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RESUMEN DEL CONTENIDO DE TESIS DOCTORAL 

1.- Título de la Tesis 

Español: Estimación de tensiones para la 
monitorización del daño por fatiga: 
determinación mediante modelos numéricos y 
análisis modal operacional. 

Inglés: Stress estimation for fatigue 
monitoring: determination through numerical 
models and operational modal analysis. 

2.- Autora 
Nombre: Natalia García Fernández  

Programa de Doctorado: Materiales 

Órgano responsable: Centro Internacional de Postgrado 

RESUMEN (en español) 

Muchas estructuras están sometidas a cargas dinámicas que generan tensiones de amplitud 
variable, las cuales pueden provocar fallos por fatiga. Dado el gran número de estructuras, 
como puentes, chimeneas, torres, turbinas eólicas, paneles solares, etc., que son susceptibles 
de sufrir este fenómeno, las técnicas de monitorización de la salud estructural (SHM) son 
herramientas muy útiles para evitar las consecuencias catastróficas de este tipo de fallos. 
Aunque se han desarrollado numerosos métodos para la detección de daño mediante técnicas 
de monitorización, las técnicas de evaluación y predicción de daño acumulado en tiempo real 
siguen estando poco exploradas. Por lo tanto, para comprender y evaluar el daño por fatiga en 
las estructuras y, en consecuencia, poder determinar su vida útil remanente, es esencial 
implementar técnicas de monitorización a fatiga en tiempo real. 

La monitorización a fatiga en continuo consiste en determinar el daño acumulado por fatiga, en 
tiempo real, durante el período de operación de la estructura. Se propone un enfoque de 
monitorización a fatiga que se puede dividir en cinco fases: (i) identificación de los 
componentes y ubicaciones críticas más probables de sufrir daño por fatiga, (ii) implementación 
de una estrategia de montaje de sensores, (iii) medición o estimación de 
deformaciones/tensiones en las ubicaciones de interés en tiempo real, (iv) cálculo del espectro 
de tensiones mediante técnicas de conteo de ciclos y evaluación del daño total por fatiga, y (v) 
cálculo de vida remanente a fatiga. 

Para obtener el historial temporal de tensiones en los puntos de interés, existen dos 
metodologías comúnmente aplicadas: (a) medición directa con sensores de deformación 
instalados en las ubicaciones de interés, o (b) estimación de tensiones a partir de las 
respuestas estructurales mediante la medición continua de desplazamientos, velocidades, 
aceleraciones o deformaciones experimentales en puntos discretos de la estructura. Esta tesis 
se centra en la estimación de tensiones, concretamente utilizando superposición modal y la 
expansión de modos de vibración. 

Estas técnicas de estimación de tensiones requieren, generalmente, modos de vibración un 
modelo numérico, que debe estar bien correlacionado con la estructura experimental, ya que la 
precisión de las tensiones estimadas depende del nivel de correlación. En esta tesis se 
proponen varias técnicas de correlación, basadas en la matriz de transformación T, para 
detectar el origen de las discrepancias entre dos modelos (masa, rigidez o ambas). Además, se 
introduce una versión novedosa del MAC (Modal Assurance Criterion) para abordar los 
problemas que aparecen en modelos con modos cercanos o repetidos, donde el MAC puede 
arrojar valores bajos, incluso cuando existe una buena correlación. Todas las técnicas de 
correlación propuestas se validan mediante simulaciones numéricas y ensayos experimentales.  
Una vez que el modelo numérico está adecuadamente calibrado, se pueden aplicar técnicas de 
estimación de tensiones basadas en expansión modal. Esta tesis presenta varios enfoques 
para estimar las coordenadas modales y expandir los modos de vibración, proponiendo ocho 
métodos para la estimación de tensiones. Se abordan las hipótesis de partida, los datos 
necesarios para su aplicación, así como la incertidumbre asociada a estos métodos y sus 



limitaciones. Los métodos propuestos se validan mediante simulaciones numéricas, y ensayos 
experimentales en modelos estructurales a escala. 

En definitiva, esta tesis propone una metodología para la monitorización a fatiga de estructuras 
en servicio. Para ello, se presentan ocho métodos de estimación de tensiones, los cuales 
requieren la utilización de un modelo numérico bien correlacionado con el modelo experimental. 
Además, se desarrollan nuevas técnicas de correlación para detectar discrepancias en masa y 
rigidez, así como una nueva versión del MAC. Finalmente, las metodologías presentadas se 
validan mediante simulaciones numéricas y ensayos experimentales. 

RESUMEN (en Inglés) 

Structures are often subjected to dynamic loads that generate variable stresses, potentially 
leading to fatigue failure. Given the vast number of structures, such as bridges, chimneys, 
towers, wind turbines, solar panels, etc., that are susceptible to this phenomenon, Structural 
Health Monitoring (SHM) techniques play a crucial role in preventing the potentially catastrophic 
consequences of such failures. While numerous SHM techniques have been developed for 
damage detection purposes, real-time assessment and prediction techniques for accumulated 
damage remain quite underexplored. Therefore, to understand and assess fatigue damage in 
structures and, consequently, determine their remaining life, it is essential to implement 
continuous fatigue monitoring techniques. 

Continuous fatigue monitoring refers to the calculation of accumulated fatigue damage in real 
time during the period that the structure is in operation. A fatigue monitoring approach is 
proposed, which  can be divided into five steps: (i) identification of the most likely critical 
components and locations to suffer fatigue damage, (ii) sensor location strategy, (iii) real time 
measurement or estimation of strains/stresses at the locations of interest, (iv) calculation of the 
stress spectrum using cycle counting techniques and evaluation of the total fatigue damage, 
and (v) calculation of the remaining fatigue life. 

To obtain the stress time history response at the relevant locations, two commonly applied 
methodologies exist: (a) strain measurement with strain sensors installed at the locations of 
interest, or (b) stress estimation from the displacement, velocity, acceleration or strain structural 
responses, measured at discrete points of the structure. This thesis focuses on stress 
estimation, specifically using modal superposition and based on modal expansion. 

These techniques typically require mode shapes from a numerical model which must be well 
correlated with the experimental structure, as the quality of the estimated stresses depends on 
the level of correlation. In this thesis, several correlation techniques based on the transformation 
matrix T, are proposed to detect if the discrepancies between models can be attributed to mass, 
stiffness or both. Additionally, a novel version of the Modal Assurance Criterion (MAC) is 
introduced to address challenges in models with closely spaced or repeated modes, where the 
original MAC may yield low values even when strong correlation exists. All proposed techniques 
are validated through numerical simulations and experimental examples. 

Once the numerical model is adequately correlated, stress estimation techniques based on 
modal expansion can be applied. This thesis presents various approaches to estimate modal 
coordinates and to expand mode shapes, proposing eight methods for stress estimation. The 
initial assumptions, the data required for their application, as well as the uncertainty associated 
with these methods and their limitations, are addressed. The proposed methods are validated 
through numerical simulations and experimental tests carried out on scaled structural models. 

In summary, this thesis proposes a methodology for fatigue monitoring of structures in 
operation. To this end, eight stress estimation methods are presented, which require a 
numerical model well-correlated with the experimental model. New correlation techniques are 
developed to detect discrepancies in terms of mass and stiffness, along with a new version of 
the MAC. Finally, all the proposed methodologies are validated by numerical simulations and 
experimental tests. 
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Abstract 
Structures are often subjected to dynamic loads that generate variable stresses, potentially leading to 
fatigue failure. Given the vast number of structures, such as bridges, chimneys, towers, wind turbines, 
solar panels, etc., that are susceptible to this phenomenon, Structural Health Monitoring (SHM) 
techniques play a crucial role in preventing the potentially catastrophic consequences of such failures. 
While numerous SHM techniques have been developed for damage detection purposes, real-time 
assessment and prediction techniques for accumulated damage remain quite underexplored. 
Therefore, to understand and assess fatigue damage in structures and, consequently, determine their 
remaining life, it is essential to implement continuous fatigue monitoring techniques. 

Continuous fatigue monitoring refers to the calculation of accumulated fatigue damage in real time 
during the period that the structure is in operation. A fatigue monitoring approach is proposed, which 
can be divided into five steps: (i) identification of the most likely critical components and locations 
to suffer fatigue damage, (ii) sensor location strategy, (iii) real time measurement or estimation of 
strains/stresses at the locations of interest, (iv) calculation of the stress spectrum using cycle counting 
techniques and evaluation of the total fatigue damage, and (v) calculation of the remaining fatigue 
life. 

To obtain the stress time history response at the relevant locations, two commonly applied 
methodologies exist: (a) strain measurement with strain sensors installed at the locations of interest, 
or (b) stress estimation from the displacement, velocity, acceleration or strain structural responses 
measured at discrete points of the structure. This thesis focuses on stress estimation, specifically using 
modal superposition and based on modal expansion. 

These techniques typically require mode shapes from a numerical model which must be well 
correlated with the experimental structure, as the quality of the estimated stresses depends on the level 
of correlation. In this thesis, several correlation techniques based on the transformation matrix 𝑻, are 
proposed to detect if the discrepancies between models can be attributed to mass, stiffness or both. 
Additionally, a novel version of the Modal Assurance Criterion (MAC) is introduced to address 
challenges in models with closely spaced or repeated modes, where the original MAC may yield low 
values even when good correlation exists. All proposed techniques are validated through numerical 
simulations and experimental examples. 
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 Once the numerical model is adequately correlated, stress estimation techniques based on modal 
expansion can be applied. This thesis presents various approaches to estimate modal coordinates and 
to expand mode shapes, proposing eight methods for stress estimation. The initial assumptions, the 
data required for their application, as well as the uncertainty associated with these methods and their 
limitations, are addressed. The proposed methods are validated through numerical simulations and 
experimental tests carried out on scaled structural models. 

In summary, this thesis proposes a methodology for fatigue monitoring of structures in operation. 
To this end, eight stress estimation methods are presented, which require a numerical model well-
correlated with the experimental model. New correlation techniques are developed to detect 
discrepancies in terms of mass and stiffness, along with a new version of the MAC. Finally, all the 
proposed methodologies are validated by numerical simulations and experimental tests. 
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Resumen  
Muchas estructuras están sometidas a cargas dinámicas que generan tensiones de amplitud variable, 
las cuales pueden provocar fallos por fatiga. Dado el gran número de estructuras, como puentes, 
chimeneas, torres, turbinas eólicas, paneles solares, etc., que son susceptibles de sufrir este fenómeno, 
las técnicas de monitorización de la salud estructural (SHM) son herramientas muy útiles para evitar 
las consecuencias catastróficas de este tipo de fallos. Aunque se han desarrollado numerosos métodos 
para la detección de daño mediante técnicas de monitorización, las técnicas de evaluación y predicción 
de daño acumulado en tiempo real siguen estando poco exploradas. Por lo tanto, para comprender y 
evaluar el daño por fatiga en las estructuras y, en consecuencia, poder determinar su vida útil 
remanente, es esencial implementar técnicas de monitorización a fatiga en tiempo real. 

La monitorización a fatiga en continuo consiste en determinar el daño acumulado por fatiga, en 
tiempo real, durante el período de operación de la estructura. Se propone un enfoque de 
monitorización a fatiga que se puede dividir en cinco fases: (i) identificación de los componentes y 
ubicaciones críticas más probables de sufrir daño por fatiga, (ii) implementación de una estrategia de 
montaje de sensores, (iii) medición o estimación de deformaciones/tensiones en las ubicaciones de 
interés en tiempo real, (iv) cálculo del espectro de tensiones mediante técnicas de conteo de ciclos y 
evaluación del daño total por fatiga, y (v) cálculo de vida remanente a fatiga. 

Para obtener el historial temporal de tensiones en los puntos de interés, existen dos metodologías 
comúnmente aplicadas: (a) medición directa con sensores de deformación instalados en las 
ubicaciones de interés, o (b) estimación de tensiones a partir de las respuestas estructurales mediante 
la medición continua de desplazamientos, velocidades, aceleraciones o deformaciones experimentales 
en puntos discretos de la estructura. Esta tesis se centra en la estimación de tensiones, concretamente 
utilizando superposición modal y la expansión de modos de vibración. 

Estas técnicas de estimación de tensiones requieren, generalmente, modos de vibración un modelo 
numérico, que debe estar bien correlacionado con la estructura experimental, ya que la precisión de 
las tensiones estimadas depende del nivel de correlación. En esta tesis se proponen varias técnicas de 
correlación, basadas en la matriz de transformación 𝑻, para detectar el origen de las discrepancias 
entre dos modelos (masa, rigidez o ambas). Además, se introduce una versión novedosa del MAC 
(Modal Assurance Criterion) para abordar los problemas que aparecen en modelos con modos 
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cercanos o repetidos, donde el MAC puede arrojar valores bajos, incluso cuando existe una buena 
correlación. Todas las técnicas de correlación propuestas se validan mediante simulaciones numéricas 
y ensayos experimentales.  

Una vez que el modelo numérico está adecuadamente calibrado, se pueden aplicar técnicas de 
estimación de tensiones basadas en expansión modal. Esta tesis presenta varios enfoques para estimar 
las coordenadas modales y expandir los modos de vibración, proponiendo ocho métodos para la 
estimación de tensiones. Se abordan las hipótesis de partida, los datos necesarios para su aplicación, 
así como la incertidumbre asociada a estos métodos y sus limitaciones. Los métodos propuestos se 
validan mediante simulaciones numéricas, y ensayos experimentales en modelos estructurales a 
escala.  

En definitiva, esta tesis propone una metodología para la monitorización a fatiga de estructuras en 
servicio. Para ello, se presentan ocho métodos de estimación de tensiones, los cuales requieren la 
utilización de un modelo numérico bien correlacionado con el modelo experimental. Además, se 
desarrollan nuevas técnicas de correlación para detectar discrepancias en masa y rigidez, así como 
una nueva versión del MAC. Finalmente, las metodologías presentadas se validan mediante 
simulaciones numéricas y ensayos experimentales. 
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𝑰 Identity matrix 
𝑫 Material constitutive matrix 
𝑲𝑨 Stiffness matrix of system A 

𝑲𝑩 Stiffness matrix of system B 
𝚫𝑲 Stiffness change matrix 
𝑴𝑨 Mass matrix of system A 
𝑴𝑩 Mass matrix of system B 
𝚫𝑴 Mass change matrix 
𝑸 Upper triangular matrix obtained from the QR decomposition 
𝑹 Rotation matrix 
𝑻 Transformation matrix 

𝑻𝑼 Transformation matrix obtained with unscaled mode shapes 

𝑻𝒎𝒎 Transformation matrix of size m x m estimated with experimental mode shapes 𝝓𝒙𝒂𝒎  

and numerical mode shapes 𝝓𝑭𝑬𝒂𝒎  

�̆�𝒎𝒎 Estimation of the transformation matrix 𝑻𝒎𝒎 

𝑻𝜺𝒎𝒎 Transformation matrix of size m x m estimated with experimental strain mode shapes 
𝝓𝒙𝜺𝒂𝒎  and numerical mode shapes 𝝓𝑭𝑬𝜺𝒂𝒎  

�̆�𝜺𝒎𝒎 Estimation of the transformation matrix 𝑻𝜺𝒎𝒎 

𝑻𝝈𝒎𝒎 Transformation matrix of size m x m estimated with experimental stress mode shapes 
𝝓𝒙𝝈𝒂𝒎  and numerical mode shapes 𝝓𝑭𝑬𝝈𝒂𝒎  

�̆�𝝈𝒎𝒎 Estimation of the transformation matrix 𝑻𝝈𝒎𝒎 

�̆�𝒕𝜺𝒎𝒎 Transformation matrix of size m x m estimated with experimental mode shapes and 
strain mode shapes [𝝓𝒙𝜺𝒂𝒎

𝝓𝒙𝒂𝒎
] and numerical mode shapes [𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝒂𝒎
] 

�̆�𝒕𝝈𝒎𝒎 Transformation matrix of size m x m estimated with experimental mode shapes and 
strain mode shapes [𝝓𝒙𝜺𝒂𝒎

𝝓𝒙𝒂𝒎
] and numerical mode shapes [𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝒂𝒎
] 

𝑻𝒕𝜺𝒎𝒎 Estimation of the transformation matrix �̆�𝒕𝜺𝒎𝒎 

𝑻𝒕𝜺𝒎𝒎 Estimation of the transformation matrix �̆�𝒕𝝈𝒎𝒎 
𝑻𝒄𝒉 Matrix containing the effects of shear and scaling 
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𝑻𝒔𝒄 Matrix containing the effects of scaling 

𝑻𝒔𝒉 Matrix containing the effects of shear 

𝒁 Positive semi-definite Hermitian matrix obtained from the polar decomposition 
𝑓𝐴𝑗  Natural frequency on mode j of system A 
𝑓𝐵𝑗  Natural frequency on mode j of system B 
𝒎𝑨 Diagonal matrix containing the modal masses of system A 

𝒏𝒙𝒂 Noise in the response signals 
𝒒 Modal coordinates 𝒒(𝒕) 
𝒒𝒙𝒎  ‘m’ experimental modal coordinates 
𝒒𝒙𝒓  ‘r’ experimental modal coordinates of the unmeasured modes 
𝒒𝒙𝒎

∗  ‘m’ complex experimental modal coordinates 

𝒒𝒙𝒓
∗  ‘r’ complex experimental modal coordinates of the unmeasured modes 

�̂�𝒙𝒎 ‘m’ experimental modal coordinates (projecting into a subspace spanned by 
experimental mode shapes) 

�̃�𝒙𝒎 ‘m’ experimental modal coordinates (projecting into a subspace spanned by numerical 
mode shapes) 

�̂�𝜺𝒙𝒎 ‘m’ experimental modal coordinates (projecting into a subspace spanned by 
experimental strain mode shapes) 

�̃�𝜺𝒙𝒎 ‘m’ experimental modal coordinates (projecting into a subspace spanned by numerical 
strain mode shapes) 

�̂�𝒕𝒙𝒎 ‘m’ experimental modal coordinates (projecting into a subspace spanned by 
experimental mode shapes and strain mode shapes) 

�̃�𝒕𝒙𝒎 ‘m’ experimental modal coordinates (projecting into a subspace spanned by numerical 
mode shapes and strain mode shapes) 

𝒒𝝍𝒙𝒎  ‘m’ experimental modal coordinates obtained with unscaled mode shapes 

�̂�𝝍𝒙𝒎  ‘m’ experimental modal coordinates (projecting into a subspace spanned by 
experimental unscaled mode shapes) 

𝒔 Diagonal matrix of ones or negative ones relating experimental mode shapes and 
numerical mode shapes 

𝒔𝜺 Diagonal matrix of ones or negative ones relating experimental strain mode shapes 
and numerical strain mode shapes 

𝒖 Displacements 𝒖(𝒕) 
𝒖𝒙 Experimental displacements 



xiii 

𝒖𝒙𝒂 Experimental displacements at ‘a’ DOFs 
�̂� Displacements projected in the experimental subspace 
�̃� Displacements projected in the numerical subspace 
𝑦 Distance to the neutral axis 
𝜺𝒙 Experimental strains 
𝜺𝟏 Strains estimated with Method 1 
𝜺𝟐 Strains estimated with Method 2 
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 1 
1 Introduction 

1.1 Research context and problem statement 
Structures and their components are subjected to dynamic loads, such as waves, wind, and traffic, 
among others. These time-dependent loadings generate strains and stresses with variable amplitudes, 
potentially leading to fatigue failure. Even when the maximum stress remains well below the 
material's yield strength it can still cause fatigue failures in the long-term. 

Fatigue failure in concrete and metal structures involves the initiation and propagation of cracks 
due to repetitive or cyclic loading. These loads cause microscopic imperfections in the material to 
grow into macroscopic cracks. Subsequently, the crack can propagate until it reaches a critical size, 
leading to a fatigue failure of the structure. Fatigue failures in structures have caused numerous 
incidents and catastrophic accidents in recent decades, resulting in significant material, economic, and 
human losses. 

Several types of structures are subjected to variable loading, making them prone to fatigue failure. 
Given the potential for severe consequences in the event of collapse, it is crucial to monitor their 
structural health. Some examples of such structures are presented below: 

• Road bridges are one of the most essential, costly, and vulnerable elements of the
transportation network. Moreover, the lack of maintenance and the aging of structures is
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affecting bridges worldwide. In the case of Europe, most transport bridges constructed after 
1945 were designed with a lifespan of 50 to 100 years [1]. 

In the case of USA, according to a report issued in 2021 by the American Society of Civil 
Engineers (ASCE), 7.5% of the 600.000 highway bridges are in poor condition, and the 
estimated cost of their repair is $123 billion [2]. Additionally, 42% of the bridges are over 50 
years old. In Europe, the BRIME project determined in 2001 that, road bridges in three 
different European countries - France, UK and Germany - had deficiencies in 39%, 30% and 
37% of cases, respectively [3]. In Spain, according to a report published in 2018, the Spanish 
highway network (Red de Carreteras del Estado) includes nearly 23.000 bridges, of which 
66 show potentially serious issues that could compromise their load capacity. 

These issues, along with several bridge collapses in last decades (A-6 Castro viaducts 2022 
and Morandi Bridge 2018), which resulted in severe consequences - human casualties, 
economic losses, and transport network disruptions - highlight the critical importance of 
assessing and monitoring the health of bridges and viaducts. 

• Railway bridges play a crucial role in promoting sustainable mobility, especially within the 
context of the European Green Deal and the mobility strategy, which aims to double high-
speed rail traffic by 2030 and triple it by 2050. This has raised concerns about vibrations 
induced by rail traffic, which can lead to loads exceeding design limits [4], [5]. Therefore, it 
is essential to assess the current structural health of these structures to make informed 
decisions about their future use and ensure their safety. 

• Another type of structures significantly affected by dynamic loads, and prone to fatigue 
failure, are wind turbines. Wind energy has proven to be a key energy source in the European 
Union's energy transition, growing rapidly and surpassing coal in installed capacity in 2016. 
In 2023, Europe had 272 GW of installed wind capacity, 87% onshore and 13% offshore. By 
2030, the total capacity is expected to reach 420 GW [6]. However, wind energy faces several 
challenges, as many of the current wind turbines have a design life between 20 and 25 years 
and are nearing the end of their life. Additionally, limited technical knowledge, the increasing 
size of wind turbines, and their offshore installation present new challenges [7], [8]. 
Therefore, wind turbines monitoring aims to detect stiffness losses caused by damage, as well 
as assess the remaining fatigue life of these structures. This information is crucial for future 
decisions regarding maintenance, inspections, and extending their operational life. 
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• Solar energy is also crucial in the green transition, with photovoltaic energy being the most 
popular. In 2023, Europe had 260 GW of solar power capacity, and to reach the 2030 targets, 
it is projected to install an average of 45 GW per year [9]. Currently, to maximize energy 
production, single-axis solar trackers are commonly used in large photovoltaic installations 
[10]. Since they are located in open areas without barriers, these structures are exposed to 
significant wind loads [11]. Furthermore, due to the ongoing effort to reduce manufacturing 
costs, materials with higher strength are being used, decreasing the thickness of the structural 
elements. This reduction in thickness decreases their stiffness, making structures more 
vulnerable to the dynamic effects of wind. 

• In addition to conventional photovoltaic systems, there are also floating solar panels, which 
are used in both freshwater and marine environments. In the case of systems installed in 
freshwater, a regulatory framework has been published, which includes some design 
guidelines addressing aspects such as fatigue [12], [13]. However, marine solar panels face 
greater challenges due to harsh environmental conditions, such as extreme wind and wave 
loads. Moreover, the technical knowledge and specific regulations for these systems are 
limited, posing difficulties in both their design and long-term operation [12]. 

• There are also other types of structures that may also be subjected to dynamic loads, making 
it important to assess their health and remaining fatigue life. These include metal structures 
exposed to wind loads, such as antennas and transmission towers, as well as chimneys and 
buildings of significant heritage value. 

The large number of structures subjected to dynamic loads and potentially susceptible to fatigue 
failure highlights the importance of this phenomenon, and consequently, the significance of fatigue 
design and monitoring. 

Fatigue design refers to the calculation of accumulated fatigue damage over the design life of 
structures. Although there are approaches based on strain, energy, and fracture mechanics, the most 
established practice in fatigue design is stress-based and consists of the following steps: (i) 
determining the stress time series, (ii) calculating the stress spectrum (cycle counting techniques), and 
(iii) evaluating the total fatigue damage. The main sources of uncertainty are the fatigue material 
characterization and the real stress time histories. Regarding the fatigue material characterization, the 
S-N field and the Miner’s Rule are widely accepted in both academia and industry. Regarding the real 
stress time histories, they are often unknown, so simplified load models are commonly employed. 
However, these models do not capture, with the necessary accuracy, the load characteristics (variable 
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amplitude, random nature, frequency bandwidth, sequence effect, etc.). Therefore, the determination 
of the loading scenarios to which the structure will be subjected is crucial. To minimize errors from 
these and other assumptions during the design phase, the monitoring of structural health in service is 
a viable solution. 

Structural Health Monitoring (SHM) generally refers to any type of damage detection procedure 
for civil, aerospace or mechanical engineering structures. Currently, there is a vast amount of literature 
related to vibration-based SHM [14]–[18], and there are several successful applications in real 
structures and companies specialised on implementing these systems. SHM techniques allow for 
damage detection, localization, assessment, and prediction [19], however, most of the applications 
and literature about SHM is focused on damage detection, whereas damage localization presents many 
challenges. SHM techniques for damage assessment allow for quantifying the damage of the structure, 
which could include fatigue damage, however, damage assessment and prediction in SHM are still 
being explored with almost no real applications. Therefore, predicting remaining life and making 
informed decisions based on real data is still not possible. For this reason, it is essential to continue 
researching in fatigue monitoring of structures to prevent future structural failures similar to those 
that have occurred in recent years. 

Continuous fatigue monitoring refers to the calculation of accumulated fatigue damage in real time 
during the period that the structure is in operation, therefore, it can also be used for determining the 
remaining fatigue life of structures. Continuous fatigue monitoring of structures can be divided into 
five phases: (i) identification of the most likely critical components and locations to suffer fatigue 
damage, (ii) sensor location strategy, (iii) measurement or estimation of strains/stresses at the 
locations of interest in real-time, (iv) calculation of the stress spectrum using cycle counting 
techniques and evaluation of the total fatigue damage , and (v) calculation of the remaining life. The 
measurement or estimation of stresses is the most advantageous aspect of fatigue monitoring, as it 
avoids errors associated with simplified loading models. Stresses can be obtained measuring directly 
with strain sensors installed at the locations of interest, or they can be estimated from the experimental 
response of the structure using modal superposition techniques. The structure's response is usually 
known at a limited number of locations, so it must be expanded to the points of interest using modal 
expansion techniques. Modal expansion is commonly performed using the mode shapes extracted 
from a numerical model of the structure (Figure 1.1). 
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Figure 1.1 Fatigue monitoring phases and thesis scope. 

Fatigue monitoring techniques can also be easily combined with other SHM techniques. 
Specifically, the experimental responses of the structure can be used simultaneously for fatigue 
assessment and for detecting damage through vibration-based SHM by tracking modal parameters. 

Fatigue monitoring can enhance decision-making related to the maintenance, inspection, life 
extension, or demolition of structures. This optimizes the use of structures and resources, improving 
sustainability and reducing the carbon footprint. The reduction of fatigue failures in structures, also 
prevents the associated economic, material, and human losses.  Moreover, the growing importance of 
fatigue monitoring is underscored by the rise of lightweight slender structures, which are more 
vulnerable to dynamic loads and fatigue. However, the literature on fatigue monitoring is limited, and 
real applications or companies offering these services are even rarer [8], [20], [21]. This lack of 
knowledge is largely attributed to existing challenges, the most significant being the difficulty in 
accurately determining the stresses acting on the structure of interest. Therefore, developing new 
methodologies for model correlation and updating, as well as improving existing ones, is crucial, 
since most stress estimation techniques require the use of updated numerical models to expand the 
measured responses.  

1.2 Objectives 
According to the previous ideas, the main objectives of this thesis are as follows: 

1. To develop a methodology for fatigue monitoring of structures, combining a numerical 
model and the experimental response of the structure measured at discrete points. In 
order to achieve this objective, the following specific objectives have been set: 
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• To review the existing literature about structural health monitoring and fatigue monitoring 
of structures.   

• To develop a general framework for monitoring the accumulated fatigue damage at 
critical points of structures in real time. 

2. To propose and validate novel indicators for correlation of numerical and experimental 
models. Specific objectives: 

• To review the existing literature about model correlation. 

• To propose new model correlation indicators able to identify if the discrepancies between 
models can be attributed to mass, stiffness or both. 

• To propose a new version of the modal assurance criterion (MAC) that overcomes the 
inconveniences of MAC in the case of repeated or closely spaced modes.  

• To validate the proposed model indicators with numerical simulations and experimental 
examples. 

3. To propose, compare and validate real time stress estimation techniques based on 
modal superposition and on the expansion of experimental mode shapes and/or strain 
mode shapes. Specific objectives: 

• To review the existing literature about mode shape expansion and stress estimation. 

• To propose real time stress estimation techniques based on the projection of the 
experimental responses on the subspace spanned by the experimental mode shapes. 

• To propose real time stress estimation techniques based on the projection of the 
experimental responses on the subspace spanned by the numerical mode shapes.  

• To study the sources of error in stress estimation. 

• To compare and validate the proposed methods with numerical simulations and 
experimental tests.  
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1.3 Thesis outline 
Accordingly, this thesis is organized in the following chapters: 

• Chapter 1: Introduction 

This chapter provides an overview of the topic addressed in the thesis. First, the context of 
fatigue design in structures is introduced, followed by a statement of the associated problems. 
The importance of structural monitoring is emphasized, while the limitations of SHM are 
presented. In response to these limitations the advantages of fatigue monitoring are presented. 
Then, the main objectives of the thesis are outlined to finish with the organization of the text.  

• Chapter 2: Structural Health Monitoring 

The state of the art of SHM techniques is presented, focusing on vibration-based SHM 
techniques, thus, modal analysis and operational modal analysis are introduced. Moreover, a 
fatigue damage methodology is proposed, and its main phases are explained.  

• Chapter 3: Model Correlation 

Chapter 3 outlines various applications of correlation techniques, highlighting their relevance 
in the engineering field and the most commonly used correlation techniques are presented 
and classified. New correlation indicators based on structural dynamic modification are 
proposed to detect discrepancies in mass, stiffness or both. Additionally, insights into mode 
shape rotation, shear, and scaling are provided. Finally, three case studies are presented to 
validate the proposed indicators, assess their limitations, and explore their implications for 
future applications. 

• Chapter 4: Stress estimation  

This chapter presents the state of the art in stress estimation techniques using structural 
response measurements, with a focus on methods employing modal superposition and modal 
expansion. The theory underlying stress estimation techniques is presented, including the 
exact solution, various modal expansion approaches, and methods for obtaining modal 
coordinates. With this foundation, eight methods for estimating stresses and strains are 
proposed. Finally, considerations regarding errors in modal coordinates and estimated results 
are presented, along with comments on scaling. 
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• Chapter 5: Application cases 

Three application cases are presented in this section to validate the methods proposed in 
Chapter 4, along with the correlation indicators introduced in Chapter 3. A numerical case 
involving a cantilever beam is considered to avoid potential error sources from the 
experimental measurements or signal processing. Additionally, an experimental case of a 
monolithic glass beam and an experimental case of a cantilever beam are employed to 
validate the methods under real conditions. 

• Chapter 6: Conclusions and future work. 

The main conclusions of this PhD thesis are presented in this chapter, organized according 
to the proposed objectives. The main possible research activities for continuing the 
advancements achieved in this thesis are described. 

 

 



 

2  
2 Structural Health Monitoring  

The purpose of this chapter is to review the existing literature on SHM techniques, with a focus on 
modal-based SHM methods due to their relevance and ease of integration with fatigue monitoring. 
Additionally, a fatigue monitoring method is developed, and the main phases are outlined in detail. 

