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Abstract

We study the transitivity of fuzzy preference relations, often consid-
ered as a fundamental property providing coherence to a decision process.
We consider the transitivity of fuzzy relations w.r.t. conjunctors, a gen-
eral class of binary operations on the unit interval encompassing the class
of triangular norms usually considered for this purpose. Having fixed
the transitivity of a large preference relation w.r.t. such a conjunctor,
we investigate the transitivity of the strict preference and indifference
relations of any fuzzy preference structure generated from this large pref-
erence relation by means of an (indifference) generator. This study leads
to the discovery of two families of conjunctors providing a full character-
ization of this transitivity. Although the expressions of these conjunctors
appear to be quite cumbersome, they reduce to more readily used an-
alytical expressions when we focus our attention on the particular case
when the transitivity of the large preference relation is expressed w.r.t.
one of the three basic triangular norms (the minimum, the product and
the  Lukasiewicz triangular norm) while at the same time the generator
used for decomposing this large preference relation is also one of these
triangular norms. During our discourse, we pay ample attention to the
Frank family of triangular norms/copulas.

keywords Fuzzy preference relation Transitivity Conjunctor Indiffer-
ence generator Frank family of t-norms

1 Introduction

The pairwise comparison of possible alternatives is a first step in many ap-
proaches to decision making. If this first step lacks coherence, the whole deci-
sion process might become meaningless. A popular criterion for coherence is the
transitivity of preferences, expressing that the strength of the link between two
alternatives cannot be weaker than the strength of any chain involving another
alternative. Along this paper, we will consider a decision agent with a certain
decision policy, which will be used to compare a finite set of alternatives A. In
classical preference modelling (see e.g. [4, 32]), there exists a basic relation R
on A, called large preference relation, such that for any two alternatives a and
b, (a, b) ∈ R expresses that alternative a is considered to be at least as good as
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alternative b. This relation R is further decomposed into a strict preference re-
lation P , an indifference relation I and an incomparability relation J . It is well
known that the transitivity of R is completely characterized by the transitivity
of P and I and two additional transitivity-like inequalities involving P and I.
In case the relation R is complete, i.e. any two alternatives are comparable, the
transitivity of R is fully characterized by the transitivity of P and I (see [4]).

The relations R, P and I play a central role in decision making and are used
frequently in the social sciences. However, as these relations are crisp, they are
not always appropriate to model human decisions. This lack of flexibility has
led to the introduction of fuzzy relations. They are often used as alternative to
crisp relations as they allow the decision maker to express a degree of preference
rather than its presence or absence only. Since then, fuzzy preference relations
have been widely studied and applied (see e.g. [5, 20, 23, 31]). A key notion in
this context is the notion of a fuzzy preference structure (see e.g. [5, 10, 21, 22,
26, 38]); see [9] for a historical account of its development.

Not surprisingly, in this fuzzy context transitivity is again one of the most
important properties (see e.g. [5, 23, 27]). Traditionally, transitivity of a fuzzy
relation is defined w.r.t. a triangular norm. In this setting, the transitivity of
the large preference relation R has been characterized in a similar way as in the
crisp case, however, for strongly complete R only [14]. However, strong com-
pleteness is a rather restrictive condition, since even not every fuzzy preference
structure with an empty incomparability relation fulfills it. Subsequent works
have therefore treated more general large preference relations [6, 7]. These works
concentrate on the propagation of a fixed type of transitivity from a large pref-
erence relation R to various associated strict preference (P ) and indifference
(I) relations. We continue along this line of research, but treat the problem
from a much more general viewpoint. First, we work with conjunctors, a class
of operations broader than the class of triangular norms; hence, we consider
also more general types of transitivity. Second, we consider all possible strict
preference and indifference relations associated with a large preference relation,
making explicit use of (indifference) generators to decompose a large preference
relation. Third, we do not just study the possible preservation of the transi-
tivity when decomposing R, but we identify the strongest types of transitivity
we can assure for the P and I. In preceding work [19], we have fenced in the
types of transitivity of P and I depending upon the type of transitivity R sat-
isfies and the generator used for constructing them. Here, we take another leap
forward: we provide an explicit expression for the conjunctor characterizing the
transitivity that any I (resp. P ) satisfies, provided it is generated by means of
a given generator from a large preference relation R satisfying a given type of
transitivity. We prove that no stronger type of transitivity is fulfilled by all
such I (resp. P ). In such case, we will speak of a strongest result possible. This
means that the conjunctor we will present is such that all I (resp. P ), satisfy the
transitivity w.r.t. that conjunctor, and that for any operation greater than that
conjunctor, we can provide at least one large preference relation R such that
the associated I (resp. P ), does not satisfy the transitivity w.r.t. that greater
operation. Obviously, this does not prevent the existence of some individual
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large preference relation (such as a crisp one) for which the associated I (resp.
P ) satisfies a stronger type of transitivity.

This work is structured as follows. In Section 2 we recall the most rele-
vant concepts concerning (fuzzy) preference structures. In Section 3 we discuss
conjunctors and related operations, and some of their useful properties. In Sec-
tion 4 we characterize the transitivity of the indifference relation I by means
of a general conjunctor and simplify the general expression for the most im-
portant particular cases. In Section 5 we characterize the transitivity of the
strict preference relation P by means of another general conjunctor, and give
ample attention to the most important particular cases. Concluding remarks
and further considerations are given in Section 6.

2 Preference structures

2.1 Crisp preference structures

Consider a decision maker who is presented a set of alternatives A. Let us
suppose that this person compares the alternatives two by two. Given two
alternatives, the decision maker can act in one of the following three ways: (i)
he/she clearly prefers one to the other; (ii) the two alternatives are indifferent
to him/her; (iii) he/she is unable to compare the two alternatives. According
to these cases, we can define three (binary) relations on A: the strict preference
relation P , the indifference relation I and the incomparability relation J . Thus,
for any (a, b) ∈ A2, we classify:

(a, b) ∈ P ⇔ he/she prefers a to b;

(a, b) ∈ I ⇔ a and b are indifferent to him/her;

(a, b) ∈ J ⇔ he/she is unable to compare a and b.

We recall that for a relation Q on A, its converse is defined as Qt = {(b, a) |
(a, b) ∈ Q}, its complement as Qc = {(a, b) | (a, b) /∈ Q} and its dual as
Qd = (Qt)

c
. One easily verifies that P , I, J and P t establish a particular

partition of A2 [32].

Definition 2.1 A preference structure on A is a triplet (P, I, J) of relations on
A that satisfies:

(i) P is irreflexive, I is reflexive and J is irreflexive;

(ii) P is asymmetrical, I and J are symmetrical;

(iii) P ∩ I = ∅, P ∩ J = ∅ and I ∩ J = ∅;

(iv) P ∪ P t ∪ I ∪ J = A2.

A preference structure (P, I, J) on A is characterized by the reflexive relation
R = P ∪ I, called large preference relation, in the following way:

(P, I, J) = (R ∩Rd, R ∩Rt, Rc ∩Rd) .
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Conversely, for any reflexive relation R on A, the triplet (P, I, J) constructed in
this way from R is a preference structure on A such that R = P ∪I. As R is the
union of the strict preference relation and the indifference relation, (a, b) ∈ R
means that a is at least as good as b.

A relation Q on A is called transitive if ((a, b) ∈ Q ∧ (b, c) ∈ Q) ⇒ (a, c) ∈ Q,
for any (a, b, c) ∈ A3. Recall that the composition of two relations Q1 and Q2

on A is the relation Q1 ◦Q2 on A defined as Q1 ◦Q2 = {(a, b) | (∃c ∈ A)((a, c) ∈
Q1 ∧ (c, b) ∈ Q2)}. It is clear that Q is transitive if and only if Q ◦Q ⊆ Q. The
transitivity of the large preference relation R can be characterized as follows [4].

Theorem 2.1 For any reflexive relation R with associated preference structure
(P, I, J) it holds that

R ◦R ⊆ R ⇔ (P ◦ P ⊆ P ∧ I ◦ I ⊆ I ∧ P ◦ I ⊆ P ∧ I ◦ P ⊆ P ) .

In case R is complete, i.e. R ∪Rt = A2, this characterization can be simplified
as follows. Note that the completeness of R is equivalent to stating that any
two elements are comparable, i.e. J = ∅.

