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Abstract: Inflationary scenarios in string theory often involve a large number of light

scalar fields, whose presence can enrich the post-inflationary evolution of primordial fluctu-

ations generated during the inflationary epoch. We provide a simple example of such post-

inflationary processing within an explicit string-inflationary construction, using a Kähler

modulus as the inflaton within the framework of LARGE Volume Type-IIB string flux com-

pactifications. We argue that inflationary models within this broad category often have a

selection of scalars that are light enough to be cosmologically relevant, whose contributions

to the primordial fluctuation spectrum can compete with those generated in the standard

way by the inflaton. These models consequently often predict nongaussianity at a level,

fNL ≃ O(10), potentially observable by the Planck satellite, with a bi-spectrum maximized

by triangles with squeezed shape in a string realization of the curvaton scenario. We argue

that the observation of such a signal would robustly prefer string cosmologies such as these

that predict a multi-field dynamics during the very early universe.
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1 Introduction

Standard Hot Big Bang cosmology provides a good description of the great wealth of large-

scale observations [1, 2] that have recently revolutionized our understanding of cosmology,

but it only does so if the universe is started off with a particular kind of initial conditions.

Cosmic inflation [3–5] was initially proposed as an elegant way of obtaining these condi-

tions as the outcome of still-earlier dynamics. But this initial promise was subsequently

reinforced by the observation that curvature perturbations generated by quantum fluctua-

tions of the inflaton field can get imprinted on the temperature distribution of the Cosmic

Microwave Background (CMB) in the much later universe, in good agreement with the

almost-scale-invariant and Gaussian spectrum that is observed.
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Obtaining the desired inflationary expansion within a realistic picture of the at-present

ill-understood dynamics appropriate to the very high energies required proved to be much

harder than expected, however. The last decade has seen some progress, sparked by the

understanding of modulus stabilization within string theory. This allows the construction

of calculable inflationary configurations within string theory, with the role of the inflaton

played either by an open-string degree of freedom — such as the relative positions of BPS

branes [6–19], or of a brane and antibrane [20–26], or Wilson lines [27, 28] — or a field from

the closed-string sector — such as a geometrical modulus [29–33] (see [34–42] for reviews).

Nowadays, various string inflationary models are under reasonably good theoretical

control, and developed to a level that can be compared meaningfully to cosmological data.

In particular, because mechanisms now exist to stabilize moduli, it is possible to under-

stand the cosmological evolution of all of the relevant fields, and therefore to be sure that

the motion of fields other than the inflaton do not ruin the simplest single-field inflationary

predictions for the evolution of curvature perturbations. It is largely the removal of this

potential theoretical error that now makes the predictions of string inflationary scenarios

sufficiently reliable for comparisons with observations.

One feature common to the string inflationary models explored so far is the effective

absence in them of isocurvature fluctuations in the predictions for CMB observables. This

despite the fact that most scenarios involve more than one potentially cosmologically active

scalar field during the inflationary epoch. Indeed models are usually designed this way,

with all of the non-inflaton moduli sitting in their local minima as the inflaton rolls. Such

constructions greatly simplify the calculation of late-time perturbations, because they pre-

dict only adiabatic fluctuations, which can be evolved forward to the present time with

minimal sensitivity to the details of the poorly-understood cosmological history between

inflation and now. It is because of this that the implications of these models are usually

well-captured, ex post facto, by simple single-field inflationary models [42, 43].

An unfortunate consequence of the focus for convenience on such models is the miscon-

ception that string inflation must agree in its predictions with single-field models, including

in particular a prediction of vanishingly small nongaussianity. This prediction is sometimes

held up as a potential observational way to discriminate [44] between string inflation and

alternatives to inflation within string theory [45–52].

In order to investigate the robustness of such predictions, in this paper we take the first

steps towards exploring other mechanisms for generating primordial fluctuations within a

concrete string inflationary model based on a LARGE Volume (LV) scenario. (For other

discussions of nongaussianities in string inspired scenarios see [53–55].) We find we are able

to construct such string inflationary frameworks by making nontrivial use of the presence of

the large number of scalar fields that are generically present during and after the inflation-

ary epoch. If these fields are sufficiently light during inflation they can acquire significant

isocurvature fluctuations which post-inflationary evolution can robustly convert into adi-

abatic perturbations, swamping those contributions coming from the inflaton field itself.

Although somewhat more history-dependent than is the standard mechanism, the subse-

quent evolution of the resulting adiabatic fluctuations remains plausibly independent of the

details of cosmic evolution provided only that the universe comes to thermal equilibrium

shortly after adiabatic perturbations with the desired features are produced.
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Our search for models uses two generic mechanisms for achieving post-inflationary

isocurvature to adiabatic conversion: the curvaton mechanism [56–58]; and the modulation

mechanism [59–62] scenarios. In particular, the main models we present can be regarded

as explicit realizations of the curvaton mechanism within a string-inflationary framework.

The idea that such modulus dependent effects could contribute to curvature perturbations

is not in itself new. What we accomplish in this work is to achieve it for the first time

in a fully calculable string set-up, where the required properties are subject to a myriad

of constraints imposed by the underlying UV consistency. The precision of this kind of

setup is a necessary preliminary for asking more detailed questions about reheating and

the ultimate transfer of energy from the inflaton to observable degrees of freedom (d.o.f.).

Similar studies for brane-antibrane inflation allowed the identification of cosmic strings as

a potential late-epoch signature [63–66], as well as the utility of warping for channeling

energy into the observed low-energy sector [67–72]. Recent studies of reheating at the end

of closed string inflation similarly reveal the need to set severe constraints on the hidden

sector dynamics in order to allow an efficient reheating of the visible sector [73].

Because the observed primordial fluctuations are not directly generated by the inflaton

their properties in general depend differently on the various underlying parameters, and

are in particular not tied to the slow-roll parameters in the way familiar from single-field

models. This could ultimately allow string inflationary models for which the string scale is

not in conflict with the demands of particle physics during the present epoch (such as the

supersymmetry breaking scale) [74–77], although we do not yet have an explicit example

which does so.

The most interesting such difference is the generic prediction of a sizeable level of

nongaussianity, fNL ≃ O(10); a level detectable by the Planck satellite. The underly-

ing imprinting of the adiabatic fluctuations takes place in the post-inflationary epoch. It

is characterized by a non-linear relation between scalar and curvature fluctuations, that

generates nongaussianities of local form. The corresponding bi-spectrum, consequently, is

robustly predicted to be dominated by triplets of momenta that form long, thin triangles:

the so-called squeezed limit.1

In the models studied here the size of the nongaussianity is a consequence of the prop-

erties of the geometry of the extra dimensions in string theory. But if such nongaussianity

should really be observed with these properties, they will not tell us about microscopic

physics in this much detail. What they most likely would tell us is that the epoch of

fluctuation generation and its aftermath are described by some sort of multi-field system

similar to the ones we describe.

We perform our search for these mechanisms within the LARGE Volume (LV) scenario

of modulus stabilization for Type IIB string vacua [79]. These models are convenient for

this purpose for several reasons. First, they predict the existence of a suite of moduli, whose

masses naturally come with a hierarchical suppression in different ways by powers of the

extra-dimensional volume, V = Vol/ℓ6s, in string units [80–83]. In particular, Kähler moduli

for small cycles tend to arise with masses of order Mp/V while those for large cycles tend

1For a recent comprehensive review on nongaussianities see [78].
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to get masses of the order Mp/V3/2 or smaller. Second, the couplings of these moduli to

observable fields at late times can be plausibly estimated provided these fields are assumed

to reside on a brane (or branes) that wrap the cycles whose volumes are measured by the

various moduli [73, 81, 84]. Finally, inflationary mechanisms are already known using these

models, with the inflaton being either a small cycle [85–89] or a large one [90] (see also [91]).

To construct our models we splice the frameworks developed in [85–89] and [90], using

a modulus of a small (blow-up) cycle as the inflaton, keeping the modulus for a larger cycle

as the (curvaton) field that acquires isocurvature fluctuations. This construction exploits

the fact that these moduli like to be light relative to the inflaton, and so would plausibly

have extra-Hubble fluctuations imprinted on their profiles. Moreover, after inflation its

decay rate to radiation has the right value to convert isocurvature modes into adiabatic

fluctuations, with the correct amplitude (and a sizeable level of nongaussianity). The spirit

of our construction is to provide an existence proof for mechanisms of this type within a

well-developed, modern string set-up, in which issues associated with moduli dynamics and

stabilization can be analysed. Although at first sight the model may seem contrived, it

actually uses the minimal amount of ingredients that are needed in order to exhibit the

effects we are interested in.