This chapter provides a comprehensive understanding of the overall fatigue monitoring 
methodology, serving as a framework for the subsequent chapters, which will focus on specific phases 
of the fatigue monitoring process. 

2.1 Introduction to SHM 
Structural health monitoring generally refers to any type of damage detection procedure for civil, 
aerospace or mechanical engineering structures [22]. This process involves: (i) the observation of a 
system over time using periodically spaced measurements, (ii) the extraction of appropriate damage-
sensitive features from these measurements and (iii) the subsequent analysis of these features to 
determine the current state of the system’s health [23]. For this reason, SHM is considered an 
alternative to current local inspection methods, which are more expensive for large structures.  

2.1.1 Classification of SHM techniques 
Different possible classifications of SHM techniques can be done:  
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• Continuous or intermittent methods, based on the frequency of their application. Intermittent 
techniques measure responses for specific periods of time and no information is gathered the 
rest of the time. By contrast, in continuous monitoring, information must be transmitted in 
real time to the site where the measurements are processed [24].  

• Local and global methods, based on the scope of the variables. This classification is usually 
based on the relation of the wave length of the test signals with respect to the defect size as 
well as the overall structural dimensions. An example of local methods is the use of high-
frequency ultrasonic waves, whose wavelengths should be smaller than the size of the defect 
to be detected. By contrast, global methods typically use the lower modes of the structure 
[25]. 

• Static and dynamic methods. Static methods measure changes in static responses, whereas 
dynamic methods make use of the structure’s vibration properties [26]. This is the most 
commonly used classification (Figure 2.1) and will be further developed in this document as 
follows. 

Although static methods can be used for a wide range of applications and are a powerful tool in 
masonry heritage structures [27], they are rarely used in other civil and mechanical structures. 
Dynamic methods, which are commonly employed, use vibration responses to gather information 
about changes in a structure’s dynamic properties, enabling the monitoring of its health [18]. Dynamic 
SHM methods can be classified into model-based SHM or data-based SHM.  

 
Figure 2.1: Classification of SHM methods. 
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• Model-based SHM consists of creating a finite element model, which is later used to 
identify and localize damage in either mass or stiffness [28], [29]. The accuracy provided 
by the finite element model depends on the level of correlation with the real structure. 

• Data-based SHM uses real data of a structure obtained through experimental 
measurements. It involves the observation of a system over time using experimental 
responses measured through an array of sensors and the extraction and analysis of 
damage-sensitive parameters. The structure’s undamaged state, which corresponds to the 
healthy structure, is used as a pattern. Then, data obtained from posterior measurements 
are compared with the healthy state. Data-based techniques which rely on the 
measurement of vibration signals are known as vibration-based methods [30]–[32]. 

Vibration-based SHM can be divided into modal-based methods and statistical time series (STS) 
methods: 

• Modal-based methods use one or a set of the following modal parameters as 
damage-sensitive parameters: natural frequencies, mode shapes, strain mode shapes 
and/or other variables dependent on modal parameters (frequency response functions, 
change in flexibility, etc.). To obtain this modal parameters, modal analysis [33] is used, 
specifically operational modal analysis (OMA) is attractive in many situations because it 
does not require excitation to be measured, which is very practical for large structures as 
it is an output-only technique [34]. In modal-based SHM, automated modal analysis and 
automated damage detection techniques must be used to work in real time. 

• STS methods combine random excitations and/or response signals with statistical and 
decision-making tools to infer the state of a structure [35]. Non-parametric STS methods 
are based on non-parametric time series representations, such as PSDs, frequency 
response functions and residual variances. Parametric STS methods are based on time 
series representations, such as autoregressive moving average models. 

Additionally, machine learning (ML) for SHM consists of data-driven approaches (usually 
vibration-based) which have gained popularity in recent years due to technological advancements 
[36]. It refers to a set of algorithms that are capable of learning from available response data by 
automatically extracting hidden patterns from large datasets to make predictions. Several ML methods 
are based on identifying certain modal parameters from the structural system, and then, the trained 
ML system is utilised to identify the presence and location of structural damage. 
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2.1.2 Modal-based SHM 
Among the SHM techniques previously presented, modal-based SHM is perhaps one of the most 
popular for the monitoring of civil structures due to recent developments in the field of OMA and the 
availability of several robust and automated OMA algorithms [37]. 

Modal-based SHM methods use modal parameters estimated by modal analysis techniques from 
the experimental responses of the structure. Changes observed in modal parameters with respect to a 
predefined reference condition are used as indicators of the formation, location and severity of 
damage.  

Modal Analysis 
Modal analysis is used to characterise a structure’s dynamic behaviour by separating a structure’s 
response into vibration modes which are defined by the following modal parameters: natural 
frequencies, mode shapes, damping ratios and modal masses. Modal analysis is termed theoretical 
modal analysis when modal parameters are determined using an analytical model or a numerical 
model (Figure 2.2). On the other hand, when modal parameters are determined using an experimental 
approach, modal analysis is known as experimental modal analysis (EMA) or OMA, depending on 
the type of excitation used in the experiments.  

• EMA: Both, excitation forces and responses must be known to determine modal 
parameters [33]. The loading used to excite the structure is commonly artificial, and no 
other excitation loading is allowed when using this technique. 

• OMA: It is used to determine modal parameters without knowledge of the input 
excitation. In short, the forces which are naturally present during the operation of the 
structure are used as excitation and not measured. A stochastic framework is used in 
OMA, assuming that the excitation is Gaussian white noise [38]. 

• When both artificial and operational forces are acting on a structure, OMA and EMA can 
be combined in the identification process. This technique is called operational modal 
analysis with exogenous input (OMAX) [39] or operational modal analysis with harmonic 
(OMAH) excitation [40]. 
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Figure 2.2: Classification of modal analysis techniques. 

Due to the significant advantages of measuring only the system's responses (tests are cheap and 
fast and they do not interfere with the normal use of the structure), especially in large structures, OMA 
is more commonly employed.  

Operational Modal Analysis (OMA) 
In OMA, modal parameters can be estimated using different identification techniques, which can be 
classified as [37]: 

• Parametric and non-parametric methods. In parametric methods a model is fitted to data 
whereas non-parametric methods work directly with the data. Parametric methods are more 
complex and present a higher computational cost, however they usually perform better. Non-
parametric methods are faster and easier to use. 

• Single degree of freedom (SDOF) and multi-degree of freedom (MDOF), depending on the 
number of modes in a given bandwidth. SDOF methods assume that only one mode is 
dominant in that frequency range. These methods are very fast, however, if repeated modes 
or closely spaced modes are present, MDOF techniques are required. 

• One-stage methods and two-stage methods. In one-stage methods all modal parameters are 
estimated at the same time. In two-stage methods some parameters are estimated first, and 
the remaining parameters are estimated in a second step. 

• Time domain methods and frequency domain methods. Time domain methods are based on 
the analysis of time histories or correlation functions, whereas frequency domain methods 
are based on spectral density functions.  
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The most common estimation techniques used in OMA are the following: in the frequency domain, 
the peak-picking (PP) and the frequency domain decomposition (FDD) are the most popular non-
parametric techniques. The least squares complex frequency (LSCF) method and the poly-reference 
least squares complex frequency (p-LSCF) method are the most used parametric methods. In the time 
domain, the most popular techniques are those based on stochastics subspace identification (SSI), 
such as the covariance-driven stochastic subspace identification (SSI-COV) and the data-driven 
stochastic subspace identification (SSI-DD). 

When OMA is used in SHM, automated modal analysis is required, i.e. estimation techniques must 
be automated.  

Automated modal analysis 
In SHM, considerable data must be processed in a short amount of time; thus, methodologies to 
automatically estimate modal parameters have gained attention in recent years. Specifically, 
numerous automated techniques for OMA have been reported in the literature in both the time and 
frequency domains, which can also be classified as parametric and non-parametric methods:  

• Non-parametric frequency domain methods are based on selecting the peaks of variables 
derived from frequency response functions or PSDs [41], [42].  

• Automated parametric methods are based on the automated interpretation of stabilisation 
diagrams, which involves tracking estimates of modal parameters as a function of model 
order [43], [44]. As the model order increases, the estimates of physical modal parameters 
stabilise. Poorly excited modes may not stabilise until a very high model order, whereas 
very active modes stabilise at a very low model order.  

• A combination of parametric and non-parametric algorithms can also be used for 
automated modal analysis, such as the second-order blind identification (SOBI) and the 
popular covariance-driven stochastic subspace identification (SSI-COV) [45]. 

2.1.3 Damage detection and localisation 
In this section, damage detection and localisation techniques based on modal analysis are commented. 
However, damage detection and localisation techniques are based on model correlation techniques, 
which are going to be detailed in Chapter 3. 

The most common modal-based techniques used to detect damage are the eigenfrequency method, 
which is used to monitor changes in natural frequencies, and eigenvector-based criteria, which are 
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used to monitor changes in mode shapes. However, other techniques could also be applied (Figure 
2.3). 

 
Figure 2.3: Damage detection and localisation method. 

One of the advantages of natural frequencies is that they are very sensitive to damage. However, 
they are also sensitive to other mechanical and environmental effects. It is well-known that changes 
in temperature, wind velocity, wave height, wind direction, and wave directionality modify natural 
frequencies [46], [47]. 

The criteria based on eigenvectors compares a set of mode shapes. The best-known method is the 
modal assurance criterion (MAC) [48], [49], which compares the shapes of two eigenvectors based 
on the inner product of both vectors. Mode shapes are affected by damage, however, for low severity 
damage the method indicates damage only in higher-order modes, which are more sensitive to damage 
but also more difficult to identify in real-life situations. Moreover, the estimation of mode shapes is 
not as precise as the estimation of natural frequencies [50]. 

Techniques based on monitor strain mode shapes have also been proposed in the literature. They 
are based on the relationship between mode shape curvatures and flexural stiffness. The modal 
curvatures of the lower modes are generally more accurate than those of higher modes [50].  

Changes in frequency response functions or flexibility [51] can be also used to detect damage. The 
computation of flexibility matrices from vibration data requires mass-normalized mode shapes. If 
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OMA is used to estimate modal parameters, an additional technique to scale the mode shapes is 
needed. 

In the case on modal-based damage localisation methods (Figure 2.3), they are traditionally based 
on changes in mode shapes, mode shape derivatives or flexibility matrices assembled from available 
modes. Although mode shapes can be easily estimated using modal analysis, the localisation of 
damage based on the curvature of mode shapes has been shown to be more sensitive to damage than 
mode shapes [52], using for example the curvature damage factor (CDF) [50].  

2.2 Fatigue design and fatigue monitoring  
Different approaches for fatigue assessment exist, such as stress-based, strain-based, energy-based, 
and fracture mechanics methods [53]. Stress-based models are mainly used to predict fatigue life for 
high-cycle fatigue, whereas strain-based models are suitable for low-cycle fatigue in which plastic 
deformation is significant. Energy-based models can consider out-of-phase hardening behaviour 
because both the stress and strain terms are inherent in the energy expression [54]. Moreover, for 
welded details, a fatigue approach based on nominal or geometrical stress is preferred to local 
approaches based on continuum mechanics [55]. 

As previously commented, a well-established stress-based practice in fatigue design consists of 
three steps: (i) the determination of stress time histories (ii) the calculation of the fatigue stress 
spectrum, and (iii) the evaluation of total fatigue damage. Regarding the determination of stress time 
histories in fatigue design, simplified fatigue loading models from codes and standards are commonly 
used, as no information about the loads that will affect the structure is available.  

In fatigue monitoring this assumption is avoided and the structure response is used to estimate the 
real stress time histories. In fatigue monitoring, the following steps are required: 

1. The structure’s hot spots must be known. Thus, the most probable locations and components 
of suffering fatigue damage must be identified as points of interest. 

2. A sensor location strategy must be stablished. 
3. Estimation (or measurement) of strains/stresses at the locations of interests. Although a brief 

introduction is done in section 2.2.1, different methods to estimate stresses will be proposed 
in Chapter 4.  
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4. Calculation of the fatigue stress spectrum and the total fatigue damage. The existing 
methodologies are explained in section 2.2.2. 

5. Calculation of the remaining life. 

2.2.1 Stress estimation or measurement 
To obtain the stress time history response from all relevant locations, two commonly applied 
methodologies are used:  

• The stress time histories at discrete points of interest can be obtained directly from strain 
gauge measurements located at the same discrete points. However, in many cases, it is not 
possible to make measurements at every position of interest due to economic constraints, 
inaccessibility, or harsh environment. Moreover, strain gauges are fragile, have a life 
expectancy of only a few years and often unreliable for long time measurements. 

• Stress time histories can be estimated from structural responses by continuously measuring 
experimental displacements, velocities, accelerations or strain responses. Accelerometers are 
commonly used due to their reliability for long-term measurements. This approach allows 
for the estimation of stresses at any point of the structure using a limited number of installed 
sensors. There are different techniques for stress/strain estimation, with modal expansion and 
the Kalman filter techniques being the most used. 

The core of modal expansion is the modal superposition principle; thus, strain mode shapes and 
modal coordinates are required. Moreover, to perform modal expansion, a numerical model of the 
structure is commonly used, usually a finite element model. For this reason, special attention should 
be given to model correlation, as the accuracy of the results depends on the similarity between the 
experimental and numerical models. If the correlation is not satisfactory, model updating techniques 
must be used to modify the finite element model. 

Stress estimation techniques based on modal expansion techniques are thoroughly explored in 
Chapter 4, with various methods proposed based on the source of the strain mode shapes and the 
approach used to obtain the modal coordinates. 

2.2.2 Accumulated fatigue damage 
Methodologies applied in fatigue damage assessment were traditionally formulated in both time and 
frequency domains, being time domain methods firstly formulated, and more frequently applied 
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(Figure 2.4). However, frequency domain or spectral methods allow complex loading histories to be 
directly and rapidly computed as part of a more consistent statistical and analytical approach.  

 
Figure 2.4 Fatigue damage assessment from both time-domain and frequency-domain approaches. 

Time domain methods 
The analysis of stress time histories is accomplished using different counting algorithms, such as the 
rainflow method [56], to obtain an equivalent set of counted cycles with constant amplitudes. Despite 
being widely used as a reference procedure, the rainflow method entails some important 
disadvantages, such as its dependence on the particular time window selected in the loading history 
and its time-consuming nature.  

After that, numerous damage fatigue models can be applied. Five different categories can be 
distinguished: 

• Linear damage models. Palmgren [57] was the first who proposed a linear fatigue damage 
rule and Miner [58] subsequently popularised it as one of the most widely applied approaches 
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to calculating damage, due to its easy formulation, which is only based on the ratio between 
the applied cycles 𝑛𝑖  and the total cycles to failure 𝑁𝑖 for the i-th load level, i.e.: 

 𝐷 = ∑
𝑛𝑖

𝑁𝑖

𝑘

𝑖=1

 (2.1) 
 

where D is a damage index (0 ≤ 𝐷 ≤ 1) and 𝑘 is the number of different stress levels 
considered in the analysis.  

Linear accumulation models use the S-N curve from constant amplitude tests (Figure 2.5). 
Moreover, they assume no load sequence effects and no damage for stress repetitions below 
the fatigue limit [59]. 

Double linear models were also proposed in the literature by other authors such as: Manson 
and Halford, Langer and Grover [60]–[62] (Figure 2.5). Despite being widely applied, its 
main drawbacks are its independence with respect to both load level and load sequence. 

In variable amplitude loading, stress repetitions below the fatigue limit also cause damage. 
Some models have been proposed by Haibach and Corten and Dolan to account for this effect. 

 
Figure 2.5: Illustration of fatigue damage rules, including linear, double-linear and non-linear models. 

• Non-linear damage models. In an attempt to improve the incongruences of linear damage 
rules, non-linear damage rules have been proposed in the literature [63], [64] by Richart and 
Newmark and Marko and Starkey, such as those based on powering the cycle ratio 𝑛𝑖/𝑁𝑖, 
i.e.: 
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 𝐷 = ∑(
𝑛𝑖

𝑁𝑖
)
𝑥𝑖

𝑘

𝑖=1

 (2.2) 
 

• Energy-based damage models. As an alternative to previous phenomenological approaches, 
different energy-based definitions of fatigue damage are available. Watson [65] proposed an 
energy-based model based on the Smith–Watson–Topper parameter given by: 

 𝐷 =
4𝜎𝑓

′

𝐸
(2𝑁𝑁)2𝑏1 + 4𝜎𝑓

′𝜀𝑓
′(2𝑁𝑁)𝑏1+𝑐1 (2.3) 

 
where 𝜎𝑓

′ and 𝜀𝑓′  are fatigue strength and ductility coefficients, respectively; 𝑁𝑁 is the number 
of reversals to failure; and 𝑏1 and 𝑐1 are constants that depend on an instantaneous strain-
hardening law. 

• Continuum-based damage models. This approach addresses the continuum mechanical 
behaviour of a medium in degenerating conditions. The proposal by Chaboche and Lesne 
[66] is one of the most representative of these models and it has been popularised as a highly 
non-linear damage rule that takes into account the mean stress effect: 

 𝐷 = 1 − [1 − (
𝑛

𝑁𝑁
)
1 1−𝛼⁄

]

1 𝛽⁄ −1

 (2.4) 
 

where 𝛼 is a function of the stress state and 𝛽 is a material function. 

• Probabilistic damage models. Probabilistic approaches propose to consider probability 𝑝 
(0 < 𝑝 < 1) as a random fatigue damage index. Castillo et al. [67] derived the following 
probabilistic fatigue model:  

 𝑝 = 1 − 𝑒𝑥𝑝 [− (
(𝑙𝑜𝑔𝑁 − 𝐵)(𝑙𝑜𝑔𝛥𝜎 − 𝐶) − 𝜆

𝛿
)

𝛽

] (2.5) 
 

where B and C are the horizontal and vertical asymptotes (that is, the cycle value below which 
failure does not occur and the fatigue endurance limit, respectively), while 𝜆, 𝛽 and 𝛿 are the 
location, shape and scale Weibull parameters, respectively. 

Frequency domain methods 
Frequency domain fatigue methods make use of the spectral density function of the stress time 
histories, which can be classified in narrow-band (NB) or broad-band (BB) [68]. The former leads to 
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simpler and easier formulations about statistical properties, while the latter offers more complex 
identification of stress cycles. 

The statistical information contained in the spectral density 𝑆𝑋(𝜔) of a random process X can be 
summarised by means of the m-th spectral moments 𝜆𝑚 as follows: 

 𝜆𝑚 = ∫ 𝜔𝑚𝑆𝑋(𝜔)𝑑𝜔
∞

−∞

       𝑚 = 0,1,2, … (2.6) 
 

From a statistical perspective, the rainflow cycle distribution could be considered a bivariate 
distribution with maximum and minimum stresses, 𝑝𝑅𝐹𝐶(𝜎𝑚𝑎𝑥, 𝜎𝑚𝑖𝑛), or, equivalently, with mean 
and amplitude stresses, 𝑝𝑅𝐹𝐶(𝜎𝑎 , 𝜎𝑚)  [69]. However, due to the inherent complexity of peak-to-
valley pairing procedures in the rainflow algorithm, there is no explicit analytical solution for the 
bivariate rainflow cycle distribution. Thus, it is usually simplified by neglecting the mean stress effect 
and considering only the stress amplitude; as a result, different approximate proposals 𝑝𝑅𝐹𝐶(𝜎𝑎) are 
defined in the literature, with the following being the most widely applied: 

• Narrow-band approximation is based on the assumption that the random process is of NB 
type; that is, each peak and valley is coincident with each cycle. Thus, the stress amplitude 
can be considered to follow a Rayleigh distribution as: 

 𝑝𝑅𝐹𝐶
𝑁𝐵 (𝜎𝑎) =

𝜎𝑎

𝜎𝑋
2 𝑒𝑥𝑝 [−

1

2
(
𝜎𝑎

𝜎𝑋
)
2

] (2.7) 
 

• The Dirlik model [70], [71] approximates the cycle amplitude distribution by using a 
combination of one exponential and two Rayleigh probability densities, i.e.: 

 𝑝𝑅𝐹𝐶
𝐷𝐾 (𝜎𝑎) =

1

𝜎𝑋
[
𝐷1

𝑄
𝑒𝑥𝑝 (−

𝑍

𝑄
) +

𝐷2𝑍

𝑅2
𝑒𝑥𝑝 (−

𝑍2

2𝑅2
)] (2.8) 

 
where 𝑍 = 𝜎𝑎 𝜎𝑋⁄  is the normalized amplitude and 𝐷1, 𝐷2 , 𝑄 and 𝑅 are constants that depend 
on the spectral moments. 

• The Zhao and Baker model [72] proposes a linear combination of the Rayleigh and Weibull 
probability density functions, which is expressed as: 

 𝑝𝑅𝐹𝐶
𝑍𝐵 (𝜎𝑎) = 𝑤𝛼𝛽𝑍𝛽−1𝑒𝑥𝑝(−𝛼𝑍𝛽) + (1 − 𝑤)𝑍𝑒𝑥𝑝 (−

𝑍2

2
) (2.9) 

 
where 𝑤 is a weighting factor (0 ≤ 𝑤 ≤ 1) as a function of the spectral parameters and 𝛼 
and 𝛽 are the scale and shape Weibull parameters, respectively. 
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• Tovo-Benasciutti [71], [73] proposed that the amplitude–mean joint probability distribution 
of rainflow cycles lies between two limit distributions and can be estimated as their linear 
combination: 

 𝑝𝑅𝐹𝐶
𝑇𝐵 (𝜎𝑎) = 𝑤 𝑝𝐿𝐶𝐶(𝜎𝑎 , 𝑚) + (1 − 𝑤)𝑝𝑅𝐶(𝜎𝑎, 𝑚) (2.10) 

 
where 𝑤 is a weight factor that must be determined. The two functions 𝑝𝐿𝐶𝐶(𝜎𝑎 , 𝑚) and 
𝑝𝑅𝐶(𝜎𝑎 ,𝑚) represent the amplitude–mean distributions of the level-crossing counting 
(LCC) and of the simple-range counting (RC). 

Once the rainflow cycle distribution for the stress amplitude has been defined, the fatigue damage 
assessment can be performed using an S-N rule and the Miner rule. If the S-N curve is defined with 
the Basquin law (𝑠𝑘𝑁 = 𝐶), the damage rate �̅�𝑅𝐹𝐶  (i.e. damage/sec) can be calculated as follows 
[74]: 

 �̅�𝑅𝐹𝐶 = 𝜈𝑎𝐶
−1 ∫ 𝜎𝑎

𝑘𝑝𝑅𝐹𝐶(𝜎𝑎)𝑑
∞

0

𝜎𝑎 (2.11) 
 

where 𝜈𝑎  is the rate of occurrence of counted cycles (that is, counted cycles per second) and 
𝑝𝑅𝐹𝐶(𝜎𝑎) can be defined according to the previously mentioned proposals. Finally, from Eq. (2.11), 
total expected damage 𝐷 until failure can be directly obtained as follows: 

 𝐷 = �̅�𝑅𝐹𝐶 𝑇𝑓  (2.12) 
 

where 𝑇𝑓 is the time (in seconds) to failure (that is, the fatigue lifetime). Moreover, it should be 
noted that, depending on the particular analytical definition of the rainflow cycle distribution in Eq. 
(2.11), the total expected damage in Eq. (2.12) could be different. 



 

3 
3 Model correlation 

The purpose of this chapter is to enhance the understanding of correlation methods, enabling a more 
accurate identification of similarities and discrepancies between two models, as well as the sources 
of these differences. Therefore, novel indicators are proposed: T-Mass and T-Stiffness, along with a 
novel version of the MAC, named the ROTMAC. 

Within the overall framework of this thesis, this chapter is crucial for fatigue monitoring and stress 
estimation. As previously discussed, fatigue monitoring relies on the accurate estimation of stresses 
in the structure’s hot spots, which in most cases requires mode shapes and strain mode shapes from a 
numerical model. For these models to provide reliable results, their correlation with the real structure 
must be precise.  

3.1 Introduction 
Model correlation techniques are methods used in structural dynamics to compare two different 
models: 

• Two experimental models can be compared for purposes of damage detection and SHM, as 
well as for comparing modal parameters estimated using different modal identification 
techniques. 
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• Two numerical models can be compared for mesh convergence investigations or for 
comparing a full model with a reduced model. 

• An experimental model and a numerical model are usually compared in model updating 
procedures, usually to update a finite element model (FEM). 

Starting with the applications of correlation techniques to compare two experimental models, the 
following comments can be done. Regarding OMA identification techniques, in the case of the FDD, 
the MAC is used to define the single degree of freedom (SDOF) spectral density function, comparing 
the reference vector (singular vector at the picked frequency) with the singular vectors estimated on 
both sides of the picked frequency from the FDD [75]. In the case of time-domain techniques such as 
the SSI-COV, once the modal parameters are estimated for each model order, the spurious modes and 
the physical modes are separated using different stabilization criteria, most of them being based on 
the variation of modal parameters corresponding to two consecutive increasing orders. Correlation 
techniques are also crucial in the clustering process, where the estimated modes that represent the 
same physical mode are grouped, usually based on natural frequencies and mode shapes [76]–[78]. 

Two experimental models are also compared in modal-based SHM, where correlation techniques 
play also a significant role. In this context, correlation techniques are used to observe changes in the 
modal parameters to detect variations relative to a predefined reference condition (undamaged 
condition). Over the past decades, numerous methods have been proposed for damage detection, with 
the most common techniques relying on natural frequencies, mode shapes, and their derivatives [50]. 
However, a significant challenge in modal monitoring is the sensitivity of modal properties to 
environmental variations. Changes in weather conditions can alter the experimental modal parameters 
of a structure, being temperature one of the environmental factors that induces the greatest variation 
in the case of concrete and steel structures [79]. 

Another popular application of correlation techniques is model updating, where an experimental 
model and a numerical model are compared [80], [81]. Model updating methods are used to improve 
the correlation between numerical and experimental models by updating a finite element model. 
Model updating techniques can be classified into direct methods (or matrix methods) and iterative 
methods (parameter updating methods) [80]–[82]. Direct methods update the entries of the stiffness 
and mass matrices in a one-step procedure; however, the updated mass and stiffness matrices have 
limited physical meaning and cannot be directly related to physical changes in the finite element 
model [83]. Iterative methods modify iteratively some parameters, and they allow a wide choice of 
parameters to be updated. This requires a sensitivity analysis, where the user must preselect the 
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physical parameters to be included in the analysis, thus iterative methods require some engineering 
judgment and expertise. Iterative methods can, in turn, be subdivided into sensitivity methods and 
optimization methods [83]. Another possible classification is to divide iterative methods into 
deterministic methods and stochastic methods [84].  

An experimental model and a numerical model are also compared in model-based SHM, where a 
finite element model is required to predict the dynamic responses and to detect and locate damage. 
This numerical model must be well correlated with the real structure, requiring the application of 
correlation and model updating techniques.  

As previously discussed, the applications of correlation techniques are numerous, spanning fields 
such as civil engineering (bridges, dams, towers, buildings, etc.), aerospace, and mechanical 
structures. This widespread use underscores their importance in ensuring structural accuracy and 
reliability. However, the success of these applications largely depends on the proper use of correlation 
techniques. The main correlation techniques proposed in the literature are classified into four 
categories: 

• Eigenvalue-based criteria. They compare a set of natural frequencies of two models. The 
Normalized Relative Frequency Difference (NRFD) is the most used method [80], [85], [86]. 
The NRFD corresponding to the j-th mode is calculated with the expression: 

 𝑁𝑅𝐹𝐷𝑗 =
|𝑓𝐵𝑗 − 𝑓𝐴𝑗|

𝑓𝐵𝑗
 (3.1) 

 
where 𝑓𝐵𝑗  and 𝑓𝐴𝑗  indicate the j-th natural frequency of the two models B and A, respectively. 
Similar indexes are the Natural Frequency Difference (NFD), which compares the relative 
difference between all natural frequencies, and the Natural Frequency Correlation Coefficient 
(NFCC), which gives the standard deviation of corresponding natural frequencies [87]. 

• Eigenvector-based criteria. They compare a set of mode shapes. The best-known method is 
the modal assurance criterion (MAC) which compares the shapes of two eigenvectors based 
on the inner product [48], [49], [88]–[90]. If two vectors 𝝓𝑩𝒊 (model B) and 𝝓𝑨𝒋 (model A) 
are compared, the MAC is given by: 

 𝑀𝐴𝐶(𝝓𝑩𝒊, 𝝓𝑨𝒋) =
|𝝓𝑩𝒊

𝑻  𝝓𝑨𝒋|
2

(𝝓𝑩𝒊
𝑻  𝝓𝑩𝒊)(𝝓𝑨𝒊

𝑻  𝝓𝑨𝒋) 
 (3.2) 
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where the superscript ‘T’ indicates transpose. MAC is always a real value so that if the vectors 
are complex the MAC is calculated with the expression: 

 𝑀𝐴𝐶(𝝓𝑩𝒊, 𝝓𝑨𝒋) =
|𝝓𝑩𝒊

𝑯  𝝓𝑨𝒋|
2

(𝝓𝑩𝒊
𝑯  𝝓𝑩𝒊)(𝝓𝑨𝒊

𝑯  𝝓𝑨𝒋) 
 (3.3) 

 
where the subscript ‘H’ indicates complex conjugate. 

The modal assurance criterion takes on values from zero (representing no consistent 
correspondence), to one (representing a consistent correspondence). If the vectors are 
normalized to the unit length (vectors 𝝓𝑳𝑩𝒊 and 𝝓𝑳𝑨𝒋, where subscript ‘L’ indicates mode 
shape normalized to the unit length), Eq. (3.2) simplifies to: 

 𝑀𝐴𝐶(𝝓𝑩𝒊, 𝝓𝑨𝒋) = |𝝓𝑳𝑩𝒊
𝑻 𝝓𝑳𝑨𝒋|

2
 (3.4) 

 
Several modifications or variants of the MAC have also been proposed in the literature. The 
AUTOMAC (MAC of a model with itself) is commonly used to detect spatial aliasing [89]. 
COMAC (Co-Ordinate MAC) correlates two models for each individual degree of freedom 
(DOF) [91]. The Mass-weighed MAC and Stiffness-weighed MAC, which include the mass 
or stiffness matrices, have also been proposed [33]. The 𝑆2𝑀𝐴𝐶  [92], [93] can be used to 
correlate an experimental mode shape 𝝓𝑨𝒋 with two closely spaced modes of a FE model 
𝝓𝑩𝟏 and 𝝓𝑩𝟐, as: 

 𝑆2𝑀𝐴𝐶 = max
𝛼,𝛽

(
|𝝓𝑨𝒋

𝑯 (𝛼𝝓𝑩𝟏 + 𝛽𝝓𝑩𝟐)|
2

𝝓𝑨𝒋
𝑯 𝝓𝑨𝒋(𝛼𝝓𝑩𝟏 + 𝛽𝝓𝑩𝟐)

𝐻(𝛼𝝓𝑩𝟏 + 𝛽𝝓𝑩𝟐)
) (3.5) 

 
• Frequency-response-based criteria. They compare frequency response functions (FRF). The 

frequency response assurance criterion (FRAC) compares the FRF’s at a particular DOF, 
whereas the response vector assurance criterion (RVAC) compares the FRF’s for all the 
DOFs at just one frequency. 

