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Abstract. We introduce a multi-agent topological semantics for evidence-
based belief and knowledge, which extends the dense interior semantics
developed in [2]. We provide the complete logic of this multi-agent frame-
work together with generic models for a fragment of the language. We
also define a new notion of group knowledge which differs conceptually
from previous approaches.

1 Introduction

A semantic study of epistemic logics, the family of modal logics concerned with
what an epistemic agent believes or knows, has bee mostly conducted in the
framework of relational structures (Kripke frames) [13]. These are sets of possible
worlds connected by (epistemic or doxastic) accessibility relations. Knowledge
(K) and belief (B) are thus modal operators which are interpreted via standard
possible worlds semantics.

It is claimed in [13] that the accessibility relation for knowledge must be (min-
imally) reflexive and transitive. On the syntactic level, this demand translates
into the fact that any logic for knowledge based on these frames must contain
the axioms of S4. This, paired with the fact, famously proven by McKinsey and
Tarski [14], that S4 is the logic of topological spaces under the interior semantics
(see [4]), lays the ground for a topological treatment of knowledge. Moreover,
McKinsey and Tarski [14] proved that certain generic spaces, such as the real
line, spaces which intuitively lend themselves to be models for certain situations
of knowledge, have S4 as their logic.

The semantics outlined in [14] treats the “knowledge” modality as the interior
operator, which, if one thinks of the open sets as “pieces of evidence”, adds an
evidential dimension to the notion of knowledge that one could not get within
Kripke frames. (See [16] for lengthy discussion on this topic.)

Under this interpretation, knowing a proposition amounts to having evidence
for it. This can be an undesirable property. Depending on the properties one
gives to knowledge, belief and the relation thereof, one can get different epis-
temic logics, each with their axioms and rules. Inspired by [18] and [6] a new
topological semantics was introduced in [2] and explored in depth in [16]. This
semantics allows one to talk about knowledge and belief, evidence (both “basic”
and “combined”) and a notion of justification via the dense-interior operator.
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Also an epistemic logic complete with respect to the proposed semantics has been
given in [2] and [16]. A class of models for this logic based on the dense-interior
semantics in topological spaces are called topo-e-models.

In [1] an analogue of the McKinsey-Tarski theorem was proved for the dense-
interior semantics: the logic of topological evidence models is sound and complete
with respect to any individual topological space (X, τ) which is dense-in-itself,
metrizable, and homeomorphic to the disjoint union (X, τ) ∪ (X, τ).

The framework defined in [2] is single-agent. In this paper, we introduce
a multi-agent topological evidence semantics which generalises the single-agent
case and differs substantially from prior approaches. In this sense, we provide
several logics of multi-agent models and give some conceptual and theoretical
contributions for a notion of group knowledge in this framework.

Outline. In Section 2 we present the (one-agent) notion of topological evidence
models introduced in [2] together with some relevant results. In Section 3 we
introduce and justify our multi-agent setting, we show how it generalises the
single-agent case and we provide the logic for several fragments of the language.
In Section 4, we obtain “generic models”, i.e., unique topological spaces whose
logic under the semantics previously introduced is exactly the logic of all topo-
logical spaces. Section 5 discusses a notion of group knowledge in this setting,
and gives a sound a complete logic of distributed knowledge. We conclude in
Section 6. 3

2 Single-agent topological evidence models

The relation between belief and knowledge has historically been one of the main
focus’ of epistemology. One would want to have a formal system that accounts for
knowledge and belief together, which requires careful consideration regarding the
way in which they interact. Canonically, knowledge has been thought of as “true,
justified belief”. However, Gettier’s counterexamples of cases of true, justified
belief which do not amount to knowledge shattered this paradigm [11].

Stalnaker [18] argues that a relational semantics is insufficient to capture
Gettier’s considerations in [11] and, trying to stay close to most of the intuitions
of Hintikka in [13], provides an axiomatisation for a system of knowledge and
belief in which knowledge is an S4.2 modality, belief is a KD45 modality and the
following formulas can be proven: Bφ ↔ ¬K¬Kφ and Bφ ↔ BKφ. “Believing
p” is the same as “not knowing you don’t know p” and belief becomes “subjective
certainty”, in the sense that the agent cannot distinguish whether she believes
or knows p, and believing amounts to believing that one knows.

A topological semantics in which knowledge is simply the interior modality
(i.e., evaluating formulas on a topological space and setting ‖Kφ‖ = Int ‖φ‖)
proves insufficient to capture these nuances. In [2] a new semantics is intro-
duced, building on the idea of evidence models of [6] which exploits the notion of

3 This paper is based on Saúl Fernández González’s Master’s thesis [10].
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evidence-based knowledge allowing to account for notions as diverse as basic evi-
dence versus combined evidence, factual, misleading and nonmisleading evidence,
etc. It is a semantics whose logic maintains a Stalnakerian spirit with regards to
the relation between knowledge and belief, which behaves well dynamically and
which does not confine us to work with “strange” classes of spaces.

This is the dense-interior semantics, defined on topological evidence models.

2.1 The logic of topological evidence models

We briefly present here the framework introduced in [2], see also [16]. Our lan-
guage is now L∀KB��0

, which includes the modalities K (knowledge), B (belief),
[∀] (infallible knowledge), �0 (basic evidence), � (combined evidence).

Definition 2.1 (The dense interior semantics). We interpret sentences on
topological evidence models (i.e. tuples (X, τ,E0, V ) where (X, τ, V ) is a topo-
logical model and E0 is a subbasis of τ) as follows: x ∈ JKφK iff x ∈ IntJφK and
IntJφK is dense4; x ∈ JBφK iff IntJφK is dense; x ∈ J[∀]φK iff JφK = X; x ∈ J�0φK
iff there is e ∈ E0 with x ∈ e ⊆ JφK; x ∈ J�φK iff x ∈ IntJφK. Validity is defined
in the standard way.

We see that “knowing” does not equate “having evidence”in this framework,
but it is rather something stronger: in order for the agent to know P , she needs
to have a piece of evidence for P which is dense, i.e., which has nonempty
intersection with (and thus cannot be contradicted by) any other potential piece
of evidence she could gather.

Fragments of the logic. The following logics are obtained by considering certain
fragments of the language (i.e. certain subsets of the modalities above).