The paper is organized as follows. In section 2, we briefly review the field content and

framework of the LV compactifications. Section 3 then describes the inflationary setup

in these models, which minimally involve 4 moduli: V = V(τ1, τ2, τ3, τ4). These are: a

curvaton field, τ1; the volume modulus, τ2 together with a blow-up mode, τ3, that provides

the standard LV stabilization mechanism for the volume V; and an inflaton τ4.
2 These

have the desired hierarchy of masses if the fluxes are adjusted so that the volumes are

stabilized with the hierarchy τ2 > τ1 ≫ τ4 > τ3. Because of the LV ‘magic’ this can be

done using hierarchies among the input fluxes that are at most O(10). Section 4 then gives

the V-dependence of the couplings of these fields to observable d.o.f., which we take to be

localized on a brane wrapping either the curvaton cycle or one of the small blow-up cycles.

The curvaton mechanism in this framework is explored in section 5, where it is shown

that the V-dependence of the masses and couplings can be such as to produce acceptable

adiabatic fluctuations. Section 6 then explores several choices for underlying parameters

to get a feel for the range that is possible for observables. One of the models presented in

this section predicts fNL ≃ 57. Our conclusions are briefly summarized in section 7.

2 The system under consideration

We start with a discussion of the system whose inflationary dynamics is of interest. We

follow throughout the conventions of [90].

2.1 The field content

The model requires us to choose a compactification based on a Calabi-Yau manifold having

at least the following 4 Kähler moduli, whose dynamics are of interest:

2We apologize for the slightly opaque notation, which is designed to follow ref. [90] as closely as possible.
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i) A fiber modulus, τ1, playing the role of curvaton field and wrapped by a stack of

D7-branes.3 The low-energy scalar potential first acquires a dependence on this field

through string loop contributions sourced by the D7-branes [82, 93], and for this

reason it likes to remain light during inflation.

ii) A base modulus, τ2, that mainly controls the overall extra-dimensional volume and

which is wrapped by a stack of D7-branes needed to generate the string loop poten-

tial for τ1.
3 This modulus is heavy during inflation, and remains well-stabilized at its

minimum throughout inflation.

iii) A blow-up mode τ3, that is an ‘assisting field’ required to stabilize the volume V at its

minimum in the usual LV way (as in [85–89]). The potential depends on it through

non-perturbative contributions generated by a stack of D7-branes wrapping τ3 and

supporting a hidden sector that undergoes gaugino condensation.4 It is heavy during

inflation, and its VEV is proportional to the logarithm of the volume.

iv) A second blow-up mode, τ4, that plays the role of the inflaton field, as in [85–89]. Its

non-perturbative potential is again generated by gaugino condensation on the hidden

sector supported by a stack of D7-branes wrapping this cycle.5 During inflation its

VEV is few times the logarithm of the volume.

We finally point out that we shall present two explicit scenarios:

1. Visible sector wrapped around the curvaton cycle τ1 (and τ2 since these two cycles in-

tersect each other): this is the case with the minimal number of 4 Kähler moduli and,

due to the location of the visible sector on τ1, it maximizes the strength of the coupling

of the curvaton to visible d.o.f., so yielding the largest amount of nongaussianities.

However, this is a non-standard realization of the visible sector supported on a non-

rigid 4-cycle which tends to be stabilized large (giving rise to a tiny gauge coupling).

2. Visible sector wrapped around a blow-up mode τ5 which is heavy during inflation:

in this case we need to make the system a bit more involved including a fifth cycle

which can be stabilized small either in the geometric regime (by string loop effects

as in [82]) or at the quiver locus (by D-terms as in [96]). The advantage is that now

we have a standard realization of the visible sector on a rigid 4-cycle whose VEV

reproduces the correct order of magnitude of the gauge coupling. However now the

geometric separation between τ1 and τ5 reduces the strength of the coupling of the

curvaton to visible d.o.f., so yielding a smaller amount of nongaussianities.

The compactification. To have these four moduli we consider a Calabi-Yau three-fold

with a K3 fibration structure controlled by two moduli, τ1 and τ2, together with two

3These D7-branes can support either a visible or a hidden sector in a very model-dependent way.
4τ3 cannot support a visible sector due to the tension between non-perturbative effects and chirality [92].
5The potential for τ4 cannot be generated by an instanton since after inflation it would lead τ4 to a

regime, 〈τ4〉 < 1, where we cannot trust the effective field theory [73].
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additional blow-up modes, τ3 and τ4. We assume the Calabi-Yau volume when expressed

as a function of these moduli has the form [97]:

V = α

(

√
τ1τ2 −

4∑

i=3

γi τ
3/2
i

)

. (2.1)

The Kähler potential (including the leading α′ corrections) for the effective low-energy 4D

supergravity in this case is (we work throughout in the 4D Einstein frame):

K ≃ K0 + δKα′ = −2 ln

[

V +
ξ̂

2

]

, (2.2)

where the α′ corrections are controlled by the quantity

ξ̂ ≡ ξ

g
3/2
s

= −ζ(3)χ(M)

2 g
3
2
s (2π)3

(2.3)

where χ(M) is the Euler number of the compact manifold. In applications we take the

quantity ξ to lie in the interval (0.1 , 1).

In the superpotential we neglect non-perturbative contributions associated with the

large cycles, τ1 and τ2, relative to those of the small cycles,

W ≃W0 +A3e
−a3T3 +A4e

−a4T4 , (2.4)

since these are negligible relative to those explicitly written and are likely to be absent

since τ1 and τ2 are non-rigid cycles. The superpotential is characterized by the constant

W0 and the non-perturbative corrections are weighted by constants Ai. We choose the

quantity W0 — as usual in LV models — to be order one, and the parameters ai satisfy

ai = 2π/N since they arise due to gaugino condensation on D7 branes (with N being the

rank of the associated gauge group).

Following the LV program, our interest is in the form of the resulting potential in a

regime where lnV ≃ O (τ3), so that terms in the α′ expansion compete with the leading

non-perturbative contributions from W [80]. However, for the inflationary analysis our

interest is not in the local LV minimum. Instead we seek nearby flat regions of the poten-

tial along which the potential is shallow as a function of τ1 and τ4, with V and τ3 heavy

enough to sit at their local minima. Following the reasoning of refs. [85–89] and [90], we

expect such a regime to arise in the region of field space where the fields are hierarchically

different: τ2 > τ1 ≫ τ4 > τ3, since in this region the potential likes to become independent

of τ1 and τ4, at least before string-loop contributions are included.

We now use these expressions to compute the scalar potential and kinetic terms in the

desired regime.

2.2 The kinetic terms

In this section we investigate the field redefinitions needed to put the kinetic terms into

canonical form. The starting point in the regime of interest is the Kähler metric for the
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moduli, which is given by the following symmetric matrix:

K0
ī =

1

4τ2
2











τ2
2

τ2
1

γ3τ
3/2
3 +γ4τ

3/2
4

τ
3/2
1

−3γ3

2

√
τ3

τ
3/2
1

τ2 −3γ4

2

√
τ4

τ
3/2
1

τ2

′′ 2 −3γ3

√
τ3√
τ1

−3γ4

√
τ4√
τ1

′′ ′′ 3αγ3

2
τ2
2

V√
τ3

9γ3γ4

2

√
τ3τ4
τ1

′′ ′′ ′′ 3αγ4

2
τ2
2

V√
τ4











, (2.5)

where (as in [90]) we systematically drop terms that are suppressed relative to the ones

shown by factors
√

τi/τ2 ∀ i = 3, 4.