• Orthogonality criteria. They are based on the orthogonality of mode shapes with respect to 
the mass and the stiffness matrices. Based on these properties, several techniques have been 
proposed. The cross-orthogonality check (COC) is obtained as the inner product of the 
experimental mode shapes (𝝓𝑨) over the numerical mass matrix (𝑴𝑩): 

 𝑪𝑶𝑪𝟏 = 𝝓𝑨
𝑻𝑴𝑩𝝓𝑨 (3.6) 
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The COC can also be defined as the inner product of the numerical mode shapes (𝝓𝑩) over 
the experimental mass matrix (𝑴𝑨): 

 𝑪𝑶𝑪𝟐 = 𝝓𝑩
𝑻𝑴𝑨𝝓𝑩 (3.7) 
 

Another way of assessing correlation is with the pseudo-orthogonality check (POC). The 
inner product of the numerical and experimental mode shapes over the numerical mass matrix 
is defined as: 

 𝑷𝑶𝑪𝑴 = 𝝓𝑩
𝑻𝑴𝑩𝝓𝑨 (3.8) 
 

The POC can also be defined as the inner product of the numerical and experimental mode 
shapes over the stiffness matrix as: 

 𝑷𝑶𝑪𝑲 = 𝝓𝑩
𝑻𝑲𝑩𝝓𝑨 (3.9) 
 

Although NRFD and MAC are the most used correlation techniques, numerous correlation 
methods can be found in the literature. However, each correlation method compares a certain 
characteristic, i.e., a single technique capable of comparing two models with respect to different 
dynamic characteristics does not exist, and multiple methods are commonly used. Therefore, the 
previously described methods do not allow for determining whether the differences are due to 
discrepancies resulting from a change in mass, stiffness, or both. Identifying these discrepancies 
would help improve correlation techniques. 

In this chapter, it is proposed to use the transformation matrix 𝑻 as a new model correlation 
technique, using the orthogonality properties of the mode shapes with respect to the mass and stiffness 
matrices. Different correlation criteria to detect mass and stiffness changes, derived from 𝑻 matrix, 
are proposed. 

3.2 Structural dynamic modification and proposed criteria 
In this section, a model B (unperturbed), defined with the mass matrix 𝑴𝑩 and the stiffness matrix 
𝑲𝑩, is considered and perturbed with the mass change matrix 𝚫𝑴 and stiffness change matrix 𝚫𝑲. 

According to the structural dynamic modification theory, the mass matrix of the modified (or 
perturbed) system 𝑴𝑨 can be expressed as: 
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  𝑴𝑨 = 𝑴𝑩 + 𝜟𝑴 (3.10) 
 

and the stiffness matrix 𝑲𝑨 as: 

  𝑲𝑨 = 𝑲𝑩 + 𝜟𝑲 (3.11) 
 

From the eigenvalue problem of the unperturbed system B: 

  (𝑲𝑩 − 𝑴𝑩𝝎𝑩
𝟐 )𝝓𝑩 = 𝟎 (3.12) 
 

where 𝝎𝑩
𝟐  is a diagonal matrix containing the squared numerical natural frequencies of system B. 

For the perturbed system: 

  (𝑲𝑨 − 𝑴𝑨𝝎𝑨
𝟐)𝝓𝑨 = 𝟎 (3.13) 
 

where 𝝎𝑨
𝟐  is a diagonal matrix containing the squared numerical natural frequencies of system A. 

According to the structural dynamic modification theory, it is derived that the modal matrix 𝝓𝑨 of 
the perturbed structure (usually the experimental model) can be expressed as a linear combination of 
the modal shape matrix of system 𝝓𝑩 (usually the numerical model), as: 

  𝝓𝑨 = 𝝓𝑩 𝑻 (3.14) 
 

where 𝑻 is a transformation matrix.  

Considering that the response of the structure is only measured in a few degrees of freedom 
(DOFs) and only the modal parameters in a certain frequency range are identified, an estimation of 
matrix 𝑻 can be obtained by means of the expression: 

 𝑻 ≃ 𝝓𝑩
+ 𝝓𝑨 (3.15) 

 
where superscript ‘+’ indicates pseudoinverse. Premultiplying of Equation (3.10) by 𝝓𝑨

𝑻 , and post-
multiplying by 𝝓𝑨, gives: 

 𝝓𝑨
𝑻  𝑴𝑨 𝝓𝑨 = 𝝓𝑨

𝑻  𝑴𝑩 𝝓𝑨 + 𝝓𝑨
𝑻  𝜟𝑴 𝝓𝑨 (3.16) 
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Considering that the product 𝝓𝑨
𝑻  𝑴𝑨 𝝓𝑨 is an identity matrix in the case of mass-normalized mode 

shapes, and that the product 𝝓𝑨
𝑻  𝑴𝑩 𝝓𝑨 can be expressed as: 

 𝝓𝑨
𝑻  𝑴𝑩 𝝓𝑨 = 𝑻𝑻𝑩𝑻𝑴𝑩𝑩 𝑻 = 𝑻𝑻𝑻 (3.17) 

 
Equation (3.16) can be rewritten as: 

 𝑰 = 𝑻𝑻𝑻 + 𝝓𝑨
𝑻  𝚫𝑴 𝝓𝑨 (3.18) 

 
Following a similar approach with Eq. (3.11), premultiplying by 𝝓𝑨

𝑻  and post-multiplying by 𝝓𝑨, 
gives: 

 𝝓𝑨
𝑻  𝑲𝑨 𝝓𝑨 = 𝝓𝑨

𝑻  𝑲𝑩 𝝓𝑨 + 𝝓𝑨
𝑻  𝜟𝑲 𝝓𝑨 (3.19) 

 
which, in the case of mass-normalized mode shapes, leads to: 

 𝝎𝑨
𝟐 = 𝑻𝑻𝝎𝑩

𝟐  𝑻 + 𝝓𝑨
𝑻  𝜟𝑲𝝓𝑨 (3.20) 

 
where 𝝎𝑨

𝟐  and 𝝎𝑩
𝟐  are diagonal matrices containing the natural frequencies of systems A and B, 

respectively. 

In the case of unscaled mode shapes for system A (denoted 𝝍𝑨), a new transformation matrix (�̂�𝑼) 
is obtained with Eq. (3.15), i.e: 

 𝑻𝑼 ≃ 𝝓𝑩
+ 𝝍𝑨 (3.21) 

 
Therefore Eq. (3.16) is now rewritten as: 

 𝝍𝑨
𝑻  𝑴𝑨 𝝍𝑨 = 𝝍𝑨

𝑻  𝑴𝑩 𝝍𝑨 + 𝝍𝑨
𝑻  𝜟𝑴 𝝍𝑨 (3.22) 

 
which leads to: 

 𝒎𝑨 = 𝑻𝑼
𝑻𝑻𝑼 + 𝝍𝑨

𝑻  𝚫𝑴 𝝍𝑨 (3.23) 
 

where 𝒎𝑨 is a diagonal matrix containing the modal masses. Similarly, Eq. (3.20) leads to: 
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 𝒎𝑨 𝝎𝑨
𝟐 = 𝑻𝑼

𝑻𝝎𝑩
𝟐  𝑻𝑼 + 𝝍𝑨

𝑻  𝜟𝑲 𝝍𝑨 (3.24) 
 

3.2.1 The T-Mass correlation indicator  
Given that model B is only perturbed by a stiffness change (𝚫𝑲) and there are no mass discrepancies 
between models (𝜟𝑴 = 𝟎), Equation (3.18) can be expressed as: 

 𝑰 = 𝑻𝑻𝑻 (3.25) 
 

This means that, if there are no discrepancies in terms of mass between models B and A, the 
product 𝑻𝑻𝑻 is an identity matrix or, alternatively, the column vectors of matrix 𝑻 are orthogonal to 
each other. Thus, there are mass discrepancies if: 

• The diagonal terms of  𝑻𝑻𝑻 are lower than 1. 
• The off diagonal terms of   𝑻𝑻𝑻 are different than zero. 

When working with mass-normalized modal matrices 𝝓𝑨 and 𝝓𝑩, the inner product 𝑻𝑻𝑻 can be 
used as a mass correlation criterion, where values equal to 1 in the diagonal elements and equal to 0 
for the off-diagonal elements, indicate perfect correlation in terms of mass (Figure 3.1). 

In the case of unscaled experimental modes (denoted as 𝝍𝑨) and no discrepancies in terms of 
mass, Eq. (3.23) results in: 

 𝒎𝑨 = 𝑻𝑼
𝑻𝑻𝑼 (3.26) 

 
Which means that the product 𝑻𝑼

𝑻𝑻𝑼 is a diagonal matrix and the column vectors of matrix 𝑻𝑼 are 
orthogonal to each other. It the modal masses 𝒎𝑨 are not known, the information contained in the 
diagonal of 𝑻𝑼

𝑻𝑻𝑼 cannot be used for correlation. 

Based on the orthogonality of the column vectors of matrices 𝑻 and 𝑻𝑼, the following indicators 
can also be proposed (Figure 3.1): 

• T-Mass: angles between the column vectors of matrix 𝑻 (or 𝑻𝑼). Angles equal to 90º in 
the off-diagonal elements indicate perfect correlation, meaning no discrepancies in mass. 

• T-Mass-norm: T-Mass divided by 90º. Off-diagonal elements equal to 1 indicate perfect 
correlation in terms of mass. 
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• AUTOMAC of 𝑻 matrix (or 𝑻𝑼): Off-diagonal elements equal to 0 indicate perfect 
correlation in terms of mass 

3.2.2 The T-Stiffness correlation indicator  
Considering that model B is only perturbed with a mass change (𝚫𝑴) and there are no discrepancies 
in terms of stiffness between models (𝜟𝑲 = 𝟎), Equation (3.20) can be expressed as: 

 𝝎𝑨
𝟐 = 𝑻𝑻𝝎𝑩

𝟐  𝑻 (3.27) 
 

This means that the inner product 𝑻𝑻𝝎𝑩
𝟐  𝑻  is a diagonal matrix containing the natural frequencies 

𝝎𝑨
𝟐   in the diagonal, or alternatively, the column vectors of the matrix 𝑻 are orthogonal with respect 

to the eigenvalue matrix 𝝎𝑩
𝟐 .  Thus, there are stiffness discrepancies if: 

• The diagonal terms of 𝑻𝑻𝝎𝑩
𝟐  𝑻 are different than 𝝎𝑨

𝟐 . 
• The off-diagonal terms of 𝑻𝑻𝝎𝑩

𝟐  𝑻 are different than zero. 

When working with mass-normalized modal matrices 𝝓𝑨 and 𝝓𝑩, the inner product 𝑻𝑻𝝎𝑩
𝟐  𝑻 can 

be used as a stiffness correlation criterion, where values equal to 𝝎𝑨
𝟐  in the diagonal elements and 

equal to 0 for the off-diagonal elements, indicate perfect correlation in terms of stiffness (Figure 3.1).  

In the case of unscaled experimental mode (𝝍𝑨) and no discrepancies in term of stiffness, it is 
inferred from Eq. (3.24) that: 

 𝒎𝑨 𝝎𝑨
𝟐 = 𝑻𝑼

𝑻𝝎𝑩
𝟐  𝑻𝑼 (3.28) 

 
Which means that the inner product 𝑻𝑼

𝑻𝝎𝑩
𝟐  𝑻𝑼  is a diagonal matrix containing the product 𝒎𝑨 𝝎𝑨

𝟐 
in the diagonal, or alternatively, the column vectors of the matrix 𝑻𝑼 are orthogonal with respect to 
the eigenvalue matrix 𝝎𝑩

𝟐𝑻𝑼. 

Based on the orthogonality of the column vectors of matrix 𝑻 with respect to 𝝎𝑩
𝟐𝑻 (and the column 

vectors of matrix 𝑻𝑼 with respect to 𝝎𝑩
𝟐𝑻𝑼), the following indicators can be proposed (Figure 3.1): 

• T-Stiffness: angles between the vectors of matrix 𝑻 and 𝝎𝑩
𝟐  𝑻 (or 𝑻𝑼 and 𝝎𝑩

𝟐  𝑻𝑼). Angles 
equal to 90º in the off-diagonal elements indicate perfect correlation, meaning no 
discrepancies in stiffness. 

• T-Stiffness-norm: T-Stiffness divided by 90º. Off-diagonal elements equal to 1 indicate 
perfect correlation in terms of stiffness. 
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• MAC between 𝑻 and 𝝎𝑩
𝟐  𝑻 (or 𝑻𝑼 and 𝝎𝑩

𝟐  𝑻𝑼): Off-diagonal elements equal to 0 indicate 
perfect correlation in terms of stiffness. 

It is also worth noting that in the case of closely spaced or repeated modes, the product 𝑻𝑻𝑻 is a 
diagonal matrix, therefore the angles of T-Mass are very close to 90º and T-Mass-norm very close to 
1.  

3.2.3 Rotmac 
From Eq. (3.25) it is inferred that the inner product 𝑻𝑻𝑻 must be an identity matrix when there are 
only stiffness discrepancies (𝚫𝑲) between models B and A , i.e., matrix 𝑻 (or 𝑻𝑻) must be a rotation 
matrix. This implies that a pure rotation of the mode shapes does not modify the mass of the system. 
In case of a pure rotation, the modal matrices 𝝓𝑩 and 𝝓𝑨 are related as: 

 𝝓𝑨
𝑻 = 𝑹 𝝓𝑩

𝑻  (3.29) 
 

where 𝑹 indicates rotation matrix. From Eq. (3.29) is inferred that: 

 𝑻𝑻 = 𝑹 (3.30) 
 

and: 

 𝝓𝑩 = 𝝓𝑨 𝑹 (3.31) 
 

From the sensitivity equations, which are based on a Taylor expansion [94], it can be also deduced 
that a mass change induces a change in the scaling of the mode shapes and in the relative angle 
between the mode shapes (shear). From these considerations, when the system is perturbed with mass 
changes, it is proposed to express the matrix 𝑻𝑻 as a linear combination of rotation (𝑹), shear (𝑻𝒔𝒉) 
and scaling (𝑻𝒔𝒄) (Figure 3.1), i.e.:  

 𝑻𝑻 = 𝑹 𝑻𝒔𝒉𝑻𝒔𝒄 (3.32) 
 

If the effects of shear and scaling are combined in only one matrix (𝑻𝒄𝒉), Eq. (3.32) leads to: 

 𝑻𝑻 = 𝑹 𝑻𝒄𝒉 (3.33) 
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If two repeated modes (𝜔𝑏1
2 = 𝜔𝑏1

2 = 𝜔𝑏
2) are considered, and there is a mass change between 

models B and A, Eq. (3.27) can be written as:  

 [
𝜔𝑎1

2 0

0 𝜔𝑎2
2 ] =  𝜔𝑏

2 𝑻𝑻𝑻 (3.34) 
 

from which is inferred that matrix 𝑻 must be a pure rotation matrix if 𝜔𝑎1
2 = 𝜔𝑎2

2 . This 
demonstrates that if a system B with closely spaced or repeated modes is perturbed with a mass change 
matrix, the mode shapes will mainly rotate in the local subspace defined by the closely spaced or 
repeated modes. In this case, the submatrix of the inner product 𝑻𝑻𝑻 corresponding to the closely 
spaced modes will be close to an identity matrix in the case of mass scaled mode shapes and the angles 
in the T-Mass will be close to 90º (Figure 3.1). Due to the fact that 𝑻𝑻𝑻 is diagonal, from Eq. (3.18) 
is inferred that 𝝓𝑨

𝑻  𝚫𝑴 𝝓𝑨 must be diagonal, i.e. there are only changes in the scaling of the mode 
shapes whereas the relative angle between mode shapes is not modified (Figure 3.1).  

Considering that a rotation is always involved in matrix 𝑻, the QR decomposition [95] can be used 
to factorize matrix 𝑻𝑻 as: 

 𝑻𝑻 = 𝑹 𝑸 (3.35) 
 

where 𝑹 matrix is a rotation matrix and 𝑸 is an upper triangular matrix. And the following results 
are expected: 

• If there are only stiffness discrepancies (𝚫𝑲), matrix 𝑻𝑻 is a pure rotation. Therefore, the 
𝑸 matrix obtained with the QR decomposition will be an identity matrix in case of mass-
normalized mode shapes, or a diagonal matrix in case of unscaled mode shapes. 

• If there are only discrepancies in mass (𝚫𝑴), the QR decomposition gives a rotation 
matrix 𝑹 and matrix 𝑸 containing information of shear and scaling. 

The polar decomposition can also be used to factorize matrix 𝑻𝑻 as: 

 𝑻𝑻 = 𝑹 𝒁 (3.36) 
 

where 𝑹 is a rotation matrix and 𝒁 is a positive semi-definite Hermitian matrix. Similarly, if there 
are only stiffness discrepancies (𝚫𝑲), matrix 𝒁 will be an identity matrix in case of mass-normalized 
mode shapes, or a diagonal matrix in case of unscaled mode shapes. 
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Considering that closely spaced modes are highly sensitive to small mass and stiffness 
perturbations of the system, they can rotate within their subspace. Therefore, two models can present 
good correlation in terms of mass and stiffness, but still low MAC values can be obtained due to this 
rotation. 

Following these considerations, a new indicator is proposed in this section, denoted as ROTMAC. 
It is a novel version of the MAC, where the rotated mode shapes of system B (𝝓𝑩𝑹) are used, i.e.: 

 𝑅𝑂𝑇𝑀𝐴𝐶(𝝓𝑩𝑹𝒊, 𝝓𝑨𝒋) =
|𝝓𝑩𝑹𝒊

𝑻  𝝓𝑨𝒋|
2

(𝝓𝑩𝑹𝒊
𝑻  𝝓𝑩𝑹𝒊)(𝝓𝑨𝒋 

𝑻 𝝓𝑨𝒋) 
 (3.37) 

 
where 𝝓𝑩𝑹𝒊 is a column vector of matrix 𝝓𝑩𝑹, obtained rotating matrix 𝑩 as: 

 𝝓𝑩𝑹 = 𝝓𝑩 𝑹 (3.38) 
 

The mode shapes are scaled to unit length to calculate the modal assurance criterion, so no 
information about changes in scaling can be obtained with Eq. (3.37). Thus, the ROTMAC is an 
indicator of shear, and it must be an identity matrix in the following cases: 

• System B is perturbed with a stiffness change only (𝚫𝑲). This occurs because the rotated 
mode shapes 𝝓𝑩𝑹 coincide with mode shapes 𝝓𝑨, indicating no shear effect. 

• System B, with repeated or closely spaced modes, is only perturbed with a mass change 
(𝚫𝑴). In this case, the effect of shear is negligible. 
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Figure 3.1: Summary of the proposed indicators to detect mass changes and stiffness changes. Expected results for 
repeated modes (and closely spaced) and separated modes. 

3.3 Numerical example: a symmetric steel structure 
In this section, an example of a symmetric numerical structure is considered to validate the proposed 
correlation indicators. 

A steel structure composed of a vertical column 1500 𝑚𝑚 high and four horizontal beams at the 
top with a length of 500 mm, all of them with a squared hollow section of 50 x 4 mm2 was considered 
in the simulations (Figure 3.2). The structure was modelled in Abaqus CAE and meshed with shell 
elements (S4R). The steel was modelled as a linear elastic material with properties: 𝐸 = 210 GPa, 
𝜈 = 0.3 and 𝜌 = 7850 kg/m3. This structure model is considered as the unperturbed model (system 
B). The perturbated model (system A), it is derived from system B introducing a local mass of 0.463 
kg as show in Figure 3.2. 
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Figure 3.2 Unperturbed (System B) and perturbed (System A) Abaqus models. The lumped mass location is show 
in yellow. 

The first ten natural frequencies obtained from both systems A and B are presented in Table 3.1 
and the corresponding mode shapes are shown in Figure 3.3. Table 3.1 shows a classification of the 
mode shapes based on the relative frequency shift between a pair of modes (Δ𝜔\𝜔) modes [96]. 
When the relative frequency shift is higher than 0.1, the modes are considered well separated; they 
are considered repeated modes when it is zero, and closely spaced modes when the relative frequency 
shift (Δ𝜔\𝜔) is between 0 and 0.1. In this example, most of repeated modes in system B are closely 
spaced modes in system A. 
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Table 3.1 Natural frequencies [Hz] of systems A and B 

Mode Unperturbed 
(System B) 

Perturbed 
(System A) Classification 

1 10.30 10.10 
Repeated / Closely spaced 

 
2 10.30 10.14 

Separated 
3 24.13 22.97 

Separated 
4 70.39 65.02 

Repeated / Closely spaced 
5 70.39 70.39 

Separated 
6 81.21 77.19 

Separated 
7 173.74 157.57 

Closely spaced 
8 173.93 172.29 

Repeated / Closely spaced 
9 173.93 173.83 

Separated 
10 184.66 181.31  

 

 
Figure 3.3: Mode shapes of system B. 
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Matrix �̂� (hereafter denoted as 𝑻) showed in Table 3.2, is estimated with Equation (3.15) using 
mass-normalized mode shapes for both systems. No errors are considered in the mode shapes. 
Moreover, in order to minimize truncation errors, matrix 𝑻 is estimated with 12 modes, but only a 
matrix size 10 x 10 is considered in this study.  

Table 3.2: Matrix �̂� 

0.976 -0.092 -0.006 0.037 0.000 0.005 0.033 -0.002 -0.004 0.009 
-0.091 -0.979 -0.067 -0.004 0.002 0.052 -0.005 -0.022 0.000 -0.001 
0.000 -0.013 0.951 0.000 0.004 0.105 -0.003 -0.042 0.000 -0.001 
0.000 0.000 0.000 0.092 -0.995 0.013 -0.020 -0.001 0.000 -0.004 
-0.001 0.000 0.000 0.916 0.100 -0.001 -0.200 0.000 -0.001 -0.042 
0.000 -0.001 0.009 0.000 -0.010 -0.949 -0.002 -0.057 0.000 -0.001 
0.000 0.000 0.000 0.023 0.000 0.000 0.688 0.000 -0.517 -0.408 
0.000 0.000 0.000 -0.014 0.000 0.001 -0.409 -0.134 -0.848 0.248 
0.000 0.000 -0.001 0.002 0.000 0.010 0.057 -0.978 0.116 -0.034 
0.000 0.000 0.000 -0.020 0.000 0.000 -0.390 0.000 -0.004 -0.873 

 
Considering that mass-normalized modes are used, the products 𝑻𝑻𝑻 and 𝑻𝑻𝝎𝑩

𝟐  𝑻 are calculated 
to study mass and stiffness discrepancies. Table 3.3 shows 𝑻𝑻𝑻 matrix, which detects mass 
discrepancies between models. Diagonal values quite bellow unit for modes 1, 2, 3, 4, 6, 7 and 8 
indicate changes in scaling. Regarding off-diagonal terms, most of them are approximately zero 
because there cannot be shear in the mode shapes corresponding to repeated modes when system B is 
perturbed with a mass change matrix 𝚫𝑴. 
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Table 3.3: 𝑻𝑻𝑻 matrix 

0.961 0.000 0.000 0.036 0.000 0.000 0.033 0.000 -0.004 0.009 
0.000 0.968 0.054 0.000 -0.002 -0.052 0.002 0.022 0.000 0.001 
0.000 0.054 0.909 0.000 0.003 0.087 -0.002 -0.038 0.000 -0.001 
0.036 0.000 0.000 0.849 0.000 0.000 -0.154 0.000 -0.001 -0.034 
0.000 -0.002 0.003 0.000 1.000 -0.003 0.000 0.001 0.000 0.000 
0.000 -0.052 0.087 0.000 -0.003 0.915 0.002 0.038 0.000 0.001 
0.033 0.002 -0.002 -0.154 0.000 0.002 0.838 -0.001 -0.001 -0.034 
0.000 0.022 -0.038 0.000 0.001 0.038 -0.001 0.983 0.000 0.000 
-0.004 0.000 0.000 -0.001 0.000 0.000 -0.001 0.000 0.999 0.000 
0.009 0.001 -0.001 -0.034 0.000 0.001 -0.034 0.000 0.000 0.993 

 
Table 3.4 shows 𝑻𝑻𝝎𝑩

𝟐  𝑻 matrix, which detects stiffness discrepancies between models. In case 
of no changes in stiffness, it must be a diagonal matrix containing 𝝎𝑨

𝟐  in the diagonal. This comparison 
is done in Table 3.5, showing error values below 1% for all the diagonal terms, indicating almost 
perfect correlation in terms of stiffness. 

Table 3.4: 𝑻𝑻𝝎𝑩
𝟐  𝑻 matrix 

4026.2 0.0 0.1 -3.9 0.0 -0.6 -23.1 1.4 -0.3 -9.7 
0.0 4056.0 -0.5 1.6 0.0 4.1 10.1 -8.6 0.1 3.0 
0.1 -0.5 20836.1 -11.5 0.0 -32.5 -70.7 66.0 -0.5 -20.9 
-3.9 1.6 -11.5 167080.3 -0.8 113.9 621.2 -240.3 39.5 536.2 
0.0 0.0 0.0 -0.8 195580.7 -2.6 -5.0 5.3 0.0 -1.6 
-0.6 4.1 -32.5 113.9 -2.6 235493.3 702.3 -507.9 5.3 207.2 

-23.1 10.1 -70.7 621.2 -5.0 702.3 980900.8 -1481.5 215.8 2543.1 
1.4 -8.6 66.0 -240.3 5.3 -507.9 -1481.5 1172764.2 -9.9 -436.6 
-0.3 0.1 -0.5 39.5 0.0 5.3 215.8 -9.9 1192889.0 48.9 
-9.7 3.0 -20.9 536.2 -1.6 207.2 2543.1 -436.6 48.9 1299248.6 

Table 3.5: Comparison of diagonal elements √𝑻𝑻𝝎𝑩
𝟐  𝑻 matrix and 𝝎𝑨. 

Mode 1 2 3 4 5 6 7 8 9 10 

√𝑻𝑻𝝎𝑩
𝟐  𝑻 63.5 63.7 144.3 408.8 442.2 485.3 990.4 1082.9 1092.2 1139.8 

𝝎𝑨 63.5 63.7 144.3 408.5 442.2 485.0 990.0 1082.5 1092.2 1139.2 
Error [%] 0.00 0.00 -0.01 -0.05 0.00 -0.06 -0.04 -0.04 0.00 -0.06 
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As previously mentioned, when working with unscaled mode shapes (which is not this case), other 
correlation techniques must be used. Regarding mass discrepancies, the T-mass, T-mass-norm and 
the AUTOMAC of 𝑻 matrix can be used. Regarding stiffness perturbations, the T-Stiffness, T-
Stiffness-norm and the MAC of 𝑻 and 𝝎𝑩

𝟐  𝑻. 

T-mass and T-mass-norm are shown in Table 3.6 and Table 3.7. Off-diagonal elements of T-mass 
quite below 90◦ indicate mass discrepancies, being the minimum value around 80◦. Similarly, T-
mass-norm off diagonal values below 1, indicate mass discrepancies, being the minimum value 0.88. 
However, it must be noted that there is no shear in the mode shapes corresponding to repeated mode 
when system B is perturbed with a mass change 𝚫𝑴. Therefore, the angles between the columns of 
matrix 𝑻 relating both models (T-mass) must be 90◦ (1 for T-mass-norm and 0 for the AUTOMAC 
of 𝑻). Thus, in case of repeated modes or closely spaced modes and no stiffness discrepancies, only 
the diagonal terms of 𝑻𝑻𝑻 matrix provide information of mass discrepancies. 

Table 3.6: T-mass 

---- 90.00 90.00 87.71 90.00 90.00 87.89 90.00 89.76 89.50 
90.00 ---- 86.70 89.98 89.90 86.83 89.88 88.69 90.00 89.97 
90.00 86.70 ---- 89.97 89.83 84.50 89.84 87.70 90.00 89.96 
87.71 89.98 89.97 ---- 90.00 89.98 79.50 89.99 89.94 87.89 
90.00 89.90 89.83 90.00 ---- 89.83 90.00 89.92 90.00 90.00 
90.00 86.83 84.50 89.98 89.83 ---- 89.87 87.72 90.00 89.96 
87.89 89.88 89.84 79.50 90.00 89.87 ---- 89.95 89.95 87.83 
90.00 88.69 87.70 89.99 89.92 87.72 89.95 ---- 90.00 89.99 
89.76 90.00 90.00 89.94 90.00 90.00 89.95 90.00 ---- 90.00 
89.50 89.97 89.96 87.89 90.00 89.96 87.83 89.99 90.00 ---- 

 



 3 Model correlation 

41 

Table 3.7: T-mass-norm 

---- 1.000 1.000 0.975 1.000 1.000 0.977 1.000 0.997 0.994 
1.000 ---- 0.963 1.000 0.999 0.965 0.999 0.985 1.000 1.000 
1.000 0.963 ---- 1.000 0.998 0.939 0.998 0.974 1.000 1.000 
0.975 1.000 1.000 ---- 1.000 1.000 0.883 1.000 0.999 0.977 
1.000 0.999 0.998 1.000 ---- 0.998 1.000 0.999 1.000 1.000 
1.000 0.965 0.939 1.000 0.998 ---- 0.999 0.975 1.000 1.000 
0.977 0.999 0.998 0.883 1.000 0.999 ---- 0.999 0.999 0.976 
1.000 0.985 0.974 1.000 0.999 0.975 0.999 ---- 1.000 1.000 
0.997 1.000 1.000 0.999 1.000 1.000 0.999 1.000 ---- 1.000 
0.994 1.000 1.000 0.977 1.000 1.000 0.976 1.000 1.000 ---- 

 
The same information can also be obtained with the AUTOMAC of T matrix, where off diagonal 

values are not equal to zero, indicating mass discrepancies (Table 3.8).  

Table 3.8: AUTOMAC (T) 

---- 0.000 0.000 0.002 0.000 0.000 0.001 0.000 0.000 0.000 
0.000 ---- 0.003 0.000 0.000 0.003 0.000 0.001 0.000 0.000 
0.000 0.003 ---- 0.000 0.000 0.009 0.000 0.002 0.000 0.000 
0.002 0.000 0.000 ---- 0.000 0.000 0.033 0.000 0.000 0.001 
0.000 0.000 0.000 0.000 ---- 0.000 0.000 0.000 0.000 0.000 
0.000 0.003 0.009 0.000 0.000 ---- 0.000 0.002 0.000 0.000 
0.001 0.000 0.000 0.033 0.000 0.000 ---- 0.000 0.000 0.001 
0.000 0.001 0.002 0.000 0.000 0.002 0.000 ---- 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ---- 0.000 
0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 ---- 

 
T-stiffness and T-stiffness-norm are shown in Table 3.9 and Table 3.10, respectively. Considering 

that there are no stiffness discrepancies, in the case of repeated modes 𝑡𝑖𝑇𝑡𝑗  is equal zero for 𝑖 ≠ 𝑗, 
and the angles between 𝑡𝑖  and 𝑡𝑗  must be 90◦. Off-diagonal values of well separated modes are close 
to 90◦ denoting almost a perfect correlation between models in terms of stiffness, being the minimum 
value 89.8. The same observation is done with T-stiffness-norm where all off-diagonal are almost 
equal to one (minimum value equal to 0.998), indicating no stiffness discrepancies. 
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Table 3.9: T-Stiffness 

---- 90.000 90.000 89.999 90.000 90.000 89.999 90.000 90.000 90.000 
90.000 ---- 89.999 89.999 90.000 89.999 89.999 90.000 90.000 90.000 
89.999 89.993 ---- 89.996 90.000 89.992 89.996 89.997 90.000 89.999 
89.941 89.976 89.968 ---- 90.000 89.972 89.965 89.987 89.998 89.974 
90.000 90.000 90.000 90.000 ---- 89.999 90.000 90.000 90.000 90.000 
89.991 89.941 89.912 89.963 89.999 ---- 89.961 89.974 90.000 89.990 
89.649 89.848 89.801 89.790 89.998 89.824 ---- 89.922 89.989 89.878 
89.981 89.880 89.829 89.925 89.998 89.883 89.922 ---- 90.000 89.981 
89.996 89.999 89.999 89.988 90.000 89.999 89.989 90.000 ---- 89.998 
89.865 89.959 89.946 89.833 90.000 89.952 89.866 89.979 89.998 ---- 

 

Table 3.10: T-Stiffness-norm 

---- 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 ---- 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 ---- 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.999 1.000 1.000 ---- 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 ---- 1.000 1.000 1.000 1.000 1.000 
1.000 0.999 0.999 1.000 1.000 ---- 1.000 1.000 1.000 1.000 
0.996 0.998 0.998 0.998 1.000 0.998 ---- 0.999 1.000 0.999 
1.000 0.999 0.998 0.999 1.000 0.999 0.999 ---- 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 ---- 1.000 
0.998 1.000 0.999 0.998 1.000 0.999 0.999 1.000 1.000 ---- 

 
Stiffness discrepancies between models can also be studied with the MAC between T matrix and 

the product 𝝎𝑩
𝟐T. All off-diagonal values equal to zero indicate perfect correlation in terms of 

stiffness. 
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Table 3.11: MAC (T, 𝝎𝑩
𝟐T) 

---- 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 ---- 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 ---- 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 ---- 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 ---- 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 ---- 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 ---- 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 ---- 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ---- 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ---- 

 
Correlation between models can also be studied through the ROTMAC. Firstly, matrix 𝑻 is 

decomposed using the QR decomposition: 

 𝑻 = 𝑹 𝑸 (3.39) 
 

where 𝑹 is the rotation matrix and 𝑸 contains the effects of scaling and shear.  

