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Abstract

We describe in this article the techniques developed for the robust treatment of
the static energy versus volume theoretical curve in the new version of the quasi-
harmonic model code [Comput. Phys. Commun. 158 (2004) 57]. An average of
strain polynomials is used to determine, as precisely as the input data allow it, the
equilibrium properties and the derivatives of the static E(V ) curve. The method
provides a conservative estimation of the error bars associated to the fitting proce-
dure. We have also developed the techniques required for detecting, and eventually
removing, problematic data points and jumps in the E(V ) curve. The fitting rou-
tines are offered as an independent octave package, called AsturFit, with an open
source license.

PACS: 07.05.Bx, 71.15.-m, 64.10.+h 65.40.-b 64.30.Jk

Key words: Equations of State in Solids, Equilibrium Properties of Solids, Data
Analysis, Treatment of Noisy Data, Discontinuous Data, Thermal Effects.

PROGRAM SUMMARY/NEW VERSION PROGRAM SUMMARY
Authors: A. Otero-de-la-Roza and V. Luaña.

Program Title: AsturFit.

Journal Reference:

Catalogue identifier:

Licensing provisions: GPL, version 3.

Programming language: GNU Octave.

∗ Corresponding author
Email addresses: alberto@carbono.quimica.uniovi.es (A. Otero-de-la-Roza),

victor@carbono.quimica.uniovi.es (Vı́ctor Luaña).

Preprint submitted to Elsevier 21 March 2011



Operating system: Unix, GNU/Linux.

Number of processors used: 1.

Supplementary material: a collection of datasets, test scripts, and model outputs.

Classification: 4.9 Minimization and fitting.

Nature of problem: Fit the total energy versus volume data of a solid to a continu-

ous function and extract the equilibrium propeties and the derivatives of the energy,

with an estimation of the error introduced by the fitting procedure.

Additional comments: The techniques discussed have been implemented in gibbs2,

to be included with the second part of this article. Included here is the octave

implementation of the routines, useful for interactive work and also for the creation

of independent scripts. Some representative examples are included as test cases.

No. of bytes in distributed program, including test data, etc: 2 MByte.

No. of lines in distributed program, including test data, etc: 3017 lines of source

code, 606 lines of testing code, some 29000 lines of data and sample output, a user

manual of 27 pages.

Distribution format: tar gzip file.

External routines: the gsl and optim packages from the octaveforge site (http:

//octave.sourceforge.net/).

LONG WRITE-UP

1 Introduction

Published in 2004 in this journal [1] the quasi-harmonic Debye model code
gibbs has become a popular and inexpensive method for deriving thermal be-
havior out from energy versus volume data obtained from electronic structure
crystal calculations. The experience in this years of using the code and an-
swering to the questions and problems posed by the users has been the driving
force behind the development of a new version of the program, more robust
from a numerical point of view and with much improved capabilities.

We have divided the presentation of the new gibbs2 into two articles. This
first one specializes in the reliable treatment of the E(V ), and eventually p(V ),
data. The second article discusses the thermodynamic models implemented in
the new code and describes the actual structure and use of the program.

The poor properties of the input data have been the source of most troubles
reported by the users to the authors of the original gibbs code. Discontinuities,
noise, and inadequate range of data being the three more common sources of
concern. We have tried to implement techniques to deal with those problems
or, at least, detect and document clearly their occurrence.
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At difference from experimental errors, typically random, errors from a the-
oretical calculation tend to be reproducible and systematic and need a very
different treatment. Some of the common origins of trouble in the calculation
of the crystal cell energy versus cell shape and size include: (a) lack of conver-
gence with respect to the calculation basis (plane waves, local orbitals, etc.)
or conditions (Brillouin zone integration grid, for instance); (b) changes in the
symmetry treatment between adjacent points (a typical problem in the calcu-
lation of elastic constants); (c) triggering a threshold distance that changes the
number of neighbors or the number of integrals of some type included in the
calculation; and (d) numerical instability, like failing to detect ill-conditioned
matrices, for instance.

Whereas the real solution to the theoretical systematic errors is improving
the calculation conditions or the codes to avoid the source of trouble, there
are times when recovering as much information as possible from the data is
desirable. In our case we need to determine a smooth E(V ) curve from possibly
noisy or discontinuous data in such a way that the derivatives of the curve are
as faithful as possible.

A number of theoretical models have been developed to represent the equa-
tion of state (EOS) of solids, be it in E(V ) or p(V ) form. Several of them
have been included in gibbs2. The advantage of these models is that using
a reduced number of parameters they can cover a wide range of conditions.
The disadvantage, however, is that most of the parameters are nonlinear and
starting from a good set of values is usually a requirement for achieving the
convergence of the models. Most of our work, however, has been based on
the use of polynomials and augmented polynomial functions, easier to work
with from a numerical point of view, and easier to adapt to the treatment of
problematic data sets.

The methods described in this article have been developed and tested as oc-
tave routines before being incorporated into gibbs2, which is written in For-
tran90. The experience has been quite fruitful and offers the most useful pos-
sibility of working interactively with a data set. Accordingly, we have included
the octave routines as an independent package called AsturFit.

The rest of the article is organized as follows. Section 2 describes the source
of the data that will be used in most of our tests. Section 3 introduces some of
the most popular analytical EOS as they have been incorporated into gibbs2.
The most important part of this article is probably contained in section 4,
devoted to the linear fitting of strain EOS of arbitrary degree. The next section,
5, addresses the detection and, eventually, the solution of different types of
problematic data. The set of octave routines created for the development of
the new techniques is the subject of section 6. Finally, section 7 presents our
conclusions.
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2 Test datasets

We will illustrate most of our analysis in this work using a local density (LDA)
calculation of the rock-salt phase of MgO. The calculation has been done with
the Quantum espresso code [2], using plane-waves and ultrasoft pseudopo-
tentials under very strict conditions: cutoff energy (80 Ry), k-mesh (shifted
4× 4× 4 Monkhorst-Pack grid) and q-mesh (6× 6× 6). A fine linear grid of
129 points has been calculated in the volume range 72–143 bohr3 and this will
be our main reference. Some extra calculations have been done to illustrate
particular aspects, but they will be explicitly described when used.

3 Analytical Equation of State forms

A large number of analytical forms have been proposed to represent the be-
havior of the p(V ) or the E(V ) curves under low temperature conditions. Most
of these equations use a null pressure as the reference condition and contain
a few number of nonlinear adjustable parameters: the energy, volume and
bulk modulus at zero pressure, E0, V0 and B0, respectively, and some pressure
derivatives of the bulk modulus, also evaluated at the reference pressure, B′0,
B′′0 , ... In addition, different foundations and objectives lie behind each form,
but a number of excellent sources describe their origin from a historical and
physical point of view, including Zharkov and Kalinin, 1971 [3]; Stacey et al,
1981 [4]; Eliezer and Ricci, 1991 [5]; Anderson, 1995 [6]; Holzapfel, 1996 [7];
Poirier, 2000 [8]; Holzapfel, 2001 [9]; Eliezer et al, 2001 [10]; Stacey, 2005 [11];
and Peiris and Gump, 2008 [12].