The kinetic Lagrangian to leading order therefore becomes6

− Lkin√−g =
1

4τ2
1

(∂τ1)
2 +

1

2τ2
2

(∂τ2)
2 +

4∑

i=3

3αγi

8V√τi
(∂τi)

2 +

4∑

i=3

γiτ
3/2
i

2τ2
2 τ

3/2
1

∂τ1∂τ2

−
4∑

i=1

3αγi
√
τi

2V

(
∂τ1
2τ1

+
∂τ2
τ2

)

∂τi +
9α2γ3γ4

4

√
τ3τ4
V2

∂τ3∂τ4

=
3

8τ2
1

(∂τ1)
2 +

1

2V2
(∂V)2 +

4∑

i=3

3αγi

8V√τi
(∂τi)

2 − 1

2τ1V
∂τ1∂V

−
4∑

i=3

3αγi
√
τi

2V2
∂V∂τi +

9α2γ3γ4

4

√
τ3τ4
V2

∂τ3∂τ4 , (2.6)

where the last equality trades τ2 for V, in the limit in which τ1, τ2 are much larger than τ3,

τ4. It is convenient to canonically normalize order by order in 1/V, and so we rewrite (2.6)

as:

Lkin = LO(1)
kin + LO(V−1)

kin + LO(V−2)
kin , (2.7)

where the leading term is

− LO(1)
kin√−g =

3

8τ2
1

(∂τ1)
2 +

1

2V2
(∂V)2 − 1

2τ1V
∂τ1∂V , (2.8)

while the subleading terms are

− LO(V−1)
kin√−g =

4∑

i=3

3αγi

8V√τi
(∂τi)

2 −
4∑

i=3

3αγi
√
τi

2V2
∂V∂τi, (2.9)

at O(1/V) and

− LO(V−2)
kin√−g =

9α2γ3γ4

4

√
τ3τ4
V2

∂τ3∂τ4 , (2.10)

at O(V−2). At O(1) the transformation

τ1 = exp (aχ1 + bχ2), (2.11)

V = exp (cχ2) , (2.12)

6We use units with 8πMp = 1 unless otherwise stated.
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puts expression (2.8) into canonical form

− LO(1)
kin√−g =

1

2

[

(∂χ1)
2 + (∂χ2)

2
]

, (2.13)

where the coefficients a, b and c are obtained from the condition that the matrix M =(

a b

0 c

)

satisfies

MT ·
(

3
4 −1

2

−1
2 1

)

·M = I . (2.14)

This has four solutions: (a, b, c), (a,−b,−c), (−a, b, c), (−a,−b,−c), where:

a =
2√
3
, b =

√

2

3
, c =

√

3

2
, (2.15)

and for concreteness we shall choose the first one will all plus signs. As is shown in [73], the

fields χ1 and χ2 turn out to also diagonalize the mass-squared matrix, M2
ij =

∑

k K
−1
ik Vkj

in the limit where string-loop corrections to the potential are neglected. Once string-loop

corrections are included a subdominant dependence of V on χ1 also arises that is not

important for our purposes.

Next we diagonalize the next-order kinetic term, LO(V−1)
kin . The first term in (2.9)

becomes diagonal once we rescale the two small moduli as follows

τj =

(
3V

4αγj

)2/3

φ
4/3
j , ∀ j = 3, 4 (2.16)

where we use the notation φj with j = 3, 4 to distinguish these from the large fields, χ1

and χ2. The second term in (2.9) is similarly diagonalized by mixing V with τj ∀ j = 3, 4.

Explicitly, introducing the following subleading corrections to (2.11) and (2.12):

τ1 = exp




2√
3
χ1 +

√

2

3
χ2 +

3

2

4∑

j=3

φ2
i



, (2.17)

V = exp





√

3

2
χ2 +

9

4

4∑

j=3

φ2
i



 , (2.18)

gives to this order

LO(1)
kin + LO(V−1)

kin =
1

2

2∑

i=1

(∂χi)
2 +

1

2

4∑

j=3

(∂φi)
2 . (2.19)

Notice that the last term in eqs. (2.17) and (2.18) is subleading because φj ∼ O(V−1/2) ≪ 1

for j = 3, 4, while from (2.11) and (2.12), we have χi ∼ O(lnV), for i = 1, 2. We can now
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substitute (2.18) in (2.16) to eliminate V and directly express τi in terms of φi, for i = 3, 4,

obtaining

τi =

(
3

4αγi

) 2
3



exp





√

3

2
χ2 +

9

4

4∑

j=3

φ2
j









2
3

φ
4
3
i

≃
(

3

4αγi

) 2
3

exp

[√

2

3
χ2

] 

1 +
3

2

4∑

i6=j=3

φ2
j



φ
4
3
i , ∀ i = 3, 4 . (2.20)

Notice that passage from the first to the second line neglects subleading contributions

controlled by higher order powers of φi.

Finally, the off-diagonal term in LO(V−2)
kin is removed by modifying (2.20) slightly, into:

τi ≃
(

3

4αγi

) 2
3

exp

[√

2

3
χ2

] 

1 − 3

4

4∑

i6=j=3

φ2
j



φ
4
3
i , ∀ i = 3, 4 , (2.21)

≃
(

3

4αγi

) 2
3

V 2
3



1 − 9

4

4∑

i6=j=3

φ2
j



φ
4
3
i , ∀ i = 3, 4 . (2.22)

The field redefinitions we have determined render canonical the form of the kinetic terms.

2.3 The potential

We next chase these field redefinitions through the definition of the scalar potential, again

following the discussion of ref. [90].

The potential without loop corrections. After minimizing the axion directions, the

scalar potential constructed using the Kähler potential and superpotential of eqs. (2.2)

and (2.4) (and neglecting subleading powers of large moduli) is

V =
gse

Kcs

8π

[
4∑

i=3

8 a2
iA

2
i

3αγi

(√
τi
V

)

e−2aiτi − 4
4∑

i=3

W0aiAi

( τi
V2

)

e−aiτi +
3β ξ̂W 2

0

4V3

]

. (2.23)

The overall factor of gse
Kcs/(8π) in front of the potential is a consequence of an overall

normalization of the superpotential, that is needed to express all quantities in the 4D Ein-

stein frame [84], as is explained in detail in appendix A.7 The constant β appearing in the

last, τ -independent, term,

V0 ≡ 3gs β ξ̂ W
2
0

32π V3
, (2.24)

includes contributions due to the stabilization of the field τ3, and due to additional uplifting

terms needed to uplift the minima of the potential from an anti-de Sitter minimum to a

nearly Minkowski vacuum. Its value can be easily found, and it is given by the expression

β = −16αγ4〈τ4〉3/2

ξ̂

(1 + a4〈τ4〉 − 2a2
4〈τ4〉2)

(1 − 4a4〈τ4〉)2
(2.25)

7From now on we shall set eKcs = 1.
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where by 〈τ4〉 we denote the value of the field τ4 at the minimum.

This potential completely stabilizes τ3, τ4 and the volume V, at the following values

(here we assume aiτi ≫ 1):

ai〈τi〉 =

(

ξ̂

2αJ

) 2
3

, 〈V〉 =

(
3αγi

4aiAi

)

W0

√

〈τi〉 eai〈τi〉, ∀ i = 3, 4, (2.26)

where J =
∑4

i=3 γi/a
3/2
i . What is noteworthy is that eq. (2.23) does not depend at all

on the fibre modulus, τ1 [90]. It does not do so because the dominant contribution to the

potential of large moduli such as these first arises at the string loop level [82], whose size

we now estimate.

The potential with loop corrections. Each cycle wrapped by a stack of D7-branes

receives 1-loop open string corrections [82, 93–95] which, as pointed out in [90], spoil

the flatness of the inflationary potential for τ4. However it is possible to fine-tune the

coefficient of the τ4-dependent loop correction in order to render it negligible (the amount

of fine-tuning needed has been estimated in [73]). Hence we shall focus only on the τ1 and

τ2-dependent loop corrections which can be estimated using a procedure identical to [90]:

V = V0 +
gs a

2
4A

2
4

3π αγ4

(√
τ4
V

)

e−2a4τ4 − gs W0 a4A4

2π

( τ4
V2

)

e−a4τ4

+

(
A

τ2
1

− B

V√τ1
+
Cτ1
V2

)
gs W

2
0

8π V2
, (2.27)

where A, B, C are given by

A =
(
gsC

KK
1

)2
(2.28)

B = 4αCW
12 (2.29)

C = 2
(
αgs C

KK
2

)2
, (2.30)

where CKK
1 , CW

12 , and CWW
2 are constants that depend on the details of the string loop

corrections (see [90] for more details). In what follows we regard these constants as free to

be fixed using phenomenological requirements.