“K-only”, LK S4.2.
“Knowledge”, L∀K S5 axioms and rules for [∀], plus S4.2 for K, plus

[∀]φ→ Kφ and ¬[∀]¬Kφ→ [∀]¬K¬φ.
“Combined evidence”, L∀� S5 for [∀], S4 for �, plus [∀]φ→ �φ.
“Evidence”, L∀��0

S5 for [∀], S4 for �, plus the axioms
�0φ→ �0�0φ, [∀]φ→ �0φ, �0φ→ �φ,
(�0φ ∧ [∀]ψ)→ �0(φ ∧ [∀]ψ).

We will refer to these logics respectively as S4.2K , Logic∀K , Logic∀� and Logic∀��0
.

K and B are definable in the evidence fragments5, thus we can think of the logic
of L∀��0

as the “full logic”.

4 A set U ⊆ X is dense whenever ClU = X or equivalently whenever U ∩ V 6= ∅ for
all nonempty open set V .

5 Kφ ≡ �φ ∧ [∀]�♦φ and Bφ ≡ ¬K¬Kφ.
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3 Going multi-agent

There have been different approaches to a multi-agent logic derived from the
framework introduced in [2]. In [17], a two-agent logic with distributed knowledge
was defined. However, the semantics of this approach seems to come with some
conceptual problems which were discussed in [10]. Another approach, present in
[16], generalises the one-agent case and is devoid of the aforementioned concep-
tual issues, yet it uses the semantics of subset space logic: sentences are evaluated
at a pair (x, U) where x is a world and U is some neighbourhood of x.

The system introduced in the present section and expanded upon in the sub-
sequent ones generalises the one-agent models while maintaining the underlying
ideas to the single-agent case, where sentences are evaluated at worlds. We will
limit ourselves to two agents for simplicity in the exposition. Extending these
results to any finite number of agents is straightforward.

The problem of density. A first idea when attempting to incorporate a second
epistemic agent would be to simply add a second topology to the single-agent
framework and read things in the same way. That is, we could interpret sentences
on bitopological spaces (X, τ1, τ2) where τ1 and τ2 are topologies defined on
X, and we say, for i = 1, 2, that x ∈ Kiφ if and only there is a set U ∈
τi which is dense in τi such that x ∈ U ⊆ ‖φ‖. However, this approach is
highly problematic because it requires the extra assumptions that the same set
of worlds is epistemically accessible for both agents, and thus conflates infallible
knowledge. This is discussed in more depth in [10]. Our proposal to eliminate
these complications involves making explicit which worlds are compatible with
an agent’s information at world x. This is done via the use of partitions.

3.1 Topological-partitional models

In order to specify which worlds an agent considers possible, we can define the
topologies which encode the evidence of the agents on a common space X, but we
restrict, for each agent and at each world x ∈ X, the set of worlds epistemically
accessible to the agent at x. We can still speak about density, but locally. A
straightforward way to this is through the use of partitions.

Definition 3.1. A topological-partitional model is a tuple

M = (X, τ1, τ2, Π1, Π2, V )

where V is a valuation, τi is a topology defined on X and Πi is a partition of X
with the property that Πi ⊆ τi.

The worlds which are compatible with agent i’s information at x ∈ X are now
precisely the worlds in the unique cell of the partition Πi which includes x. The
concept of justification comes now in the form of a local notion of density:
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Definition 3.2. For x ∈ X, let Πi(x) be the unique π ∈ Πi with x ∈ π. For
U ⊆ X, let Πi[U ] = {π ∈ Πi : π ∩ U 6= ∅} = {Πi(x) : x ∈ U}.

A set U ⊆ X is locally dense in π ∈ Πi whenever π ⊆ Clτi U or equivalently
when every nonempty open set contained in π has nonempty intersection with
U . We will say that a nonempty set U is locally dense in Πi (or simply locally
dense if there is no ambiguity) if Clτi U =

⋃
Πi[U ]. Equivalently, U is locally

dense if it is locally dense in π for every π ∈ Πi[U ].

With this we can define a semantics for two-agent knowledge:

Definition 3.3 (Two-agent locally-dense-interior semantics). Let

M = (X, τ1, τ2, Π1, Π2, V )

be a topological-partitional model and let x ∈ X. As usual, we have ‖p‖ = V (p),
‖φ ∧ ψ‖ = ‖φ‖ ∩ ‖ψ‖ and ‖¬φ‖ = X\‖φ‖. For i = 1, 2 set:

M, x � Kiφ iff x ∈ Intτi ‖φ‖
& Intτi ‖φ‖is locally dense in Πi(x).

Consider a topological-partitional model (X, τ1, τ2, Π1, Π2, V ) and set

τ∗i := {U ∈ τi : U is Πi-locally dense} ∪ {∅}.

It is straightforward to check that the following holds:

Lemma 3.4. (X, τ∗1 , τ
∗
2 ) is an extremally disconnected bitopological space and

the locally-dense-interior semantics on (X, τ1, τ2, Π1, Π2, V ) coincides with the
interior semantics on (X, τ∗1 , τ

∗
2 , V ).

In particular, given a topological-partitional model (X, τ1,2, Π1,2, V ) in which
every τi-open set is Πi-locally dense, the locally-dense-interior semantics and the
interior semantics coincide.

One last remark before proceeding with the main results: at first glance demand-
ing each element π ∈ Πi to be open may seem as a very strong condition. For
example, a connected space such as R does not admit any such partition other
than the trivial one Πi = {R}. We could instead do the following:

i. Define topological-partitional models to have arbitrary partitions;
ii. Define U ⊆ X to be locally dense at π ∈ Πi whenever U ∩ π is dense in the

subspace topology τi|π;
iii. Set x ∈ ‖Kiφ‖ if and only if there exists U ∈ τi locally dense in Πi(x) with

x ∈ U ∩Πi(x) ⊆ ‖φ‖.

As it turns out, these models can be turned in a truth-preserving manner into
topological-partitional models of the kind defined above. Indeed, let τ̄i be the
topology generated by {U ∩ π : U ∈ τi, π ∈ Πi}. Then clearly Πi ⊆ τ̄i and it is
a straightforward check that (X, τi, Πi), x � φ under this semantics if and only
if (X, τ̄i, Πi), x � φ under the semantics in Def. 3.3.

For this reason, we will limit ourselves to the study of models with open
partitions. Let us now look at an example:
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Example 3.5. We have four possible worlds, X = {x11, x01, x10, x00} and two
agents, Alice and Bob, represented by a and b. Let us consider two propositions,
p and q. Let V (p) = P = {x11, x10} and V (q) = {x11, x01}. The actual world is
x11, in which p and q hold.

At q-worlds Alice only considers q-worlds possible, and at ¬q-worlds, she
only considers ¬q-worlds possible. In addition to this, at p-worlds she has fallible
evidence that p. At ¬p-worlds she does not receive this evidence.