In general, most of the traditional work on the EOS has been devoted to
the design of a functional form with as few free parameters as possible that
behaves correctly on a large range of volumes, in fact, all the way from V → 0
to V → ∞ if that is possible. Instead, our objective is extracting faithfully
the information contained in the theoretical data, determining the equilibrium
properties and the derivatives of the E(V ) curve, and obtaining an estimate
of the error associated to the treatment of the data. Expanding the volume
range of the EOS has for us the meaning of extending the electronic structure
calculations to shorter or larger geometries, and the most important property
that we demand from the EOS fitting is flexibility.

We have implemented nine different E(V ) forms, plus four p(V ) forms, chosen
among the most popular EOS’s used in the literature. The implementation is
modular, so adding and using new forms is very easy.
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3.1 Murnaghan EOS

Murnaghan historical paper [13] is based on the principle of conservation of
mass combined with Hooke’s law for an infinitesimal variation of stress in
the solid. An equivalent result can be simply obtained by assuming a linear
variation of the bulk modulus with pressure, B(p) = B0 + B′0p, to integrate
B = −V (∂p/∂V )T :

V (p) = V0

(
1 +

B′0
B0

p

)−1/B′
0

(1)

which can be inverted to

p(V ) =
B0

B′0

[(
V0
V

)B′
0

− 1

]
. (2)

The hydrostatic work equation, dW = −pdV , can then be used to integrate:

E = E0 +
B0V

B′0

[
(V0/V )B

′
0

B′0 − 1
+ 1

]
− B0V0
B′0 − 1

(3)

for the volume dependent energy under null temperature conditions.

The Murnaghan EOS is popular because of its simple functional form. For a
variety of solids it has been proved to be coincident with the experimental
measurements up to pressures of the order of B0/2 [6]. Other sources cite a
compression of some 10%, i.e. V/V0 < 0.9, as the safe limit of application.

3.2 Birch-Murnaghan and Birch EOS family

The Birch-Murnaghan [13–15] family of EOS, perhaps the most commonly
used in the fitting of experimental p(V ) data, is the result of assuming a
polynomial form for the energy,

E(f) =
n∑
k=0

ckf
k, (4)

in terms of the finite Eulerian strain;

f =
1

2

[(
Vr
V

)2/3

− 1

]
, (5)

where Vr is a reference volume. Enforcing the next limiting conditions:

lim
f→0

{
V ;E; p = −dE

dV
;B = −V dp

dV
;B′ =

dB

dp
; ...

}
= {V0;E0; 0;B0;B

′
0; ...}

(6)

5



is enough to determine

Vr = V0, (7)

c0 = E0, (8)

c1 = 0, (9)

c2 =
9

2
V0B0, (10)

c3 =
9

2
V0B0(B

′
0 − 4), (11)

c4 =
3

8
V0B0{9[B0B

′′
0 + (B′0)

2]− 63B′0 + 143}, ... (12)

so the reference volume and the EOS parameters correspond to the properties
at the equilibrium point. Some algebraic effort is required to extend these
expressions to high order, and a computer algebra code like maxima is of
great help [16].

The simplest form, BM2 or second order Birch-Murnaghan takes the form

E = E0 +
9

2
B0V0f

2 = E0 +
9

8
B0V0(x

−2/3 − 1)2, (13)

p = 3B0f(1 + 2f)
5/2 =

3

2
B0

(
x−

7/3 − x−5/3
)
, (14)

B = B0(7f + 1)(2f + 1)
5/2, (15)

where x = (V/V0). BM3 produces

E = E0 +
9

2
V0B0f

2[1 + (B′0 − 4)f ]

= E0 +
9

16
V0B0

(x2/3 − 1)2

x7/3
{x1/3(B′0 − 4)− x(B′0 − 6)}, (16)

p =
3

2
B0f(2f + 1)

5/2[2 + 3(B′0 − 4)f ]

=
3

8
B0
x2/3 − 1

x10/3
{3B′0x− 16x− 3x

1/3(B′0 − 4)}, (17)

B =
1

2
B0(2f + 1)

5/2{(27f 2 + 6f)(B′0 − 4)− 4f + 2}

=
B0

8x10/3
{x5/3(15B′0 − 80)− x(42B′0 − 196) + 27x

1/3(B′0 − 4)}. (18)
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and BM4

E = E0 +
3

8
V0B0f

2{(9H − 63B′0 + 143)f 2 + 12(B′0 − 4)f + 12}, (19)

p =
1

2
B0(2f + 1)

5/2{(9H − 63B′0 + 143)f 2 + 9(B′0 − 4)f + 6}, (20)

B =
1

6
B0(2f + 1)

5/2{(99H − 693B′0 + 1573)f 3

+ (27H − 108B′0 + 105)f 2 + 6(3B′0 − 5)f + 6}, (21)

where H = B0B
′′
0 + (B′0)

2.

3.3 Poirier-Tarantola EOS family

The Poirier-Tarantola [17] EOS family is based of the expansion of the strain
energy in terms of the natural or Hencky linear strain: fN = ln(l/l0), with l
a characteristic cell length and l0 its equilibrium value, or fN = ln(V/V0)

1/3

under hydrostatic conditions. The first member would be produced by a second
order expansion:

E = E0 +
9

2
B0V0f

2
N = E0 +

1

2
B0V0 ln2 x, (22)

p = −3B0fNe
−3fN = −B0

x
lnx, (23)

B = B0(1− 3fN)e−3fN =
B0

x
(1− lnx). (24)

Much better results should be obtained with the PT3 EOS,

E = E0 +
9

2
B0V0f

2
N [(B′0 + 2)fN + 1]

= E0 +
1

6
B0V0 ln2 x[(B′0 + 2) lnx+ 3], (25)

p = −3

2
B0fNe

−3fN [3(B′0 + 2)f + 1] = −B0 lnx

2x
[(B′0 + 2) lnx+ 2], (26)

B = −B0

2
e−3fN [9(B′0 + 2)f 2

N − 6(B′0 + 1)fN − 2]

= −B0

2x
[(B′0 + 2) lnx(lnx− 1)− 2], (27)
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and the PT4 EOS:

E = E0 + 9B0V0f
2
N{3(H + 3B′0 + 3)f 2

N + 4(B′0 + 2)fN + 4}

= E0 +
1

24
B0V0 ln2 x{(H + 3B′0 + 3) ln2 x+ 4(B′0 + 2) lnx+ 12}, (28)

p = −3

2
B0fNe

−3fN{3(H + 3B′0 + 3)f 2
N + 3(B′0 + 2)fN + 2}

= −B0 lnx

6x
{(H + 3B′0 + 3) ln2 x+ 3(B′0 + 6) lnx+ 6}, (29)

B = −1

2
B0e

−3fN{9(H + 3B′0 + 3)f 3
N − 9(H + 2B′0 + 1)f 2

N − 6(B′0 + 1)fN − 2}

= −B0

6x
{(H + 3B′0 + 3) ln3 x− 3(H + 2B′0 + 1) ln2 x− 6(B′0 + 1) lnx− 6},

(30)

where, again, H = B′′0B0 + (B′0)
2.