The minimum for τ1 is at:

〈τ1〉 ≃
(

−BV
2C

)2/3

if B < 0 or 〈τ1〉 ≃
(

4AV
B

)2/3

if B > 0 . (2.31)

In the following, for definiteness, we consider the case B > 0. It is important to notice

that 〈τ1〉 does not depend on τ4, and so τ4 and τ1 can evolve independently in field space.

String loop corrections also shift the minimum for τ3, with respect to its value in eq. (2.26),

but this small correction does not modify the discussion that follows.

The canonically normalized potential. We next identify that part of the potential

relevant to inflation. We set V and τ3 to their minima, and follow the dependence of the

rest of the potential on the remaining two fields. This adiabatic approximation is valid in
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the large-V limit because the masses of these fields are parametrically larger than those of

the fields whose motion we consider.

Recall that the fields τ1 and τ4 are given in terms of their canonically normalized

counterparts by

τ1 = V2/3 exp

(
2√
3
〈χ1〉

)

e
2√
3

χ̂1 (2.32)

τ4 =

(
3V

4αγ4
φ2

4

)2/3 (

1 − 9

4
φ2

3

)

≃
(

3V
4αγ4

φ2
4

)2/3

(2.33)

where we define

χ1 = 〈χ1〉 + χ̂1 , (2.34)

and the approximate equality for τ4 neglects the subleading dependence on the modulus φ3.

Keeping in mind the factors of gs appearing in the constants A, B and C, we expect

32AC ≪ B2 , (2.35)

in weak coupling, and in this case one finds

〈χ1〉 = 1/
√

3 ln (qV), with q ≡ 4A/B . (2.36)

With this information, the leading contribution to the inflationary potential breaks

into a sum of terms for the would-be inflaton and curvaton

V (φ4, χ̂1) = Vinf(φ4) + Vcur(χ̂1) (2.37)

where

Vinf(φ4) ≃ V0 −
gsW0a4A4

2π V2

(
3V

4αγ4

)2/3

φ
4/3
4 exp

{

−
[

a4

(
3V

4αγ4

)2/3

φ
4/3
4

]}

, (2.38)

and

Vcur(χ̂1) =
gsW

2
0

8π V10/3

[

C0 e
2√
3
χ̂1 − C1 e

− 1√
3

χ̂1 + C2 e
− 4√

3
χ̂1
]

, (2.39)

with (see [90])

C0 = C q2/3 (2.40)

C1 = B q−1/3 (2.41)

C2 = Aq−4/3 . (2.42)

We call χ1 the curvaton and φ4 the inflaton because the potential for χ1 is parametrically

suppressed by powers of 1/V relative to that for φ4, thereby ensuring that it is φ4 whose

energy dominates the cosmic expansion.

Since χ̂1 has been defined such that χ̂1 = 0 at the minimum of the potential, it follows

that the dependence of the constants on 〈χ1〉 ensures, within the limit (2.35), that they

satisfy (
∂Vcur

∂χ̂1

)

∣
∣ χ̂1=0

= 0 ⇒ C0 +
C1

2
− 2C2 = 0 . (2.43)
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In the following we work in regimes with χ̂1 very small, for which the exponentials in

eq. (2.39) can be expanded up to quadratic order,

Vcur(χ̂1) ≃ Vcur,0 +
m2

χ1

2
χ̂2

1 with m2
χ1

=
gsW

2
0

24π V10/3
[4C0 − C1 + 16C2] ≡ gs CtW

2
0

8π V10/3

(2.44)

which defines the new constant

Ct ≡ 1

3
[4C0 − C1 + 16C2] . (2.45)

The constant piece, Vcur,0, is absorbable into a subdominant contribution to the constant

V0 in formula (2.38). We check in our later applications that this quadratic expansion of

the potential suffices in the regime of interest.

Field masses. For inflationary applications our interest is whether the masses of the

various fields are larger or smaller than the Hubble scale. Considering that the infla-

ton potential is of order Vinf ∝ V−2e−a4τ4 ∼ O(V−3), our benchmark during inflation is

H ∼M2
p V−3/2. Relative to this consider the following masses, evaluated at the potential’s

minimum:

• If all the fields sit at their minima, the mass spectrum is (we temporarily reintroduce

the dependence on the Planck mass):

m2
φi

∼ gs

4π

(
W0

V

)2

M2
p , ∀ i = 3, 4 (2.46)

m2
χ2

∼ gsW
2
0

4π V3
M2

p , m2
χ1

∼ gsW
2
0

4π V3√τ1
M2

p ∼ gsCtW
2
0

4π V10/3
M2

p . (2.47)

• If the inflation and curvaton fields, φ4 and χ1, are moved away from their minima

then their masses are potentially modified. Inspection of the above formulae shows

that the χ1 mass remains of the same order in 1/V as it is at its minimum, eq. (2.47),

while the φ4 mass changes and becomes smaller for larger φ4. Considering, as an

example, a regime a4τ4 > (2 + n) lnV, with n > 0 one finds

m2
φ4

≃ gsW
2
0

4π V3+n
M2

p , (2.48)

so the inflaton mass is reduced relative to eq. (2.46) as its field moves away from its

minimum (as in ref. [85–89]).

We see from these estimates that for large V, the fields χ2 and φ3 have masses that are

much larger than H, while χ1 and φ4 have masses that are smaller, justifying the picture

wherein V (which is mostly given by χ2) and τ3 (which is mostly φ3) can be set to their

minima while both χ1 and φ4 remain light enough to have cosmic fluctuations imprinted

on them. Since it is the potential for φ4 that is the largest, this is the field whose evolution

dictates the end of inflation and so earns the name inflaton.
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3 Dynamics during inflation

We next discuss the properties of slow-roll inflation in the above regime, together with a

discussion of whether χ1 has the properties required for it to realize the curvaton scenario

in this system. We find these two fields combine the results of [85–89] and [90].

We start with the hypothesis that the massive moduli χ2 and φ3 are already at their

minima, while φ4 and χ1 need not be. We then consider the evolution of the moduli χ1

and φ4. As we pointed out before, the analysis is comparatively simple because these two

fields evolve almost independently: see the potential in eqs. (2.38) and (2.39). If the field

φ4 acquires a large value, the dominant term in the inflaton potential is V0. Within this

regime, both φ4 and χ1 are lighter than the Hubble parameter. The former plays the role

of inflaton field, while the latter is the candidate curvaton.

In this section we recap how φ4 drives inflation, and how the field χ1 acquires a scale

independent spectrum of isocurvature fluctuations, of calculable amplitude, during this

inflationary epoch. The next sections discuss how to convert the isocurvature fluctuations

of χ1 into adiabatic perturbations after inflation ends.

3.1 Dynamics of the inflaton field φ4

In the scenario just described it is φ4 that drives inflation, as in the model of [85–89]. The

inflationary potential is

Vinf(φ4) =
3gs β ξ̂W

2
0

32π V3
− gsW0a4A4

2π V2

(
3V

4αγ4

)2/3

φ
4/3
4 exp

{

−
[

a4

(
3V

4αγ4

)2/3

φ
4/3
4

]}

,

(3.1)

showing again that the scale of inflation is mainly controlled by the value of the volume,

being given by V0 in eq. (2.24).