The only worlds consistent with Bob’s information are those in which q → p
holds. Moreover, in p-worlds he has fallible evidence for p and in ¬p-worlds he
has it for ¬p.

x11

x01

x10

x00

x11

x01

x10

x00

π1 π2 π4 π3

P P

X\P

Fig. 1. The topology and partition of Alice (left) and Bob (right). The dotted areas are
the proper open subsets of the cell of each partition which includes the actual world.
We can see that x11 is in a π1-locally dense open set but not in a π3-locally dense one.

Let π1 = {x11, x01}, π2 = {x01, x00}, π3 = {x11, x10, x00}, π4 = {x01}. Alice’s
and Bob’s partitions are respectively Πa = {π1, π2} and Πb = {π3, π4}. Their
topologies τa and τb are generated respectively by {π1, π2, P} and {π3, π4, P,X\P}.
(See Fig. 1.)

At the actual world x11, Alice knows p yet Bob does not: indeed, {x11} is a
τa-open set, locally dense in π1 and contained in P , thus Kap holds. And any
τb-open set contained in P is not locally dense, because it has empty intersection
with the open set {x00}, thus ¬Kbp holds at x11.

Certain topological spaces come equipped with open partitions, in the form
of their connected components.

Definition 3.6. Let (X, τ) be a topological space. A set U ⊆ X is said to be
connected if it does not contain a proper clopen subset.

A connected component of (X, τ) is a maximal connected subset of X.

The following result can be found in any topology textbook (see e.g. [15]):

Lemma 3.7. The connected components of (X, τ) coincide with the equivalence
classes of the relation: x ∼ y if and only if there is a connected subset of X
containing x and y.
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The following lemma, whose proof is straightforward, shows that the connected
components of an Alexandroff space are always open:

Lemma 3.8. Let (W,≤) be a preordered set. Then:

i. The connected components on (W,Up(W )) are open and they coincide with
the equivalence classes under the reflexive, transitive and symmetric closure
of ≤, i.e. the following equivalence relation: x ∼ y if and only if there exist
x0, ..., xn ∈ X with x0 = x, xn = y and xk ≤ xk+1 or xk ≥ xk+1 for
0 ≤ k ≤ n− 1.

ii. If (W,≤) is an S4.2 frame (i.e. if ≤ is a weakly directed preorder) we have:
x ∼ y if and only if there exists some z ∈W such that x ≤ z ≥ y.

iii. If (W,≤) is a forest (i.e. if ≤ is the reflexive and transitive closure of some
relation ≺ such that every element has at most one ≺-predecessor), then
x ∼ y if and only if there exists some z ∈W such that x ≥ z ≤ y.

Proof. (i). Let us see that [x]∼ is clopen and connected. Clearly it is both upward
and downward closed. Moreover, if ∅ 6= U ⊆ [x]∼ is a clopen set, take y ∈ U
and z ∈ [x]∼. Since there is a path of ≤ and ≥ from y to z and U is both an
upset and a downset, we have that z ∈ U , thus [x]∼ is connected.

(ii). Take a path (x0 = x, x1, ..., xn = y) such that xk ≤ xk+1 or xk+1 ≤ xk
for all 0 ≤ k ≤ n− 1, and note that xk−1 ≥ xk ≤ xk+1 implies that there exists
a certain x′k such that xk−1 ≤ x′k ≥ xk+1. Applying this successively we reach a
chain x = x′0 ≤ ... ≤ x′k ≥ ... ≥ x′n = y.

(iii). Similar to (ii.), noting that xk−1 ≺ xk � xk+1 implies xk−1 = xk+1.

Note that item (ii) entails that each upset in a directed preorder is ∼-locally
dense. Indeed, take x and y in the same equivalence class. Item (ii) gives us
that ↑x ∩ ↑y 6= ∅, thus every pair of nonempty upsets contained in the same
connected component has nonempty intersection.

This fact plus the last item in Lemma 3.4 have an immediate consequence:

Corollary 3.9. Let (X,≤1,≤2,∼1,∼2, V ) be a model in which each ≤i is a
weakly directed preorder and ∼i is the equivalence relation given by: x ∼i y if and
only if there exists z ∈ X such that x ≤i z ≥i y. Then the locally-dense-interior
semantics on this model coincide with the Kripke semantics on (X,≤1,≤2, V ).

As an immediate consequence of this, plus the fact that S4.2K1
+ S4.2K2

is
the logic of frames (W,≤1,≤2) where each ≤i is a weakly directed preorder, we
have:

Theorem 3.10. S4.2K1
+ S4.2K2

is the logic of topological-partitional models
for two agents.

3.2 Other fragments

Let us now consider other fragments of the logic. For this we add to our language
the infallible knowledge modalities [∀]i, the evidence modalities �i, and the belief
modalities Bi, for i = 1, 2, and their respective duals [∃]i, ♦i and B̂i. We interpret
these on topological-paritional models (X, τ1,2, Π1,2, V ) as follows:
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x ∈ ‖[∀]iφ‖ iff Πi(x) ⊆ ‖φ‖;
x ∈ ‖�iφ‖ iff x ∈ Intτi ‖φ‖;
x ∈ ‖Biφ‖ iff Intτi ‖φ‖ is locally dense in Πi(x).

Analogously to the one-agent case, we can check that the following equalities
hold: ‖Kiφ‖ = ‖�iφ ∧ [∀]i♦i�iφ‖; ‖Biφ‖ = ‖K̂iKiφ‖.

Much like in the one-agent framework, we are interested in looking at frag-
ments of this logic. We will focus on the knowledge fragment LKi∀i , the knowledge-
belief fragment LKiBi , and the factive evidence fragment L�i∀i .

The factive evidence fragment L�i∀i . The logic for this fragment is Logic�i∀i ,
which is the least normal modal logic which includes

– the axioms and rules of S4 for �i;
– the axioms and rules of S5 for [∀i];
– the axiom [∀i]φ→ �iφ for i = 1, 2.

Soundness for topological-partitional models is a rather simple check: the S4
rules for the topological interior hold, for IntP ⊆ P ∩ Int IntP and so do the
S5 rules for [∀]i, which are defined via equivalence relations. The fact that each
equivalence class is open takes care of the axiom [∀]iφ→ �iφ.