3.4 Vinet EOS

A different way of deriving the EOS comes from assuming an interaction po-
tential between neighbor atoms, as Mie did with the Lennard-Jones potential
in 1903 [18]. A recent member of this family is the Vinet or Universal EOS
[19,20], first proposed by Stacey et al. in 1981 [4]. The Vinet EOS is the re-
sult of using a Rydberg interatomic potential, E(a) = −∆E(1 + a)e−a, where
a = (r− r0)/l, r is the interatomic distance, r0 the minimum energy distance
and l is a scaling length. Following Cohen et al. [21] the crystal energy is given
by

E(V ) = E0+
4B0V0

(B′0 − 1)2
− 2B0V0

(B′0 − 1)2
[3(B′0−1)(η−1)+2] exp

{
−3

2
(B′0 − 1)(η − 1)

}
(31)

from which the following expressions can be obtained for the pressure and
bulk modulus:

p(V ) = 3B0
1− η
η2

exp
{
−3

2
(B′0 − 1)(η − 1)

}
(32)

B(V ) = − B0

2η2
[3η(η − 1)(B′0 − 1) + 2(η − 2)] exp

{
−3

2
(B′0 − 1)(η − 1)

}
(33)

where η = (V/V0)
1/3 = x1/3.

Cohen et al. [21] have shown that the Vinet EOS excels at reproducing the
available experimental data of solids from the extremely soft noble gases or
n-H2 to the extremely hard metals, covalent or ionic compounds. This is likely
the reason behind Vinet’s EOS recent popularity.
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3.5 Holzapfel EOS

Holzapfel [22,9] has been a strong advocate of the need that the solid EOS
tend to the known behavior of a Fermi gas under infinite pressure conditions.
Most EOS forms are not appropriate to impose this limit, but a generalization
of the Vinet form can be shown to achieve it. This is the origin of Holzapfel’s
AP2 form:

p = 3B0
1− η
η5

ec0(1−η)[1 + c2η(1− η)], (34)

where η = (V/V0)
1/3. The c0 and c2 coefficients are given by

c0 = − ln(3B0/pFG0), c2 =
3

2
(B′0 − 3)− c0, (35)

where pFG0 = aFG(Z/V0)
5/3 is the pressure of the free electron gas for the atom

of atomic number Z, and aFG = (3π2)2/3~2/(5me) ≈ 0,023 369 nm5GPa is the
Fermi gas constant. The leading η−5 term in the pressure equation ensures
that limp→∞B

′ = 5/3, a result derived from the Thomas-Fermi theory.

The energy can be obtained by integrating E − E0 = −3V0
∫ η
1 p(η)η2dη. The

result is

E = E0 + 9B0V0

{
[Γ(−2, c0η)− Γ(−2, c0)] c

2
0e
c0

+ [Γ(−1, c0η)− Γ(−1, c0)] c0(c2 − 1)ec0

− [Γ(0, c0η)− Γ(0, c0)] 2c2e
c0 +

c2
c0

[
ec0(1−η) − 1

] }
(36)

where

Γ(a, z) =
∫ ∞
z

ta−1e−tdt (a ∈ R, z ≥ 0) (37)

is the upper incomplete gamma function. Notice that this expression for the
energy is different from the version previously published [22,9] that, according
to our experience, produces wrong results.

3.6 Spinodal BCNT

The spinodal EOS by Baonza et al. [23,24] originates from the literature of
EOS for liquids and it was later proved to work well on a collection of very
compressible and of very stiff solids [25]. At difference from the previous EOS,
that take the equilibrium point as the reference geometry, here the reference
is the spinodal point, where the curvature of the E(V ) potential changes from
positive to negative or, equivalently, B(Vsp) = 0. The spinodal represents a
critical situation of the crystal, so Baonza et al. adopt a critical exponent
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form:

ln
V

Vsp
= − K?

1−β
(p− psp)1−β, (38)

where

B0 =
(−psp)β

K?
, B′0 =

βB0

(−psp)
, ln

Vsp
V0

=
β

B′0(1−β)
, β ≈ 0.85. (39)

Fitting parameters are Vsp, psp, K? and, optionally, β, although a β = 0.85
value has been shown to work well on many cases.

A detailed description of this EOS, as implemented in the original gibbs code,
can be found in ref. [26]. The energy form [26] is

E(V ) = E0 +MV0(−psp)I(y), (40)

where

M =
K?(−psp)1−β

1− β
, y = 1− 1

M
ln
V

V0
, I(y) =

∫ y

1
eM(1−s)(s1/(1−β) − 1)ds,

(41)
and the integral I(y) can be calculated numerically up to the desired precision.

3.7 Anton-Schmidt EOS

Anton and Schmidt proposed in 1997 [27] the next functional form that ade-
quately fitted the theoretical calculations of a collection of intermetallic com-
pounds. The interest of this empirical EOS is the use of E∞, supposedly the
energy at the dissociation limit, rather than the energy at equilibrium, as a
fitting parameter. The formulas for pressure, energy, and bulk modulus are

p(V ) = −β
(
V

V0

)n
ln
(
V

V0

)
, (42)

E(V ) =
βV0
n+ 1

(
V

V0

)n+1 [
ln
(
V

V0

)
− 1

n+ 1

]
+ E∞, (43)

B(V ) = β
(
V

V0

)n [
1 + n ln

V

V0

]
. (44)

The condition that B(V ) and B′(V ) become B0 and B′0, respectively, when
V → V0 can be used to derive that B0 = β and B′0 = −2n. On the other hand,
when fitting data for several temperatures, Mayer et al. [28] propose using
n+1 = 5/6−γG, where γG = d ln θD/d lnV is the Debye-Grüneisen parameter.
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Table 1
Equilibrium properties of the rock-salt phase of MgO obtained by nonlinear fitting
of different EOS.