The corresponding slow-roll parameters, expressed in terms of the field τ4, become

ǫ =
512V3

27 γ4 α ξ̂2β2W 2
0

a2
4A

2
4

√
τ4 (1 − a4τ4)

2 e−2a4 τ4 (3.2)

η = − 16a4A4 V2

9α ξ̂ γ4 βW0
√
τ4

(
1 − 9a4τ4 + 4a2

4τ
2
4

)
e−a4τ4 , (3.3)

Slow-roll inflation lasts as long as the previous slow-roll parameters remain small. In the

limit of large volume, in order to have ǫ and η much smaller than one, we choose at horizon

exit

a4τ
in
4 ≫ 2 lnV , (3.4)

On the other hand, inflation ends at a value τ end
4 such that the ǫ parameter becomes of

order one. These considerations imply that the field range for τ4 during inflation can be

parametrized as

a4τ
end
4 ≤ a4τ4 ≤ a4τ

in
4 (3.5)

The number of e-foldings is given by the integral

Ne =

∫ φin
4

φend
4

Vinf

V ′
inf

dφ̃ =
−9αβ ξ̂W0 γ4

64V2 a4A4

∫ τ in
4

τend
4

ea4τ4

√
τ4 (1 − a4τ4)

dτ4 ≥ 60 (3.6)
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Because we seek the dominant contribution elsewhere, we demand that the inflaton

contribution to the power spectrum of curvature perturbations is much lower than the

amplitude measured by the COBE satellite. This gives the following constraint:

V
3/2
inf

M3
p V

′
inf

≪ 5.2 × 10−4 . (3.7)

Substituting the potential, we find at horizon exit

( gs

8π

) 34 αγ4 (β ξ̂)3W 2
0

46 a
3/2
4

√

a4τ in
4

(
1 − a4τ in

4

)2

(
W0

A4

)2 e2a4τ in
4

V6
≪ 2.7 × 10−7 , (3.8)

A successful model must satisfy both of the constraints (3.6) and (3.8). This im-

poses conditions on some of the parameters of the model, which must be supplemented

by the constraints derived in the following sections coming from the successful realization

of the curvaton mechanism. We discuss in section 6 explicit scenarios that satisfy all the

conditions to have a successful curvaton model.

3.2 Dynamics of the curvaton field χ1

The curvaton field,8 χ1, is lighter than the Hubble parameter during inflation, since at

large volume

m2
χ1

≃ gsCtW
2
0

8π V 10
3

≪ H2
⋆ ≃ gs β ξ̂ W

2
0

32π V3
, (3.9)

where the ‘⋆’ indicates a quantity evaluated at horizon exit. During inflation the field χ1

slowly rolls classically towards its minimum at zero, but because it is so light it also under-

goes quantum fluctuations that in some circumstances can dominate the classical motion.

We now estimate when fluctuations dominate, following [98]. In one Hubble time

H−1
⋆ , the light field χ1 can fluctuate by an amount δχ1 ∼ H⋆/2π. On the other hand,

during the same time interval a classical slow roll would change the field value by ∆χ1 ∼
−V ′

cur/(3H⋆)∆t⋆ = −V ′
cur/(3H

2
⋆ ). Fluctuations dominate classical evolution9 when δχ1 ∼

∆χ1, which occurs when χ1 = χQ, given by

V ′
cur(χQ) ≃ H3

⋆ . (3.10)

During inflation quantum fluctuations cause the field χ1 to lie in the interval 0 ≤ χ1 ≤ χQ

with uniform probability. Then, its typical value is of order χ1 ∼ χQ.

In the present case, approximating the curvaton potential as quadratic, as in eq. (2.44),

one finds

χQ ≃
( gs

8π

)1/2 (βξ̂)3/2W0

8Ct V7/6
, (3.11)

8From now on we drop the hat from the field χ̂1 parameterizing the displacement from the minimum,

in eq. (2.34).
9This estimate has been debated in the literature, in particular the value of the power of H in the right

hand side of (3.10). See for example [99]. In this work, we follow the prescription of [98], but our approach

can be adapted to different possibilities. We thank Sami Nurmi for discussions on this point.
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and so χQ ≫ H⋆. But because χQ is suppressed by 1/V7/6 these fluctuations are never-

theless very small at large volume. A posteriori, it is these powers of 1/V that justify the

expansion of the curvaton potential up to second order in χ1.

We now estimate in more detail the amplitude of the power spectrum for the curvaton

fluctuations, following [100]. The classical evolution equation for the curvaton field is

χ̈1 + 3Hχ̇1 + V ′
cur = 0 . (3.12)

Making the first order expansion δV ′
cur ≃ V ′′

cur δχ1, one finds the following equation for the

inhomogeneous curvaton fluctuation at superhorizon scales

δ̈χ1 + 3H ˙δχ1 + V ′′
cur δχ1 = 0 . (3.13)

Since, for a quadratic potential, δχ1 and χ1 satisfy the same equation, their ratio does not

evolve in time. This means that this ratio keeps the same value it has at horizon exit:

(
δχ1

χ1

)

=

(
δχ1

χ1

)

⋆

. (3.14)

Then the power spectrum of fractional field perturbations reads

P1/2
δχ1/χ1

=
H⋆

2π χ⋆
≃ 2Ct

π β ξ̂ V1/3
(3.15)

where in the last approximate equality we suppose χ⋆ ≃ χQ (see the previous discussion).

In the next section we discuss how to convert these isocurvature fluctuations into adi-

abatic curvature fluctuations when the curvaton decays after inflation and reheating have

already taken place.

4 Moduli couplings to visible sector fields

An important feature of the LV framework is that it is possible to directly compute the cou-

plings between the moduli (among which the inflaton and the curvaton) and all the other

visible or hidden d.o.f. localized on D7-branes wrapped on internal 4-cycles [73, 81, 84].

This is a necessary ingredient for calculating the inflaton and curvaton decay rates into vis-

ible d.o.f. allowing us to understand reheating at the end of inflation [73], and to determine

whether a curvaton mechanism can be successfully developed.

In the case of the curvaton, we have to focus only on its decay rate to visible gauge

bosons. In fact χ1 is so light that it cannot decay to any supersymmetric particle or even

to the Higgs since this receives a large SUSY breaking contribution to its mass. Thus χ1

can only decay to gauge bosons g and fermions ψ which are massless before the EW phase

transition. However it has been shown in [73] that since the fermions are massless, there

is no direct decay χ1 → ψψ, but only a 3-body decay χ1 → ψψg which is suppressed with

respect to the 2-body decay χ1 → gg by a phase space factor. In addition χ1 cannot decay

to light hidden d.o.f. since the requirement of a viable reheating forces to have for each

hidden sector a pure N = 1 SYM theory that develops a mass gap [73].
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In order to analyse the coupling of moduli to the gauge bosons of the field theory living

on a stack of D7-branes, we proceed as follows. The D7s of interest wrap a 4-cycle whose

volume is given by τ (which can be any of our moduli): the couplings with the moduli

can be worked out from the moduli dependence of the tree-level gauge kinetic function

4π/g2 = τ (see [81]). In full generality, the kinetic terms read:

Lgauge = − τ

Mp
FµνF

µν , (4.1)

and we must expand τ around its minimum τ → 〈τ〉 + τ̂ , and go to the canonically nor-

malized field strength Gµν defined by

Gµν = 2
√

〈τ〉Fµν . (4.2)

Doing so, we obtain:

Lgauge = −1

4
GµνG

µν − τ̂

4Mp〈τ〉
GµνG

µν . (4.3)

4.1 First scenario

As explained in section 2.1 we imagine the observable sector to be localized on a stack

of D7-branes wrapped on the τ1 and τ2 cycle, and analyze the decay of the inflaton and

curvaton fields into visible gauge bosons. This set-up has the following advantages:

1. It represents the simplest example of multi-field curvaton scenario with the smallest

number of Kähler moduli which is 4;

2. The geometric localization of the visible sector on τ1 maximizes the strength of the

coupling of the curvaton to visible gauge bosons. As we shall see in section 5, this

will yield the largest amount of nongaussianities.

However there are also some shortcomings:

1. The K3 fiber is not a rigid cycle and so one has to worry about how to fix the D7-

brane deformation moduli that would give rise to unwanted matter in the adjoint

representation. Here we shall assume that these moduli can be fixed by the use of

background fluxes.

2. There is a constraint on the volume of τ1 coming from constraints on the size that is

expected for the observed gauge coupling. Denoting the gauge coupling as g, using

eq. (2.31), we have

4π

g2
= τ1 ≃

(
4AV
B

)2/3

. (4.4)

Focusing for definiteness on a GUT theory,10 4π/g2 ≃ 25, we find constraints on

the parameters that characterize the string loop contributions. Indeed, the previous

relation implies
4A

B
=

125

V (4.5)

10Assuming that the gauge bosons on τ2 decouple from the EFT getting an O(Ms) mass.
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χ̂1 χ̂2 φ̂i, ∀ i = 3, 4

F
(1)
µν F (1) µν 2√

3 Mp

√
2
3

1
Mp

3 (lnV)
3
4

2 ai V1/2 Mp

Table 1. Couplings between moduli and gauge bosons for a field theory on the τ1 cycle.

from which, using the definitions of A and B in eqs (2.28), (2.29), we obtain

(
CKK

1

)2
=

125α

g2
s

CW
12

V (4.6)

As we see in the following, when discussing explicit examples, this condition is rela-

tively easy to satisfy. We do not have to choose unnaturally large hierarchies between

the parameters CKK
1 and CW

12 .