For completeness, we can use the Sahlqvist completeness theorem (see [9])
and note that the axioms of Logic�i∀i are Sahlqvist formulas and thus canonical
and the canonical Kripke model for this logic is of the shape (X,≤1,≤2,∼1,∼2),
where each ≤i is a preorder (as per the S4 axioms) and each ∼i constitutes an
equivalence relation (as per the S5 axioms). Moreover, the axiom [∀i]φ → �iφ
grants us that x ≤i y implies x ∼i y and thus that the ∼i-equivalence classes are
≤i-open sets. In other words, this canonical model is a topological-partitional
model.

Therefore if φ /∈ Logic�i∀i , then φ will be refuted in the canonical model,
whence we have a topological-partitional model refuting it. And thus, we have
completeness. ut

The knowledge fragment LKi∀i The logic of the fragment with all the knowledge
modalities, K1,K2, [∀]1 and [∀]2 is LogicKi∀i , the least logic including the axioms
and rules of S4 for each Ki, S5 for each [∀]i plus the following axioms for i = 1, 2:

(A) [∀]iφ→ Kiφ;

(B) [∃]iKiφ→ [∀]iK̂iφ.

Note that the .2 axiom for Ki is derivable from (A) and (B).
Soundness is a routine check, whereas for completeness we can again resort to

the Sahlqvist theorem. The canonical model is of the shape (X,≤1,≤2,∼1,∼2)
where each ≤i is a weakly directed preorder and each ∼i is an equivalence rela-
tion. Moreover the Sahlqvist first order correspondent of axiom (A) gives us that
x ≤i y implies x ∼i y and axiom (B) tells us that, if x ∼i y, then there exists
some z such that x ≤i z ≥i y. These two facts, together with item (ii) of Lemma
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3.8, imply that the ∼i-equivalence classes are exactly the ≤i-connected compo-
nents. And thus the Kripke semantics on this model coincide with the locally-
dense-interior semantics on the topological-partitional model (X, τ1, τ2, Π1, Π2)
where τi = Up≤i(X) and Πi are the ≤i-connected components. Completeness
follows. ut

The knowledge-belief fragment LKiBi
. The logic of the knowledge-belief fragment

is Stal1 + Stal2 the least normal modal logic including the S4 axioms and rules
for Ki plus the following axioms, for i = 1, 2:

(PIi) Biφ→ KiBiφ; (NIi) ¬Biφ→ Ki¬Biφ;
(KBi) Kiφ→ Biφ; (CBi) Biφ→ ¬Bi¬φ;
(FBi) Biφ→ BiKiφ.

We have that S4.2K1
+S4.2K2

∪{Biφ↔ K̂iKiφ : φ ∈ LKiBi
} ⊆ Stal1 +Stal2

and thus, if a formula φ in the language LKiBi
is not provable in Stal1+Stal2, we

can rewrite it as per into a formula in the language LKi
which is not provable in

S4.2K1 +S4.2K2 . By completeness of the latter, there is a topological-partitional
countermodel for φ, and completeness of Stal1 + Stal2 follows. ut

4 Generic models for two agents

In their famous paper [14], McKinsey and Tarski prove that S4 is not only the
logic of topological spaces when one considers the interior semantics (i.e. when
one reads ‖Kφ‖ = Int ‖φ‖), but that there are single topological spaces, such as
the real line R or the rationals Q, whose logic is precisely S4. In [1], the authors of
this paper have been concerned with finding generic models such as these for the
logic of single-agent topo-e-models. In this section we provide two examples of
generic models for the multi-agent logic, i.e., two topological-partitional spaces
whose logic is precisely S4.2K1

+ S4.2K2
.

The quaternary tree T2,2. The quaternary tree T2,2 is a full infinite tree with
two relations R1 and R2 such that each node of the tree has exactly four succes-
sors, two of them being R1-successors and the other two being R2-successors, as
it appears in Figure 2.

By setting T to be the set of points of T2,2 and ≤i to be the reflexive and
transitive closure of Ri for i = 1, 2, we can see T2,2 = (T,≤1,≤2) as a birelational
preordered frame.

It is proven in [5] that the logic of this frame under the usual Kripke semantics
is S4 + S4. This result is a corollary of the following proposition which we will
use in our proof:

Proposition 4.1 ([5]). Given a finite frame F = (W,R1, R2), where R1 and R2

are both preorders, there exists a p-morphism from T2,2 onto F, i.e., a surjective
map p : T2,2 � F such that, for i = 1, 2, (i) x ≤i y implies (px)Ri(p y), and (ii)
(px)Riv implies there exists y ∈ T such that x ≤i y and p y = v.
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Fig. 2. The quaternary tree T2,2. R1 and R2 are represented respectively by the con-
tinuous and the dashed lines.

Completeness of T2,2 with respect to S4.2K1
+ S4.2K2

. Let us now bring this to
our realm. We want to think of T2,2 as a topological-partitional model. For this,
we turn to its connected components.

As per item (iii) of Lemma 3.8, we know that the connected components are
given by the equivalence relation: x ∼i y if and only if there exists a z such that
x ≥i z ≤i y. Note that for each x ∈ T2,2 and i = 1, 2, the set of ≤i-predecessors
of x forms a finite chain (and in particular, there is a least predecessor x0 of x,
which does not have any ≤i predecessors other than itself). These two facts give
us the following characterisation:

Lemma 4.2. The ≤i-connected components of T2,2 are exactly the upsets of the
form ↑ix0, where x0 does not have any ≤i-predecessors other than itself.

Now, let (W,≤1,≤2, V ) be a finite model whose underlying frame is a rooted
birelational weakly directed preorder. We can define a map p : T2,2 � W and
a valuation V T2,2 as above. Let σi be the topology of ≤i-upsets of W and ≡i
be the equivalence relation determining the connected components. Recall that
W = (W,σ1,2,≡1,2, V ) is a topological-partitional model in which every σi-open
set is ≡i-locally dense. Moreover, we have:

Lemma 4.3. For x ∈ T2,2, w ∈ W and i = 1, 2, let [x]∼i
and [w]≡i

be the re-
spective equivalence classes (i.e., the respective connected components containing
x and w). Then the following holds:

i. For any x ∈ T2,2, p[x]∼i ⊆ [px]≡i .
ii. Let x0 ∈ T2,2 and let U be a (locally dense) σi-open set such that px0 ∈ U ⊆

[px0]≡i
. Then U ′ :=

⋃
{↑ix : x ∼i x0 & px ∈ U} is a locally dense upset

such that x0 ∈ U ′ ⊆ [x0]∼i
.

Proof. (i). Set y ∼i x. Then there is some z such that y ≥i z ≤i x and thus, since
the map p preserves order, we have that p y ≥i p z ≤i px and thus p y ≡i px.