EOS V0 (bohr3) B0 (GPa) B′0 B′′0 (GPa−1)

Murn. 124.885 177.23 3.505

Vinet 124.783 165.42 4.524

AP2 124.797 167.52 4.345

BM2 124.603 175.76 4.000 −0,022 1

PT2 122.775 267.78 2.000 −0,003 7

BM3 124.824 170.04 4.116 −0,023 6

PT3 124.637 160.80 5.212 −0,090 4

BM4 124.821 169.27 4.171 −0,025 4

PT4 124.847 169.24 4.089 −0,016 2

3.8 Nonlinear fitting

The above equations depend nonlinearly of a collection of parameters, E0, V0,
B0, B

′
0, ... that represent physical properties of the solid at equilibrium and

can, in principle, be obtained experimentally by independent methods. The
use of a given analytical EOS may have significant influence on the results ob-
tained, particularly because the parameters are far from being independent.
The number of parameters has to be considered in comparing the goodness
of fit of functional forms with different analytical flexibility. The possibility
of using too many parameters, beyond what is physically justified by the
information contained in the experimental data, is a serious aspect that de-
serves consideration. All these aspects: the nonlinear fitting, the quality of
the fitting, the possible overfitting as the number of parameters increase, the
interdependence between the parameter estimates, and the confidence limits
of the estimates are significant issues that raise important statistical concerns
[29–31].

In gibbs2, the nonlinear fitting of the analytical EOS forms is done by means
of a standard Levenberg-Marquardt (LM) algorithm, as implemented in the
lmdif1() routine of minpack [32]. The jacobian is calculated by a forward
difference numerical approach, but an analytical form adapted to each EOS
could be developed if required. Our tests show that the LM algorithm con-
verges provided that the initial estimation of the parameters is good enough.

Table 1 shows the equilibrium properties of MgO obtained by fitting several of
the previously described EOS to exactly the same set of theoretical E(V ) data.
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Table 2
Linear and nonlinear fitting of BM3 and BM4 to the MgO rock-salt data. The fitting
model is identical, no matter the procedure, but only the linear method is able to
converge high order members, like BM10.

model fit V0 (bohr3) E0 (Ry) B0 (GPa) B′0 B′′0 (GPa−1)

BM3 nonlin. 124.823661 -34.344311 170.0414 4.115715 —

BM3 lin. 124.823661 -34.344311 170.041394 4.115715 -0.023630

BM4 nonlin. 124.821340 -34.344283 169.2683 4.171190 -0.025412

BM4 lin. 124.821340 -34.344283 169.268283 4.171190 -0.025412

BM12 lin. 124.824369 -34.344285 169.319792 4.151925 -0.024118

The most relevant result is the dispersion of values. Excluding the dubious
PT2 result, the bulk modulus goes from 161 to 177 GPa, and B′0 from 3.5 to
5.2. The trend shows that the successive members of a family tend towards a
less disperse solution, but BM4 and PT4 are still far from perfect and, more
importantly, the convergence of the nonlinear fitting is a very delicate process
for such high order members of the BM and PT families. Furthermore, there
is a strong correlation between some of the nonlinear parameters, for instance
86–98% between B0, B

′
0, and B′′0 in BM4.

4 Strain polynomials

The difficulty in using higher orders in the BM or PT family comes from the
nonlinear character of the fitting procedure and yet, both families originate
from a polynomial expansion of the energy. Robust and essentially exact meth-
ods have been developed for the fitting of polynomials up very high orders.
Is the result of linear and nonlinear fitting the same? Table 2 shows that, as
far as the nonlinear fitting converges, the BMn EOS is the same no matter
the fitting procedure used, and the same happens for the PT and other strain
polynomial families. The immediate advantage is that it is now possible to
examine the results of BM or PT to any expansion order required by the
data.

4.1 Linear fitting for the BM family

Before going to more physical concerns, like the convergence with the poly-
nomial order, let us examine how the linear fitting is done in the case of
the BM family, and how the solid properties are extracted. The first step is
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transforming the input volume data into the eulerian strain values

f =
1

2

[(
Vr
V

)2/3

− 1

]
, V = Vr(2f+1)−

3/2, (45)

where Vr is a reference volume. Essentially, any finite positive value can be used
as Vr if the strain polynomial includes the c1f

1 linear term and we determine
the equilibrium position by minimizing the polynomial with respect to f .

The second step is the linear fitting to the polynomial form

E(f) =
n∑
k=0

ckf
k. (46)

It is important using a robust and efficient method, like QR or Cholesky
decomposition [33], for solving the least squares equations. The failure to do
so in the original gibbs produces some of the worst causes of instability of the
code.

Next, we need to determine the minimum of the E(f) curve to obtain the
equilibrium properties of the crystal phase. In practice this has shown to be
a delicate step, and we have finally recurred to a safe combination of Newton
and bisection search. Under some circumstances the polynomial will have no
minimum in the range of fitted volumes (for instance high pressure phases)
and this must be adequately detected and taken into account.

We also need obtaining the derivatives of the static energy with respect to the
volume. Up to the third or fourth derivatives are used in the thermal models
(e.g. in the Debye model). The best method that we have found is based on
the chain rule: use the derivatives of the energy versus the strain, plus the
derivatives of the strain versus the volume, to get the final desired properties.
Therefore, the next step is determining

Emf ≡ dmE/dfm =
n∑

k=m

ckk(k−1)...(k−m+1)fk−m, 0 ≤ m ≤ n. (47)

The derivatives of the strain, fmV = dmf/dV m, are easily determined by a
simple recursive procedure

f(m+1)V = −3m+2

3V
fmV m = 1, 2, ... (48)

where
f1V = −(1/3V )(Vr/V )

2/3. (49)

It must be stressed that this is the only part of the procedure that changes
when the definition of the strain is modified.
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The derivatives EnV = dnE/dV n can now be written in terms of the Emf and
fmV components. This is a place where a computer algebra program is very
helpful, and we have used maxima to get

E1V = E1ff1V ; (50)

E2V = f 2
1VE2f + f2VE1f ; (51)

E3V = f 3
1VE3f + 3f1V f2VE2f + f3VE1f ; (52)

E4V = f 4
1VE4f + 6f 2

1V f2VE3f + (4f1V f3V + 3f 2
3V )E2f + f4VE1f ; ... (53)

Some of the most important static properties of the solid can be obtained
immediately in terms of the EmV derivatives:

p = −E1V ; (54)

B = V E2V ; (55)

B′ = −V E3V

E2V

− 1; (56)

B′′ = E−32V [V (E4VE2V − E2
3V ) + E3VE2V ]; ... (57)

4.2 Linear fitting for an indefinite number of strain polynomial families

The eulerian strain is just one form of an indefinite number of appropriate
strain formulations [6]. As we have already described, the natural strain, f =
(1/3) lnx, produces the Poirier-Tarantola (PT) family [17]. The lagrangian
strain, f = (x2/3 − 1)/2, was used in 1970 by Thomson [34] for a fourth order
EOS, so we have called Thomson family to the lagrangian strain polynomials.
The infinitesimal strain, f = 1−x−1/3, was proposed in 1938 by Bardeen [35].
All those strain forms evaluate to zero at the reference volume, but we can
use many other functions of the volume (x±1, x±1/3, ... V ) as an appropriate
origin for an strain EOS family. In all cases, the techniques of the previous
section can be generalized.