Theorem 2.2 For any complete reflexive relation R with corresponding prefer-
ence structure (P, I, ∅) it holds that

R ◦R ⊆ R ⇔ (P ◦ P ⊆ P ∧ I ◦ I ⊆ I) .

Finally, we recall an important characterization of preference structures. Let us
identify relations with their characteristic mapping, then Definition 2.1 can be
written in the following minimal way [13]: I is reflexive and symmetrical, and
for any (a, b) ∈ A2 it holds that

P (a, b) + P t(a, b) + I(a, b) + J(a, b) = 1 .

Classical, also called crisp, preference structures can therefore also be considered
as Boolean preference structures, employing 1 and 0 for describing presence or
absence of strict preference, indifference and incomparability.

2.2 Additive fuzzy preference structures

A serious drawback of classical preference structures is their inability to express
intensities. In contrast, in fuzzy preference modelling, strict preference, indif-
ference and incomparability are a matter of degree. These degrees can take
any value in the unit interval [0, 1] and fuzzy relations are used for capturing
them [22].

The intersection of fuzzy relations is defined pointwisely based on some trian-
gular norm (t-norm for short), i.e. an increasing, commutative and associative
binary operation on [0, 1] with neutral element 1. The three most important
t-norms are the minimum operator TM(x, y) = min(x, y), the algebraic prod-
uct TP(x, y) = x · y and the  Lukasiewicz t-norm TL(x, y) = max(x + y − 1, 0).
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Another important t-norm is the drastic product defined by

TD(x, y) =

{
min(x, y) , if max(x, y) = 1,
0 , otherwise.

According to the usual ordering of functions, the above t-norms can be ordered
as follows: TD ≤ TL ≤ TP ≤ TM. In fact, the greatest t-norm is the minimum
operator and the smallest t-norm is the drastic product. Another important
t-norm in the study of the propagation of transitivity is the nilpotent minimum
TnM defined by

TnM(x, y) =

{
min(x, y) , if x + y > 1,
0 , otherwise.

Similarly, the union of fuzzy relations is based on a t-conorm, i.e. an increasing,
commutative and associative binary operation on [0, 1] with neutral element 0.
T-norms and t-conorms come in dual pairs: to any t-norm T there corresponds a
t-conorm S through the relationship S(x, y) = 1−T (1−x, 1−y). For the above
three t-norms, we thus obtain the maximum operator SM(x, y) = max(x, y), the
probabilistic sum SP(x, y) = x+y−xy and the  Lukasiewicz t-conorm (bounded
sum) SL(x, y) = min(x+ y, 1). For more background on t-norms and t-conorms
and the notations used in this paper, we refer to [29].

The definition of a fuzzy preference structure has been a topic of debate
during several years (see e.g. [22, 37, 38]). Accepting the assignment principle
— for any pair of alternatives (a, b) the decision maker is allowed to assign at
least one of the degrees P (a, b), P (b, a), I(a, b) and J(a, b) freely in the unit
interval — has finally led to a fuzzy version of Definition 2.1 with intersection
based on the  Lukasiewicz t-norm and union based on the  Lukasiewicz t-conorm.
Interestingly, a corresponding minimal definition is identical to the classical one
provided we replace crisp relations by fuzzy relations: a triplet (P, I, J) of fuzzy
relations on A is a fuzzy preference structure on A if and only if I is reflexive
and symmetrical, and for any (a, b) ∈ A2 it holds that

P (a, b) + P t(a, b) + I(a, b) + J(a, b) = 1 ,

where P t(a, b) = P (b, a). This identity explains the name additive fuzzy prefer-
ence structures.

Another topic of controversy has been how to construct such a fuzzy pref-
erence structure from a reflexive fuzzy relation. Alsina [1] proved a kind of
impossibility theorem showing that a construction based on a single t-norm
is unfeasible. As a reaction, Fodor and Roubens adopted an axiomatic ap-
proach [22]. The most recent and most successful approach is that of De Baets
and Fodor based on (indifference) generators [10].

Definition 2.2 A generator i is a commutative binary operation on the unit
interval [0, 1] that is bounded by the  Lukasiewicz t-norm TL and the minimum
operator TM, i.e. TL ≤ i ≤ TM.
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Note that generators are not necessarily t-norms, albeit having neutral element
1. With a given generator i, we associate the following binary operations on
[0, 1]:

p(x, y) = x− i(x, y) ,

j(x, y) = i(x, y) − (x + y − 1) .

The triplet (p, i, j) is called a generator triplet. For any reflexive fuzzy relation
R on A it holds that the triplet (P, I, J) of fuzzy relations on A defined by:

P (a, b) = p(R(a, b), R(b, a)) = R(a, b) − i(R(a, b), R(b, a)) ,

I(a, b) = i(R(a, b), R(b, a)) ,

J(a, b) = j(R(a, b), R(b, a)) = i(R(a, b), R(b, a)) − (R(a, b) + R(b, a) − 1) ,

is an additive fuzzy preference structure on A such that R = P ∪SL
I, i.e.

R(a, b) = P (a, b) + I(a, b).
Note that the definition of a generator does not mention monotonicity. In

accordance with the monotonicity axiom of Fodor and Roubens [22], a generator
triplet (p, i, j) is called monotone if:

(i) p is increasing in the first and decreasing in the second argument;

(ii) i is increasing in both arguments;

(iii) j is decreasing in both arguments.

Recall that a binary operation C : [0, 1]2 → [0, 1] is called a quasi-copula [24]
if it is increasing, has neutral element 1 and is 1-Lipschitz continuous, i.e.

|C(x1, y1) − C(x2, y2)| ≤ |x1 − x2| + |y1 − y2| ,

for any (x1, x2, y1, y2) ∈ [0, 1]4. For any quasi-copula C it holds that TL ≤ C ≤
TM. Quasi-copulas were introduced by Alsina et al. [3] as a weaker variant of the
well-known copulas in probability theory [30]. Recall that a binary operation
C : [0, 1]2 → [0, 1] is called a copula if it has absorbing element 0, neutral
element 1 and is 2-increasing, i.e.

C(x1, y1) + C(x2, y2) ≥ C(x1, y2) + C(x2, y1) ,

for all (x1, x2, y1, y2) ∈ [0, 1]4 such that x1 ≤ x2 and y1 ≤ y2.
Nowadays quasi-copulas are witnessing increasing popularity in fuzzy logic

(see e.g. [11, 28]). In some applications, the defining property of 1-Lipschitz
continuity proves to be more decisive than the associativity of t-norms. The
following theorem characterizes monotone generator triplets and points out the
importance of quasi-copulas [10].

Theorem 2.3 A generator triplet (p, i, j) is monotone if and only if i is a
commutative quasi-copula.
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The most popular generators are undeniably the Frank t-norms (see e.g. [22]).
In [10] it was proven that when using a generator i that is a t-norm, then also
p(x, 1− y) is a t-norm if and only if i is a Frank t-norm; in that case, p(x, 1− y)
and j(1−x, 1−y) are also Frank t-norms. Moreover, the Frank t-norms are also
copulas (and therefore quasi-copulas). For the sake of completeness, we recall
that the Frank t-norms are given by

TF
λ (x, y) =


TM(x, y) , if λ = 0 ,
TP(x, y) , if λ = 1 ,
TL(x, y) , if λ = ∞ ,

logλ(1 + (λx−1)(λy−1)
λ−1 ) , otherwise.

For any λ ∈ [0,∞] and any (x, y) ∈ [0, 1]2, it holds that

TF
1/λ(x, y) = x− TF

λ (x, 1 − y) .

Moreover, for any λ ∈ ]0,∞[ , it holds that TF
λ (x, y) = ϕ−1

λ (ϕλ(x)ϕλ(y)), with

ϕ1(x) = x and ϕλ(x) = λx−1
λ−1 for λ ∈ ]0, 1[∪ ]1,∞[ .

