(F(2m− t)). It follows that

I1(x) =
∫ x

−∞

h1(F(t))dt =
∫ m

−∞

h1(F(t))dt +
∫ x

m
h1(F(t))dt

=
∫ m

−∞

h1(F(t))dt +
∫ x

m
(1−h1(F(2m− t))))dt =

∫ 2m−x

−∞

h1(F(t))dt +(x−m).

Similarly, one has that

I2(x) =
∫ 2m−x

−∞

h1(F(t))dt +(x−m).

Observing now that, since x ≥ m, 2m− x ≤ m, it follows that I1(x) ≤ I2(x)
holds in this case as well. It is concluded that I1(x)≤ I2(x) for any x ∈ R and, as a
consequence of Theorem 2.117 and E[X1] = E[X2], that X1 ≤cx X2.
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5.1.1 Reduction of variability of weighted quasi-arithmetic means

In this section, the case of weighted quasi-arithmetic means is considered. As in-
troduced in Definition 2.15, there is a linear convex combination involved in their
computation, so one may expect a good behavior with respect to the convex order.
In fact, this is the case for weighted arithmetic means.

Theorem 5.2 [41] Let X⃗ be a random vector of dimension n with identically dis-
tributed components and w⃗ ∈ Rn a weighting vector. Then,

n

∑
i=1

wiXi ≤cx X j,

for any j ∈ [n].

Proof: Let φ : R→ R be any convex function. Then,

E

[
φ

(
n

∑
i=1

wiXi

)]
≤ E

[
n

∑
i=1

wiφ(Xi)

]
=

n

∑
i=1

wiE[φ(Xi)].

Since X1, . . . ,Xn have the same distribution, it holds that φ(X1), . . . ,φ(Xn) also
have the same distribution. Therefore,

E

[
φ

(
n

∑
i=1

wiXi

)]
≤

n

∑
i=1

wiE[φ(Xi)] =
n

∑
i=1

wiE[φ(X j)] = E[φ(X j)],

for any j ∈ [n].

Notice that the result holds even in the case of non-independent components.
However, it cannot be extended to other weighted quasi-arithmetic means, mainly
because the same expectation for the compared variables is a necessary condition
for the convex order to hold. A simple example can be given by considering the
geometric mean.

Example 5.3 [41] Let (X1,X2) be a random vector with standard uniform and in-
dependent components. Then the inequality

√
X1X2 ≤cx X1 cannot be true, since the

two random variables have different expectations,

E[
√

X1X2] = E[
√

X1]E[
√

X2] =
4
9
̸= 1

2
= E[X1].
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Fortunately, if an adequate transformation is applied to both sides, one can
prove a statement similar to Theorem 5.2.

Corollary 5.4 [41] Let f : Rn → R be a weighted quasi-arithmetic mean with as-
sociated real-valued strictly increasing function h. Then, for any random vector X⃗
with identically distributed components,

h( f (X⃗))≤cx h(X j),∀ j ∈ [n].

Proof: Notice that h( f (X⃗))= h(h−1(∑n
i=1 wih(Xi)))=∑

n
i=1 wih(Xi) and apply The-

orem 5.2.

Notice that the latter result can be applied for example, to the geometric, har-
monic and power means.

5.1.2 Reduction of variability of OWA operators

In this section, Ordered Weighted Averaging operators consisting of independent
and identically distributed random variables are considered. Recall that the distri-
bution function of the i-th order statistic of a random vector with independent and
identically components is

F(i)(t) =
n

∑
k=i

(
n
k

)
F(t)k(1−F(t))n−k,

where F(t) is the distribution function of the components of X⃗ , see Proposition 2.83.
Therefore, it can be expressed as F(i)(t) = h(i)(F(t)), being

h(i)(t) =
n

∑
k=i

(
n
k

)
tk(1− t)n−k.

Firstly, it is possible to prove a statement showing that the average of the dis-
tribution functions is smaller in the convex order for central order statistics than for
extreme order statistics. Notice that this average is associated with a mixture of
order statistics.
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Lemma 5.5 [41] Let X⃗ be a random vector with independent, symmetric and iden-
tically distributed components. Let Yi be a random variable with distribution func-
tion Gi(t) = 1

2F(i)(t)+
1
2F(n−i+1)(t) for any t ∈ R. Then,

|n−2i+1| ≤ |n−2 j+1| =⇒ Yi ≤cx Yj,

for any i, j ∈ [n]

Proof: Consider i ≤ n− i+ 1 and j ≤ n− j+ 1. For the other cases, notice that
Yj =st Yn− j+1. Since |n−2i+1| ≤ |n−2 j+1|, then j ≤ i.

The distortions associated with Yi and Y j can be written as

hi(t) =
1
2

n

∑
k=i

(
n
k

)
tk(1− t)n−k +

1
2

n

∑
k=n−i+1

(
n
k

)
tk(1− t)n−k,

h j(t) =
1
2

n

∑
k= j

(
n
k

)
tk(1− t)n−k +

1
2

n

∑
k=n− j+1

(
n
k

)
tk(1− t)n−k.

It can be observed that hi is centrally symmetric, being

hi(1− t)+hi(t) =
1
2

n

∑
k=i

(
n
k

)
(1− t)ktn−k +

1
2

n

∑
k=n−i+1

(
n
k

)
(1− t)ktn−k+

+
1
2

n

∑
k=i

(
n
k

)
tk(1− t)n−k +

1
2

n

∑
k=n−i+1

(
n
k

)
tk(1− t)n−k =

=
1
2

n

∑
k=i

(
n
k

)
(1− t)ktn−k +

1
2
− 1

2

n−i

∑
k=0

(
n
k

)
(1− t)ktn−k+

+
1
2

n

∑
k=i

(
n
k

)
tk(1− t)n−k +

1
2
− 1

2

n−i

∑
k=0

(
n
k

)
tk(1− t)n−k =

=
1
2

n

∑
k=i

(
n
k

)
(1− t)ktn−k +

1
2
− 1

2

n

∑
k=i

(
n
k

)
tk(1− t)n−k+

+
1
2

n

∑
k=i

(
n
k

)
tk(1− t)n−k +

1
2
− 1

2

n

∑
k=i

(
n
k

)
(1− t)ktn−k = 1.



189 5.1. REDUCTION OF VARIABILITY

Similarly, the distortion h j is also centrally symmetric. In addition, the differ-
ence between the distortions hi and h j is given by

hi(t)−h j(t) =
1
2

n− j

∑
k=n−i+1

(
n
k

)
tk(1− t)n−k − 1

2

i−1

∑
k= j

(
n
k

)
tk(1− t)n−k.

Notice that the index of the first summand can be reversed by the operation
n− k, resulting in a unique sum over the same indices. Then,

hi(t)−h j(t) =
i−1

∑
k= j

(
n
k

)(
tn−k(1− t)k − tk(1− t)n−k

)
.

Since k is at most i− 1, n− k is always greater than k. Therefore, if t < 0.5
all the summands are negative and the sum is negative. It is concluded that h1(t)≤
h2(t) for any t ∈ [0,0.5]. The statement now holds by Lemma 5.1.

The latter result can be interpreted, when considering uniform mixtures, as the
central order statistics having less variability than the extreme ones. Intuitively,
one may think that, therefore, OWA operators having greater central weights should
reduce the dispersion. In the next result, the intuition is formalized.

Theorem 5.6 [41] Let X⃗ be a random vector with independent, symmetric and
identically distributed components, and let w⃗ ∈ [0,1]n be a weighting vector such
that:

i) |n−2i+1| ≤ |n−2 j+1| =⇒ wi ≥ w j,

ii) wi = wn−i+1 for any i ∈ [n].

Then,
n

∑
i=1

wiX(i) ≤cx X j,

for any j ∈ [n].

Proof: Denote the distribution function of the components of X⃗ as F and con-
sider G j(t) = 1

2F( j)(t)+
1
2F(n− j+1)(t) for any t ∈R, where F( j) and F(n− j+1) denote,
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respectively, the distribution functions of X( j) and X(n− j+1). Notice that any com-
ponent of X⃗ can be written as a mixture of the order statistics of X⃗ , i.e.,

F(t) =
1
n

n

∑
i=1

F(i)(t) =
1
n

n

∑
i=1

Gi(t), ∀t ∈ R. (5.1)

Consider now a random variable Z with distribution function FZ defined as

FZ(t) =
n

∑
i=1

wiF(i)(t) =
n

∑
i=1

wiGi(t), (5.2)

for any t ∈ R, where the second equality holds from the fact that wi = wn−i+1 for
any i ∈ [n].

Thus, the variable Z and any component of X⃗ can be written as a mixture of
the random variables Yi defined as before, which are in turn mixtures of the order
statistics. By applying Lemma 5.5 one has that |n− 2i+ 1| ≤ |n− 2 j+ 1| implies
Yi ≤cx Yj. In addition, the weights fulfill |n− 2i+ 1| ≤ |n− 2 j+ 1| =⇒ wi ≥ w j.
Then, for any convex function φ : R→ R,

E[φ(Z)] =
n

∑
i=1

wiE[φ(Yi)]≤
1
n

n

∑
i=1

E[φ(Yi)] = E[φ(X j)],∀ j ∈ [n],

where the first equality holds by Equation (5.2), the second equality by the fact
that E[φ(Yi)]≤ E[φ(Yj)] if wi ≥ w j and the third one by Equation (5.1). Therefore,
Z ≤cx X j holds for any j ∈ [n]. Now observe that, again considering any convex
function φ : R→ R, it holds

E

[
φ

(
n

∑
i=1

wiX(i)

)]
≤ E

[
n

∑
i=1

wiφ
(
X(i)
)]

=
n

∑
i=1

wiE
[
φ
(
X(i)
)]

= E[φ(Z)],

where the first inequality follows from the convexity of φ and the third one by
Equation (5.2). It is concluded that ∑

n
i=1 wiX(i) ≤cx Z ≤cx X j, j ∈ [n].

Notice that Condition i) imposes that the weights should be greater for central
positions, while Condition ii) refers to the symmetry of the weights. In the next ex-
ample, the latter result is illustrated for the case of the median of three independent
standard uniform random variables.
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Example 5.7 [41] Let X⃗ = (X1,X2,X3) be a random vector with standard uniform
components. Compute the integral of the distribution function of X1 and X(2),∫ x

0
F1(t)dt =

∫ x

0
tdt =

1
2

x2,
∫ x

0
F(2)(t)dt =

∫ x

0

(
3t2(1− t)+ t3)dt = x3 − 1

2
x4,

for any x ∈ [0,1]. Observing that x2

2 ≥ x2 − x4

2 for any x ∈ [0,1] and that E[X1] =

E[X(2)] = 0.5, it is concluded that X1 ≥cx X(2).

The required symmetry for the distribution and the weights is due to the neces-
sity of having the same expectation for the convex order to hold. Having symmetric
and bigger central weights is a condition that appears naturally in some context
of mean estimation of particular location-scale families related to, for example,
Laplace, logistic or hyperbolic secant distribution (see Figure 7.1 for a represen-
tation of the associated cumulative weights) and also constitutes a wide family of
OWA operators [329]. Unfortunately, if the assumption is removed, the result is not
longer true, as shown in the following example.

Example 5.8 [41] Let X1, X2 and X3 be three independent and identically dis-
tributed random variables such that P(Xi = 0) = P(Xi = 2) = 0.1 and P(Xi = 1) =
0.8 for any i ∈ [3]. Consider Y = 1

2X(1)+
1
2X(3). The values of Y and the associated

probability for any possible value of (X1,X2,X3) can be found in Tables 5.1 and 5.2.

PPPPPPPPPPP
X1

(X2,X3)
(0,0) (1,0) (0,1) (1,1) (2,0) (0,2) (2,1) (1,2) (2,2)

0 0 0.5 0.5 0.5 1 1 1 1 1
1 0.5 0.5 0.5 1 1 1 1.5 1.5 1.5
2 1 1 1 1.5 1 1 1.5 1.5 2

Table 5.1: Values of 1
2X(1)+

1
2X(3) associated with the possible values of the random

vector (X1,X2,X3) [41].

Therefore, summing all the probabilities for each value of Y , it holds that P(Y =

0) = P(Y = 2) = 0.001, P(Y = 0.5) = P(Y = 1.5) = 0.216 and P(Y = 1) = 0.566.
By computing the expectations of the convex functions |1− t| and (1− t)2, one has
that

E[|1−Y |] = 0.218 > 0.2 = E [|1−X1|] ,
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PPPPPPPPPPP
X1

(X2,X3)
(0,0) (1,0) (0,1) (1,1) (2,0) (0,2) (2,1) (1,2) (2,2)

0 0.001 0.008 0.008 0.064 0.001 0.001 0.008 0.008 0.001
1 0.008 0.064 0.064 0.518 0.008 0.008 0.064 0.064 0.008
2 0.001 0.008 0.008 0.064 0.001 0.001 0.008 0.008 0.001

Table 5.2: Probabilities associated with the possible values of the random vector
(X1,X2,X3) [41].

and
E
[
(1−Y )2]= 0.11 < 0.2 = E

[
(1−X1)

2] .
Therefore, neither 1

2X(1)+
1
2X(3) ≤cx X1 nor 1

2X(1)+
1
2X(3) ≥cx X1 are satisfied.

In addition, it is clear that Theorem 5.6 holds for the important family of
trimmed means and, in particular, for the median.

Corollary 5.9 Let X⃗ be a random vector with symmetric independent and identi-
cally distributed components. Then, any trimmed mean is smaller in convex order
than the components of X⃗ .

Corollary 5.10 Let X⃗ be a random vector with symmetric independent and identi-
cally distributed components. Then, the sample median is smaller in convex order
than the components of X⃗ .

5.1.3 Reduction of variability of idempotent nullnorms

A nullnorm Na has an annihilator element a ∈ [0,1] such that, if a ∈ {x1, . . . ,xn},
then Na(x1, . . . ,xn) = a. In this sense, and keeping in mind the left side of Fig-
ure 2.1, one can expect, for a random vector of a big dimension, a high probability
of having a as the output value. In this direction, given a sequence (Xn,n ∈ N)
of independent and identically distributed random variables, consider the sequence
(Na(X1, . . . ,Xn),n ∈ N). A question related to the variability of Na(X1, . . . ,Xn) is to
compute the probability of having an update, that is

P(Na(X1, . . . ,Xn) ̸= Na(X1, . . . ,Xn−1)).
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Theorem 5.11 [30] Let (Xn,n∈N) be a sequence of independent random variables
sharing the same continuous distribution on [0,1] and let Na : ∪n∈N[0,1]n → [0,1]
be an idempotent nullnorm with annihilator element a ∈ [0,1]. Then,

P(Na(X1, . . . ,Xn) ̸= Na(X1, . . . ,Xn−1)) =

= pn−1
a

( pa

n
+(1− pa)

)
+(1− pa)

n−1
(

1− pa

n
+ pa

)
,

for any n ∈ N with n ≥ 2 where pa = P(X1 ≤ a).

Proof: (Na(X1, . . . ,Xn),n ∈ N) is a discrete-time continuous-state Markov chain
with absorbent state a by applying Propositions 3.44 and 3.45. Then, Na(X1, . . . ,Xn)

̸= Na(X1, . . . ,Xn−1) can only occur if X1, . . . ,Xn−1 < a or X1, . . . ,Xn−1 > a.
For the first case, that has probability pn−1

a , if Xn < a, then An(X1, . . . ,Xn) =

min(X1, . . . ,Xn) and P(Na(X1, . . . ,Xn) ̸= Na(X1, . . . ,Xn−1)) =
1
n . If Xn > a, then it

holds P(Na(X1, . . . ,Xn) ̸= Na(X1, . . . ,Xn−1)) = 1. Computing the whole probability,
the result is pn−1

a
( pa

n +(1− pa)
)
. Similarly, for the second case, one has (1 −

pa)
n−1
(

1−pa
n + pa

)
. The result holds by summing both probabilities.

The last result implies that the sequence (Na(X1, . . . ,Xn),n ∈ N) converges al-
most surely to a. Therefore, nullnorms, at least asymptotically, reduce dispersion
for independent and identically distributed random variables.

5.1.3.1 Symmetric case and convex order

In the following, relax the independence assumption for (Xn,n ∈ N), but consider
still that the random variables have the same distribution. Similarly to the case of
OWA operators, an additional symmetry condition is necessary to preserve the same
expectation when the nullnorm is applied.

Theorem 5.12 [41] Let Na be an idempotent nullnorm with annihilator element
a ∈ [0,1]. Let (Xi, i ∈ N) be a sequence of random variables taking values on [0,1]
such that:

1. All random variables have the same distribution,
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2. All random variables are symmetric with respect to a,

3. For any n ∈ R, the copula Cn and survival copula C̄n of (X1, . . . ,Xn) satisfy
Cn(t, . . . , t) = C̄n(t, . . . , t) for all t ∈ [0,1].

Then,

Na(X1, . . . ,Xn)≤cx Na(X1, . . . ,Xn−1)≤cx X j,

for any n, j ∈ N such that j ≤ n.

Proof: Denote as Fn and F̄n the multivariate distribution function and the survival
function of (X1, . . . ,Xn). Since all the components of X⃗ have the same distribution
function F , one can write Fn(t1, . . . , tn) = Cn(F(t1), . . . ,F(tn)) and F̄1(t1, . . . , tn) =
C̄(1−F(t1), . . . ,1−F(tn)). In addition, denote as Fa,n the distribution function of
Na(X1, . . . ,Xn).

If Na(X1, . . . ,Xn) < a, then it holds that X1, . . . ,Xn < a and Na(X1, . . . ,Xn) =

max(X1, . . . ,Xn). Then, Fa,n(t) = Fn(t, . . . , t) = Cn(F(t), . . . ,F(t)) for t < a. Simi-
larly, if one has that Na(X1, . . . ,Xn) ≥ a, then X1, . . . ,Xn ≥ a and Na(X1, . . . ,Xn) =

min(X1, . . . ,Xn). Then, Fa,n(t) = 1− F̄n(t, . . . , t) = 1−C̄n(1−F(t), . . . ,1−F(t)) for
t ≥ a.

Since F(a) = 0.5, Fa,n can be expressed as Fa,n(t) = hn(F(t)) with hn : [0,1]→
[0,1] being

hn(t) =

Cn(t, . . . , t) if t < 0.5,

1−C̄n(1− t, . . . ,1− t) if t ≥ 0.5.

Consider a second distortion h′n defined as

h′n(t) =


Cn(t, . . . , t) if t < 0.5,

0.5 if t = 0.5

1−C̄n(1− t, . . . ,1− t) if t > 0.5.

Since Cn(t, . . . , t)≤Cn(t, . . . , t,1) =Cn−1(t, . . . , t) for any t ∈ [0,1], where Cn−1

is the copula of (X1, . . . ,Xn−1), then one has that h′n(t)≤ h′n−1(t) for any t ∈ [0,1]. In
addition, by using the assumption that Cn(t, . . . , t) = C̄n(t, . . . , t) for any t ∈ [0,1] and
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n ∈N, h′n is centrally symmetric. Moreover, h′n and hn are equal almost everywhere
for any n ∈ N. Then, applying Theorem 5.1, one has the inequality∫ x

−∞

Fa,n(t)dt =
∫ x

−∞

hn(F(t))dt =
∫ x

−∞

h′n(F(t))dt

≤
∫ x

−∞

h′n−1(F(t))dt =
∫ x

−∞

hn−1(F(t))dt =
∫ x

−∞

Fa,n−1(t)dt,

for any x ∈ R.
As a consequence of symmetry, E[N(X1, . . . ,Xn)] = E[N(X1, . . . ,Xn−1)] = a.

Then, apply Theorem 2.117 to conclude that Na(X1, . . . ,Xn)≤cx Na(X1, . . . ,Xn−1).
In addition, the inequality Na(X1, . . . ,Xn)≤cx X1 follows by the associativity of

the nullnorm. Then, since the random variables in the sequence (Xn,n ∈ N) have
the same distribution, Na(X1, . . . ,Xn)≤cx X j for any j ∈ [n].

The last result implies that the random sequence (Na(X1, . . . ,Xn),n ∈ N) is de-
creasing with respect to the convex order. Moreover, it holds that Na(X1, . . . ,Xn)≤cx

X1 for any n ∈ N. The condition on the copula may seem too restrictive. However,
there are many examples of families of copulas fulfilling this property.

Example 5.13 [41] For a copula Cn and its corresponding survival copula C̄n, a
sufficient condition to fulfill the property Cn(t, . . . , t) = C̄n(t, . . . , t) for any t ∈ [0,1]
is to satisfy Cn(x1, . . . ,xn) = C̄n(x1, . . . ,xn) for any x1, . . . ,xn ∈ [0,1], which is equiv-
alent to have the density copula (when exists) fulfilling cn(x1, . . . ,xn) = cn(1 −
x1, . . . ,1− xn) for any x1, . . . ,xn ∈ [0,1]. In particular,

• For the independent copula cn(x1, . . . ,xn) = 1, so it is straightforward that
cn(x1, . . . ,xn) = c(1− x1, . . . ,1− xn),

• For the Gaussian copula, see Example 2.68, since the standard Gaussian dis-
tribution is symmetric with respect to 0, one has that Φ−1(1− t) =−Φ−1(t)
and therefore c(x1, . . . ,xn) = c(1− x1, . . . ,1− xn),

• Similarly, for the T-copula, see again Example 2.68, using the symmetry of
the standard Student’s t-distribution with respect to 0 and the symmetry of
any multivariate Student’s t-distribution with respect to its mean vector, it
can be verified that cn(x1, . . . ,xn) = cn(1− x1, . . . ,1− xn).
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As mentioned in the previous example, the condition Cn(t, . . . , t) = C̄n(t, . . . , t)
for any t ∈ [0,1] is fulfilled when Cn(x1, . . . ,xn) = C̄n(x1, . . . ,xn) for any x1, . . . ,xn ∈
[0,1], which is known as radial symmetry in Copula Theory (see page 32 in [118]).
However, there are cases in which the first condition holds without the necessity of
the second.

Example 5.14 [41] Consider the copula C with density c given by

c(x,y) =

4
3 if x ≤ 3

4 and y ≥ 1
4 ,

4 if x ≥ 3
4 and y ≤ 1

4 .

Then, the expression of the copula and the survival copula are

C(x,y) =


0 if x ≤ 3

4 and y ≤ 1
4 ,

4
(
x− 3

4

)
y if x ≥ 3

4 and y ≤ 1
4 ,

4
3x
(
y− 1

4

)
if x ≤ 3

4 and y ≥ 1
4 ,

4
(
x− 3

4

)
y+ 4

3x
(
y− 1

4

)
+ if x ≥ 3

4 and y ≥ 1
4 ,

and

C̄(x,y) =


0 if x ≤ 1

4 and y ≤ 3
4 ,

4
3

(
x− 1

4

)
y if x ≥ 1

4 and y ≤ 3
4 ,

4x
(
y− 3

4

)
if x ≤ 1

4 and y ≥ 3
4 ,

4
3

(
x− 1

4

)
y+4x

(
y− 3

4

)
+ if x ≥ 1

4 and y ≥ 3
4 .

It is clear that C(x,y) ̸= C̄(x,y) for all x,y ∈ [0,1] since, for instance, C(1
3 ,

1
2) =

1
9 and C̄(1

3 ,
1
2) =

1
18 . On the other hand, on the diagonal they assume the same

values,

C(t, t) = C̄(t, t) =


0 if t ≤ 1

4 ,

4
3t
(
t − 1

4

)
if 1

4 < t ≤ 3
4 ,

4
3

(
t − 1

4

)
t +4t

(
t − 3

4

)
if 3

4 < t.

5.1.3.2 Non-symmetric case and increasing convex order

Note that the symmetric distributions for the components of X⃗ are a restrictive as-
sumption in Theorem 5.12 for many applicative purposes, as well as the assump-
tion that the annihilator element a must be the median. This section is devoted to
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the case in which the distribution is non-symmetric, showing that in this case the
increasing convex order can be achieved under suitable assumptions. The following
preliminary result will be used later.

Lemma 5.15 [41] Let Na be an idempotent nullnorm with annihilator element a ∈
[0,1]. Let (Xi, i ∈ N) be a sequence of random variables with the same distribution
taking values in [0,1]. Then,

Na(X1, . . . ,Xn)≤icx Na(X1, . . . ,Xn−1)⇐⇒ E[Na(X1, . . . ,Xn)]≤E[Na(X1, . . . ,Xn−1)].

Proof: Note that the implication ⇒ holds by the definition of the increasing con-
vex order. For the second one, recall that the survival function of Na(X1, . . . ,Xn),
denoted as F̄a,n, is

F̄a,n(t) =

1−Cn(F(t), . . . ,F(t)) if t < a,

C̄n(1−F(t), . . . ,1−F(t)) if t ≥ a,

where F denotes the distribution function of X1.
Notice that, by the monotonicity of C and C̄, Cn(t, . . . , t) ≤ Cn(t, . . . , t,1) =

Cn−1(t, . . . , t) and C̄n(t, . . . , t)≤ C̄n(t, . . . , t,1) = C̄n−1(t, . . . , t) for any t ∈ [0,1].
Then, F̄a,n(t)≥ F̄a,n−1(t) for t < a and F̄a,n(t)≤ F̄a,n−1(t) for t ≥ a. Therefore,

for x ≥ a then one has ∫ 1

x
F̄a,n(t)dt ≤

∫ 1

x
F̄a,n−1(t)dt.

If x ≤ a, notice that E[Na(X1, . . . ,Xn)] ≤ E[Na(X1, . . . ,Xn−1)] by assumption,
which implies that

∫ 1
0 F̄a,n(t)dt ≤

∫ 1
0 F̄a,n−1(t)dt. Moreover, since

∫ x
0 F̄a,n(t)dt ≥∫ x

0 F̄a,n−1(t)dt, then

∫ 1

x
F̄a,n(t)dt =

∫ 1

0
F̄a,n(t)dt −

∫ x

0
F̄a,n(t)dt ≤

≤
∫ 1

0
F̄a,n−1(t)dt −

∫ x

0
F̄a,n−1(t)dt =

∫ 1

x
F̄a,n−1(t)dt.

Finally, the result holds as a consequence of Theorem 2.109.
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The previous property affirms that the comparison in the increasing convex
order between the nullnorms with n and n−1 inputs is equivalent to the comparison
among the corresponding expectations. In general, the latter comparison is not
satisfied for any possible annihilator element a, however, there always exists an
upper bound for a such that the inequality is satisfied, as shown in the next result.

Theorem 5.16 [41] Let Na be the idempotent nullnorm with annihilator element
a ∈ [0,1]. Let X1 and X2 be random variables defined in [0,1]. Then, there always
exists a′ ∈ [0,1] such that Na(X1,X2)≤icx X1 for any a ∈ [0,1] satisfying a ≤ a′.

Proof: Denote the distribution functions of X1 and X2 as F1 and F2 and the cop-
ula and the survival copula of (X1,X2) as C and C̄. Then, the survival function of
Na(X1,X2), denoted as F̄a, equals

F̄a(t) =

1−C(F1(t),F2(t)) if t < a,

C̄(F̄1(t), F̄2(t)) if t ≥ a.
(5.3)

Therefore, the expectation of Na(X1,X2) can the written as a function of a as

E[Na(X1,X2)] =
∫ a

0
(1−C(F1(t),F2(t)))dt +

∫ 1

a

(
C̄(F̄1(t), F̄2(t))

)
dt.

Trivially, E[N0(X1,X2)] = E[min(X1,X2)] and E[N1(X1,X2)] = E[max(X1,X2)].
Moreover, such a function of a is continuous with derivative

d
da

E[Na(X1,X2)] =
d
da

∫ a

0
(1−C(F1(t),F2(t)))dt+

+
d

da

∫ 1

a

(
C̄(1−F1(t),1−F2(t))

)
dt = 1−C(F1(a),F2(a))−C̄(F̄1(a), F̄2(a)).

Since C(F1(a),F2(a))+C̄(F̄1(a), F̄2(a)) = P(X1 ≤ a,X2 ≤ a)+P(X1 > a,X2 >

a) ≤ 1 for any a ∈ [0,1], the latter derivative is positive, thus E[Na(X1,X2)] is in-
creasing as a function of a.

Moreover, since E[N0(X1,X2)] = E[min(X1,X2)] ≤ E[X1] ≤ E[max(X1,X2)] =

E[N1(X1,X2)] and E[Na(X1,X2)] is continuous as a function of a, there exists a′ ∈
[0,1] such that E[Na′(X1,X2)] = E[X1] and E[Na(X1,X2)] ≤ E[X1] for any a ≤ a′.
The result holds by Lemma 5.15.
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Notice that, by using the associative property, the latter result can be extended
for any number of possible inputs as follows.

Corollary 5.17 [41] Let Na be the idempotent nullnorm with annihilator element
a ∈ [0,1]. Let X1, . . . ,Xn be random variables defined in [0,1]. Then, there always
exists a′ ∈ [0,1] such that Na(X1, . . . ,Xn) ≤icx Na(X1, . . . ,Xn−1) for any a ∈ [0,1]
satisfying a ≤ a′.

Proof: Notice that Na(X1, . . . ,Xn−1,Xn) = Na(Na(X1, . . . ,Xn−1),Xn). Then, apply
Theorem 5.16.

One of the main limitations of the latter result is that it does not give a value
for a′. In the next result, it is shown that, when the inputs are independent, have
the same distribution and under some additional conditions, the value of a′ is al-
ways greater than the median of the components of X⃗ . Thus, Na(X1, . . . ,Xn) ≤icx

Na(X1, . . . ,Xn−1) holds for any a smaller than the median of X1.

Theorem 5.18 [41] Let Na be the idempotent nullnorm with annihilator element
a ∈ [0,1]. Let X⃗ = (X1, . . . ,Xn) be a random vector with independent and identi-
cally distributed components having support [0,1]. If the survival function F̄ of the
components is convex on [0,1] then

Na(X1, . . . ,Xn)≤icx X j,∀ j ∈ [n],

for any a ∈ [0,1] such that a ≤ m, where m denotes the median of X1.

Proof: As a consequence of Lemma 5.15, the statement holds if E[Nm(X1, . . . ,Xn)]

≤ E[X j]. Notice that, if F̄ is convex on [0,1], then it is continuous and the corre-
sponding density function f is decreasing on [0,1]. Since independence between
the random variables is assumed, Equation (5.3) reads as

F̄m(t) =

1−F(t)n if t < m,

F̄(t)n if t ≥ m,
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and, therefore, the expectations are ordered if and only if

E[Nm(X1, . . . ,Xn)] =
∫ m

0
(1−F(t)n)dt +

∫ 1

m
F̄(t)ndt ≤

≤
∫ m

0
(1−F(t))dt +

∫ 1

m
F̄(t)dt = E[X1].

The latter inequality can be rewritten as∫ m

0
(1−F(t)n −1−F(t))dt ≤

∫ 1

m
(F̄(t)− F̄(t)n)dt,

which in turn is equivalent to∫ m

0
F(t)

(
1−F(t)n−1)dt ≤

∫ 1

m
F̄(t)

(
1− F̄(t)n−1)dt.

Since f is decreasing, the median m is smaller than 0.5. Computing the deriva-
tive of F(m− t)

(
1−F(m− t)n−1) and of F̄(m+ t)

(
1− F̄(m+ t)n−1) for t ∈ [0,m],

one gets

d
dt

[
F(m− t)

(
1−F(m− t)n−1)]=− f (m− t)

(
1−nF(m− t)n−1) ,

d
dt

[
F̄(m+ t)

(
1− F̄(m+ t)n−1)]=− f (m+ t)

(
1−nF̄(m+ t)n−1) .

Notice that, since f is decreasing, then f (m− t)≥ f (m+ t) for any t ∈ [0,m].
In addition,

F(m− t) = P(X ≤ m)−P(X ∈ (m− t,m]) = 0.5−P(X ∈ (m− t,m]),

F̄(m+ t) = P(X > m)−P(X ∈ (m,m+ t]) = 0.5−P(X ∈ (m,m+ t]).