Table 3.12: Matrix 𝑹 

-0.996 -0.093 0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 
0.093 -0.996 0.013 0.000 0.000 0.001 0.000 0.000 0.000 0.000 
0.000 -0.013 -1.000 0.000 0.000 0.010 0.000 -0.001 0.000 0.000 
0.000 0.000 0.000 -0.100 0.995 0.010 0.004 0.000 0.000 -0.001 
0.001 0.000 0.000 -0.994 -0.100 -0.001 0.036 0.000 0.000 -0.007 
0.000 -0.001 -0.010 0.000 0.010 -1.000 0.000 -0.012 0.000 0.000 
0.000 0.000 0.000 -0.025 0.000 0.000 -0.770 0.001 0.517 -0.374 
0.000 0.000 0.000 0.015 0.000 0.002 0.458 -0.136 0.848 0.228 
0.000 0.000 0.001 -0.002 0.000 0.011 -0.064 -0.989 -0.117 -0.031 
0.000 0.000 0.000 0.022 0.000 0.000 0.438 -0.001 0.005 -0.899 

 
From the rotation matrix (Table 3.12) is inferred that the first two modes are rotated in their local 

subspace an angle 𝜽 equal to -5.3344°. Modes 4 and 5 also rotate an angle 𝜽 of 5.7448°, although 
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they are not well paired. Modes from 7 to 10 are a set of closely spaced and repeated modes mainly 
rotating on the subspace spanned by these four modes. 

Table 3.13: Matrix 𝑸 

-0.981 0.000 0.000 -0.037 0.000 0.000 -0.034 0.000 0.004 -0.009 
0.000 0.984 0.055 0.000 -0.002 -0.053 0.002 0.023 0.000 0.001 
0.000 0.000 -0.952 0.000 -0.003 -0.095 0.003 0.041 0.000 0.001 
0.000 0.000 0.000 -0.921 0.000 0.000 0.168 0.000 0.001 0.037 
0.000 0.000 0.000 0.000 -1.000 0.003 0.000 -0.001 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.950 0.003 0.045 0.000 0.001 
0.000 0.000 0.000 0.000 0.000 0.000 -0.899 0.001 0.001 0.046 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.989 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.995 

 
From the 𝑸 matrix (Table 3.13) the effects of shear and scaling are studied. Changes in scaling 

due to mass changes appear in the diagonal terms, mainly in modes 3, 4, 6 and 7. The off-diagonal 
terms indicate changes in shear in some modes. As previously mentioned, in the case of repeated 
modes and no-stiffness perturbations, there is no shear and, consequently, off-diagonal elements 
related to repeated modes are very close to zero.  

The MAC between modal matrices 𝝓𝑨 and 𝝓𝑩 is shown in Table 3.14. It can be observed that 
modes 4 and 5 are not well paired and low MAC values are obtained for modes 7, 8, 9 and 10. 
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Table 3.14: MAC 

0.991 0.009 0.000 0.001 0.063 0.000 0.000 0.005 0.000 0.000 
0.009 0.991 0.001 0.063 0.001 0.000 0.000 0.000 0.005 0.000 
0.000 0.001 0.999 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.052 0.000 0.000 0.010 0.988 0.000 0.001 0.167 0.003 0.001 
0.001 0.062 0.000 0.990 0.010 0.000 0.000 0.003 0.158 0.000 
0.000 0.000 0.011 0.000 0.000 0.988 0.000 0.000 0.000 0.000 
0.002 0.000 0.000 0.000 0.005 0.000 0.687 0.066 0.001 0.210 
0.000 0.001 0.003 0.153 0.002 0.006 0.000 0.018 0.968 0.000 
0.004 0.000 0.000 0.001 0.090 0.000 0.434 0.555 0.011 0.000 
0.001 0.000 0.000 0.000 0.012 0.000 0.180 0.037 0.001 0.781 

 
The ROTMAC (Table 3.15) is calculated using Eq. (3.37) and rotating the modes of system B 

with 𝑹 matrix. As it is shown, diagonal elements are very close to unity (except mode 7), which 
indicates little shear effect (due to mass changes). In the off-diagonal elements, there are non-zero 
values, which indicate changes in mass. 

Table 3.15: ROTMAC 

1.000 0.000 0.000 0.064 0.000 0.000 0.000 0.000 0.003 0.000 
0.000 1.000 0.000 0.000 0.063 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.999 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.053 0.000 0.000 1.000 0.000 0.000 0.021 0.000 0.085 0.004 
0.000 0.063 0.000 0.000 1.000 0.000 0.000 0.152 0.000 0.000 
0.000 0.000 0.009 0.000 0.000 0.990 0.000 0.000 0.000 0.000 
0.002 0.000 0.000 0.001 0.000 0.000 0.970 0.000 0.121 0.003 
0.000 0.001 0.003 0.000 0.155 0.004 0.000 0.993 0.000 0.000 
0.004 0.000 0.000 0.084 0.000 0.000 0.087 0.000 1.000 0.018 
0.001 0.000 0.000 0.010 0.000 0.000 0.000 0.000 0.019 0.996 

 

3.4 Numerical example: a two-spanned steel beam 
In this section a numerical two-span steel beam is perturbed with different levels of mass and stiffness 
changes to validate the proposed correlation indicators. 
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A two-span steel beam with a rectangular section of 12 x 6 cm2 was modelled in ABAQUS. The 
unperturbed model (System B) was created with a fixed boundary condition at the left border and 
simply supported at the mid-point and the right border (Figure 3.4). The model was meshed with 200 
quadratic beam elements (B22). The following mechanical properties were considered for the steel, 
modelled as a linear elastic material: 𝐸 = 210 GPa, 𝜈 = 0.3 and 𝜌 = 7850 kg/m3. 

 
Figure 3.4: Unperturbed and perturbed models of the numerical steel beam. 

As shown in Figure 3.4, system B was perturbed by mass modifications (System A1) and stiffness 
modifications (System A2). In System A1, a mass loss was introduced in a part of the right span. In 
System A2, stiffness loss was simulated by substituting the fixed support with a pinned support and 
a rotational spring (Figure 3.4).  

To study the sensitivity of the correlation indicators to mass and stiffness perturbations, various 
levels of mass changes and stiffness changes were modelled. In system A1, the mass loss was 
modelled by altering the mass density of the location of interest. As shown in Table 3.16, mass density 
reductions ranging from 5% to 25% were simulated. In system A2, different levels of stiffness 
reduction were simulated by varying the spring stiffness (Table 3.16). 
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Table 3.16: Changes of mass and stiffness induced in systems A1 and A2, and their corresponding notation. 

Notation Perturbation 

Sy
ste

m 
A1

 

𝛥𝑀1 Δ𝜌 =  -5% 
𝛥𝑀2 Δ𝜌 =  -10% 
𝛥𝑀3 Δ𝜌 =  -15% 
𝛥𝑀4 Δ𝜌 =  -20% 
𝛥𝑀5 Δ𝜌 =  -25% 

Sy
ste

m 
A2

 

𝛥𝐾1 𝐾𝜃 = 8 𝑥 106  N m 

𝛥𝐾2 𝐾𝜃 = 3 𝑥 106 N m 

𝛥𝐾3 𝐾𝜃 = 8 𝑥 105  N m 

𝛥𝐾4 𝐾𝜃 = 3 𝑥 105  N m 

𝛥𝐾5 𝐾𝜃 = 1 𝑥 105  N m 
 

The natural frequencies of all systems are presented in Table 3.17, whereas the diagonal terms of 
the MAC are shown in  Figure 3.5. 

Table 3.17 Natural frequencies of systems B, A1 and A2 

Natural frequencies [Hz] 

B 
A1 A2 

𝛥𝑀1 𝛥𝑀2 𝛥𝑀3 𝛥𝑀4 𝛥𝑀5 𝛥𝐾1 𝛥𝐾2 𝛥𝐾3 𝛥𝐾4 𝛥𝐾5 
6.56 6.64 6.80 6.96 7.22 7.40 6.54 6.49 6.33 6.11 5.87 

11.35 11.39 11.49 11.60 11.79 11.96 11.16 10.90 10.18 9.55 9.09 
24.41 24.64 25.16 25.76 26.84 27.68 24.29 24.13 23.63 23.15 22.77 
32.80 32.88 33.06 33.30 33.81 34.38 32.28 31.61 30.17 29.27 28.75 
53.38 53.93 55.04 56.19 57.91 59.03 53.14 52.81 51.95 51.28 50.84 
65.47 65.67 66.14 66.73 67.96 69.13 64.46 63.30 61.20 60.13 59.58 
93.45 94.38 96.37 98.51 101.72 103.54 93.05 92.51 91.29 90.49 90.01 
109.17 109.46 110.17 111.21 114.01 117.39 107.56 105.86 103.21 102.04 101.47 
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Figure 3.5: MAC diagonal values between systems A and system B. 

It is worth noting that, since this is a numerical example, the mode shapes are mass-scaled. 
Therefore, the products 𝑻𝑻𝑻 and 𝑻𝑻𝝎𝑩

𝟐  𝑻 can be used as correlation indicators to detect discrepancies 
in mass or stiffness. 

The product 𝑻𝑻𝑻, which serves as an indicator of mass discrepancies, should be an identity matrix 
in the absence of mass discrepancies, as it is the case for systems A2. In Figure 3.6 (a), the diagonal 
terms are plotted, showing values equal to one for systems A2, confirming no mass discrepancies. It 
can be seen that the last term of the diagonal is affected by modal truncation effects. In Figure 3.6 (b), 
the off-diagonal terms are plotted, showing values equal to zero for systems A2, further confirming 
no mass discrepancies between models B and A2. 

 
Figure 3.6: 𝑻𝑻𝑻 product: (a) diagonal values and (b) off-diagonal values. 
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Regarding the 𝑻𝑻𝝎𝑩
𝟐  𝑻 matrix, in case of no stiffness discrepancies, the diagonal terms should be 

equal to 𝝎𝑨
𝟐 . Therefore, the relative error between the diagonal terms of 𝑻𝑻𝝎𝑩

𝟐  𝑻 and 𝝎𝑨
𝟐  for all 

systems is presented in Table 3.18. If the last mode is not considered due to modal truncation error, 
values close to zero are obtained for systems A1, whereas significantly higher values are observed for 
systems A2, indicating stiffness discrepancies between models B and A2. The diagonal terms of 
√𝑻𝑻𝝎𝑩

𝟐  𝑻and 𝝎𝑨
𝟐  for systems A1 and A2 are showed in Appendix A, in Table A 1 and Table A 2, 

respectively. 

Table 3.18: Relative error between 𝑻𝑻𝝎𝑩
𝟐  𝑻 and 𝝎𝑨

𝟐 

Relative error between 𝑇𝑇𝜔𝐵
2𝑇 and 𝜔𝐴

2  [%] 

A1 A2 
𝛥𝑀1 𝛥𝑀2 𝛥𝑀3 𝛥𝑀4 𝛥𝑀5 𝛥𝐾1 𝛥𝐾2 𝛥𝐾3 𝛥𝐾4 𝛥𝐾5 
0.00 0.00 0.00 0.00 0.00 0.54 1.80 9.98 28.20 54.71 
0.00 0.00 0.00 0.00 0.00 1.99 5.82 21.51 39.55 53.22 
0.00 0.00 0.00 0.00 0.00 0.55 1.71 7.21 14.59 21.15 
0.00 0.00 0.00 0.00 0.01 1.86 4.80 12.63 17.62 19.95 
0.00 0.01 0.03 0.10 0.15 0.56 1.57 5.11 8.36 10.58 
0.01 0.03 0.03 0.03 0.16 1.67 3.82 7.66 9.13 9.59 
0.07 0.02 0.38 1.55 2.07 0.47 1.23 3.29 4.68 5.47 
0.73 2.43 4.60 8.84 11.83 2.27 4.31 6.41 6.73 6.70 

 
The off-diagonal terms of 𝑻𝑻𝝎𝑩

𝟐  𝑻 are plotted in Figure 3.7, where values different from zero 
indicate stiffness discrepancies, as it is the case for systems A2. 
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Figure 3.7: 𝑻𝑻𝝎𝑩

𝟐  𝑻 off diagonal terms. 

Finally, the T-Mass and T-Stiffness indicators, which can also be used in the case of unscaled 
mode shapes, are plotted in Figure 3.8. T-Mass (Figure 3.8 (a)) successfully detects mass 
discrepancies in systems A1, with the angles decreasing as increasing the mass discrepancies. 
However, values close to 90◦ are obtained for system A1-ΔM1. In  Figure 3.8 (b), T-Stiffness clearly 
detects stiffness discrepancies. 

 
Figure 3.8: T-Mass and T-Stiffness indicators 

To study the effect of errors in the mode shapes of system A (usually the experimental system) on 
the T-Mass and T-Stiffness indicators, different simulations have been performed considering errors 
in the mode shapes. Random errors of 2% are induced in the components of mode shapes of systems 
A, specifically in A1-ΔM2, A1-ΔM5, A2-ΔK2 and A2-ΔK5, by performing one thousand simulations 
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for each case. It can be observed, in Figure 3.9, how the T-Stiffness is significantly affected by errors 
in the mode shapes, particularly when there are no changes in stiffness (systems A1).  

 
Figure 3.9. T-Mass and T-Stiffness considering errors in the mode shapes of systems A. 

This effect can be explained by the effect of 𝝎𝑩
𝟐 , which magnifies the inconsistencies in the mode 

shapes estimation (the contribution of the errors in the mode shapes increases as the natural 
frequencies increase). To avoid this effect, a variation of the T-Stiffness is proposed. Considering that 
𝝎𝑩 = 𝝎𝑩

𝑻 , the product 𝑻𝑻𝝎𝑩
𝟐  𝑻 can also be rewritten as: 

 𝑻𝑻𝝎𝑩
𝟐 𝑻

𝝎𝑩
𝟐  𝑻 = (𝝎𝑩

𝟐  𝑻)
𝑻
 (𝝎𝑩

𝟐  𝑻) (3.40) 
 

Therefore, the angle between the columns of the matrix 𝝎𝑩
𝟐  𝑻 (denoted T-Stiffness Variation) is 

also proposed to quantify the stiffness discrepancies. The obtained angles are shown in Figure 3.10. 
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Figure 3.10. T-Stiffness variation angles with errors in the mode shapes. 

3.5 Experimental example: a square glass plate 
In this section, the T-Mass, T-Stiffness, and ROTMAC concepts are applied to correlate a numerical 
model with an experimental model of a square laminated glass plate. The plate, measuring 1400 mm 
x 1400 mm, was composed of two 4 mm thick glass layers and a 1.14 mm polymer interlayer, and 
was pinned at all four corners (Figure 3.11). 

 
Figure 3.11: Square laminated glass plate. Experimental set up. 

The experimental modal parameters were estimated through OMA. The structure was excited by 
randomly applying impacts to the plate using an impact hammer. The response was measured at 25 
DOFs using 16 accelerometers with sensitivity of 100 mV/g. To cover the 25 DOFs, two data sets 
were collected using 7 reference sensors. A sampling rate of 2000 Hz and an acquisition time of 6 
minutes were used. The modal parameters for the first five modes were estimated using the EFDD 
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technique. The natural frequencies are shown in Table 3.19, where it can be observed that modes 2 
and 3 are closely spaced. The experimental mode shapes normalized to the unit length are shown in 
Figure 3.12. 

Table 3.19: Experimental and numerical natural frequencies. 

Mode shape 
Natural frequencies [Hz] 

Error [%] 
Experimental (System A) Numerical (System B) 

1 9.35 9.72 3.80 
2 19.62 21.11 7.01 
3 19.83 21.11 6.10 
4 22.53 24.82 9.22 
5 55.76 56.11 0.62 

 

 
Figure 3.12: Experimental and numerical mode shapes normalized to the unit length. 

A 3D finite element model of the structure was previously developed in ANSYS, using a mesh of 
19200 3D solid elements with 20 nodes each. The numerical natural frequencies for the first five 
modes are presented in Table 3.19, where it can be observed that modes 2 and 3 are repeated. 
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The correlation between systems A and B is firstly studied with the MAC (Table 3.20). It can be 
observed that for modes 2 and 3 values far from 1 are obtained, which can be an indicator of poor 
correlation, whereas for modes 1, 4 and 5 very good correlation exits. 

Table 3.20: MAC between systems A and B 

0.9971 0.0000 0.0001 0.0000 0.0976 
0.0000 0.5990 0.3965 0.0000 0.0001 
0.0000 0.5088 0.4896 0.0002 0.0000 
0.0000 0.0001 0.0000 0.9996 0.0000 
0.0661 0.0002 0.0007 0.0000 0.9862 

 
Considering that experimental mode shapes are unscaled, an estimation of �̂�𝑼 is obtained with Eq. 

(3.21), using five numerical modes and five experimental modes, which is factorized using the QR 
decomposition. From the decomposition, matrices 𝑹 and 𝑸 are obtained, where 𝑹 is the rotation 
matrix and 𝑸 contains the effects of scaling and shear. However, as unscaled mode shapes are used, 
the changes in scaling cannot be detected. 

Table 3.21: Matrix 𝑹 

-0.9992 0.0068 -0.0006 0.0008 0.0390 
-0.0031 -0.6997 -0.7137 -0.0050 0.0330 
0.0056 0.7141 -0.6998 0.0109 0.0084 
0.0007 -0.0113 0.0040 0.9999 -0.0004 
-0.0391 -0.0168 -0.0295 -0.0005 -0.9987 

 

Table 3.22: Matrix 𝑸 

-1.4819 0.0007 0.0168 -0.0001 -0.0249 
0.0000 -1.1840 0.1345 -0.0011 -0.0482 
0.0000 0.0000 -1.1992 -0.0009 -0.0060 
0.0000 0.0000 0.0000 -0.9801 -0.0007 
0.0000 0.0000 0.0000 0.0000 -1.0596 

 
From the 𝑹 matrix presented in Table 3.21, a rotation angle of -45.5890° is obtained for modes 2 

and 3, with the mode shapes mainly rotating in the local subspace defined by vectors 𝒃𝟐 and 𝒃𝟑 . The 
second and third rotated numerical mode shapes (𝒃𝒓𝟐 and 𝒃𝒓𝟑) are shown in Figure 3.13, where a 
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good correlation can be observed between the numerical and the experimental models. Moreover, the 
ROTMAC is presented in Table 3.23, showing a very good correlation for all modes. The off-diagonal 
terms are very low indicating that the effect of shear is very low.  

 
Figure 3.13: Mode shapes 2 and 3 of systems A, B and rotated B (BR) 

Table 3.23: ROTMAC: MAC between systems A and BR  

0.9974 0.0001 0.0001 0.0000 0.0822 
0.0000 0.9810 0.0125 0.0000 0.0013 
0.0000 0.0000 0.9986 0.0000 0.0000 
0.0000 0.0000 0.0000 0.9997 0.0000 
0.0938 0.0001 0.0000 0.0000 0.9879 

 
The T-mass and T-stiffness matrices are shown in Table 3.24 and Table 3.25. The last row and 

column have been shaded as they can be affected by modal truncation when the number of numerical 
modes is not larger than the number of experimental modes (as it is this case).  



3.5 Experimental example: a square glass plate  

56 

Table 3.24: T-mass  

---- 89.91 89.35 89.99 89.04 
89.91 ---- 83.54 89.95 87.69 
89.35 83.54 ---- 89.95 89.71 
89.99 89.95 89.95 ---- 89.96 
89.04 87.69 89.71 89.96 ---- 

 

Table 3.25: T-stiffness 

---- 89.78 89.63 89.97 88.80 
89.17 ---- 83.53 89.96 89.25 
88.57 83.54 ---- 89.78 89.87 
89.84 89.94 89.70 ---- 89.94 
55.90 84.74 89.12 89.68 ---- 

 
From Table 3.24 it could be inferred that there are mass discrepancies, because although most 

components are close to 90◦, the value in row three, column two is 83.54◦. However, it must be 
emphasized that a low angle can also be obtained if the mode shapes - closely spaced in this case - 
are not estimated accurately. For instance, when using the FDD technique in the case of repeated or 
closely spaced modes, the mode shape associated with the higher singular value is sometimes 
estimated with accuracy whereas the uncertainty of the second one is higher.  

Moreover, when two repeated modes are considered, the inner product �̂�𝑻𝝎𝒃
𝟐 �̂� = 𝝎𝒃

𝟐 �̂�𝑻 �̂� is 
proportional to �̂�𝑻 �̂�, and the same angles are obtained with T-mass and T-stiffness. This result does 
not depend on the accuracy achieved in the estimation of the mode shapes and holds for changes in 
stiffness, mass or both. This can be observed in Table 3.24 and Table 3.25 where the same angle is 
obtained in row three, column two. 

Additionally, in the case of mass matrix 𝑴𝑨 proportional to 𝑴𝑩, the product 𝑻𝑻𝑻 is diagonal 
(there are changes in scaling and not shear). Therefore, when using unscaled mode shapes, no 
information of mass discrepancies can be obtained with inner product 𝑻𝑼

𝑻𝑻𝑼. 

 



 

4 
4 Stress estimation 

This chapter aims to develop different strain and stress estimation techniques base on modal 
decomposition, with the goal of estimating an accurate stress time history. A precisely estimated stress 
time history is crucial for fatigue assessment and fatigue monitoring. Moreover, the methods 
presented in this chapter rely on modal expansion, requiring a numerical model and highlighting the 
importance of correlation techniques, presented in Chapter 3, for accurate stress estimation. 

An introduction to the main stress estimation techniques is presented, along with a review of the 
state of the art. Then, the structural dynamic modification theory is developed to provide a foundation 
for understanding the proposed methods. Additionally, the sources of error in the estimated stresses 
are analysed. 

4.1 Introduction 
Stresses (or strains) are considered the principal variable responsible for fatigue damage. Therefore, 
the stress time history is crucial for estimating the accumulated fatigue damage and assessing the 
remaining fatigue lifetime. To estimate the actual stress time history to which operating structures are 
subjected, different approaches are commonly used: 
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• The stress time histories at discrete points of interest can be obtained directly from strain 
gauge measurements located at those same points, which in many cases is not possible due 
to economic constraints, inaccessibility, or harsh environment.  

• Stress/strain estimation, also known as full-field stress/strain estimation or virtual sensing 
techniques. In this case stress time histories can be estimated from structural responses by 
continuously measuring experimental displacements, velocities, accelerations or strain 
responses. Accelerometers are commonly used due to their reliability for long-term 
measurements. This approach allows for the estimation of stresses at any point of the 
structure using a limited number of installed sensors. There are different techniques for 
stress/strain estimation, with modal expansion and the Kalman filter techniques being the 
most used. 

In applications where a good understanding of structural dynamics and modal parameters is 
desired, modal expansion techniques are chosen, allowing for their combination with other SHM 
techniques. The core of modal decomposition-based estimation techniques is the modal superposition 
principle; thus, strain mode shapes and modal coordinates are needed.  

In 2003, R. Brincker et al. [97] introduced some of the possible applications of OMA, such as: 
monitoring, vibration level estimation, fatigue estimation and load estimation. Based on the reviewed 
literature, this conference paper was the first publication mentioning of stress history estimation from 
vibrations response. The first methodology to estimate stress time histories at any point of the 
structure was proposed by Henrik P. Hjelm [98]. In this methodology the displacements at any point 
of the structure are estimated through modal superposition using modal coordinates and numerical 
mode shapes (from an updated finite element model). Once the displacements are estimated at any 
point of the structure, stresses can be calculated by traditional finite element calculations. The 
methodology was validated by two experimental tests, carried out on a lab cantilever L-shaped beam 
and a 20 m high lattice tower. P. Fernández [99] propose to estimate stresses using modal 
superposition and expanding the experimental mode shapes to unmeasured locations using a 
numerical model, i.e. a transformation matrix is obtained assuming that the experimental modal 
matrix can be obtained as a linear combination of the numerical modal matrix. The methodology was 
validated on an experimental 1.875 meter long steel cantilever beam [99], a glass beam [100], a 
symmetric scale model of a two story building [101] and a glass plate [102]. Experimental strain mode 
shapes can also be expanded using numerical strain mode shapes [103], [104]. M. Tarpo [103] 
validated the methodology in an offshore structure. B. Nabuco [104] used also the same approach to 
estimated stresses with the objective of calculating fatigue damage in an offshore jacket structure. 
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Several techniques have been proposed to estimate the transformation matrix which relates 
experimental and numerical mode shapes, such as static condensation of stiffness and mass matrices 
[105], Dynamic Condensation [106], SEREP [107] and the Hybrid method [108], being SEREP one 
of the most widely used and studied for stress estimation [109], [110]. The results provided by these 
techniques can be improved using the local correspondence principle [111] or the methodology 
proposed by P. Avitabile [112]. Marius Tarpo [113] compared the following techniques: SEREP, the 
local correspondence principle and an enhanced version of the local correspondence principle (leave-
p-out).  

Many other authors, avoid the use of a transformation matrix in the modal expansion algorithm by 
directly relying on a well correlated finite element model [114]–[116]. In this approach mode shape 
expansion is not needed, and strain mode shapes at the locations of interest (virtual locations) are 
obtained from the numerical model. 

Experimental modal coordinates can be calculated using mode shapes (numerical or experimental) 
and experimental displacements, among others. Henkel [115] stated that the use of numerical mode 
shapes is preferred, giving a set of continuous mode shapes over the entire structure, although the use 
of experimental mode shapes (data-driven approach) avoid any errors present in the numerical model. 
This approach was widely validated in offshore wind turbines. However, A. Iliopoulos [114] 
concluded that the quality of the method was directly related to the quality of the FE model.  

Modal coordinates can also be estimated using strain responses. Although the responses are 
usually measured with accelerometers, the use of strain mode shapes for vibration-based monitoring 
is becoming more relevant due to numerous advantages they present, such as lower sensitivity to 
temperature, higher sensitivity to small-scale damage and high accuracy and precision. Moreover, 
when fiber-optic sensors are employed, modal strains can be obtained in a dense grid with a relatively 
low cost [117], [118]. For these reasons, the use of strain sensors (combined or not with 
accelerometers) to estimate strains at any point of the structure is also regarded as a promising 
technique.  

Several authors have also applied modal expansion techniques with strain mode shapes [119]–
[123]. In this case, modal coordinates are calculated with the experimental strain mode shapes and 
the measured strain responses, which are then expanded to the unmeasured locations using a 
numerical model. In this approach, a high-fidelity finite element model of the studied structure is 
needed [121], however the use of accelerometers is not required. Mora [122], compared different 
virtual sensing techniques based on strain mode shapes. In 2022, M. Tarpo [124] proposed a new a 
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data-driven strain estimation technique using principal component analysis (PCA). In this case, 
temporary strain gauges at the locations of interest and accelerometers are required, but a finite 
element model is not necessary. The methodology was validated in an offshore wind turbine. 

To validate the estimated strains or stresses by comparing them with the reference signals, 
different tools have been used in the literature. The Time Response Assurance Criterion (TRAC) 
[109] is an indicator similar to the MAC used to compare two time series such as the estimated strains 
and the expected strains at one single DOF. Values between zero and one are obtained, where values 
close to unity indicate perfect correlation. Similarly, the Frequency Response Assurance Criterion 
(FRAC) compares the estimated and expected strains in the frequency domain. Since the TRAC and 
FRAC values do not take into account amplitude differences, the coefficient of determination R2 [125] 
was also used both in time domain and frequency domain [103], [113]. A coefficient of determination 
with a value of 1 indicates perfect correlation with the same amplitudes. [126]. The Mean Absolute 
Error (MAE) [127] is also an indicator of discrepancies between signals. Small values with respect to 
the actual magnitude indicate good correlation, thus, it is not normalized. The Root-Mean-Square 
Error (RMSE) it also a way of quantifying discrepancies, both in the time and frequency domains. 
Other indicators related to fatigue analysis were proposed in the literature, such as the Normalized 
Error of Fatigue Damage (NEFD) which calculates the normalized error between the cumulated 
fatigue damage with estimated stresses and expected stresses [103], [113]. 

A numerical model of the structure is commonly used to perform modal expansion, usually a finite 
element model. For this reason, special attention must be paid to model correlation (Chapter 3), as the 
accuracy of the results relies on the similarity of the experimental and numerical models, specifically 
on the mode shapes and strain mode shapes. If the correlation is not satisfactory, model updating 
techniques must be used to modify the finite element model according to the experimental modal 
parameters.   

4.2 Theory 
In this section the theory needed to estimate stresses using modal superposition and modal expansion 
techniques is presented.  

4.2.1  Exact solution  
In linear discrete un-damped dynamical systems, the response of a structure given by the vector of 
displacements 𝒖(𝒕) (hereafter denoted as 𝒖) can be decomposed in modal coordinates as [33]: 
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 𝒖 = 𝝓 𝒒 (4.1) 
 

where 𝝓 is the modal matrix (a matrix containing the mode shapes in column vectors) and 𝒒 are 
the modal coordinates 𝒒(𝒕) (hereafter denoted as 𝒒). 

In this chapter, the numerical model is considered the unperturbed system (or system B) and the 
experimental model the perturbed system (or system A). Particularizing Eq. (4.1) for an experimental 
system, denoted with subscript ′𝑥′, the modal coordinates can be estimated with: 

 𝒒𝒙 = 𝝓𝒙
−𝟏 𝒖𝒙 (4.2) 

 
where it has been assumed that 𝝓𝒙 is a square matrix. Using modal superposition, strains can be 

estimated with the expression: 

 𝜺𝒙 = 𝝓𝒙𝜺 𝒒𝒙 (4.3) 
 

where 𝝓𝒙𝜺 is the experimental strain mode shape matrix, in this case also a square matrix. 
Similarly, stresses can be estimated with: 

 𝝈𝒙 = 𝝓𝒙𝝈 𝒒𝒙 (4.4) 
 

where 𝝓𝒙𝝈 is the stress mode shape matrix, which is related to the strain mode shape matrix by: 

 𝝓𝒙𝝈 = 𝑫 𝝓𝒙𝜺   (4.5) 
 

with matrix 𝑫 being the constitutive matrix that depends on the material properties. 