3 Conjunctors

3.1 Generalizing T -transitivity

The usual way of defining the transitivity of a fuzzy relation is w.r.t. a t-norm
T : a fuzzy relation Q on A is called T -transitive if T (Q(a, b), Q(b, c)) ≤ Q(a, c)
for any (a, b, c) ∈ A3. However, the restriction to t-norms is questionable. On
the one hand, even when the large preference relation R is T -transitive w.r.t. a
t-norm T , the transitivity of the generated P and I cannot always be expressed
w.r.t. a t-norm [17, 18, 19]. On the other hand, the results presented in the
following sections also hold when R is transitive w.r.t. a more general operation.
From the point of view of fuzzy preference modelling, it is not that surprising
that the class of t-norms is too restrictive, as a similar conclusion was drawn
when identifying suitable generators, as was briefly explained in the previous
section. There, continuity, in casu the 1-Lipschitz property, was more important
than associativity. As discussed in [18, 19], suitable operations for defining the
transitivity of fuzzy relations are conjunctors.

Definition 3.1 A conjunctor f is an increasing binary operation on [0, 1] that
coincides on {0, 1}2 with the Boolean conjunction.

The smallest conjunctor cS and greatest conjunctor cG are given by

cS(x, y) =

{
0 , if min(x, y) < 1,
1 , otherwise,

and

cG(x, y) =

{
0 , if min(x, y) = 0,
1 , otherwise.
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Obviously, cS ≤ TD ≤ TM ≤ cG.
Given a conjunctor f , we say that a fuzzy relation Q on A is f -transitive if

f(Q(a, b), Q(b, c)) ≤ Q(a, c) for any (a, b, c) ∈ A3. Clearly, for two conjunctors
f and g such that f ≤ g, it holds that g-transitivity implies f -transitivity. Re-
stricting our attention to reflexive fuzzy relations only, such as large preference
relations, not all conjunctors are suitable for defining transitivity. Indeed, for a
reflexive fuzzy relation R it holds that

f(R(a, b), R(c, d)) ≤ f(R(a, b), 1) = f(R(a, b), R(b, b)) ≤ R(a, b) ,

f(R(a, b), R(c, d)) ≤ f(1, R(c, d)) = f(R(c, c), R(c, d)) ≤ R(c, d) ,

and thus f(R(a, b), R(c, d)) ≤ min(R(a, b), R(c, d)). Hence, for reflexive fuzzy
relations, we should consider conjunctors upper bounded by TM only.

Defining the composition Q1◦fQ2 w.r.t. a conjunctor f of two fuzzy relations
Q1 and Q2 on A by

Q1 ◦f Q2(a, c) = sup
b

f(Q1(a, b), Q2(b, c)) ,

still allows us to use the shorthand Q ◦f Q ⊆ Q to denote f -transitivity.

3.2 Dominance and bisymmetry

The dominance relation is a well-known relation on the class of t-norms (see
e.g. [29, 34]) and its usefulness has been demonstrated several times (see e.g. [12,
35]). It can be straightforwardly generalized to conjunctors [33].

Definition 3.2 A conjunctor f1 is said to dominate a conjunctor f2, denoted
f1 ≫ f2, if for any (x, y, z, t) ∈ [0, 1]4 it holds that

f1(f2(x, y), f2(z, t)) ≥ f2(f1(x, z), f1(y, t)) .

Every t-norm is dominated by itself and by the greatest t-norm, the mini-
mum operator. It also holds that if a t-norm T1 dominates another t-norm T2,
then T1 ≥ T2. Conjunctors behave differently than t-norms. For instance, not
every conjunctor dominates itself [19]. Also, for conjunctors, the dominance
relation is not related to the usual ordering of binary operations. For instance,
the minimum operator (which is not the greatest conjunctor), dominates any
other conjunctor [19]. The notion of self-dominance of conjunctors is obviously
equivalent the well-known property of bisymmetry (see e.g. [29]).

Definition 3.3 A conjunctor f is said to be bisymmetric if for any (x, y, z, t) ∈
[0, 1]4 it holds that

f(f(x, y), f(z, t)) = f(f(x, z), f(y, t)) .

Every associative and commutative binary operation on [0, 1] is bisymmetric.
Also, a bisymmetric binary operation on [0, 1] with neutral element 1 is asso-
ciative and commutative. For more details on this property we refer to [2].
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3.3 Fuzzy implications and related operations

With a given t-norm T , one usually associates a fuzzy implication (also called
R-implication or T -residuum) as a binary operation on [0, 1] defined by (see
e.g. [22, 29]):

IT (x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y} .

When T is left-continuous it holds that T (x, z) ≤ y ⇔ z ≤ IT (x, y), and IT
is called the residual implicator of T . In this paper, we associate two binary
operations with any commutative conjunctor.

Definition 3.4 With a given commutative conjunctor f we associate two binary
operations If and Jf on the unit interval defined by

If (x, y) = sup{z ∈ [0, 1] | f(x, z) ≤ y} ,
Jf (x, y) = inf{z ∈ [0, 1] | f(x, z) ≥ y} .

The above definition could also be extended to non-commutative operations,
but in that case we should distinguish between left and right operations. In this
work we will only consider the case of commutative operations (commutative
conjunctors or generators).

Clearly, If and Jf are decreasing in their first argument and increasing
in their second argument. Under a mild condition, the operation If has an
interesting logical interpretation; the operation Jf , however, does not admit
such an interpretation.

Definition 3.5 An implicator f is a binary operation on [0, 1] that is decreasing
in its first argument, increasing in its second argument and that coincides on
{0, 1}2 with the Boolean implication.

Proposition 3.1 Consider a commutative conjunctor f , then If is an impli-
cator if and only if f(1, y) > 0, for any y > 0.

The condition in the preceding proposition is obviously fulfilled when f has
1 as neutral element.
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Lemma 3.2 Consider a commutative conjunctor f . Then it holds that:

(i) If f is left-continuous, then

f(x, z) ≤ y ⇔ z ≤ If (x, y) .

(ii) If f is upper bounded by TM, then

x ≤ y ⇒ If (x, y) = 1 .

(iii) If f is left-continuous and has 1 as neutral element, then

x ≤ y ⇔ If (x, y) = 1 .

(iv) If f is continuous and has 1 as neutral element, then

y ≤ x ⇒ f(x, If (x, y)) = y .

Other properties of residual implications of left-continuous t-norms can be
found, for example, in [29].

4 Transitivity of indifference relations

4.1 Main result

This section is dedicated to indifference relations. As shown in Subsection 2.2,
given a generator i and a large preference relation R, the indifference relation
I is defined as I = i(R,Rt). We study the minimal transitivity guaranteed
for I when we fix the transitivity of R w.r.t. a conjunctor h. We start by
recalling some upper and lower bounds for the transitivity of I [19]. First,
we know that I is at least cS-transitive when R is h-transitive, irrespective of
the conjunctor h. Second, the transitivity of I is upper bounded by min(h, i)-
transitivity. However, these are only upper and lower bounds. Next, we provide
a full characterization of the transitivity of I. We only need to require the
increasingness of the generator i, a very mild condition.

Theorem 4.1 Consider an increasing generator i and a conjunctor h. For any
reflexive fuzzy relation R with corresponding indifference relation I generated by
means of i, it holds that

R is h-transitive ⇒ I is f i
h-transitive,

where f i
h is the conjunctor defined by

f i
h(x, y) = inf

1 ≥ u ≥ x
1 ≥ v ≥ y

i (h(u, v), h (Ji(v, y),Ji(u, x))) .

Moreover, if i is right-continuous, this is the strongest result possible.

10



Proof. First, we prove that f i
h is a conjunctor. Obviously, f i

h is a binary
operation on [0, 1]. Since i has neutral element 1, it holds that Ji(1, 1) = 1 and

f i
h(1, 1) = i(h(1, 1), h(Ji(1, 1),Ji(1, 1))) = i(1, 1) = 1 .

Further, considering (u, v) = (x, y), for (1, 0), (0, 1) and (0, 0), we have

f i
h(1, 0) ≤ i(h(1, 0), h(Ji(0, 0),Ji(1, 1))) = 0 ,

f i
h(0, 1) ≤ i(h(0, 1), h(Ji(1, 1),Ji(0, 0))) = 0 ,

f i
h(0, 0) ≤ i(h(0, 0), h(Ji(0, 0),Ji(0, 0))) = 0 ,

whence f i
h(1, 0) = f i

h(0, 1) = f i
h(0, 0) = 0. On the other hand, f i

h has to be
increasing. Let us consider x1 ≤ x2 and y1 ≤ y2. For all (u, v) ≥ (x2, y2), it
holds that Ji(u, x1) ≤ Ji(u, x2) and Ji(v, y1) ≤ Ji(v, y2), whence

i(h(u, v), h(Ji(v, y1),Ji(u, x1))) ≤ i(h(u, v), h(Ji(v, y2),Ji(u, x2))) .