(ii). U ′ is an upset because it is a union of upsets and x0 ∈ U ′ ⊆ [x0]∼i
by

construction. Let us see that it is locally dense. Take some z ∈ T2,2 such that
↑iz ⊆ [x0]∼i

. Now, p(↑iz) is an open set (by opennes of p) and p(↑iz) ⊆ p[x0]∼i
⊆

[px0]≡i . By local density of U there exists some a ∈ U ∩p(↑iz). That is, for some
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z′ ≥i z we have p z′ = a and p z′ ∈ U , thus by construction z′ ∈ ↑iz ∩ U ′ and
thus ↑iz ∩ U ′ 6= ∅.

As a consequence:

Proposition 4.4. For any x ∈ T2,2 and any formula φ in the language, T2,2, x �
φ if and only if W, px � φ.

Proof. This is once again an induction on the structure of formulas in which the
only involved case is the induction step corresponding to the Ki modalities.

Suppose x � Kiφ. Then there exists some locally dense open set U with
x ∈ U ⊆ [x]∼i such that y � φ for all y ∈ U . But then

px ∈ pU ⊆ p[x]∼i ⊆ [px]≡i ,

this last inclusion given by (i) of the previous lemma, and pU is a locally dense
open set in W : it is open because p is an open map and it is locally dense because
every open set in W is locally dense. Moreover, for every p y ∈ pU we have by
induction hypothesis that p y � φ. Thus px � Kiφ.

Conversely, suppose px � Kiφ. Then there exists a (locally dense) σi-open
set U with px ∈ U ⊆ [px]≡i such that w � φ for all w ∈ U . But then by part
(ii) of the previous lemma U ′ :=

⋃
{↑iz : z ∼i x& p z ∈ U} is a locally dense

upset such that x ∈ U ′ ⊆ [x]∼i
. Now take y ∈ U ′. We have that y ≥i z for some

z ∈ [x]∼i
with p z ∈ U . But since p is order preserving we have that p y ≥i p z

and thus p y ∈ U , which means that p y � φ and thus, by induction hypothesis,
y � φ. This means that U ′ ⊆ ‖φ‖T2,2 and thus x � Kiφ.

Completeness is now an immediate consequence.

Corollary 4.5. S4.2K1 + S4.2K2 is sound and complete with respect to the qua-
ternary tree (T2,2,≤1,≤2,∼1,∼2).

The product Q×Q. Let us now show that it is possible to define two topologies
and two equivalence relations on the product space Q×Q which make it into a
generic topological-partitional space for S4.2K1

+ S4.2K2
.

These topologies will be the vertical and horizontal topologies, which can be
defined on a product X×Y and, in a way, “lift” the topologies of the components.

Definition 4.6. Let (X, τ) and (Y, σ) be two topological spaces. The horizon-
tal and vertical topologies, τH and τV , are the topologies on X × Y generated,
respectively, by the bases

BH = {U × {y} : U ∈ τ, y ∈ Y } and BV = {{x} × V : x ∈ X,V ∈ σ}.

In particular, if we take both components to be Q with the natural topology, we
obtain our bitopological space (Q × Q, τH , τV ). An important result about this
space is the following:
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Theorem 4.7 ([5]). S4 + S4 is the logic of (Q×Q, τH , τV ) under the interior
semantics.

Now we shall show there exists a partition on Q×Q which will give us the desired
completeness result. Note that we cannot shelter ourselves in the connected
components this time, for the connected components in (Q×Q, τH , τV ) are the
singletons, which are not even open sets.

Let (X, τ1, τ2) be a bitopological space and Y = (Y, σ1, σ2,∼1,∼2, V ) be a
topological partitional model. Moreover, let

f : (X, τ1, τ2) � (Y, σ1, σ2)

be a surjective map which is open and continuous in both topologies. We shall
call this an onto interior map. Define two equivalence relations ≡1 and ≡2 on
X by:

x ≡i y if and only if fx ∼i fy.

Define a valuation on X by V f (p) = {x ∈ X : fx ∈ V (p)}. The following holds:

Proposition 4.8. X = (X, τ1, τ2,≡1,≡2, V
f ) is a topological evidence model

and, for every formula φ in the language and every x ∈ X we have that X, x � φ
if and only if Y, fx � φ.

Proof. Checking that X is a topological partitional model amounts to checking
that each equivalence class is an open set. Let [x]≡i

be the equivalence class
under ≡i of some x ∈ X. Note that, by definition, f [x]≡i

= [fx]∼i
. Now, [fx]∼i

is an equivalence class and thus an open set and, since f is continuous, f−1f [x]≡i

is also an open set. So it suffices to show that f−1f [x]≡i = [x]≡i . And indeed, if
z ∈ f−1f [x]≡i

then fz ∈ f [x]≡i
= [fx]∼i

which means that fz ∼i fx and thus
z ≡i x.

The second result is an induction on formulas. For the propositional variables
and the induction steps corresponding to the Boolean connectives the result is
straightforward. Now suppose that for some φ it is the case that, for all x,
X, x � φ if and only if Y, fx � φ, and let X, x � Kiφ. This means that there
exists some open set U ∈ τi such that x ∈ U ⊆ ‖φ‖X and U is locally dense in
[x]≡i , i.e., for every nonempty open set V ⊆ [x]≡i , it is the case that U ∩V 6= ∅.
But then we have that fx ∈ f [U ], the set f [U ] is open (by openness of f) which
is contained in f‖φ‖X (and thus, by induction hypothesis, in ‖φ‖Y) and f [U ] is
locally dense in [fx]∼i

. Indeed, suppose V is an open set contained in [fx]∼i
.

then f−1[V ] is an open set contained in f−1[fx]∼i = [x]≡i which implies that
there exists some z ∈ f−1[V ] ∩ U and thus some fz ∈ V ∩ f [U ]. Conversely,
suppose Y, fx � Kiφ. There is an open set U ⊆ ‖φ‖Y which includes fx and
which is locally dense on [fx]∼i

. Then f−1[U ] is an open set including x which is
contained in f−1‖φ‖Y = ‖φ‖X and moreover it is locally dense on [x]≡i

: indeed,
if V is an open set contained in [x]≡i

, then f [V ] is an open set contained in
[fx]∼i and thus there exists some y ∈ f [V ] ∩ [fx]∼i . But then y = fz for some
z ∈ V and z ∈ V ∩ f−1[fx]∼i = V ∩ [x]≡i , whence X, x � Kiφ.
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It is proven in [5] that there exists an onto map f : Q×Q→ T2,2, open and
continuous in both τH and τV . The previous proposition plus this fact grants us
the existence of a partition which makes Q × Q a generic model for S4.2K1 +
S4.2K2 .