Table 3 shows the equations needed to generalize the procedure of section 4.1
to any strain type variable. Except for the fmV derivatives, everything else
remains unchanged.

4.3 Calculating error bars with the average of polynomials

The capability of using high order strain polynomials introduces two new
problems: how to determine the best fitting and how to avoid using parame-
ters statistically unsupported by the data, i.e. avoid overfitting [30]. The idea
of fitting a set of polynomials to the E(V ) data and defining a polynomial
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Table 3
Generalizing the polynomial strain fitting to arbitrary strain forms only requires
determining the specific form of the fmV derivatives.

strain EOS f f(m+1)V f1V s

eulerian BM
1

2

(
x−

2/3−1
)

(3m+2)sfmV −x
−2/3

3V
− 1

3V

lagrangian Thomson
1

2

(
x

2/3−1
)

(3m−2)sfmV −x
2/3

3V
− 1

3V

natural PT
1

3
lnx msfmV

1

3V
− 1

V

infinitesimal Bardeen 1−x−1/3 (3m+1)sfmV
(1− f)4

3Vr
− 1

3V

x3 x3 (3m−1)sfmV
x1/3

3V
− 1

3V

V V 0 1 0

average was already explored in the PhD work of M. A. Blanco [26] and it
is a fundamental technique of the original gibbs code [1]. Given a data set
with Ni points and a strain polynomial of degree ni, the quality of the fit is
determined by

qi = [Ni/ni][Si/Smin], (58)

where

Si =
Ni∑
k=1

[Ek − E(Vk)]
2 (59)

is the square sum of residuals and Smin = mini Si. At difference from Si, the
quality qi gives more weight to those polynomials that fit better more data
with less parameters, in the spirit of statistical measurements like Akaike’s
information criterion [36]. Based on the qi values, a normalized probability
distribution is defined as

Pi =
e−qi∑
k e−qk

(method1), (60)

or

Pi =
e−q

2
i∑

k e
−q2

k

(method2). (61)

The Pi’s weights are then used to: (1) average the polynomial coefficients,
thus defining an average polynomial ; and (2) average the equilibrium prop-
erties of the individual polynomials, determining in this way the probability
distribution of the properties (mean, standard deviation, skew, kurtosis, etc).
The standard deviation, in particular, is used to provide an estimated error
bar for the determined properties. Volume dependent properties like p(V ),
B(V ), and B′(V ) are commonly determined from the average polynomial, al-
though the Pi’s weights can also be used to average the values of the individual
polynomials thus providing an estimated error bar too.
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The trick used in gibbs of eliminating points from the extremes of the volume
range is no longer used for normal data, being substituted by a far more
general and useful bootstrap method when necessary (see section 5.1).

We are now in conditions to test the convergence of the strain fit polynomials
and families. The first relevant test is contained in Fig. 1. The figure evidences
that: (a) there are important differences between the equilibrium properties
obtained from the low order polynomials, like BM3 and BM4, but the high
order BM polynomials converge to rather similar values; (b) the different fam-
ilies have equilibrium properties that coincide within the estimated error bars;
and (c) the eulerian strain tends to show slightly better error bars, but any
strain polynomial family works nicely.

Fig. 2 presents another important evidence: once we reach some level the
error bars do not change importantly if we continue adding polynomials with
increasing degree to the average pool. When very high orders are reached the
bars start to grow slowly, perhaps showing the first effects of overfitting. As
an extreme test we have tried both, individual and average of polynomials
fittings up to degree 40 and 50 with our main data set of 129 points and the
results remained stable. From our experience with this and other data sets,
there is a degree (around 10–14) for which the error bars of all equilibrium
properties are small and this constitutes a reasonable and safe level to use.

We have performed many other tests, some of which are worth describing
briefly. The results of the average fitting and, in particular, the size of the
error bars have remained stable when: (a) we have reduced the size of the
data set, without changing the range, to 65, 33, and 17 by selecting one every
2, 4, and 8 points, respectively from the original 129 points; (b) we have
increased the data set, again keeping the volume range, to 257, 513, 1025, and
2049 by calculating new points regularly spaced between the originals; (c) we
have produced a new set of 129 points for a very small range of 0.2 bohr3

around the known equilibrium geometry. The last experiment deserves some
comment. It is easy to assume, and it has been argued several times, that using
a very fine grid closely around the equilibrium geometry is the best strategy
to determine the equilibrium properties but, in practice, the limited precision
of the calculations, set, for instance, by the convergence conditions, places a
lower bound on the grid interval that contains a meaningful and independent
information.

A final word of caution is important. The behavior of the polynomials is not
guaranteed outside the range of volumes of the fitted data. In other words,
polynomials should never be used for the extrapolation of data. According to
our tests, however, it is safe using the equilibrium properties obtained with
the average of strain polynomials method as the parameters of the analytical
EOS, described in previous section, that have been designed with the purpose
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Fig. 1. Equilibrium properties of MgO (data set Y1) obtained from the fit of a
Birch-Murnaghan polynomial of degree 3 to 15 (left points, represented as big red
dots), and from the polynomial averages of the BM, PT, Thomas and Bardeen
families (right points, represented as blue dots with error bars). The properties of
the BM2 model are out of the used scale.

of doing a reasonable extrapolation.
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Fig. 2. Equilibrium properties of MgO (data set Y1) obtained from the average of
BM strain polynomials of degree 2 to n, where n is represented as the abscissa.

4.4 Determining error bars with bootstrap resampling

The estimated error bars are an important asset of the average of strain poly-
nomials method so, given the arbitrariness in the choice of weights, an inde-
pendent confirmation of their relevance is convenient. Bootstrap resampling
[30,31] is an established statistical technique that consist on extracting and
analyzing random samples from a large dataset. We have worked with our
original 129 points dataset for MgO, fitting each sample with a BM6 fixed
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Table 4
BM6 fitting to a resampling of the original 129 data points for rock-salt MgO. The
results of the average of BM polynomials are shown from comparison.

sample points V0 (bohr3) B0 (GPa) B′0 B′′0 (GPa−1)

102 50–76 124.82385(36) 169.3117(78) 4.1618(13) -0.02489(17)

103 48–79 124.82381(34) 169.3105(82) 4.1620(12) -0.02491(15)

104 45–84 124.82381(34) 169.3107(75) 4.1620(11) -0.02491(15)

105 39–89 124.82381(34) 169.3107(75) 4.1620(11) -0.02491(15)

106 39–91 124.82381(34) 169.3107(75) 4.1620(11) -0.02491(15)

avg14BM 124.82372(83) 169.314(20) 4.1593(58) -0.02461(85)

degree polynomial, and the results are presented in table 4.