As studied in [106], at the end of inflation, due to the steepness of the potential,

the inflaton τ4 stops oscillating just after two or three oscillations due to an extremely

efficient non-perturbative particle production of τ4 fluctuations. Expanding the canonical

normalization (2.22) around the global minimum (τi = 〈τi〉 + τ̂i ∀i) we find [73]:11

τ̂4 ∼ O(V−1/3)χ̂1 + O(1)χ̂2 + O(V−1/2)φ̂3 + O(V1/2)φ̂4, (4.7)

realising that the Universe is mostly filled with φ̂4-particles plus some χ̂2 and fewer χ̂1 and

φ̂3-particles. Therefore the energy density of the Universe is dominated by φ̂4 whose decay

to visible d.o.f. is responsible for reheating.

The following table summarizes the moduli couplings to visible gauge bosons living on

τ1 (denoting the corresponding field strength as F
(1)
µν ):

Because the light curvaton field mixes through its kinetic terms with both τ1 and V,

one might hope to use the χ1-dependence of couplings and masses to use the modula-

tion mechanism [59, 61] to generate the primordial fluctuations. Although in the present

instance the couplings do not depend on the fluctuations of χ1, the masses of the fields

do. However, it turns out that in all cases we investigated the amplitude of modulation-

generated fluctuations is too small to have interesting cosmological consequences. It is for

this reason that we focus on the curvaton mechanism in the following.

We can now derive the total decay rate of a generic modulus ϕ into gauge bosons g:

Γϕ→gg =
Ng λ

2m3
ϕ

64π
, (4.8)

where λ is the coupling listed in table 1 and Ng is the total number of gauge bosons: for

definiteness we choose Ng = 12 as in the MSSM. We obtain, for our set of fields,

Γχ̂1→gg =
1

4π

m3
χ1

M2
p

≃ Mp

V5
, (4.9)

11The subleading dependence on χ̂1 is introduced once string loop corrections are included.
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Γχ̂2→gg =
1

8π

m3
χ2

M2
p

≃ Mp

V9/2
, (4.10)

Γφ̂j→gg =
27 (lnV)

3
2

64π

m3
φj

VM2
p

≃ Mp

V4
, ∀ j = 3, 4. (4.11)

where we have emphasized, in the extreme right, the dominant volume dependence. Notice

that the curvaton decay rate is suppressed with respect to the inflaton decay rate, in the

limit of large volume. This observation plays an important role in the viability of the

mechanism. The reheating temperature in the approximation of sudden thermalization

turns out to be [73]:

TRH ≃
(

Γφ̂4→gg Mp

)1/2
≃ Mp

V2
. (4.12)

4.2 Second scenario

In this section we briefly present a different brane set-up with the visible sector localized

on a small blow-up cycle, showing that it is possible to build a curvaton scenario with a

standard realization of the visible sector on a rigid del-Pezzo 4-cycle without any constraint

on the overall volume to keep the gauge coupling from getting too small (given that the

VEV of blow-up moduli does not depend on V). However, the blow-up mode supporting

the visible sector cannot be either τ3 or τ4 due to the tension between chirality and non-

perturbative effects [92]. Hence we need to introduce a fifth modulus τ5 with the following

three possible brane set-ups [73]:

1. Visible sector built with a stack of D7-branes wrapped around τ5 which is stabilized

in the geometric regime (for example by string loop effects as in [82]). In this case

the inflaton τ4 is not wrapped by the visible sector. The inflaton and curvaton total

decay rates to gauge bosons scale as:

Γχ̂1→gg ≃ Mp

V17/3
, Γφ̂4→gg ≃ Mp

V4
, ⇒ TRH ≃ Mp

V2
. (4.13)

2. Visible sector built with a stack of D7-branes wrapped around a combination of τ4
and τ5 with chiral intersections only on τ5 so that the non-perturbative corrections

in τ4 are not destroyed. In this case the inflaton τ4 is wrapped by the visible sector.

The inflaton and curvaton total decay rates to gauge bosons scale as:

Γχ̂1→gg ≃ Mp

V17/3
, Γφ̂4→gg ≃ Mp

V2
, ⇒ TRH ≃ Mp

V . (4.14)

3. Visible sector built via fractional branes at the quiver locus τ5 → 0 (τ5 can shrink

to zero size by D-terms as in [96]). The inflaton and curvaton total decay rates to

gauge bosons scale as:

Γχ̂1→gg ≃ Mp

V20/3
, Γφ̂4→gg ≃ Mp

V5
, ⇒ TRH ≃ Mp

V5/2
. (4.15)

It is interesting to notice that, due to the geometric separation between τ1 and τ5, the

coupling of the curvaton to visible gauge bosons is weaker than in the first scenario. This

yields a lower level of nongaussianities since, as we shall see in section 5, fNL ∝ Γ
1/2
χ1 .
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5 Dynamics after inflation: the curvaton mechanism

In this section, we summarize the curvaton mechanism for converting isocurvature fluctu-

ations into adiabatic, curvature fluctuations in the above inflationary model. Moreover,

we estimate the resulting level of nongaussianity produced in this process focusing on the

first scenario with the visible sector localized on τ1. However it is easy to re-formulate our

analysis for the second scenario.

5.1 Amplitude of adiabatic fluctuations

During the inflationary process, both the inflaton and the curvaton masses are much smaller

than the Hubble parameter. The value of the Hubble parameter is essentially set by the

constant piece V0 in the potential (2.23), that receives contributions from the uplifting,

and from the stabilization of additional fields. This means that the energy density of the

universe is dominated by V0 during inflation, while the inflaton and curvaton fields provide

negligible contributions. Typically, in our set-up, the masses of these two fields turn out to

be not too different during the slow-roll inflationary period: the inflaton is only few times

more massive than the curvaton. In any case, during inflation, the two fields are very light

and evolve independently one from the other. Things change drastically towards the end

of inflation: slow-roll conditions are violated, and the inflaton field φ4 reaches a region of

the potential, where its mass becomes much larger than the curvaton one. In this regime,

the inflaton field φ4 dominates the energy density of the Universe, while at the same time

the curvaton energy density remains subdominant with mass well below the Hubble scale.

Because of the V dependence of the decay rates found above, the small moduli, φi,

have the largest decay rate — see eq. (4.11) — and so these moduli are also the first of

the moduli to decay. This decay converts the inflaton energy density into radiation, after

which its energy density falls with the scale factor like ργ ∝ a−4. Since this is the dominant

component of the energy, after this point the Hubble parameter falls like a−2.

Energy tied up in the curvaton field, on the other hand, need not fall this fast. For

instance, once H falls below the curvaton field’s mass this field starts to oscillate coherently

around its minimum, during which its energy density scales like non-relativistic matter:

ρχ1 ∼ a−3. Since this is much slower than the energy density of radiation the relative

proportion of curvaton energy to radiation energy can grow while the curvaton oscillates.

This continues until the curvaton field starts to decay, which happens once the Hubble

parameter becomes comparable to the curvaton decay rate (that, recall, in our set-up is

the most suppressed: see eq. (4.9)). At this point the curvaton energy density also converts

into radiation, bringing with it any isocurvature fluctuations that had been stored in the

curvaton field. This converts the curvaton fluctuations into the adiabatic fluctuations of

the radiation energy density.