Corollary 4.9. Let f : Q × Q → T2,2 be some onto interior map. Define

(x, y) ≡fi (x′, y′) iff f(x, y) and f(x′, y′) belong to the same ≤i-connected com-
ponent for i = 1, 2. Then S4.2K1

+ S4.2K2
is sound and complete with respect

to
(Q×Q, τH , τV ,≡f1 ,≡

f
2 ).

5 Distributed and common knowledge

We have so far a multi-agent framework whose logic simply combines the axioms
of the single-agent logic for each of the agents.

In the present section we consider the notions of distributed and common
knowledge applied to this framework.

5.1 Distributed knowledge

We can think of distributed knowledge as whatever the group knows implicitly, or
whatever would become known if all the agents were to share their information.
Not only does the group know φ if one agent in the group knows it, but the
group also knows things that no individual agent knows yet can be derived from
the information of several agents. For example, if agent 1 knows p to be the
case, and agent 2 knows p→ q to be the case, then together they know q, even
if individually no one does.

In relational semantics, if A is a finite group of agents and, for each a ∈ A,
Ka is the Kripke modality corresponding to some relation Ra, then we can think
of D as the Kripke modality corresponding to the relation

⋂
a∈ARa.

Let us remark something here: given two preorders ≤1 and ≤2 defined on a
set X, let τi be the topology of ≤i-upwards closed sets for i = 1, 2. The Kripke
semantics on (X,≤1,≤2) correspond with the interior semantics on (X, τ1, τ2),
and the collection of upwards-closed sets of the relation ≤1 ∩ ≤2 is precisely the
join topology τ1 ∨ τ2, i.e., the least topology containing τ1 ∪ τ2, or, equivalently,
the topology generated by {U1 ∩ U2 : Ui ∈ τi}. We will be using join topologies
in our approach.

A problematic approach. What exactly amounts to distributed knowledge in
our framework? A very direct way to translate the ideas presented so far would
be this: we say that Dφ holds at w whenever agent 1 and agent 2 have each a
piece of evidence which, when put together, constitute a justification for φ (i.e.,
a locally dense piece of evidence).

This approach, while intuitive, has two issues. On the one hand, it might be
the case that an agent has a piece of evidence for φ which is dense in her topology



14 Baltag, Bezhanishvili & Fernández González

(i.e., she knows φ) yet, when the evidence of both agents is put together, the
corresponding evidence is no longer locally dense in the partition of the join
topology (i.e., the group does not know φ).6 Obviously, this is undesirable.

On the other hand, this notion reflects what the group could come to know
if they put their evidence together and acted, in a way, as a collective agent.
This is more an account of implicit evidence of the group rather than its implicit
knowledge. Following this quote of [12],

For example, if Alice knows φ and Bob knows φ⇒ ψ, then the knowledge
of ψ is distributed among them, even though it might be the case that
neither of them individually knows ψ. (. . . ) [D]istributed knowledge cor-
responds to what a (fictitious) ‘wise man’ (one that knows exactly what
each individual agent knows) would know.

one might want to keep misleading evidence out of the equation, and consider
that this hypothetical ‘wise man’ forms his knowledge based not on what the
agents have evidence for, but rather on what the agents actually know.

On this account, instead of each agent having an evidence that, when com-
bined together, constitute a justification for φ, we would want for each to have
a justification which combine into an evidence for φ.

There seem to be good reasons to stick to a notion of distributed knowledge
which disregards the idea of ‘putting evidence together’ and which is based
solely on the knowledge of the agents, whose logic would contain axioms like
K1φ→ Dφ. In the following we present a way to have such a notion.

Our proposal: the semantics. We again have a language with two modal
operators K1 and K2 for the knowledge of each agent plus an operator D for
distributed knowledge.

Definition 5.1 (Semantics for D). Let X = (X, τ1,2, Π1,2, V ) be a topological-
partitional model. We read ‖p‖, ‖φ ∧ ψ‖ ‖¬φ‖ and ‖Kiφ‖ as in Def. 3.3, and:

x ∈ ‖Dφ‖ iff there exist U1 ∈ τ1, U2 ∈ τ2 such that

Ui is Πi-locally dense and x ∈ U1 ∩ U2 ⊆ ‖φ‖.

While the problematic semantics outlined above amounted to reading distributed
knowledge as the interior in the topology (τ1 ∨ τ2)∗, what we are doing here is
reading it as interior in τ∗1 ∨ τ∗2 .

The logic of distributed knowledge. Let LogicKiD be the least set of for-
mulas containing:

– The S4.2 axioms and rules for K1 and for K2;
– The S4 axioms and rules for D;
– The axioms Kiφ→ Dφ for i = 1, 2.

6 In [10] this is discussed in more depth and an example is provided.
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Theorem 5.2. LogicKiD is sound and complete with respect to topological - par-
titional models.

We will dedicate the rest of this subsection to showing this fact.

Soundness. That every topological-partitional model satisfies the S4.2 axioms
for Ki can be proven exactly as in section 3.1. That D satisfies the S4 axioms
is a consequence of D being read as Intτ∗1∨τ∗2 . And for the two extra axioms, if
x � Kiφ, then there exists Ui ∈ τ∗i with x ∈ Ui ⊆ ‖φ‖. Let j 6= i and, by taking
Uj = X, which is a Πj-locally dense τj-open set, we get x ∈ Ui ∩ Uj ⊆ ‖φ‖ and
thus x � Dφ.

Completeness. Let X be the set of maximal consistent sets over the language.
We define Ri and RD on X as follows: given T, S ∈ X,

TRiS iff Kiφ ∈ T implies φ ∈ S for all φ in the language;

TRDS iff Dφ ∈ T implies φ ∈ S for all φ in the language.

Note that RD ⊆ Ri for i = 1, 2. Indeed, if TRDS and Kiφ ∈ T , then Dφ ∈ T as
per the axiom Kiφ→ Dφ and thus φ ∈ S.

A labelled path over X is a path

α = T0
i1−→ T1

i2−→ ...
in−→ Tn,

where T0, ..., Tn ∈ X and i1, ..., in ∈ {R1, R2, RD}. Given S ∈ X and a path

α = T0
i1−→ T1

i2−→ ...
in−→ Tn, we define

lastα := Tn and α
i−→ S := T0

i1−→ T1
i2−→ ...

in−→ Tn
i−→ S.