The results make clear that some 103 samples are enough to converge the
results when the data is truly smooth and consistent. It also shows that the
bootstrap error bars are some one third to one fifth of those obtained with the
average of polynomials method. Keeping in mind that the bootstrap method is
considered to provide optimistic values for the standard deviations [31], we will
keep the error bars described in previous section, 4.3, as a more conservative
and safe approach.

In any case, the bootstrap resampling represents a good addition to the basic
techniques in the gibbs2 code, and we will see how it will help us to detect
problematic points in the input dataset.

5 Detection and treatment of problematic data

Ordinary least squares fitting is very sensitive to the presence of noise [31,37],
be it in the form of outliers, i.e. points that deviate wildly from the normal
trend of the sample, jumps or steps, i.e. volume ranges that differ from the
general trend by an additive energy, or random small errors that differ from
point to point. The strain average method developed in section 4.3 is very
effective in detecting those problems in the form of large error bars for the
equilibrium properties. Tables 5 and 6 show the level of precision than can
be expected on a collection of typical crystals and electronic structure calcu-
lations. We can see that smooth E(V ) curves can be expected to provide 4–7
significant figures of the equilibrium volume and bulk modulus, 3–5 significant
figures of B′0, and 2–3 in the case of B′′0 . Much worse errors can be used to
detect calculations with problems.
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Table 5
Equilibrium parameters with estimated error bars for a collection of elements in
the bcc, fcc, and diamond (A4) phases. All results correspond to FPLAPW (Full
Potential Linear Augmented Plane Waves) calculations in the LDA approximation,
and have been done with the runwien interface [38] of the wien2k code (release
10) [39,40]. The fitting errors in the total energy occur at the µRy level and have
been ignored in the table.

phase points V0 (bohr3) B0 (GPa) B′0 B′′0 (GPa−1)

Li bcc 103 128.3203(83) 15.078(12) 3.3570(48) -0.1820(23)

C A4 50 37.22569(13) 468.44(13) 3.6636(23) -0.00840(79)

Na bcc 61 224.4463(60) 9.1635(84) 3.751(17) -0.343(49)

Al fcc 151 106.587(38) 83.45(18) 4.657(20) -0.0879(21)

K bcc 100 432.56(81) 4.508(51) 3.75(21) -0.98(97)

Ca fcc 61 256.073(44) 18.044(92) 2.74(14) 0.87(21)

V bcc 97 84.690(10) 211.51(65) 3.796(79) -0.024(11)

Cu fcc 61 73.4879(66) 189.96(24) 5.003(21) -0.0351(21)

Ge A4 46 150.4627(32) 72.031(98) 4.883(19) -0.065(29)

Rb bcc 101 523.81(37) 3.610(23) 3.75(10) -1.50(21)

Nb bcc 80 115.6270(21) 191.36(16) 3.669(23) -0.0222(32)

Mo bcc 74 101.8167(14) 293.42(11) 4.181(15) -0.0195(26)

Rh fcc 61 89.2381(51) 319.80(47) 5.005(39) -0.0256(21)

Pd fcc 61 95.4633(22) 229.97(38) 5.362(21) -0.0415(51)

Ag fcc 61 108.0954(89) 139.683(86) 5.688(14) -0.0601(27)

Sn A4 56 229.312(10) 45.230(47) 4.914(26) -0.117(26)

Pb fcc 58 196.1186(64) 52.46(10) 4.846(24) -0.115(44)

Tables 5 and 6 show that, in the case of elements or compounds with the
same crystal structure we can observe an inverse correlation between the bulk
modulus and the cell volume: the smaller V0 the larger B0 and vice versa.
Diamond establishes the record of largest B0, a property related, but not
identical, to the hardness of the material. The possibility that osmium could
beat the B0 record of diamond originated a vivid controversy a few years
ago [41,42]. A principal role in this debate can be attributed to the errors
associated to the fitting of analytical EOS forms to experimental p(V ) or
theoretical E(V ) data [43]. The use of statistical fitting techniques like the
ones developed and discussed here could have revealed early large error bars
in the initial results originating the controversy.
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Table 6
Equilibrium parameters with estimated error bars for a collection of crystals in the
rock-salt (B1), CsCl-type (B2), and perovskite phases (E21). All results correspond
to FPLAPW (Full Potential Linear Augmented Plane Waves) calculations in the
LDA approximation, and have been done with the runwien interface [38] of the
wien2k code (release 10) [39,40]. The fitting errors in the total energy occur at the
µRy level and have been ignored in the table.

phase points V0 (bohr3) B0 (GPa) B′0 B′′0 (GPa−1)

LiF B1 61 101.05483(67) 87.1125(60) 4.3042(13) -0.04979(38)

LiCl B1 61 207.16832(77) 41.1285(85) 4.4208(28) -0.1193(23)

LiBr B1 61 253.106(14) 33.380(23) 4.451(11) -0.1435(63)

LiI B1 61 330.4771(44) 25.7741(89) 4.4984(93) -0.2107(76)

NaF B1 61 154.40(13) 61.6(13) 4.75(61) -0.16(36)

NaCl B1 61 275.7674(14) 32.1958(72) 4.7846(37) -0.1668(75)

NaBr B1 60 326.82(13) 26.54(12) 4.85(23) -0.299(93)

NaI B1 61 414.2209(75) 20.8000(97) 4.8018(96) -0.274(23)

KCl B1 60 378.5993(34) 24.2768(73) 5.0081(95) -0.2626(54)

KBr B1 59 436.410(16) 20.275(16) 4.9879(70) -0.298(18)

KI B1 60 534.7816(47) 16.017(10) 4.9725(60) -0.391(34)

RbCl B1 61 437.6956(72) 21.7990(81) 5.140(13) -0.3050(57)

RbBr B1 61 500.083(22) 18.4292(81) 5.145(26) -0.379(11)

RbI B1 61 605.51(18) 14.73(12) 5.04(22) -0.39(38)

CsF B1 59 331.71(97) 34.0(12) 5.0(11) -0.15(84)

CsCl B2 61 422.97(52) 24.22(34) 4.86(40) -0.07(33)

CsBr B2 61 478.612(30) 21.153(15) 5.226(31) -0.371(31)

CsI B2 61 575.385(29) 16.994(14) 5.157(22) -0.426(50)

GaP B1 61 264.61(16) 89.9(16) 4.57(50) -0.07(14)

GaAs B1 61 297.219(32) 74.28(13) 4.666(52) -0.095(22)

GaSb B1 61 374.0041(50) 55.733(81) 4.814(11) -0.099(17)

MgO B1 61 121.680(17) 171.78(98) 4.21(14) -0.0187(82)

KMgF3 E21 50 403.55(11) 86.24(63) 4.46(30) -0.09(13)

KZnF3 E21 61 423.8305(91) 95.997(21) 4.7494(93) -0.0581(16)
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Bulk modulus increases almost linearly with pressure, and this was the foun-
dation of Murnaghan EOS, quite successful for its simplicity. The slope at
the equilibrium position, B′0, is between 4 and 5 for most materials and the
curvature, B′′0 , is very small and negative. Tables 5 and 6 are good examples of
both trends. Diamond shows again as one of the records of low curvature. The
large curvature of K and Rb, and the unusual positive value of B′′0 (Ca) also
stand out, but the large error bars associated to those extremes put doubts on
their consistency. The useful role of the error bars on B0 and its derivatives
on detecting problematic fittings is clearly evidenced by the shown results.