The total size of the adiabatic fluctuations inherited by such a conversion depends on

the size of the curvaton energy density relative to the radiation at the point where the

curvaton decays. Denoting this fraction by Ω = ρcur/ργ , then in a sudden decay approxi-
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mation, we find:

Ω ≃
[

1

6

(
χ⋆

Mp

)2 (mχ

Γχ1

) 1
2

]a

≃
[√

2

768

g
1/2
s (βξ̂)3W0

C
5/2
t V2/3

]a

, (5.1)

with: {

a = 1 for radiation dominance ⇔ Ω ≪ 1,

a = 4/3 for curvaton dominance ⇔ Ω ≫ 1.
(5.2)

The last equality in (5.1) substitutes the value of the various quantities in the present

scenario. The resulting expression for the power spectrum of curvature fluctuations, in the

limit12 in which Ω ≪ 1, is [100]:

P
1
2
ζ =

2

3
ΩP

1
2

δχ1/χ1
≃

√
2

576π

g
1/2
s (β ξ̂)2W0

C
3/2
t V

. (5.3)

Demanding this converted amplitude agree with the amplitude measured by COBE then

gives P
1
2
ζ = 4.8 × 10−5, which imposes the constraint

C
3
2
t ≃ 16

g
1/2
s (β ξ̂)2W0

V . (5.4)

5.2 Nongaussianities

Following [100], it is not difficult to provide an estimate for the amount of nongaussianity

predicted in this scenario. We focus on nongaussianities of local form

ζ = ζG +
3

5
fNL ζ

2
G , (5.5)

where ζG is a Gaussian curvature fluctuation. This Ansatz is particularly well-suited to the

present context, since there is a non-linear relation between scalar fluctuations, and curva-

ture perturbations produced after inflation ends. In writing eq (5.3), indeed, we implicitly

express the curvature fluctuation as a first order expansion in the fluctuation of χ1. The

complete expression, generalizing the linear order relation given in eq. (5.3), allows to ex-

hibit the non-linear connection between scalar and curvature fluctuations. Indeed, it reads

ζ =
Ω

3

δρχ1

ρχ1

. (5.6)

In our case, since we work with a quadratic potential, one finds that

δρχ1

ρχ1

= 2
δχ1

χ1
+

(δχ1)
2

χ2
1

(5.7)

Consequently, including this second order expansion in the definition of ζ of eq. (5.6), and

comparing with the Ansatz in (5.5), one can read the following expression for fNL:

fNL =
5

4Ω
≃ 679C

5/2
t g4

s V2/3

W0 β3 ξ3
= 105

(
βξW 2

0

) 1
3

g
1/6
s V

, (5.8)

12It is easy to re-express each quantity in the curvaton dominance case.
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where in the last step we use relation (5.4). This expression quantifies the amount of

nongaussianity in this set-up. Notice that the size of fNL is inversely proportional to the

conversion factor Ω. This is expected: if we decrease the efficiency of the conversion pro-

cess, by decreasing Ω, we have at the same time to increase the ration δχ1/χ1 in order to

account for the observed amplitude of fluctuations (see eqs. (5.3) and (5.6)–(5.7)). But in

this case, the quadratic contribution in δχ1/χ1, in formula eq. (5.7), becomes important in

comparison with the linear term, implying an increase of nongaussianity.

It is also possible to analyse nongaussianity beyond the parameter fNL, for example

discussing the parameters τNL and gNL that characterize the trispectrum. Expressions

for these parameters, in curvaton scenarios, have been provided in the literature: see for

example [101] for a recent review. For our curvaton model, with quadratic potential, small

decay rate Ω and in the sudden decay approximation, one finds

τNL =
36

25
f2
NL , gNL ≃ −10

3
fNL (5.9)

with fNL given in eq. (5.8). The expression for τNL is the typical one for models where only

one species contributes to the generation of curvature perturbations. The value of gNL,

being proportional to fNL, turns out to be too low for being detectable by Planck, given

the already stringent bounds on fNL from WMAP7 [102, 103]. It would be interesting

to extend the model above such as to find set-ups in which τNL or gNL turn out to be

large, e.g. as in the model discussed in [104], or in which one obtains a sizeable running of

nongaussianity, as analysed in [105].

5.3 Constraints from Big-Bang nucleosynthesis

Besides the requirements of providing the correct amplitude for curvature perturbations,

Big-Bang nucleosynthesis (BBN) imposes further constraints on the curvaton model. This

since we must ensure that the curvaton field decays by the time BBN takes place, at around

TBBN ∼ 1MeV. In order to satisfy this constraint, we impose the following inequality

Γχ̂1→gg > HBBN ∼ 10−24 GeV (5.10)

Using the expression for Γ given in (4.9), we obtain

Γχ̂1→gg ≃
(

g
3/2
s C

3/2
t W 3

0

16(2π)5/2

)

Mp

V5
(5.11)

Now, recalling that Ct ≃ B q−
1
3 within the approximation we are considering, we get an

upper bound on the volume,

V < 7 × 107
(

g3/2
s B2A−1/2W 3

0

)1/5
. (5.12)

For standard values of the parameters, this imposes a bound on the volume of order

V ≤ 108.
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V a4 ξ gs W0 α A4 γ4

103 1
10

1
10

1
100

1
10 6 1

10 20

Table 2. Set of parameters with relatively small volume, considered in example 1 below.

6 Explicit set-ups

The previous sections present the conditions that our system must satisfy in order to fur-

nish a realization of a curvaton scenario. In this section, we present two representative

parameter choices that satisfy all the constraints, to get a preliminary sense of how much

observable quantities vary.

There is a simple first observation. The results of the previous sections suggest that

once volumes are too large (and so the inflationary Hubble scale becomes too low) then

it becomes difficult to obtain adequately large primordial fluctuations using the curvaton

mechanism. Indeed, eq. (5.3) cannot be satisfied for volumes that are too large without re-

quiring other parameters to acquire unnatural values. For typical values of the parameters

a curvaton scenario has a chance for volumes in the range 103 ≤ V ≤ 108. Also, eq. (5.8)

shows that very large volumes are usually associated with nongaussianities of small size.

Obtaining a large fNL is therefore easiest when choosing relatively small volumes. Be-

cause the underlying expansion is in powers of α′/ℓ2s ∝ 1/V1/3 we never allow ourselves to

consider volumes smaller than Vmin ≃ 103.

6.1 First example: small volume, large fNL

Consider the choice of parameters given in table 2. This example is characterized by not-

too-large a volume, V = 103 in Planck units, and by a relatively small string coupling,

gs ≃ 10−2. Also a4 = 1/10 corresponds to a gauge group with large rank in the non-

perturbative contribution to the inflaton superpotential. Plugging these parameters in

eqs. (3.6) and (3.8), and imposing that inflation starts when the ǫ parameter is of order

10−4, we find a sufficient number of e-foldings (Ne ≃ 56). Moreover, there is a small infla-

ton contribution to the amplitude of adiabatic fluctuations (P inf
ζ ≃ 10−2 PCOBE

ζ ). Since

the volume is relatively small, the scale of inflation is fairly high in this example. Next, the

conditions of having an acceptable size for the gauge coupling theory, discussed in section 4,

imposes the condition CW
12 = 10

(
CKK

1

)2
, which in turn implies Ct ≃ CW

12 . The COBE

normalization condition for the curvaton fluctuations (5.4) then fixes Ct ∼ 142.

The most important feature of this model is the high level of nongaussianity it predicts:

using the previous results we find

fNL ≃ 57 . (6.1)

This value can be slightly changed by tuning the choice of parameters, but the requirement

of satisfying all the constraints does not leave much freedom in this regard. Consequently

the order of magnitude for fNL is fairly robust in this scenario with not too large volume

(V = 103) and high rank gauge group (a4 = 1/10).
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V a4 ξ gs W0 α A4 γ4

106 1
8 1 1

100 10 10 1
10 10

Table 3. Set of parameters with large volume, considered in example 2 below.

6.2 Second example: larger volume, smaller fNL

Choosing a different set of parameters shows how the results change as the volume grows.

Consider the set of parameters listed in table 3. In this example, the volume is larger with

respect to the previous example, while the string coupling and a4 are the same. Plugging

these parameters in eqs. (3.6) and (3.8), with the same criteria of the previous example, we

find a sufficient number of e-foldings in this model (Ne ≃ 66) and a small contribution of the

inflaton sector to the COBE amplitude of adiabatic fluctuations (P inf
ζ ≃ 10−3 PCOBE

ζ ). Af-

ter requiring to have an acceptable gauge coupling, as discussed in section 4, and imposing

COBE normalization condition (5.4), we find that Ct ∼ 306. The amount of nongaussianity

in this case is small:

fNL ≃ 2 , (6.2)

showing that the value of fNL strongly depends on the choice of underlying parameters. Dif-

ferent models characterized by different volumes, although providing the same amplitude

for the spectrum of adiabatic fluctuations, nevertheless give very different values for fNL.