According to the structural dynamic modification theory [128], and particularizing Eq. (3.14) for 
experimental (System A) and numerical (System B) modes shapes, the experimental mode shapes can 
be expressed as a linear combination of the numerical ones: 

  𝝓𝒙 = 𝝓𝑭𝑬 𝑻 (4.6) 
 

where 𝝓𝑭𝑬 is a matrix containing the numerical mode shapes. A similar relationship exists 
between the strain mode shape matrices: 
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 𝝓𝒙𝜺 = 𝝓𝑭𝑬𝜺 𝑻𝜺 (4.7) 
 

where 𝝓𝒙𝜺 and 𝝓𝑭𝑬𝜺 are the experimental and the numerical strain mode shape matrices, 
respectively. Regarding the stress mode shapes, a similar relationship exists: 

 𝝓𝒙𝝈 = 𝝓𝑭𝑬𝝈 𝑻𝝈 (4.8) 
 

Given that the components of the transformation matrix 𝑻 are constant scalars and the strain mode 
shapes are derivatives of the mode shapes, from Equations (4.6), (4.7) and (4.8), it is derived that: 

 𝑻𝝈 = 𝑻𝜺 = 𝑻 (4.9) 
 

4.2.2 Modal expansion 
To estimate strain at the location of interest, experimental mode shapes and/or the experimental strain 
mode shapes must be expanded to the unmeasured DOFs using a numerical model, which must be 
well correlated with the experimental model.  

To better understand the following explanations, two subspaces will be considered (Figure 4.1): a 
subspace spanned by the experimental mode shapes (𝝓𝒙) and another one spanned by the numerical 
mode shapes (𝝓𝑭𝑬). Any vector of experimental responses, such as displacements (𝒖), projected in 
the experimental subspace, will be denoted with circumflex accent (�̂�) (Figure 4.1 (a)) whereas tilde 
will be used when projecting onto the numerical subspace (�̃�). If only the active DOFs are considered, 
subscript ′𝑎′ is used (Figure 4.1 (b)). 

 
Figure 4.1 Nomenclature for experimental and numerical subspaces: (a) all DOFs and (b) only active DOFs. 

In experimental modal analysis the responses are measured in reduced number of DOFs (active 
DOFs) and in a limited frequency range, so that only ′𝑚′ number of modes can be identified. The 
experimental modal matrix 𝝓𝒙 can be partitioned as: 
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 𝝓𝒙 = [
𝝓𝒙𝒂𝒎 𝝓𝒙𝒂𝒓

𝝓𝒙𝒅𝒎 𝝓𝒙𝒅𝒓
] (4.10) 

 
where subscripts ′𝑚′ and ′𝑟′ indicate measured and unmeasured modes, and ′𝑎′ and ′𝑑′ indicate 

active (measured) and deleted (not measured) DOFs, respectively. However, due to the effect of 
truncation, only the submatrix 𝝓𝒙𝒂𝒎  can be estimated. The linear combination given by Eq. (4.6) can 
now be expressed as: 

 [
𝝓𝒙𝒂𝒎 𝝓𝒙𝒂𝒓

𝝓𝒙𝒅𝒎 𝝓𝒙𝒅𝒓
] = [

𝝓𝑭𝑬𝒂𝒎 𝝓𝑭𝑬𝒂𝒓

𝝓𝑭𝑬𝒅𝒎 𝝓𝑭𝑬𝒅𝒓
] [

𝑻𝒎𝒎 𝑻𝒎𝒓

𝑻𝒓𝒎 𝑻𝒓𝒓
] (4.11) 

 
Therefore, if a numerical model is assembled, an estimate of matrix 𝑻, denoted hereafter �̆�𝒎𝒎, 

can be derived from Eq. (4.11) as: 

 �̆�𝒎𝒎 = 𝝓𝑭𝑬𝒂𝒎
+  𝝓𝒙𝒂𝒎 (4.12) 

 
where superscript ′+′ indicates pseudoinverse. In Eq. (4.12) the modal matrix 𝝓𝒙𝒂𝒎  is a matrix 

size (𝑎, 𝑚), and �̆�𝒎𝒎 is size (𝑚, 𝑚). The result obtained with Eq. (4.12) depends on the number of 
modes considered in the modal matrix 𝝓𝑭𝑬𝒂, but it can be different than ′𝑚′  [111]. Thus, the size of 
�̆�𝒎𝒎 will depend on the size of matrices 𝝓𝒙𝒂𝒎  and 𝝓𝑭𝑬𝒂. For simplicity, it is assumed the same 
number of modes ′𝑚′ in 𝝓𝑭𝑬𝒂𝒎  and 𝝓𝒙𝒂𝒎 . 

From these equations, the numerical model can be used to expand the experimental mode shapes 
to the un-measured DOFs by: 

 [
�̃�𝒙𝒂𝒎

�̃�𝒙𝒅𝒎

] = [
𝝓𝑭𝑬𝒂𝒎

𝝓𝑭𝑬𝒅𝒎
] �̆�𝒎𝒎 (4.13) 

 
where �̃�𝒙𝒂𝒎  is the projection of the experimental mode shapes 𝝓𝒙𝒂𝒎  on the subspace spanned by 

the numerical mode shapes 𝝓𝑭𝑬𝒂 (Figure 4.1). Equation (4.13) can also be expressed as: 

 [
�̃�𝒙𝒂𝒎

�̃�𝒙𝒅𝒎

] = [
𝝓𝑭𝑬𝒂𝒎

𝝓𝑭𝑬𝒅𝒎
]𝝓𝑭𝑬𝒂𝒎

+  𝝓𝒙𝒂𝒎 = [
𝑰

𝝓𝑭𝑬𝒅𝒎𝝓𝑭𝑬𝒂𝒎
+ ]𝝓𝒙𝒂𝒎  (4.14) 

 
A similar relationship is obtained for strain mode shapes: 

 [
𝝓𝒙𝜺𝒈𝒎 𝝓𝒙𝜺𝒈𝒓

𝝓𝒙𝜺𝒈𝒎 𝝓𝒙𝜺𝒈𝒓
] = [

𝝓𝑭𝑬𝜺𝒈𝒎 𝝓𝑭𝑬𝜺𝒈𝒓

𝝓𝑭𝑬𝜺𝒈𝒎 𝝓𝑭𝑬𝜺𝒈𝒓
] [

𝑻𝜺𝒎𝒎 𝑻𝜺𝒎𝒓

𝑻𝜺𝒓𝒎 𝑻𝜺𝒓𝒓
] (4.15) 

 
where subscript ′𝑔′ denotes the active points where strains are measured. The DOFs ′𝑔′ can 

coincide or not with the active DOFs ′𝑎′. Hereafter, it is assumed for simplicity, that the strains are 
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measured at the active DOFs ′𝑎′. Therefore, a transformation matrix �̆�𝜺𝒎𝒎 can be estimated with the 
equation: 

 �̆�𝜺𝒎𝒎 = 𝝓𝑭𝑬𝜺𝒂𝒎
+  𝝓𝒙𝜺𝒂𝒎  (4.16) 

 
It must be noticed that, in addition to the numerical mode shapes 𝝓𝑭𝑬, both the strain mode shapes 

𝝓𝑭𝑬𝜺 and the stress mode shapes 𝝓𝑭𝑬𝝈 can be extracted from a finite element software with a modal 
frequency analysis, at the required locations. Thus, the measured strain mode shapes can also be 
expanded to the un-measured DOFs by: 

 �̃�𝒙𝜺𝒎 = [
�̃�𝒙𝜺𝒂𝒎

�̃�𝒙𝜺𝒅𝒎

] = [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
] �̆�𝜺𝒎𝒎 (4.17) 

 
The stress mode shapes can also be expanded with the expression: 

 �̃�𝒙𝝈𝒎 = [
�̃�𝒙𝝈𝒂𝒎

�̃�𝒙𝝈𝒅𝒎

] = [
𝝓𝑭𝑬𝝈𝒂𝒎

𝝓𝑭𝑬𝝈𝒅𝒎
] �̆�𝜺𝒎𝒎 (4.18) 

 
or as: 

 �̃�𝒙𝝈𝒎 = 𝑫 �̃�𝒙𝜺𝒎 (4.19) 
 

Therefore, to estimate strains by modal superposition with Eq. (4.3), the strain mode shapes at the 
locations of interest needed can be obtained from:  

• Experimental strain mode shapes estimated by modal analysis: 𝝓𝒙𝜺 
• Numerical strain mode shapes obtained from a numerical model: 𝝓𝜺𝑭𝑬 
• Experimental strain mode shapes expanded with a numerical model through a 

transformation matrix: �̃�𝒙𝜺𝒎 

4.2.3 Modal coordinates 
In modal superposition, strain mode shapes and modal coordinates are required to estimate strains. 
Modal coordinates can be estimated by projecting the experimental responses onto an experimental 
subspace or onto a numerical subspace. Moreover, these subspaces can be spanned by mode shapes, 
strain mode shapes, or both. 

If the experimental displacement response of the structure is measured at the ′𝑎′ active DOFs, Eq. 
(4.1) results in: 
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 𝒖𝒙𝒂 = 𝝓𝒙𝒂𝒎  𝒒𝒙𝒎 (4.20) 
 

An approximation of the experimental modal coordinates (denoted as �̂�𝒙𝒎) can be obtained with: 

 �̂�𝒙𝒎 = 𝝓𝒙𝒂𝒎
+  𝒖𝒙𝒂 (4.21) 

 
Alternatively, other equations can be proposed to obtain an estimation of the experimental modal 

coordinates. If the structure response (𝒖𝒙𝒂), is projected onto the subspace spanned by the numerical 
mode shapes (𝝓𝑭𝑬𝒂𝒎), modal coordinates (�̃�𝒙𝒎) are estimated as: 

 �̃�𝒙𝒎 = 𝝓𝑭𝑬𝒂𝒎
+  𝒖𝒙𝒂 (4.22) 

 
If strain sensors are installed in the structure, strain mode shapes and experimental strain time 

series (𝜺𝒙𝒂) are known. Therefore, an approximation of the experimental modal coordinates (denoted 
as �̂�𝜺𝒙𝒎) can be obtained with: 

 �̂�𝜺𝒙𝒎 = 𝝓𝒙𝜺𝒂𝒎
+  𝜺𝒙𝒂 (4.23) 

 
If the experimental structural strain response (𝜺𝒙𝒂) is projected onto the subspace spanned by the 

numerical mode shapes (𝝓𝑭𝑬𝜺𝒂𝒎), the modal coordinates can also be obtained by the expression: 

 �̃�𝜺𝒙𝒎 = 𝝓𝑭𝑬𝜺𝒂𝒎
+  𝜺𝒙𝒂 (4.24) 

 
In the case that both strains and displacements are measured, and projected onto the subspace 

spanned by the experimental mode shapes and strain mode shapes, the modal coordinates (�̂�𝒕𝒙𝒎) can 
be estimated by the expression: 

 �̂�𝒕𝒙𝒎 = [
𝝓𝒙𝜺𝒂𝒎

𝝓𝒙𝒂𝒎
]
+

[
𝜺𝒙𝒂

𝒖𝒙𝒂
] (4.25) 

 
In a similar way, strains and displacements can be projected onto the subspace spanned by the 

numerical mode shapes and strain mode shapes, obtaining the modal coordinates (�̃�𝒕𝒙𝒎) as: 

 �̃�𝒕𝒙𝒎 = [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝒂𝒎
]
+

[
𝜺𝒙𝒂

𝒖𝒙𝒂
] (4.26) 

 
All the equations proposed to estimate modal coordinates have been summarized in Figure 4.2. 
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Figure 4.2: Summary of the proposed equations to obtain modal coordinates.  

It is worth noting that if the displacements are not measured, it is assumed that they can be obtained 
by integration of velocities or through double integration of accelerations, in either time or frequency 
domains. If the experimental displacements are measured in real time, the strains and the stresses can 
also be estimated in real time. 

4.3 Stress estimation methods 
In this section, different methods for estimating stresses and strains based on modal superposition are 
proposed. Modal superposition enables the estimation of strains/stresses at the locations of interests 
using modal coordinates and strain/stress mode shapes. Depending on how mode shapes are expanded 
and how modal coordinates are estimated, eight methods are proposed in this thesis. Methods 1 to 4 
are based on projecting the experimental responses (displacements or strains) onto an experimental 
subspace, whereas in Methods 5 to 8, responses are projected onto a numerical subspace.  
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4.3.1 Method 1 
 In this section, a methodology to estimate strains and stresses in structures, denoted as Method 1, is 
described in detail. An updated numerical model is needed as well as the following information from 
the experimental structure: 

• Mode shapes 𝝓𝒙𝒂𝒎  (estimated with modal analysis). 
• Displacements 𝒖𝒙𝒂 (measured with displacement sensors or by double integration of 

accelerations).  

In this method, modal coordinates �̂�𝒙𝒎 are calculated with Eq. (4.21). 

Since the experimental strain mode shapes are not known, the following approximation can be 
considered �̆�𝒎𝒎 = �̆�𝝈𝒎𝒎 = �̆�𝜺𝒎𝒎, and the strain mode shapes can be estimated with the following 
expression: 

 �̃�𝒙𝜺𝒎𝟏
= 𝝓𝑭𝑬𝜺𝒎 �̆�𝒎𝒎 (4.27) 

 
Therefore, strains estimated with Method 1 (denoted as 𝜺𝟏) are expressed as: 

 𝜺𝟏 = [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
] �̆�𝒎𝒎 �̂�𝒙𝒎 = [

𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
] �̆�𝒎𝒎 𝝓𝒙𝒂𝒎

+ 𝒖𝒙𝒂 (4.28) 
 

or alternatively, 

 𝜺𝟏 = [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
] �̆�𝒎𝒎 �̆�𝒎𝒎

+  𝝓𝑭𝑬𝒂𝒎 𝒖𝒙𝒂 (4.29) 
 

Following the same approach to estimate stresses, Eq. (4.30) is proposed:  

 𝝈𝟏 = [
𝝓𝑭𝑬𝝈𝒂𝒎

𝝓𝑭𝑬𝝈𝒅𝒎
]  �̆�𝒎𝒎 �̂�𝒙𝒎 = 𝝓𝑭𝑬𝝈𝒎 �̆�𝒎𝒎 𝝓𝒙𝒂𝒎

+  𝒖𝒙𝒂 (4.30) 

or alternatively: 

 𝝈𝟏 = [
𝝓𝑭𝑬𝝈𝒂𝒎

𝝓𝑭𝑬𝝈𝒅𝒎
] �̆�𝒎𝒎 �̆�𝒎𝒎

+  𝝓𝑭𝑬𝒂𝒎 𝒖𝒙𝒂 (4.31) 
 

As a summary, the information needed to apply this method (Method 1) has been summarized in 
Table 4.1. The assumptions, and the calculations needed to estimate strains and stresses at the 
locations of interests are also shown in Table 4.1.  



4.3 Stress estimation methods  

68 

Table 4.1: Summary of the input data, assumptions and equations for Method 1. 

INPUTS 

PREVIOUS 
DATA 

EXPERIMENTAL MODEL 𝝓𝒙𝒂𝒎  

NUMERICAL MODEL 
𝝓𝑭𝑬𝒂𝒎 

𝝓𝑭𝑬𝜺𝒎  or  𝝓𝑭𝑬𝝈𝒎  

REAL TIME MEASUREMENTS 𝒖𝒙𝒂 

PRELIMINARY CALCULATIONS �̆�𝒎𝒎 = 𝝓𝑭𝑬𝒂𝒎
+  𝝓𝒙𝒂𝒎 

ASSUMPTIONS �̆�𝒎𝒎 = �̆�𝝈𝒎𝒎 = �̆�𝜺𝒎𝒎  

ESTIMATED STRAIN AND STRESS 𝜺𝟏 = 𝝓𝑭𝑬𝜺𝒎 �̆�𝒎𝒎 𝝓𝒙𝒂𝒎
+  𝒖𝒙𝒂 

At any point of the structure 𝝈𝟏 = 𝝓𝑭𝑬𝝈𝒎 �̆�𝒎𝒎 𝝓𝒙𝒂𝒎
+  𝒖𝒙𝒂 

ESTIMATED STRAIN AND STRESS 𝜺𝟏 = 𝝓𝑭𝑬𝜺𝒎 �̆�𝒎𝒎 �̆�𝒎𝒎
+  𝝓𝑭𝑬𝒂𝒎

+  𝒖𝒙𝒂 

At any point of the structure 𝝈𝟏 = 𝝓𝑭𝑬𝝈𝒎 �̆�𝒎𝒎�̆�𝒎𝒎
+  𝝓𝑭𝑬𝒂𝒎

+  𝒖𝒙𝒂 

 
The main advantage of this methodology (Method 1) is the avoidance of strain gauges, 

significantly simplifying the stress estimation process due to the installation procedure and 
eliminating errors cause by noise in the strain measurements. 

4.3.2 Method 2 
If the strains are measured at the active DOFs of the structure, a new methodology to estimate strains 
and stresses at the unmeasured points can be proposed (denoted as Method 2). Again, an updated 
numerical model is needed, together with the following information from the experimental structure: 

• Strain mode shapes 𝝓𝒙𝜺𝒂𝒎  (estimated with modal analysis). 
• Strains 𝜺𝒙𝒂 (measured with strain sensors).  

If strain sensors are installed in a structure, the strain mode shapes can be estimated by modal 
analysis. If strain responses (𝜺𝒙𝒂) are projected in the subspace spanned by the experimental strain 
mode shapes (𝝓𝒙𝜺𝒂𝒎), modal coordinates (�̂�𝜺𝒙𝒎) can be estimated with Eq. (4.23). 
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If expanded strain mode shapes (�̃�𝒙𝜺𝒎) are obtained from Eq. (4.17), the strains at the unmeasured 
points can be estimated with the expanded strain mode shapes (�̃�𝒙𝜺𝒎) and the modal coordinates 
�̂�𝜺𝒙𝒎, as follows: 

 𝜺𝟐 = [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
] �̆�𝜺𝒎𝒎 �̂�𝜺𝒙𝒎 = [

𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
] �̆�𝜺𝒎𝒎 𝝓𝒙𝜺𝒂𝒎

+  𝜺𝒙𝒂 (4.32) 
 

Or alternatively as: 

 𝜺𝟐 = [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
] �̆�𝜺𝒎𝒎 �̆�𝜺𝒎𝒎

+  𝝓𝑭𝑬𝜺𝒂𝒎
+  𝜺𝒙𝒂 = [

𝐼
𝝓𝑭𝑬𝜺𝒅𝒎

]𝝓𝑭𝑬𝜺𝒂𝒎
+  𝜺𝒙𝒂 (4.33) 

 
Stresses can be estimated with Method 2 as: 

 𝝈𝟐 = [
𝝓𝑭𝑬𝝈𝒂𝒎

𝝓𝑭𝑬𝝈𝒅𝒎
] �̆�𝝈𝒎𝒎 �̂�𝜺𝒙𝒎 = [

𝝓𝑭𝑬𝝈𝒂𝒎

𝝓𝑭𝑬𝝈𝒅𝒎
] �̆�𝝈𝒎𝒎 𝝓𝒙𝜺𝒂𝒎

+  𝜺𝒙𝒂 (4.34) 
 

and if it assumed that �̆�𝝈𝒎𝒎 = �̆�𝜺𝒎𝒎 , Eq. (4.34) can be rewritten as: 

 𝝈𝟐 = [
𝐼

𝝓𝑭𝑬𝝈𝒅𝒎
]𝝓𝑭𝑬𝜺𝒂𝒎

+  𝜺𝒙𝒂 (4.35) 
 

As a summary, the information needed to apply this method (Method 2) has been summarized in 
Table 4.2. The assumptions, and the calculations needed to estimate strains and stresses at the 
locations of interests are also shown in Table 4.2. 
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Table 4.2: Summary of the input data, assumptions and equations for Method 2. 

INPUTS 

PREVIOUS 
DATA 

EXPERIMENTAL MODEL 𝝓𝒙𝜺𝒂𝒎  

NUMERICAL MODEL 𝝓𝑭𝑬𝜺𝒎  or  𝝓𝑭𝑬𝝈𝒎  

REAL TIME MEASUREMENTS 𝜺𝒙𝒂 

PRELIMINARY CALCULATIONS �̆�𝜺𝒎𝒎 = 𝝓𝑭𝑬𝜺𝒂𝒎
+  𝝓𝒙𝜺𝒂𝒎 

ASSUMPTIONS �̆�𝝈𝒎𝒎 = �̆�𝜺𝒎𝒎 

ESTIMATED STRAIN AND STRESS 𝜺𝟐 = 𝝓𝑭𝑬𝜺𝒎 �̆�𝜺𝒎𝒎 𝝓𝒙𝜺𝒂𝒎
+  𝜺𝒙𝒂 

At any point of the structure 𝝈𝟐 = 𝝓𝑭𝑬𝝈𝒎 �̆�𝜺𝒎𝒎 𝝓𝒙𝜺𝒂𝒎
+  𝜺𝒙𝒂 

ESTIMATED STRAIN AND STRESS 𝜺𝟐 = 𝝓𝑭𝑬𝜺𝒎 𝝓𝑭𝑬𝜺𝒂𝒎
+  𝜺𝒙𝒂 

At any point of the structure 𝝈𝟐 = 𝝓𝑭𝑬𝝈𝒎 𝝓𝑭𝑬𝜺𝒂𝒎
+  𝜺𝒙𝒂 

 
It is worth noting that strain gages present some drawbacks compared to accelerometers, such as 

signal noise or more complicated installation processes [124]. However, extensive research has been 
conducted in recent years on the utilization of fiber-Bragg gratings (FBG) sensors due to their cost-
effectiveness in comparison to DOFs they offer and their insensitivity to temperature variations [118]. 

4.3.3 Method 3 
Method 3 is proposed to estimate strains and stresses when both displacements and strains are 
measured. An updated numerical model, together with the following information from the 
experimental structure are needed: 

• Mode shapes 𝝓𝒙𝒂𝒎 . 
• Strain mode shapes 𝝓𝒙𝜺𝒂𝒎 . 
• Displacements 𝒖𝒙𝒂 (measured with displacement sensors) 

The experimental mode shapes and strain mode shapes have to be previously estimated by modal 
analysis.  
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In Method 3, the modal coordinates (�̂�𝒙𝒎) are estimated with Eq. (4.21) and then, the experimental 
strain mode shapes are expanded to the unmeasured DOFs with Eq. (4.17). Therefore, strains can be 
estimated by means of the expression: 

 𝜺𝟑 = [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
] �̆�𝜺𝒎𝒎 �̂�𝒙𝒎 = [

𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
] �̆�𝜺𝒎𝒎 𝝓𝒙𝒂𝒎

+  𝒖𝒙𝒂 (4.36) 
 

or alternatively: 

 𝜺𝟑 = [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
] �̆�𝜺𝒎𝒎 �̆�𝒎𝒎

+  𝝓𝑭𝑬𝒂𝒎
+  𝒖𝒙𝒂 (4.37) 

 
Similarly, stresses are estimated as: 

 𝝈𝟑 = [
𝝓𝑭𝑬𝝈𝒂𝒎

𝝓𝑭𝑬𝝈𝒅𝒎
]  �̆�𝝈𝒎𝒎 �̂�𝒙𝒎 = [

𝝓𝑭𝑬𝝈𝒂𝒎

𝝓𝑭𝑬𝝈𝒅𝒎
] �̆�𝝈𝒎𝒎 𝝓𝒙𝒂𝒎

+  𝒖𝒙𝒂 (4.38) 
 

or alternatively: 

 𝝈𝟑 = [
𝝓𝑭𝑬𝝈𝒂𝒎

𝝓𝑭𝑬𝝈𝒅𝒎
] �̆�𝝈𝒎𝒎 �̆�𝒎𝒎

+  𝝓𝑭𝑬𝒂𝒎
+  𝒖𝒙𝒂 (4.39) 

 
The information needed to apply this method (Method 3) as well as the assumptions, and the 

calculations needed to estimate strains and stresses at the locations of interests are also shown in Table 
4.3. 
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Table 4.3: Summary of the input data, assumptions and equations for Method 3. 

INPUTS 

PREVIOUS 
DATA 

EXPERIMENTAL MODEL 
𝝓𝒙𝒂𝒎  

 
𝝓𝒙𝜺𝒂𝒎  

NUMERICAL MODEL 𝝓𝑭𝑬𝜺  or  𝝓𝑭𝑬𝝈 

REAL TIME MEASUREMENTS 𝒖𝒙𝒂 

PRELIMINARY CALCULATIONS �̆�𝜺𝒎𝒎 = 𝝓𝑭𝑬𝜺𝒂
+  𝝓𝒙𝜺𝒂𝒎 

ASSUMPTIONS �̆�𝝈𝒎𝒎 = �̆�𝜺𝒎𝒎 

ESTIMATED STRAIN AND STRESS 𝜺𝟑 = 𝝓𝑭𝑬𝜺 �̆�𝜺𝒎𝒎 𝝓𝒙𝒂𝒎
+  𝒖𝒙𝒂 

At any point of the structure 𝝈𝟑 = 𝝓𝑭𝑬𝜺 �̆�𝝈𝒎𝒎 𝝓𝒙𝒂𝒎
+  𝒖𝒙𝒂 

ESTIMATED STRAIN AND STRESS 𝜺𝟑 = 𝝓𝑭𝑬𝜺 �̆�𝜺𝒎𝒎 �̆�𝒎𝒎
+  𝝓𝑭𝑬𝒂

+  𝒖𝒙𝒂 

At any point of the structure 𝝈𝟑 = 𝝓𝑭𝑬𝜺 �̆�𝝈𝒎𝒎 �̆�𝒎𝒎
+  𝝓𝑭𝑬𝒂

+  𝒖𝒙𝒂 
 

4.3.4 Method 4 
When both displacements and stress are measured, Method 4 is also proposed to estimate strains and 
stresses. An updated numerical model and the following information from the experimental structure 
are needed: 

• Mode shapes 𝝓𝒙𝒂𝒎 . 
• Strain mode shapes 𝝓𝒙𝜺𝒂𝒎 . 
• Displacements 𝒖𝒙𝒂 (measured with displacement sensors) 
• Strains 𝜺𝒙𝒂 (measured with strain sensors).  

In this method, modal coordinates (�̂�𝒕𝒙𝒎) are estimated with Eq. (4.25). A new transformation 
matrix  �̆�𝒕𝒎𝒎 is estimated with the expression: 

 �̆�𝒕𝜺𝒎𝒎 = [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝒂𝒎
]
+

[
𝝓𝒙𝜺𝒂𝒎

𝝓𝒙𝒂𝒎
] (4.40) 

 
which can also be used to expand strain mode shapes as: 
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 �̃�𝒙𝜺𝒎𝟒
= 𝝓𝑭𝑬𝜺𝒎 �̆�𝒕𝜺𝒎𝒎 (4.41) 

 
Therefore, in Method 4, strains are estimated as: 

 𝜺𝟒 = 𝝓𝑭𝑬𝜺𝒎 �̆�𝒕𝜺𝒎𝒎 �̂�𝒕𝒙𝒎 = 𝝓𝑭𝑬𝜺𝒎  �̆�𝒕𝜺𝒎𝒎 [
𝝓𝒙𝜺𝒂𝒎

𝝓𝒙𝒂𝒎
]
+

[
𝜺𝒙𝒂

𝒖𝒙𝒂
] (4.42) 

 
or alternatively: 

 𝜺𝟒 = 𝝓𝑭𝑬𝜺𝒎  [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝒂𝒎
]
+

[
𝜺𝒙𝒂

𝒖𝒙𝒂
] (4.43) 

 
Similarly, stresses are estimated as: 

 𝝈𝟒 = 𝝓𝑭𝑬𝝈𝒎 �̆�𝒕𝝈𝒎𝒎 �̂�𝒕𝒙𝒎 = 𝝓𝑭𝑬𝝈𝒎 �̆�𝒕𝝈𝒎𝒎 [
𝝓𝒙𝜺𝒂𝒎

𝝓𝒙𝒂𝒎
]
+

[
𝜺𝒙𝒂

𝒖𝒙𝒂
] (4.44) 

 
where it has been assumed that �̆�𝒕𝝈𝒎𝒎 = �̆�𝒕𝜺𝒎𝒎. Stresses can also be expressed as: 

 𝝈𝟒 = 𝝓𝑭𝑬𝝈𝒎 [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝒂𝒎
] [

𝜺𝒙𝒂

𝒖𝒙𝒂
] (4.45) 

 
The information needed to apply this method (Method 4) as well as the assumptions, and the 

calculations needed to estimate strains and stresses at the locations of interests are also shown in Table 
4.4. 
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Table 4.4: Summary of the input data, assumptions and equations for Method 4. 

INPUTS 

PREVIOUS 
DATA 

EXPERIMENTAL MODEL 
𝝓𝒙𝒂𝒎  

𝝓𝒙𝜺𝒂𝒎  

NUMERICAL MODEL 
𝝓𝑭𝑬𝒂𝒎 

𝝓𝑭𝑬𝜺𝒎  or  𝝓𝑭𝑬𝝈𝒎  

REAL TIME MEASUREMENTS 
𝒖𝒙𝒂 

𝜺𝒙𝒂 

PRELIMINARY CALCULATIONS �̆�𝒕𝒎𝒎 = [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝒂𝒎
]
+

[
𝝓𝒙𝜺𝒂𝒎

𝝓𝒙𝒂𝒎
] 

ASSUMPTIONS �̆�𝒕𝝈𝒎𝒎 = �̆�𝒕𝜺𝒎𝒎  

ESTIMATED STRAIN AND STRESS 𝜺𝟒 = 𝝓𝑭𝑬𝜺𝒎 �̆�𝒕𝒎𝒎 [
𝝓𝒙𝜺𝒂𝒎

𝝓𝒙𝒂𝒎
]
+

[
𝜺𝒙𝒂

𝒖𝒙𝒂
] 

At any point of the structure 𝝈𝟒 = 𝝓𝑭𝑬𝝈𝒎 �̆�𝒕𝒎𝒎 [
𝝓𝒙𝜺𝒂𝒎

𝝓𝒙𝒂𝒎
]
+

[
𝜺𝒙𝒂

𝒖𝒙𝒂
] 

ESTIMATED STRAIN AND STRESS 𝜺𝟒 = 𝝓𝑭𝑬𝜺𝒎 [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝒂𝒎
]
+

[
𝜺𝒙𝒂

𝒖𝒙𝒂
] 

At any point of the structure 𝝈𝟒 = 𝝓𝑭𝑬𝝈𝒎  [
𝝓𝒙𝜺𝒂𝒎

𝝓𝒙𝒂𝒎
]
+

[
𝜺𝒙𝒂

𝒖𝒙𝒂
] 

 

Variation of Method 4 
Following with the same approach of measuring both, displacements and strains, an alternative 
method to estimate strains can be proposed. In this case, a FE model is not required, and strain gauges 
at que locations of interest must be temporarily installed. 

Due to the fact that both the strains and the displacements are measured, the following relationship 
exists between them: 

 𝜺𝒙𝒂 = 𝑪𝒙 𝒖𝒙𝒂 (4.46) 
 

And an estimate of matrix �̂�𝒙 can be obtained from: 

 �̂�𝒙 = 𝜺𝒙𝒂 𝒖𝒙𝒂
+  (4.47) 
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Therefore, if matrix �̂�𝒙 is known from Eq. (4.46), the displacements 𝒖𝒙𝒂 can be used to estimate 
the strains 𝜺𝒙𝒂 (at the active DOFs) i.e. the strain gauges can be removed (or disconnected) from the 
real structure and strains at active DOFs can be estimated with Eq. (4.46). Thus, in the real time 
calculations, only the displacement measurements are needed. 

As an alternative to Eq. (4.47) the matrix �̂�𝒙 can also be estimated as: 

 �̂�𝒙 = 𝝓𝒙𝜺𝒂𝝓𝒙𝒂𝒎
+  (4.48) 

 
Tarpo et al [124] proposed a similar technique to estimate �̂�𝒙 using the principal component 

analysis (PCA). With this technique, firstly the measured strains and displacements are stacked in a 
vector 𝒚𝒄(𝒕). Then, the singular value decomposition is applied to the covariance matrix 𝑪𝒚𝒄

 of vector 
𝒚𝒄(𝒕), where the singular vectors contain both the strain and displacement components, i.e.: 

 𝑉 = [
𝝓𝒙𝒂𝒎

𝝓𝒙𝜺𝒂
] (4.49) 

 
The main advantage of this method is that the expansion is not needed and, consequently, a finite 

element model is not required, which saves time and eliminates correlation discrepancies that may 
lead to errors in the estimated stresses.  