Now, let T be the smallest set of labelled paths over X such that: (i.) T0 ∈ T ;

(ii.) For i = 1, 2, if α ∈ T and (lastα)RiT , then α
Ri−−→ T ∈ T ; (iii.) If α ∈ T and

(lastα)RDT , then α
RD−−→ T ∈ T .

For i = 1, 2, D we define: α ≺i β if and only if α = β
i−→ S for some S ∈ X.

We have thus given T the structure of a forest. Indeed, every α ∈ T has at
most one predecessor under ≺1 ∪ ≺2 ∪ ≺D. Now let us define three preorders
on T : for i = 1, 2, let ≤i be the reflexive and transitive closure of ≺i ∪ ≺D and
≤D to be the reflexive and transitive closure of ≺D. Note that by construction
≤D=≤1 ∩ ≤2.

Now let us see what the ≤1- and ≤2-connected components look like. By part
(iii) of Lemma 3.8, we know that the connected components of the topology
of upsets of ≤i (i = 1, 2) are given by the equivalence relation: α ∼i β iff
there exists γ such that α ≥i γ ≤i β. The definition of ≤i plus the fact that
RD ⊆ Ri entail that (last γ)Ri(lastα) and (last γ)Ri(lastβ). Therefore we have
the following result:

Lemma 5.3. If α and β belong to the same ≤i-connected component on T , then
lastα and lastβ belong to the same Ri-connected component in X.
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Moreover, there is an alternative characterisation of the connected components,
similar to that in Lemma 4.2, which we will find useful:

Lemma 5.4. The ≤i-connected components correspond to upsets of the form
↑iα0, where α0 has no ≤i-predecessors other than itself.

We have given T the structure of a topological-partitional space and by defining
V T (p) = {α ∈ T : p ∈ lastα} we have a topological-partitional model and we
can prove the following:

Lemma 5.5 (Truth lemma). For every α ∈ T and φ in the language, α � φ
if and only if φ ∈ lastα.

Proof. This is again an induction on formulas in which the base case for the
propositional variables follows from the definition of V T and the induction steps
for the Boolean connectives are routine.

Now, suppose the result holds for φ and Kiφ ∈ lastα. We need to define a
locally dense open set Ui such that α ∈ Ui ⊆ [α]∼i and with the property that,
for every β ∈ Ui, φ ∈ lastβ, which will give us, by induction hypothesis, that
Ui ⊆ ‖φ‖. By lemma 5.4, we have that [α]∼i

= ↑iαi for some αi ∈ T . In other
words, every β ∈ [α]∼i

is of the form

β = αi
Ri or RD−−−−−−→ Ti

Ri or RD−−−−−−→ ...
Ri or RD−−−−−−→ Tn.

Let us now partition [α]∼i
in two sets:

V
[i]
D :={β ∈ [α]∼i

: αi ≤D β};
Vi :={β ∈ [α]∼i

: αi ≤i β&αi �D β}.

Note that the elements in V
[i]
D are of the form β = αi

RD−−→ T1
RD−−→ ...

RD−−→ Tn,
and the elements in Vi are of the form

β = αi
r1−→ T1

r2−→ ...
rn−→ Tn with rk ∈ {Ri, RD} and at least one rk = Ri,

and each element in [α]∼i
is in exactly one of Vi, V

[i]
D . Let us define Ui as follows:

Ui := {β ∈ V [i]
D : (lastα)RD(lastβ)} ∪ {γ ∈ Vi : (lastα)Ri(last γ)}.

The following holds:

i. α ∈ Ui by construction.

ii. Ui is an upset. Take any β ∈ Ui. If β ≺i γ then γ = β
Ri−−→ S for some S ∈ X

and we clearly have γ ∈ Vi and (lastα)Ri(lastβ)RiS, thus (lastα)RiS. If

β ≺D γ then β = γ
RD−−→ S and, if β ∈ V [i]

D we then have that γ ∈ V [i]
D and

(lastα)RD(lastβ)RDS (thus (lastα)RD(last γ)) whereas if β ∈ Vi we have
that γ ∈ Vi and similarly (given that RD ⊆ Ri), (lastα)RiS. In any case
γ ∈ Ui.
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iii. Ui is locally dense. Take any β ∈ [α]∼i
. By lemma 5.3, we have that lastβ

and lastα are in the same Ri-connected component and, since Ri is an S4.2
relation, part (ii) of Lemma 3.8 gives us that there exists some S ∈ X with

(lastα)RiS and (lastβ)RiS and thus we have β
Ri−−→ S ∈ Ui ∩ ↑iβ.

iv. φ ∈ lastβ for every β ∈ Ui (given that Kiφ ∈ lastα and (lastα)Ri(lastβ)).

Thus α � Kiφ, as we intended to prove.
Conversely, if α � Kiφ, there exists some locally dense open set Ui with

α ∈ Ui ⊆ [α]∼i ∩‖φ‖. Since Ui is an upset, if (lastα)RiS, we have α
Ri−−→ S ∈ Ui,

which means α
Ri−−→ S ∈ ‖φ‖ and by induction hypothesis φ ∈ S. Every Ri-

successor of lastα includes φ, which gives Kiφ ∈ lastα.
Now suppose Dφ ∈ lastα. Define U1 and U2 as above. They are locally dense

open sets contained respectively in [α]∼1
and [α]∼2

. Moreover, α ∈ U1 ∩ U2 by
construction. We simply need to see that U1 ∩ U2 ⊆ ‖φ‖. First let us note the
following: if β ∈ [α]∼1 ∩ [α]∼2 = ↑1α1 ∩ ↑2α2, then β is simultaneously of the
form

β = αi
Ri or RD−−−−−−→ T1

Ri or RD−−−−−−→ ...
Ri or RD−−−−−−→ Tn

for both i = 1 and 2. This can only be true if β is of the form

β = αj
RD−−→ S1...

RD−−→ Sm with αj = αi
Ri or RD−−−−−−→ T1...

Ri or RD−−−−−−→ Tk

for i 6= j ∈ {1, 2}. Let us assume w.l.o.g. that i = 1, j = 2. In particular we

have that, if β ∈ U1 ∩ U2, then β ∈ V
[2]
D and hence (lastα)RD(lastβ). Since

Dφ ∈ lastα, this entails that φ ∈ lastβ and thus that β ∈ ‖φ‖, whence α � Dφ.
For the converse, if α � Dφ then α ∈ U1 ∩ U2 ⊆ ‖φ‖ for some ≤i-locally

dense Ui ⊆ [α]∼i
. But then if (lastα)RDS we have α ≤D α

RD−−→ S and since
≤D=≤1 ∩ ≤2 and U1 and U2 are respectively a ≤1 and a ≤2-upset, we have

that α
RD−−→ S ∈ U1 ∩ U2 and thus α

RD−−→ S � φ which by induction hypothesis
gives φ ∈ S. This entails Dφ ∈ lastα.