Hence, f i
h(x1, y1) ≤ f i

h(x2, y2) and f i
h is a conjunctor.

Second, we prove the implication. It suffices to prove that for any (a, b, c) ∈
A3 it holds that f i

h(I(a, b), I(b, c)) ≤ I(a, c). By definition, it holds that I(a, b) =
i(R(a, b), R(b, a)) and I(b, c) = i(R(b, c), R(c, b)). Hence,

R(b, a) ≥ inf{z ∈ [0, 1] | i(R(a, b), z) = I(a, b)} = Ji(R(a, b), I(a, b))

R(c, b) ≥ inf{t ∈ [0, 1] | i(R(b, c), t) = I(b, c)} = Ji(R(b, c), I(b, c)) .

From the h-transitivity of R and the monotonicity of i it follows that

I(a, c) = i(R(a, c), R(c, a))

≥ i(h(R(a, b), R(b, c)), h(R(c, b), R(b, a)))

≥ i(h(R(a, b), R(b, c)), h(Ji(R(b, c), I(b, c)),Ji(R(a, b), I(a, b))))

≥ f i
h(I(a, b), I(b, c)) .

Finally, we prove that no greater conjunctor qualifies when i is right-continuous.
Consider a conjunctor g > f i

h, then we need to prove that there exists a reflexive
fuzzy relation R that is h-transitive, but for which the corresponding indiffer-
ence relation is not g-transitive. Since g > f i

h, there exists (x0, y0) ∈ [0, 1]2 such
that g(x0, y0) > f i

h(x0, y0). For (x, y) ∈ [0, 1]2, let us denote

F i
h(u, v) = i (h(u, v), h (Ji(v, y),Ji(u, x))) ,

then
f i
h(x, y) = inf

1 ≥ u ≥ x
1 ≥ v ≥ y

F i
h(u, v) .

Since ϵ = g(x0, y0) − f i
h(x0, y0) > 0, there exists u0 ≥ x0 and v0 ≥ y0 such that

F i
h(u0, v0) < f i

h(x0, y0) + ϵ = g(x0, y0) .
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Let us call z0 = min{z ∈ [0, 1] | i(u0, z) = x0} and t0 = min{t ∈ [0, 1] | i(v0, t) =
y0}. Since i is right-continuous, it holds that i(u0, z0) = x0 and i(v0, t0) = y0.
The reflexive fuzzy relation R on A = {a, b, c} given by

R a b c
a 1 u0 h(u0, v0)
b z0 1 v0
c h(t0, z0) t0 1

is h-transitive, but the corresponding indifference relation I generated by means
of i is not g-transitive. Indeed, I is given by

I a b c
a 1 x0 F i

h(u0, v0)
b x0 1 y0
c F i

h(u0, v0) y0 1

and
I(a, c) = F i

h(u0, v0) < g(x0, y0) = g(I(a, b), I(b, c)) .

�

Remark 4.1 Note that the monotonicity of the generator i is necessary to en-
sure that the binary operation f i

h is a conjunctor. Indeed, consider the generator
i defined by

i(x, y) =

{
0 , if min(x, y) > 0.3 and max(x, y) < 0.4 ,
TM(x, y) , otherwise,

and the conjunctor h = TP. It holds that

f i
h(0.5, 0.5) = inf

1 ≥ u ≥ 0.5
1 ≥ v ≥ 0.5

i(u · v, 0.25) = 0.25 ,

f i
h(0.6, 0.6) = inf

1 ≥ u ≥ 0.6
1 ≥ v ≥ 0.6

i(u · v, 0.36) = 0 .

Hence, f i
h is not increasing, and is therefore not a conjunctor.

Remark 4.2 Note also that the right-continuity of the generator i is neces-
sary to ensure that the binary operation f i

h defines the strongest result possible.
Indeed, consider the increasing generator i defined by

i(x, y) =



0 , if (min(x, y) < 0.2 and x + y ≤ 1)
or (min(x, y) = 0.2 and max(x, y) ≤ 0.4) ,

0.2 , if (min(x, y) = 0.2 and max(x, y) > 0.4)
or (min(x, y) ∈ ]0.2, 0.8] and x + y ≤ 1) ,

0.4 , if min(x, y) ∈ [0.4, 0.6] and max(x, y) ≤ 0.7
and x + y > 1,

0.6 , if x, y ∈ ]0.6, 0.7],
min(x, y) , otherwise,
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and the conjunctor h = TL. For any TL-transitive reflexive fuzzy relation R, it
follows from Theorem 4.1 that the corresponding indifference relation I gener-
ated by means of i is f i

h-transitive. Note that i is not right-continuous.
Let us now consider the binary operation f∗ on [0, 1] defined by f∗(x, y) =

f i
h(x, y) if min(x, y) < 0.6, and f∗(x, y) = max(f i

h(x, y), 0.2) otherwise. It is
clear that f∗ ≥ f i

h. Moreover, it holds that f i
h(0.6, 0.6) ≤ F i

h(0.65, 0.65) = 0,
whence f i

h(0.6, 0.6) = 0. Thus, f∗ is strictly greater than f i
h at least in the point

(0.6, 0.6).
To prove that I is also f∗-transitive, it suffices to show that for any (a, b, c) ∈

A3 such that min(I(a, b), I(b, c)) ≥ 0.6, it holds that I(a, c) ≥ 0.2. We will use
the notation x = I(a, b), y = I(b, c), u = R(a, b), v = R(b, c), z = R(b, a) and
t = R(c, b). Then, x = i(u, z) and y = i(v, t). Since R is h-transitive, it holds
that R(a, c) ≥ h(u, v) and R(c, a) ≥ h(z, t). Further, since i is increasing, we
have I(a, c) = i(R(a, c), R(c, a)) ≥ i(h(u, v), h(z, t)). It then suffices to prove
that whenever min(x, y) ≥ 0.6, it holds that i(h(u, v), h(z, t)) ≥ 0.2. Note that
if min(x, y) ≥ 0.6, then also min(u, v, z, t) ≥ 0.6. We distinguish three cases:

(a) If max(u, v) = 0.6, then u = v = 0.6. Since i(u, z) = 0.6, it holds that
z > 0.7; analogously, t > 0.7. Then h(u, v) = TL(0.6, 0.6) = 0.2 and
h(z, t) = TL(z, t) > 0.4, and i(h(u, v), h(z, t)) = 0.2.

(b) If max(z, t) = 0.6, then z = t = 0.6. Since i(u, z) = 0.6, it holds that
u > 0.7; analogously, v > 0.7. Then h(u, v) > 0.4 and as in (a) we obtain
i(h(u, v), h(z, t)) = 0.2.

(c) If max(u, v) > 0.6 and max(z, t) > 0.6, then h(u, v) > 0.2 and h(z, t) >
0.2. Thus, i(h(u, v), h(z, t)) ≥ 0.2.

Therefore, f i
h does not define the strongest transitivity that can be assured for I.

4.2 The case of Frank t-norms

An interesting problem is to know when the transitivity of R is inherited by
I, i.e. when departing from an h-transitive R, we can assure that I is also
h-transitive. We have answered this question in earlier work [19].

Theorem 4.2 Consider an increasing generator i and a commutative conjunc-
tor h ≤ TM. Then the associated conjunctor f i

h equals h if and only if i domi-
nates h.

This result applies in particular to i = TM: an indifference relation I gen-
erated from a reflexive fuzzy relation R by means of the minimum operator,
satisfies the same transitivity as R does. Not only dominance allows us to ob-
tain some general results, also the usual ordering of conjunctors, as is shown in
the following corollary.

Corollary 4.3 For any bisymmetric increasing generator i and any conjunctor
h such that i ≤ h ≤ TM, it holds that f i

h = i.