Since f is decreasing, it follows that P(X ∈ (m− t,m]) ≥ P(X ∈ (m,m+ t]), thus
F(m − t) ≤ F̄(m + t) and

(
1−nF(m− t)n−1) ≥ (1−nF̄(m+ t)n−1) for any t ∈

[0,m]. Therefore, it is concluded that

d
dt

[
F(m− t)

(
1−F(m− t)n−1)]≤ d

dt

[
F̄(m+ t)

(
1− F̄(m+ t)n−1)] ,

for any t ∈ [0,m]. Moreover, using that F(m) = F̄(m) = 0.5 it follows F(m −
t)
(
1−F(m− t)n−1) ≤ F̄(m+ t)

(
1− F̄(m+ t)n−1) for any t ∈ [0,m]. Thus, since

2m ≤ 1,∫ m

0
F(t)

(
1−F(t)n−1)dt ≤

∫ 2m

m
F̄(t)

(
1− F̄(t)n−1)dt ≤

∫ 1

m
F̄(t)

(
1− F̄(t)n−1)dt.
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Finally, since E[Na(X1, . . . ,Xn)] increases in a, applying Lemma 5.15 it holds
Na(X1, . . . ,Xn)≤icx Nm(X1, . . . ,Xn)≤icx X j for any j ∈ [n].

5.1.4 The case of uninorms

The structure of uninorms is more complex than the structure of nullnorms, mainly
due to the choice of the function g in Proposition 2.21. If one tries to replicate
Theorem 5.11, it is difficult to obtain a simple formula for the probability of having
two different subsequent values. However, some bounds can be given.

Theorem 5.19 [30] Let (Xn,n ∈ N) be a sequence of independent random vari-
ables sharing the same continuous distribution on [0,1] and Ue : [0,1]2 → [0,1] an
idempotent uninorm with neutral element e ∈ [0,1]. Then,

pn
e +(1− pe)

n

n
≤ P(Ue(X1, . . . ,Xn) ̸=Ue(X1, . . . ,Xn−1))≤ 1− pn

e +(1− pe)
n

n
,

for any n ∈ N with n ≥ 2 where pe = P(X1 ≤ e).

Proof: Using Proposition 2.21, consider the sets of points in the unit square as-
sociated with the values of Ue(X1, . . . ,Xn−1) and Xn for which Ue(X1, . . . ,Xn) ̸=
Ue(X1, . . . ,Xn−1). That is, {x,y∈ [0,1] | x > y,y< g(x)} and {x,y∈ [0,1] | x < y,y>
g(x)}. The remaining points associated with Ue(X1, . . . ,Xn) ̸= Ue(X1, . . . ,Xn−1)

have Lebesgue measure 0, thus they are negligible when considering independent
continuous random variables.

For the lower bound, if one wants to minimize the sets of points for which
Ue(X1, . . . ,Xn) ̸=Ue(X1, . . . ,Xn−1), g in Proposition 2.21 can be chosen to be g(x) =
1 if x ∈ [0,e), g(e) = e and g(x) = 0 if x ∈ (e,1]. Suppose Ue(X1, . . . ,Xn−1) < e.
Since Ue is idempotent, therefore internal, the probability of Ue(X1, . . . ,Xn−1) <

e is greater than the probability of the maximum, which is pn−1
e . In that case,

Ue(X1, . . . ,Xn) ̸=Ue(X1, . . . ,Xn−1) if and only if Xn <Ue(X1, . . . ,Xn−1). Firstly, it is
necessary Xn < e, which has probability pe and then having, given that Ue(X1, . . . ,

Xn−1) < e and Xn < e, that Xn < Ue(X1, . . . ,Xn−1). This probability is greater than
the one of Xn < min(X1, . . . ,Xn−1), which is 1

n . Multiplying the terms, the resulting
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probability is pn
e

n . For the case Ue(X1, . . . ,Xn−1) > e, one similarly obtains (1−pe)
n

n .
The lower bound is reached by summing both terms.

For the upper bound, if one wants to maximize the sets of points for which
Ue(X1, . . . ,Xn) ̸=Ue(X1, . . . ,Xn−1), g can be chosen to be g(x) = e for all x ∈ [0,1].
Suppose Xn < e, which happens with probability pe. Therefore, Ue(X1, . . . ,Xn) ̸=
Ue(X1, . . . ,Xn−1) if and only if Xn < Ue(X1, . . . ,Xn−1). That always happens if
Ue(X1, . . . ,Xn−1)> e, for which the probability is upper bounded by P(max(X1, . . . ,

Xn−1)> e) = 1− pn−1
e . For the other case, if Ue(X1, . . . ,Xn−1)< e, an upper bound

of the probability can be computed considering the one of Xn < Ue(X1, . . . ,Xn−1)

when Xn < e and max(X1, . . . ,Xn)< e, which is 1− 1
n . Summarizing all the proba-

bilities, it is obtained pe
(
1− pn−1

e + pn−1
e
(
1− 1

n

))
= pe− pn

e
1
n . For the case Xn > e,

one similarly obtains 1− pe − (1− pn
e)

1
n . The upper bound is reached by summing

both terms.

Admittedly, the bounds given in the latter result are not tight, mainly because
the choices of g in the proof lead to upper and lower bounds for the probabilities, but
they are not associated with any uninorm, because of the lack of symmetry. More-
over, asymptotically the bounds tend to 0 and 1, so it is not possible to obtain any
information about a possible reduction of the variability. However, other techniques
can be used.

One can think of uninorms as functions that return the maximum when the
variables take big values and the minimum when the values are smaller (with some
intermediate cases). In this sense, a convergence to 1 (or 0), if all variables take
enough big (or small) values, can be expected.

Proposition 5.20 [41] Let U be a uninorm with neutral element e and (Xn,n ∈ N)
a sequence of independent and identically distributed random variables such that
P(X1 > e) = 1. Then, U(X1, . . . ,Xn)→a.s. supS(X1).

Proof: Notice that, if X1, . . . ,Xn > e, then U(X1, . . . ,Xn) = max(X1, . . . ,Xn). There-
fore, it is clear that U(X1, . . . ,Xn)→a.s. supS(X1).

A similar result, with an equivalent proof, can be stated for random variables
assuming small values.
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Proposition 5.21 [41] Let U be a uninorm with neutral element e and (Xn,n ∈ N)
a sequence of independent and identically distributed random variables such that
P(X1 < e) = 1. Then, U(X1, . . . ,Xn)→a.s. infS(X1).

In both cases, although they are not inequalities in terms of the convex order,
there is, at least asymptotically, a reduction of the variability, since the limit is a
degenerate random variable.

However, this is not the case in all situations. If the distribution is evenly dis-
tributed below and above the function g, some part of the distribution will increase,
while the other part will decrease, leading to an increase in variability. Although a
general result for this behavior cannot be proven, it is possible to consider particular
uninorms to illustrate this property.

Proposition 5.22 [41] Let X1 and X2 be two independent, continuous, symmetric
with respect to 0.5 and identically distributed random variables. Let U be the uni-
norm defined by considering g(x) = 1− x in Proposition 2.21. Then,

U(X1,X2)≥cx X1.

Proof: Notice that, since the random variables are continuous and the set

{(x1,x2) ∈ [0,1]2 | x1 = 1− x2},

has Lebesgue measure 0, the behavior of the uninorm over it is negligible. Compute
the density function fU of U(X1,X2) using the density function and the distribution
function of X1, denoted by f and F . Using Proposition 2.21, the preimage of U is

U(x1,x2) = y ⇐⇒

y = x1 < x2 < 1− y or y = x2 < x1 < 1− y if y < 0.5,

y = x1 > x2 > 1− y or y = x2 > x1 > 1− y if y > 0.5.

Therefore,

fU(y) =

2
∫ 1−y

y f (y) f (t)dt = f (t)(F(1− y)−F(y)) if y < 0.5,

2
∫ y

1−y f (y) f (t)dt = f (t)(F(y)−F(1− y)) if y > 0.5.
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Using the symmetry of the random variables, it holds that F(1− y)−F(y) =
1−2F(y) and, therefore, fU(y)= f (y)|1−2F(y)|. The associated distribution func-
tion is

FU(y) =

1
2 −

1
2(1−2F(y))2 if y < 0.5,

1
2 +

1
2(1−2F(y))2 if y ≥ 0.5.

Then, FU(y) = h(F(y)) with h being the distortion given by:

h(t) =

1
2 −

1
2(1−2t)2 if t < 0.5,

1
2 +

1
2(1−2t)2 if t ≥ 0.5.

Notice that h is centrally symmetric and fulfills h(t) ≥ t for any t ∈ [0,0.5].
Then, applying Lemma 5.1, it is concluded that U(X1,X2)≥cx X1.

Unfortunately, in many cases, one cannot say anything about the relationship
between the inputs and the output with respect to the convex order.

Example 5.23 [41] Let X1 and X2 be two independent standard uniform random
variables and U the uninorm given by

U(x1,x2) =

min(x1,x2) if x1,x2 < 0.5,

max(x1,x2) elsewhere.

Then, the survival function of U(X1,X2) fulfills F̄U(t) = 0.25(1−2t)2 +0.75 if
t < 0.5 and F̄U(t) = 1− t2 if t ≥ 0.5. Thus,

E[U(X1,X2)] =
∫ 0.5

0

(
0.25(1−2t)2 +0.75

)
dt +

∫ 1

0.5

(
1− t2)dt =

5
8
.

Since the expectation of a standard uniform is 1
2 , neither U(X1,X2)≤cx X1 nor

U(X1,X2)≥cx X1 hold.

5.2 Variability measures and variability orders

Some aggregation functions are defined as solutions of some minimization prob-
lems that involve the so-called penalty aggregation functions (see [75, 78]). In par-
ticular, the value of the aggregation is computed by minimizing the penalty function
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between a real number, which will be the output value of the aggregation, and a
given vector, which is the input. For instance, if the penalty function is the sum of
the squares of the difference between the real number and the values in the given
vector, the associated aggregation function is the arithmetic mean. In the next result,
two relevant cases are shown.

Theorem 5.24 [78] Consider a weighting vector w⃗ ∈ Rn. Then,

(a) ∑
n
i=1 wixi = argminy∈R∑

n
i=1 wi(xi − y)2,

(b) ∑
n
i=1 wix(i) = argminy∈R∑

n
i=1 wi(x(i)− y)2.

In general, penalty functions measure the distance between a real number and
the values of a vector. Moreover, when the penalty function takes its minimum
value, it often equals a well-known variability measure from Statistics. Returning
to the previous example, the sum of the squared distance between the values of a
vector and its arithmetic mean is just the sample variance (multiplied by a constant).
Therefore, from the solution of finding the minimum of a penalty function, two val-
ues appear; the minimum, which is a variability measure of the considered vector,
and the point where the minimum is attained, which is the value of the aggregation
function.

In this direction, it is interesting to know when the penalty function evaluated
in its minimum takes greater or smaller values, since it is a measure of the similar-
ity between the aggregated and the initial values. In this section, some stochastic
inequalities between variability measures which are penalty functions evaluated in
their minimum are provided. In addition, other variability measures that are not
related to penalty functions, such as the Gini mean distance, are also considered.

As a first simple example, let X⃗ and Y⃗ be two random vectors with independent
and identically distributed components. Assume that Var(X1) ≤ Var(X2). Then, it
is well-known that the expectations of the sample variances are also ordered, i.e.,
E[σ̂2(X⃗)] ≤ E[σ̂2(⃗Y )], since the sample variance is an unbiased estimator of the
variance.

However, one may wonder if they are also ordered in the usual stochastic order
(σ̂2(X⃗)≤st σ̂2(⃗Y )). Apart from obvious theoretical motivations and the application
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in aggregation based on penalty functions, there are several reasons why a stochastic
inequality as σ̂2(X⃗) ≤st σ̂2(⃗Y ) can be more useful than an inequality between the
corresponding expected values. For instance, suppose that one wants to determine
the confidence intervals for the expectation of the marginals of X⃗ and Y⃗ . For the
same confidence level and big enough sample size (see [278]), the widths of the
intervals are ordered with respect to the usual stochastic order whenever σ̂2(X⃗)≤st

σ̂2(⃗Y ) [38]. This type of results cannot be obtained with E[σ̂2(X⃗)]≤ E[σ̂2(⃗Y )], not
even for the comparison of the expectations of the widths.

Unfortunately, condition Var(X1)≤Var(Y1) is not sufficient for the comparison
σ̂2(X⃗) ≤st σ̂2(⃗Y ), not even in the case of independent and identically distributed
components, as illustrated in the following example.

Example 5.25 [38] Let X1 and X2 be two independent random variables with stan-
dard uniform distribution and let Y1 and Y2 be two independent random variables
with exponential distribution with parameter λ = 3, so that Var(X1) =

1
12 and

Var(Y1) =
1
9 . However, it is not true that σ̂2(X⃗) ≤st σ̂2(⃗Y ). In fact, note that

P[(X1−X2)
2 ≤ x] = 1−(1−

√
x)2, x ∈ [0,1] and P[(Y1−Y2)

2 ≤ x] = 1−e−λ
√

x, x ∈
[0,∞]. Representing both distribution functions, as it can be seen in Figure 5.1, they
cross. Since σ̂2(X⃗) = 1

4(X1 −X2)
2 and σ̂2(⃗Y ) = 1

4(Y1 −Y2)
2, it is concluded that

σ̂2(X⃗) ̸≤st σ̂2(⃗Y ) even with Var(X1)≤ Var(Y1) being true.

What has just been shown with a counterexample also applies to other kinds
of variability measures such as the Gini mean difference or the range, (see Sec-
tion 2.4.1). Inequalities considering the variance, the width of the support or similar
variability quantities of the initial random variables do not imply the stochastic com-
parison of the sample measures. Therefore, stronger conditions related to stochastic
orders are needed.

5.2.1 Conditions for the usual stochastic order

The aim of this section is to give sufficient conditions, related to the dispersive order,
such that the variability measures estimators mentioned above can be compared in
terms of the usual stochastic order.
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Figure 5.1: Distribution functions of the square of the difference of two independent
random variables with standard uniform distribution and the square of the difference
of two independent random variables with exponential distribution with parameter
λ = 3 [38].

In the following, consider two random vectors in which all the components
have the same distribution, within each of them. In addition, consider that both
vectors have the same copula. Intuitively, they can be seen as random samples but
without necessarily independent variables. Under such conditions, the dispersive
order implies the existence of a contraction that links the distribution of both random
vectors. In this direction, given two random variables X and Y , the following two
conditions will be considered in the next statements.

(P1) Both X and Y have continuous distribution functions F and G,

(P2) The transformation φ = F−1 ◦G such that X = φ(Y ) is strictly monotone.

Note that condition (P2) is satisfied, for example, if both X and Y have non-
zero density over a convex subset of the real line, which can be different for X and
Y .
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Lemma 5.26 [38] Let X⃗ be a random vector with identically distributed compo-
nents and Y⃗ another random vector with identically distributed components and
with the same copula as X⃗ . If X1 ≤disp Y1 and X1 and Y1 fulfill (P1) and (P2), then it
holds that X⃗ =st (φ(Y1), . . . ,φ(Yn)) where φ = F−1 ◦G is a contraction and F and
G are the distribution functions of X1 and Y1, respectively.

Proof: Since X1 =st · · ·=st Xn, Y1 =st · · ·=st Yn and X1 ≤disp Y1, then Xi =st φ(Yi)

with φ being a contraction for any i ∈ [n] (see the comment right after Defini-
tion 2.115). In addition, since the marginals are continuous by (P1) and φ is strictly
increasing by (P2), the copulas of (φ(Y1), . . . ,φ(Yn)) and Y⃗ are the same. Therefore,
(φ(Y1), . . . ,φ(Yn)) and X⃗ have the same copula. Moreover, since they have the same
copula and the same marginals, X⃗ =st (φ(Y1), . . . ,φ(Yn)).

Notice that the random vectors can have different marginals, the marginals in-
side the two random vectors are the ones which should be the same. A direct conse-
quence of this result is that the vectors consisting of the absolute difference between
the components are ordered in the usual order. Given a random vector X⃗ , the nota-
tion X⃗AD = (|Xi−X j|, i, j ∈ [n]) will be used for the random vector consisting of the
absolute difference between all the possible combinations of the components of X⃗ .

Theorem 5.27 [38] Let X⃗ be a random vector with identically distributed compo-
nents and Y⃗ another random vector with identically distributed components and
with the same copula as X⃗ . If X1 ≤disp Y1 and X1 and Y1 fulfill (P1) and (P2), then

X⃗AD ≤st Y⃗AD.

Proof: Applying Lemma 5.26, there exists an increasing contraction φ such that
X⃗ =st (φ(Y1), . . . ,φ(Yn)). Then, using the definition of contraction,

X⃗AD =st (|φ(Yi)−φ(Yj)|, i, j ∈ [n])≤a.s. Y⃗AD.

The result holds by applying Theorem 2.102.

In particular, as an immediate consequence of Theorem 5.27 and Proposi-
tion 2.106, the following conditions for the comparisons among sample variances
and estimators of the Gini mean difference can be proved.
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Corollary 5.28 [38] Let (X1, . . . ,Xn) and (Y1, . . . ,Yn) be two random vectors with
independent and identically distributed random variables. If X1 ≤disp Y1 and X1 and
Y1 fulfill (P1) and (P2), then σ̂2(X⃗)≤st σ̂2(⃗Y ) and G(X⃗)≤st G(⃗Y ).

Conditions for the stochastic ordering between weighted versions of the sample
variances can also be stated. In particular, under the same conditions as the latter
results, the dispersive order of the random vectors implies the usual stochastic order
between these quantities.

Theorem 5.29 [38] Let X⃗ be a random vector with identically distributed compo-
nents and Y⃗ another random vector with identically distributed components and
with the same copula as X⃗ . Assume that X1 and Y1 fulfill (P1) and (P2). Then, for
any weighting vector w⃗ ∈ [0,1]n,

X1 ≤disp Y1 =⇒
n

∑
i=1

wi

(
Xi −

n

∑
j=1

w jX j

)2

≤st

n

∑
i=1

wi

(
Yi −

n

∑
j=1

w jYj

)2

.

Proof: Applying Lemma 5.26, there exists an increasing contraction φ : R → R
such that X⃗ =st (φ(Y1), . . . ,φ(Yn)). Define, in the same probability space where Y⃗

is defined, the vector ̂⃗X = (φ(Y1), . . . ,φ(Yn)). Then,

n

∑
i=1

wi

(
X̂i −

n

∑
j=1

w jX̂ j

)2

=a.s.

n

∑
i=1

wi

(
φ(Yi)−

n

∑
j=1

w jφ(Yj)

)2

≤a.s.

≤a.s.

n

∑
i=1

wi

(
φ(Yi)−φ

(
n

∑
j=1

w jY j

))2

≤a.s.

n

∑
i=1

wi

(
Yi −

n

∑
j=1

w jYj

)2

,

where the second inequality follows from (a) in Theorem 5.24 and the third by the
fact that φ is a contraction. Observing that

n

∑
i=1

wi

(
X̂i −

n

∑
j=1

w jX̂ j

)2

=st

n

∑
i=1

wi

(
Xi −

n

∑
j=1

w jX j

)2

,

the result holds by applying Theorem 2.102.

It must be observed that the conditions for the usual stochastic order between
sample variances stated in Corollary 5.28 also follow from Theorem 5.29. Recall
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that, as mentioned in Section 2.3.2.5, estimators based on order statistics are rel-
evant in many areas. A result similar to Theorem 5.29 can also be stated when
working with ordered samples.

Theorem 5.30 [38] Let X⃗ be a random vector with identically distributed compo-
nents and Y⃗ another random vector with identically distributed components and
with the same copula as X⃗ . Assume that X1 and Y1 fulfill (P1) and (P2). Then, for
any weighting vector w⃗ ∈ [0,1]n,

X1 ≤disp Y1 =⇒
n

∑
i=1

wi

(
X(i)−

n

∑
j=1

w jX( j)

)2

≤st

n

∑
i=1

wi

(
Y(i)−

n

∑
j=1

w jY( j)

)2

.

Proof: Applying Lemma 5.26, X⃗ =st (φ(Y1), . . . ,φ(Yn)) with φ an increasing
contraction. Since φ is increasing, the order statistics of (φ(Y1), . . . ,φ(Yn)) equal(
φ(Y(1)), . . . ,φ(Y(n))

)
. Thus,

(
X(1), . . . ,X(n)

)
=st

(
φ(Y(1)), . . . ,φ(Y(n))

)
. Then, use

(b) in Theorem 5.24 and proceed exactly as in Theorem 5.29.

The next statements generalize Theorem 5.29 and Theorem 5.30 relaxing the
condition of the same copula for X⃗ and Y⃗ . In particular, the following results can
be applied to random vectors that have distributions that depend on a set of random
parameters, such as, for example, vectors of lifetimes described by multivariate
frailty models [231] (see Example 5.33).

Theorem 5.31 [38] Let X⃗(ΘX) and Y⃗ (ΘY ) be two random vectors depending on
two random parameters ΘX and ΘY with the same support T such that:

(1) Each one of [X⃗(ΘX) | ΘX = θ ] and [⃗Y (ΘY ) | ΘY = θ ] is a random vector with
identically distributed marginals for any θ ∈ T ,

(2) [X⃗(ΘX) | ΘX = θ1], [X⃗(ΘX) | ΘX = θ2], [⃗Y (ΘY ) | ΘY = θ1] and [⃗Y (ΘY ) | ΘY =

θ2] have the same copula for any θ1,θ2 ∈ T ,

(3) [Xi(ΘX) | ΘX = θ1] ≤disp [Xi(ΘX) | ΘX = θ2], or [Yi(ΘY ) | ΘY = θ1] ≤disp

[Yi(ΘY ) | ΘY = θ2], for all i ∈ [n] and for any θ1 ≤ θ2, θ1,θ2 ∈ T ,

(4) [Xi(ΘX) | ΘX = θ ]≤disp [Yi(ΘY ) | ΘY = θ ] for all i ∈ [n] and for any θ ∈ T ,
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(5) ΘX ≤st ΘY .

Also, assume that [Xi(ΘX) | ΘX = θ ] and [Yi(ΘY ) | ΘY = θ ] satisfy the prop-
erties (P1) and (P2) for any i ∈ [n] and θ ∈ T . Then, for any weighting vector
w⃗ ∈ [0,1]n,

n

∑
i=1

wi

(
Xi(ΘX)−

n

∑
j=1

w jX j(ΘX)

)2

≤st

n

∑
i=1

wi

(
Yi(ΘY )−

n

∑
j=1

w jYj(ΘY )

)2

,

and

n

∑
i=1

wi

(
X(i)(ΘX)−

n

∑
j=1

w jX( j)(ΘX)

)2

≤st

n

∑
i=1

wi

(
Y(i)(ΘY )−

n

∑
j=1

w jY( j)(ΘY )

)2

.

Proof: Consider the case [Xi(ΘX) | ΘX = θ1] ≤disp [Xi(ΘX) | ΘX = θ2] for any
θ1 ≤ θ2 in assumption (3) (the case [Yi(ΘY ) | ΘY = θ1]≤disp [Yi(ΘY ) | ΘY = θ2] in
(3) has a similar proof).

By assumptions (1), (2) and (3), applying Theorem 5.29 one has that n

∑
i=1

wi

(
Xi(ΘX)−

n

∑
j=1

w jX j(ΘX)

)2
∣∣∣∣∣∣ ΘX = θ1

≤st

≤st

 n

∑
i=1

wi

(
Xi(ΘX)−

n

∑
j=1

w jX j(ΘX)

)2
∣∣∣∣∣∣ ΘX = θ2

 ,
for any θ1,θ2 ∈ T such that θ1 ≤ θ2. Using again assumption (5) and Proposi-
tion 2.105,

n

∑
i=1

wi

(
Xi(ΘX)−

n

∑
j=1

w jX j(ΘX)

)2

≤st

n

∑
i=1

wi

(
Xi(ΘY )−

n

∑
j=1

w jX j(ΘY )

)2

. (5.4)

By assumptions (1), (2) and (4), applying Theorem 5.29 one has that n

∑
i=1

wi

(
Xi(ΘX)−

n

∑
j=1

w jX j(ΘX)

)2
∣∣∣∣∣∣ ΘX = θ

≤st

≤st

 n

∑
i=1

wi

(
Yi(ΘY )−

n

∑
j=1

w jYj(ΘY )

)2
∣∣∣∣∣∣ ΘY = θ

 ,
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for any θ ∈ T . Then, by which in turn, by assumption (5) and Theorem 2.105,
implies

n

∑
i=1

wi

(
Xi(ΘY )−

n

∑
j=1

w jX j(ΘY )

)2

≤st

n

∑
i=1

wi

(
Yi(ΘY )−

n

∑
j=1

w jY j(ΘY )

)2

. (5.5)

Therefore, the first statement follows from (5.4), (5.5) and the transitivity of
the usual stochastic order. For the second inequality the proof is the same but using
Theorem 5.30 instead of Theorem 5.29.

The proof of the following statement is similar to the previous one and, there-
fore, it is omitted.

Theorem 5.32 [38] Let X⃗(ΘX) and Y⃗ (ΘY ) be two random vectors depending on
two random parameters ΘX and ΘY with the same support T such that:

(1) Each one of [X⃗(ΘX) | ΘX = θ ] and [⃗Y (ΘY ) | ΘY = θ ] is a random vector with
identically distributed marginals for any θ ∈ T ,

(2) [X⃗(ΘX) | ΘX = θ1], [X⃗(ΘX) | ΘX = θ2], [⃗Y (ΘY ) | ΘY = θ1] and [⃗Y (ΘY ) | ΘY =

θ2] have the same copula for any θ1,θ2 ∈ T ,

(3) [Xi(ΘX) | ΘX = θ1] ≥disp [Xi(ΘX) | ΘX = θ2], or [Yi(ΘY ) | ΘY = θ1] ≥disp

[Yi(ΘY ) | ΘY = θ2], for all i ∈ [n] and for any θ1 ≤ θ2, θ1,θ2 ∈ T ,

(4) [Xi(ΘX) | ΘX = θ ]≥disp [Yi(ΘY ) | ΘY = θ ] for all i ∈ [n] and for any θ ∈ T ,

(5) ΘX ≤st ΘY .

Then, for any weighting vector w⃗ ∈ [0,1]n it holds that

n

∑
i=1

wi

(
Xi(ΘX)−

n

∑
j=1

w jX j(ΘX)

)2

≥st

n

∑
i=1

wi

(
Yi(ΘY )−

n

∑
j=1

w jYj(ΘY )

)2

, (5.6)

and

n

∑
i=1

wi

(
X(i)(ΘX)−

n

∑
j=1

w jX( j)(ΘX)

)2

≥st

n

∑
i=1

wi

(
Y(i)(ΘY )−

n

∑
j=1

w jY( j)(ΘY )

)2

.

(5.7)
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The following is an example where the stochastic order between the weighted
variability measures is guaranteed by the application of Theorem 5.32.

Example 5.33 [38] Let X⃗(ΘX) and Y⃗ (ΘY ) be two vectors described by two multi-
variate frailty models [244] that have conditionally independent exponentially dis-
tributed underlying lifetimes with rate λ = 1 and frailties ΘX and ΘY , respectively,
with ΘX ∼ Γ(1,βX) and ΘY ∼ Γ(1,βY ).

That is, let X⃗(ΘX) and Y⃗ (ΘY ) have joint survival functions

F X⃗(ΘX )
(t1, . . . , tn) = EΘX

[
n

∏
i=1

(
e−ti
)ΘX

]
=W X⃗

(
n

∑
i=1

ti

)
,

FY⃗ (ΘY )
(t1, . . . , tn) = EΘY

[
n

∏
i=1

(
e−ti
)ΘY

]
=W Y⃗

(
n

∑
i=1

ti

)
,

where W X⃗(t) = EΘX [e
−tΘX ] = (1+ t)−βX and W Y⃗ (t) = EΘY [e

−tΘY ] = (1+ t)−βY .
Assume βX < βY . Conditions (1-5) in Theorem 5.32 are fulfilled because of the

following facts:

(1) Both [X⃗(ΘX) | ΘX = θ ] and [⃗Y (ΘY ) | ΘY = θ ] are random vectors of inde-
pendent and exponentially distributed variables with the same rate θ ,

(2) [X⃗(ΘX) | ΘX = θ ] and [⃗Y (ΘY ) | ΘY = θ ] have the independence copula for
any θ ,

(3) [Xi(ΘX) | ΘX = θ1] ≥disp [Xi(ΘX) | ΘX = θ2] for any θ1 ≤ θ2, since both
are vectors of independent and exponentially distributed variables with rates
θ1 and θ2, respectively, and it is easy to check that Z1 ≥disp Z2 whenever
Zi ∼ Exp(θi) and θ1 ≤ θ2,

(4) The variables [Xi(ΘX) | ΘX = θ ] and [Yi(ΘY ) | ΘY = θ ] have the same distri-
bution for any θ ,

(5) ΘX ≤st ΘY by properties of the gamma distribution.

The properties (P1) and (P2) for [Xi(ΘX) | ΘX = θ ] and [Yi(ΘY ) | ΘY = θ ]

are clearly satisfied for any θ ∈ T . Thus, Theorem 5.32 can be applied, and, for
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any weighting vector w⃗ ∈ [0,1], the stochastic inequalities in Equations 5.6 and 5.7
hold.

Note that the vectors X⃗(ΘX) and Y⃗ (ΘY ) have different marginal survival func-
tions, being FXi(ΘX )(t) = (1+ t)−βX and FYi(ΘY )(t) = (1+ t)−βY with t ≥ 0, and
different copulas. In fact, X⃗(ΘX) and Y⃗ (ΘY ) are special cases of the time trans-
formed exponential model (TTE), in which the considered survival copulas are
ĈX⃗(u1, . . . ,un) = W X⃗

(
∑

n
i=1W−1

X⃗ (ui)
)

and Ĉ⃗Y (u1, . . . ,un) = W Y⃗

(
∑

n
i=1W−1

Y⃗ (ui)
)

.
For more details in this regard, the reader is referred to [244].

5.2.2 Conditions for the increasing convex order

As introduced in Section 2.3.5.2, other important variability orders are the convex
and componentwise convex orders. Similar results to those for the dispersive or-
der can be proved using these orders, but with the weaker increasing convex order
between variability estimators.

The first statement is similar to Theorem 5.27. Denote as X⃗D = (Xi −X j, i, j ∈
[n]) the random vector consisting of the difference between the possible combina-
tions of the components of X⃗ .

Theorem 5.34 [38] Let X⃗ and Y⃗ be two random vectors such that X⃗ ≤ccx Y⃗ . Then,

X⃗D ≤cx Y⃗D.

Proof: By Theorem 3.2 in [245], it suffices to prove that E[ϕ(X⃗D)]≤ E[ϕ (⃗YD)] for
any twice differentiable convex function ϕ : Rn2 →R. Thus, let ϕ be any twice dif-
ferentiable convex function. Denote as ϕi and ϕi j, with i, j ∈ [n], its first and second
derivatives. In addition, denote as H its Hessian, which is positive semi-definite.
Now, consider the function φ : Rn → Rn2

defined as φ (⃗x) = {(xi − x j)}i, j∈[n], and

compute ∂ 2ϕ◦φ

∂x2
k

with k ∈ [n].

Firstly, denote as I+ the set of indices such that i ∈ I+ if and only if (φ (⃗x))i =

xk −x j with j ∈ [n]. Similarly, denote as I− the set of indices such that i ∈ I− if and
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only if (φ (⃗x))i = x j − xk with j ∈ [n]. Then:

∂ϕ ◦φ

∂xk
= ∑

i∈I+
ϕi ◦φ − ∑

i∈I−
ϕi ◦φ ,

∂ 2ϕ ◦φ

∂x2
k

= ∑
i, j∈I+

ϕi j ◦φ + ∑
i, j∈I−

ϕi j ◦φ − ∑
i∈I+, j∈I−

ϕi j ◦φ − ∑
i∈I−, j∈I+

ϕi j ◦φ .