Completeness follows from this: if φ /∈ LogicKiD, then {¬φ} is consistent and
can be extended as per Lindenbaum’s lemma to some maximal consintent set
T0 ∈ X. We then unravel the tree around T0 as discussed above and we have
ourselves a topological-partitional model rooted in α = T0 with α 2 φ as per the
truth lemma.

5.2 Common knowledge

In the context of epistemic logic, one can think of common knowledge as that
which “every fool knows”. This informal definition can be formally cashed out in
several intuitive ways when one is modelling an epistemic situation. [3] compares
the following approaches to common knowledge:

(1) The iterate approach. A fact φ is common knowledge for a group of agents
when φ is true, all agents know that it is true, all agents know that all agents
know that it is true, etc. If Eφ is an abbreviation of K1φ ∧K2φ, then

Cφ ≡ φ ∧ Eφ ∧ EEφ ∧ EEEφ ∧ ...
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(2) The fixed-point approach. This is an approach in which common knowledge
refers back to itself. The idea here is that, if φ is the proposition which
expresses “it is common knowledge for agents a and b that p”, then φ is
equivalent to “a and b know (p and φ)”.

[3] goes on to argue that, despite the fact that early literature considered
this approach equivalent to the fixed point one, (1) and (2) offer in fact distinct
accounts and the fixed point approach provides “the right theoretical analysis of
the pretheoretic notion of common knowledge”.

Moreover, while (1) and (2) are equivalent in relational semantics, as shown
in [7] this equivalence disappears once we are working in a topological setting.
If one is working topologically, one has to make a choice.

Our proposal amounts to reading the common knowledge modality C as the
interior in the intersection topology τ∗1 ∩ τ∗2 . More explicitly:

Definition 5.6 (Common knowledge semantics). Let X = (X, τ1,2, Π1,2, V )
be a topological-partitional model. We read

X, x � Cφ iff there exists U ∈ τ1 ∩ τ2 locally dense in Π1 and in Π2

such that x ∈ U ⊆ ‖φ‖.

This amounts to the following: there is common knowledge of φ at x whenever
there exists a common factive justification for φ.

Much like our account of distributed knowledge, this notion of common
knowledge corresponds directly with the relational definition when we are deal-
ing with a topological-partitional model stemming from two S4.2 relations: if R1

and R2 are S4.2, τi is the topology of Ri-upsets and Πi is the set of Ri-connected
components, then τ∗1 ∩ τ∗2 contains exactly the upsets of (R1 ∪R2)∗.

Another observation is that, in the spirit of [3], this definition is precisely the
fixed point account of common knowledge. As pointed out in [7] and expanded
in [8], the fixed point approach can be expressed in the notation of mu-calculus
as

Cφ = νp(φ ∧ Ep),

where p is a propositional variable which does not appear in φ. We read

‖νpψ‖ =
⋃
{U ∈ P(X) : U ⊆ ‖ψ‖V

U
p },

where V Up is the valuation assigning U to p and V (q) to q 6= p.

In particular, ‖Cφ‖ =
⋃
{U ∈ P(X) : U ⊆ ‖φ∧Ep‖V

U
p }. It is straightforward

to check that this last set equals⋃
{U ∈ P(X) : U ∈ τ∗1 ∩ τ∗2 &U ⊆ ‖φ‖} = Intτ∗1∩τ∗2 ‖φ‖,

which is precisely our account of common knowledge.
Some theorems in the logic of topological-partitional models with common

knowledge are the following:
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i. The S4.2 axioms for Ki;

ii. the S4 axioms for C;

iii. the fixed point axiom Cφ→ E(Cφ ∧ φ);

iv. the induction axiom C(φ→ Eφ)→ (Eφ→ Cφ).

Proposition 5.7 (Soundness). All the theorems above are valid on topological-
partitional models with the semantics of definition 5.6.

Proof. That i., ii. and iii. hold for topological-partitional models is a straightfor-
ward check. Item iv. is more involved. It amounts to checking that, on any such
model, and for any P ⊆ X,

C(¬P ∨ (K1P ∩K2P )) ∩ P ⊆ CP.

Now, let x ∈ C(¬P ∨ (K1P ∩K2P )). By the semantics of 5.6 this means that
there exists some U ∈ τ∗1 ∩ τ∗2 such that

x ∈ U ⊆ ¬P ∪ (Intτ∗1 P ∩ Intτ∗2 P ).

Call V := U ∩ Intτ∗1 . Now, V is a τ∗1 -open set. Note that V ⊆ U ∩ Intτ∗2 and
U ∩ Intτ∗2 ⊆ V and thus V is also a τ∗2 -open set. Moreover, V includes x and it
is contained in P . Thus there exits some V ∈ τ∗1 ∩ τ∗2 with x ∈ V ⊆ P , hence
x ∈ CP .

Whether the preceding list of formulas constitutes a complete axiomatisation of
the logic of common knowledge for topological-partitional models is a question
that remains open.

6 Conclusions and future work

This paper presents a multi-agent generalisation for the dense interior semantics
defined on topological evidence models, furthering the results in [2].

This was achieved by introducing a second epistemic agent and a partition-
based semantics. We showed how this semantics generalises the single agent case
and we provided a complete logic for our two-agent models. Moreover, ‘generic
spaces’ were provided with respect to which the logic is sound and complete:
the quaternary tree T2,2 and the rational plane Q×Q. Along with this, a brief
conceptual and theoretical study of notions of “group knowledge” for this group
of agents was developed.

Some questions remain unanswered (and some potentially interesting results
were out of the scope of this investigation). Among these are the following:

– Are T2,2 and Q×Q generic models for any (all) of the fragments of the lan-
guage considered in Section 3.2? For the distributed knowledge logic defined
in the last section?
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– Can we more broadly characterize a class of topological - partitional spaces
which are generic for the logic? For example it is shown in [1] that, for the
one-agent case, any topological space which is dense-in-itself, metrizable and
idempotent is a generic model for the logic. Is a similar result true in the
multi-agent setting?

– Does the list of theorems presented in Section 5.2 constitute a complete
axiomatization of the logic of common knowledge?

Acknowledgements. We wish to thank Guram Bezhanishvili for very valuable
discussion on these topics.
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