13



Proof. If i is increasing and bisymmetric, then we have shown in [19]
that the h-transitivity of R is propagated into i-transitivity of I when i ≤ h.
Theorem 4.1 then expresses that i ≤ f i

h. On the other hand, we have also proven
in [19] that the transitivity of I is upper bounded by i-transitivity, i.e. f i

h ≤ i.
This concludes the proof.�

Since every t-norm is increasing and bisymmetric, this result applies in par-
ticular to any generator that is a t-norm. In that case, transitivity of R w.r.t.
that t-norm is propagated to I. We will now invoke Theorem 4.2 and Corol-
lary 4.3 to study the particular case of a Frank t-norm as generator.

Corollary 4.4 Consider λ ∈ [0,∞]. It holds that fTM

TP
= TP, f

TF
λ

TL
= TL and

f
TF
λ

h = TF
λ for any h ≥ TF

λ .

Proof. In the Frank t-norm family, only the following dominance relation-
ships hold [36]:

TF
0 = TM ≫ TF

λ ≫ TL = TF
∞ ,

for any λ ∈ [0,∞]. Theorem 4.2 then yields fTM

TP
= TP and f

TF
λ

TL
= TL. On the

other hand, Corollary 4.3 implies that f
TF
λ

h = TF
λ , provided that TF

λ ≤ h.�
Combining the results in Corollary 4.4 leads to Table 1. The entries in this

table are the conjunctors f i
h that define the transitivity ensured for I when the

conjuntor h that defines the transitivity of R and the generator i are one of the
three most important t-norms.

h\i TL TP TM

TL TL TL TL

TP TL TP TP

TM TL TP TM

Table 1: Propagation of the transitivity of R to I for the three most important
t-norms.

5 Transitivity of strict preference relations

5.1 Main result

This section is dedicated to strict preference relations. As shown in Subsec-
tion 2.2, given a generator i and a large preference relation R, the strict prefer-
ence relation P is defined as P = R−i(R,Rt). We study the minimal transitivity
guaranteed for P when we fix the transitivity of R w.r.t. a conjunctor h. We
start by recalling an upper bound for the transitivity of P [19]. We know that
the transitivity of P is upper bounded by h-transitivity whenever h ≤ TM.
Next, we provide a full characterization of the transitivity of P . Compared to
Theorem 4.1, we additionally require the 1-Lipschitz continuity of i. In other
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words, i is considered to be a commutative quasi-copula. The commutativity of
h only serves the definition of Ih. The additional condition on h ensures that
Ih is an implicator (see Proposition 3.1).

Theorem 5.1 Consider a 1-Lipschitz increasing generator i and a commutative
conjunctor h such that h(1, z) > 0 when z > 0. For any reflexive fuzzy relation
R with corresponding strict preference relation P generated by means of i, it
holds that

R is h-transitive ⇒ P is gih-transitive ,

where gih is the conjunctor defined by

gih(x, y) = inf
1 ≥ u ≥ x
1 ≥ v ≥ y

h(u, v)−i(h(u, v),min(Ih(v, Ii(u, u−x)), Ih(u, Ii(v, v−y)))) .

Moreover, this is the strongest result possible.

Proof. First, we prove that gih is a conjunctor. Since i ≤ TM, it follows
immediately that gih is a binary operation on [0, 1]. Due to the additional
condition on h, it holds that Ih is an implicator. Since Ih(1, 0) = Ii(1, 0) = 0,
it holds that

gih(1, 1) = h(1, 1) − i(h(1, 1),min(0, 0)) = 1 .

For (x, y) = (1, 0), (x, y) = (0, 1) or (x, y) = (0, 0), it suffices to consider (u, v) =
(x, y) to see that

gih(x, y) ≤ h(x, y) − i(h(x, y),min(Ih(y, Ii(x, 0)), Ih(x, Ii(y, 0)))) = 0 ,

whence gih(1, 0) = gih(0, 1) = gih(0, 0) = 0. On the other hand, gih has to be
increasing. Let us introduce the following shorthand, for (u, v) ≥ (x, y),

Hx,y(u, v) = h(u, v) − i(h(u, v),min(Ih(v, Ii(u, u− x)), Ih(u, Ii(v, v − y)))) .

Let us consider x1 ≤ x2 and y1 ≤ y2. Since Ih and Ii are increasing in
their second argument and i is increasing, it holds for all (u, v) ≥ (x2, y2) that
Hx2,y2(u, v) ≥ Hx1,y1(u, v), and thus

gih(x2, y2) = inf
u≥x2 , v≥y2

Hx2,y2(u, v) ≥ inf
u≥x2 , v≥y2

Hx1,y1(u, v)

≥ inf
u≥x1 , v≥y1

Hx1,y1(u, v) = gih(x1, y1) .

Hence, gih is increasing and therefore is a conjunctor.
Second, we prove the implication. It suffices to prove that for any (a, b, c) ∈

A3 it holds that gih(P (a, b), P (b, c)) ≤ P (a, c). Recall that since i is 1-Lipschitz,
it holds that for any fixed k ∈ [0, 1], the function f(z) = z− i(z, k) is increasing.
Let us call u = R(a, b) and v = R(b, c), then the h-transitivity of R reads
R(a, c) ≥ h(R(a, b), R(b, c)) = h(u, v) and

P (a, c) = R(a, c) − i(R(a, c), R(c, a)) ≥ h(u, v) − i(h(u, v), R(c, a)) .
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The h-transitivity of R also leads to R(c, a) ≤ Ih(v,R(b, a)) and R(c, a) ≤
Ih(u,R(c, b)). Hence,

R(c, a) ≤ min(Ih(v,R(b, a)), Ih(u,R(c, b))) .

Let us call x = P (a, b) and y = P (b, c), then x = u− i(u,R(b, a)) is equivalent
to i(u,R(b, a)) = u−x which implies R(b, a) ≤ Ii(u, u−x). Similarly, R(c, b) ≤
Ii(v, v − y). Since Ih is increasing in its second argument, we obtain

R(c, a) ≤ min(Ih(v,R(b, a)), Ih(u,R(c, b)))

≤ min(Ih(v, Ii(u, u− x)), Ih(u, Ii(v, v − y))) .

Combining the above leads to

P (a, c) ≥ inf
1 ≥ u ≥ x
1 ≥ v ≥ y

h(u, v)−i(h(u, v),min(Ih(v, Ii(u, u−x)), Ih(u, Ii(v, v−y)))) ,

i.e. P (a, c) ≥ gih(P (a, b), P (b, c).
Finally, we prove that no greater conjunctor qualifies. Consider a conjunctor

g > gih, then we need to prove that there exists a reflexive fuzzy relation R that
is h-transitive, but for which the corresponding strict preference relation is not
g-transitive. Since g > gih, there exists (x0, y0) ∈ [0, 1]2 such that g(x0, y0) >
gih(x0, y0). Since

gih(x0, y0) = inf
1 ≥ u ≥ x0
1 ≥ v ≥ y0

Hx0,y0(u, v)

and ϵ = g(x0, y0)−gih(x0, y0) > 0, there exists (u0, v0) such that Hx0,y0(u0, v0) <
gih(x0, y0) + ϵ/2 and thus

Hx0,y0(u0, v0) + ϵ/2 < g(x, y) .

Let us consider the reflexive fuzzy relation R on A = {a, b, c} given by

R a b c
a 1 u0 h(u0, v0)
b Ii(u0, u0 − x0) 1 v0
c min(z1, z2) Ii(v0, v0 − y0) 1

Here, z1 = max{z | h(v0, z) ≤ Ii(u0, u0 − x0)} if this maximum exists. Other-
wise, choose z1 ∈ ]Ih(v0, Ii(u0, u0 −x0))− ϵ/2, Ih(v0, Ii(u0, u0 −x0))[ such that
z1 > Ii(u0, u0−x0). In both cases, it holds that h(v0, z1) ≤ Ii(u0, u0−x0). Sim-
ilarly, z2 is chosen such that h(u0, z2) ≤ Ii(v0, v0 − y0) and z2 > Ii(v0, v0 − y0).
It then holds that R is h-transitive.

On the other hand, it holds that

min(z1, z2) > min(Ih(v0, Ii(u0, u0 − x0)), Ih(u0, Ii(v0, v0 − y0))) − ϵ/2 .