Now, consider the vector s⃗ of dimension n2 defined such that si = 1 if i ∈ I+,
si =−1 if i∈ I− and si = 0 if i /∈ I+∪I−. The last expression of the second derivative
is equivalent to ∂ 2ϕ◦φ

∂x2
k

= s⃗ t(H ◦ φ )⃗s. Since H is positive semi-definite, ∂ 2ϕ◦φ

∂x2
k

≥ 0.

This holds for any k ∈ [n], thus ϕ ◦φ is a componentwise convex function.
Then, since X⃗ ≤ccx Y⃗ , it holds E[ϕ ◦ φ(X⃗)] ≤ E[ϕ ◦ φ (⃗Y )] and E[ϕ(X⃗D)] ≤

E[ϕ (⃗YD)] for any twice differentiable convex function ϕ .

Unfortunately, from last result does not follow a statement similar to Corol-
lary 5.28 but having the convex order as an assumption. The reason is that the
composition between two convex functions (or between an increasing convex and a
convex function) is not necessarily convex (or increasing convex). However, con-
ditions to order sample variances in the increasing convex order, under the weaker
assumption of convex order rather than the componentwise convex order, are pro-
vided in the following statement. On the contrary as in Theorem 5.29, no additional
conditions on the same marginal distribution or the same copula for the random
vectors are required. Moreover, the result involves two possible different weighting
vectors for the pondering of the mean and the squared differences.

Theorem 5.35 [38] Let X⃗ and Y⃗ be two random vectors such that X⃗ ≤cx Y⃗ . Then,
for any pair of weighting vectors w⃗ ∈ [0,1]n and v⃗ ∈ [0,1]n it holds

n

∑
i=1

wi

(
Xi −

n

∑
j=1

v jX j

)2

≤icx

n

∑
i=1

wi

(
Yi −

n

∑
j=1

v jYj

)2

.

Proof: Since X⃗ ≤cx Y⃗ , there exist two random vectors ̂⃗X and ̂⃗Y defined in the
same probability space such that X⃗ =st

̂⃗X , Y⃗ =st
̂⃗Y and E[̂⃗Y |̂⃗X ] =a.s.

̂⃗X (see Theo-
rem 2.117).
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Define the function h : R+ → R+ as

h(λ ) = E

 n

∑
i=1

wi

(
Ŷi −

n

∑
j=1

v jŶ j

)2
∣∣∣∣∣∣

n

∑
i=1

wi

(
X̂i −

n

∑
j=1

v jX̂ j

)2

= λ

 .
Consider a vector x⃗ ∈ Rn such that ∑

n
i=1 wi

(
xi −∑

n
j=1 v jx j

)2
= λ . If ̂⃗X = x⃗,

then ̂⃗Y can be expressed as ̂⃗Y = x⃗+ ε⃗ , with ε⃗ being a random vector with a null
mean vector. Therefore,

E

 n

∑
i=1

wi

(
Ŷi −

n

∑
j=1

v jŶj

)2
∣∣∣∣∣∣ ̂⃗X = x⃗

= E

 n

∑
i=1

wi

(
xi −

n

∑
j=1

v jx j + εi −
n

∑
j=1

v jε j

)2
 .

Expanding the square in the right side of the equation, each summand is of the
form

E

(xi −
n

∑
j=1

v jx j

)2

+

(
εi −

n

∑
j=1

v jε j

)2

+2

(
xi −

n

∑
j=1

v jx j

)(
εi −

n

∑
j=1

v jε j

) ,
for any i ∈ [n]. Then, using that the expectation of ε⃗ is 0⃗, it holds that

E

 n

∑
i=1

wi

(
Ŷi −

n

∑
j=1

v jŶj

)2
∣∣∣∣∣∣ ̂⃗X = x⃗

=

= E

 n

∑
i=1

wi

(xi −
n

∑
j=1

v jx j

)2

+

(
εi −

n

∑
j=1

v jε j

)2
≥

≥
n

∑
i=1

wi

(
xi −

n

∑
j=1

v jx j

)2

= λ .

Define the set Cλ =

{⃗
x ∈ Rn : ∑

n
i=1 wi

(
xi −∑

n
j=1 v jx j

)2
= λ

}
and denote as

f the density function of the conditional distribution of ̂⃗X given ̂⃗X ∈Cλ . Using it,

h(λ ) =
∫

x⃗∈Cλ

E

 n

∑
i=1

wi

(
Ŷi −

n

∑
j=1

v jŶj

)2
∣∣∣∣∣∣ ̂⃗X = x⃗

 f (⃗x)d⃗x ≥
∫

x⃗∈Cλ

λ f (⃗x)d⃗x = λ .
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Using the latter inequality,

h

 n

∑
i=1

wi

(
X̂i −

n

∑
j=1

v jX̂ j

)2
≥a.s

n

∑
i=1

wi

(
X̂i −

n

∑
j=1

v jX̂ j

)2

.

Then, it is concluded that

E

 n

∑
i=1

wi

(
Ŷi −

n

∑
j=1

v jŶj

)2
∣∣∣∣∣∣

n

∑
i=1

wi

(
X̂i −

n

∑
j=1

v jX̂ j

)2
≥

n

∑
i=1

wi

(
X̂i −

n

∑
j=1

v jX̂ j

)2

.

In addition, since

n

∑
i=1

wi

(
X̂i −

n

∑
j=1

v jX̂ j

)2

=st

n

∑
i=1

wi

(
Xi −

n

∑
j=1

v jX j

)2

,

and
n

∑
i=1

wi

(
Ŷi −

n

∑
j=1

v jŶ j

)2

=st

n

∑
i=1

wi

(
Yi −

n

∑
j=1

v jYj

)2

,

applying Theorem 2.109 it holds that

n

∑
i=1

wi

(
Xi −

n

∑
j=1

v jX j

)2

≤icx

n

∑
i=1

wi

(
Yi −

n

∑
j=1

v jYj

)2

.

Unfortunately, a similar result cannot be stated when working with the order
statistics, since the convex order is not preserved when the ordering is applied. How-
ever, it is possible to prove a similar result dealing with the Gini mean difference.

Theorem 5.36 [38] Let X⃗ and Y⃗ be two random vectors such that X⃗ ≤cx Y⃗ . Then,

1
n(n−1)

n

∑
i, j=1

∣∣Xi −X j
∣∣≤icx

1
n(n−1)

n

∑
i, j=1

∣∣Yi −Yj
∣∣ .

Proof: Since X⃗ ≤cx Y⃗ , then there exist two random vectors ̂⃗X and ̂⃗Y defined in
the same probability space such that X⃗ =st

̂⃗X , Y⃗ =st
̂⃗Y and E[̂⃗Y |̂⃗X ] =a.s.

̂⃗X (see
Theorem 2.117).
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Define the function h : R+ → R+ as

h(λ ) = E

[
1

n(n−1)

n

∑
i, j=1

|Ŷi −
n

∑
j=1

v jŶj|

∣∣∣∣∣ 1
n(n−1)

n

∑
i, j=1

|X̂i −
n

∑
j=1

v jX̂ j|= λ

]
.

Consider a vector x⃗ ∈ Rn such that 1
n(n−1) ∑

n
i, j=1

∣∣xi − x j
∣∣= λ . If ̂⃗X = x⃗, ̂⃗Y can

be expressed as ̂⃗Y = x⃗+ ε⃗ , with ε⃗ being a random vector with a null mean vector.
Then,

E

[
1

n(n−1)

n

∑
i, j=1

∣∣Yi −Yj
∣∣∣∣∣∣∣ ̂⃗X = x⃗

]
= E

[
1

n(n−1)

n

∑
i, j=1

∣∣xi + εi − x j − ε j
∣∣]=

=
1

n(n−1)

n

∑
i, j=1

E
[∣∣xi + εi − x j − ε j

∣∣]
Focusing on each of the terms, using that the expectation of the absolute value

is always greater than or equal to the expectation of the original random variable,
the following inequality can be computed(

E
[∣∣xi + εi − x j − ε j

∣∣])2 ≥
(
E
[
xi + εi − x j − ε j

])2
=
(
xi − x j

)2
=
∣∣xi − x j

∣∣2 .
Then, one has that E

[∣∣xi + εi − x j − ε j
∣∣]≥ ∣∣xi − x j

∣∣ and, therefore,

1
n(n−1)

n

∑
i, j=1

E
[∣∣xi + εi − x j − ε j

∣∣]≥ 1
n(n−1)

n

∑
i, j=1

∣∣xi − x j
∣∣= λ .

For the rest of the proof, proceed analogously as in Theorem 5.35.

As a consequence of the latter two results, the following particular cases hold
trivially.

Corollary 5.37 [38] Let X⃗ and Y⃗ be two vectors with, respectively, independent
and identically distributed components. If X1 ≤cx Y1, then σ̂2(X⃗) ≤icx σ̂2(⃗Y ) and
G(X⃗)≤icx G(⃗Y ).

Notice that the previous results are also fulfilled for the componentwise convex
order, since it implies the convex order. In Figure 5.2, a summary of the main results
of the latter two sections is provided.
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X⃗ and Y⃗ as
in Theorem 5.29

X⃗ ≤ccx Y⃗X⃗ ≤cx Y⃗

∑
n
i=1 wi

(
Xi −∑

n
j=1 v jX j

)2
≤icx ∑

n
i=1 wi

(
Yi −∑

n
j=1 v jYj

)2

∑
n
i=1 wi

(
X(i)−∑

n
j=1 w jX( j)

)2
≤st ∑

n
i=1 wi

(
Y(i)−∑

n
j=1 w jY( j)

)2

∑
n
i=1 wi

(
Xi −∑

n
j=1 w jX j

)2
≤st ∑

n
i=1 wi

(
Yi −∑

n
j=1 w jYj

)2

w⃗ = v⃗

X⃗ and Y⃗ as
in Corollary 5.28

1
n(n−1) ∑

n
i, j=1

∣∣Xi −X j
∣∣≤st

1
n(n−1) ∑

n
i, j=1

∣∣Yi −Yj
∣∣

1
n(n−1) ∑

n
i, j=1

∣∣Xi −X j
∣∣≤icx

1
n(n−1) ∑

n
i, j=1

∣∣Yi −Yj
∣∣

Figure 5.2: Relationship between the stochastic comparison of vectors and the
stochastic ordering of the variability measures [38].

5.3 Variability measures and dependence orders

In the latter section, the results focused on the location comparison of variability
measures when the random vectors were ordered by means of a variability stochastic
order. However, the dependence between the components of the random sample
also plays a role in the value of the variability measures.

Consider a random vector X⃗ such that the variance of each component is the
same and the covariance between each pair of components is also constant. Then,
the expectation of the sample variance is

E[σ̂2(X⃗)] = Var(X1)−Cov(X1,X2).

Therefore, E[σ̂2(X⃗)] depends on the correlation between the variables. More-
over, it is also clear that the expectation increases as the correlation between the
components of the random sample decreases.

Recall that, as explained in the latter section, computing the minimum of a
penalty function leads to a variability measure (the value of the minimum) and an
aggregation function (the point in which the minimum is attained). Then, intu-
itively, when working with random vectors with strong positive dependence, one
can expect smaller values for penalty functions when evaluated in its minimum.
Regarding Statistics, positive dependence introduces a negative bias, for instance,
in the estimation of the variance by means of the sample variance.
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However, although the intuition is clear, there is a lack of proper mathematical
results in this regard in the literature. In the following sections, results of the form
X⃗ ≤dst Y⃗ =⇒ V (X⃗) ≥lst V (⃗Y ) are studied, where ≤dst is a dependence stochastic
order, ≤lst a location stochastic order and V is a variability measure.

5.3.1 Conditions for the increasing convex order

As explained above, positive dependence seems to lead to smaller values of the
variability measures. The most natural result that one could expect in this regard is
that, if X⃗ ≤sm Y⃗ (see Definition 2.118), then V (X⃗) ≥st V (⃗Y ). In addition, another
reasonable result could be that X⃗ ≤PQD Y⃗ (see Definition 2.119) implies V (X⃗) ≥st

V (⃗Y ). The following counterexample shows that, in general, the latter implications
are not verified.

Example 5.38 [40] Let Y⃗ = (Y1,Y2) be a random vector assuming values in [3]2

and such that P[(Y1,Y2) = (i, j)] = 1/9 for all (i, j) ∈ [3]2. Let X⃗ = (X1,X2) be
another random vector assuming values in [3]2 and such that

P[(X1,X2) = (i, j)] = 14/90 if (i, j) ∈ {(1,3),(3,1)},
P[(X1,X2) = (i, j)] = 6/90 if (i, j) ∈ {(1,2),(2,1),(3,2),(2,3)},
P[(X1,X2) = (i, j)] = 10/90 if (i, j) ∈ {(3,3),(1,1)},
P[(X1,X2) = (i, j)] = 18/90 if (i, j) = (2,2).

It is easy to verify that the conditions for the PQD are satisfied, so X⃗ ≤PQD Y⃗ .
Simple computations show that the absolute differences |X1 −X2| and |Y1 −Y2| take
as values 0, 1 and 2 with probabilities, respectively, 38

90 , 24
90 and 28

90 (for |X1−X2|) and
30
90 , 40

90 and 20
90 (for |Y1 −Y2|). Noticing that P(|X1 −X2| ≤ 0) = 38

90 > P(|Y1 −Y2| ≤
0) = 30

90 and P(|X1 −X2| ≤ 1) = 62
90 < P(|Y1 −Y2| ≤ 1) = 70

90 . Thus, |X1 −X2| and
|Y1−Y2| are not ordered in usual stochastic order, and as a consequence neither X⃗AD

and Y⃗AD are ordered in the usual stochastic order. It is easy to see that the variability
estimators mentioned in previous sections are also not comparable according to the
usual stochastic order, since they are increasing functions of X⃗AD and Y⃗AD.

Notice that for bivariate random vectors, X⃗ ≤sm Y⃗ ⇐⇒ X⃗ ≤PQD Y⃗ , so the
same holds for the supermodular order.
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In this example, it is also interesting to observe that, apart from the uniform
distributions (over [3]) of the marginals, X⃗ and Y⃗ are exchangeable. Therefore, they
are well representative of possible random samples from two random quantities X
and Y .

However, other comparisons follow from the supermodular order between X⃗
and Y⃗ . Recall that X⃗D denotes the random vector consisting of the differences of the
components of X⃗ .

Theorem 5.39 [40] Let X⃗ and Y⃗ be two random vectors. Then,

X⃗ ≤sm Y⃗ =⇒ X⃗D ≥sym−cx Y⃗D.

Proof: By Theorem 3.2 in [245], it suffices to prove that E[ϕ(X⃗D)]≥ E[ϕ (⃗YD)] for
any twice differentiable symmetric convex function ϕ :Rn2 →R. Let ϕ be any twice
differentiable symmetric convex function. Denote as ϕi and ϕi j, with i, j ∈ [n2], its
first and second derivatives. In addition, denote as H its Hessian, which, since ϕ is
convex, is positive semi-definite. Now, consider the function φ : Rn → Rn2

defined
as φ (⃗x) = x⃗D, and compute ∂ 2ϕ◦φ

∂xix j
for i, j ∈ [n] and i ̸= j.

Fix any i ∈ [n] and denote as I+I ⊆ [n2] the set of indices such that k ∈ I+ if and
only if (φ (⃗x))k = xi − xs with s ∈ [n] such that s ̸= i. Similarly, denote as I− the set
of indices such that i ∈ I− if and only if (φ (⃗x))k = xs−xi with s ∈ [n] such that s ̸= i.
Then,

∂ϕ ◦φ

∂xi
(⃗x) = ∑

k∈I+i

ϕi ◦φ − ∑
k∈I−i

ϕi ◦φ ,

and

∂ 2ϕ ◦φ

∂xi∂x j
= ∑

k∈I+i l∈I+j

ϕi j ◦φ + ∑
k∈I−i l∈I−j

ϕi j ◦φ − ∑
k∈I+i l∈I−j

ϕi j ◦φ − ∑
k∈I−i l∈I+j

ϕi j ◦φ .

Since ϕ is symmetric, then ϕi j = ϕi′ j′ for any i, j, i′ j′ ∈ [n2] such that i ̸= j and
i′ ̸= j′ and ϕii = ϕ j j for any i, j ∈ [n2]. Notice that I+i ∩ I+j = I−i ∩ I−j −= /0 if i ̸= j.
In addition, I+i ∩ I−j and I−i ∩ I+j only have one element each (associated with the
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component such that φ equals xi − x j and x j − xi). Then,

∂ 2ϕ ◦φ

∂xi∂x j
(⃗x) = 2n2

ϕ12 ◦φ (⃗x)−2(n2 −2)ϕ12 ◦φ (⃗x)−2ϕ11 ◦φ (⃗x)

= −2ϕ11 ◦φ (⃗x)+2ϕ12 ◦φ (⃗x)

= −ϕ11 ◦φ (⃗x)−ϕ22 ◦φ (⃗x)+ϕ12 ◦φ (⃗x)+ϕ21 ◦φ (⃗x).

The latter expression is negative since

(
1 −1

)(
ϕ11 ◦φ (⃗x) ϕ12 ◦φ (⃗x)
ϕ21 ◦φ (⃗x) ϕ22 ◦φ (⃗x)

)(
1
−1

)
≥ 0,

where the involved matrix is a diagonal submatrix of H ◦φ , which is positive semi-
definite.

Then, ϕ ◦φ is submodular while −ϕ ◦φ is supermodular. Applying that X⃗ ≤sm

Y⃗ , one has E[−ϕ ◦φ(X⃗)]≤ E[−ϕ ◦φ (⃗Y )] and, therefore, E[ϕ(X⃗D)]≥ E[ϕ (⃗YD)] for
any twice differentiable symmetric convex function ϕ .

The latter result is a multivariate generalization of Theorem 4 in [246]. As an
immediate consequence, one gets the following statement regarding vectors con-
taining the absolute differences.

Corollary 5.40 [40] Let X⃗ and Y⃗ be two random vectors. Then,

X⃗ ≤sm Y⃗ =⇒ X⃗AD ≥sym−icx Y⃗AD.

Proof: Let φ : Rn2 → R be any symmetric increasing convex function and let
g : Rn2 → Rn2

be defined as g(x1, . . . ,xn2) = (g1(⃗x), . . . ,gn2 (⃗x)) = (|x1|, . . . , |xn2 |).
Note that the functions g1, . . . ,gn2 are convex.

Define h : Rn2 → R as h = φ ◦g. By the properties of the composition of func-
tions listed in page 86 of [69] it holds that h is convex. Moreover, it is symmetric.
Thus, applying Theorem 5.39 one has,

E
[
φ

(
X⃗AD

)]
= E

[
φ

(
g
(

X⃗D

))]
= E

[
h
(

X⃗D

)]
≥

≥ E
[
h
(⃗

YD

)]
= E

[
φ

(
g
(⃗

YD

))]
= E

[
φ

(⃗
YAD

)]
.
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and the result holds.

It must be pointed out that Corollary 5.40 is a multivariate generalization of
Theorem 13 in [259]. Also, from the corollary easily follow conditions to let some
variability estimators be ordered in the increasing convex order.

Corollary 5.41 [40] Let X⃗ and Y⃗ be two random vectors. If X⃗ ≤sm Y⃗ , then it holds
σ̂2(X⃗)≥icx σ̂2(⃗Y ), G(X⃗)≥icx G(⃗Y ) and R(X⃗)≥icx R(⃗Y ).

Proof: Observe that σ̂2(X⃗) = h1(X⃗AD), G(⃗Y ) = h2(X⃗AD) and R(X⃗) = h3(X⃗AD) with

h1(⃗x) =
1

2n(n−1)

n

∑
i=1

n

∑
j=1

x2
i ,

h2(⃗x) =
1

n(n−1)

n

∑
i=1

n

∑
j=1

xi,

and
h3(⃗x) = max

i∈[n]
{xi}.

Notice that h1, h2 and h3 are symmetric, increasing and convex when xi ≥ 0
for any i ∈ [n]. Thus, applying Corollary 5.40 and recalling that the composition of
increasing convex functions is increasing convex,

X⃗ ≤sm Y⃗ =⇒ X⃗AD ≥sym−icx Y⃗AD =⇒ hi(X⃗AD)≥icx hi(X⃗AD),

for any i ∈ {1,2,3}.

Regarding the stochastic comparison between the sample ranges R(X⃗) and
R(⃗Y ), Corollary 5.41 is an improvement of Proposition 3.2 in [82], where it is shown
that if (X1,X2)≤sm (Y1,Y2) then E[|X1 −X2|]≥ E[|Y1 −Y2|] The improvement is in
two directions: firstly it shows the validity of a stronger comparison between the
two absolute differences under the same assumption, and secondly it generalizes
the result to dimensions greater than 2.

In the following, two examples of the applicability of the last result in insurance
and estimation are provided.
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Example 5.42 Consider an insurance company that has a number n of insureds, to
which can correspond n independent and identically distributed claims X1, . . . ,Xn.
To these claims assign an exchangeable vector I⃗X = (IX

1 , . . . , I
X
n ) consisting of ran-

dom variables with Bernoulli distribution describing the occurrence levels of the
claims and consider the total amount of the claim ∑

n
j=1 IX

j X j faced by the insur-
ance company. This model is widely considered in the literature (see [334] and
references in that paper). Moreover, it is of interest to establish conditions for
comparing the total amount of the claim under different assumptions. As noted
in [16], the difference between the largest and the smallest claims can be consid-
ered as a criterion to evaluate the total amount of the claim. Due to the presence
of the terms IX

j and the dependence between them, an explicit analytical expression
of the distribution function of max j∈[n] IX

j X j −min j∈[n] IX
j X j is generally unavail-

able. However, bounds on this quantity in terms of the increasing convex order
can be provided. Assume, for example, that I⃗Y ≤sm I⃗X , where I⃗Y = (IY

1 , . . . , I
Y
n ) is

a vector of independent Bernoulli random variables that have the same parame-
ters as those of I⃗X . If the occurrences I⃗X have a positive dependence, which is the
usual case for the occurrences of claims, by Theorem 9.A.12 in [295] one has that
(IY

1 X1, . . . , IY
n Xn)≤sm (IX

1 X1, . . . , IX
n Xn). Thus, from Corollary 5.41 it follows

max
j∈[n]

IY
j X j −min

j∈[n]
IY

j X j ≥icx max
j∈[n]

IX
j X j −min

j∈[n]
IX

j X j,

where the distribution in the left side of the inequality can be easily computed, being
the components of (IY

1 X1, . . . , IY
n Xn) independent.

Example 5.43 [40] Consider (X1, . . . ,Xn) to be a sample of observations of a uni-
form distribution over an unknown interval [a,b]. The Maximum Likelihood Esti-
mators for the parameters a and b are, respectively, min(X⃗) and max(⃗Y ), see [278].
In addition, the variance of a uniform distribution takes the value 1

12(b−a)2. Thus,
a natural estimation of the variance is

1
12

(
max(X⃗)−min(X⃗)

)2
=

1
12

R(X⃗)2.

Consider (Y1, . . . ,Yn) to be a new sample of observations of the same uni-
form distribution such that (X1, . . . ,Xn)≤sm (Y1, . . . ,Yn). Then, as proved in Corol-
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lary 5.41, Rn(X) ≥icx Rn(Y ) and, therefore, since f (x) = x2 is increasing and con-
vex,

E
[

1
12

Rn(X)2
]
≥ E

[
1

12
Rn(Y )2

]
.

Notice that, on the contrary as in the case of the sample variance described
in Section 5.2, the latter inequality of expectations cannot be achieved simply by
considering the comparison of the covariances.

5.3.2 Conditions for the usual stochastic order

Example 5.38 shows that, in general, X⃗ ≤sm Y⃗ does not imply the usual stochastic
order between the marginal distributions of X⃗AD and Y⃗AD, i.e., does not imply |Xi −
X j| ≥st |Yi −Yj| for i, j ∈ [n] such that i ̸= j. However, there are cases where this
stochastic inequality is actually satisfied. The following example considers bivariate
exchangeable Bernoulli distributions.

Example 5.44 [40] Let X⃗ = (X1,X2) and Y⃗ = (Y1,Y2) be two bivariate vectors hav-
ing exchangeable Bernoulli distributed marginals of the same parameter p ∈ (0,1).
Consider pX

00, pX
11 ∈ [0,1] such that pX

00 + pX
11 ≤ 1 and pX

00, pX
11 ≤ p. Let (X1,X2) be

such that P[(X1,X2) = (0,0)] = pX
00, P[(X1,X2) = (1,1)] = pX

11 and the remaining
probability is equally distributed over the points (0,1) and (1,0). Similarly, define
the distribution of (Y1,Y2), denoting pY

00 instead of pX
00 and pY

11 instead of pX
11. It is

easy to verify that X⃗ ≤sm Y⃗ holds if and only if pX
00 ≤ pY

00 and pX
11 ≤ pY

11.
Moreover, observe that |X1 − X2| has Bernoulli distribution with parameter

1− (pX
00+ pX

11) while |Y1−Y2| has Bernoulli distribution with parameter 1− (pY
00+

pY
11). Thus, X⃗ ≤sm Y⃗ implies |X1 −X2| ≥st |Y1 −Y2|.

Note that seeing Example 5.44 one may wonder if, in general, dealing with
exchangeable multivariate Bernoulli distributions with dimensions n > 2, the impli-
cation X⃗ ≤sm Y⃗ =⇒ X⃗AD ≥st Y⃗AD still holds true. This is not always the case, as
illustrated in the following example.

Example 5.45 [40] Observe that, for any multivariate Bernoulli random vector X⃗ ,
the corresponding vector X⃗AD still has a multivariate Bernoulli distribution, whose
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dimension is n2. Consider now the sum ∑
n
i, j=1 |Xi −X j| of the components of X⃗AD.

It is easy to verify that it is equivalent to NX(n−NX), where NX = ∑
n
i=1 Xi [133].

Let now X⃗ and Y⃗ be two vectors of dimension n = 5 having exchangeable
multivariate Bernoulli distributions whose marginally distributions are Bernoulli
with parameter p = 0.5. Assume that P(NX = 2) = 3

4 , P(NX = 4) = 1
4 and P(NX =

k) = 0 for any k ∈ {0,1,3,5}. In addition, suppose that P(NY = 2) = 5
6 , P(NY =

5) = 1
6 and P(NY = k) = 0 for any k ∈ {0,1,3,4}.

Note that the vectors X⃗ and Y⃗ defined in this manner are the cases r8(y) and
r9(y) of Table 3 in [129]. It is easy to verify that NX ≤cx NY , thus also X⃗ ≤sm Y⃗
(see Proposition 1 in [133]). Using the relations ∑

n
i, j=1 |Xi−X j|= NX(5−NX) and

∑
n
i, j=1 |Yi−Y j|= NY (5−NY ) one can analytically find the distributions of them, ob-

taining that ∑
n
i, j=1 |Xi−X j| is equal 4 with probability 1

4 and equal 6 with probability
3
4 , while ∑

n
i, j=1 |Yi −Yj| is equal 0 with probability 1

6 and equal 6 with probability
5
6 . Their cumulative distributions cross each other, thus they are not ordered in the
usual stochastic order. Therefore, and since the sum is an increasing function, X⃗AD

and Y⃗AD also cannot be ordered in the usual stochastic order.

Another example of vectors X⃗ and Y⃗ such that X⃗ ≤sm Y⃗ implies |Xi −X j| ≥st

|Yi −Yj| is whenever they have a copula in the FGM family and are exchangeable.

Theorem 5.46 [40] Let X⃗ = (X1,X2) and Y⃗ = (Y1,Y2) be two exchangeable vectors
having FGM copulas. If X⃗ ≤sm Y⃗ then |X1 −X2| ≥st |Y1 −Y2|.

Proof: Let X⃗ = (X1,X2) be exchangeable and having an FGM copula with param-
eter θX . As proved in Theorem 2 in [64], it admits the representation

X⃗ = (⃗1− I⃗)X⃗[1]+ I⃗ X⃗[2], (5.8)

where:

• X⃗[1] is a bivariate vector whose components are independent and having the
same distribution as min(X⃗),

• X⃗[2] is a bivariate vector whose components are independent and having the
same distribution as max(X⃗),
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• I⃗ is a vector having an exchangeable bivariate Bernoulli distribution such that
P(⃗I =(0,0))=P(⃗I =(1,1))= 1+θX

4 and P(⃗I =(0,1))=P(⃗I =(1,0))= 1−θX
4 .

Let X ′
1 and X ′

2 be independent copies of X1 and X2. Observe that if I⃗ = (0,0),
|X1 −X2| has the same distribution as ∆0 = |min(X⃗)−min(X ′

1,X
′
2)|, if I⃗ = (1,1)

then |X1 −X2| has the same distribution as ∆2 = |max(X⃗)−max(X ′
1,X

′
2)|, while if

I⃗ = (1,0) or I⃗ = (0,1) then |X1 −X2| has the same distribution as ∆1 = |max(X⃗)−
min(X ′

1,X
′
2)|.

Denote as ∆02 the random quantity equal to ∆0 with probability 1
2 and equal

to ∆2 with probability 1
2 . Trivially, ∆0 ≤st ∆1 and ∆2 ≤st ∆1, thus applying Theo-

rem 2.104, ∆02 ≤st ∆1.
Finally, observe that, by Equation 5.8, |X1 −X2| assumes the value ∆1 with

probability (1−θX)/2, or the value ∆02 with probability (1+θX)/2.
Consider now Y⃗ = (Y1,Y2) a random vector having the same marginal distri-

butions as X⃗ , but with the FGM copula having parameter θY . Notice that X⃗ ≤sm Y⃗
is equivalent to θX ≤ θY since in this case, and only in this case, the inequalities in
Definition 2.119 are verified, so X⃗ ≤PQD Y⃗ .

Similarly, the absolute difference |Y1 −Y2| takes the value ∆1 with probability
1−θY

2 and the value ∆02 with probability 1+θY
2 . Since θX ≤ θY and ∆1 ≥st ∆02, by

Proposition 2.104 it follows that |X1 −X2| ≥st |Y1 −Y2|.

The reader is referred to Section 6 in [63] for more details on the latter repre-
sentation.
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Aggregation of other random
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Random variables are the most prominent and considered random structures in
the literature, since they are related to data that consists on real numbers. There-
fore, the last chapters have been devoted to study the aggregation of such struc-
tures. However, the concept of aggregation of random variables introduced in Def-
inition 3.6 can be extended, among others, to the aggregation to random vectors,
stochastic processes and random sets.

Each random structure has its own characteristics, such as the unboundedness
or not of the intervals or a particular σ -algebra in the considered measurable space.
Therefore, although there are some points in common, each case needs a different
approach.

Firstly, the construction of aggregations of random elements on bounded posets

229
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is provided in Section 6.1. The definition aims to cover many random structures
such as random graphs or random elements related to ordinal scales. However,
the approach does not suffice to aggregate other structures. For instance, random
vectors are considered in Section 6.2, since Rn is not bounded. Similarly, some
specific considerations have been made in Section 6.3 when dealing with (possibly
infinite) sets of random variables in the aggregation of stochastic processes. Fur-
thermore, a more involved theory for the aggregation of random sets is constructed
in Section 6.4, since there is not an adequate stochastic order in this regard. Finally,
some brief comments are made on the aggregation of other random structures in
Section 6.5.

6.1 Aggregation of random elements on bounded
posets

One of the main generalizations of aggregation functions is the one defined for
bounded posets, in which the monotonicity and boundary conditions are extended
using the order structure [182, 197]. In relation to data analysis, ordinal data, such
as the Likert scale [180], could be of interest even if the values are not real numbers.

The here considered approach is equivalent to the one in [31] but more general,
since the lattice structure is not needed. Moreover, Theorem 2.40 is used to simplify
some of the proofs.

Consider (S,≤) a partially ordered set. To construct the probabilistic structure,
S must be endowed with a σ -algebra. As a generator of such σ -algebra, the set of
intersections between upper and lower sets will be considered. This set is, in fact, a
π-system (see Definition 2.39).

Proposition 6.1 Let (S,≤) be a partially ordered set. Then, the set Fs ⊆ P(S)
defined as:

Fs = {A ⊆ S : A = AL ∩AU , AL lower set of (S,≤), AU upper set of (S,≤)},

is a π-system.
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Proof: Clearly S = S∩ S and /0 = /0∩ /0. If A,B ∈ Fs, then A∩B = (AL ∩AU)∩
(BL ∩BU) = (AL ∩BL)∩ (AU ∩BU). Since the intersection of upper and lower sets
is, respectively, an upper and a lower set, A∩B ∈ Fs.