A significant drawback of this method is the necessity of installing strain gauges at the locations 
of interest, which may be impossible in certain situations, such as when these points are inaccessible 
(e.g., underwater) [116], [122]. Nevertheless, since strain measurements are temporary, the reliability 
issues associated with long term measurements are mitigated [124]. Additionally, as mentioned 
earlier, the use of fiber-optic sensors allows for obtaining modal strains at a relatively low cost [117], 
[118]  

4.3.5 Method 5 
Up to this point, the proposed methods (Methods 1 to 4) calculate modal coordinates by projecting 
the experimental responses onto an experimental subspace. However, from this point forward, the 
methods (Methods 5 to 8) calculate modal coordinates by projecting the experimental responses onto 
a numerical subspace. 

In this section, a methodology to estimate strains and stresses in structures, denoted as Method 5, 
is described in detail. A numerical model is needed, which must be updated if the experimental-
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numerical correlation is not satisfactory. Moreover, the following information from the experimental 
structure is required: 

• Mode shapes 𝝓𝒙𝒂𝒎  (estimated with modal analysis). 
• Displacements 𝒖𝒙𝒂 (measured with displacement sensors or obtained by double 

integration of accelerations).  

In this method, the modal coordinates (�̃�𝒙𝒎) are estimated with Eq. (4.22).  

The strain mode shapes are expanded in the same way as in Method 1, thus, using the 
transformation matrix �̆�𝒎𝒎. Assuming that �̆�𝒎𝒎 = �̆�𝝈𝒎𝒎 = �̆�𝜺𝒎𝒎, strain mode shapes are 
expanded with Eq. (4.27). 

Due to the fact that �̃�𝒙𝒎 are estimated using the numerical mode shapes 𝝓𝑭𝑬𝒂𝒎 , and matrix �̆�𝒎𝒎  
is estimated with the experimental mode shapes 𝝓𝒙𝒂𝒎 , it is important to ensure that the mode shapes 
𝝓𝑭𝑬𝒂𝒎  are normalized with the same sign/direction as the experimental ones. A diagonal matrix 𝒔, 
with ones or negative ones along the diagonal, is used to overcome this issue. 

Therefore, strains are estimated with Method 5 as: 

 𝜺𝟓 = [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
] �̆�𝒎𝒎 𝒔 �̃�𝒙𝒎 = [

𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
] �̆�𝒎𝒎 𝒔 𝝓𝑭𝑬𝒂𝒎

+  𝒖𝒙𝒂 (4.50) 
 

Similarly, stresses are expressed as: 

 𝝈𝟓 = [
𝝓𝑭𝑬𝝈𝒂𝒎

𝝓𝑭𝑬𝝈𝒅𝒎
] �̆�𝒎𝒎 𝒔 �̃�𝒙𝒎 = [

𝝓𝑭𝑬𝝈𝒂𝒎

𝝓𝑭𝑬𝝈𝒅𝒎
] �̆�𝒎𝒎 𝒔 𝝓𝑭𝑬𝒂𝒎

+  𝒖𝒙𝒂 (4.51) 
 

The information needed to apply Method 5, as well as the assumptions and calculations needed to 
estimate strains and stresses at the locations of interests are show in Table 4.5 
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Table 4.5: Summary of the input data, assumptions and equations for Method 5. 

INPUTS 

PREVIOUS 
DATA 

EXPERIMENTAL MODEL 𝝓𝒙𝒂𝒎  

NUMERICAL MODEL 
𝝓𝑭𝑬𝒂𝒎 

𝝓𝑭𝑬𝜺𝒎  or  𝝓𝑭𝑬𝝈𝒎  

REAL TIME MEASUREMENTS 𝒖𝒙𝒂 

PRELIMINARY CALCULATIONS �̆�𝒎𝒎 = 𝝓𝑭𝑬𝒂𝒎
+  𝝓𝒙𝒂𝒎 

ASSUMPTIONS �̆�𝒎𝒎 = �̆�𝝈𝒎𝒎 = �̆�𝜺𝒎𝒎  

ESTIMATED STRAIN AND STRESS 𝜺𝟓 = 𝝓𝑭𝑬𝜺𝒎 �̆�𝒎𝒎 𝒔 𝝓𝑭𝑬𝒂𝒎
+  𝒖𝒙𝒂 

At any point of the structure 𝝈𝟓 = 𝝓𝑭𝑬𝝈𝒎 �̆�𝒎𝒎 𝒔 𝝓𝑭𝑬𝒂𝒎
+  𝒖𝒙𝒂 

 

4.3.6 Method 6 
In Method 6, in addition to a numerical model, the following information from the experimental 
structure is needed: 

• Strain mode shape 𝝓𝒙𝜺𝒂𝒎   (estimated with modal analysis). 
• Strain response of the structure 𝜺𝒙𝒂 (measured with strain sensors)  

Modal coordinates �̃�𝜺𝒙𝒎 are estimated with Eq. (4.24), and the expanded strain mode shapes are 
obtained as in Method 2 (Eq. (4.17)) using �̆�𝜺𝒎𝒎. Thus, a diagonal matrix 𝒔𝜺 with ones or negative 
ones along the diagonal, must be used to ensure that the mode shapes 𝝓𝑭𝑬𝜺𝒂𝒎  are normalized with 
the same sign/direction as the experimental ones 𝝓𝒙𝜺𝒂𝒎 . 

Consequently, strains are estimated as: 

 𝜺𝟔 = [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
] �̆�𝜺𝒎𝒎 𝒔𝜺 �̃�𝜺𝒙𝒎 = [

𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
] �̆�𝜺𝒎𝒎 𝒔𝜺 𝝓𝑭𝑬𝜺𝒂𝒎

+  𝜺𝒙𝒂 (4.52) 
 

Assuming that �̆�𝝈𝒎𝒎 = �̆�𝜺𝒎𝒎, stresses can be obtained as: 

 𝝈𝟔 = [
𝝓𝑭𝑬𝝈𝒂𝒎

𝝓𝑭𝑬𝝈𝒅𝒎
] �̆�𝜺𝒎𝒎 𝒔𝜺 �̃�𝜺𝒙𝒎 = [

𝝓𝑭𝑬𝝈𝒂𝒎

𝝓𝑭𝑬𝝈𝒅𝒎
] �̆�𝜺𝒎𝒎 𝒔𝜺 𝝓𝑭𝑬𝜺𝒂𝒎

+  𝜺𝒙𝒂 (4.53) 
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A summary of Method 6 is presented in Table 4.6. 

Table 4.6: Summary of the input data, assumptions and equations for Method 6. 

INPUTS 

PREVIOUS 
DATA 

EXPERIMENTAL MODEL 𝝓𝒙𝒂𝒎  

NUMERICAL MODEL 𝝓𝑭𝑬𝜺𝒎  or  𝝓𝑭𝑬𝝈𝒎  

REAL TIME MEASUREMENTS 𝜺𝒙𝒂 

PRELIMINARY CALCULATIONS �̆�𝜺𝒎𝒎 = 𝝓𝑭𝑬𝜺𝒂𝒎
+  𝝓𝒙𝜺𝒂𝒎 

ASSUMPTIONS �̆�𝝈𝒎𝒎 = �̆�𝜺𝒎𝒎 

ESTIMATED STRAIN AND STRESS 𝜺𝟔 = 𝝓𝑭𝑬𝜺𝒎 �̆�𝜺𝒎𝒎 𝒔𝜺 𝝓𝑭𝑬𝜺𝒂𝒎
+  𝜺𝒙𝒂 

At any point of the structure 𝝈𝟔 = 𝝓𝑭𝑬𝝈𝒎 �̆�𝜺𝒎𝒎 𝒔𝜺 𝝓𝑭𝑬𝜺𝒂𝒎
+  𝜺𝒙𝒂 

 

4.3.7 Method 7 
In Method 7, in addition to a numerical model, the following information from the experimental 
structure is needed: 

• Mode shapes 𝝓𝒙𝒂𝒎  (estimated with modal analysis). 
• Strain mode shapes 𝝓𝒙𝜺𝒂𝒎  (estimated with modal analysis). 
• Displacements 𝒖𝒙𝒂 (measured with displacement sensors or by double integration of 

accelerations).  

In this method, modal coordinates (�̃�𝒙𝒎) are estimated with Eq. (4.22), and strain mode shapes 
are expanded using  �̆�𝜺𝒎𝒎, as shown in with Eq. (4.17). 

Strains can be estimated with the expression as: 

 𝜺𝟕 = [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
] �̆�𝜺𝒎𝒎 𝒔 �̃�𝒙𝒎 = [

𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
] �̆�𝜺𝒎𝒎 𝒔 𝝓𝑭𝑬𝒂𝒎

+  𝒖𝒙𝒂 (4.54) 
 

Assuming that �̆�𝝈𝒎𝒎 = �̆�𝜺𝒎𝒎, stresses are estimated as: 

 𝝈𝟕 = [
𝝓𝑭𝑬𝝈𝒂𝒎

𝝓𝑭𝑬𝝈𝒅𝒎
] �̆�𝜺𝒎𝒎 𝒔 �̃�𝒙𝒎 = [

𝝓𝑭𝑬𝝈𝒂𝒎

𝝓𝑭𝑬𝝈𝒅𝒎
] �̆�𝜺𝒎𝒎 𝒔 𝝓𝑭𝑬𝒂𝒎

+  𝒖𝒙𝒂 (4.55) 
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As a summary, the information needed to apply Method 7, the assumptions and the calculations 

needed to estimate strains and stresses at the locations of interests are shown in Table 4.7 

Table 4.7: Summary of the input data, assumptions and equations for Method 7. 

INPUTS 

PREVIOUS 
DATA 

EXPERIMENTAL MODEL 𝝓𝒙𝜺𝒂𝒎  

NUMERICAL MODEL 
𝝓𝑭𝑬𝒂𝒎 

𝝓𝑭𝑬𝜺𝒎  or  𝝓𝑭𝑬𝝈𝒎  

REAL TIME MEASUREMENTS 𝒖𝒙𝒂 

PRELIMINARY CALCULATIONS �̆�𝜺𝒎𝒎 = 𝝓𝑭𝑬𝜺𝒂𝒎
+  𝝓𝒙𝜺𝒂𝒎 

ASSUMPTIONS �̆�𝝈𝒎𝒎 = �̆�𝜺𝒎𝒎 

ESTIMATED STRAIN AND STRESS 𝜺𝟕 = 𝝓𝑭𝑬𝜺𝒎 �̆�𝜺𝒎𝒎 𝒔 𝝓𝑭𝑬𝒂𝒎
+  𝒖𝒙𝒂 

At any point of the structure 𝝈𝟕 = 𝝓𝑭𝑬𝝈𝒎 �̆�𝜺𝒎𝒎 𝒔 𝝓𝑭𝑬𝒂𝒎
+  𝒖𝒙𝒂 

 

4.3.8 Method 8 
With the techniques presented in the previous sections, experimental mode shapes and experimental 
strain mode shapes are used to estimate matrices �̆�𝒎𝒎, �̆�𝜺𝒎𝒎 and �̆�𝝈𝒎𝒎 which are then utilized to 
expand the experimental mode shapes and strain mode shapes to the unmeasured DOFs. In this case, 
Method 8 only uses the modal parameters of a numerical model, i.e., the experimental modal 
parameters are not required. However, it must be noticed that the experimental modal parameters are 
needed in a preliminary phase to study the correlation between the numerical and the experimental 
models, and proceed with the updating of the numerical model, if needed. 

Using modal coordinates �̃�𝒙𝒎 estimated with Eq. (4.22) and numerical strain mode shapes, strains 
can be estimated as: 

 𝜺𝟖 = 𝝓𝑭𝑬𝜺𝒎 �̃�𝒙𝒎 = [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
]𝝓𝑭𝑬𝒂𝒎

+  𝒖𝒙𝒂 (4.56) 
 

Similarly, stresses are estimated as: 
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 𝝈𝟖 = 𝝓𝑭𝑬𝝈𝒎 �̃�𝒙𝒎 = [
𝝓𝑭𝑬𝝈𝒂𝒎

𝝓𝑭𝑬𝝈𝒅𝒎
]𝝓𝑭𝑬𝒂𝒎

+  𝒖𝒙𝒂 (4.57) 
 

The information needed to apply Method 8, as well as the assumptions and calculations needed 
are show in Table 4.8 

Table 4.8: Summary of the input data, assumptions and equations for Method 8. 

INPUTS 

PREVIOUS 
DATA 

EXPERIMENTAL MODEL  

NUMERICAL MODEL 
𝝓𝑭𝑬𝒂𝒎 

𝝓𝑭𝑬𝜺𝒎  or  𝝓𝑭𝑬𝝈𝒎  

REAL TIME MEASUREMENTS 𝒖𝒙𝒂 

PRELIMINARY CALCULATIONS  

ASSUMPTIONS �̆�𝒎𝒎 = �̆�𝝈𝒎𝒎 = �̆�𝜺𝒎𝒎  

ESTIMATED STRAIN AND STRESS 𝜺𝟖 = 𝝓𝑭𝑬𝜺𝒎 𝝓𝑭𝑬𝒂𝒎
+  𝒖𝒙𝒂 

At any point of the structure 𝝈𝟖 = 𝝓𝑭𝑬𝝈𝒎 𝝓𝑭𝑬𝒂𝒎
+  𝒖𝒙𝒂 

 
This methodology presents significant advantages. Modal expansion is not required, and 

consequently, the calculation of transformation matrices is not needed, either. Moreover, issues 
related to closely spaced modes, mode pairing, overfitting of mode shapes, etc., are prevented, and a 
number of modes higher than the experimental modes can be used. 

It is interesting to note that the expressions obtained with Method 1 coincide with those derived 
with Method 8, i.e.: 

 𝜺𝟏 = [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
] �̆�𝒎𝒎 �̆�𝒎𝒎

+  𝝓𝑭𝑬𝒂𝒎 𝒖𝒙𝒂 = [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
]𝝓𝑭𝑬𝒂𝒎  𝒖𝒙𝒂 = 𝜺𝟖 (4.58) 

 
And the same is inferred for stresses: 

 𝝈𝟏 = [
𝝓𝑭𝑬𝝈𝒂𝒎

𝝓𝑭𝑬𝝈𝒅𝒎
] �̆�𝒎𝒎 �̆�𝒎𝒎

+  𝝓𝑭𝑬𝒂𝒎 𝒖𝒙𝒂 = [
𝝓𝑭𝑬𝝈𝒂𝒎

𝝓𝑭𝑬𝝈𝒅𝒎
]  𝝓𝑭𝑬𝒂𝒎  𝒖𝒙𝒂 = 𝝈𝟖 (4.59) 

 
Therefore, the projection of the experimental response on the subspace spanned by the 

experimental mode shapes and the subsequent expansion to the unmeasured DOFs, does not represent 
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any kind of benefit when it is assumed that �̆�𝝈𝒎𝒎 =  �̆�𝜺𝒎𝒎 = �̆�𝒎𝒎; on the contrary, extra work is 
needed to obtain the same results.  

Some authors [114]–[116], [121], [123], [127] seem to have already used equations similar to Eq. 
(4.56) and (4.57) to calculate stresses, thus, using numerical stress mode shapes to calculate stresses 
and not using a transformation matrix. Stresses were estimated in offshore monopile wind turbines 
[114], [116], [127], a small scale vehicle-like frame structure [121] and in a numerical model of a 
truss [123]. However, this approach was supposedly based on the hypothesis of a perfect correlation 
between the experimental and the numerical models, and no further theoretical explanations were 
developed. 

Variations of Method 8 
Alternative equations could be proposed using modal coordinates �̃�𝜺𝒙𝒎 obtained from Eq.(4.24). 
Strains would be estimated as: 

 𝜺𝟖𝒃 = 𝝓𝑭𝑬𝜺𝒎 �̃�𝜺𝒙𝒎 = [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
]𝝓𝑭𝑬𝜺𝒂𝒎

+  𝜺𝒙𝒂 (4.60) 
 

and stresses as follows: 

 𝝈𝟖𝒃 = 𝝓𝑭𝑬𝝈𝒎 �̃�𝜺𝒙𝒎 = [
𝝓𝑭𝑬𝝈𝒂𝒎

𝝓𝑭𝑬𝝈𝒅𝒎
]𝝓𝑭𝑬𝜺𝒂𝒎

+  𝜺𝒙𝒂 (4.61) 
 

Alternatively, if modal coordinates �̃�𝒕𝒙𝒎 are calculated with Eq. (4.26), strains are estimated as: 

 𝜺𝟖𝒄 = 𝝓𝑭𝑬𝜺𝒎 �̃�𝒕𝒙𝒎 = [
𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝜺𝒅𝒎
] [

𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝒂𝒎
]
+

[
𝜺𝒙𝒂

𝒖𝒙𝒂
] (4.62) 

 
Similarly, stresses can be expressed as: 

 𝝈𝟖𝒄 = 𝝓𝑭𝑬𝝈𝒎 �̃�𝒕𝒙𝒎 = [
𝝓𝑭𝑬𝝈𝒂𝒎

𝝓𝑭𝑬𝝈𝒅𝒎
] [

𝝓𝑭𝑬𝜺𝒂𝒎

𝝓𝑭𝑬𝒂𝒎
]
+

[
𝜺𝒙𝒂

𝒖𝒙𝒂
] (4.63) 

 

4.3.9 Summary  
In this section a summary of the main characteristics and requirements of each of the methods 
presented is provided.  
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Firstly, Table 4.9 presets the requirements of each methodology in terms of sensors needed and if 
a numerical model is required. It is assumed that displacements (𝒖𝒙𝒂) are estimated from acceleration 
measurements. 

Table 4.9: Required sensors and/or numerical models in the studied methodologies. 

Method Accelerometers Strain gauges FEM 

Method 1 Required Not required Required 
 Method 2 Not Required Required Required 
Method 3 Required Required  Required 

Method 4 Required Required  Required 
Method 5 Required Not required Required 
Method 6 Not Required Required Required 
Method 7 Required Required Required 
Method 8 Required Not required Required 

 
In Table 4.10, the strain estimation equations for each method are summarize. The initial equations 

based on modal superposition are presented, along with the final equations expressed in terms of 
modal parameters and experimental responses. 

Table 4.10: Summary of the strain estimation equations for each method. 

Method Initial equation Final equation 

Method 1 𝜺𝟏 = �̃�𝒙𝜺𝒎𝟏
 �̂�𝒙𝒎 𝜺𝟏 = 𝝓𝑭𝑬𝜺𝒎 �̆�𝒎𝒎 𝝓𝒙𝒂𝒎

+  𝒖𝒙𝒂 

Method 2 𝜺𝟐 = �̃�𝒙𝜺𝒎𝟐
 �̂�𝜺𝒙𝒎 𝜺𝟐 = 𝝓𝑭𝑬𝜺𝒎 �̆�𝜺𝒎𝒎 𝝓𝒙𝜺𝒂𝒎

+  𝜺𝒙𝒂 

Method 3 𝜺𝟑 = �̃�𝒙𝜺𝒎𝟑
 �̂�𝒙𝒎 𝜺𝟑 = 𝝓𝑭𝑬𝜺𝒎 �̆�𝜺𝒎𝒎 𝝓𝒙𝒂𝒎

+  𝒖𝒙𝒂 

Method 4 𝜺𝟒 = �̃�𝒙𝜺𝒎𝟒
 �̂�𝒕𝒙𝒎 𝜺𝟒 = 𝝓𝑭𝑬𝜺𝒎 �̆�𝒕𝒎𝒎 [

𝝓𝒙𝜺

𝝓𝒙
]
+

[
𝜺𝒙𝒂

𝒖𝒙𝒂
] 

Method 5 𝜺𝟓 = �̃�𝒙𝜺𝒎𝟓
 �̃�𝒙𝒎 𝜺𝟓 = 𝝓𝑭𝑬𝜺𝒎 �̆�𝒎𝒎 𝒔 𝝓𝑭𝑬𝒂𝒎

+  𝒖𝒙𝒂 

Method 6 𝜺𝟔 = �̃�𝒙𝜺𝒎𝟔
 �̃�𝜺𝒙𝒎 𝜺𝟔 = 𝝓𝑭𝑬𝜺𝒎 �̆�𝜺𝒎𝒎 𝒔𝜺 𝝓𝑭𝑬𝜺𝒂𝒎

+  𝜺𝒙𝒂 

Method 7 𝜺𝟕 = �̃�𝒙𝜺𝒎𝟕
 �̃�𝒙𝒎 𝜺𝟕 = 𝝓𝑭𝑬𝜺𝒎 �̆�𝜺𝒎𝒎 𝒔 𝝓𝑭𝑬𝒂𝒎

+  𝒖𝒙𝒂 

Method 8 𝜺𝟖 = 𝝓𝑭𝑬𝜺𝒎𝟖  �̃�𝒙𝒎 𝜺𝟖 = 𝝓𝑭𝑬𝜺𝒎 𝝓𝑭𝑬𝒂𝒎
+  𝒖𝒙𝒂 
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Considering that: 

• �̃�𝒙𝜺𝒎𝟐
= �̃�𝒙𝜺𝒎𝟑

= �̃�𝒙𝜺𝒎𝟔 = �̃�𝒙𝜺𝒎𝟕 
• �̃�𝒙𝜺𝒎𝟏

= �̃�𝒙𝜺𝒎𝟓
 

4.4 Uncertainty analysis  
In this section, all the sources of error that could potentially affect the methods proposed to estimate 
stresses, as well as their effects in the precision obtained with these methodologies are investigated. 

4.4.1 Factors influencing modal coordinates �̂�𝒙𝒎 
In this section, the impact of mode shape truncation, signal noise, errors in mode shape estimation, 
and modes complexity on the modal coordinates �̂�𝒙𝒎 is studied. 

Truncation 
The exact modal decomposition of the experimental response vector 𝒖𝒙𝒂 is given by: 

 𝒖𝒙𝒂 = [𝝓𝒙𝒂𝒎 𝝓𝒙𝒂𝒓  ] [
𝒒𝒙𝒎

𝒒𝒙𝒓
] = 𝝓𝒙𝒂𝒎  𝒒𝒙𝒎 + 𝝓𝒙𝒂𝒓 𝒒𝒙𝒓 (4.64) 

 
where subscript ‘r’ indicates truncated modes (not measured). As seen previously, due to modal 

truncation, an approximation of the experimental modal coordinates (�̂�𝒙𝒎) can be obtained Eq. (4.21). 
Substituting Eq. (4.64) in Eq. (4.21), it is inferred that: 

 �̂�𝒙𝒎 = 𝝓𝒙𝒂𝒎
+  (𝝓𝒙𝒂𝒎  𝒒𝒙𝒎 + 𝝓𝒙𝒂𝒓  𝒒𝒙𝒓) =  𝒒𝒙𝒎 + 𝝓𝒙𝒂𝒎

+ 𝝓𝒙𝒂𝒓  𝒒𝒙𝒓 (4.65) 
 

where the term 𝝓𝒙𝒂𝒎
+ 𝝓𝒙𝒂𝒓  𝒒𝒙𝒓 gives the contribution of the truncated modes to the measured 

experimental coordinates. If the modal coordinates �̂�𝒙𝒎 are plotted in the frequency domain, the effect 
of the truncated modes appears as small peaks at each natural frequency corresponding to the 
truncated modes. The effect of the truncated modes is easily removed if the experimental responses 
are filtered.  

This phenomenon is illustrated in Figure 4.3, which considers a system with five modes. In Figure 
4.3 (a), the five modal coordinates are plotted, while in Figure 4.3 (b), the effect of truncation is 
illustrated by estimating only three modal coordinates with the first three mode shapes. 
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Figure 4.3: Effects of truncation in the experimental modal coordinates: (a) no truncation effects and (b) truncation 
effects. 

If some mode is missing in the modal matrix (for example, if it was not identified), some peaks 
corresponding to this mode will appear, mainly in the neighbour modal coordinates. This phenomenon 
is also illustrated in Figure 4.4. In Figure 4.4 (b), for instance, modes 2 and 5 are missing, which is 
why only three modal coordinates are displayed. It can be observed that modal coordinates show more 
peaks than the principal one. 

 
Figure 4.4: Effects of missing modes in the experimental modal coordinates: (a) all modes are considered and (b) 
mode two is missing. 

    (a) ( ) 
. 

    
(a) ( ) 

. 
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Errors in the mode shapes 
If the experimental mode shapes are estimated with modal analysis and some errors are present in the 
components of the mode shapes, the modal coordinates (�̂�𝒙𝒎) are obtained with the expression: 

 �̂�𝒙𝒎 = �̂�𝒙𝒂𝒎
+  𝒖𝒙𝒂 (4.66) 

 
where �̂�𝒙𝒂𝒎  is the estimated experimental modal matrix. Substitution of Eq. (4.64) in Eq. (4.66) 

gives: 

 �̂�𝒙𝒎 = �̂�𝒙𝒂𝒎
+ 𝝓𝒙𝒂𝒎𝒒𝒙𝒎 + �̂�𝒙𝒂𝒎

+ 𝝓𝒙𝒂𝒓𝒒𝒙𝒓 (4.67) 
 

Defining the error in the mode shapes 𝚫𝝓𝒙𝒂𝒎  as: 

 𝚫𝝓𝒙𝒂𝒎 = 𝝓𝒙𝒂𝒎 − �̂�𝒙𝒂𝒎  (4.68) 
 

Eq. (4.67) can be rewritten as: 

 �̂�𝒙𝒎 = 𝒒𝒙𝒎 + �̂�𝒙𝒂𝒎
+  𝚫𝝓𝒙𝒒𝒙𝒎 + �̂�𝒙𝒂𝒎

+ 𝝓𝒙𝒂𝒓𝒒𝒙𝒓 (4.69) 
 

From which can be inferred that some peaks at both (measured and not measured natural 
frequencies) can appear in the modal coordinates when the experimental mode shapes are not 
estimated with accuracy. 

The effect of errors in the mode shapes is illustrated in Figure 4.5, which compares the modal 
coordinates estimated of a system with four modes without errors (Figure 4.5 (b)) and the modal 
coordinates obtained after inducing a random error of 5% in the components of the mode shapes 
(Figure 4.5 (b)). The errors follow a normal distribution from -5% to 5% of each mode shape 
component. 
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Figure 4.5: Effect of mode shape errors in the experimental modal coordinates: (a) no mode shape errors and (b) 
errors in the mode shape components around 5%. 

Noise in the experimental responses 
Assuming that some noise is present in the experimental response of the structure, and the noise in 
the signals is defined by the vector 𝒏𝒙𝒂, then the measured signal is given by 𝒖𝒙𝒂 + 𝒏𝒙𝒂, and Eq. 
(4.65) becomes: 

 �̂�𝒙𝒎 = 𝒒𝒙𝒎 + 𝝓𝒙𝒂𝒎
+  𝝓𝒙𝒂𝒓  𝒒𝒙𝒓 + 𝝓𝒙𝒂𝒎

+  𝒏𝒙𝒂 (4.70) 
 

From which is inferred that contribution of the noise to the modal coordinates is given by the term 
𝝓𝒙𝒂𝒎

+ 𝒏𝒙𝒂. 

This effect is illustrated in Figure 4.6, where a system with only four mode shapes is considered. 
When white noise is present in the measured displacements of all DOFs, the modal coordinates exhibit 
a higher level of noise (Figure 4.6 (b)). 

(a) 
  

( ) 
  . 
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Figure 4.6: Effect of response noise in the modal coordinates: (a) without noise and (b) noise in the measure 
displacements. 

Complexity 
If the mode shapes are complex, the decomposition of 𝒖𝒙𝒂 in modal coordinates is given by: 

 𝒖𝒙𝒂 = [𝝓𝒙𝒂𝒎 𝝓𝒙𝒂𝒓  ] [
𝒒𝒙𝒎

𝒒𝒙𝒓
] + [𝝓𝒙𝒂𝒎

∗ 𝝓𝒙𝒂𝒓
∗  ] [

𝒒𝒙𝒎
∗

𝒒𝒙𝒓
∗ ] (4.71) 

 
where the superscript ‘*’ indicates complex conjugate. If the experimental modal coordinates �̂�𝒙𝒎 

are approximated with Eq. (4.21), the following relationship between the exact and the approximate 
solution is obtained: 

 �̂�𝒙𝒎 = 𝒒𝒙𝒎 + 𝝓𝒙𝒂𝒎
+ 𝝓𝒙𝒂𝒓  𝒒𝒙𝒓 + 𝝓𝒙𝒂𝒎

+ 𝝓𝒙𝒂𝒎
∗  𝒒𝒙𝒎

∗ + 𝝓𝒙𝒂𝒎
+  𝝓𝒙𝒂𝒓

∗  𝒒𝒙𝒓
∗  (4.72) 

 
From which it is inferred that, in the frequency domain, apart to the main peak corresponding 

to 𝒒𝒙𝒎, three additional set of peaks will be obtained: 

• 𝝓𝒙𝒂𝒎
+  𝝓𝒙𝒂𝒓  𝒒𝒙𝒓 : Contribution of the truncated modes (as small peaks at each natural 

frequency corresponding to the truncated modes). 
• 𝝓𝒙𝒂𝒎

+  𝝓𝒙𝒂𝒎
∗  𝒒𝒙𝒎

∗  : Contribution of the conjugate modal coordinates in the measured 
frequency range (small peaks at the measured natural frequencies). 

• 𝝓𝒙𝒂𝒎
+  𝝓𝒙𝒂𝒓

∗  𝒒𝒙𝒓
∗  : Contribution of the truncated conjugate modal coordinates out of the 

measured frequency range (small peaks at each natural frequency corresponding to the 
truncated modes).  

  
(a) 

  
( ) 

. 
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4.4.2 Factors influencing modal coordinates �̃�𝒙𝒎 
In this section, the impact of mode shape truncation, signal noise, and errors in mode shape estimation 
on the modal coordinates �̃�𝒙𝒎 is studied. 

Truncation 
If Eq. (4.64) is substituted in Eq. (4.22), the modal coordinates �̃�𝒙𝒎 can be expressed as:  

 �̃�𝒙𝒎 = 𝝓𝑭𝑬𝒂𝒎
+  (𝝓𝒙𝒂𝒎  𝒒𝒙𝒎 + 𝝓𝒙𝒂𝒓  𝒒𝒙𝒓) (4.73) 

 
Eq. (4.73) can be rewritten as: 

 �̃�𝒙𝒎 =  𝝓𝑭𝑬𝒂𝒎
+  𝝓𝒙𝒂𝒎  𝒒𝒙𝒎 + 𝝓𝑭𝑬𝒂𝒎

+  𝝓𝒙𝒂𝒓  𝒒𝒙𝒓 (4.74) 
 

where the term 𝝓𝑭𝑬𝒂𝒎
+  𝝓𝒙𝒂𝒓  𝒒𝒙𝒓 gives the contribution of the residual modes to the measured 

experimental coordinates and 𝝓𝑭𝑬𝒂𝒎
+  𝝓𝒙𝒂𝒎  𝒒𝒙𝒎 the contribution of the measured modes. If the 

modal coordinates �̃�𝒙𝒎 are plotted in the frequency domain, this effect appears as small peaks at each 
natural frequency corresponding to the residual modes. 

This effect is illustrated in Figure 4.7, where a system with five mode shapes is considered. 
Truncation of different modes is illustrated as well as missing modes. Figure 4.7 (a) shows the 
expected modal coordinates 𝒒𝒙𝒎 , Figure 4.7 (b) illustrates �̃�𝒙𝒎 when the last mode is truncated, 
Figure 4.7 (c) when modes three and five are truncated and Figure 4.7 (d) when the third mode is 
missing and the last mode is truncated. As expected, small peaks at each natural frequency 
corresponding to the truncated or missing mode appear, however, other peaks due to errors in the 
mode shapes also appear (see section: Error in the mode shapes). 
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Figure 4.7: Effects of truncation and missing modes in the modal coordinates �̃�𝒙𝒎: (a) exact modal coordinates, 
(b) truncation of mode 5, (c) truncation of modes 3, 4 and 5 and (d) truncation of mode 5 and third mode missing.  