Since i is 1-Lipschitz, it follows that

i(h(u0, v0),min(z1, z2))

> i(h(u0, v0),min(Ih(v0, Ii(u0, u0 − x0)), Ih(u0, Ii(v0, v0 − y0)))) − ϵ/2
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and hence

h(u0, v0) − i(h(u0, v0),min(z1, z2))

< h(u0, v0) − i(h(u0, v0),min(Ih(u0, Ii(v0, v0 − y)), Ih(v0, Ii(u0, u0 − x0)))) + ϵ/2

= Hx0,y0(u0, v0) + ϵ/2 .

Consequently,

P (a, c) = h(u0, v0) − i(h(u0, v0),min(z1, z2))

< Hx0,y0(u0, v0) + ϵ/2 < g(x0, y0) = g(P (a, b), P (b, c))

and P is not g-transitive.�
One easily verifies that gih is indeed upper bounded by h:

gih(x, y) ≤ h(x, y)−i(h(x, y),min(Ih(v, Ii(u, u−x)), Ih(u, Ii(v, v−y)))) ≤ h(x, y) .

Remark 5.1 Note that the monotonicity of the generator i is again necessary
to ensure that the binary operation gih is a conjunctor. Indeed, consider the
generator i defined by

i(x, y) =

{
TL(x, y) , if x + y > 0.99 ,
TM(x, y) , otherwise ,

and the conjunctor h = TP. In order to show that the operation gih is not
increasing, it suffices to consider the points (0.55, 0.55) and (0.6, 0.6). Clearly,

gih(0.6, 0.6) ≤ 0.6 ·0.72− i(0.6 ·0.72,min(Ii(0.6, 0)/0.72, Ii(0.72, 0.12)/0.6)) = 0 .

For u, v ≥ 0.55, it holds that

i(uv,min(Ih(v, Ii(u, u− 0.55)), Ih(u, Ii(v, v − 0.55)))) = i(uv,
0.45

max(u, v)
) .

One easily verifies that uv + 0.45
max(u,v) > 0.99 for any u, v ≥ 0.55, and hence

i(uv,
0.45

max(u, v)
) = max(uv +

0.45

max(u, v)
− 1, 0) .

Hence,

uv − i(uv,min(Ih(v, Ii(u, u− 0.55)), Ih(u, Ii(v, v − 0.55))))

= uv − max(uv +
0.45

max(u, v)
− 1, 0)

=

{
1 − 0.45

max(u,v) ≥ 1 − 0.45
0.55 = 0.1818 , if uv + 0.45

max(u,v) > 1 ,

uv ≥ 0.552 = 0.3025 , otherwise .

Consequently, gih(0.55, 0.55) ≥ 0.1818 > gih(0.6, 0.6) = 0.
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5.2 The case of 1-Lipschitz t-norms

In the particular case when the conjunctor h, expressing the h-transitivity of
R, and the indifference generator i are one and the same t-norm, the thorny
general expression obtained in Theorem 5.1 gets much simpler. Compared to
Theorem 5.1, we additionally require the associativity of i and consider h to be
identical to i.

Note that for a left-continuous t-norm T , it holds that IT (T (x, y), z) =
IT (x, IT (y, z)), for any (x, y, z) ∈ [0, 1]3. Also, for a continuous t-norm T , it
holds that T (x, IT (x, y)) = min(x, y), for any (x, y) ∈ [0, 1]2 (see also Lemma 3.2).
See e.g. [25] for more details. These properties will be used in the proof of the
following theorem.

Theorem 5.2 Consider a 1-Lipschitz t-norm T . For any reflexive fuzzy rela-
tion R with corresponding strict preference relation P generated by means of T ,
it holds that

R is T -transitive ⇒ P is gTT -transitive ,

where gTT is the conjunctor defined by

gTT (x, y) = inf
0≤α≤min(1−x,1−y)

max (T (x + α, y + α) − α, 0) .

Moreover, this is the strongest result possible.

Proof. First of all, we will prove that

gTT (x, y) = inf
1 ≥ u ≥ x
1 ≥ v ≥ y

max(T (u, v) − min(u− x, v − y), 0) .

To obtain this expression from the general expression in Theorem 5.1, it suffices
to prove that

T (T (u, v),min(IT (v, IT (u, u−x)), IT (u, IT (v, v−y)))) = min(u−x, v−y, T (u, v)) .

Let z1 = IT (v, IT (u, u − x)) and z2 = IT (u, IT (v, v − y)), then it holds that
z1 = IT (T (u, v), u − x) and z2 = IT (T (u, v), v − y). Hence, min(z1, z2) =
IT (T (u, v),min(u− x, v − y)) and

T (T (u, v),min(IT (v, IT (u, u− x)), IT (u, IT (v, v − y))))

= T (T (u, v), IT (T (u, v),min(u− x, v − y))) = min(u− x, v − y, T (u, v)) .

The conjunctor gTT can then be written as

gTT (x, y) = inf
1 ≥ u ≥ x
1 ≥ v ≥ y

max(T (u, v) − min(u− x, v − y), 0) .

If we now replace u and v by x+α and y+β, with α ∈ [0, 1−x] and β ∈ [0, 1−y],
we obtain

gTT (x, y) = inf
0 ≤ α ≤ 1 − x
0 ≤ β ≤ 1 − y

max(T (x + α, y + β) − min(α, β), 0) .
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If α ≤ β, then it holds that

max(T (x + α, y + β) − min(α, β), 0) = max(T (x + α, y + β) − α, 0)

≥ max(T (x + α, y + α) − α, 0) .

Similarly, if β ≤ α, it holds that

max(T (x + α, y + β) − min(α, β), 0) ≥ max(T (x + β, y + β) − β, 0) .

Thus,

inf
0 ≤ α ≤ 1 − x
0 ≤ β ≤ 1 − y

max(T (x + α, y + β) − min(α, β), 0)

≥ inf
0≤α≤min(1−x,1−y)

max(T (x + α, y + α) − α, 0) .

As the opposite inequality holds trivially, this ends the proof.�

5.3 The case of Frank t-norms

The above theorem addresses 1-Lipschitz t-norms. Such operations can be
equivalently described as associative copulas [30]. In [8] the conjunctor gTT was
studied in depth not only for a t-norm T , but for a general binary aggregation
function. In particular, for the Frank t-norms/copulas, the expression for gTT
can be further simplified. Consider λ ∈ [0,∞], then it holds that [8]:

g
TF
λ

TF
λ

=

 TF
λ (x, y) , if x + y > 1 ,

max

(
TF
λ

(
1 + x− y

2
,

1 + y − x

2

)
− 1 − x− y

2
, 0

)
, otherwise .

In particular, it holds that gTL

TL
= TL, gTM

TM
= TM (directly obtained in [16]) and

gTP

TP
(x, y) =

(
TP(x, y) −

(
TL(1 − x, 1 − y)

2

)2
)

· χ]1,∞[(
√
x +

√
y) .

Remark 5.2 In [8], a non-trivial proof shows that for any Frank t-norm/copula

TF
λ , the conjunctor g

TF
λ

TF
λ

is a copula as well. However, for λ ∈ ]0,∞[, the con-

junctor g
TF
λ

TF
λ

is not a t-norm. Let us show that it is not associative. Consider

x, z ∈ ]0, 1[ such that x > 1 − z > 0.5. It holds that

ϕ−1
λ

(
ϕλ(1 − z)

ϕλ(x)

)
> 1 − z .

On the other hand, the function f(t) = ϕλ(t)ϕλ(1 − t) is strictly increasing on
[0, 0.5] and strictly decreasing on [0.5, 1], whence ϕλ(x)ϕλ(1−x) < ϕλ(z)ϕλ(1−
z), which implies that

ϕ−1
λ

(
ϕλ(1 − x)

ϕλ(z)

)
< ϕ−1

λ

(
ϕλ(1 − z)

ϕλ(x)

)
.
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Thus, for any λ ∈ ]0,∞[, the interval]
max

(
1 − z, ϕ−1

λ

(
ϕλ(1 − x)

ϕλ(z)

))
, ϕ−1

λ

(
ϕλ(1 − z)

ϕλ(x)

)[
is not empty.