In both the previous examples, the ratio between the masses of the inflaton and the

curvaton is comparable during slow-roll inflation: the former is only few times more mas-

sive than the latter. Instead, towards the end of inflation when slow-roll conditions are

violated, the inflaton mass becomes much larger than the curvaton one. These appear to

be general features of our set-ups, and depend on parameters that are fixed by the require-

ments of having sufficient e-foldings, and the correct amplitude for the power spectrum.

As we discussed at the beginning of section 5.1, these features are compatible with the

requisites for having a succesful curvaton mechanism.

7 Conclusions

In this paper we use LARGE Volume string compactifications to construct a controlled

string-inflation model that does not use the inflaton to generate primordial fluctuations.

Because the dynamics cannot be captured by a simple single-field slow roll, it becomes

possible to generate observably large non-gaussianities. These tend to have the local form

in the model examined because they are generated well after inflation ends.

The key ingredients for any such a scenario are twofold. There must be other fields,

besides the inflaton, with masses m ≪ H during the inflationary epoch in order to have

isocurvature fluctuations be generated over extra-Hubble distances. The second ingredient

is a mechanism for converting these isocurvature fluctuations into adiabatic fluctuations.

We find that both ingredients are possible in the LV scenario. The hierarchy of volume-

suppressed modulus masses enjoyed by this scenario allows some moduli to have masses
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that are parametrically suppressed relative to the Hubble scale during inflation, thereby

providing a source of isocurvature fluctuations.

These states also plausibly have a hierarchy of decay rates into ordinary matter, assum-

ing that ordinary matter is localized on a brane that wraps one of the cycles whose moduli

appear in the low-energy theory. This allows the isocurvature mode to first accumulate as

an overall fraction of the total energy density, by oscillating after the inflaton has decayed to

radiation. It can then itself decay at much later times, converting its fluctuations into adia-

batic perturbations. The resulting picture provides a realization of the curvaton mechanism

for string inflationary models. The fraction of the energy density carried by the curvaton

is suppressed by powers of 1/V, naturally leading this fraction to be a small (and nongaus-

sianities to be comparatively large — O(10) — if the amplitude is the one observed).

Ultimately, the reason such a construction is possible is because of the potentially large

number of fields that can be cosmologically active during LV inflation. Indeed, should lo-

cal nongaussianity be observed, this is probably what it would be telling us: the dynamics

generating primordial fluctuations likely involves several cosmologically active fields rather

than just one.

Because additional light fields are present these models can be expected also to man-

ifest other nonstandard mechanisms for generating fluctuations, such as the modulation

mechanism, although we do not yet have explicit working examples of this type. A po-

tential benefit of these kinds of models might be the ability to lower the string scale while

still obtaining acceptably large primordial fluctuations, since this makes it easier to have a

lower supersymmetry-breaking scale, as seems to be preferred by particle phenomenology

in the later universe. As ever, it would be useful to know how common such models might

be in the string landscape.

It is worth noticing that even though these scenarios require many moduli to work, this

is the generic case in string compactifications. The perspective taken in this article is that

simplicity arguments using the minimum number of fields are usually good starting points

but may not capture the dynamics of the generic case. Furthermore, contrary to most mod-

els of string cosmology, we also consider phenomenological constraints, such as the location

of the standard-model brane, the value of the present-day gauge coupling, efficient reheat-

ing, and so on. We believe this to be crucial because string theory asks to be more than just

a model of inflation: string scenarios must therefore address all observable issues and not

only a subset of them. Even with these constraints, we find it encouraging that non-inflaton

generation of primordial perturbations appears possible, consistent with having the right

amount of inflation required by later cosmology, agreement with current CMB measure-

ments, with potentially observable features like nongaussianity for future experiments. The

imminent start of Planck observations makes these questions timely and worth pursuing.
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A String versus Einstein frame

The correct prefactor of the scalar potential in 4D Einstein frame has been explicitly shown

in [84]. Given that the Kähler potential that reproduces the kinetic terms for the moduli

in 4D Einstein frame is known to be (with S = e−φ + iC0):

KE

M2
p

= −2 lnVE − ln(S + S̄) − ln

(

−i
∫

Ω ∧ Ω̄

)

, (A.1)

here we shall briefly review just the derivation of the prefactor of the superpotential starting

from the 10D type IIB supergravity action in string frame (showing only the relevant terms):

S
(s)
10D ⊃ 1

(2π)7α′4

∫

d10x

√

−g(s)
10

(

e−2φR(s)
10 − G3 · Ḡ3

2 · 3!

)

. (A.2)

The action in Einstein frame is obtained via a Weyl rescaling of the metric of the form

g
(s)
MN = eφ/2g

(E)
MN :

S
(E)
10D ⊃ 2π

l8s

∫

d10x

√

−g(E)
10

(

R(E)
10 − G3 · Ḡ3

12Re S

)

, (A.3)

where ls = 2π
√
α′. The dimensional reduction of (A.3) from 10D to 4D then yields:

S
(E)
4D ⊃ 2π

l8s








∫

d4x

√

−g(E)
4 R(E)

4 V olE −

Vflux
︷ ︸︸ ︷
∫

d4x

√

−g(E)
4

(∫

d6x

√

g
(E)
6

G3 · Ḡ3

12Re S

)







, (A.4)

where V olE =
∫
d6x

√

g
(E)
6 ≡ VEl

6
s . Comparing the first term in (A.4) with the Einstein-

Hilbert action SEH = (M2
p/2)

∫
d4x
√

−g(E)R(E), we find:

M2
p =

4πVE

l2s
and Ms ≡

1

ls
=

Mp√
4πVE

. (A.5)
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Writing the superpotential in 4D Einstein frame as:

WE =
p

l2s

∫

G3 ∧ Ω, (A.6)

the correct prefactor p can be found from requiring that Vflux is reproduced by:

V =

∫

d4x

√

−g(E)
4 eKE/M2

p

[

Kij̄
EDiWEDj̄WE − 3

M2
p

WEWE

]

, (A.7)

obtaining p = M3
p /(

√
4π). Therefore, including the leading order α′ corrections to KE and

non-perturbative corrections to WE, the F -term scalar potential in 4D Einstein frame can

be derived from:

KE

M2
p

= −2 ln

[

VE +
ξ

2

(
S + S̄

2

)3/2
]

− ln(S + S̄) − ln

(

−i
∫

Ω ∧ Ω̄

)

, (A.8)

WE =
M3

p√
4π

(

1

l2s

∫

G3 ∧ Ω +
∑

i

Ai e
−aiT

(E)
i

)

. (A.9)

Stabilising the dilaton 〈Re(S)〉 = g−1
s and the complex structure moduli via background

fluxes at tree-level, (A.8) and (A.9) reduce to:

KE

M2
p

= −2 ln

(

VE +
ξ

2g
3/2
s

)

+ ln
(gs

2

)

+Kcs, (A.10)

WE =
M3

p√
4π

(

W0 +
∑

i

Ai e
−aiT

(E)
i

)

, (A.11)

where:

Kcs = − ln

(

−i
∫

〈Ω ∧ Ω̄〉
)

, and W0 =
1

l2s

∫

〈G3 ∧ Ω〉. (A.12)

Hence the prefactor of the scalar potential in 4D Einstein frame can be worked out from:

eKE/M2
p
|WE |2
M2

p

=⇒
(
gse

Kcs

8π

)

M4
p . (A.13)

The expressions for Ks and Ws in 4D string frame can be derived by transforming the

scalar potential (recalling that T
(E)
i = T

(s)
i /gs), and then working out the form of Ks and

Ws that reproduce such a potential. We obtain:

Ks

M2
p

= −2 ln

(

Vs +
ξ

2

)

+ ln
(gs

2

)

+Kcs, (A.14)

Ws =
g
3/2
s M3

p√
4π

(

W0 +
∑

i

Ai e
−aiT

(s)
i /gs

)

. (A.15)

Thus the prefactor of the scalar potential in 4D string frame can be worked out from:

eKs/M2
p
|Ws|2
M2

p

=⇒
(
g4
se

Kcs

8π

)

M4
p . (A.16)
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