Error in the mode shapes 
If the discrepancies between the experimental and the numerical mode shapes (𝚫𝝓𝒙𝑭𝑬) are defined 
as:  

 𝚫𝝓𝒙𝑭𝑬 = 𝝓𝒙𝒂𝒎 − 𝝓𝑭𝑬𝒂𝒎  (4.75) 
 

Substitution of Eq. (4.75) in Eq. (4.74), leads to: 

 �̃�𝒙𝒎 = 𝒒𝒙𝒎 + 𝝓𝑭𝑬𝒂𝒎
+  𝚫𝝓𝒙𝑭𝑬 𝒒𝒙𝒎 + 𝝓𝑭𝑬𝒂𝒎

+  𝝓𝒙𝒂𝒓 𝒒𝒙𝒓 (4.76) 
 

    (a) ( ) 

  ( ) ( )   
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where the term  𝝓𝑭𝑬𝒂𝒎
+  𝚫𝝓𝒙𝑭𝑬 𝒒𝒙𝒎 gives the effect of errors in the mode shapes. If the modal 

coordinates �̃�𝒙𝒎  are plotted in the frequency domain, the effect of the term 𝝓𝑭𝑬𝒂𝒎
+  𝚫𝝓𝒙𝑭𝑬 𝒒𝒙𝒎 

appears as peaks at the natural frequencies of the measured modes, the magnitude of the peaks being 
dependent on 𝚫𝝓𝒙𝑭𝑬 . 

Figure 4.8 illustrates this effect, with peaks appearing at the frequencies of the measured modes. 
No truncation effects are considered in this illustration. 

 
Figure 4.8: Effect of error in the mode shapes in the modal coordinates: (a) no errors in the mode shapes and (b) 
errors between the experimental and numerical modes. 

Noise 
If the effect of noise in the experimental responses is considered and defined by the vector 𝒏𝒙𝒂, the 
measured signal is given by 𝒖𝒙𝒂 + 𝒏𝒙𝒂, Eq. (4.76) becomes: 

 �̃�𝒙𝒎 = 𝒒𝒙𝒎 + 𝝓𝑭𝑬𝒂𝒎
+  𝚫𝝓𝒙𝑬 𝒒𝒙𝒎 + 𝝓𝑭𝑬𝒂𝒎

+ 𝝓𝒙𝒂𝒓  𝒒𝒙𝒓 + 𝝓𝑭𝑬𝒂𝒎
+  𝒏𝒙𝒂 (4.77) 

 
where the effect of noise is given by the term 𝝓𝑭𝑬𝒂𝒎

+ 𝒏𝒙𝒂. 

This effect is illustrated in Figure 4.9 where a system with only four mode shapes is considered. 
When white noise is present in the measured displacements at all DOFs, the modal coordinates exhibit 
a higher level of noise (Figure 4.9 (b)). 

  (a) ( )   
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Figure 4.9: Effect of response noise in the modal coordinates: (a) without noise and (b) noise in the measured 
displacements. 

4.4.3 Uncertainty in the strain estimation methods 
The exact solution given by Eq. (4.3) can also be expressed as: 

 𝜺𝒙 = 𝝓𝒙𝜺 𝒒𝒙 = 𝝓𝒙𝜺𝒎 𝒒𝒙𝒎 + 𝝓𝒙𝜺𝒓 𝒒𝒙𝒓 (4.78) 
 

Method 1 
The following expression for the strains estimated with Method 1 can be obtained substituting Eq. 
(4.65) in Eq. (4.28): 

 𝜺𝟏 = 𝝓𝑭𝑬𝜺𝒎 �̆�𝒎𝒎 �̂�𝒙𝒎 = 𝝓𝑭𝑬𝜺 �̆�𝒎𝒎 (𝒒𝒙𝒎 + 𝝓𝒙𝒂𝒎
+ 𝝓𝒙𝒂𝒓  𝒒𝒙𝒓) (4.79) 

 
Combining Eq. (4.78) and Eq. (4.79), the error in the estimated strains with Method 1 (𝚫𝛆𝟏  =

𝜺𝒙 − 𝜺𝟏), can be expressed as: 

 𝚫𝛆𝟏  = (𝝓𝒙𝜺𝒎 − 𝝓𝑭𝑬𝜺𝒎 �̆�𝒎𝒎)𝒒𝒙𝒎 + (𝝓𝒙𝜺𝒓 − 𝝓𝑭𝑬𝜺𝒎 �̆�𝒎𝒎𝝓𝒙𝒂𝒎
+ 𝝓𝒙𝒂𝒓)𝒒𝒙𝒓 (4.80) 

 

Method 2 
In the case of Method 2, the effects of truncation in the estimated modal coordinates �̂�𝒙𝜺𝒎 can be 
expressed as: 

    ( ) (a) 
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 �̂�𝒙𝜺𝒎 = 𝒒𝒙𝜺𝒎 + 𝝓𝒙𝜺𝒂𝒎
+ 𝝓𝒙𝜺𝒂𝒓  𝒒𝒙𝜺𝒓 = 𝒒𝒙𝒎 + 𝝓𝒙𝜺𝒂𝒎

+ 𝝓𝒙𝜺𝒂𝒓  𝒒𝒙𝒓 (4.81) 
 

where 𝒒𝒙𝜺𝒎 = 𝒒𝒙𝒎 and 𝒒𝒙𝜺𝒓 = 𝒒𝒙𝒓 . The strains estimated with Method 2 can be rewritten as: 

 𝜺𝟐 = �̃�𝒙𝜺𝒎𝟐
 (𝒒𝒙𝒎 + 𝝓𝒙𝜺𝒂𝒎

+ 𝝓𝒙𝜺𝒂𝒓  𝒒𝒙𝒓) (4.82) 
 

Combining Eq. (4.78) and Eq. (4.82), the error of Method 2 (𝚫𝛆𝟐  = 𝜺𝒙 − 𝜺𝟐) can be expressed 
as: 

 𝚫𝛆𝟐  = (𝝓𝒙𝜺𝒎 − �̃�𝒙𝜺𝒎𝟐
)𝒒𝒙𝒎 + (𝝓𝒙𝜺𝒓 − �̃�𝒙𝜺𝒎𝟐

𝝓𝒙𝜺𝒂𝒎
+ 𝝓𝒙𝜺𝒂𝒓)𝒒𝒙𝒓 (4.83) 

or alternatively: 

 𝚫𝛆𝟐  = (𝝓𝒙𝜺𝒎 − 𝝓𝑭𝑬𝜺𝒎 �̆�𝜺𝒎𝒎)𝒒𝒙𝒎 + (𝝓𝒙𝜺𝒓 − 𝝓𝑭𝑬𝜺𝒎�̆�𝜺𝒎𝒎𝝓𝒙𝜺𝒂𝒎
+ 𝝓𝒙𝜺𝒂𝒓)𝒒𝒙𝒓 (4.84) 

 

Method 3 
The equation to estimated strains with Method 3 are rewritten as: 

 𝜺𝟑 = 𝝓𝑭𝑬𝜺 �̆�𝜺𝒎𝒎 �̂�𝒙𝒎 = 𝝓𝑭𝑬𝜺  �̆�𝜺𝒎𝒎 (𝒒𝒙𝒎 + 𝝓𝒙𝜺𝒂𝒎
+ 𝝓𝒙𝜺𝒂𝒓 𝒒𝒙𝒓)  (4.85) 

 
And the following expression for error 𝚫𝛆𝟑 = 𝜺𝒙 − 𝜺𝟑 can be obtained combining Eq. (4.78) and 

Eq. (4.85): 

 𝚫𝛆𝟑  = (𝝓𝒙𝜺𝒎 − �̃�𝒙𝜺𝒎𝟑
)𝒒𝒙𝒎 + (𝝓𝒙𝜺𝒓 − �̃�𝒙𝜺𝒎𝟑

𝝓𝒙𝒂𝒎
+ 𝝓𝒙𝒂𝒓)𝒒𝒙𝒓  (4.86) 

 
or: 

 𝚫𝛆𝟑 = (𝝓𝒙𝜺𝒎 − 𝝓𝑭𝑬𝜺𝒎�̆�𝜺𝒎𝒎)𝒒𝒙𝒎 + (𝝓𝒙𝜺𝒓 − 𝝓𝑭𝑬𝜺𝒎�̆�𝜺𝒎𝒎𝝓𝒙𝒂𝒎
+ 𝝓𝒙𝒂𝒓)𝒒𝒙𝒓  (4.87) 

 

Method 4 
Regarding Method 4, Eq. (4.43) can be expressed as: 

 𝜺𝟒 = 𝝓𝑭𝑬𝜺  �̆�𝒕𝒎𝒎 �̂�𝒕𝒙𝒎  (4.88) 
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Therefore, the error 𝚫𝛆𝟒 = 𝜺𝒙 − 𝜺𝟒 is expressed as follows: 

 𝚫𝜺𝟒 = [𝝓𝒙𝜺𝒎 − �̃�𝒙𝜺𝒎𝟒
] 𝒒𝒙𝒎 + [𝝓𝒙𝜺𝒓 − �̃�𝒙𝜺𝒎𝟒

(
𝝓𝒙𝜺𝒂𝒎

𝝓𝒙𝒂𝒎
)
+

(
𝝓𝒙𝜺𝒂𝒓

𝝓𝒙𝒂𝒓
)] 𝒒𝒙𝒎 (4.89) 

 
or: 

 
𝚫𝜺𝟒 = [𝝓𝒙𝜺𝒎 − 𝝓𝑭𝑬𝜺𝒎  �̆�𝒕𝜺𝒎𝒎] 𝒒𝒙𝒎

+ [𝝓𝒙𝜺𝒓 − 𝝓𝑭𝑬𝜺𝒎 �̆�𝒕𝜺𝒎𝒎 (
𝝓𝒙𝜺𝒂𝒎

𝝓𝒙𝒂𝒎
)
+

(
𝝓𝒙𝜺𝒂𝒓

𝝓𝒙𝒂𝒓
)] 𝒒𝒙𝒎 

(4.90) 

 

Method 5 
In the case of Method 5, the errors are given by the expression:  

 𝚫𝜺𝟓 = 𝜺𝒙 − 𝜺𝟓 = 𝝓𝒙𝜺𝒎 𝒒𝒙𝒎 + 𝝓𝒙𝜺𝒓 𝒒𝒙𝒓 − �̃�𝒙𝜺𝒎  �̃�𝒙𝒎 (4.91) 
 

Denoting the discrepancies between the experimental strain mode shapes 𝝓𝒙𝜺𝒎 and the expanded 
strain mode shapes �̃�𝒙𝜺𝒎𝟓

 as 𝜟𝝓𝒙𝜺𝒎, i.e: 

 𝜟𝝓𝒙𝜺𝒎𝟓
= 𝝓𝒙𝜺𝒎 − �̃�𝒙𝜺𝒎𝟓

= 𝝓𝒙𝜺𝒎 − 𝝓𝑭𝑬𝜺𝒎�̆�𝒎𝒎  (4.92) 
 

Considering 𝚫�̃�𝒙𝒎 the difference between the experimental modal coordinates 𝒒𝒙𝒎 and the modal 
coordinates �̃�𝒙𝒎, thus: 

 𝚫�̃�𝒙𝒎 = 𝒒𝒙𝒎 − �̃�𝒙𝒎  (4.93) 
 

where  

 �̃�𝒙𝒎 = (�̆�𝒎𝒎 + 𝝓𝑭𝑬𝒂𝒎
+ 𝝓𝑭𝑬𝒂𝒓�̆�𝒎𝒎)𝒒𝒙𝒎 + (�̆�𝒎𝒓 + 𝝓𝑭𝑬𝒂𝒎

+ 𝝓𝑭𝑬𝒂𝒓�̆�𝒓𝒓)𝒒𝒙𝒓  (4.94) 
 

Eq. (4.91) can be rewritten as: 

 𝚫𝜺𝟓 = 𝝓𝒙𝜺𝒓 𝒒𝒙𝒓 + 𝝓𝒙𝜺𝒎 𝜟�̃�𝒙𝒎 + 𝜟𝝓𝒙𝜺𝒎𝟓
𝒒𝒙𝒎 − 𝜟𝝓𝒙𝜺𝒎𝟓

 𝜟�̃�𝒙𝒎 (4.95) 
 

Method 6 
In a similar way, the errors obtained with Method 6 are given by: 



4.4 Uncertainty analysis  

94 

 𝚫𝜺𝟔 = 𝝓𝒙𝜺𝒓 𝒒𝒙𝒓 + 𝝓𝒙𝜺𝒎  𝜟�̃�𝜺𝒙𝒎 + 𝜟𝝓𝒙𝜺𝒎𝟔
 𝒒𝒙𝒎 − 𝜟𝝓𝒙𝜺𝒎𝟔

 𝜟�̃�𝜺𝒙𝒎 (4.96) 
 

where 𝜟𝝓𝒙𝜺𝒎𝟔
 is here obtained with the expression: 

 𝜟𝝓𝒙𝜺𝒎𝟔
=  𝝓𝒙𝜺𝒎 − �̃�𝒙𝜺𝒎𝟔

= 𝝓𝒙𝜺𝒎 − 𝝓𝑭𝑬𝜺𝒎�̆�𝜺𝒎𝒎  (4.97) 
 

And 𝜟�̃�𝒙𝜺𝒎  is expressed as: 

 𝜟�̃�𝒙𝜺𝒎 =  𝒒𝒙𝒎 − �̃�𝒙𝜺𝒎  (4.98) 
 

Method 7 
The error of Method 7 is again expressed as: 

 𝚫𝜺𝟕 = 𝝓𝒙𝜺𝒓 𝒒𝒙𝒓 + 𝝓𝒙𝜺𝒎 𝚫�̃�𝒙𝒎 + 𝜟𝝓𝒙𝜺𝒎𝟔
 𝒒𝒙𝒎 − 𝜟𝝓𝒙𝜺𝒎𝟔

 𝚫�̃�𝒙𝒎 (4.99) 
 

Method 8 
Finally, the error of Method 8 is expressed as: 

 𝚫𝜺𝟖 = 𝝓𝒙𝜺𝒎  𝒒𝒙𝒎 + 𝝓𝒙𝜺𝒓 𝒒𝒙𝒓 − 𝝓𝑭𝑬𝜺𝒎 �̃�𝒙𝒎 (4.100) 
 

Substitution of Eq. (4.94) in Eq.(4.100), gives: 

 𝚫𝜺𝟖 = 𝝓𝒙𝜺𝒓  𝒒𝒙𝒓 + (𝝓𝒙𝜺𝒎 − 𝝓𝑭𝑬𝜺𝒎)𝒒𝒙𝒎 + 𝝓𝑭𝑬𝜺𝒎  𝚫�̃�𝒙𝒎 (4.101) 
 

4.4.4 Errors in the strain mode shapes. Assumption �̆�𝜺𝒎𝒎 = �̆�𝒎𝒎 
As previously commented, the experimental mode shapes �̃�𝒙𝒂𝒎  can be expressed as a linear 
combination of the numerical ones 𝝓𝑭𝑬𝒂𝒎  through the transformation matrix �̆�𝒎𝒎. Moreover, the 
modal matrix 𝝓𝒙𝒂𝒎  can be expressed as: 

 𝝓𝒙𝒂𝒎 = �̃�𝒙𝒂𝒎 + 𝚫𝝓𝒙𝒂𝒎 (4.102) 
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where matrix 𝚫𝝓𝒙𝒂𝒎 is the error between experimental mode shapes 𝝓𝒙𝒂𝒎  and expanded mode 
shapes �̃�𝒙𝒂𝒎 .  

 
Figure 4.10: Notation of errors between experimental mode shapes and expanded mode shapes.  

Eq. (4.102) can be rewritten as: 

 𝝓𝒙𝒂𝒎 = 𝝓𝑭𝑬𝒂𝒎�̆�𝒎𝒎 + 𝚫𝝓𝒙𝒂𝒎 (4.103) 
 

In the same manner, strain mode shapes can be expressed as: 

 𝝓𝒙𝜺𝒂𝒎 = �̃�𝒙𝜺𝒂𝒎 + 𝚫𝝓𝒙𝜺𝒂𝒎  (4.104) 
 

where the experimental strain mode shapes �̃�𝒙𝜺𝒂𝒎  can be expressed as a linear combination of 
the numerical ones 𝝓𝑭𝑬𝜺𝒂𝒎  through the transformation matrix �̆�𝜺𝒎𝒎. 

If a planar beam in bending is considered, the strain mode shapes are related with the mode shapes 
trough the expression: 

 𝝓𝒙𝜺𝒂𝒎 = 𝑦 𝝓𝒙𝒂𝒎
′′  (4.105) 

 
where 𝑦 is the distance to the neutral axis. Substitution of Eq. (4.103) in Eq. (4.105) gives: 

 𝝓𝒙𝜺𝒂𝒎 = 𝑦 (𝝓𝑭𝑬𝒂𝒎�̆�𝒎𝒎 + 𝚫𝝓𝒙𝒂𝒎
′′ ) = 𝝓𝑭𝑬𝜺𝒂𝒎�̆�𝒎𝒎 + 𝑦 𝚫𝝓𝒙𝒂𝒎

′′  (4.106) 
 

From Eq. (4.104) and (4.106) the following relationship between �̆�𝜺𝒎𝒎 and �̆�𝒎𝒎 is obtained: 

 �̆�𝜺𝒎𝒎 = �̆�𝒎𝒎 + 𝝓𝑭𝑬𝜺𝒂𝒎
+ (𝑦𝚫𝝓𝒙𝒂𝒎

′′ − 𝚫𝝓𝜺𝒙𝒂𝒎) (4.107) 
 

which demonstrates that 𝑻𝜺𝒎𝒎 ≠ �̆�𝒎𝒎 and the difference depends on 𝚫𝝓𝒙𝒂𝒎
′′  and 𝚫𝝓𝒙𝜺𝒂𝒎 . 
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4.4.5 Scale of mode shapes 
If the experimental mode shapes are unscaled (𝝍𝒙) the modal decomposition is given by: 

 𝒖𝒙𝒂 ≅ 𝝍𝒙𝒂𝒎 �̂�𝝍𝒙𝒎 (4.108) 
 

The scaled and unscaled mode shapes are related by: 

 𝝓𝒙𝒂𝒎 = 𝝍𝒙𝒂𝒎 𝜶𝒙𝒎 (4.109) 
 

where 𝜶𝒙𝒎 is a diagonal matrix containing the scaling factors. From Eqs. (4.21), (4.108) and 
(4.109), the following relationship between 𝒒𝝍𝒙𝒎 and 𝒒𝒙𝒎 is obtained. 

  �̂�𝝍𝒙𝒎 = 𝜶𝒙𝒎 �̂�𝒙𝒎 (4.110) 
 

The scaled and unscaled strain mode shapes are also related by: 

 𝝓𝜺𝒙𝒂𝒎 = 𝝍𝜺𝒙𝒂𝒎  𝜶𝜺𝒙𝒎 (4.111) 
 

where 𝜶𝜺𝒙𝒎 is also a diagonal matrix containing the scaling factors of the strain mode shapes. If 
𝝍𝒙𝒂𝒎 and 𝝍𝜺𝒙𝒂𝒎  are used, the strains can be obtained as: 

 𝜺𝒙 ≅ 𝝓𝜺𝒙𝒂𝒎�̂�𝒙𝒎 = 𝝍𝜺𝒙𝒂𝒎 𝜶𝜺𝒙𝒎 𝜶𝒙𝒎
−𝟏  �̂�𝝍𝒙𝒎 (4.112) 

 
where it can be observed that the scaling factors of both the mode shapes 𝜶𝒙𝒎 and the strain mode 

shapes 𝜶𝜺𝒙𝒎 are needed. Using the structural dynamic modification, the mode shapes 𝝍𝒙𝒂𝒎 and the 
strain mode shapes 𝝍𝜺𝒙𝒂𝒎  can be expressed as: 

 𝝍𝒙𝒂𝒎 𝜶𝒙𝒎 ≅ 𝝓𝑭𝑬𝒂�̆�𝒎𝒎 (4.113) 
 

and 

 𝝍𝜺𝒙𝒂𝒎  𝜶𝜺𝒙𝒎 ≅ 𝝓𝑭𝑬𝜺𝒂�̆�𝜺𝒎𝒎 (4.114) 
 

Respectively, if it is assumed that �̆�𝒎𝒎 = �̆�𝜺𝒎𝒎 the product 𝜶𝒙𝜺𝒎𝜶𝒙𝒎
−𝟏  can be isolated from Eqs. 

(4.113) and (4.114) as: 
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 𝜶𝜺𝒙𝒎𝜶𝒙𝒎
−𝟏 ≅ 𝝍𝜺𝒙𝒂𝒎

+ 𝝓𝑭𝑬𝜺𝒂𝒎𝝓𝑭𝑬𝒂𝒎
+ 𝝍𝒙𝒂𝒎 (4.115) 

 
If Eq. (4.115) is substituted in Eq. (4.11), the strains at any point of the structure can be obtained with 
the expression: 

 𝜺𝒙 ≅ 𝝓𝑭𝑬𝜺𝒎𝝓𝑭𝑬𝒂𝒎
+ 𝝍𝒙𝒂𝒎�̂�𝝍𝒙𝒎 = 𝝓𝑭𝑬𝜺𝒎𝝓𝑭𝑬𝒂𝒎

+ 𝒖𝒙𝒂 (4.116) 
 

From which is inferred that the scaling factors 𝜶𝒙𝒎 and 𝜶𝜺𝒙𝒎 are not needed if it is assumed that 
�̆�𝒎𝒎 = �̆�𝜺𝒎𝒎. 

 

 

 





 

5 
5 Application cases 

This chapter aims to apply, validate and compare the stress/strain estimation methods proposed in 
Chapter 4. To do this, three examples are studied: a numerical example of a cantilever beam, an 
experimental example of a simply monolithic glass beam and an experimental example of a lab-scale 
steel cantilever beam. Additionally, some of the proposed correlation indicators of Chapter 3 will also 
be applied to study discrepancies between structures. 

5.1 Numerical example: a cantilever beam 
As previously commented, when applying modal expansion techniques to estimate strains, a finite 
element model (Model B / FEM) of the real structure (Model A / Experimental) is required. In this 
section, both models (Models A and B), are simulated through FEM in order to analyse the accuracy 
of the results, avoiding all the sources of error related to experimental measurements. 

In this application case, a steel cantilever beam was modelled with the finite element software 
Abaqus. Model B, which is required to apply the proposed methods, was modelled with a fixed 
support (Figure 5.1). In Model A, an elastic foundation was modelled as boundary condition, instead 
of the fixed support considered in Model B. To obtain different levels of correlation, two values of 
stiffness (K1 and K2) were modelled for the elastic foundation (Figure 5.1), thus, two experimental 
models were considered (hereafter Model A1 and Model A2). 
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Figure 5.1: Boundary conditions of Models B, A1 and A2.  

The following geometrical and material properties were considered in the finite element models 
of the cantilever beam: length 1.8 m, rectangular section of 40 mm x 80 mm, linear elastic material 
with E=200 GPa, Poisson’s ratio = 0.3, and mass-density of 7850 kg/m3. The models were meshed 
with 1920 quadratic brick elements with reduced integration (C3D20R). A damping ratio of 5% was 
considered for all modes. 

Two cases, with different active DOFs, were considered. In the first simulation case, presented in 
section 5.1.1, the structure’s responses were only measured in one direction, thereby considering only 
bending modes in one direction. In the second simulation, detailed in section 5.1.2, the responses were 
measured in two directions, thus bending modes in two directions, and torsional modes, were 
considered. 

5.1.1 First simulation case. Only bending modes 
Firstly, it was assumed that the external force acting on the experimental structure only excites the 
bending modes in the x direction (Figure 5.2). 
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Figure 5.2: Models B, A1 and A2 of the cantilever beam and DOFs when only bending modes are considered.  

Models A1 and A2 were loaded with a concentrated load F(t) generated from a spectral density of 
constant magnitude in the frequency range 0-1600 Hz, that is to say, this load excites five bending 
modes in the x direction in that frequency range. It was assumed that both the strain and the 
displacement response of models A1 and A2 were measured in 6 degrees of freedom (‘a’ DOF’s), 
uniformly distributed as it is shown in Figure 5.2, and in the frequency range 0-800 Hz.  

The natural frequencies, mode shapes, and strain mode shapes, corresponding to the first four 
bending modes in the x direction, were extracted with a frequency analysis for the three models (B, 
A1 and A2), and they are presented in Table 5.1, Figure 5.3 and Figure 5.4, respectively, where the 
locations of the active DOFs are plotted with dots. Although there are five bending modes in the 
frequency range 0-800 Hz, only four modes were considered in this application case.  
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Table 5.1: Natural frequencies [Hz] and errors [%]. 

Mode shape 𝑓𝐵  [𝐻𝑧] 𝑓𝐴1 [𝐻𝑧] Error B-A1 [%]  𝑓𝐴2 [𝐻𝑧] Error B-A2 [%] 
Mode 1 10.07 9.55 5.43 8.96 12.39 
Mode 2 62.94 59.98 4.94 57.16 10.11 
Mode 3 175.61 167.98 4.54 161.78 8.55 
Mode 4 342.33 328.68 4.15 319.06 7.29 

 

 
Figure 5.3: First four bending mode shapes of Models B, A1 and A2.   
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Figure 5.4: First four bending strain mode shapes of Models B, A1 and A2. 

The maximum error between the natural frequencies of models B and A1 is 5.43%, while that 
between models B and A2 of 12.39% (Table 5.1). With respect to the mode shapes, a good correlation 
is obtained between models B and A1 and A2, as it can be seen in the MAC (Table 5.2). The MAC 
between the strain mode shapes is presented in Table 5.3, where it can be seen that the correlation is 
worst when compared with the results obtained for the mode shapes (Table 5.2). 

Table 5.2: MAC between modal matrices of models B and A1 and models B and A2. 

MAC (𝜙𝐵 , 𝜙𝐴1)  MAC (𝜙𝐵 , 𝜙𝐴2) 
0.9997 0.0708 0.0881 0.0922 0.9988 0.0626 0.0888 0.0888 
0.0841 0.9985 0.0787 0.1112 0.0908 0.9944 0.0653 0.1171 
0.0836 0.1109 0.9960 0.0846 0.0808 0.1271 0.9872 0.0682 
0.0948 0.0967 0.1362 0.9935 0.0951 0.0910 0.1603 0.9814 
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Table 5.3: MAC between strain modal matrices of models B and A1 and models B and A2. 

MAC (𝜙𝐵𝜀 , 𝜙𝐴1𝜀)  MAC (𝜙𝐵𝜀 , 𝜙𝐴2𝜀) 
1.0000 0.1444 0.1087 0.0772 1.0000 0.1427 0.1093 0.0778 
0.2211 0.9905 0.0501 0.0360 0.3060 0.9626 0.0286 0.0230 
0.1341 0.1153 0.9876 0.0118 0.1524 0.1500 0.9605 0.0019 
0.0782 0.0584 0.0623 0.9872 0.0760 0.0618 0.0849 0.9647 

 
Moreover, the T-Mass y T-Stiffness indicators are calculated for both models A1 and A2. T-Mass 

(Table 5.4) shows values close to 90◦, indicating almost perfect mass correlation, whereas T-Stiffness 
(Table 5.5) presents significantly low values, indicating discrepancies in terms of stiffness. 

Table 5.4: T-Mass indicator for models A1 and A2 

T-Mass (A1)  T-Mass (A2) 
--- 89.95 89.81 89.53 --- 89.91 89.69 89.28 

89.95 --- 89.88 89.40 89.91 --- 89.75 88.90 
89.81 89.88 --- 89.75 89.69 89.75 --- 89.89 
89.53 89.40 89.75 --- 89.28 88.90 89.89 0.00 

 

Table 5.5: T-Stiffness indicator for models A1 and A2 

T-Stiffness (A1)  T-Stiffness (A2) 
--- 89.06 89.64 89.85 --- 88.25 89.24 89.69 

78.94 --- 87.95 89.14 77.00 --- 86.04 88.41 
59.48 75.68 --- 87.67 56.92 67.28 --- 86.08 
36.98 67.37 81.28 --- 37.61 56.25 75.80 --- 

 
With these models, the objective is to estimate the strain time histories at points d1, d2, d3 and d4 

(deleted DOFs) (Figure 5.2), for both models A1 and A2, using the eight methods proposed in Chapter 
4. Normal strains are estimated in ‘y’ direction, as it is illustrated in Figure 5.2. The strains estimated 
are compared with those obtained directly from the Abaqus simulation (denoted as 𝜀𝐹𝐸𝑀). The strains 
at the four ‘d’ DOFs of Model A1 estimated with filtered modal coordinates are plotted in: Figure 5.5 
at ‘d1’,  Figure 5.6 at ‘d2’, Figure 5.7 at ‘d3’ and Figure 5.8 at ‘d4’. For Model A2, the strain time 
histories calculated with filtered modal coordinates are also show in: Figure 5.9 at ‘d1’, Figure 5.10 
at ‘d2’, Figure 5.11 at ‘d3’ and Figure 5.12 at ‘d4’. 
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Figure 5.5: Estimated strains with all methods compared with the expected strains for Model A1 at ‘d1’ DOF. 

 
Figure 5.6: Estimated strains with all methods compared with the expected strains for Model A1 at ‘d2’ DOF. 
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Figure 5.7: Estimated strains with all methods compared with the expected strains for Model A1 at ‘d3’ DOF. 

 
Figure 5.8: Estimated strains with all methods compared with the expected strains for Model A1 at ‘d4’ DOF. 
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Figure 5.9: Estimated strains with all methods compared with the expected strains for Model A2 at ‘d1’ DOF. 

 
Figure 5.10: Estimated strains with all methods compared with the expected strains for Model A2 at ‘d2’ DOF. 
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Figure 5.11 Estimated strains with all methods compared with the expected strains for Model A2 at ‘d3’ DOF. 

 
Figure 5.12: Estimated strains with all methods compared with the expected strains for Model A2 at ‘d4’ DOF. 
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From the estimated strain time histories (Figure 5.5 to Figure 5.12), it can be inferred that the 
quality of the estimated strain depends on the selected method, the ‘d’ point at which the strains are 
estimated, and the correlation of the system (Model A1 vs Model A2). To analyse the accuracy in 
depth, the quality of the estimated strains for each method is measured by using three criteria widely 
applied in the literature, both in time and frequency domains: the Time Response Assurance Criterion 
(TRAC), the Frequency Response Assurance Criterion (FRAC) and the coefficient of determination 
(R2) (see Table 5.6 and Table 5.7). Whereas the strain time histories previously plotted are those 
estimated with filtered modal coordinates, the quality indicators are calculated for both assumptions: 
filtered modal coordinates and with no-filtered modal coordinates. Modal coordinates are analysed in 
the following subsection (Modal coordinates analysis). 
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Table 5.6: Quality measurements of the estimated strains for Model A1. 