Moreover, in [31] it is also proved that the complementary of any element in
Fs can be written as a disjoint union of elements of Fs. Now, consider the σ -algebra
generated by Fs, Fs = σ(Fs). The resulting pair (S,Fs) is a measurable space.

These poset and measurable space structures can be extended to the Cartesian
product of S, Sn = S×·· ·× S. The poset (Sn,≤) is defined considering the (com-
ponentwise) lattice order on Sn using as reference the initial order ≤. The Cartesian
product of Fs, Fs ×·· ·×Fs, is also a π-system.

Proposition 6.2 Let (S,≤) be a partially ordered set. Then, Fn
s = Fs ×·· ·×Fs is a

π-system with respect to Sn.

Proof: Since S, /0∈Fs, Sn = S×·· ·×S∈Fn
s and /0= /0×·· ·× /0∈Fn

s . Let A,B∈Fn
s .

Then:

(A1 ×·· ·×An)∩ (B1 ×·· ·×Bn) = (A1 ∩B1)×·· ·× (An ∩Bn) .

For any pair Ai∩Bi with i ∈ [n], it holds that Ai∩Bi ∈ Fs, thus (A1 ∩B1)×·· ·×
(An ∩Bn) ∈ Fn

s .

Notice that any element of Fn
s can be written as the intersection of an upper set

and a lower set of Sn noticing that

A1 ×·· ·×An = (AL,1 ∩AU,1)×·· ·× (AL,1 ∩AU,1) =

= (AL,1 ×·· ·×AL,n)∩ (AU,1 ×·· ·×AU,n) ,

and that the Cartesian product of upper and lower sets is, respectively, an upper and
a lower set.

Therefore, one can consider F n
s = σ(Fn

s ) to construct the measurable space
(Sn,F n

s ). Consider now a bounded poset (S,≤,0,1) and a probabilistic space
(Ω,Σ,P). The following set will be considered:

Ln
S(Ω) = {X⃗ : Ω → Sn | X⃗ is measurable with respect to F n

s }.
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For simplicity, denote Ln
S(Ω) as Ln

S and L1
S as LS. To provide a way to order

these random elements, a stochastic order ≤so should be considered. This order is
expected to be transitive, reflexive and antisymmetric with respect to the equiva-
lence relation of having the same distribution, just as in Definition 2.100. In addi-
tion, it should preserve the initial partial order for degenerate random elements. In
particular, given x⃗, y⃗ ∈ Sn and X⃗ ,Y⃗ ∈ Ln

S such that x⃗ ≤ y⃗ and P(X⃗ = x⃗) = P(⃗Y = y⃗) =
1, it is required that X⃗ ≤so Y⃗ . A definition of a possible stochastic order is provided
below.

Definition 6.3 [31] Let X⃗ ,Y⃗ ∈Ln
S be two random elements. If P(X⃗ ∈U)≤P(⃗Y ∈U)

for every U measurable upper set of Sn, then it is said that X⃗ is smaller than or equal
to Y⃗ in the usual stochastic order and it is denoted by X⃗ ≤st Y⃗ .

It is clear that the latter definition is an extension of the usual stochastic order
for random vectors. However, at this point, it is unknown if it is a stochastic order
or not in the sense of Definition 2.100. The next result gives an affirmative answer
to this question. Recall the definition of F n

s as the σ -algebra generated by the
π-system Fn

s .

Proposition 6.4 [31] The usual stochastic order introduced in Definition 6.3 is a
stochastic order in the sense of Definition 2.100.

Proof: Transitivity is straightforward to prove. Also, if X⃗ and Y⃗ have the same
distribution, then the associated probabilities for upper sets are the same, so X⃗ =st

Y⃗ . The other implication is not immediate. Suppose that X⃗ and Y⃗ have the same
distribution over upper sets.

Let A ∈ Fn
s be an element of the π-system introduced in Proposition 6.2. Ex-

press it as the intersection of an upper and lower set (AU and AL) and compute its
probability,

P(A) = P(AL ∩AU) = P
(
AU\

(
AL ∩AU

))
= P(AU)−P

(
AL ∩AU

)
.

It can be seen that it only depends on probabilities of upper sets, since both
the complementary of a lower set and the intersection of two upper sets is an upper
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set. Therefore, P(X⃗ ∈ A) = P(⃗Y ∈ A) for any A ∈ Fn
s . Then, apply Theorem 2.40 to

conclude that X⃗ and Y⃗ have the same distribution.

Since it has already been proven that ≤st is a proper stochastic order, all the
elements that are necessary to introduce the definition of aggregations of random
elements on bounded posets are settled.

Definition 6.5 Let (S,≤,0,1) be a bounded poset. The function A : Ln
S(Ω)→ LS(Ω)

is an aggregation of random elements on a bounded poset (with respect to ≤st) if
the following conditions are fulfilled:

1. For any X⃗ ,Y⃗ ∈ Ln
S such that X⃗ ≤st Y⃗ , A(X⃗)≤st A(⃗Y ),

2. If X⃗ =a.s. 0⃗1, then A(X⃗) =a.s. 0,

3. If X⃗ =a.s. 1⃗1, then A(X⃗) =a.s. 1.

Notice that the first condition is related to the monotonicity of usual aggrega-
tion functions and the other ones are the boundary conditions. The type of elements
that can be considered is very general, the initial set S and the considered partial
order ≤ can be adjusted for the particular scenario. An illustration of the describe
construction is given in the following example.

Example 6.6 [31] Let S be the set containing the alternatives related to the de-
scription of a speed: s1 =slow, s2=average, s3=medium and s4=fast. Intuitively,
slow and fast are, respectively, the smallest and biggest speeds. However, the terms
average and medium are not clearly ordered, since both refer to centrality values.
Then, a reasonable partial order could be s1 ≤ s2, s1 ≤ s3, s2 ≤ s4 and s3 ≤ s4, be-
ing s2 and s3 incomparable. In this case, the σ -algebra F n

s consists of all subsets
of Sn, since any element of S can be obtained as the intersection of an upper and a
lower set. Now, consider the function A : L2

S → LS defined as A(X⃗) = sup≤(X1,X2),
for which it is easy to check that it is well-defined.

The latter function fulfills the three conditions given in Definition 6.5. In Ta-
ble 6.1 an example of a possible distribution for X⃗ ∈ L2

S and A(X⃗) is shown.
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HH
HHH

HH
X1

X2 s1 s2 s3 s4

s1 0.2 0 0.1 0
s2 0.1 0 0 0
s3 0 0.3 0 0
s4 0.1 0.1 0 0.1

A(X⃗) s1 s2 s3 s4

P 0.2 0.1 0.1 0.6

Table 6.1: Probability distribution of a possible X⃗ ∈ L2
S and its aggregation

A(X⃗) [31].

6.1.1 Induced aggregations on bounded posets

As for random variables, it is possible to prove a Composition Theorem that al-
lows one to define induced aggregations of random elements on bounded posets.
Recall the notion of aggregations on bounded posets given in Definition 2.33. The
following is a generalization of Theorem 3.1 in [31].

Theorem 6.7 Let (S,≤,0,1) be a bounded poset. Let Â : Sn → S be a measurable
aggregation function with respect to the σ -algebras Fn and F . Then, the function
A : Ln

S → LS defined as A( f ) = Â ◦ X⃗ for all X⃗ ∈ Ln
S is an aggregation of random

elements on the bounded poset (S,≤,0,1).

Proof: For any X⃗ ∈ Ln
S, A(X⃗) = Â◦ X⃗ is measurable as a composition of measurable

functions. In addition, since X⃗ : Ω → Sn and Â : Sn → S, it is concluded that Â◦ X⃗ ∈
LS, so A is well-defined.

Since Â is monotone, the preimage of a measurable upper set U ⊆ S is an upper
subset of Sn. Consider X⃗ ,Y⃗ ∈ Ln

S such that X⃗ ≤st Y⃗ . Then,

P(A(X⃗) ∈U) = P(X⃗ ∈ Â−1(U))≤ P(⃗Y ∈ Â−1(U)) = P(A(⃗Y ) ∈U),

and therefore A is monotone.
It is clear that X⃗ =a.s. 0⃗1 implies that A(X⃗) =a.s. 0 as a consequence of the

boundary conditions of Â. The same holds for the upper boundary condition.
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6.1.2 Boundary coherence

A similar study as the one carried out in Sections 3.2 and 3.3 can be done for ag-
gregations of random elements on bounded posets. In particular, notions of random
and degenerate aggregations can be found in Section 3.1 in [31], following the same
ideas and properties as in the case of random variables. Some coherent conditions
as also defined in Section 3.2 in [31]. Although all coherence properties are not go-
ing to be disclosed here, boundary coherence is worth mentioning, since sometimes
the biggest and smallest elements of the poset are especially relevant.

Definition 6.8 [31] Let A : Ln
S(Ω)→ LS(Ω) be an aggregation of random elements

on a bounded poset (S,≤,0,1). Then,

• If for any X⃗ ∈ Ln
S(Ω), P(X⃗ = 0⃗1)≤ P(A(X⃗) = 0) and P(X⃗ = 1⃗1)≤ P(A(X⃗) =

1), A is said to be boundary coherent,

• If for any X⃗ ∈ Ln
S(Ω) and ω ∈ Ω, X⃗(ω) = 0⃗1 =⇒ A(X⃗)(ω) = 0 and X⃗(ω) =

1⃗1 =⇒ A(X⃗)(ω) = 1, then A is said to be strongly boundary coherent.

The strongly boundary coherence can be seen as the boundaries being pre-
served for any element of the probability space, whereas the other one is focused on
the preservation of the probability. It is straightforward to prove that strong bound-
ary coherence implies boundary coherence. The next result states that a degenerate
aggregation of random elements over a bounded poset cannot be boundary coherent.

Proposition 6.9 [31] Let A : Ln
S → LS be a degenerate aggregation of random ele-

ments on a bounded poset. If S has more than one element, then A is not boundary
coherent.

Proof: Since S has more than one element, then 0 ̸= 1. If P(X⃗ = 0⃗1) = P(X⃗ =

1⃗1) = 0.5 and A(X⃗) is degenerate, then it is impossible to have P(A(X⃗) = 0) =

P(A(X⃗) = 1) = 0.5. It is concluded that A is not boundary coherent.

On the other hand, any induced aggregation of random elements on a bounded
poset is strongly boundary coherent.
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Proposition 6.10 [31] Let A be an induced aggregation of random elements on a
bounded poset. Then, A is strongly boundary coherent.

Proof: Let (Ω,F ,P) be the considered probability space. For any ω ∈ Ω, one has
that A(X⃗)(ω) = Â(X⃗(ω)). The strong boundary coherence follows by the boundary
conditions of Â.

6.2 Aggregation of random vectors

When dealing with multivariate data, sometimes one has a set of n vectors of dimen-
sion m that should be aggregated to a unique vector of the same dimension. In this
direction, in recent years the theory of aggregation of vectors has been developed
(see [135, 136, 265, 293, 299]).

Unlike for real numbers, there does not exist a natural total order for real vec-
tors. The most used order is the lattice order, although this componentwise compar-
ison is not a complete relation. In order to fix such a problem, admissible orders,
which are linear extensions of the lattice order, are sometimes considered in the lit-
erature [65, 293]. The following definition of aggregation of vectors considers the
one given in [293] but adapted for a possibly unbounded interval I.

Definition 6.11 Let I be a non-empty real interval. A function A : Inm → Im is said
to be an aggregation of vectors if

1. Is increasing,

2. For any x⃗ ∈ Im, there exists z⃗ ∈ Inm such that A(⃗z)≤ x⃗,

3. For any x⃗ ∈ Im, there exists z⃗ ∈ Inm such that A(⃗z)≥ x⃗.

From a probabilistic point of view, it is possible to define a notion of aggrega-
tion of random vectors by adapting the latter definition similarly to how it has been
done for random variables.
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Definition 6.12 Let (Ω,Σ,P) be a probability space and I a real non-empty inter-
val. An aggregation function of random vectors (with respect to ≤st) is a function
A : Lnm

I (Ω)→ Lm
I (Ω) which satisfies:

1. For any X⃗ ,Y⃗ ∈ Lnm
I such that X⃗ ≤st Y⃗ , A(X⃗)≤st A(⃗Y ),

2. For any X⃗ ∈ Lm
I , there exists Z⃗ ∈ Lnm

I such that A(⃗Z)≤st X⃗ ,

3. For any X⃗ ∈ Lm
I , there exists Z⃗ ∈ Lnm

I such that A(⃗Z)≥st X⃗ .

The elements of Lnm
I can be seen as random matrices in which each of the rows

is associated with an input vector. In particular, given n random vectors of dimen-
sion m (X⃗1, . . . , X⃗n), the i-th component of the j-th random vector will be denoted
as X ji. Aggregations of random vectors can be easily constructed considering m
aggregations of random variables that are applied component by component. For
instance,

Example 6.13 The function A : Lnm
I → Lm

I defined as

A(X⃗1, . . . , X⃗n) =

(
1
n

n

∑
i=1

Xi1, . . . ,
1
n

n

∑
i=1

Xim

)
,

is an aggregation of random vectors.

The type of aggregations of random vectors that can be decomposed into m
aggregations of random variables will be called local. They have a simple structure
that can be used to prove some theoretical results (see Section 6.2.2).

Definition 6.14 An aggregation of random vectors A : Lnm
I → Lm

I is said to be local
if there exist m aggregations of random variables Ai : Ln

I → LI, i ∈ [m] such that:

A(X⃗1, . . . , X⃗n) =
(

A1

(
X⃗11, . . . , X⃗n1

)
, . . . ,Am

(
X⃗m1, . . . , X⃗m1

))
,

for any (X⃗1, . . . , X⃗n) ∈ Lnm
I . The aggregations of random variables A1, . . . ,Am are

said to be the components of A. In addition, if A1(X⃗) ≤st · · · ≤st Am(X⃗) for any
X⃗ ∈ Lnm

I , A is said to be increasingly local and if A1 = · · · = Am, A is said to be
constantly local.

For instance, the aggregation of random vectors introduced in Example 6.13
is local. In particular, its components are induced by the arithmetic mean and,
therefore, it is constantly local.
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6.2.1 Induced aggregations of random vectors

Similar to the aggregation of random variables, a Composition Theorem analogous
to Theorem 3.12 can be proved for aggregations of random vectors.

Theorem 6.15 Let Â : Inm → Im be a measurable aggregation function of vectors.
Then, the function A : Lnm

I → Lm
I defined as A(X⃗) = Â ◦ X⃗ for any X⃗ ∈ Lnm

I is an
aggregation of random vectors.

Proof: Notice that, since the image of Â is Im and is measurable, A is well-defined.
Monotonicity is a direct consequence of Proposition 2.106.

For the boundary conditions, consider the function B1 : Inm → I defined as
B(⃗x) = min(Â(⃗x)) for any x⃗ ∈ Inm. B1 is a measurable aggregation function. Mono-
tonicity and mesurability are a direct consequence of both A and min being in-
creasing and measurable. For the lower boundary condition, let x ∈ I and con-
sider x⃗1 ∈ Im. Then, there exists z⃗ ∈ Inm such that Â(⃗z) ≤ x⃗1 and it is clear that
B(⃗z) = min(Â(⃗x)) ≤ x. For the upper boundary condition, proceed analogously.
Similarly, B2 : Inm → I defined as B2(⃗x) = max(Â(⃗x)) for any x⃗ ∈ Inm is also a mea-
surable aggregation function.

Then, for any X⃗ ∈ Lm
I , min(X⃗) ∈ LI . Applying Theorem 3.12 to B2, there

exists Z⃗ ∈ Lnm
I such that B2(⃗Z) = max(Â(⃗Z)) ≤st min(X⃗). Then, it is clear that

Â(⃗Z) ≤st min(X⃗ )⃗1 ≤st X⃗ and the lower boundary condition holds. Similarly, the
upper boundary condition can be proved by using B1.

The function A is known as the aggregation of random vectors induced by the
aggregation function of vectors Â. One may wonder if the usual stochastic order
also works nicely when considering an admissible order instead of the lattice order
in the aggregation of vectors. Unfortunately, the preservation of the lattice order is
mandatory, and that does not hold in general for aggregations of vectors with respect
to an admissible order. The following is a counterexample regarding the Xu-Yager
order.

Example 6.16 Consider the Xu-Yager order [326] ≤XY defined as (x1,x2) ≤XY

(y1,y2) if and only if x1 + x2 < y1 + y2 or x1 + x2 = y1 + y2 and x2 − x1 ≤ y2 − y1
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and the real interval I = [−1,1]. Define the function A : I4 → I2 as follows:

A

(
x11 x12

x21 x22

)
=



−⃗1 if x11 = x12 = x21 = x22 =−1,

1⃗ if x11 = x12 = x21 = x22 = 1,

1
4

 x11 + x12 + x21 + x22

−(x11 + x12 + x21 + x22)

 otherwise.

It is easy to see that A is an aggregation of vectors with respect to the Xu-Yager
order. In particular, except at the extreme points, the sum of the elements of the
output is always 0 and the difference is monotone with respect to the sum of the
elements of the inputs. The boundary conditions are also fulfilled by definition.

Consider two random vectors of dimension 4, X⃗ , whose all its components have
degenerate distribution on 0, and Y⃗ , with all the components having degenerate
distribution on 0.5. Trivially, X⃗ ≤st Y⃗ . When A is applied, A(X⃗) has degenerate
distribution on (0,0) and A(⃗Y ) has degenerate distribution on (0.5,−0.5). Trivially,
A(X⃗) ̸≤st A(⃗Y ).

However, if there is an interest in defining induced aggregations when consid-
ering an admissible order, a possible solution could be to define a variation of the
usual stochastic order as follows.

Definition 6.17 Let ≤ad be an admissible order. Then, given two random vectors
X⃗ and Y⃗ , they are ordered with respect to the usual stochastic order associated with
≤ad , denoted as X⃗ ≤st−ad Y⃗ , if

P(X⃗ ∈U)≤ P(⃗Y ∈U),

for any upper set with respect to ≤ad , U ⊆ Rn.

6.2.2 Preservation of properties of random vectors

Suppose that one has n random vectors that fulfill some particular property. A
natural question that arises when working with aggregations of random vectors is
whenever such a property also holds for the output random vector. In this section,
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some results regarding the preservation of some properties of random vectors are
provided. In most of the cases, induced and local aggregations of random vectors
are considered, since they have an easy structure and good properties. Starting with
independence, induced and local aggregations of random vectors preserve indepen-
dence of the marginals.

Proposition 6.18 Let A : Lnm
I → Lm

I be an induced and local aggregation of random
vectors and X⃗ = (X⃗1, . . . , X⃗n) ∈ Lnm

I . Let Z⃗i =
(

X⃗1i, . . . , X⃗ni

)
with i ∈ [m] be the

random vector consisting of the i-th components of the vectors X⃗1, . . . , X⃗n. Then,
if the random vectors Z⃗1, . . . , Z⃗m are independent, the components of A(X⃗1, . . . , X⃗n)

are independent.

Proof: Since A is local and induced, A(X⃗) =
(

Â1

(
Z⃗1

)
, . . . , Âm

(
Z⃗m

))
with A1, . . . ,

Am : In → I being usual aggregation functions. The result holds noticing that trans-
formations of independent random vectors are also independent [278].

Another interesting property is exchangeability. In particular, the output ran-
dom vector is exchangeable when the aggregation of random vector is constantly
local and the permutations over the components of all input random vectors lead the
distribution invariant. Notice that the latter condition for the input random vectors
can be achieved just by assuming exchangeability of the involved random variables.

Proposition 6.19 Let A : Lnm
I → Lm

I be an induced and constantly local aggre-
gation of random vectors and X⃗ = (X⃗1, . . . , X⃗n) ∈ Lnm

I . Let Z⃗i =
(

X⃗1i, . . . , X⃗ni

)
with i ∈ [m] be the random vector consisting of the i-th components of the vec-
tors X⃗1, . . . , X⃗n. Then, if for any permutation π : [m]→ [m] it holds (⃗Z1, . . . , Z⃗m) =st

(⃗Zπ(1), . . . , Z⃗π(m)), A(X⃗1, . . . , X⃗n) is exchangeable.

Proof: Since A is induced and constantly local, there exists Â : In → I an aggrega-
tion function such that

A(X⃗) =
(

Â
(

Z⃗1

)
, . . . , Â

(
Z⃗m

))
.

Let π : [m]→ [m] be a permutation and consider

Y⃗ =
(

Â
(

Z⃗π(1)

)
, . . . , Â

(
Z⃗π(m)

))
.
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By hypothesis, it is clear that(
Â
(

Z⃗π(1)

)
, . . . , Â

(
Z⃗π(m)

))
=st

(
Â
(

Z⃗1

)
, . . . , Â

(
Z⃗m

))
,

thus A(X⃗) =st Y⃗ and A(X⃗) is exchangeable.

When the components of the input random vectors are ordered in the usual
stochastic order, applying an increasingly local aggregation of random vectors pre-
serves such an ordering.

Proposition 6.20 Let A : Lnm
I → Lm

I be an increasingly local aggregation of random
vectors and X⃗ = (X⃗1, . . . , X⃗n) ∈ Lnm

I . Let Z⃗i =
(

X⃗1i, . . . , X⃗ni

)
with i ∈ [m] be the

random vector consisting of the i-th components of the vectors X⃗1, . . . , X⃗n. Then, if
Z⃗1 ≤st · · · ≤st Z⃗m, then A(X⃗)1 ≤st · · · ≤st A(X⃗)m.

Proof: From the definition of increasingly local and the monotonicity of aggre-
gations of random variables, A1(⃗Z1) ≤st · · · ≤st Am(⃗Zm), where A1, . . . ,An are the
components of A.

Notice that if Z⃗π(1) ≤st · · · ≤st Z⃗π(m) for a permutation π : [m]→ [m], the latter
result holds when the components of A are ordered as Aπ(1)(X⃗)≤st · · · ≤st Aπ(m)(X⃗)

for any X⃗ ∈ Lnm
I .

Finally, the existence of covariance matrices is relevant for many applications.
For instance, concepts such as efficiency (see Definition 2.122) need the associated
variances to be finite. Fortunately, if the covariance matrix of a random vector
exists, so does the covariance matrix of the result of applying an aggregation of
random vectors that is local and induced by internal aggregation functions.

Proposition 6.21 Let A : Lnm
I → Lm

I be an induced and local aggregation of random
vectors such that its components A1, . . . ,Am are internal. Then, for any X⃗ ∈ Lnm

I for
which its covariance matrix exists, then the covariance matrix of A(X⃗) exists.

Proof: Denote Z⃗1, . . . , Z⃗m as in the latter proofs. Since A has induced and internal
components A1, . . . ,Am

min
(

Z⃗ j

)
≤ A j

(
Z⃗ j

)
= A(X⃗) j ≤ max

(
Z⃗ j

)
.
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Therefore, the following inequality is reached,(
A j

(
Z⃗ j

))2
≤
(

max
(

Z⃗ j

))2
+
(

min
(

Z⃗ j

))2
.

Divide Rm into the subsets Ui = {⃗x ∈Rn : max(⃗x) = xi and xi > xk, k ∈ [i−1]},
with i ∈ [n]. Similarly, consider also the subsets Li = {⃗x ∈Rm : min(⃗x) = xi and xi <

xk, k ∈ [i−1]}, with i ∈ [n]. These subsets are measurable, see [23]. Let f (⃗z) be the
density function of Z⃗ j. The second moment of A(X⃗) j can be bounded as follows

E
[(

A j

(
Z⃗ j

))2
]
=
∫
Rn

(
A j (⃗z)

)2 f (⃗z) d⃗z ≤

≤
∫
Rn

(
(max (⃗z))2 +(min (⃗z))2

)
f (⃗z)d⃗z =

=
n

∑
i=1

(∫
Ui

z2
i f (⃗z)d⃗z+

∫
Li

z2
i f (⃗z)d⃗z

)
≤ 2

n

∑
i=1

E
[
X⃗2

ji

]
The latter bound is well defined and finite since X⃗ has a finite covariance ma-

trix, thus its components have a finite second moment. Therefore, the components
of A(X⃗) have finite second moments, which implies finite first moments by Jensen
inequality (see [171]) and also finite variance. Since all the variances are finite, the
same holds for the covariances. It is concluded that A(X⃗) has a finite covariance
matrix.

6.3 Aggregation of stochastic processes

In the last section, the aggregation of random variables is extended to aggregate
n finite collections of random variables, that is, random vectors. A natural step
in this regard is to consider now possibly infinite collections of random variables,
stochastic processes.

Stochastic processes can be seen as random functions. Unfortunately, it is not
possible to find in the literature works focused on the aggregation of functions. The
closest notion could be the one introduced in Appendix A in [149], in which the
aggregation of an infinite number of inputs is considered. However, the result of
such an aggregation is a real number, not another function. Therefore, the first step
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to introduce an aggregation of stochastic processes is to define the aggregation of
functions.

Given a real interval I, consider a function from an arbitrary set T to I. The set
of this type of functions will be denoted as IT . It will be said that f ,g : T → I are
ordered, f ≤ g, if f (t) ≤ g(t) for any t ∈ T , which is the natural partial order for
functions. When n-dimensional functions of the form f : T → In are considered,
the associated set will be denoted as IT ×·· ·× IT = InT . Then, the extension from
aggregations of vectors to aggregations of functions is immediate.

Definition 6.22 Let I be a real interval and T be an arbitrary set. A function A :
InT → IT is said to be an aggregation of functions if it satisfies:

1. For any f ,g ∈ InT such that f ≤ g, A( f )≤ A(g),

2. For any f ∈ IT , there exists g ∈ InT such that A(g)≤ f ,

3. For any f ∈ IT , there exists g ∈ InT such that A(g)≥ f .

Although this definition does not require any condition for the set T , in the
following it will be supposed that T is an interval of the real line or an infinite
subset of consecutive integers, since many stochastic processes are indexed over a
set related to time and some of their properties (see Definitions 2.89 and 2.90), need
these types of index sets. Although stochastic processes are defined as a collection
of random variables (Xt , t ∈ T ), in the following they will be denoted just as Xt to
ease the notation. In addition, if a random vector is associated with each of the
indices, it will be denoted as X⃗t and its components will be denoted as Xi,t .

However, when working with an infinite index set T , there is the possibility
of having non-bounded functions. As will be seen in Section 6.3.1, this could be a
problem. In this direction, bounded aggregations of functions can be defined just
by replacing the set InT for InT

b = { f ∈ InT | f is bounded } and IT for IT
b = { f ∈

IT | f is bounded } in Definition 6.22.

Moving to the probabilistic setting, the associated sets for stochastic processes
can be defined by following the same idea.
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Definition 6.23 Let (Ω,Σ,P) be a probability space, I a real interval and T a set.
Then, the set of all stochastic processes defined over (Ω,Σ,P) with sample paths in
InT is defined as:

LnT
I (Ω) =

{
X⃗t : T ×Ω → In | X⃗t is measurable ∀t ∈ T

}
.

Similarly to other cases, it will be denoted LnT
I (Ω) just by LnT

I and L1T
I by LT

I .
If the interval I is unbounded, it is possible to have stochastic processes in LT

I with
non-bounded sample paths. This would be a problem in order to prove boundary
conditions of induced aggregations of stochastic processes. In this direction, the
following set is defined.

BnT
I (Ω) =

{
X⃗t ∈ LnT

I (Ω)

∣∣∣∣ sup
t∈T

Xt,i, inf
t∈T

Xt,i ∈ LI(Ω) for any i ∈ [n]
}
.

By requiring supt∈T Xt,i ∈ LI and inft∈T Xt,i ∈ LI , it is imposed that the supre-
mum and infimum should exist and be random variables. For the existence of the
supremum and the infimum, it is enough to have that the processes are bounded. For
the measurability, it is enough to impose that the processes are separable (see [25]).
Moreover, any stochastic process has a separable modification (another stochastic
process with the same finite-dimensional distributions that is separable) [90, 92].
Similarly as in the previous case, consider the notation shortcuts BnT

I and BT
I . No-

tice that if I is bounded, then BnT
I and LnT

I are essentially the same.
The elements of LnT

I can be seen as vector valued stochastic processes. In par-
ticular, given X⃗t ∈ LnT

I , the stochastic process associated with the i-th component
will be denoted as Xi,t . With all the elements already settled, the notion of aggrega-
tion of stochastic processes can be defined.

Definition 6.24 Let (Ω,Σ,P) be a probability space and I a real non-empty inter-
val. An aggregation function of stochastic processes is a function A : LnT

I (Ω) →
LT

I (Ω) which satisfies:

1. For any X⃗t ,Y⃗t ∈ LnT
I such that X⃗t ≤st Y⃗t , A(X⃗t)≤st A(⃗Yt),

2. For any Xt ∈ LT
I , there exists X⃗t ∈ LnT

I such that A(X⃗t)≤st Xt ,

3. For any Xt ∈ LT
I , there exists X⃗t ∈ LnT

I such that A(X⃗t)≥st Xt .
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If the sets BnT
I and BT

I are considered instead of LnT
I and LnT

I in the latter def-
inition, it is said that A is an aggregation of bounded stochastic processes. Aggre-
gations of stochastic processes can be easily constructed by considering a family of
aggregations of random variables that is applied to each of the indices. For instance,

Example 6.25 The function A : LnT
I → LT

I defined as

A(X⃗t) =
1
n

n

∑
i=1

Xi,t ,

is an aggregation of stochastic processes.

In direction, a notion of locality, as already defined for aggregation of random
vectors, can be considered for aggregations of stochastic processes.

Definition 6.26 An aggregation of stochastic processes A : LnT
I → LT

I is said to be
local if there exists a family of aggregations of random variables (At : Ln

I → LI, t ∈
T ) such that:

A(X⃗)t = At

(
X⃗t

)
.

The aggregations of random variables (At : Ln
I → LI, t ∈ T ) are said to be the

components of A. In addition, if At1 =At2 for any t1, t2 ∈ T , A is said to be constantly
local.

For instance, the aggregation of stochastic processes given in Example 6.25 is
local. In particular, its components are induced by the arithmetic mean and, there-
fore, it is constantly local. The latter definition can be extended straightforwardly
to aggregations of bounded stochastic processes.

6.3.1 Induced aggregations of stochastic processes

As stated before, the set LT
I , when I is unbounded, includes unbounded stochas-

tic processes. This is a problem when trying to prove a Composition Theorem for
stochastic processes, since in the proof the supremum and infimum of the involved
stochastic processes are used when dealing with the boundary conditions. How-
ever, when working with BnT

I , everything works as intended. The following is a
generalization of Theorem 3.12 and Theorem 6.15.
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Theorem 6.27 Let Â : InT
b → IT

b be a bounded measurable aggregation function of
functions. Then, the function A : BnT

I → BT
I defined as A(X⃗t) = Â◦ X⃗t = Â(X⃗) is an

aggregation of bounded stochastic processes.

Proof: Notice that, since the image of Â is IT
b and is measurable, A is well-defined.

For monotonicity, consider X⃗t ∈ BnT
I and Y⃗t ,∈ BnT

I two stochastic processes
such that X⃗t ≤st Y⃗t . Then, using Theorem 2.113, there exist ˆ⃗Xt and ˆ⃗Yt such that ˆ⃗Xt =st

X⃗t ,
ˆ⃗Yt =st Y⃗t and ˆ⃗Xt =a.s.

ˆ⃗Yt . Since Â is increasing, it is clear that A( ˆ⃗Xt) ≤a.s. A( ˆ⃗Yt).
Then, since Â( ˆ⃗Xt)=st A(X⃗t) and Â( ˆ⃗Yt)≤st A(⃗Yt), it is concluded that A(X⃗t)≤st A(⃗Yt).