5.1 Detection of outliers

The sensitivity of ordinary least squares fitting to the presence of outliers
is an inherited consequence and it can be avoided by using a more robust
measurement of the difference between the analytical model and the input data
set, for instance minimizing the sum of absolute value deviations [30,37,31].
Unfortunately, the standard robust regression techniques give rise to non linear
equations, which means problems of convergence as the number of parameters
of the model increases. We have included the least absolute deviation among
the techniques available to the gibbs2 user, but we will explore here a different
method for detecting and removing the outliers.

Our preferred technique is a combination of bootstrap sampling and average
of strain polynomials of different degree. The bootstrap produces samples of
different composition and number of points, and eventually some of them will
be free of the problematic points. Those clean samples will tend to yield the
best fits and thus the main contributions to the average polynomial. Given
the random nature of the resampling production it may happen that no clean
sample is produced in a run, but those cases will be revealed by the large error
bars of the equilibrium properties. A failed run can be stopped or repeated
with a sample of increased size. In general, the larger the sample the more
probable that the method succeeds at producing one or more clean fittings.

Fig. 3 and Table 7 show a typical data set with outliers, produced artificially
by a random modification of 12 of the 129 point data set of MgO. Using
a default 50% chance of including any given point, there is a probability of
(1/2)12 ≈ 0.024% that a random sample will be free of all the outliers. For
a set with n outliers and a run of N samples, the probability of failure is
(1− 1/2n)N . Assuming n = 12, the probability of failure is 78.3% for N = 103

but only 8.7% if N = 104. The first run of 103 samples in Table 7 failed to
produce a good fit, as the large error bars in B0 and derivatives clearly show.
The second run, also with 103 samples, and the third with 104 samples were
successful and their results agree within their small error bars.
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Fig. 3. Data sample for the MgO crystal containing a 10% of outlier points. The
solid (red) line is, in fact, a superposition of two indistinguishable fitted lines that
show a rather different behavior at the equilibrium point (see Table 7).

Table 7
Results of the bootstrap plus strain polynomial average method on a data sample
of MgO containing some 10% outlier points. The first run with 103 samples was not
able to detect and remove the outliers, and the large error bars provide the telltale
evidence of the problem. The second and third run produced a satisfactory result.

Samples V0 (bohr3) B0 (GPa) B′0 B′′0 (GPa−1)

103 124.12(86) 179(40) 7.3(6.6) −0.3(2.4)

103 124.82323(98) 169.337(51) 4.166(19) −0.0258(53)

104 124.8242(17) 169.294(56) 4.159(25) −0.0224(44)

5.2 Step discontinuities

Jumps in the E(V ) curve, like those shown in the figure 4, are typical of cal-
culations that proceed by adding up terms (integrals, interaction potentials,
...) coming from progressively distant neighbor shells. Different cell volumes
can result in adding up different number of shells and then energy discontinu-
ities appear. Techniques exist to avoid this problem: from special methods to
converge the shell sums up to a high precision, to simply conserving the list
of the shells added up and using it for all the volumes. We will examine the
case of the calculations gone wrong and we will try to determine the derivative
information from the discontinuous E(V ) curve.
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The method starts by defining a functional form able to accommodate the
discontinuities:

Qm(x) = P (x) + Sm(x) = P (x) +
m∑
i=1

δiH(x− ti) (62)

where P (x) is a continuous function and

H(x) =

0 if x < 0

1 if x ≥ 0
(63)

is a Heaviside step function. In other words, δiH(x − ti) produces a jump
of δi to the right of the ti abscissa value. The Sm(x) discontinuous function
describes m jumps.

Our method for detecting the position and height of a jump is based on lin-
ear interpolation. First, the energy of each point is compared with the value
interpolated from its left and right neighbor points. The jumps stand out as
a couple of successive points that differ markedly from their predicted values.
Once the position of the jump is known, the height of the step is also deter-
mined by linear interpolation. To this end, the points to the left of the jump
are used to extrapolate the value that it should have the point to the right,
and vice versa. The differences between the predictions and the actual values
produce two estimates of the step, and both are finally averaged. It must be
noticed that at least two or three points must form each continuous interval,
otherwise the linear interpolation will only produce erratic results.

We have also tried a different method based on a linear squares fitting of the
Qm(x) function to the data. The δi step parameters can, in fact, be obtained
by a linear least squares method, but the result will only be good if the smooth
part, the P (x) function, is also a good representation of the data once the jump
is removed. Accordingly, we have devised a procedure that is based on two
steps that are repeated successively until convergence. First, the approximate
step function, Sm(x), is substracted from the data and a smooth function P (x)
is fitted to the result using, for instance, the average of polynomials method.
Second, the smooth function P (x) is now removed from the data and a least
squares fitting to the left part is done to refine the δi’s. The method works
but the convergence of this procedure is very slow and it does not improve, in
general, upon the result obtained with the much simpler linear interpolation.

Fig. 4 represents a synthetic test case for the jump detection routines. Start-
ing from the MgO data set described in section 2 we added two steps of
−0,01 and +0,015 Ry for V > 80 and V > 120 bohr3, respectively. The lin-
ear interpolation method detected both steps and proposed a correction of
−0,009 998 025 and +0,014 999 49 Ry, quite close to the exact values. In fact,
once the proposed correction was applied, the recovered E(V ) curve was able
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Fig. 4. Dots represent a data set with two jumps. The methods described in text
corrected the jumps and produced the continuous curve.

to reproduce the equilibrium properties of the original data set almost exactly:
for instance B′′0 was estimated as −0.0240(23) GPa−1 compared to the origi-
nal −0.0243(19) GPa−1. This was a particularly good case, given the extreme
smoothness of the data once the jumps were discarded. In many real cases
we have found that jumps appear together with other type of noise and the
methods examined here can only do an approximate work at correcting the
data.

6 The octave fitting routines

The fitting routines are designed in such a way that the user can, either, work
interactively with the data or prepare a small script to perform the desired
task. Datasets are contained in files with the following structure:

1 # F i l e : mgo−s e t y 1 . da t
2 # MgO: Quantum−e s p r e s s o , LDA .
3 # Mg −> von Barth−Car norm−c o n s e r v i n g p s e u d o p o t e n t i a l .
4 # O −−> TM norm−c o n s e r v i n g p s e u d o p o t e n t i a l .
5 # z 1
6 # volume boh r ˆ3
7 # ene r g y r y
8 71.519556379847018 -34.007753979999997
9 72.078302914062903 -34.019008200000002

10 72.637049448278788 -34.029926469999999
11 73.195795982494673 -34.040520219999998
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12 ...