Let us now consider a value y in this interval. It then holds that x + y > 1,
y + z > 1, TF

λ (x, y) < 1 − z and TF
λ (y, z) > 1 − x. The triplet (x, y, z) then

satisfies

g
TF
λ

TF
λ

(
g
TF
λ

TF
λ

(x, y), z
)

= g
TF
λ

TF
λ

(
TF
λ (x, y), z

)
< TF

λ (TF
λ (x, y), z) = TF

λ (x, TF
λ (y, z)) = g

TF
λ

TF
λ

(
x, g

TF
λ

TF
λ

(y, z)
)
,

where the inequality comes from the fact that g
TF
λ

TF
λ

(u, v) < TF
λ (u, v) whenever

u + v < 1. Hence, g
TF
λ

TF
λ

is not associative and therefore it is not a t-norm.

In particular, gTP

TP
is not a t-norm. This seems to indicate that in the present

context, the 2-increasingness property plays a more prominent role than the
associativity property.

Next, we prove a lemma that will turn out useful in the following proposition.

Lemma 5.3 For any λ ∈ ]0,∞[ and any (x, y) ∈ [0, 1]2 such that x+y > 1, the
function Hx,y : [x, 1] × [y, 1] → [0, 1] defined by Hx,y(u, v) =

ϕ−1
λ

(
ϕλ(u + v − 1)ϕλ

(
max

(
u + ϕ−1

λ

(
ϕλ(y)

ϕλ(v)

)
, v + ϕ−1

λ

(
ϕλ(x)

ϕλ(u)

))
− 1

))
reaches its minimum at (u, v) = (x, y).

Proof. Since the function ϕ−1
λ is strictly increasing for any λ ∈ ]0,∞[, we

have to show that the function hx,y : [x, 1] × [y, 1] → [0, 1] defined by

hx,y(u, v) = ϕλ(u+v−1)ϕλ

(
max

(
u + ϕ−1

λ

(
ϕλ(y)

ϕλ(v)

)
− 1, v + ϕ−1

λ

(
ϕλ(x)

ϕλ(u)

)
− 1

))
reaches its minimum at (u, v) = (x, y). Let us define

h1
x,y(u, v) = ϕλ(u + v − 1)ϕλ

(
u + ϕ−1

λ

(
ϕλ(y)

ϕλ(v)

)
− 1

)
h2
x,y(u, v) = ϕλ(u + v − 1)ϕλ

(
ϕ−1
λ

(
ϕλ(x)

ϕλ(u)

)
+ v − 1

)
.

Since ϕλ is increasing, it holds that hx,y(u, v) = max(h1
x,y(u, v), h2

x,y(u, v)) and

min
1 ≥ v ≥ y
1 ≥ u ≥ x

hx,y(u, v) ≥ max

 min
1 ≥ v ≥ y
1 ≥ u ≥ x

h1
x,y(u, v), min

1 ≥ v ≥ y
1 ≥ u ≥ x

h2
x,y(u, v)

 .
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The function h1
x,y is increasing in its first argument, whence

min
1 ≥ v ≥ y
1 ≥ u ≥ x

h1
x,y(u, v) = min

1≥v≥y
ϕλ(x + v − 1)ϕλ

(
x + ϕ−1

λ

(
ϕλ(y)

ϕλ(v)

)
− 1

)
.

Similarly, h2
x,y is increasing in its second argument, whence

min
1 ≥ v ≥ y
1 ≥ u ≥ x

h2
x,y(u, v) = min

1≥u≥x
ϕλ(u + y − 1)ϕλ

(
y + ϕ−1

λ

(
ϕλ(x)

ϕλ(u)

)
− 1

)
.

These two right-hand sides determine functions of the same type:

• For λ = 1, these functions are of the form

F1(z) = (z − k)
( c
z
− k
)

where k ∈ [0, 1[, c ∈ ]0, 1] and z ∈ [c, 1]. Its derivative is given by F ′
1(z) =

−k +
kc

z2
, whence F1(z) is increasing on [c,

√
c] and decreasing on [

√
c, 1].

Hence,
min

z∈[c,1]
F1(z) ∈ {F1(c), F1(1)} .

• For λ > 1, these functions are of the form

Fλ(z) = K(kλz − 1)

(
k

(
1 +

(λc − 1)(λ− 1)

(λz − 1)

)
− 1

)
,

where K > 0, k ∈ ]0, 1], c ∈ ]0, 1] and z ∈ [c, 1]. Let us denote C =
(λc − 1)(λ− 1), then the function Fλ(z) can be written as

Fλ(z) = K(kλz − 1)

(
k

(
1 +

C

λz − 1

)
− 1

)
= K

(
k2λz +

Ck2λz

λz − 1
− kλz − k − Ck

λz − 1
+ 1

)
,

while its derivative is given by

F ′
λ(z) = Kkλz ln(λ)

[
k − Ck

(λz − 1)2
− 1 +

C

(λz − 1)2

]
= Kkλz ln(λ)(1 − k)

(
C

(λz − 1)2
− 1

)
.

If k = 1, the function Fλ is constant. Otherwise, the following equivalences
hold:

F ′
λ(z) > 0 iff

C

(λz − 1)2
> 1 iff z < logλ(1 +

√
(λc − 1)(λ− 1))

F ′
λ(z) < 0 iff

C

(λz − 1)2
< 1 iff z > logλ(1 +

√
(λc − 1)(λ− 1)) .
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Since 0 < c ≤ logλ(1 +
√

(λc − 1)(λ− 1)) ≤ 1, the function Fλ(z) is

increasing on [c, logλ(1 +
√

(λc − 1)(λ− 1))] and decreasing on [logλ(1 +√
(λc − 1)(λ− 1)), 1]. It therefore reaches its minimum at z = c or z = 1.

• For λ < 1, these functions are of the form

Fλ(z) = K(1 − kλz)

(
1 − k

(
1 − C

(1 − λz)

))
,

where K > 0, k ≥ 1, c ∈ ]0, 1] and z ∈ [c, 1], and C = (1 − λc)(1 − λ). Its
derivative is given by

F ′
λ(z) = Kkλz ln(λ)(1 − k)

(
C

(1 − λz)2
− 1

)
,

where ln(λ) < 0 since λ ∈ ]0, 1[ . Hence, if k = 1, the function Fλ is con-
stant, while otherwise it is increasing on [c, logλ (1 −

√
(1 − λc)(1 − λ))]

and decreasing on [logλ (1 −
√

(1 − λc)(1 − λ)), 1]. Also in this case, the
minimum is reached at z = c or z = 1.

Since h1
x,y(x, y) = ϕλ(x+ y− 1)ϕλ(x) = h1

x,y(x, 1) and similarly h2
x,y(x, y) =

h2
x,y(1, y), we can conclude that

max

 min
1 ≥ v ≥ y
1 ≥ u ≥ x

h1
x,y(u, v), min

1 ≥ v ≥ y
1 ≥ u ≥ x

h2
x,y(u, v)

 = max(h1
x,y(x, y), h2

x,y(x, y)) .

However, this value is reached by hx,y(u, v) at (u, v) = (x, y), and thus

min
1 ≥ v ≥ y
1 ≥ u ≥ x

hx,y(u, v) = hx,y(x, y) ,

which completes the proof.�
Other particular cases involving the three most important t-norms, i.e. both

i and h belonging to {TL, TP, TM}, are instances of the following propositions.

Proposition 5.4 Consider λ ∈ [0,∞]. For i = TF
λ and h = TL, it holds that

g
TF
λ

TL
(x, y) = TF

1/λ(TL(x, y), SM(x, y)) .

Proof. We have already indicated that gTL

TL
(x, y) = TL(x, y) = TM(TL(x, y), SM(x, y)).

It is also easy to prove that gTM

TL
(x, y) = TL(TL(x, y), SM(x, y)). To prove the

general expression for λ ∈ ]0,∞[, we notice first of all that from the equality

TF
1/λ(x, y) = x− TF

λ (x, 1 − y)

it follows that
ITF

λ
(x, y) = 1 − ITF

1/λ
(x, x− y) .
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Now, from Theorem 5.1 we obtain

g
TF
λ

TL
(x, y)

= inf
1 ≥ u ≥ x
1 ≥ v ≥ y

TL(u, v) − TF
λ (TL(u, v),min(1 + ITF

λ
(u, u− x) − v, 1 + ITF

λ
(v, v − y) − u))

= inf
1 ≥ u ≥ x
1 ≥ v ≥ y

TF
1/λ(TL(u, v),max(v + ITF

1/λ
(u, x) − 1, u + ITF

1/λ
(v, y) − 1)) .