For the boundary conditions, consider the function C1 : I → I fulfilling C1(x) =
inf⃗t∈T n Â( f (⃗t)) with f being the constant function such that f (⃗t) = x for any t⃗ ∈ T n.
It is clear that f is bounded. C1 is well-defined since Â( f ) is bounded. Moreover,
according to the definition of BT

I , if X is a random variable, then C1 ◦X is also a
random variable.

C1 is an aggregation function (of dimension 1). The monotonicity is a direct
consequence of the monotonicity of Â. For the lower boundary condition, consider
x ∈ I. Then, the function defined as f (⃗t) = x for any t⃗ ∈ T n is bounded. Then, by
the boundary conditions of Â, there exists a bounded g ∈ InT such that Â(g) ≤ f .
Let y = inf⃗t∈T n g(⃗t), which exists since g is bounded. Then, it is clear that C1(y)≤
inft∈T Â(g)≤ x. For the upper boundary condition, proceed analogously. Similarly,
C2 : I → I defined as C2(x) = sup⃗t∈T n Â( f (⃗t)) with f being the constant function
such that f (⃗t) = x for any t⃗ ∈ T n is an aggregation function.

Let Xt ∈ BT
I . By the definition of BT

I , inft∈T Xt ∈ LI . Applying Theorem 3.12 to
C2, there exists Y ∈ LI such that C2 ◦Y ≤st inft∈T Xt . Consider the stochastic process
Y⃗t ∈BnT

I defined as Yi,t =Y for any t ∈ T and i∈ [n]. Then, C2(Y ) = supt∈T Â(⃗Yt)≤st

inft∈T Xt . Then, it is clear that Â(⃗Yt)≤st Xt . Similarly, the upper boundary condition
can be proved by using C1.

6.3.2 Preservation of properties of stochastic processes

Similarly to the study already considered in Section 6.2.2, there are many properties
of stochastic processes that are of interest. In some cases, one does not want to lose
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these properties when applying an aggregation of stochastic processes. In the fol-
lowing, sufficient conditions for the preservation of several properties are provided,
mainly related to being induced and local.

As a first step, it is easy to show that the Markov property is not preserved.
This is a consequence of the fact that for the Markov property to be preserved,
bijective functions should be considered. To the best knowledge of the author, for
instance, there does not exist any increasing bijection between [0,1]n and [0,1],
thus no aggregation function can fulfill this role. However, a weaker result can be
proved.

Proposition 6.28 Let A : Ln
IT → LIT be an induced and local aggregation of stochas-

tic processes and let X⃗t ∈ LnT
I . Then, if X⃗t fulfills the Markov property, then A(X⃗t)t0

and A(X⃗t)t2 are conditionally independent given X⃗t1 for any t0, t1, t2 ∈ T such that
t0 ≤ t1 ≤ t2.

Proof: Since X⃗t is Markovian, it holds that X⃗t0 and X⃗t2 are conditionally inde-
pendent given X⃗t1 for any t0, t1, t2 ∈ T such that t0 ≤ t1 ≤ t2. Since A is local and
induced, there exists two measurable aggregation functions At0 and At2 such that
At0(X⃗t0) = A(X⃗t)t0 and At2(X⃗t2) = A(X⃗t)t2 . Since (conditional) independence is pre-
served when composing a random variable and a measurable function (see [278]) it
holds that A(X⃗t)t0 and A(X⃗t)t2 are conditionally independent given X⃗t1 .

Secondly, the property of being stationary, i.e. having a distribution that is
invariant with respect to translations, is preserved when applying an aggregation of
stochastic processes that is also invariant in this regard.

Proposition 6.29 Let A : LnT
I → LT

I be an induced and constantly local aggregation
of stochastic processes and let X⃗t ∈ LnT

I . Then, if X⃗t is stationary, then A(X⃗t) is
stationary.

Proof: Consider two collections of random vectors (X⃗t1, . . . , X⃗ts) and (X⃗t1+h, . . . ,

X⃗ts+h). Since X⃗t is stationary, both have the same distribution. Applying that A is
constantly local and induced,

A(X⃗)t1, . . . ,A(X⃗)ts = Â◦ X⃗t1, . . . , Â◦ X⃗ts,

A(X⃗)t1+h, . . . ,A(X⃗)ts+h = Â◦ X⃗t1+h, . . . , Â◦ X⃗ts+h,
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where Â is an aggregation function. Trivially, the latter random vectors have the
same distribution, thus it is concluded that A(X⃗t) is stationary.

Ergodicity is a relevant property, since it allows one to estimate the constant
expectation of the stochastic process just by using one sample path instead of many
independent observations. Linearity is crucial for this property, so it is preserved
when applying weighted arithmetic means.

Proposition 6.30 Let A : LnT
I → LT

I be a constantly local aggregation of stochastic
processes induced by a weighted arithmetic mean and let X⃗t ∈ LnT

I . If X⃗t is ergodic,
then A(X⃗t) is ergodic.

Proof: Suppose that the mean vector of X⃗t is µ⃗t , which is constant for any t ∈ T
since the process is ergodic. Given a weighting vector w⃗ for the weighted arithmetic
mean, E[A(X⃗t)] = ∑

n
i=1 wiµi.

In the case that T = [0,∞), compute the time average estimation:

lim
L→∞

1
L

∫ L

0
A(X⃗)tdt = lim

L→∞

1
L

∫ L

0

n

∑
i=1

wiXi,tdt =
n

∑
i=1

wi lim
L→∞

1
L

∫ L

0
Xi,tdt =a.s

n

∑
i=1

wiµi,

where the last step is achieved by using the ergodicity of X⃗t . Therefore, A(X⃗t) is
also ergodic. If T is discrete, the proof is achieved analogously.

Similarly, being a martingale is defined in terms of an expectation, which has
good properties with respect to linear functions. Therefore, weighted arithmetic
means applied to martingales return martingales.

Proposition 6.31 Let A : LnT
I → LT

I be a constantly local aggregation of stochas-
tic processes induced by a weighted arithmetic mean and let X⃗t ∈ LnT

I . If X⃗t is a
martingale, then A(X⃗t) is a martingale.

Proof: Consider t0, t ∈ T such that t ≥ t0. Suppose that A(X⃗)t0 equals λ . Denote as
g(⃗x) the conditional density function of X⃗t0 given A(X⃗)t0 = λ . The mean of A(X⃗)t

given A(X⃗)t0 = λ can be computed as follows:∫
E[A(X⃗)t | X⃗t0 = x⃗]g(⃗x)d⃗x.
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Then, compute E[A(X⃗)t | X⃗t0 = x⃗] for a fixed x⃗ ∈ Rn such that ∑
n
i=1 wixi = λ .

Applying the fact that X⃗t is a martingale,

E[A(X⃗)t | X⃗t0 = x⃗] = E

[
n

∑
i=1

wiXi,t

∣∣∣∣∣ X⃗t0 = x⃗

]
=

=
n

∑
i=1

wiE[Xi,t | X⃗t0 = x⃗] =
n

∑
i=1

wixi = λ .

Then, the initial integral can be computed as follows:∫
E[A(X⃗)t | X⃗t0 = x⃗]g(⃗x)d⃗x =

∫
λg(⃗x)d⃗x = λ .

The same holds when considering the conditional distribution given, in addi-
tion, the values of the vectors X⃗t1, . . . , X⃗tk such that ti ≤ t0 for any i ∈ [k] and k ∈N. It
is concluded that A(X⃗) is a martingale. The case of discrete distributions or discrete
index set can be proven analogously.

In addition, the properties of being a submartingale or supermartingale are pre-
served when, respectively, the maximum and minimum are applied to each index.

Proposition 6.32 Let A : LnT
I → LT

I be a constantly local aggregation of stochastic
processes induced by the maximum (minimum) and let X⃗t ∈ LnT

I . If X⃗t is a sub-
martingale (supermartingale), then A(X⃗t) is a submartingale (supermartingale).

Proof: Consider t0, t ∈ T such that t ≥ t0. Let (Ω,F ,P) be the probability space.
Consider the disjoint decomposition of Ω given by Ω = ∪n

i=1Ci with:

Ci =
{

w ∈ Ω : max(X⃗t0) = Xi,t0 , max(X⃗t0) ̸= X j,t0, j < i
}
.

Of course, Ci is measurable for any i ∈ [n]. Then, the inequality for the mean
can be computed for every subset Ci, using that X⃗t is a submartingale:

E
[
max(X⃗t)

∣∣∣ max(X⃗t0) = λ ,Ci

]
= E

[
max(X⃗t)

∣∣∣ Xi,t0 = λ

]
≥

≥ E
[
X⃗i,t

∣∣∣ Xi,t0 = λ

]
≥ λ .
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Finally, the total expectation is computed:

E
[
max(X⃗t)

∣∣∣ max(X⃗t0) = λ

]
=

n

∑
i=1

E
[
max(X⃗t)

∣∣∣ max(X⃗t0) = λ ,Ci

]
P(Ci)≥

≥
n

∑
i=1

λP(Ci) = λ .

The same holds when considering the conditional distribution given, in addi-
tion, the values of the vectors X⃗t1 , . . . , X⃗tk such that ti ≤ t0 for any i ∈ [k] and k ∈ N.
The proof for the minimum is analogous.

Finally, it is shown that the reflection principle, fulfilled, for instance, by the
Brownian motion [168], is preserved by the minimum.

Proposition 6.33 Let A : LnT
I → LT

I be a constantly local aggregation of stochas-
tic processes induced by the minimum and let X⃗t ∈ LnT

I . If the components of X⃗t

are independent and fulfill the reflection principle, then A(X⃗t) fulfills the reflection
principle.

Proof: Compute the probability associated with the reflection principle. Notice
that, if the aggregation is the minimum, the aggregated value is greater than or equal
to a value a if and only if all the inputs are also greater than or equal to a. Also notice
the independence of the components of X⃗t , which allows one to decompose the joint
probability as the product of the marginal probabilities.

P

(
sup

0≤t≤s
A(X⃗)t ≥ a⃗1

)
=

n

∏
i=1

P

(
sup

0≤t≤s
Xi,t ≥ a

)
=

=
n

∏
i=1

2P(Xi,s ≥ a) = 2P
(

A(X⃗)s ≥ a⃗1
)
.

6.4 Aggregation of random sets

The aggregation of random sets, random elements that take values in a set of subsets,
is disclosed in this section. In the following, non-empty closed subsets of Rn will
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be considered.
The main obstacle to defining a notion of aggregation of random sets is that

there does not exist a suitable location stochastic order for random sets already de-
fined. Some approaches in the literature consider dispersion stochastic ordering for
random intervals [83], dispersion stochastic orders defined by the Aumann expecta-
tion [127] or location stochastic relations (but not orders), between p-boxes [242].

Therefore, the first step in the definition of aggregations of random sets will be
to establish a good definition of a stochastic order for random sets. This construc-
tion, as well as its main properties, will be disclosed in the next section. The proper
definition of aggregation of random sets, as well as a Composition Theorem, will
be introduced in Section 6.4.2.

6.4.1 The usual stochastic order for random sets

This section is devoted to the definition of the usual stochastic order for closed,
non-empty and Effros measurable random sets. As a preliminary step, one should
consider an order for closed sets. Recall that Fn denotes the set of closed subsets of
Rn.

Definition 6.34 [34] Let C1,C2 ∈ Fn be two closed sets. Then, if for any x⃗1 ∈ C1

and x⃗2 ∈ C2 it holds x⃗1 ≤ x⃗2 or C1 = C2, it is said that C1 is smaller than or equal
to C2 and it is denoted as C1 ≤C2.

Although another order could be chosen, this particular choice is interesting
since, when extended to random sets, it has almost all the desirable properties that
one expects. It will be denoted as C1 < C2 when C1 ≤ C2 but C1 ̸= C2. As a first
step, it should be proved that the latter relation is a partial order.

Proposition 6.35 [34] The relation ≤ defined in Definition 6.34 is a partial order.

Proof: Reflexivity and transitivity are immediate. For the antisymmetry, suppose
that C1 ̸= C2, C1 ≤ C2 and C2 ≤ C1. Then, if x⃗1 ∈ C1 and x⃗2 ∈ C2, one has that
x⃗1 ≤ x⃗2 and x⃗2 ≤ x⃗1. Then, C1 and C2 consist of just one point and C1 =C2, which
is a contradiction.
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The usual stochastic order for random variables and vectors is defined, among
other alternative definitions, in terms of inequalities of probabilities over measur-
able upper sets (see Theorem 2.102). In the next definition, the notion is extended
by considering upper sets with respect to the partial order of Definition 6.34.

Definition 6.36 [34] Let SX and SY be two random sets of dimension n. Then, if for
any measurable upper set (with respect to ≤) U it is hold that

P(SX ∈U)≤ P(SY ∈U),

it is said that SX is smaller than SY with respect to the usual stochastic order for
random sets and it is denoted as SX ≤st SY .

In general, it is not easy to check if an upper set on Fn is measurable or not. The
most simple examples are of the form {C ∈ Fn |C∩U ̸= /0} and {C ∈ Fn |C ⊆U},
which coincide with the sets of closed subsets that, respectively, intersect or are
contained in an upper set U of Rn.

Proposition 6.37 [34] Let SX and SY be two random sets such that SX ≤st SY . Then,
for any upper set U ⊆ Rn,

(1) P(SX ∩U ̸= /0)≤ P(SY ∩U ̸= /0),

(2) P(SX ⊆U)≤ P(SY ⊆U).

Proof: It is enough to prove that {C ∈ Fn | C∩U ̸= /0} and {C ∈ Fn | C ⊆U} are
upper sets of Fn. For the first case, consider C1 ∈ {C ∈ Fn |C∩U ̸= /0} and C2 ∈ Fn

such that C1 ≤C2. Let x⃗1 ∈C1∩U . Then, since C2 is not empty, there exists x⃗2 ∈C2

such that x⃗1 ≤ x⃗2. Since U is an upper set of Rn, then x⃗2 ∈U , so x⃗2 ∈C2 ∩U . It is
concluded that C2 ∩U ̸= /0.

For the second case, let C1 ∈ {C ∈ Fn | C ⊆ U} and C2 ∈ Fn be such that
C1 ≤C2. Consider any x⃗2 ∈C2. Then there exists x⃗1 ∈C1 such that x⃗1 ≤ x⃗2. Using
that C1 ⊆U , one has x⃗1 ∈U , so x⃗2 ∈U . It is concluded that C2 ⊆U .

The interpretation of the result above is immediate. If SX ≤st SY , SX intersects
upper sets of Rn with less probability than SY . Similarly, SX has a smaller probabil-
ity of being contained in an upper set of Rn than SY .
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Before studying in more detail the usual stochastic order for random sets, it
remains to prove that the relation defined is, indeed, a stochastic order in the sense
of Definition 2.100. Reflexivity and transitivity can be proved straightforwardly.
However, antisymmetry is far from being straightforward. In this regard, it is nec-
essary to prove that, if SX =st SY , then they have the same distribution. The proof
will be constructed in subsequent results. As a first step, consider n-dimensional
open cubes.

Lemma 6.38 [34] Let SX and SY be two random sets such that SX =st SY and
x⃗1, x⃗2 ∈ Rn such that x⃗1 < x⃗2. Then, P(SX ∩C ̸= /0) = P(SY ∩C ̸= /0) with C =

{⃗x ∈ Rn | x⃗1 < x⃗ < x⃗2}.

Proof: Define L = {⃗x ∈ Rn | x⃗ < x⃗2} and U = {⃗x ∈ Rn | x⃗1 < x⃗}. Notice that U is
an upper set of Rn and L is a lower set of Rn. Decompose the probability for SX as
follows,

P(SX ∩C ̸= /0) = P(SX ∩ (U ∩L) ̸= /0) = P(SX ∩ (U\(L̄∩U)) ̸= /0) =

= P(SX ∩U ̸= /0)−P(SX ∩U ̸= /0,SX ∩U ⊆ L̄).

Similarly, one has P(SY ∩C ̸= /0) =P(SY ∩U ̸= /0)−P(SY ∩U ̸= /0,SY ∩U ⊆ L̄).
Using Proposition 6.37, P(SX ∩U ̸= /0) = P(SY ∩U ̸= /0). It remains to prove that
{C ∈ Fn | C∩U ̸= /0,C∩U ⊆ L̄} is an upper set in Fn.

Let C1 ∈ {C ∈ Fn | C∩U ̸= /0,C∩U ⊆ L̄} and C2 ∈ Fn be such that C1 ≤C2.
As proven in Proposition 6.37, it holds that C2 ∩U ̸= /0.

Consider x⃗1 ∈C1∩U and x⃗2 ∈C2∩U . Notice that, since C1 ≤C2, then C1∩U ≤
C2∩U and x⃗1 ≤ x⃗2. Then, using the same procedure as in (2) in Proposition 6.37 by
noticing that L̄ is an upper set, it holds that x⃗2 ∈ L̄ and it is concluded that C2∩U ⊆ L̄.

Then, P(SX ∩U ̸= /0,SX ∩U ⊆ L̄) = P(SY ∩U ̸= /0,SY ∩U ⊆ L̄) and it is con-
cluded that P(SX ∩C ̸= /0) = P(SY ∩C ̸= /0).

The next step is to generalize the result to the intersection, simultaneously, with
a finite number of n-dimensional open cubes. The result holds by expressing such
probabilities as a finite linear combination of the probabilities of the form of the
latter result.
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Lemma 6.39 [34] Let C1, . . . ,Cm be sets defined as Lemma 6.38 with m ∈ N. If
SX =st SY , then it holds that

P(SX ∩C1 ̸= /0, . . . ,SX ∩Cm ̸= /0) = P(SY ∩C1 ̸= /0, . . . ,SY ∩Cm ̸= /0).

Proof: Decompose each Ci with i ∈ [m] as Ci = Ui ∩Li as in Lemma 6.38. The
following identity will be proved:

P(SX ∩C1 ̸= /0, . . . ,SX ∩Cm ̸= /0) = ∑
x⃗∈B(m)

(−1)∑
n
i=1 xiP(Ax1

1 , . . . ,Axm
m ),

where A0
i is the event SX ∩Ui ̸= /0, A1

i is the intersection of the events SX ∩Ui ̸= /0 and
SX ∩Ui ⊆ L̄i and B(m) = {⃗x ∈ Rm | xi ∈ {0,1}} is the boolean cube of dimension
m. The case m = 1 has already been proven in Proposition 6.37. Suppose that it is
true for m−1. Then,

P(SX ∩C1 ̸= /0, . . . ,SX ∩Cm ̸= /0) =

= ∑
x⃗∈B(m−1)

(−1)∑
m−1
i=1 xiP(Ax1

1 , . . . ,Axm−1
m−1,SX ∩Cm ̸= /0) =

= ∑
x⃗∈B(m−1)

(−1)∑
m−1
i=1 xi

[
P(Ax1

1 , . . . ,Axm−1
m−1,SX ∩Um ̸= /0)−

−P(Ax1
1 , . . . ,Axm−1

m−1,SX ∩Um ̸= /0,SX ∩Um ⊆ L̄m)
]
=

= ∑
x⃗∈B(m)

(−1)∑
m
i=1 xiP(Ax1

1 , . . . ,Axm
m ).

The result follows by noticing that the sets A0
i and A1

i are upper sets for any
i ∈ [m] and that the intersection of upper sets is an upper set.

The last step before the main result is to consider probabilities related to the
intersection with at least one of these cubes instead to all of them.

Lemma 6.40 [34] Let C1, . . . ,Cm be sets defined as in Lemma 6.38. If SX =st SY ,
then it holds that

P(SX ∩ (∪n
i=1Ci) ̸= /0) = P(SY ∩ (∪n

i=1Ci) ̸= /0).



255 6.4. AGGREGATION OF RANDOM SETS

Proof: It will be proved that:

P(SX ∩ (∪m
i=1Ci) ̸= /0) = ∑

x⃗⊆[m]

(−1)#⃗xP(SX ∩Cx1 ̸= /0, . . . ,SX ∩Cx#⃗x ̸= /0),

where #⃗x denotes the number of elements of x⃗.
For m = 1, it holds since the right side of the latter equation is just P(SX ∩C1

̸= /0). Suppose that it is true for m−1. Then,

P(SX ∩ (∪m
i=1Ci) ̸= /0) = P(SX ∩

((
∪m−1

i=1 Ci
)
∪Cm

)
̸= /0) =

= P(SX ∩
(
∪m−1

i=1 Ci
)
̸= /0)+P(SX ∩Cm ̸= /0)−

−P(SX ∩
(
∪m−1

i=1 Ci
)
̸= /0,SX ∩Cm ̸= /0) = P(SX ∩Cm ̸= /0)+

+ ∑
x⃗⊆[m−1]

(−1)#⃗x [P(SX ∩Cx1 ̸= /0, . . . ,SX ∩Cx#⃗x ̸= /0)−

−(−1)#⃗xP(SX ∩Cx1 ̸= /0, . . . ,SX ∩Cx#⃗x ̸= /0,SX ∩Cm ̸= /0)
]
=

= ∑
x⃗⊆[m]

(−1)#⃗xP(SX ∩Cx1 ̸= /0, . . . ,SX ∩Cx#⃗x ̸= /0).

Finally, the identity P(SX ∩
(
∪m

i=1Ci
)
̸= /0) = P(SY ∩

(
∪m

i=1Ci
)
̸= /0) holds since

all the summands of the latter equation are of the form of Lemma 6.39, thus have
the same value for SX and for SY .

The latter results lead to the main one, in which it is proved that SX and SY

have the same distribution if and only if they hold SX =st SY . In particular, open
covers of compact sets consisting on open cubes are considered, proving the result
by using the Choquet Theorem.

Theorem 6.41 [34] Let SX and SY be two random sets. Then, SX =st SY if and only
if SX and SY have the same distribution.

Proof: Trivially, if SX and SY have the same distribution, then SX =st SY . For the
other implication, let K be a compact set on Rn. Consider Rk = ∪p⃗∈KBM(p⃗, 1

k ) with

BM

(
p⃗,

1
k

)
=

{⃗
x ∈ Rn

∣∣∣∣ max
i∈[n]

|xi − pi|<
1
k

}
,



CHAPTER 6. AGGREGATION OF OTHER RANDOM STRUCTURES 256

being the ball with center p⃗∈K and radius 1
n with respect to the Manhattan distance.

Notice that
(
BM(p⃗, 1

k ), p⃗ ∈ K
)

is, for any k ∈N, an open cover of K. Since K is
compact, there exists a finite open subcover, i.e.

(
BM(p⃗, 1

n), p⃗ ∈ Kk
)

with Kk finite
and such that K ⊆ ∪p⃗∈KkBM(p⃗, 1

n).
Consider R′

k = ∪p⃗∈KkBM(p⃗, 1
k ). In the following, the convergence limk→∞ Rk =

K will be proved. It is clear that K ⊂Rk for any k ∈N. In addition, let x⃗∈ limn→∞ Rk.
Then, for any k ∈ N, there exists p⃗ ∈ K such that maxi∈[n] |xi − pi| < 1

k . Therefore,
d(⃗x,K) = 0. Since K is compact, it is closed and therefore x⃗ ∈ K.

Then, limk→∞ Rk ⊆ K. It is concluded that limk→∞ Rk = K. Moreover, since
Rk+1 ⊆ Rk for any k ∈ R, one has that for any random set S

lim
k→∞

P(S∩Rk ̸= /0) = P
(

S∩
(

lim
k→∞

Rk

)
̸= /0
)
= P(S∩K ̸= /0).

Notice that, since K ⊆ R′
k ⊆ Rk for any k ∈ N, it is clear that:

P(S∩K ̸= /0)≤ lim
k→∞

P(S∩R′
k ̸= /0)≤ lim

k→∞
P(S∩Rk ̸= /0) = P(S∩K ̸= /0),

thus P(S∩K ̸= /0) = limk→∞ P(S∩R′
k ̸= /0). Noticing that R′

k = ∪p⃗∈KkBM(p⃗, 1
k ) is

a set of the form described in Proposition 6.40 for any k ∈ N, it is concluded that
P(SX ∩K ̸= /0) = P(SY ∩K ̸= /0). The result holds by using Theorem 2.92.

Therefore, the usual stochastic order for random sets is a stochastic order as
defined in Definition 2.100. Similarly as with the usual stochastic order of random
vectors, having P(SX ≤ SY ) = 1 ensures SX ≤st SY .

Proposition 6.42 [34] Let SX and SY be two random sets defined in the same prob-
ability space such that P(SX ≤ SY ) = 1 (denoted as SX ≤a.s. SY ). Then, SX ≤st SY .

Proof: Let U be an upper set of Fn and let C ⊆ Ω be the measurable subset of the
probability space such that, for any ω ∈ C, SX(ω) ≤ SY (ω). Then, if SX(ω) ∈ U ,
SY (ω) ∈ U for any ω ∈ C. Since P(C) = 1, then P(SX ∈ U) ≤ P(SY ∈ U) and the
result holds.

Using the latter result, it is easy to construct pairs of random sets that are or-
dered with respect to the usual stochastic order. The next result involves a Poisson
process.
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Example 6.43 [34] Let (Φt , t ∈R+) be a homogeneous Poisson process (see [188])
with rate λ . Then, consider n ∈ N and the random sets [Xn−1,Xn] and [Xn,Xn+1],
where Xn denotes the arrival time of Φt at the value n∈N. It holds that P([Xn−1,Xn]

≤ [Xn,Xn+1]) = 1, so [Xn−1,Xn]≤st [Xn,Xn+1].

6.4.1.1 Closure properties

In the following results, the preservation of the usual stochastic order for random
sets is studied. Some of the here-presented results are generalizations of the well-
known cases for random random vectors, which can be found in Theorem 6.B.16.
of [295]. The first case that is going to be provided is the closure with respect to
mixtures.

Proposition 6.44 [34] Let SX , SY be two random sets and let Θ⃗ be a random vector
such that [SX | Θ⃗ = θ⃗ ]≤st [SY | Θ⃗ = θ⃗ ] for any θ⃗ ∈ S(Θ⃗). Then, SX ≤st SY .

Proof: Let U be any upper set on Fn. Then,

P(SX ∈U) = E[P(SX ∈U | Θ⃗)]≤ E[P(SY ∈U | Θ⃗)] = P(SY ∈U).

Another relevant property of the usual stochastic order for random vectors is
that it is preserved when an increasing function is applied (see Proposition 2.106).
Notice that the notion of increasing function should be linked to an order, which in
this case is the one previously introduced in Definition 6.34.

Definition 6.45 [34] A function h : Fn → Fm is said to be increasing if for any
C1,C2 ∈ Fn such that C1 ≤C2, it holds that h(C1)≤ h(C2).

A sufficient condition to have an increasing function in terms of the latter def-
inition is to apply a closed (i.e. the image of closed sets is closed) and increasing
function of real numbers to closed sets.

Proposition 6.46 [34] Let f : Rn → Rm be an increasing and closed function.
Then, the function f ′ : Fn → Fm defined as f ′(C) = { f (⃗x) | x⃗ ∈C} is increasing.
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Proof: Since f is closed, the image of a closed set is closed, thus f ′ is well-defined.
If C1 =C2, it is clear that f ′(C1) = f ′(C2). If C1 ≤C2, then x⃗1 ≤ x⃗2 for any x⃗1 ∈C1

and x⃗2 ∈C2. Since f is increasing, then f (⃗x1)≤ f (⃗x2) for any x⃗1 ∈C1 and x⃗2 ∈C2.
Then, f ′(C1)≤ f ′(C2).

In the next result, the closure of the usual stochastic order for random sets with
respect to the application of increasing functions is stated.

Theorem 6.47 [34] Let SX and SY be two random sets such that SX ≤st SY and
f : Fn → Fm be a measurable increasing function. Then, f (SX)≤st f (SY ).

Proof: Let U be any upper set of Fm. Then,

P( f (SX) ∈U) = P(SX ∈ f−1(U))≤ P(SY ∈ f−1(U)) = P( f (SY ) ∈U),

where it has been used that the preimage of an upper set by an increasing function
is also an upper set.

In the following, it is explored whenever the usual stochastic order for random
vectors is preserved for the typical set operations. In this direction, not all the
properties that one could expect to be fulfilled actually hold.

The first one is the Cartesian product. Unfortunately, it is easy to find coun-
terexamples for this case. For instance, {0}× [0,1] ̸≤ {1}× [0,1], since (0,0.5) ∈
{0}× [0,1] and (1,0.2) ∈ {0}× [0,1], even it is clear that {0} ≤ {1} and [0,1] ≤
[0,1]. The best one can do is to prove the following result.

Proposition 6.48 [34] Let S1
X , S2

X , S1
Y and S2

Y be random sets such that S1
X <a.s. S1

Y

and S2
X <a.s. S2

Y . Then, S1
X ×S2

X <a.s. S1
Y ×S2

Y .

Proof: There exists a subset B ⊆ Ω in the probability space such that, for any
ω ∈ B, one has that (⃗x1, x⃗2)≤ (⃗x1, x⃗2) for any x⃗1 ∈ S1

X(ω), x⃗2 ∈ S2
X(ω), y⃗1 ∈ S1

Y (ω)

and y⃗2 ∈ S2
Y (ω). Then, it is clear that (⃗x1, x⃗2)≤ (⃗y1, y⃗2) and S1

X ×S2
X <a.s. S1

Y ×S2
Y .

The intersection has better behavior. It is important to remark that, since non-
empty sets have been considered, the intersection of the random sets should be, at
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least, non-empty with probability one. In particular, having two random sets S1 and
S2 of the same dimension such that P(S1 ∩S2 ̸= /0) = 1, one can define:

SX =

S1 ∩S2 if S1 ∩S2 ̸= /0,

{0} otherwise.

The value {0} could be any other closed subset, since it would take this value
with probability 0 and, for probability computations, is negligible. Then, it is clear
that SX does not take empty values and fulfills SX =st S1 ∩ S2. It turns out that the
intersection preserves the usual stochastic order for random sets.

Proposition 6.49 [34] Let S1
X , S2

X , S1
Y and S2

Y be random sets of the same dimension
such that, S1

X ∩S2
X ̸=a.s. /0, S1

Y ∩S2
Y ̸=a.s. /0 and S1

X ×S2
X ≤st S1

Y ×S2
Y . Then, S1

X ∩S2
X ≤st

S1
Y ∩S2

Y .

Proof: Define h : F2n → Fn as h(C1,C2) = C1 ∩C2. It should be proved that h is
increasing. Consider C1,C2,C′

1,C
′
2 ∈ Fn such that C1 ≤ C′

1 and C2 ≤ C′
2. Consider

x⃗ ∈C1 ∩C2 and y⃗ ∈C′
1 ∩C′

2. If C1 <C′
1, since x⃗ ∈C1 and y⃗ ∈C′

1, x⃗ ≤ y⃗. If C2 <C′
2,

one similarly has that x⃗ ≤ y⃗. Finally, if C1 =C′
1 and C2 =C′

2, then C1∩C2 =C′
1∩C′

2.
Then, the result is a consequence of Theorem 6.47.

The last operation that will be studied is the union. Similarly to the Cartesian
product, one can find counterexamples for this case. For instance, {0} ∪ {2} ̸≤
{1} ∪ {3} while {0} ≤ {1} and {2} ≤ {3}. However, weaker properties can be
proved when working with independent random sets.

Proposition 6.50 [34] Let S1
X , S2

X , S1
Y and S2

Y be independent random sets of the
same dimension such that S1

X ≤st S1
Y and S2

X ≤st S2
Y . Then, for any upper set U of

Rn,

1. P((S1
X ∪S2

X)∩U ̸= /0)≤ P((S1
Y ∪S2

Y )∩U ̸= /0),

2. P((S1
X ∪S2

X)⊆U ̸= /0)≤ P((S1
Y ∪S2

Y )⊆U).
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Proof: For the first property,

P((S1
X ∪S2

X)∩U ̸= /0) = P(S1
X ∩U ̸= /0)+P(S2

X ∩U ̸= /0)−
−P(S1

X ∩U ̸= /0,S2
X ∩U ̸= /0) = P(S1

X ∩U ̸= /0)+P(S2
X ∩U ̸= /0)−

−P(S1
X ∩U ̸= /0)P(S2

X ∩U ̸= /0)≤ P(S1
Y ∩U ̸= /0)+P(S2

Y ∩U ̸= /0)−
−P(S1

Y ∩U ̸= /0,S2
Y ∩U ̸= /0) = P((S1

Y ∪S2
Y )∩U ̸= /0).