The comment lines describing the volume and energy units are very important.
The fitting routines work internally in atomic units (bohr3 and hartree), but
the routine in charge of reading the data file can detect and transform different
input units, and also the number of molecular formulas contained in a unit
cell. This can be easily adapted to other useful data, like the total number of
electrons in the molecular formula, required by the Holzapfel AP2 EOS.

Let us see a typical interactive session:

1 # Get h e l p on t h e u s e o f any r o u t i n e :
2 help readEVdata
3 # Read i n some da ta f i l e :
4 [V,E] = readEVdata(’mgo -sety1.dat’);
5 # Any vo lume can be u sed a s r e f e r e n c e .
6 # For i n s t a n c e t h e mean o r t h e median :
7 Vref = mean(V); # or V r e f = median (V ) ;
8 # F i t to an a v e r a g e o f BM p o l y n om i a l s :
9 c = avgstrainfit(V,E,Vref ,:,:,:,1);

10 # Get and p l o t p r o p e r t i e s :
11 vfinegrid = linspace(min(V),max(V) ,201);
12 prop = straineval(c,Vref ,vfinegrid ,:);
13 plot(V,E,’ob’, vfinegrid ,prop.E,’-r’);
14 xlabel(’V (bohr ^3)’); ylabel(’E (hartree)’); grid(’on’);
15 print(’plot -V-E.eps’,’-depsc ’);
16 plot(prop.p,prop.B,’-o’);
17 xlabel(’p (GPa)’); ylabel(’B (GPa)’); grid(’on’);
18 print(’plot -p-B.eps’,’-depsc ’);
19 ...

This session illustrates some important features: (a) all the routines are fully
commented and adapted to the online help system of octave; (b) many pa-
rameters in the routines have appropriate default values; (c) many routines
have several levels of printing, determined from the input value of the variable
LOG.

An alphabetic list of the routines, with a brief description of its function
follows:

allfits.m — Given a single data set, perform all implemented types of fitting.
asturfit.m — Given a single data set, perform a standard task of fitting,

producing the most useful plots, and writing files to further processing by
other codes.

avgstrainfit.m — Fit the E(V ) data to an average of strain polynomials.
checknoise.m — Analysis of the noise (outliers and steps) of a suspicious

datafile.
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errformatf.m — Convert a number x and error dx to the x(dx) form.
figures.m — Determine the actual number of significant figures (trailing ze-

ros discarded) of a number or a vector.
guessjumps3.m — Check for the existence of jumps in the data for a general
y(x) curve and, eventually, correct the values of y.

nlf.m — Non-linear fitting of several analytical EOS forms to the E(V ) data.
This routine uses leasqr from the optim package, and gamma inc from
the gsl package, both in octave-forge.

noisify.m — Add artificial noise to a set of data. This is only used to test
the noise analysis routines.

readEVdata.m — Read a set file with E(V ) data.
strain2volume.m — Convert strain values into volumes.
strainbootstrap.m — Bootstrap resampling applied to a strain polynomial

of fixed degree or to an average of strain polynomials.
strainevalE.m — Evaluate the energy for a strain polynomial.
straineval.m — Evaluate a collection of properties, including the energy, for

a strain polynomial.
strainfit.m — Fit to a strain polynomial of fixed degree. This is used within

several other routines, like avgstrainfit.m or strainbootstrap.m.
strainjumpfit.m — Iterative fitting to a strain polynomial and to a step

function. The guessjumps3.m does a better and simpler job.
strainmin.m — Get the position of the minimum of a strain polynomial.
strainspinodal.m — Get the spinodal point, if present, of a strain polyno-

mial.
volume2strain.m — Convert volume values into several kinds of strain.

The allfits.m, asturfit.m, and checknoise.m have been designed to produce
a standalone run on a single datafile. The rest of the routines have been
designed to be used interactively or within an octave script file.

We provide also several example data files containing E(V ) values:

mgo-y1.dat — Data from the calculation on MgO described in 2. This can
be complemented with the data in mgo-y1-compress.dat and mgo-y1-
expand.dat, for smaller and larger cell volumes, respectively.

w2k-lda-li.dat — Data from the wien2k FPLAPW calculation on bcc Li
using the LDA functional. The data for Na, K, and Rb is also included in
the corresponding files.

Finally, some script tests (test01.m, ...) are included, together with their
corresponding output, to check the good behavior of everything. Run any
example as:

1 octave -q test01.m > test01.mylog
2 diff test01.mylog test01.log
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and look for non-trivial differences. Make sure that the octave version in-
cludes the octave-forge routines if you want to run the nlf.m routine.

7 Conclusions and outcome

A number of results can be extracted from the statistical analysis of theoretical
E(V ) data described in this article:

(1) The conventional procedure of fitting nonlinearly an analytical EOS (BM3,
Vinet, ...) can introduce a significant error in the equilibrium properties
and in the derivatives calculated from E(V ) theoretical data.

(2) Birch-Murnaghan, Poirier-Tarantola, and several other EOS families come
from a polynomial expansion in some expression of the strain. Whereas
the traditional treatment produces and fits an EOS expression that is
non linear in the set of {E0, V0, B0, B

′
0, B

′′
0 , ...} parameters, the result is

exactly equivalent to the one produced by the linear fitting to the original
polynomial.

(3) The fitting to the strain polynomials is strictly linear and it can be carried
efficiently and robustly up to very high polynomial orders.

(4) There is an unlimited number of strain functions, each giving rise to a
polynomial strain family of EOS.

(5) We have introduced an scheme of weights for averaging strain polynomi-
als of any family based on: the square sum of residuals relative to the
best fitting achieved, the number of data fitted, and the degree of the
polynomial. The weights are used both to average the polynomial coeffi-
cients and the equilibrium properties of the several fits. This provides a
full statistics, including error bars in the form of standard deviations, of
the properties of the solid.

(6) The predictions of the different average strain EOS families do agree
within the estimated error bars.

(7) The error bars obtained by the polynomial average method are more
conservative (i.e. larger) than those obtained by bootstrap resampling.

(8) The polynomial average method, combined with a sufficiently large boot-
strap resampling, is able to produce a robust fitting to theoretical data
sets containing a few outlier points, and detect efficiently the outliers.

(9) We have developed a method for detecting, and eventually removing
jumps in the E(V ) input data.

(10) This research has been introduced in the new version, soon to be publicly
available, of the gibbs code, far more robust than the previous version.
A collection of octave routines are provided with this article for easy
testing and further improvement of the described methods.
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for solids under compression, Phys. Rev. B 54 (1996) 7034–7045.
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