We proved in Lemma 5.3 that this expression reaches its minimum at (u, v) =
(x, y).�

Proposition 5.5 Consider λ ∈ [0,∞]. For i = TF
λ and h = TM, it holds that

g
TF
λ

TM
(x, y) = T

φ1/λ

nM (x, y) =

{
min(x, y) , if φ1/λ(x) + φ1/λ(y) > 1 ,
0 , otherwise ,

where φλ is defined by

φλ(x) =



logλ

(√
λx − 1

λ− 1
(λ− 1) + 1

)
, if λ ∈ ]0, 1[∪ ]1,∞[ ,

x , if λ = 0 ,
√
x , if λ = 1 ,

x + 1

2
χ]0,1](x) , if λ = ∞ .

Moreover, g
TF
λ

TM
is a t-norm.

Proof. The expression for g
TF
λ

TM
was obtained in [16]. Clearly, gTL

TM
= TnM and

gTM

TM
= TM. As φλ is an automorphism for any λ ∈ ]0,∞[, g

TF
λ

TM
is a ϕ-transform

of TnM and is therefore also a t-norm.�
As a consequence of this proposition, we obtain that gTL

TM
= TnM and

gTP

TM
(x, y) = Tφ1

nM(x, y) =

{
min(x, y) , if

√
x +

√
y > 1 ,

0 , otherwise .

In order to complete the study of all combinations of the three most im-
portant t-norms, two cases are missing, namely gTL

TP
and gTM

TP
. These will be

addressed in Propositions 5.6 and 5.7.

Proposition 5.6 For i = TL and h = TP, it holds that

gTL

TP
(x, y) = TM

(
TP(x, y),

TL(x, y)

TM(x, y)

)
· χ]0,1](TM(x, y)) .
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Proof. If x+y ≤ 1, then gTL

TP
(x, y) ≤ gTL

TP
(x, 1−x) = 0. Also TM

(
TP(x, y),

TL(x, y)

TM(x, y)

)
=

0. Thus, in this case, both expressions are equal. Next, consider x + y > 1.
From Theorem 5.1 we obtain

gTL

TP
(x, y) = inf

1 ≥ u ≥ x
1 ≥ v ≥ y

(
uv − max

(
uv + min

(
1 − x

v
,

1 − y

u

)
− 1, 0

))

= inf
1 ≥ u ≥ x
1 ≥ v ≥ y

min

(
1 − min

(
1 − x

v
,

1 − y

u

)
, uv

)

= inf
1 ≥ u ≥ x
1 ≥ v ≥ y

min

(
max

(
v + x− 1

v
,
u + y − 1

u

)
, uv

)
.

For (u, v) = (x, y), the right-hand side yields TM

(
TP(x, y),

TL(x, y)

TM(x, y)

)
and

therefore gTL

TP
(x, y) ≤ TM

(
TP(x, y),

TL(x, y)

TM(x, y)

)
. It then suffices to prove that

for any (u, v) ≥ (x, y) it holds that

min

(
max

(
v + x− 1

v
,
u + y − 1

u

)
, uv

)
≥ TM

(
TP(x, y),

TL(x, y)

TM(x, y)

)
.

On the one hand, uv ≥ TP(x, y) ≥ TM

(
TP(x, y),

TL(x, y)

TM(x, y)

)
. On the other

hand,

max

(
v + x− 1

v
,
u + y − 1

u

)
= max

(
1 − 1 − x

v
, 1 − 1 − y

u

)
.

Let us assume w.l.o.g. that y ≤ x. Since v ≥ y, it holds that

1 − 1 − x

v
≥ 1 − 1 − x

y
=

TL(x, y)

y
≥ TL(x, y)

TM(x, y)
.

This concludes the proof.�

Remark 5.3 The conjunctor gTL

TP
is not a t-norm. Associativity is violated, as,

for instance,

gTL

TP
(gTL

TP
(0.5, 0.9), 0.6) =

1

9
̸= 2

25
= gTL

TP
(0.5, gTL

TP
(0.9, 0.6)) .

Proposition 5.7 For i = TM and h = TP, it holds that

gTM

TP
(x, y) = max

 min
1 ≥ u ≥ x
1 ≥ v ≥ y

(
uv − min

(
u− x

v
,
v − y

u

))
, 0

 · χ]0,1]2(x, y) .
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The proof of this equality left for last, on purpose, is the most cumber-
some one, as it does not lead to a closed analytical expression. Indeed, tedious
calculations (of which we spare the reader) lead to

gTM

TP
(x, y) =


0 , if GM

P (x, y) ≤ 0 ,

g

(
αx,y,

y+
√

y2+4αx,y(αx,y−x)

2 , x, y

)
, if GM

P (x, y) > 0 and ∃αx,y ,

TP(x, y) , if GM
P (x, y) > 0 and @αx,y ,

where

g(u, v, x, y) = TP(u, v) − TM

(
u− x

v
,
v − y

u

)
,

GM
P (x, y) = 256(x2 + y2 − 1)3 + 27x2y2(x2y2 − 32x2 − 32y2 + 160)

and αx,y is a solution in [x, 1] of the following equation in the variable u:

(4u3 − 3xu2 − x)2 = y2(−3u4 + 2xu3 − 6u2 + 6xu + 1 − y2) .

Note that neither the existence nor the uniqueness of such a solution is guar-
anteed. However, in case there exists more than one solution, all of them lead

to the same value of g

(
αx,y,

y+
√

y2+4αx,y(αx,y−x)

2 , x, y

)
, which guarantees that

gTM

TP
is properly defined.

In this subsection we have obtained, among many other results, that

gTL

TP
(x, y) = TM

(
TP(x, y),

TL(x, y)

TM(x, y)

)
· χ]0,1](TM(x, y)) ,

gTP

TP
(x, y) =

(
TP(x, y) −

(
TL(1 − x, 1 − y)

2

)2
)

· χ]1,∞[(
√
x +

√
y) ,

gTM

TP
(x, y) =


0 , if GM

P (x, y) ≤ 0 ,

g

(
αx,y,

y+
√

y2+4αx,y(αx,y−x)

2 , x, y

)
, if GM

P (x, y) > 0 and ∃αx,y ,

TP(x, y) , if GM
P (x, y) > 0 and @αx,y .

Combining the results in Propositions 5.4–5.7 and the previous expressions leads
to Table 2. The entries in this table are the conjunctors gih that define the
transitivity ensured for P when the conjuntor h that defines the transitivity of
R and the generator i are one of the three most important t-norms.

6 Conclusion

We have dealt with the transitivity of indifference and strict preference relations
generated by means of a generator i from a reflexive fuzzy relation R that is h-
transitive w.r.t. a conjunctor h. We have presented both theorems expounding
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h\i TL TP TM

TL TL TP(TL, SM) TL(TL, SM)

TP gTL

TP
gTP

TP
gTM

TP

TM TnM Tφ1

nM TM

Table 2: Propagation of the transitivity of R to P for the three most important
t-norms.

very general results as well as specific propositions treating the most important
particular cases.

The general results are of use for any (1-Lipschitz) increasing generator i and
any (commutative) conjunctor h. These results finally close the study of the
transitivity of the symmetric and asymmetric components of a reflexive fuzzy
relation. Both the decomposition by means of a generator i and the use of a
conjunctor h for describing the transitivity are the most general considerations
possible.

The specific results concern the most important particular cases, i.e. those
for which both the generator i and the conjunctor h are among the most impor-
tant t-norms. These particular cases have been a topic of study for many years.
However, focus was too often on preservation of transitivity, rather than trying
to identify the strongest type of transitivity possible. The specific results provide
easy-to-use expressions, except for one case leading to an unwieldy expression.

Despite the non-comprehensive general formulae obtained in Theorems 4.1
and 5.1, we have already proven that these conjunctors have interesting prop-
erties in some particular cases [8]. In future work, we intend to study the
properties of these conjunctors in more detail.
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(1999). A characterization of quasi-copulas. Journal of Multivariate Anal-
ysis, 69, 193–205.
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