For the second one,

P((S1
X ∪S2

X)⊆U) = P(S1
X ⊆U,S1

X ⊆U) = P(S1
X ⊆U)P(S1

X ⊆U)≤
≤ P(S1

Y ⊆U)P(S1
Y ⊆U) = P((S1

Y ∪S2
Y )⊆U).

6.4.1.2 Selections and expectation

The usual stochastic order has a characterization in terms of the expectation of in-
creasing functions (see Theorem 2.102). In this section, some results related to the
selection expectation and the usual stochastic order for random sets are provided.
As a first step, consider the comparison of a finite number of selection operators.

Proposition 6.51 [34] Let SX and SY be two random sets such that SX ≤st SY and
let f1, . . . , fk : Fn → Rn be selection operators. Then,

( f1(SX), . . . , fk(SX))≤st ( f1(SY ), . . . , fk(SY )).

Proof: It is enough to prove that for any C1,C2 ∈Fn such that C1 ≤C2, ( f1(C1), . . . ,

fk(C1)) ≤ ( f1(C2), . . . , fk(C2)). If C1 = C2, it is clear that ( f1(C1), . . . , fk(C1)) =

( f1(C2), . . . , fk(C2)). If C1 < C2, since fi(C1) ∈ C1 and fi(C2) ∈ C2 for any i ∈ [k]
and for any x⃗1 ∈C1 and x⃗2 ∈C2 it holds x⃗1 ≤ x⃗2, then one has ( f1(C1), . . . , fk(C1))≤
( f1(C2), . . . , fk(C2)). The result is reached by using Theorem 6.47.

As a direct consequence, if a countable sequence of selectors ( fi, i ∈N) is cho-
sen, ( fi(SX), i∈N)≤st ( fi(SY ), i∈N), where here ≤st stands for the usual stochastic
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order for stochastic processes (see Definition 2.112). Recall the definition of inte-
grable random sets and integrable selections given right after Definition 2.96. In the
next result, it is proved that integrable selections of ordered random sets are ordered.

Theorem 6.52 [34] Let SX and SY be integrable random sets such that SX ≤st SY .
Then,

• For any integrable selection of SX , X⃗ , there exists an integrable selection of
SY , Y⃗ , such that X⃗ ≤st Y⃗ ,

• For any integrable selection of SY , Y⃗ , there exists an integrable selection of
SX , X⃗ , such that X⃗ ≤st Y⃗ .

Proof: By Proposition 2.95, there exists a family of selection operators ( fi, i ∈ N)
such that SX = cl{ fi(SX), i ∈ N} and SY = cl{ fi(SY ), i ∈ N}. In addition, as stated
before, one has that ( fi(SX), i ∈ N) ≤st ( fi(SY ), i ∈ N) as stochastic processes. Let
X⃗0 be an integrable selection of SX and Y⃗0 an integrable selection of SY . Then, define

X⃗ ′
i, j = 1||X⃗n||2∈[ j−1, j)] fi(SX)+1||X⃗n||2 ̸∈[ j−1, j)]X⃗0,

Y⃗ ′
i, j = 1||⃗Yn||2∈[ j−1, j)] fi(SY )+1||⃗Yn||2 ̸∈[ j−1, j)]Y⃗0.

The elements of the sequences (X⃗ ′
i, j, i, j ∈N) and (⃗Y ′

i, j, i, j ∈N) are integrable.
Moreover, SX = cl{X⃗ ′

i, j, i, j ∈N} and SY = cl{⃗Y ′
i, j, i, j ∈N} (see the proof of Propo-

sition 1.2. of Chapter 2 in [239]). Since both sequences are numerable, rearrange
the elements so {X⃗ ′′

i , i ∈ N}= {X⃗ ′
i, j, i, j ∈ N} and {⃗Y ′′

i , i ∈ N}= {⃗Y ′
i, j, i, j ∈ N}.

Let X⃗ ∈ SX be a selection of SX . Then, it is also a selection of cl{X⃗ ′′
i , i ∈ N}.

Denote as Z⃗n the random variable ∑
m(n)
j=1 1A j X⃗

′′
j of Theorem 2.98 when p = 1 and

ε = 1
n . Then, it is clear that:

E
[
||X⃗ − Z⃗n||2

]
→ 0,

and, therefore, since 2-norm convergence implies convergence in distribution [222],
X⃗ =st limn→∞ Z⃗n.

Now, denote as W⃗n the random vector ∑
m(n)
j=1 1A jY⃗

′′
j , where the subsets A1, . . . ,Al

are the same as in Z⃗n. Then, define Y⃗ = limn→∞W⃗n, which is a random variable
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since it is the limit of a sequence of random variables. For each ω ∈ Ω, one has that
Y⃗ (ω) = limn→∞ ∑

m(n)
j=1 1A jY⃗

′′
j (ω). That is, Y⃗ (ω) is a limit point of {Y ′′

i (ω), i ∈ N}
and, therefore, Y⃗ (ω) ∈ cl{Y ′′

i (ω), i ∈ N}, so is a selection of SY . Finally, since
X⃗ ′′

i ≤st Y⃗ ′′
i for any i ∈ N, applying Propositions 2.104 and 2.107 it holds X⃗ ≤st Y⃗ .

The other property can be proved analogously by considering −SX and −SY .

Also in the context of selections, one might ask whether the selection expecta-
tion (see Definition 2.99) of two ordered random sets is also ordered. Unfortunately,
the answer is negative, since the sum of two sets is not increasing in the sense of
Definition 6.45.

Example 6.53 [34] Let SX be a random set that takes the values [0,1] and [1,2]
with probability 0.5. Similarly, consider SY the random set taking the values [1,2]
and [1,3] with probability 0.5.

Trivially, these sets fulfill SX ≤st SY , since they can be seen as a mixture of the
cases [1,2] = [1,2] and [0,1]≤ [1,3], see Proposition 6.44. However, the selection
expectations are E[SX ] = [0.5,1.5] and E[SY ] = [1,2.5] and one has that [0.5,1.5] ̸≤
[1,2.5].

However, a weaker result follows directly from Theorem 6.52.

Corollary 6.54 [34] Let SX and SY be two integrable random sets such that SX ≤st

SY . Then,

• For any x⃗ ∈ E[SX ], there exists y⃗ ∈ E[SY ] such that x⃗ ≤ y⃗,

• For any y⃗ ∈ E[SY ], there exists x⃗ ∈ E[SX ] such that x⃗ ≤ y⃗.

6.4.1.3 Relation with other stochastic orders

Every notion generalized from random vectors to random sets should, if possible,
be equivalent to the initial one if the values of random set are singletons. This is the
case of the usual stochastic order for random sets.

Proposition 6.55 [34] Let X⃗ and Y⃗ be two random vectors. Then, X⃗ ≤st Y⃗ if and
only if {X⃗} ≤st {⃗Y}.
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Proof: For the first implication, suppose that X⃗ ≤st Y⃗ and let U be any upper set of
Fn. Consider U ′ = ∪A⊆U,|A|=1A, that is, the set consisting of the points associated
with the singletons sets of U . Then, P({X⃗} ∈ U) = P(X⃗ ∈ U ′), P({⃗Y} ∈ U) =

P(⃗Y ∈U ′) and therefore,

P({X⃗} ∈U) = P(X⃗ ∈U ′)≤ P(⃗Y ∈U ′) = P({⃗Y} ∈U),

and it is concluded that {X⃗} ≤st {⃗Y}.
For the second one, suppose that {X⃗} ≤st {⃗Y}. Let U ′ be any upper set of Rn.

Then, by using (2) in Proposition 6.37,

P(X⃗ ∈U) = P({X⃗} ⊆U)≤ P({⃗Y} ⊆U) = P(⃗Y ∈U),

and it is concluded that X⃗ ≤st Y⃗ .

As introduced in Definition 2.114, some alternatives for the stochastic order-
ing of random intervals, in the context of imprecise probabilities, were proposed
in [242]. The relation between these stochastic relations and the proposed defini-
tion is explored in the following result.

Proposition 6.56 [34] Let IX = [X1,X2] and IY = [Y1,Y2] be two random intervals.
Then,

IX ≤FSD1 IY =⇒ IX ≤st IY =⇒ IX ≤FSD2 IY and IX ≤FSD5 IY .

Proof: For the first implication, since X2 ≤st Y1, X1 ≤a.s. X2 and Y1 ≤a.s. Y2, it holds
that (X1,X2)≤a.s. (X2,X2)≤st (Y1,Y1)≤a.s. (Y1,Y2), thus (X1,X2,X2)≤st (Y1,Y1,Y2).

Applying Theorem 2.102, consider the two random vectors (X̂1, X̂2, X̂2) and
(Ŷ1,Ŷ1,Ŷ2) fulfilling that (X̂1, X̂2, X̂2) =st (X1,X2,X2), (Ŷ1,Ŷ1,Ŷ2) =st (Y1,Y1,Y2) and
(X̂1, X̂2, X̂2)≤a.s. (Ŷ1,Ŷ1,Ŷ2).

Then, [X̂1, X̂2]≤a.s [Ŷ1,Ŷ2], [X1,X2] =st [X̂1, X̂2]≤a.s [Ŷ1,Ŷ2] =st [X1,X2] and it is
concluded that IX ≤st IY .

For the second implication, since IX ≤st IY , applying Proposition 6.37 one
has that P(IX ⊆ (a,∞)) ≤ P(IY ⊆ (a,∞)) for any a ∈ R. Therefore, since P(IX ⊆
(a,∞)) = P(X1 > a) and P(IY ⊆ (a,∞)) = P(Y1 > a), P(X1 > a)≤ P(Y1 > a). This
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implies that the distribution function of X1 is pointwise greater than the distribution
function of Y1 and it is concluded that X1 ≤st Y1 and IX ≤FSD2 IY .

Similarly, applying again Proposition 6.37, one has that P(IX ∩ [a,∞))≤ P(IY ∩
[a,∞) ̸= /0) for any a ∈ R. Then, since P(IX ∩ [a,∞) ̸= /0) = P(X2 ≥ a) and P(IY ∩
[a,∞) ̸= /0) = P(Y2 ≥ a), P(X2 ≥ a) ≤ P(Y2 ≥ a). Analogously as in the previous
case, it is concluded that IX ≤FSD5 IY .

Notice that other stochastic relations (≤FSD3 ,≤FSD4,≤FSD6) are also defined
in [242], all of them being implied by ≤FSD2 or ≤FSD5 . However, none of them
are equal to ≤st when restricted to random intervals, since they are not transitive,
reflexive and antisymmetric with respect to having the same distribution.

6.4.2 Aggregation functions of random sets

After the detailed study of the usual stochastic order for random sets, a notion of
aggregation of these random structures can be defined. First of all, a modification of
the sets Ln

I , defined for random vectors, should be considered. In particular, given a
probability space (Ω,F ,P), define the set L n

I (Ω) as

L n
I (Ω) = {SX : Ω → Fn | SX is non-empty, Effros measurable, closed

and P(SX ⊆ I) = 1} .

As usual for other structures, they will be denoted for simplicity as L n
I and

L 1
I = LI . Another point that should be addressed are the boundary conditions.

Notice that for unbounded random sets, it is not possible to define proper boundary
conditions. For instance, there does not exist any S ∈ Fn such that S ≤ (−∞,0] or
S ≥ [0,∞), see Definition 6.34. However, it still makes sense to impose boundary
conditions for bounded sets.

Finally, monotonicity is defined using ≤st in Definition 6.36. With all these
elements, a notion of aggregation of random sets can be introduced as follows.

Definition 6.57 Let (Ω,Σ,P) be a probability space and I a real non-empty inter-
val. An aggregation function of random sets (with respect to ≤st) is a function
A : L n

I (Ω)→ LI(Ω) which satisfies:
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1. For any SX ,SY ∈ L n
I such that SX ≤st SY , A(SX)≤st A(SY ),

2. For any almost surely lower bounded S1 ∈LI , there exists S2 ∈L n
I such that

A(S2)≤st S1,

3. For any almost surely upper bounded S1 ∈LI , there exists S2 ∈L n
I such that

A(S2)≥st S1.

When working with random vectors, the latter conditions are equivalent to the
ones of Definition 3.6. The first equivalence is a consequence of Proposition 6.55,
while the second and the third hold noticing that a set consisting of just one point is
always bounded.

As seen in the last examples of aggregation of random structures, it would be
adequate to have a Composition Theorem adapted to random sets that allows one
to construct aggregation of random sets by applying a non-random function to the
random sets. Recall the definition of monotonicity introduced in Definition 6.45.

Theorem 6.58 Let Â : Fn → F be an increasing measurable function such that

1. For any lower bounded S ∈ F, there exists a lower bounded S2 ∈ Fn verifying
Â(S2)≤ S1,

2. For any upper bounded S ∈ F, there exists an upper bounded S2 ∈ Fn verify-
ing Â(S2)≥ S1.

Then, the function A : L n
I → LI defined as A(SX) = Â ◦ SX = Â(X⃗) is an ag-

gregation of random sets.

Proof: Notice that, for any SX ∈ L n
I , SX : Ω → Fn and, since Â : Fn → F , then

Â(X⃗) : Ω → F . The measurability of Â(SX) is a consequence of the measurability
of both SX and Â. Therefore, Â(X⃗) ∈ LI and A is well-defined.

Monotonicity is a direct consequence of Theorem 6.47.
For the boundary conditions, consider the function C1 : I → I such that C1(x) =

inf Â({x}×·· ·×{x}). C1 is well-defined since Â({x}×·· ·×{x}) is lower bounded.
Moreover, using Theorem 2.93, if X is a random variable, then C1 ◦ X is also a
random variable.
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C1 is an aggregation function (of dimension 1). The monotonicity is a direct
consequence of the monotonicity of Â. For the lower boundary condition, consider
x ∈ I. Then, by the properties of Â, there exists a lower bounded S ∈ Fn such that
Â(S) ≤ {x}. Let y = inf⃗x∈S min(⃗x), which exists since S is lower bounded. Then,
it is clear that C1(y) ≤ inf Â(S) ≤ x. For the upper boundary condition, proceed
analogously. Similarly, C2 : I → I defined as C2(x) = sup Â({x}× · · ·× {x}) is an
aggregation function.

Let SX ∈ LI . Applying Theorem 2.93, infSX ∈ LI . Applying Theorem 3.12
to C2, there exists Y ∈ LI such that C2 ◦Y ≤st infSX . Then, C2(Y ) = sup Â({Y}×
·· ·×{Y})≤st infSX . Then, it is clear that Â({Y}×· · ·×{Y})≤st SX . Similarly, the
upper boundary condition can be proved by using C1.

6.5 Aggregation of additional structures

In the following, some brief comments are provided for other random structures
including random intervals, random graphs, random positive semi-definite matrices
and fuzzy random variables.

6.5.1 Aggregation of random intervals

Closed intervals can be seen as vectors of dimension two fulfilling that the first
element is always smaller or equal to the second one. In the literature, great attention
has been paid to the aggregation of intervals [113, 134, 263]. These aggregations
are used when the data is not a precise number but an interval containing the real
value, which is unknown.

The aggregation of random intervals can be studied by considering two differ-
ent approaches, a modification of aggregations of random vectors or a modification
of aggregations of random sets. In the first case, it is enough to restrict the study
to bivariate random vectors (X1,X2) such that X1 ≤a.s. X2. Then a similar result as
in Theorem 6.15 can be stated. The monotonicity is trivially fulfilled, while for the
boundary conditions notice that the random vector Z⃗ in the proof of Theorem 6.15
can be replaced by max(⃗Z)⃗1, which, if n = 2, can be seen as a degenerate random
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interval. In the second case, random intervals can be seen as a particular case of
random closed sets. When more than one random interval is considered, they can
be seen as the Cartesian product of such intervals, which is a random closed set of
dimension n. Clearly, these random sets are contained in L n

I (Ω), so Theorem 6.58
can be used.

Among these two alternatives, the first one considers a weaker stochastic order
for the intervals, since, if IX = [X1,X2] and IY = [Y1,Y2] are two random intervals,
X1 ≤st Y1 and X2 ≤st Y2 are required. In the second one, the usual stochastic order for
sets is stronger, since X2 ≤st Y1 is sometimes required. The monotonicity of the first
can be applied to more vectors of random intervals, but implies a weaker ordering of
the result of the aggregation. The second one states a stronger comparison between
the result of the aggregation, but it can be applied to fewer cases. It has to be said
that in the literature the usual approach is to consider intervals as particular cases
of two dimensional vectors, not as sets. Therefore, the first approach should be
considered in this regard.

The most remarkable example of random intervals is confidence intervals in
estimation [7, 302]. Given a random sample, an interval of possible values of a
parameter is given. Of course, the interval inherits the randomness of the random
sample. In this scenario, aggregation procedures could be useful. If two confidence
intervals for the same parameter have been constructed from two different samples
of the same populations, it is reasonable to combine both confidence intervals to
obtain a new one that uses the information of two samples, as done in [223]. This
procedure can be seen as an aggregation of the initial ones.

6.5.2 Aggregation of random graphs

The aggregation of graphs can be considered when applying a voting rule, the graph
being a preference relation [13], when searching for consensus between different
clustering of a dataset [128] or in the study of social networks [13]. This concept
has been introduced in [122], without considering, in general, any monotonicity
condition. The particular case of monotonic aggregation of (directed) graphs will
be introduced, in which the partial order is the inclusion order of the edges.

Definition 6.59 [300] Let V = [m] be a set of nodes and let G be the set of all
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graphs of the form (V,E), with E ⊆V ×V . Then, the inclusion order is defined as:

(V,E1)≤ (V,E2) ⇐⇒ E1 ⊆ E2.

In this regard, (G ,≤,(V, /0),(V,V ×V )) is a bounded poset where the smallest
graph (V, /0) is the graph without edges and the greatest graph (V,V ×V ) is the
graph in which any pair of nodes is adjacent. Therefore, the theory developed in
Section 6.1 can be used to aggregate random graphs.

One of the most known models for random graphs is the so-called Erdős-Rényi
model [123]. The random graph is defined on a fixed V , and the edges belong in-
dependently to E with probability p. A random Erdős–Rényi graph will be denoted
as (V,E(p)). Considering the usual stochastic order defined in Definition 6.3, it is
immediate that (V,E1(p1)) ≤st (V,E2(p2)) if and only if p1 ≤ p2. For a general
random graph, it will be denoted as (V,Eω), being Eω a function with Ω as its do-
main. In the following example two of the most natural (monotonic) aggregation of
random graphs are given, the union and intersection.

Example 6.60 [31] Let U : Ln
G → LG be the function such that, given the random

graphs (V,E1,ω), . . . ,(V,En,ω) ∈ Ln
G ,

U ((V,E1,ω), . . . ,(V,En,ω)) = (V,∪n
i=1Ei,ω) .

Also consider the function I : Ln
G → LG such that:

I ((V,E1,ω), . . . ,(V,En,ω)) = (V,∩n
i=1Ei,ω) .

Both are aggregations of random graphs, since they can be induced by the
union and intersection of deterministic graphs (see [122]). In particular, if n inde-
pendent Erdős–Rényi graphs are considered, then the distribution of the aggrega-
tion can be easily proven to be:

U ((V,E1(p1)), . . . ,(V,En(pn))) =st

(
V,E

(
1−

n

∏
i=1

(1− pi)

))
,

I ((V,E1(p1)), . . . ,(V,En(pn))) =st

(
V,E

(
n

∏
i=1

pi

))
.
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6.5.3 Aggregation of random positive semi-definite matrices

Random positive semi-definite matrices appear mainly in the estimation of covari-
ance matrices (see [278]). One of the most common distributions for random ma-
trices is the Wishart distribution [323], associated with the estimation of the co-
variance matrix of a multivariate Gaussian random vector. Aggregation of random
matrices can appear, for instance, in the covariance estimation when considering
Multivariate Analysis of Variance (MANOVA) [70], in which, under certain con-
ditions, the covariance estimates in the different groups are fused into a unique
estimation.

The usual order defined over positive semi-definite matrices is the Loewner or-
der, which evaluates the positive semi-definiteness of the difference of the matrices.
Denote the set of all positive semi-definite (of fixed dimension n) as S+n .

Definition 6.61 [314] Let A,B ∈ S+n be two positive semi-definite matrices. Then,
A is smaller than or equal to B with respect to the Loewner order if B−A ∈ S+n .

The latter relation is a partial order. It should be noted that the infimum of S+n
is the null matrix, but S+n does not have a supremum. The definition of a stochastic
order for random positive semi-definite matrices can be done with techniques sim-
ilar to the ones introduced in Section 6.1. In the next example, some functions that
are increasing with respect to the Loewner order are provided.

Example 6.62 [31] Let M1 and M2 be two positive semi-definite matrices. Then,
the following operations are increasing with respect to the Loewner order.

• A(M1,M2) = 0.5M1 +0.5M2,

• A(M1,M2) = tr(M1)M2,

• A(M1,M2) = |M1|M2,

• A(M1,M2) =

∣∣∣∣∣(M1){1,...,k} M0

Mt
0 (M2){k+1,...,n}

∣∣∣∣∣, where k ≤ n, (M1){1,...,k} is the

first diagonal block of dimension k×k of M1, (M2){k+1,...,n} the last diagonal
block of dimension n− k×n− k of M2, M0 is a k×n− k null matrix and Mt

0

is its transpose.
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Notice that, with the appropriate construction of the stochastic order, the latter
functions applied to random matrices could be monotonic in the stochastic sense.
However, in order to work with aggregations of random positive semi-definite ma-
trices, the upper boundary condition should be studied in detail. An easy solution
could be to impose a diagonal matrix with large diagonal elements as an upper
bound. Another possibility is to use arguments similar to those in Theorem 6.15 to
deal with the unboundedness of S+n . In any case, such a study will not be disclosed
here.

6.5.4 Aggregation of fuzzy random variables

Fuzzy random variables are random elements from a probability space to the space
of fuzzy numbers of Rn. More precisely, the set F0(Rn) is defined as the set of all
functions u : Rn → [0,1] such that {⃗x ∈ Rn | u(x) ≥ α} is non-empty and compact
for each α ∈ (0,1], which is associated with all fuzzy numbers on Rn [272]. The
elements of F0(Rn) are functions that give a membership degree between 0 and 1 of
the fuzzy number to each of the elements of Rn. Recall that Bn denotes the Borel
σ -algebra associated with Rn. The formal definition of fuzzy random variable is the
following one.

Definition 6.63 [272] Let (Ω,F ,P) be a probability space. A fuzzy random vari-
able is a function X : Ω → F0(Rn) such that

{(ω, x⃗) ∈ Ω×Rn | x⃗ ∈ Xα(ω)} ∈ F ×Bn,

for every α ∈ [0,1], where Xα : Ω → P(Rn) is defined by

Xα(ω) = {⃗x ∈ Rn | X(ω)(⃗x)≥ α}.

Fuzzy random variables are used for combining two sources of uncertainty,
randomness and imprecision, the first being associated with the difference between
two measurements of the quantity and the second to a vagueness of its value. For
some examples of their application, the reader is referred to [94, 126]

Fuzzy random variables can be seen with three different perspectives. Firstly,
they can be seen as random elements over the space F0(Rn). Notice that several
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orders can be defined between the elements of F0(Rn) (see [339]). In that direction,
if instead of Rn the Cartesian product of a bounded interval I is considered, one
could think F0(In) as a bounded poset. Therefore, the approach of Section 6.1 can
be used to define aggregations of fuzzy random variables in this regard.

Secondly, notice that, as stated in [94], the function Xα is a random set for
any α ∈ [0,1] when considering the Borel σ -algebra associated with the topology
generated by the Hausdorff metric [159]. This notion, see Theorem 2.7 in [239], is
equivalent to Effros measurability. Then, one could define a usual stochastic order
for fuzzy random variables as follows.

Definition 6.64 Let X and Y be two fuzzy random variables. Then, X is said to be
smaller than or equal to Y in the usual stochastic order for fuzzy random variables
if Xα ≤st Yα for any α ∈ [0,1].

Of course, some properties of the introduced stochastic order should be studied.
Moreover, to obtain a Composition Theorem for fuzzy random variables similar to
Theorem 3.12 or Theorem 6.58, it will be necessary to deal with the Zadeh extension
principle [107].

Finally, fuzzy random variables, since their values are functions in F0(Rn),
can be seen as stochastic processes indexed by Rn and having random variables
taking values in the unit interval. However, big values of the function in F0(Rn)

do not imply that the fuzzy random variable is big, since its meaning has to be
with membership degrees, not with its location. Therefore, the approach given in
Section 6.3, although applicable, is not adequate in this case.
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The latter chapters have been devoted to developing the theory of aggregation
of random structures in different ways. Focusing on a more experimental side of
the topic, in this chapter the applicability of the introduced concepts is illustrated.
In particular, some of the defined aggregation operators and introduced methods are
being tested by considering both real databases and simulated studies.

Moving from the mathematical theory to its application to data is not straight-
forward, since sometimes the mathematical concepts are not easy to be represented
properly in computers, where the computations have to been done. In this regard,
some comments about the computability of the aggregation of random structures
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are given in Section 7.1.

The experiments are related to some of the aggregations of random variables
and associated results given in Chapter 4, as well as to an application of the stochas-
tic comparison of variability measures given in Sections 5.2 and 5.3. In particular,
using the results of Section 4.2, a flexible-dimensional estimator, i.e. with a non-
fixed number of inputs, is first defined in Section 7.2. The estimator regards the
mean of symmetric random variables. Subsequently, a simulation study consider-
ing eight relevant symmetric distribution has been done, illustrating the benefits of
the method.

In Section 4.3, many properties of uniform capacities were proved. Some of
them can be tested using usual hypothesis tests in the literature, so the uniformity
of two of the main random generators of capacities is tested in this regard in Sec-
tion 7.3.

Then, the SOWA operator, introduced in Section 4.4.3, is applied to the pre-
diction of the temperature of a room considering the temperature of the rest of the
rooms of the house in Section 7.4. Its behavior is compared with the weighted arith-
metic mean and the OWA operator, with the proposal being the best of the three.

Section 7.5 is devoted to illustrate the importance of the results given in Sec-
tions 5.2 and 5.3, in addition to the study of the properties of the minimum of penalty
functions. More precisely, the proved results are used to propose statistical tests for
the multivariate convex order, the supermodular order and for the dispersive order
(the latter one under some assumptions). The introduced methods are illustrated by
small examples that show its good behavior.

Finally, the IOLF operator and related functions are used in a problem consid-
ering 18 time series of real data of temperature and humidity. As a first step, seven
prediction models with different nature and characteristics are trained, and then six
pre-aggregation functions are used as ensembles. As a result, it is stated that a mod-
ification of the weighted arithmetic mean, but with negative weights, is significantly
the best alternative. These results can be found in Section 7.6.
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7.1 Some comments about computability

In addition to the clear theoretical interest, the aggregation of random structures is
also devoted to its application to data analysis. In this respect, when dealing with
real observations, it is necessary to use numerical methods and computers to obtain
the results.

However, all the constructions given in the previous sections are theoretical
mathematical concepts that are not easily represented in a computer. Focusing on
the simplest example, random variables, even their representation in a computer
environment, is not straightforward. A detailed study of such a representation can
be found in [28], while only a summary is given here.

The first alternative to represent a random variable on a computer is a function
that implements the mathematically measurable function from a probability space
to real numbers. In particular, a fixed probability space (Ω,F ,P) has to be stored
on the computer and then a computer function (X) that maps any value of Ω to R and
satisfies the measurability property has to be considered. This is the most faithful
representation of a random variable, the implementation of the function itself, but
it entails several problems. The first is that the measurability condition is not easy
to check in a computer program. This can be solved by considering F as the parts
of Ω, P(Ω), so any function is measurable. In addition, it is not clear how to
model a usual probability space as the unit interval with the Borel σ -algebra and
the Lebesgue measure. Even if one could solve the latter problems, the space Ln

I

has an infinite number of elements.

The second alternative is to represent the random variable by means of im-
plementing its cumulative distribution. This makes sense for a wide collection of
applications in which only the distribution of the random variable is relevant, but
not the underlying structure of a measurable function from a probability space to
the real numbers. In addition, it is quite simpler than in the previous case. Notice
also that, as stated in Lemma 3.7, the distribution of the output of the aggregation
of random variables can be determined by the distribution of the input. The main
drawback of this representation is that there exist different random variables with
the same distribution function. Another problem is that the possible dependence be-
tween some random variables cannot be considered just by specifying their marginal
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distribution functions. Moreover, the computation of the distribution of the output
is not straightforward for continuous random variables, since numerical integration
is needed in most cases.

The last alternative is to identify random variables with generators of pseudo-
random numbers. This case is the farthest from the initial concept of a random
variable, since the probability structure of the random variables is unknown, only
observations of them are available. However, in some cases, this approach suffices
for applied purposes. In particular, a simulation can be a good approximation of
the behavior of a good number of random systems [124, 179]. Furthermore, the
distribution of a combination of random variables is generally not easy to compute
explicitly, so the use of simulation eases the computations. Of course, a distribution
function can always be approximated by empirical distribution functions [297].

Leaving aside the representation of the random variables, the reality is that,
in many cases, it is not necessary to know the image of each of the elements in
Ln

I , not even its distribution. For problems regarding prediction or estimation, the
given data are always observations of the random elements, that is, the value of the
random elements for a particular and unknown element of the probability space. For
instance, given an aggregation of random variables A, it is often enough to know the
distribution of [A(X⃗) | X⃗ = x⃗].

In this direction, induced aggregations are very convenient, since [A(X⃗) | X⃗ =

x⃗] = Â(⃗x) where Â is the aggregation that induces A. Another simple case in this
regard is the case of conditionally determined aggregations, in which [A(X⃗) | X⃗ = x⃗]
has always degenerate distribution, thus the result is just a real number. Notice that,
even if the determination of this real number depends on the random vector X⃗ , the
typical case is to have a dependence with respect to a quantity associated with the
distribution of X⃗ such as its mean vector. These parameters can be estimated with
the available data, see Section 7.4 for an applied example in this regard, so this is
not a main drawback for its applicability.

If the aggregation is not conditionally determined, there are still some cases in
which [A(X⃗) | X⃗ = x⃗] can be easily determined. For randomly induced aggregations,
the case in which the family of random parameters (λX⃗ , X⃗ ∈ Ln

I ) fulfills that X⃗ and
λ⃗X⃗ are independent for any X⃗ ∈ Ln

I is especially simple. Computing the distribution
of [A(X⃗) | X⃗ = x⃗] to, for instance, determine confidence intervals, is easy when
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knowing x⃗ by using simulation.
Finally, some particular cases of aggregations of random variables with the

same distribution as an induced one can be easily computed. Given two aggrega-
tions of random variables A,B : Ln

I → LI with the same distribution, if the marginal
distribution functions and the copula of (A(X⃗),B(X⃗)) are known, then the distribu-
tion of [B(X⃗) | A(X⃗) = x] can be simulated using the techniques given in Chapter 2
in [253].

7.2 Flexible-dimensional L-statistics for mean esti-
mation of symmetric random variables

The study of the population mean of a random variable is a central problem in
Statistics [278]. Several methods for its estimation have been developed, some of
them focused on order statistics [218]. In particular, the use of linear combinations
of them, known as L-statistics, has been deeply studied in the specialized literature
[2, 121, 138, 157, 203].

In some approaches, the weights of such a linear combination are computed by
integrating a weight-generating function h : [0,1] → R [164]. If the dimension of
the weighting vector is n, the k− th weight is computed as:

wk =
∫ k

n

k−1
n

h(t)dt,

for each k ∈ [n].
A similar approach in Aggregation Theory, usually called Yager’s method to

derive Ordered Weighted Averaging (OWA) weights [140, 327], consists of consid-
ering an increasing bijection g : [0,1]→ [0,1] and computing these weights as

wk = g
(

k
n

)
−g
(

k−1
n

)
,

for each k ∈ [n].
From the mean estimation point of view, the weights that minimize the Mean

Squared Error are especially interesting. Although these MSE-minimizing weights



CHAPTER 7. NUMERICAL RESULTS, SIMULATIONS AND REAL PROBLEMS 278

may be computed if the distribution belongs to a scale-location family, i.e. random
variables fulfilling X = λY + µ for a fixed random variable Y and µ,λ ∈ R, or if
there are some available data, the resulting weights are only defined for a particular
sample size. Nevertheless, in real-world problems, the sample size may change and
therefore the optimal weights are no longer applicable. The most prominent exam-
ple is the case of censored samples [6, 8, 250], which appear naturally in survival
analysis [189], missing observations [214] or the changing sampling frequency that
may appear in signal analysis [17]. It is therefore essential to provide a method that
allows the sample size to be modified in order to deal with real-world scenarios.

In this sense, given a distribution, it would be convenient to be able to find a
certain generating function g, as the one used in Yager’s method [327], to derive
a weighting vector of the required size. However, given a distribution, it is not
easy, in general, to find such a function g to generate the optimal weights, in the
sense of minimizing the MSE in mean estimation. Only some distributions, such
as the Gaussian and the uniform distributions, have a simple pattern for the optimal
weights that allows their computation from a generating function [72].

Theorem 4.12, the numerical results shown in Figure 4.1 and the performance
of the EVR-OWA operator [139, 140] to provide symmetrically ordered aggre-
gations, serve as inspiration for a method to construct a flexible-dimensional L-
statistic for mean estimation.

In particular, given some optimal weights, the associated cumulative weights
are fitted using a function g : [0,1]→ R. Then, if a vector with different dimension
is aggregated, the fitted function is used to generate new weights that suit the new
dimension. Keeping in mind Theorem 4.12 and Figure 4.1, it is reasonable to think
that the generated weights will be similar to the optimal weights if both dimensions
are sufficiently big and close.

This method can be used in two different scenarios. In the first one, the ex-
pression of the underlying distribution is known, but it is complicated to derive the
optimal weights analytically. This is a common situation, since the distributions of
L-statistics are usually hard to handle (see Chapter 6 in [104]). By simulation, it
is possible to compute a good approximation of the optimal weights. However, it
is necessary to perform such a simulation for each sample size and, for big sample
sizes, the computational time can be unfeasible. In this regard, the method proposed
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in this section allows one to obtain an approximation to derive the optimal weights
in a simple way for different sample sizes, especially for big ones.

In the second one, a quantity of interest is supposed to be independently mea-
sured when it is perturbed by an additive symmetric noise with a mean of 0. For
each of the values of this quantity, several measures are made. Given a dataset in
which there are different true values of the quantity and their associated measure-
ments, it is possible to fit an L-statistic that minimizes the MSE in the dataset. Then,
the constructed L-statistic can be applied to new data to obtain estimations of the
quantity of interest. However, if the sample size changes, the fitted weights are no
longer valid, since they were computed for a fixed length. In this sense, for small
variations of sample sizes, the method proposed in this section allows obtaining new
weights that will lead to an estimator with a small MSE and defined with the correct
dimension.

Although the assumption of Theorem 4.12 may be difficult to check for an arbi-
trary distribution, the presented method is illustrated for several classical symmetric
distributions and shows a good behavior.

7.2.1 Fitting functions

Even if the limit function is known, the optimal cumulative weights can be far from
it for small sample sizes. Therefore, one of the main challenges faced by this pro-
cedure is the correct choice of a family of functions to fit the cumulative weights.
Although another choice might be done, it will be considered a family of functions
based on Extreme Value Amplifications (EVAs) [139] and Extreme Value Reduc-
tions (EVRs) [140] due to their convenient behavior when applied in OWA aggre-
gations [36]. In particular, the following families of functions are considered:

• Sin-based EVAs/EVRs: sα : [0,1]→ [0,1] defined as

sα(x) = x+
n

∑
k=0

αk sin(2πkx) ∀x ∈ [0,1],

with (αk,k ∈ N∪{0}) being a sequence,
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• Grade 3 polynomials: p3
β

: [0,1]→ [0,1], defined as

p3
β
(x) = (1−β )x+3βx2 −2βx3 ∀x ∈ [0,1],

with β ∈ [−1,1],

• Spline-based EVAs and EVRs: spγ : [0,1]→ [0,1] defined as

spγ(x) =

{
1
2 −

1
2(1−2x)γ if 0 ≤ x < 1

2 ,
1
2 +

1
2(2x−1)γ if 1

2 ≤ x ≤ 1,

with γ ∈ (0,∞),

• Pseudo-constant function: c : [0,1]→ [0,1] defined as

c(x) =


0 if x = 0,
1
2 if 0 < x < 1,
1 if x = 1.

For the family sα , which depends on an infinite number of parameters, it will
just be considered a vector of dimension 4, α⃗ = (α1,α2,α3,α4).

Then, a linear combination of the aforementioned families with coefficients
λ⃗ = (λ1,λ2,λ3,λ4) is considered to obtain a unique function with better behavior.
Therefore, define the family of functions g

α⃗,β ,n,⃗λ : [0,1]→ R given by

g
α⃗,β ,γ ,⃗λ

(x) = λ1sα⃗(x)+λ2 p3
β
(x)+λ3spγ(x)+λ4c(x).

7.2.2 Numerical results

For eight different symmetric distributions, the optimal weights for n = 20 are
computed through simulation. Then, the cumulative weights are fitted using the
latter family of functions, with the aim to minimize the Mean Squared Error be-
tween the points and the fitted function. The resulting function is compared to the
optimal weights for n ∈ {18,19,21,22}, the dimensional sizes closest to 20 and
n ∈ {10,30}, further ones. The choice of n = 20 is adequate to illustrate the method
working on small sample sizes, in which small differences between sample sizes
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are relevant. Additional experiments with larger sample sizes have also been con-
ducted, with better results as a consequence of the convergence of Theorem 4.12.
For too small samples, the differences between sample sizes are relatively large, and
the behavior gets worse.

In particular, the considered distributions are the Laplace distribution, the hy-
perbolic secant distribution, the Student’s t-distribution (with 30 degrees of free-
dom), two Generalized Normal (or G-normal) distributions (with parameters s = 3
and s = 1.5), two Beta distributions (with α = β = 0.5 and α = β = 2) and the
logistic distribution. They are a good sample of classical and relevant distributions
in theoretical and applied problems in Statistics. The uniform and the normal dis-
tribution have not been addressed because the optimal weights are straightforward
to compute for any sample size,

(1
2 ,0, . . . ,0,

1
2

)
and

(1
n , . . . ,

1
n

)
[278].

It is important to remark that the here-proposed method is not restricted to
the distributions considered in this section. As guaranteed by Theorem 4.12, for a
sufficient regular distribution, this procedure can also be used, but perhaps using a
wider family of fitting functions.

The resulting parameters of the fitted functions can be found in Table 7.1. If a
coefficient of the linear combination is 0, the parameters of the associated function
are not provided.

Distribution λ1 λ2 λ3 λ4 α1 α2 α3 α4 β γ

Laplace 1 0 0 0 -0.272 0.084 -0.026 0.008 - -
Hyperbolic secant 1 0 0 0 -0.157 0 0 0 - -

Student’s t 0.923 0 0.087 -0.010 -0.069 -0.015 -0.005 -0.004 - 0.870
G-normal s = 3 0.313 0.176 0.485 0.026 0.137 0.017 0.008 0.004 0 2.697

G-normal s = 1.5 1 0 0 0 -0.271 0.084 -0.026 0.008 - -
Beta α = β = 0.5 0 -0.070 -0.320 1.390 - - - - -1.857 13.04
Beta α = β = 2 0.046 0.352 0.159 0.443 0.208 0.087 0.051 0.034 -0.492 5.738

Logistic 0.584 0.416 0 0 -0.099 0.012 -0.004 -0.001 1.022 -

Table 7.1: Parameters of the fitted function to the optimal cumulative weights of the
considered distributions with a sample size n = 20 [37].

The limit function for the logistic distribution, derived in Example 4.14 equals
3x2−2x3, and the fitted function, using the optimal weights for n = 20, is 0.584(x−
0.099sin(2πx − π) + 0.012sin(4πx − π)− 0.004sin(6πx − π)− 0.001sin(8πx −
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π))+0.416(0.022x+3.066x2 −2.044x3). Although the last part of the fitted func-
tion is similar to the limit function, there is a notable difference between them. For
bigger sample sizes, the fitted function will converge to the limit function, as already
proved in Theorem 4.12. For the hyperbolic secant distribution, the fitted function
is almost equal to the one computed in Example 4.13.

In Figure 7.1, the fitted functions and the cumulative weights can be seen for
different values of n, for all the considered distributions. It can be seen that the fitted
function also serves as a good approximation for the cumulative weights when n ∈
{18,19,21,22}, although they have not been used to fit the function. As expected,
the behavior is worse for the cases n ∈ {10,30}.
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Figure 7.1: Fitted cumulative weights when n = 20 and their comparison with the
cumulative weights when n ∈ {10,18,19,21,22,30} for some symmetric distribu-
tions [37].
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In addition, the Mean Squared Error between the points and the fitted function
have been computed for all the cases. In Table 7.2, it can be seen that the MSE does
not increase considerably when moving from n = 20 to closer sample sizes (even
in a particular case it decreases) and it is of the order of 10−6 − 10−8 (notice that
the values in the table are multiplied by 10−7) for all cases. The MSE for the other
sample sizes increases in some cases to the order of 10−4 −10−6.

Distribution n = 10 n = 18 n = 19 n = 20 n = 21 n = 22 n = 30
Laplace 746.8 17.52 6.830 2.384 12.90 25.58 309.7

Hyperbolic secant 13.47 2.870 1.280 0.304 1.656 0.988 19.30
Student’s t 9.074 2.374 4.071 1.245 1.723 2.260 14.28

G-normal s = 3 435.2 0.680 1.886 0.177 1.420 1.313 42.06
G-normal s = 1.5 992.0 40.34 21.38 3.322 9.794 32.83 249.0
Beta α = β = 0.5 4267 0.540 0.639 0.356 0.696 2.395 1131
Beta α = β = 2 551.1 9.106 1.576 0.530 1.806 6.971 248.6

Logistic 11.25 11.80 16.80 2.200 7.903 7.273 8.947

Table 7.2: Mean Squared Error (multiplied by 10−7) between the fitted func-
tion using the cumulative weights for n = 20 and the cumulative weights for
n ∈ {10,18,19,20,21,22,30} for the considered distributions [37].

The small difference between optimal and fitted weights should lead to a small
difference in the behavior between the obtained L-estimators. In this regard, the
MSE with respect to the real value of the mean, also considering the arithmetic
mean, has been computed by simulation. The results can be found in Table 7.3.

As can be seen, the L-estimators with fitted weights behave similarly to the
optimal one. Their MSE is always between the optimal, which cannot be improved,
and the sample mean, which can be seen as a naive flexible-dimensional method. In
fact, it is almost the same for most of the considered cases. The difference is greater
for sample sizes that are far from n = 20, since, as already seen in Table 7.2, the
fitted function is a better approximation for closer sample sizes.

In order to reproduce the latter results for non-symmetric distributions, it is
necessary to prove Theorem 4.12 for non-symmetric distributions, which is far from
being immediate. In addition, the family of functions g

α⃗,β ,n,⃗λ should be extended to
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deal with non-symmetric weights. If both points can be solved, it will increase the
applicability of the method, since, in many cases, real data do not have a symmetric
distribution.

Distribution Weights n = 10 n = 18 n = 19 n = 20 n = 21 n = 22 n = 30

Laplace
Optimal 0.1417 0.0720 0.0682 0.0652 0.0603 0.0558 0.0400
Fitted 0.1422 0.0720 0.0682 0.0652 0.0603 0.0558 0.0401

Balanced 0.1986 0.1091 0.1067 0.1011 0.0946 0.089 0.0656

Hyperbolic secant
Optimal 0.0869 0.0463 0.0445 0.0410 0.0408 0.0377 0.0281
Fitted 0.0869 0.0463 0.0445 0.0410 0.0408 0.0377 0.0281

Balanced 0.1010 0.0553 0.0530 0.0493 0.0485 0.0450 0.0343

Studentś T
Optimal 0.1070 0.0599 0.0566 0.0527 0.0503 0.0485 0.0344
Fitted 0.1070 0.0599 0.0566 0.0527 0.0503 0.0485 0.0344

Balanced 0.1073 0.0603 0.0567 0.0528 0.0506 0.0488 0.0345

G-normal s = 3 (×10−1)

Optimal 0.3454 0.1905 0.1831 0.1685 0.1584 0.1506 0.1139
Fitted 0.3455 0.1905 0.1831 0.1685 0.1584 0.1506 0.1139

Balanced 0.3730 0.2094 0.1995 0.1867 0.1724 0.1669 0.1268

G-normal s = 1.5
Optimal 5.4916 2.7737 2.6216 2.4403 2.3005 2.2196 1.5294
Fitted 5.7613 2.8039 2.6418 2.4585 2.3036 2.2265 1.5665

Balanced 12.048 6.7415 6.4255 6.1515 5.8014 5.5608 4.0393

Beta α = β = 0.5 (×10−2)

Optimal 0.1926 0.0294 0.0243 0.0193 0.0182 0.0137 0.0049
Fitted 0.1982 0.0294 0.0244 0.0193 0.0182 0.0137 0.0052

Balanced 1.2537 0.7083 0.6566 0.6329 0.5902 0.5664 0.4134

Beta α = β = 0.5 (×10−2)

Optimal 0.3857 0.1939 0.1844 0.1748 0.1683 0.1559 0.1077
Fitted 0.3859 0.1939 0.1844 0.1748 0.1683 0.1559 0.1078

Balanced 0.4896 0.2742 0.2584 0.2509 0.2437 0.2291 0.1681

Logistic
Optimal 0.3116 0.1710 0.1594 0.1507 0.1431 0.1405 0.0990
Fitted 0.3117 0.1710 0.1594 0.1507 0.1431 0.1406 0.0990

Balanced 0.3341 0.1836 0.1727 0.1630 0.1542 0.1523 0.1076

Table 7.3: Mean Squared Error of L-estimators when considering the opti-
mal weights, the fitted weights and the balanced weights for sample sizes n ∈
{10,18,19,20,21,22,30} for the considered distributions [37].
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7.3 Statistical tests for uniformity in generation of ca-
pacities

Many algorithms have been developed for the random generation of capacities or
fuzzy measures [43, 44, 46, 51, 95, 96, 148, 167]. As briefly explained in Sec-
tion 4.3, the main objective of such algorithms is to generate capacities uniformly
over the set of all capacities (of a particular dimension) as fast as possible. The
structure of the set of all capacities is difficult to deal with, since it is an order poli-
tope of order 2n−2 in which even the number of possible orderings of the values is
hard to determine [96].

However, although uniformity is the main objective of these algorithms, there
do not exist tools specifically designed for checking such uniformity in the litera-
ture. Some general algorithms for checking the uniformity over (multivariate) sets
can be found in [56, 162, 169, 270, 301, 305].

They are typically constructed by computing an associate quantity to the sam-
ple points, for instance, the Minimum Spanning Tree, the length of the smallest
Hamiltonian path, the mean distance between one point and its closest neighbor or
the distance to the boundary. Then, the value of the quantity is compared with the
one expected for the uniform distribution.

These algorithms have mainly two drawbacks. The first is that, in general, the
distribution of quantity is not known. Therefore, it has to be simulated by consider-
ing a uniform generator. Then, for the approach considered in this section, it would
be necessary to have a uniform generator of capacities in which uniformity is en-
sured to check the uniformity of a second algorithm. The second one is that, for a
big dimension, such algorithms are very slow. Notice that the number of values of
a capacity grows as 2n with the dimension, thus for big dimensions such algorithms
will take too much time.

In contrast, testing some of the properties already proved in Section 4.3 can
be done without a prior uniform algorithm and can be computed in a reasonable
amount of time. Which of them can be tested will be determined in the next section.
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7.3.1 Testable properties

This section is devoted to discuss which properties for uniform random capacities
among the ones proved in Section 4.3 can be tested, which statistical tests can be
used and why the remaining properties are not possible to be tested. In the follow-
ing, consider samples consisting of m vectors which are independent observations
of a uniform random capacity.

The properties provided in Proposition 4.21 are easy to test. In particular, the
equality of distribution for subsets of the same cardinality and the auto-duality in
distribution of the uniform random capacity can be tested by applying 2-sample
Kolmogorov-Smirnov tests. It is important to remark that the third point in the
result can be derived from the latter tests, since if |A| ≤ |B|, there always exist A′,B′

such that |A|= |A′|, |B|= |B′| and A′ ⊆ B′, thus µ(A) =st µ(A′)≤ µ(B′) =st µ(B).
The first property and Corollary 4.22 can be tested using an exchangeability test,
but they are very expensive in terms of computation time.

The measure of subsets following a mixture of unknown Beta distributions
cannot be tested, since such a test does not exist in the literature. For the symmetry
of the Orness, it is possible to use the Cabilio-Masaro symmetry test and for its
mean (and median) being 0.5, a Wilcoxon test can be performed.

In addition, if the values of each of the m vectors of the sample are merged into
one vector, eliminating in each of them the measure of the empty set and the whole
set (which are always 0 and 1), m(2n−2) values that consist of a particular ordering
of a simple random sample of a uniform distribution over [0,1] are obtained. Then,
a 1-sample Kolmogorov-Sminorv test can be applied to test the uniformity. Notice
that it is not necessary to reorder the sample before applying the test, since in the
Kolmogorov-Smirnov test the sample is ordered from the smallest to the greatest
value to construct the empirical distribution function.

Other properties may be tested when restricting the study to balanced, belief
or possibility measures. In that case, it is necessary to consider the observations
that belong to each of the families and then, using the associated subsamples, test
the properties. Numerical results show that the probability of a uniform random
capacity to be a belief or possibility measure is 0, thus the related subsamples are
empty and no statistical test can be used.
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For balanced measures, around 25% for n = 4 and 1.3% for n = 5 of the obser-
vations of a uniform random capacity are balanced measures, thus their properties
can be tested. In particular, the theoretical distribution of the measure of the sub-
sets, the Orness and the non-modularity index of the whole set are known. For
the first two cases, the distribution functions can be constructed and then 1-sample
Kolmogorov-Smirnov tests can be performed. In the last one, the expression is
quite complicated and includes a derivative that, even for small values of n, is hard
to compute.

7.3.2 Uniformity study of random capacity generation algorithms

In this section, the statistical tests explained in the last section are applied to two
algorithms of random generation of capacities, to determine whenever the generated
values follow a uniform distribution or not.

The two algorithm are included among the most used in the literature. They are
called randomized topological sort (tsort) [51] and minimum-plus (minplus) [95],
which are implemented in the R package Rmftool version 4.1.10 [42] in the func-
tions f m.generate_ f m_tsort and f m.generate_ f m_minplus, respectively. Both
functions also have an optional parameter rejection, that forces the algorithm to
reject linear extensions that have been seen already. Using this option, the algo-
rithm tends not to repeat choosing the same linear extension more than a few times.
The cases of dimension n= 4 and n= 5, with sample sizes k = 1000 and k = 10000,
with and without the rejection option, are considered for the study.

The tested null hypothesis are the following:

• µX : The measures of subsets of cardinality X have the same distribution,

• DX : The distribution of the measure and the dual measure of the subsets of
cardinality X are the same,

• MOrn: The mean of the Orness is 0.5,

• SOrn: The distribution of the Orness is symmetric,

• Dist: The distribution of the distance to the closest 0-1 capacity is the one
given in Proposition 4.27,



CHAPTER 7. NUMERICAL RESULTS, SIMULATIONS AND REAL PROBLEMS 288

Algorithm rejection sample size µ1 µ2 µ3 D1 D2 MOrn SOrn Dist Uni f Bµ1 Bµ2 Bµ3 BOrn

tsort

N 1000 0.655 0.613 0.643 0.497 0.491 0.443 0.508 0.450 0.536 0.546 0.520 0.510 0.485
Y 1000 0.643 0.608 0.665 0.503 0.462 0.497 0.505 0.507 0.539 0.524 0.521 0.495 0.475
N 10000 0.652 0.618 0.657 0.513 0.486 0.519 0.502 0.512 0.489 0.515 0.509 0.499 0.287
Y 10000 0.645 0.609 0.645 0.496 0.495 0.538 0.516 0.507 0.514 0.513 0.508 0.509 0.320

minplus

N 1000 0.663 0.622 0.622 0 0 0 0.487 0 0 0.329 0.065 0 0
Y 1000 0.660 0.636 0.670 0 0 0 0.493 0 0 0.347 0.067 0 0
N 10000 0.642 0.624 0.669 0 0 0 0.500 0 0 0.008 0 0 0
Y 10000 0.642 0.624 0.669 0 0 0 0.500 0 0 0.008 0 0 0

Table 7.4: Average p-values among 100 repetitions for the considered algorithms of
uniform generation of capacities of dimension n = 4 [27].

Algorithm rejection sample size µ1 µ2 µ3 µ4 D1 D2 MOrn SOrn Dist Uni f Bµ1 Bµ2 Bµ3 Bµ4 BOrn

tsort

N 1000 0.641 0.584 0.575 0.637 0.509 0.493 0.508 0.508 0.513 0.509 0.525 0.502 0.531 0.490 0.497
Y 1000 0.627 0.588 0.596 0.620 0.510 0.495 0.506 0.507 0.512 0.514 0.497 0.507 0.498 0.502 0.479
N 10000 0.612 0.582 0.583 0.614 0.501 0.486 0.500 0.488 0.501 0.523 0.506 0.515 0.526 0.528 0.421
Y 10000 0.612 0.568 0.569 0.615 0.500 0.482 0.516 0.471 0.497 0.498 0.513 0.512 0.512 0.512 0.420

minplus

N 1000 0.652 0.579 0.594 0.637 0 0.004 0 0.458 0 0 0.450 0.484 0.484 0.190 0.373
Y 1000 0.638 0.591 0.583 0.620 0 0.005 0 0.504 0 0 0.519 0.510 0.437 0.025 0.344
N 10000 0.616 0.571 0.583 0.626 0 0 0 0.541 0 0 0.111 0.414 0.222 0 0.018
Y 10000 0.612 0.579 0.584 0.633 0 0 0 0.464 0 0 0.107 0.420 0.213 0 0.038

Table 7.5: Average p-values among 100 repetitions for the considered algorithms of
uniform generation of capacities of dimension n = 5 [27].

• Uni f : The sample made by combining all the vectors of the sample and elim-
inating the measures for the empty set and the whole set is a rearrangement
of a simple random sample of a uniform distribution,

• BµX : In the subsample consisting of balanced capacities, the distribution of
the measure of subsets of cardinality X is the one given in Proposition 4.31,

• BOrn: In the subsample consisting of balanced capacities, the Orness has the
distribution given in Proposition 4.32.

For each case, the procedure was repeated 100 times and the mean p-value was
computed. The results for dimension 4 and 5 can be found in Tables 7.4 and 7.5.

As can be seen in both tables, the tsort algorithm seems to have a good behav-
ior, since the average p-value in all the cases is above the usual significance levels
(0.05, 0.01), therefore, the null hypothesis seems to not be rejected in any of the
cases. Looking with more detail the p-values, it can be seen that they are smaller
for the test of the distribution of the Orness when working with the subsample re-
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lated consisting of balanced observations, but there is not enough evidence to have
a rejection. Then, it is concluded that, with the tools developed in this thesis, there
is no evidence to reject the uniformity of the samples produced by tsort, with and
without the rejection option.

On the contrary, there is evidence of non-uniformity for minimal-plus algo-
rithm. In particular, when the sample size is k = 1000 and n = 4, the hypothesis
about the equality in distribution between the measure of subsets with the same car-
dinality and the symmetry of the Orness are rejected. Similar results are achieved
when considering n = 5. Therefore, it is concluded that minimal-plus (or at least
its implementation in Rfmtool 4.1.10) does not generate capacities with a uniform
distribution, with and without the rejection option enabled.

7.4 Temperature prediction using the SOWA opera-
tor

This section is devoted to illustrate the advantages of the SOWA operator introduced
in Section 4.4.3. Recall that this operator depends on a permutation π and a weight-
ing vector w⃗. Firstly, the distribution functions F1, . . . ,Fn of the inputs are pointwise
ordered to obtain the distribution functions F[1], . . . ,F[n] (see Figure 4.2), which are
ordered with respect to the usual stochastic order. Then, the permutation π assigns
the variability of each input to one of the constructed distribution functions and,
finally, a weighted arithmetic mean of the resulting random variables is performed.

In the following, consider a scenario in which a random vector X⃗ is used to
predict the value of a random variable Y . The prediction will be denoted as Ŷ .
Three different alternatives will be considered.

(1) Ŷ = ∑
n
i=1 wiXi,

(2) Ŷ = ∑
n
i=1 wiX(i),

(3) Ŷ = SOWAw⃗,π(X⃗),

which are a linear combination of, respectively, the random variables, the order
statistics and the components of the rearrangement increasing stochastically ordered



CHAPTER 7. NUMERICAL RESULTS, SIMULATIONS AND REAL PROBLEMS 290

random vector introduced in Definition 4.42.
In particular, the database Appliances Energy Prediction, which can be found

in [79], has been used. The considered data consist of the value of the temperature
(in Celsius) in different locations of a house, measured in 19735 different times.
The reader is referred to [80] for more details on the dataset. Dismissing the values
associated with outside locations (since its temperature is quite different from the
temperature inside the house), there are data of the temperature for the kitchen,
living room, laundry room, bathroom, teenager room, ironing room, parents room
and office room. The aim is to predict the temperature in the office room using
the values in the rest of the indoor locations, considering the latter models. The
variables are ordered in the vector in the order in which they have been enumerated
above.

The dataset is divided into a 75%, the training dataset, which is used to opti-
mize the parameters of the models, and the test dataset, which is reserved for testing
the behavior of the models. The optimization criterion is the usual minimization of
the Mean Squared Error. For the models (1) and (2), this process is quite simple,
the feasible region is the set of weighting vectors.

For the case of the Stochastically Ordered Weighting Averaging, it is firstly
necessary to build the rearrangement increasing stochastically ordered random vec-
tor. Since the population distributions of the variables are unknown, the empir-
ical distribution functions (see Definition 2.123) of the variables can be used as
F1, . . . ,Fn in Definition 4.42. Then, the minimization is made on the set of all pos-
sible permutations π (which are 7! = 5040) and the set of weighting vectors. The
obtained optimal parameters for all the models are the following:

w⃗(1) =
(

0.36, 0.09, 0.09, 0.04, 0, 0.20, 0.21
)
,

w⃗(2) =
(

0.02, 0.20, 0.24, 0.02, 0.43, 0.09, 0
)
,

w⃗(3) =
(

0.04, 0.25, 0.12, 0.27, 0.17, 0.16, 0
)
,

π =
(

4, 7, 2, 6, 1, 3, 5
)
.

For the weighted arithmetic mean, the variables with more importance are
kitchen, parents room and ironing room. In the combination of the order statistics,
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it can be seen that the extreme values, the maximum and the minimum, do not have
much importance, since the associated weights are close to 0. Something similar
happens in the case of the SOWA operator, the extreme distributions are given less
importance. Note also that, as can be seen in the optimal permutation, the variability
of the temperature in the teenager room is associated with the greatest distribution,
and therefore, with a null weight. This coincides with the weight associated with
the teenager room in model (1).

The Mean Squared Error, the Mean Absolute Error, and the Percentage Error,
see [243], of the three models in the test sample are provided in Table 7.6. As can
be seen, the SOWA has a better behavior than the other alternatives.

Model MSE MAE PE (%)
Weighted Arithmetic Mean 0.28 0.44 1.93

Ordered Weighted Averaging 0.31 0.46 1.97
Stochastically Ordered Weighted Averaging 0.22 0.38 1.66

Table 7.6: Mean Squared Error (MSE), Mean Absolute Error (MAE) and Percent
Error (PE) for the considered prediction models in the test sample [39].

These results are sensitive to the choice of the training and test samples. There-
fore, the sample has been divided into 10 blocks of the same size and a cross-
validation procedure (see [85]) has been applied. In particular, 9 of the blocks have
been used as the training sample and the remaining one as the test sample, for each
possible combination. The average of the errors can be found in Table 7.7. It can
be seen that the average errors are greater than in the first study. However, SOWA
operator still has the better behavior among the alternatives.

Additionally, paired Wilcoxon tests have been applied to each pair of models,
for each error measure. The results can be found in Table 7.8, in which it can be seen
that the SOWA significantly overcomes the other alternatives in all the considered
cases. In particular, since all the p-values associated with the alternative hypothesis
the SOWA has an error smaller than the other model are below 0.05, the alternative
hypothesis is accepted. Notice also that the OWA operator seems to be better than
the WAM, but not always with enough significance.

Note that other aggregations, not only weighted averages, may be considered in
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Model MSE MAE PE (%)
Weighted Arithmetic Mean 0.86 0.73 3.61

Ordered Weighted Averaging 0.67 0.65 3.17
Stochastically Ordered Weighted Averaging 0.58 0.58 2.83

Table 7.7: Average Mean Squared Error (MSE), Mean Absolute Error (MAE) and
Percent Error (PE) for the considered prediction models in the cross-validation pro-
cedure [39].

Mean Squared Error Mean Absolute Error Percentage Error
WAM OWA SOWA WAM OWA SOWA WAM OWA SOWA

WAM - 0.958 0.997 - 0.962 0.995 - 0.976 0.993
OWA 0.053 - 0.991 0.049 - 0.991 0.032 - 0.986

SOWA 0.005 0.012 - 0.007 0.012 - 0.009 0.019 -

Table 7.8: P-values for the Wilcoxon paired test with alternative hypothesis: the
model of the row has smaller Mean Squared Error (Mean Absolute Error, Percent-
age Error) than the model of the column.

prediction problems. In those cases, the Stochastically Ordered Aggregation asso-
ciated with the particular aggregation can be considered. It is also worth remarking
that if the dimension of the aggregated vectors is too big, the optimization over the
set of permutations can be unaffordable.

7.5 Tests for some stochastic orders

This section is devoted to briefly describe a possible application of the results pre-
sented in Sections 5.2 and 5.3, with some illustrative numerical examples. In partic-
ular, they will be used for testing stochastic orders between two distinct populations
with unknown distributions, which is a common problem in many applicative fields.

Considering two random vectors X⃗ and Y⃗ , some reasonable questions related
to stochastic orders are whenever the inequalities X⃗ ≤cx Y⃗ , X⃗ ≤sm Y⃗ and X1 ≤disp Y1

under the conditions of Theorem 5.27 are true or not.
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However, after searching in the literature, there are a few hypothesis testing
procedures for the convex order, the supermodular order or the dispersive order
between random vectors. Using the latter results, these tests can be constructed
using as basis the well-known tests for the usual stochastic order or the increasing
convex order, (see Section 2.4.3). In the following sections, the three cases will be
discussed.

7.5.1 The convex order

Consider two simple random samples of size m of two random vectors X⃗ and Y⃗
of the same dimension n for which it is relevant to test the convex order. Then,
the null hypothesis is determined as H0 : X⃗ ≤cx Y⃗ . Working under this hypothesis,
Theorem 5.35 and Theorem 5.36 ensure that the quantities σ̂2(X⃗) and σ̂2(⃗Y ), and
the pair G(X⃗) and G(⃗Y ), are ordered with respect to the increasing convex order.
Then, it is possible to compute the values of such quantities in the sample and test
for the increasing convex order among them. If the increasing convex order between
the variability estimators is rejected, then the initial null hypothesis is also rejected.

A little numerical example has been developed to illustrate the latter method.
Let U1, U2, U3 and G be four independent random variables, having U1, U2 and U3

standard uniform distribution and G standard Gaussian distribution. Consider the
random vectors X⃗ = (U1,U2,U3) and Y⃗ = (U1 +G,U2 +G,U3). By using Theo-
rem 2.117, it holds that X⃗ ≤cx Y⃗ . 50 pairs of independent simple random samples of
length 30 of X⃗ and Y⃗ , (X⃗1, . . . , X⃗30) and (⃗Y1, . . . ,Y⃗30) have been generated. Then, the
associated sample values (σ̂2(X⃗1), . . . , σ̂

2(X⃗30)), (σ̂2(⃗Y1), . . . , σ̂
2(⃗Y30)) have been

computed and the increasing convex order between them has been tested using the
test given in [18]. The same has been done considering the pair (G(X⃗1), . . . ,G(X⃗30))

and (G(⃗Y1), . . . ,G(⃗Y30)).
The results can be found in Table 7.9. In all cases, it can be seen that the mean

p-value is greater than the usual confidence level 0.05 and, therefore, there are no
evidences to reject H0 : X⃗ ≤cx Y⃗ . However, if the null hypothesis is changed to
H0 : Y⃗ ≤cx X⃗ , then the mean p-values are below 0.05. Notice that the results coincide
with the order of the vectors, since by construction it is known that X⃗ ≤cx Y⃗ . In
addition, it seems that the sample variance leads to smaller p-values, at least in this
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particular example.

Null hypothesis Sample variance Gini mean difference
X⃗ ≤cx Y⃗ 0.8024 0.8064
Y⃗ ≤cx X⃗ 0.0026 0

Table 7.9: Mean p-values associated with the test for the multivariate convex order
when different null hypothesis and variability measures are considered.

7.5.2 The dispersive order

Consider two random vectors X⃗ and Y⃗ with identically distributed components
(X1 =st · · · =st Xn and Y1 =st . . . =st Yn) with X1 and X2 fulfilling (P1) and (P2)
as introduced in Section 5.2.1. That is,

(P1) Both X1 and Y1 have continuous distribution functions F and G,

(P2) The transformation φ = F−1 ◦G such that X = φ(Y ) is strictly monotone,

where F is the distribution function of X1 and G is the distribution function of Y1.
If the dispersive order wants to be tested between X1 and Y1, as a consequence of
Theorems 5.29, and 5.30, one has that the sample values σ̂2(X⃗) and σ̂2(⃗Y ), the
sample values G(X⃗) and G(⃗Y ) and the sample values R(X⃗) and R(⃗Y ) are ordered
with respect to the usual stochastic order.

Then, the null hypothesis H0 : X1 ≤disp Y1 can be tested by testing the usual
stochastic order using the sample values of the variance, the Gini mean difference
and the range. If the usual stochastic order between the variability estimators is
rejected, then the initial null hypothesis is also rejected.

A similar experiment as in the last section has been considered. Consider
the random vector Y⃗ = (U1,U2,U3) with independent and uniformly distributed on
[0,0.5] components. Consider, in addition, X⃗ = (U2

1 ,U
2
2 ,U

2
3 ). Since the derivative

of the square is smaller than 1 in [0,0.5], it is clear that it is a contraction on [0,0.5]
and that X1 ≤disp Y1. In addition, conditions (P1) and (P2) are fulfilled.

50 pairs of independent simple random samples of length 30 of X⃗ and Y⃗ ,
(X⃗1, . . . , X⃗30) and (⃗Y1, . . . ,Y⃗30), have been generated. Then, the associated sample
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values (σ̂2(X⃗1), . . . , σ̂
2(X⃗30)), (σ̂2(⃗Y1), . . . , σ̂

2(⃗Y30)) have been computed and the
usual stochastic order, using a modification of the Kolmogorov-Smirnov test given
in the function ks.test in [274], has been tested. The same has been done consider-
ing the sample values (G(X⃗1), . . . ,G(X⃗30)) and (G(⃗Y1), . . . ,G(⃗Y30)), and the sample
values (R(X⃗1), . . . ,R(X⃗30)) and (R(⃗Y1), . . . ,R(⃗Y30)).

Results can be found in Table 7.10. In all cases, it seems that the mean p-
value is greater than the usual confidence level 0.05 and, therefore, there are is no
evidence to reject H0 : X1 ≤disp Y1. However, if the null hypothesis is changed to
H0 : Y1 ≤disp X1, then the mean p-values are below 0.05. Notice that the results
coincide with the order of the vectors, since by construction X1 ≤disp Y1.

Null hypothesis Sample variance Gini mean difference Range
X1 ≤disp Y1 0.9993 0.9991 0.9997
Y1 ≤disp X1 0.0044 0.0082 0.0125

Table 7.10: Mean p-values associated with the test for the dispersive when different
null hypothesis and variability measures are considered.

A similar procedure can be found in [303], in which the order between expec-
tations of the Gini mean differences (which is a consequence of Corollary 5.28) is
used to test some variability orders. However, this procedure was presented there
only for the case of independent marginals. In addition, the usual stochastic order
is a stronger condition than the order based on expectations, which allows one to
construct more powerful tests.

7.5.3 The supermodular order

For the last case, consider two random vectors X⃗ and Y⃗ such that X⃗ ≤sm Y⃗ . As
a consequence of Corollary 5.41, the sample variance, Gini mean difference and
the sample range are ordered with respect to the increasing convex order. Then,
the null hypothesis H0 : X⃗ ≤sm Y⃗ can be tested by testing the increasing stochastic
order using the sample values of the latter measures. If the increasing convex order
between them is rejected, then the supermodular order is rejected too.
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Let X⃗ be a random vector with independent standard Gaussian components. In
addition, consider Y⃗ a random vector with multivariate Gaussian distribution having
a null mean vector and the covariance matrix

Σ =

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

 .

By Theorem 11 in [247], X⃗ ≤sm Y⃗ . Therefore, 50 pairs of independent simple
random samples of length 30 of X⃗ and Y⃗ , (X⃗1, . . . , X⃗30) and (⃗Y1, . . . ,Y⃗30), have been
generated. Then, the associated sample values (σ̂2(X⃗1), . . . , σ̂

2(X⃗30)) and (σ̂2(⃗Y1),

. . . , σ̂2(⃗Y30)) have been computed and the increasing convex order between them
has been tested using the test given in [18]. The same has been done considering the
sample values (G(X⃗1), . . . ,G(X⃗30)) and (G(⃗Y1), . . . ,G(⃗Y30)) and the sample values
(R(X⃗1), . . . ,R(X⃗30)) and (R(⃗Y1), . . . ,R(⃗Y30)).

The results can be found in Table 7.11. In all cases, the mean p-value is greater
than the usual confidence level 0.05 and, therefore, there is no evidence to reject
H0 : X⃗ ≤sm Y⃗ . However, if the null hypothesis is changed to H0 : Y⃗ ≤sm X⃗ , then the
mean p-values are below 0.05. Notice that the results coincide with the order of the
vectors, since by construction X⃗ ≤sm Y⃗ .

Null hypothesis Sample variance Gini mean difference Range
X⃗ ≤sm Y⃗ 0.7602 0.7953 0.8002
Y⃗ ≤sm X⃗ 0.0262 0.0366 0.0430

Table 7.11: Mean p-values associated with the test for the supermodular order when
different null hypothesis and variability measures are considered [40].

It should be noted that a similar approach is given in [89], using the fact that,
if X⃗ ≤sm Y⃗ , then maxi∈I Xi ≥st maxi∈I Yi and mini∈I Xi ≤st mini∈I Yi for any I ⊆ [n],
see [24].
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7.6 Time series forecasting using the IOLF operator

Time series forecasting is a task used to obtain estimates of future values of various
measurements in the real world. Models used for predicting time series values are
commonly regressors, i.e. any variable in a regression model that is used to predict a
response variable. If a set of regression models is considered, they may have several
problems: the first is that the models are weak when taken individually (there are
models that obtain admissible errors only in some cases) and the second is that the
regressors have similar effects. In order to try to avoid these two problems and
obtain the most optimal model, combining them becomes a fundamental task.

As discussed in Section 4.1.1, aggregation functions are often used as ensem-
bles that fuse the prediction of different prediction models. This section is devoted
to illustrate the benefits of the IOLF operator, see Definition 4.1, in this regard.
In particular, Weighted arithmetic means, OWA operators and IOWA operators, as
well as their counterparts with negative weights are used in a problem related to the
forecasting of temperature and humidity prediction.

7.6.1 Description of the experimental procedure

In this example, forecasts of different prediction models are fused by means of ag-
gregation and pre-aggregation functions. Three of the ensemble alternatives are
the Weighted Arithmetic Mean (WAM), the Ordered Weighted Averaging (OWA)
and the Induced Ordered Weighted Averaging (IOWA) operators considering as
the inducing vector the precision in the previous time step, as explained in Sec-
tion 4.1.2. These alternatives are the most used among aggregation functions in the
literature, see Table 4.1. The other three alternatives are the Linear Fusion (LF),
the Ordered Linear Fusion (OLF) and the Induced Ordered Linear Fusion (IOLF)
operator, which are constructed exactly as, respectively, WAM, the OWA and the
IOWA operators but allowing the weights to be negative. Notice that the first three
cases can be seen as IOWA operators with different inducing vectors and the other
cases as the same models but allowing negative weights, which are all particular
cases of the IOLF operator introduced in Definition 4.1. In this example, 7 different
prediction models, which will be explained later, are considered.
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Taking into account the notation of Section 4.1.2, pi,t is the prediction of the
model i at time t, and therefore it has to be considered the vector p⃗ = (p1,t , . . . , p7,t)

of the predictions of the 7 models at time t. Then, use Equation 4.2 to obtain the
vector y⃗ = (y1,t−1, . . . ,y7,t−1). This vector will be used as the vector that induces
the order in the IOWA and IOLF cases. In the cases of OWA and OLF operators,
predictions are ordered from the smallest to the greatest for each time. Finally, no
additional ordering is made for the WAM and LF.

Therefore, the fused predicted values (for a time t) are the ones obtained in the
following way:

p̂IOWA = IOWA(p⃗, y⃗; w⃗) =
7

∑
i=1

wiπ⃗y(p⃗)i,t , p̂IOLF = IOLF(p⃗, y⃗; w⃗),

p̂OWA = OWA(p⃗; w⃗) =
7

∑
i=1

wi pσt(i),t , p̂OLF = OLF(p⃗; w⃗),

p̂WAM = WAM(p⃗; w⃗) =
7

∑
i=1

wi pi,t , p̂LF = LF(p⃗; w⃗),

where σt is a permutation such that pσt(1),t ≥ ·· · ≥ pσt(7),t .
The optimal weights for IOWA, OWA and WAM operators are computed nu-

merically by solving the problem stated in Equation 4.3. In the case of the IOLF,
OLF and LF operators, the optimal weights can be computed directly by applying
Theorem 4.6. It should be noted that, in some cases, inverting the matrix Σ+ ∆⃗⃗∆ t

cannot be easy if the dimension is too high or it is ill-conditioned. In these cases, the
optimal weights can be computed numerically, as done in the cases of the IOWA,
OWA and WAW operators.

The considered data, consisting of the temperature and humidity of different
places in a house, have been obtained from [79] and is composed of almost 20000
observations, which are measured every 10 minutes for about 4.5 months. The
house temperature and humidity conditions are monitored with a ZigBee wireless
sensor network. The time series measure the temperature (T) and humidity (RH) in
9 different areas. These time series have several characteristics in common. Firstly,
there exists a strong seasonal component with a period of one day. On the other
hand, there does not exist a weekly or monthly seasonal component. Secondly, a
moderate amount of outliers appear in the data. Thirdly, the values of the time
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series seem to have a bell-shaped distribution. For more information in this regard,
the reader is referred to [80].

For each of these 18 time series, the data were divided into the first 70% of the
days, the training sample, and the remaining 30%, the test sample. On the training
sample, seven different forecasting models were fitted. The used models are the
following:

RF Random Forest [160]. This regression method builds a set of decision trees in
the training process. It returns the average prediction of the individual trees.
In this case, the number of trees (estimators) to be used is set to 1000.

GB Gradient Boosting [132]. This method uses weak decision trees, which are
boosted by the gradient. A gradient boosting model is built in stages by op-
timizing based on a cost function. The number of stages is set to 1000. The
learning rate of the model is set to 0.1 and the loss function used is the Fried-
man Mean Squared Error [131].

ARI ARIMA [68]. Autoregressive integrated moving average (ARIMA) model is
a statistical model that uses variations and regressions of statistical data to
find patterns for future prediction. It is a model that tries to identify coef-
ficients and the number of regressions to be used and, since it is a dynamic
model, predictions are not based on independent variables but on past data.
In this case, the parameters are fitted according to the Akaike’s Information
Criterium.

KNN Regression based on K-Nearest Neighbors [98] with k = 3. This classical
method is based on the entry of the k nearest values in the dataset. The pre-
dicted value is assigned to the average of the values of the k nearest neighbors.
The function used to measure the distance between values has been the Eu-
clidean distance.

BR Bagging regressor [71]. Bagging is a general variance reduction method
based on the use of bootstrap together with a decision tree. For regression
trees, many trees are grown (without pruning) and the mean of the predic-
tions is calculated. An additional advantage of bagging is that it allows one
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to estimate the prediction error directly, without the need to use a test sample
or to apply cross-validation. The number of trees used in this model is fixed
to 1000.

Finally, models 6 and 7 are models based on recurrent neural networks (RNN).
Specifically, models based on Long Short-Term Memories (LSTM) [161] and Gated
Recurrent Unit (GRU) [88] neurons are considered. These models, introduced in
1997 and 2014 respectively, were designed to avoid the training problems of clas-
sical RNNs with input data having long dependencies. To avoid these problems,
these neural networks use multiplicative units, called gates, which control the flow
of information that is fed into the network. On the other hand, these models allow
information to be stored in short and long term memories for use at future points in
time.

LSTM LSTM-based model [161]. The first RNN-based model consists of a single
LSTM layer with a hidden size of 64 elements and a dense layer. The loss
function used in this model is the Mean Squared Error, and the optimization
method is the Adam algorithm with a learning rate of 0.01. 1200 epochs have
been run. At the input of the LSTMs the data are normalized to the range
(-1,1) by min-max, and denormalized at the output.

GRU GRU-based model [88]. The second RNN-based model model is composed
of a single GRU layer with a hidden size of 128 elements and a dense layer.
A dropout of 0.4 has been used. The loss function used in this model is the
Mean Squared Error, and the optimization method is the Adam algorithm
with a learning rate of 0.01. 1200 epochs have been run. The input data are
normalized to the range (-1,1) by min-max, and denormalized at the output.

Notice that the latter models belong to different families and their behavior will
be, in general, very different. The procedure can be summarized in 4 steps, as can
be seen in Figure 7.2:

1. Train the prediction models,

2. Reorder the prediction vectors for each time,
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3. Compute the optimal weights,

4. Obtain the fused predictions.

Figure 7.2: Diagram showing the followed steps to obtain the fused prediction of
each considered ensemble [35].

7.6.2 Discussion of the results

The performance of the initial models and the fusion operators is compared using
the test sample. Since some of the forecasting models involve random initialization
or dropout, the procedure has been replicated ten times for each of the time series.
The result for each time series and prediction model and fusion operator in the test
sample can be found in Table 7.13. For the Mean Squared Error, in four of the time
series the best performance was made by an initial prediction model, in other four
one of the classical aggregation functions was the best option and in the remaining
ten time series, one of the proposed fusion operators with negative weights had the
lowest MSE.

In order to compare globally the performance of the different alternatives, the
boxplot associated with the relative error of all executions, ten for each of the eigh-
teen time series, can be found in Figure 7.3. The relative error has been computed
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by dividing the square of the MSE by the mean value of the corresponding time
series.

RF GB ARI KNN BR LSTM GRU WAM OWA IOWA LF OLF IOLF
Models
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Figure 7.3: Boxplot of the relative errors of the different models and their aggre-
gations. The median the errors for each model and aggregation is at the top of the
graph [35].

Qualitatively, the best initial prediction models seem to be ARIMA, LSTM
and GRU. Between the fusion operators, the WAM and LF seem to be the better op-
tions, followed by the IOWA and IOLF. In order to have a quantitative comparison,
Wilcoxon tests (see Section 2.4.3) have been performed, considering the 180 paired
samples of Mean Squared Errors. The p-values can be found in Table 7.12, in which
the alternative hypothesis has been chosen as the row model having a smaller MSE
than the column model.

As can be seen, it is statistically accepted that the Linear Fusion operator is
better than the rest of alternatives. In addition, the p-value between the IOLF and
the IOWA operator is 0.112, which is small but not enough to be able to draw
a conclusion. Nothing can be said about the comparison between the OWA and
OLF operators. In order to facilitate the visualization of the hierarchy between the
alternatives, the thirteen alternatives are ordered from right to left, the ones on the
left being significantly better than the others (see Figure 7.4).

Notice that the GRU model is the best among all the initial prediction models
and is also better than OWA, IOWA, OLF and IOLF. This can be explained because,
since these fusion operators exchange the prediction positions for each time, it is
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RF GB ARIMA KNN BR LSTM GRU WAM OWA IOWA LF OLF IOLF
RF - 0.017 1 0 0.536 1 1 1 1 1 1 1 1
GB 0.983 - 1 0 0.983 1 1 1 1 1 1 1 1

ARIMA 0 0 - 0 0 0.752 1 1 0 0.744 1 0 0.388
KNN 1 1 1 - 1 1 1 1 1 1 1 1 1
BR 0.464 0.017 1 0 - 1 1 1 1 1 1 1 1

LSTM 0 0 0.248 0 0 - 0.997 1 0 0.431 1 0 0.086
GRU 0 0 0 0 0 0 - 0.997 0 0 1 0 0
WAM 0 0 0 0 0 0 0.003 - 0 0 1 0 0
OWA 0 0 1 0 0 1 1 1 - 1 1 0.360 1
IOWA 0 0 0.257 0 0 0.569 1 1 0 - 1 0 0.888

LF 0 0 0 0 0 0 0 0 0 0 - 0 0
OLF 0 0 1 0 0 1 1 1 0.640 1 1 - 1
IOLF 0 0 0.612 0 0 0.914 1 1 0 0.112 1 0 -

Table 7.12: P-values associated with the Wilcoxon test with null alternative hypoth-
esis: the row model has a bigger Mean Squared Error than the column model [35].

LF WAM GRU

IOLF

IOWA

ARIMA

LSTM

OLF

OWA

RF

BR
GB KNN

Figure 7.4: Prediction models and fusion operators ordered from left to right ac-
cording to having a significantly smaller MSE according to the Wilcoxon test [35].

hard for them to give importance to a particular model.
It is important to remark that the benefits of the here-presented methods are

related to the appearance of negative weights in the optimization process. This is
the case of the Linear Fusion in the latter example, which outperforms the rest of
alternatives. However, there are databases and elections of forecasting models in
which the negative weights do not appear or are not relevant. In these cases, the
behavior allowing or not negative weights should be similar. This could be the case
for the OWA and OLF operators.
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Table 7.13: Mean and Standard Deviation (SD) of Mean Squared Error and Mean
Absolute Error for the prediction models and their aggregations in the considered
time series. The lowest error of each row is in bold [35].



Conclusions

In this thesis, extensions of the concept of aggregation functions for random struc-
tures have been defined and studied in detail.

First, the simplest case, random variables, has been considered. In order to
define such a concept, a stochastic order has to be considered, concluding that the
appropriate choice is the usual stochastic order. Some families of aggregations of
random variables have been defined, showing that many considerations that cannot
be done with usual aggregation functions, such as the identification of the input ran-
dom vector, the introduction of random parameters or the changes in the dependence
between inputs and output, can be done with aggregations of random variables.
Moreover, it has been seen that idempotence and internality are not straightforward
notions for aggregations of random variables and admit different extensions.

Some specific examples of aggregations of random variables are then given.
Working with the Induced Ordered Linear Fusion (IOLF) operator, it is shown that
considering negative weights, besides extending of the feasible region in optimiza-
tion problems, gives a closed expression of the optimal weights, which is useful
for proving properties of the operator as an estimator. Then, a special case of the
IOLF operator is used to prove an asymptotic result considering the convergence of
the optimal weights for mean estimation of symmetric distributions by using order
statistics.

The idea of ordering distributions rather than values is explored by defining
the Stochastically Ordered Aggregations, which perform a pointwise ordering of
the involved distribution functions before applying an usual aggregation function.
Unfortunately, the resulting functions are not monotone with respect to the usual
stochastic order, but they are monotone with respect to a modification that requires
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the same dependence structure.
The case of uniform random capacities is also considered. Using the probabil-

ity approach, many properties of them have been proved, showing that they have
a deep relation with the order statistics of independent standard random variables.
In addition, an open problem in the literature related to the minimization of the
distance between two random variables is solved in its more general scenario. Its
solution can be applied to define aggregations of random variables.

In the thesis, contributions to the theory of stochastic orders can also be found.
In particular, it is concluded that some families of mean functions reduce the vari-
ability (with respect to the convex stochastic order) when applied to random vectors.
It is also concluded that many variability measures take greater values when the as-
sociated random vector has more variability or less positive dependence. Although
these results are intuitive, formal results in this regard cannot be found in the litera-
ture.

Then, the extension of the notion of aggregation of random variables to other
random structures is studied, with the cases of random elements on bounded posets,
random vectors, stochastic orders and random sets being the ones studied more in
detail. In addition to the construction of such notions, it is concluded that many
properties of random vectors and random processes are preserved when the same
usual aggregation function is applied componentwise or pointwise, respectively. For
random sets, a proper location stochastic order has been defined, a concept that, to
the best knowledge of the author, was not previously considered in the literature.

Finally, some of the methods presented have been applied to problems involv-
ing real or simulated data. In all cases, it has been concluded that the methods
worked as intended. Moreover, in the cases where a new aggregation operator has
been compared with usual aggregation functions for a prediction task, the proposal
has been significantly better. However, it has to be pointed out that the experimental
results can differ if other databases are considered. In addition, it seems difficult to
have aggregations of random variables to outperform more involved models, such
as neural networks, in prediction problems. Of course, aggregations of random vari-
ables can have better semantics, but for applied problems the best could be to use
them in combination with machine learning models, as in Section 7.6, rather by
their own.
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All theoretical and experimental results lead to the three main conclusions of
the thesis.

1. The aggregation of random structures is feasible. Working with random
elements instead of elements includes many technical issues in the construc-
tion of the notion of aggregation such as measurability, conditional distribu-
tions or the existence of some necessary sets of random elements. However,
as proved in Chapter 3 and Chapter 6, such a construction is possible.

2. The aggregation of random structures extends usual Aggregation The-
ory. Firstly, the possibility of the use of usual aggregation functions as aggre-
gations of random structures is stated in the several Composition Theorems.
In addition, it has been proven that there are many cases of aggregations of
random structures that cannot be reproduced by considering usual aggrega-
tion functions, as seen in Section 3.2.

3. The aggregation of random structures is applicable to data. Leaving aside
theoretical properties, the introduced methods can be computed and applied
to real data, as illustrated in Chapter 7. In addition, the applicability of results
involving aggregation of random structures, since many different branches of
Mathematics are involved, can trespass Aggregation Theory, see Section 7.5.

Therefore, it is possible to state that the initial fixed objectives, which were
1. define and study the concept of aggregation for different random structures, 2.
define new aggregation operators, study their properties and use them in applied
problems and 3. extend the behavioral study of aggregation functions by means of
random variables, have been attained.

However, some questions are still without an answer. Leaving aside Sec-
tion 6.5, in which just brief considerations have been considered and a deep study
should be done in the future, the main open problems are the following. (1) Is there a
meaningful formula that can describe any aggregation of random variables in terms
of a conditionally determined and a randomly induced aggregations of random vari-
ables? (2) Does the convergence of the cumulative optimal weights also hold for
non-symmetric distributions? (3) Is it possible to derive the exact distribution of the
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measure of a particular subset of a uniform random capacity? (4) Is there a solu-
tion to the problem in Section 4.5 when considering random vectors? (5) What are
the conditions for the usual stochastic ordering of two variability measures when
considering dependence stochastic orders between the initial random vectors? and
(6) Is it possible to define a proper location stochastic order for random sets that is
closed under intersection, union and the Cartesian product?

Leaving aside the open questions, this work is intended to be a first step in the
use of random structures in Aggregation Theory when applied to data analysis. In
this regard, the reader is recalled again, as explained in Section 1.3, about the im-
portance of the use of probability and Statistics procedures in Aggregation Theory.
Probability Theory in aggregation is not only appropriate but indispensable.



Conclusiones

En esta tesis se ha definido y estudiado el concepto de agregación de estructuras
aleatorias.

En primer lugar, se ha considerado el caso de variables aleatorias, el más sen-
cillo. En la definición de dicho concepto, es necesario elegir un orden estocástico,
siendo la opción más apropiada el orden estocástico usual. Después, se han definido
algunas familias de agregaciones de variables aleatorias que permiten considerar es-
cenarios que no son posibles con agregaciones usuales, como la identificación del
vector aleatorio que se está agregando, la introducción de parámetros aleatorios o la
posibilidad de cambios en la dependencia entre las variables aleatorias agregadas y
el resultado de la agregación. Además, se ha visto que no es inmediato extender el
concepto de internalidad e idempotencia a agregaciones de variables aleatorias, ya
que hay más de una alternativa.

Posteriormente, se ha trabajado con tipos de agregaciones de variables aleato-
rias especialmente relevantes. Considerando el operador de fusión lineal ordenado e
inducido (IOLF por sus siglas en inglés), se ha demostrado que, además de permitir
ampliar la región factible en algunos problemas de optimización, considerar pesos
negativos permite dar una expresión cerrada de los pesos óptimos, lo que es útil a la
hora de demostrar propiedades de dicho operador como estimador. Adicionalmente,
se ha utilizado un caso particular del operador IOLF para demostrar la convergencia
de los pesos óptimos acumulados en problemas de estimación de la media cuando
se consideran estadísticos ordenados de distribuciones simétricas.

Se han definido las agregaciones estocásticamente ordenadas, basándose en la
idea de ordenar distribuciones en vez de los valores de la muestra. En particular,
se definen mediante la ordenación punto a punto de las funciones de distribución
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involucradas, para después aplicar una agregación usual. Desafortunadamente, estas
agregaciones no son monótonas respecto al orden estocástico usual, aunque sí lo son
si se realiza una modificación del mismo que requiere que los vectores aleatorios
tengan la misma estructura de dependencia.

Adicionalmente, se ha hecho un estudio de capacidades aleatorias uniformes.
Haciendo uso del enfoque probabilista, se han demostrado diferentes propiedades
de este tipo de distribuciones, mostrando que tienen una relación estrecha con los
estadísticos ordenados de variables aleatorias uniformes, estándar e independientes.
Por otro lado, se ha considerado el problema de minimización de la distancia entre
dos variables aleatorias cuando una de ellas y la dependencia entre las dos están
fijadas en su forma más general, un problema que llevaba abierto hasta la fecha.
La solución de dicho problema permite definir algunas agregaciones de variables
aleatorias.

Esta tesis también incluye contribuciones a la rama de ordenaciones estocásti-
cas. En particular, se dan resultados sobre la reducción de la variabilidad (respecto
al orden estocástico convexo) que sucede al aplicar algunas funciones promedio. Se
concluye también que, para muchas medidas de variabilidad, estas toman valores
más grandes cuando el vector aleatorio asociado es más variable o tiene una depen-
dencia negativa más fuerte. Resultados de este tipo, aunque intuitivos, no se pueden
encontrar demostrados formalmente en la literatura.

El concepto de agregación de variables aleatorias se ha extendido a otras es-
tructuras aleatorias, dedicando más atención al caso de elementos aleatorios sobre
conjuntos parcialmente ordenados y acotados, vectores aleatorios, procesos estocás-
ticos y conjuntos aleatorios. Además de la construcción de dichos conceptos, se ha
concluido que varias propiedades de vectores aleatorios o procesos estocásticos se
preservan al aplicar la misma función de agregación a, respectivamente, cada una de
las componentes o de índices asociados. Respecto a los conjuntos aleatorios, se ha
tenido que definir un orden estocástico de localización para los mismos, concepto
que no se había considerado hasta la fecha.

Finalmente, algunos de los métodos desarrollados se han aplicado a proble-
mas que involucran datos, ya sean reales o simulados. En todos los casos, el com-
portamiento de los mismos ha sido el esperado. Adicionalmente, en los casos en
los que un nuevo operador de agregación se ha comparado con funciones de agre-
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gación usuales, la nueva propuesta ha tenido un comportamiento significativamente
mejor. Sin embargo, es posible que estos resultados experimentales difieran si se
consideran otras bases de datos diferentes. De hecho, parece complicado que al-
guna agregación de variables aleatorias pueda mejorar los resultados de modelos
más complejos como las redes neuronales, al menos en problemas de predicción. Si
bien es cierto que las agregaciones de variables aleatorias pueden tener mayor in-
terpretabilidad, para este tipo de problemas lo mejor seguramente sea combinarlas
con modelos de aprendizaje automático, tal como se ha hecho en la sección 7.6.

Teniendo en cuenta todos los desarrollos y los resultados, ya sean teóricos o
experimentales, se puede llegar a las tres conclusiones principales.

1. Se pueden definir agregaciones de variables aleatorias. Considerar ele-
mentos aleatorios añade cuestiones técnicas como la medibilidad, la exis-
tencia de ciertas colecciones de elementos aleatorios o distribuciones condi-
cionadas. Sin embargo, tal como se ha expuesto en los capítulos 3 y 6, dichas
construcciones son posibles.

2. La agregación de estructuras aleatorias extiende la teoría de agregación
usual. En primer lugar, la capacidad de usar funciones de agregación usuales
para definir agregaciones de estructuras aleatorias se ha probado mediando
teoremas de composición. Además, se ha probado que hay muchos casos
en los cuales las agregaciones de variables aleatorias no pueden ser repro-
ducidas considerando agregaciones usuales, tal como se ha demostrado en la
sección 3.2.

3. Es posible aplicar agregaciones de estructuras aleatorias a datos. De-
jando de lado propiedades teóricas, los métodos que han sido introducidos
pueden ser aplicados a datos reales, tal como se ha ilustrado en el capí-
tulo 7. Adicionalmente, ya que diferentes ramas de las matemáticas están
involucradas en el desarrollo teórico, pueden aparecer aplicaciones no direc-
tamente relacionadas con agregaciones, como por ejemplo la expuesta en la
sección 7.5.

Por lo tanto, se puede afirmar que los objetivos inicialmente fijados, que eran
1. definir y estudiar el concepto de agregación de diferentes estructuras aleatorias,
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2. definir nuevos operadores de agregación, estudiar sus propiedades y utilizarlos
en problemas aplicados y 3. extender el estudio del comportamiento de funciones
de agregación haciendo uso de variables aleatorias, han sido alcanzados.

No obstante, todavía hay algunos problemas abiertos. Dejando de lado la sec-
ción 6.5, en la que únicamente se han hecho algunos comentarios iniciales y un
estudio en profundidad ha de hacerse en el futuro, las principales cuestiones son
(1) ¿Existe alguna fórmula interpretable que pueda describir cualquier agregación
de variables aleatorias en función de dos agregaciones de variables aleatorias, una
de ellas condicionalmente determinada y la otra inducida aleatoriamente? (2) ¿Se
cumple también la convergencia de los pesos óptimos acumulados cuando la dis-
tribución no es simétrica? (3) ¿Es posible dar la distribución exacta de la medida de
un conjunto para capacidades aleatorias uniformes? (4) Si se considera el mismo
problema que en la sección 4.5 pero con vectores aleatorios, ¿tiene solución el nuevo
problema? (5) ¿Cuáles son las condiciones para tener el orden estocástico usual en-
tre dos medidas de variabilidad muestrales cuando se considera un orden estocástico
de dependencia entre los vectores aleatorios iniciales? y (6) ¿Es posible definir un
orden estocástico de localización para conjuntos aleatorios que se preserve al aplicar
uniones, intersecciones y productos cartesianos?

Dejando de lado estas preguntas aún sin respuesta, esta tesis pretende ser un
primer paso en el uso de estructuras aleatorias en teoría de agregación cuando esta
se aplica a análisis de datos. En este sentido, se recuerda una vez más, tal como fue
explicado en la sección 1.3, la importancia del uso de herramientas probabilísticas
y estadísticas en teoría de agregación. La probabilidad en agregación no es sólo
necesaria, sino también indispensable.
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