Using modal coordinates without filtering Using filtered modal coordinates 
  TRAC FRAC R2   TRAC FRAC R2 

Me
tho

d 1
 d1 0.996 1.000 0.931 

Me
tho

d 1
 d1 0.992 1.000 0.927 

d2 0.993 1.000 0.986 d2 0.984 1.000 0.976 
d3 0.974 0.999 0.974 d3 0.949 0.998 0.948 
d4 0.976 0.964 0.976 d4 0.848 0.915 0.847 

Me
tho

d 2
 d1 0.897 0.999 0.883  

Me
tho

d 2
 d1 0.996 1.000 0.996 

d2 0.985 1.000 0.985 d2 0.991 1.000 0.991 
d3 0.991 1.000 0.991 d3 0.976 1.000 0.976 
d4 0.987 0.997 0.987 d4 0.949 0.996 0.949 

Me
tho

d 3
 d1 0.997 1.000 0.997 

Me
tho

d 3
 d1 0.993 1.000 0.993 

d2 0.999 1.000 0.999 d2 0.989 1.000 0.989 
d3 0.975 1.000 0.975 d3 0.950 0.999 0.950 
d4 0.983 0.998 0.983 d4 0.855 0.963 0.855 

Me
tho

d 4
 d1 0.996 1.000 0.933 

Me
tho

d 4
 d1 0.992 1.000 0.929 

d2 0.994 1.000 0.989 d2 0.985 1.000 0.979 
d3 0.974 0.999 0.974 d3 0.948 0.997 0.947 
d4 0.977 0.974 0.977 d4 0.850 0.928 0.850 

Me
tho

d 5
 d1 0.997 1.000 0.846 

Me
tho

d 5
 d1 0.990 1.000 0.926 

d2 0.924 0.992 0.867 d2 0.981 1.000 0.974 
d3 0.962 0.988 0.948 d3 0.938 0.997 0.937 
d4 0.933 0.846 0.930 d4 0.843 0.918 0.843 

Me
tho

d 6
 d1 0.934 1.000 0.933 

Me
tho

d 6
 d1 0.997 1.000 0.987 

d2 0.975 1.000 0.969 d2 0.992 1.000 0.982 
d3 0.985 0.999 0.978 d3 0.969 1.000 0.960 
d4 0.985 0.995 0.982 d4 0.899 0.988 0.897 

Me
tho

d 7
 d1 0.997 1.000 0.994 

Me
tho

d 7
 d1 0.991 1.000 0.991 

d2 0.980 0.999 0.950 d2 0.987 1.000 0.987 
d3 0.970 0.997 0.961 d3 0.939 0.998 0.939 
d4 0.971 0.949 0.967 d4 0.850 0.964 0.850 

Me
tho

d 8
 d1 0.996 1.000 0.932 

Me
tho

d 8
 d1 0.989 1.000 0.974 

d2 0.992 1.000 0.985 d2 0.985 1.000 0.974 
d3 0.973 0.999 0.972 d3 0.937 0.998 0.929 
d4 0.977 0.964 0.977 d4 0.850 0.966 0.846 
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Table 5.7: Quality measurements of the estimated strains for Model A2. 

Using modal coordinates without filtering Using filtered modal coordinates 
  TRAC FRAC R2   TRAC FRAC R2 

Me
tho

d 1
 d1 0.986 1.000 0.629 

Me
tho

d 1
 d1 0.983 1.000 0.629 

d2 0.956 0.994 0.931 d2 0.948 0.994 0.919 
d3 0.965 0.990 0.963 d3 0.932 0.987 0.929 
d4 0.949 0.906 0.949 d4 0.796 0.839 0.796 

Me
tho

d 2
 d1 0.872 0.997 0.845 

Me
tho

d 2
 d1 0.991 1.000 0.991 

d2 0.982 1.000 0.982 d2 0.990 1.000 0.990 
d3 0.990 1.000 0.990 d3 0.970 1.000 0.970 
d4 0.988 0.997 0.987 d4 0.935 0.993 0.934 

Me
tho

d 3
 d1 0.992 1.000 0.992 

Me
tho

d 3
 d1 0.990 1.000 0.990 

d2 0.999 1.000 0.999 d2 0.985 1.000 0.985 
d3 0.972 1.000 0.972 d3 0.939 0.997 0.939 
d4 0.980 0.998 0.980 d4 0.828 0.952 0.828 

Me
tho

d 4
 d1 0.986 1.000 0.638 

Me
tho

d 4
 d1 0.983 1.000 0.637 

d2 0.967 0.996 0.946 d2 0.957 0.996 0.933 
d3 0.964 0.987 0.962 d3 0.930 0.983 0.927 
d4 0.958 0.928 0.958 d4 0.806 0.862 0.806 

Me
tho

d 5
 d1 0.989 1.000 0.142 

Me
tho

d 5
 d1 0.983 1.000 0.630 

d2 0.229 0.014 0.219 d2 0.944 0.994 0.915 
d3 0.892 0.811 0.852 d3 0.924 0.987 0.921 
d4 0.726 0.857 0.720 d4 0.811 0.845 0.811 

Me
tho

d 6
 d1 0.941 1.000 0.918 

Me
tho

d 6
 d1 0.991 1.000 0.950 

d2 0.944 0.999 0.923 d2 0.990 1.000 0.949 
d3 0.973 0.990 0.948 d3 0.965 0.999 0.927 
d4 0.981 0.988 0.969 d4 0.892 0.981 0.876 

Me
tho

d 7
 d1 0.989 1.000 0.989 

Me
tho

d 7
 d1 0.989 1.000 0.989 

d2 0.822 0.929 0.751 d2 0.983 1.000 0.983 
d3 0.951 0.977 0.924 d3 0.931 0.997 0.931 
d4 0.920 0.873 0.912 d4 0.841 0.957 0.841 

Me
tho

d 8
 d1 0.986 1.000 0.630 

Me
tho

d 8
 d1 0.977 0.999 0.895 

d2 0.955 0.994 0.931 d2 0.973 1.000 0.916 
d3 0.963 0.990 0.961 d3 0.922 0.991 0.880 
d4 0.951 0.906 0.951 d4 0.838 0.955 0.823 

 
Based on the information presented in Table 5.6 and Table 5.7, the following comments can be 

drawn. When a good correlation exists between models A and B, as demonstrated in the case of Model 
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A1, high accurate results are consistently obtained across all methods, even in the absence of filtering 
in the modal coordinates. For methods based on modal coordinates derived from projections onto an 
experimental subspace (Methods 1 to 4), no significant differences are observed whether the modal 
coordinates are filtered or not, except in the case of Method 2 (based on strain modal coordinates) 
where filtered modal coordinates results in a slight improvement. In the context of modal coordinates 
�̃�𝒙𝒎 , filtering is essential for Method 5. Furthermore, it is noteworthy that in the case of Method 8, if 
modal coordinates are not filtered, the precision achieved is the same as in Method 1, thereby 
validating the equivalence of Methods 1 and 8. Moreover, when Method 8 is applied with filtered 
modal coordinates, the quality of the results significantly improves (Figure 5.13). In light of the high-
quality indicator values achieved with Method 8 when using filtered modal coordinates, and 
considering its ease of use, this method shows strong potential as an effective approach for practical 
applications. 

 
Figure 5.13 Comparison of estimated strains with Method 1 and 8 for Model A2 at ‘d2’ DOF.  

Modal coordinates analysis 
In this section, a comparison of modal coordinates is conducted in order to study the effects of 
projecting responses into an experimental or a numerical subspace. 

Firstly, the exact modal coordinates 𝒒𝒙𝒎 obtained directly from the FE models A1 or A2 are 
compared with the modal coordinates �̂�𝒙𝒎 and �̃�𝒙𝒎. In Figure 5.14 (a), the modal coordinates (𝒒𝒙𝒎 , 

�̂�𝒙𝒎, and �̃�𝒙𝒎) of Model A1 are compared. It can be observed that the modal coordinates �̃�𝒙𝒎  present 
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some peaks at low frequencies, due to errors in the mode shapes. A possible solution to this problem 
is to filter the modal coordinates with a band-pass filter. Figure 5.14 (b) shows the estimated modal 
coordinates (�̂�𝒙𝒎 and �̃�𝒙𝒎) band-pass filtered. The same is show in Figure 5.15 for Model A2. 

 

Figure 5.14: Comparison of modal coordinates: 𝒒𝒙𝒎, �̂�𝒙𝒎 and �̃�𝒙𝒎 of Model A1: (a) without filtering and (b) 
filtered. 

 
Figure 5.15: Comparison of modal coordinates: 𝒒𝒙𝒎, �̂�𝒙𝒎 and �̃�𝒙𝒎 of Model A2: (a) without filtering and (b) 
filtered. 

Similarly, strain modal coordinates �̂�𝒙𝜺𝒎 and �̃�𝒙𝜺𝒎  are study and compared with the exact modal 
coordinates (𝒒𝒙𝒎 = 𝒒𝜺𝒙𝒎). Figure 5.16 shows strain modal coordinates of Model A1 and Figure 5.17 
of Model A2. As can be observed in Figure 5.16 (a) and Figure 5.17 (a), non-filtered modal 
coordinates present  significant errors (and some peaks) at high frequencies. Low-pass filtered modal 
coordinates �̂�𝒙𝜺𝒎 and �̃�𝒙𝜺𝒎 are plotted in Figure 5.16 (b) and Figure 5.17 (b). 
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Figure 5.16: Comparison of modal coordinates: 𝒒𝒙𝒎, �̂�𝒙𝜺𝒎 and �̃�𝒙𝜺𝒎 of Model A1: (a) without filtering and (b) 
filtered. 

 
Figure 5.17: Comparison of modal coordinates: 𝒒𝒙𝒎, �̂�𝒙𝜺𝒎 and �̃�𝒙𝜺𝒎 of Model A2: (a) without filtering and (b) 
filtered. 

As shown in section 4.4.1, the effects of truncation and error in the mode shapes in the �̂�𝒙𝒎  modal 
coordinates (in blue in Figure 5.14 and Figure 5.15) are expressed by means of: 

 �̂�𝒙𝒎 = 𝒒𝒙𝒎 + �̂�𝒙𝒂𝒎
+  𝚫𝝓𝒙𝒒𝒙𝒎 + �̂�𝒙𝒂𝒎

+ 𝝓𝒙𝒂𝒓𝒒𝒙𝒓 (5.1) 
 

where the product �̂�𝒙𝒂𝒎
+  𝚫𝝓𝒙𝒒𝒙𝒎 gives the contribution of the errors in the estimation of the 

mode shapes. In this section, since numerical models are used, no errors are considered in the mode 
shapes. Therefore, Eq. (5.1) can be expressed as:  
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 �̂�𝒙𝒎 = 𝒒𝒙𝒎 + 𝝓𝒙𝒂𝒎
+ 𝝓𝒙𝒂𝒓  𝒒𝒙𝒓 (5.2) 

 
where the product 𝝓𝒙𝒂𝒎

+ 𝝓𝒙𝒂𝒓 gives the contribution of truncated modes. Considering four 
measured modes (1 to 4) and four unmeasured ‘r’ modes (5 to 8) are considered, the results shown in 
Table 5.8 are obtained for models A1 and A2. For example, the term -0.174 (shaded) gives the 
contribution of mode 5 to the first modal coordinate �̂�𝒙𝒎𝟏 

The effect of modal truncation in the strain modal coordinates �̂�𝜺𝒙𝒎 , is given by the product 
𝝓𝒙𝜺𝒂𝒎

+ 𝝓𝒙𝜺𝒂𝒓  (Table 5.8). In this case, the term -8.419 (shaded) gives the contribution of mode 5 to 
the first modal coordinate �̂�𝜺𝒙𝒎𝟏. This demonstrates that the effect of the truncated modes in the strain 
modal coordinates is significantly higher than that corresponding to the modal coordinates, and 
explain the differences between Figure 5.14 and Figure 5.16. 

Table 5.8: Effects of truncation in the modal coordinates �̂�𝒙𝒎 and �̂�𝜺𝒙𝒎. 

 Model A1 Model A2 

𝝓
𝒙
𝒂
𝒎

+
𝝓

𝒙
𝒂
𝒓
 -0.174 -0.175 -0.196 -0.162 -0.172 0.175 -0.194 0.171 

0.178 0.192 0.197 0.202 -0.177 0.193 -0.196 0.208 
0.204 0.180 0.257 0.157 -0.202 0.184 -0.248 0.179 
-0.181 -0.250 -0.188 -0.462 0.185 -0.242 0.203 -0.408 

𝝓
𝒙
𝜺
𝒂
𝒎

+
𝝓

𝒙
𝜺
𝒂
𝒓
 -8.419 12.789 -20.378 23.606 -6.688 -11.144 -19.087 -26.040 

-1.264 2.013 -2.910 4.046 0.898 1.564 2.367 3.826 
0.481 -0.610 1.278 -0.864 -0.329 -0.414 -0.984 -0.658 
0.199 -0.441 0.355 -1.757 -0.118 -0.316 -0.181 -1.401 

 
In the case of modal coordinates �̃�𝒙𝒎 (in red), the effects of errors and modal truncation can be 

expressed as: 

 �̃�𝒙𝒎 = 𝒒𝒙𝒎 + 𝝓𝑭𝑬𝒂𝒎
+  𝚫𝝓𝒙𝑭𝑬 𝒒𝒙𝒎 + 𝝓𝑭𝑬𝒂𝒎

+  𝝓𝒙𝒂𝒓 𝒒𝒙𝒓 (5.3) 
 

where, as in the previous case, the product 𝝓𝑭𝑬𝒂𝒎
+  𝝓𝒙𝒂𝒓 𝒒𝒙𝒓 gives the contribution of the modal 

truncation. Therefore, the product 𝝓𝑭𝑬𝒂𝒎
+  𝝓𝒙𝒂𝒓 quantifies the effect of modal truncation in �̃�𝒙𝒎, and 

the product 𝝓𝑭𝑬𝜺𝒂𝒎
+  𝝓𝒙𝜺𝒂𝒓  the effects in �̃�𝜺𝒙𝒎 (Table 5.9). Again, higher values have been obtained 

for 𝝓𝑭𝑬𝜺𝒂𝒎
+  𝝓𝒙𝜺𝒂𝒓 . 
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Table 5.9: Effects of truncation in the modal coordinates �̃�𝒙𝒎  and �̃�𝒙𝜺𝒎 . 

 Model A1 Model A2 

𝝓
𝑭
𝑬
𝒂
𝒎

+
 𝝓

𝒙
𝒂
𝒓
 -0.162 -0.179 -0.194 -0.156 -0.154 0.181 -0.192 0.161 

-0.177 -0.189 -0.198 -0.194 -0.174 0.189 -0.198 0.197 
0.166 0.197 0.247 0.151 0.140 -0.208 0.239 -0.161 
-0.245 -0.223 -0.199 -0.489 -0.291 0.203 -0.210 0.460 

𝝓
𝑭
𝑬
𝜺
𝒂
𝒎

+
 𝝓

𝒙
𝜺
𝒂
𝒓
 -6.299 8.688 -14.146 12.491 -4.021 -5.180 -9.474 -7.505 

1.039 -1.538 2.201 -2.624 0.666 0.950 1.410 1.697 
0.412 -0.480 1.109 -0.457 0.258 0.258 0.789 0.104 
0.118 -0.379 0.299 -1.714 -0.004 0.239 0.130 1.390 

 
Moreover, the product 𝝓𝑭𝑬𝒂𝒎

+  𝚫𝝓𝒙𝑭𝑬  gives the contribution of the discrepancies between the 
numerical and the estimated experimental mode shapes in modal coordinates �̃�𝒙𝒎 (Table 5.10). 
Similarly, the product 𝝓𝑭𝑬𝜺𝒂𝒎

+  𝚫𝝓𝜺𝒙𝑭𝑬  gives the contribution of the discrepancies between the 
numerical and the estimated experimental mode shapes in modal coordinates �̃�𝜺𝒙𝒎 .  It can be observed 
in Table 5.10 (shaded), that the contribution of errors in strain mode shapes two, three and four, to 
the first strain modal coordinate �̃�𝜺𝒙𝒎 is negligible. 

Table 5.10: Effects of errors in mode shapes on the modal coordinates �̃�𝒙𝒎 and �̃�𝜺𝒙𝒎. 

 Model A1 Model A2 

𝝓
𝑭
𝑬
𝒂
𝒎

+
 𝚫

𝝓
𝒙
𝑭
𝑬

 0.000 0.016 0.002 -0.006 0.000 0.033 0.005 -0.009 
-0.016 -0.002 -0.042 -0.025 -0.034 -0.006 -0.080 -0.042 
-0.006 0.039 0.001 -0.05 -0.012 0.072 -0.003 -0.093 
-0.003 0.016 0.054 -0.013 -0.006 0.031 0.094 -0.029 

𝝓
𝑭
𝑬
𝜺
𝒂
𝒎

+
 𝚫

𝝓
𝜺
𝒙
𝑭
𝑬

 -0.106 0.619 1.498 2.287 -0.215 1.153 2.600 3.772 
0.000 -0.097 -0.276 -0.379 0.000 -0.182 -0.487 -0.629 
0.000 0.003 -0.087 -0.189 0.000 0.006 -0.157 -0.322 
0.000 0.000 0.014 -0.071 0.000 0.000 0.024 -0.126 

 

5.1.2 Second simulation case. Bending and torsional modes. 
The same models B, A1 and A2 are also considered in this section. In this case, models A1 and A2 
were excited with two loads (FX and FZ) as shown in Figure 5.18 in the x and z directions, so that both 
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torsional modes and bending modes were excited. The loads were generated from a spectral density 
of constant magnitude in the frequency range 0-1600 Hz. The purpose of this application case is to 
validate the methodology when modes in different directions are excited. 

 
Figure 5.18: Models B, A1 and A2 of the cantilever beam and DOFs when considering modes in several 
directions. 

It was assumed that the displacement response of the structure was measured with 18 DOFs (active 
DOFs), indicated with blue arrows in Figure 5.18, and in the frequency range 0-800 Hz.  

The natural frequencies extracted with a frequency analysis are presented in Table 5.11. In this 
case, 4 bending modes in the x direction, 4 bending modes in the z direction and one torsional mode 
were considered (all the modes in the frequency range 0-400 Hz). The maximum error in natural 
frequencies is 5.43% between models B and A1, and 12.39% between models B and A2 (Table 5.11).  
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Table 5.11: Natural frequencies [Hz] and errors [%]. 

Mode shape 𝑓𝐵  [𝐻𝑧] 𝑓𝐴1 [𝐻𝑧] Error B-A1 [%]  𝑓𝐴2 [𝐻𝑧] Error B-A2 [%] 
Mode Bx 10.07 9.55 5.43 8.96 12.39 
Mode By 20.10 19.07 5.41 17.89 12.36 
Mode Bx 62.94 59.98 4.94 57.16 10.11 
Mode By 124.74 118.98 4.84 113.50 9.91 
Mode Bx 175.61 167.98 4.54 161.78 8.55 
Mode T 322.09 320.65 0.45 320.27 0.57 

Mode Bx 342.33 328.68 4.15 319.06 7.29 
Mode By 344.08 329.83 4.32 318.17 8.14 

 
Regarding the correlation between mode shapes, the MAC values are shown in Figure 5.19. 

Between Model B and Model A1 all mode shapes have a MAC value higher than 0.99, and between 
Model B and A2 all the MAC values are higher than 0.98. 

 
Figure 5.19: MAC between mode shapes of models B and A1 and models B and A2. 

Moreover, the T-Mass and T-Stiffness indicators are shown in Figure 5.20, where values close to 
90◦ are observed in the T-Mass for both models, indicating an almost perfect mass correlation. 
Regarding the T-Stiffness, significantly low angles are obtained, detecting stiffness discrepancies as 
expected. The T-Mass and T-Stiffness matrices are included in Appendix A in Table A 3 and Table 
A 4 for Model A1 and in Table A 5 and Table A 6 for Model A2. 
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Figure 5.20: T-Mass and T-Stiffness of models A1 and A2. 

In this example, strains are estimated with Methods 1, 5 and 8. These methods do not require strain 
measurements, i.e. they are easier to be applied when modes in different directions are involved. As 
previously mentioned, all the proposed methodologies allow to estimate whichever component of the 
strain or stress matrix, in this case the component 𝜺𝒚. An illustration of the strain measurements 
direction is show in Figure 5.18 (illustrated in Model B at d2 and d4). Strains are estimated for the 
four ‘d’ DOFs (Figure 5.21 and Figure 5.22).  
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Figure 5.21: Estimated strains at locations ‘d1’, ‘d2’, ‘d3’ and ‘d4’. 

 
Figure 5.22: Estimated strains zoom in the time scale at locations ‘d1’, ‘d2’, ‘d3’ and ‘d4’. 
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Again, the quality indicators used in the previous section are calculated in Table 5.12 for Model 
A1 and in Table 5.13 for Model A2. 

Table 5.12: Quality measurements of the estimated strains for Model A1. 

Using modal coordinates without filtering Using filtered modal coordinates 
  TRAC FRAC R2   TRAC FRAC R2 

Me
tho

d 1
 d1 0.996 1.000 0.931 

Me
tho

d 1
 d1 0.949 0.998 0.885 

d2 0.984 1.000 0.984 d2 0.908 0.997 0.908 
d3 0.977 0.999 0.976 d3 0.876 0.982 0.875 
d4 0.946 0.964 0.941 d4 0.842 0.953 0.838 

Me
tho

d 5
 d1 0.997 1.000 0.848 

Me
tho

d 5
 d1 0.994 1.000 0.931 

d2 0.979 1.000 0.968 d2 0.974 1.000 0.974 
d3 0.957 0.987 0.943 d3 0.952 0.996 0.952 
d4 0.911 0.886 0.900 d4 0.902 0.958 0.898 

Me
tho

d 8
 d1 0.996 1.000 0.932 

Me
tho

d 8
 d1 0.993 1.000 0.978 

d2 0.983 1.000 0.983 d2 0.971 1.000 0.961 
d3 0.976 0.999 0.975 d3 0.955 0.997 0.947 
d4 0.950 0.964 0.945 d4 0.912 0.991 0.906 

 

Table 5.13: Quality measurements of the estimated strains for Model A2. 

Using modal coordinates without filtering Using filtered modal coordinates 
  TRAC FRAC R2   TRAC FRAC R2 

Me
tho

d 1
 d1 0.984 1.000 0.631 

Me
tho

d 1
 d1 0.933 0.997 0.599 

d2 0.984 1.000 0.984 d2 0.905 0.997 0.905 
d3 0.963 0.988 0.961 d3 0.846 0.955 0.843 
d4 0.900 0.847 0.872 d4 0.785 0.835 0.760 

Me
tho

d 5
 d1 0.990 0.999 0.195 

Me
tho

d 5
 d1 0.988 0.999 0.644 

d2 0.765 1.000 0.727 d2 0.779 1.000 0.770 
d3 0.879 0.817 0.831 d3 0.915 0.982 0.910 
d4 0.750 0.654 0.614 d4 0.851 0.838 0.824 

Me
tho

d 8
 d1 0.984 1.000 0.632 

Me
tho

d 8
 d1 0.978 0.999 0.895 

d2 0.982 1.000 0.982 d2 0.959 1.000 0.904 
d3 0.961 0.988 0.959 d3 0.940 0.990 0.900 
d4 0.905 0.847 0.879 d4 0.892 0.978 0.863 

 
It can be observed that in Method 5, filtering of modal coordinates significantly improves the 

quality of the results. Methods 1 and 8, when using unfiltered modal coordinates, show similar error 
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levels. However, Method 8 improves significantly when using filtered modal coordinates, whereas no 
significant changes are observed with Method 1. 

The quality indicators showed in Table 5.13 present values very close to those obtained in the 
previous section 5.1.1, where only bending modes where considered. Therefore, if a structure with 
modes in different directions is to be considered, the proposed methods can also be applied to estimate 
strains and stresses. 

5.2 Experimental case: a monolithic glass beam 
In this section an experimental case is presented. Strains are estimated on a simply supported 
monolithic glass beam using some of the methods proposed in Chapter 4, and validated with the 
experimental strains measured with strain gauges. 

 
Figure 5.23: Monolithic glass beam: (a) Experimental setup, and (b) detail of the support. 

The glass beam had rectangular section of 100 x 10 mm2 and a length of 1 m (Figure 5.23). In 
order to estimate the experimental modal parameters, the structural response was measured with seven 
accelerometers uniformly distributed (Figure 5.24), with sensitivity of 100 mV/g, and seven 
unidirectional strain gauges (350 Ω) were attached to the beam The measurements were recorded for 
approximately 5 minutes using a sampling frequency of 2132 Hz. The experimental modal parameters 
(Model A) were estimated through operational modal analysis (OMA) using the FDD technique in 
the Artemis Modal software. The modal identification was performed using both the acceleration 
response and the strain response. The experimental natural frequencies are shown in Table 5.14.  
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Figure 5.24: Experimental setup. Locations of accelerometers and strain gauges. 

Table 5.14: Natural frequencies of the experimental and numerical models. 

Mode 𝑓𝐸𝑥𝑝  [𝐻𝑧] 𝑓𝐹𝐸𝑀  [𝐻𝑧] Error [%]  
Mode 1 25.8 25.3 1.80 
Mode 2 99.4 101.3 1.90 
Mode 3 222.1 227.7 2.50 
Mode 4 399.3 404.3 1.20 
Mode 5 618.6 630.7 2.00 

 
A finite element model (Model B) of the structure was assembled in Abaqus and meshed with 1D 

quadratic beam elements 20 mm long. Regarding the material properties of the glass, a mass-density 
of 2500 kg/m3 and a Young’s modulus of 72 GPa were considered. The numerical natural frequencies 
are shown in in Table 5.14, the numerical and experimental mode shapes in Figure 5.26 and the 
numerical and experimental strain mode shapes in Figure 5.26. Figure 5.26 (a) shows the first three 
experimental and numerical mode, whereas modes four and five are show in Figure 5.26 (b). 
Similarly, Figure 5.26. (a) shows the first three experimental and numerical strain mode shapes, 
whereas modes four and five are show in Figure 5.26. (b). 
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Figure 5.25 Experimental and numerical mode shapes: (a) modes one to three, and (b) modes four and five. 

 
Figure 5.26: Experimental and numerical strain mode shapes: (a) modes one to three, and (b) modes four and five. 

A good correlation between the numerical and experimental models is obtained, as it can be 
observed in Table 5.14, where the errors in the natural frequencies are less than a 2.5%. Moreover, a 
good MAC is obtained for both the mode shapes and the strain mode shapes, with all diagonal values 
above 0.99 (Figure 5.27). Regarding the T-Mass and T-Stiffness (Table 5.15), a very good correlation 
in term of mass is obtained, whereas stiffness discrepancies are detected. 

              
  

    

 

   

 

   

              
  

    

 

   

 
   

              
  

    

 

   

 

   

              
  

    

 

   

 
   



 5 Application cases 

125 

 
Figure 5.27: Modal assurance criteria of mode shapes and strain mode shapes. 

Table 5.15: T-Mass and T-Stiffness indicators 

T-Mass  T-Stiffness 

--- 88.94 88.43 88.95 89.47 --- 89.38 88.83 89.85 89.74 
88.94 --- 88.78 88.87 88.41 86.99 --- 89.40 88.96 89.58 
88.43 88.78 --- 89.57 89.31 61.71 87.14 --- 89.99 88.70 
88.95 88.87 89.57 --- 89.35 78.81 74.39 89.98 --- 89.35 
89.47 88.41 89.31 89.35 --- 36.46 74.70 80.11 88.43 --- 

 
In this section, the strains at the locations of sensors (P1 to P6 in Figure 5.24) are estimated 

projecting the experimental responses onto the experimental subspace, i.e. using methods 1 to 4. Due 
to the fact that the experimental mode shapes and strain mode shapes are obtained through OMA, 
they are unscaled (not mass-normalized). The unscaled mode shapes and strain mode shapes are 
denoted as 𝝍𝒙𝒂𝒎 and 𝝍𝜺𝒙𝒂𝒎 , respectively. When using unscaled experimental mode shapes, Method 
3 leads to expressions equal to those developed for Method 1. On the other hand, Method 4 cannot be 
applied when only unscaled mode shapes are available. Therefore, the strains in the glass beam at 
locations P1 to P6 (Figure 5.24) are estimated with Methods 1 and 2. Mass-normalized numerical 
mode shapes 𝝓𝑭𝑬𝒂𝒎  and numerical strain mode shapes 𝝓𝑭𝑬𝜺𝒂𝒎  are used in the strain estimation 
process. 

To record the structural response, it was excited randomly with a plastic-headed hammer for 5 
minutes, using the same sensors as those used in the OMA (Figure 5.24). Firstly, both acceleration 
and strain signals are filtered using a high-pass filter with a cut-off frequency of 15 Hz. Moreover, 
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accelerations are integrated in the frequency domain to obtain displacements. Unscaled modal 
coordinates �̂�𝝍𝒙𝒎 and �̂�𝝍𝜺𝒙𝒎 are estimated with the following expressions: 

 �̂�𝝍𝒙𝒎 = 𝝍𝒙𝒂𝒎
+  𝒖𝒙𝒂  (5.4) 

 
and: 

 �̂�𝝍𝜺𝒙𝒎 = 𝝍𝒙𝜺𝒂𝒎
+  𝜺𝒙𝒂  (5.5) 

 
The estimated modal coordinates �̂�𝝍𝒙𝒎 and �̂�𝝍𝜺𝒙𝒎 are shown in Figure 5.28. In order to minimize 

inaccuracies, the modal coordinates �̂�𝝍𝒙𝒎 are filtered with band-pass filters (Figure 5.28 (b)) in order 
to minimize errors in the mode shape estimation, truncation and response noise. The effect of this 
filtering in the estimation of strain time histories is very small, as it has been proven in section 5.1. 

 
Figure 5.28: Spectral density of modal coordinates: (a) displacement modal coordinates �̂�𝝍𝒙𝒎 and (b) strain 
modal coordinates �̂�𝝍𝜺𝒙𝒎. 

Since the experimental mode shapes and strain mode shapes are unscaled, the following equations 
are used to estimate the transformation matrices �̆�𝑼𝒎𝒎 .  

 �̆�𝑼𝒎𝒎 = 𝝓𝑭𝑬𝒂𝒎
+  𝝍𝒙𝒂𝒎

+   (5.6) 
 

and �̆�𝑼𝜺𝒎𝒎 . 

 �̆�𝑼𝜺𝒎𝒎 = 𝝓𝑭𝑬𝜺𝒂𝒎
+  𝝍𝒙𝜺𝒂𝒎

+   (5.7) 
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Consistently, the equations to estimated strains with Method 1 and 2 are now rewritten as: 

 𝜺𝟏 = 𝝓𝑭𝑬𝜺𝒅 �̆�𝑼𝒎𝒎 �̂�𝝍𝒙𝒎 (5.8) 
 

and 

 𝜺𝟐 = 𝝓𝑭𝑬𝜺𝒅 �̆�𝑼𝜺𝒎𝒎 �̂�𝝍𝜺𝒙𝒎 (5.9) 
 

The estimated strains obtained with Method 1 and Method 2, together with the experimental strain 
measurements (also high-pass filtered at 15 Hz) are presented in Figure 5.29 at P1, Figure 5.30 at P2, 
Figure 5.31 at P3, Figure 5.32 at P4, Figure 5.33 at P5 and Figure 5.34 at P6.  

 
Figure 5.29: Estimated and measured strains at P1. 
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Figure 5.30: Estimated and measured strains at P2. 

 
Figure 5.31: Estimated and measured strains at P3. 



 5 Application cases 

129 

 
Figure 5.32: Estimated and measured strains at P4. 

 
Figure 5.33 Estimated and measured strains at P5. 
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Figure 5.34: Estimated and measured strains at P6. 

Table 5.16: Quality measurements of the estimated strains. 

  TRAC FRAC R2 

Me
tho

d 1
 

P1 0.735 0.971 0.726 
P2 0.858 0.950 0.814 
P3 0.882 1.000 0.864 
P4 0.876 0.998 0.827 
P5 0.851 0.959 0.842 
P6 0.719 0.983 0.686 

Me
tho

d 2
 

P1 0.982 1.000 0.982 
P2 0.973 1.000 0.973 
P3 0.962 0.999 0.962 
P4 0.962 0.999 0.962 
P5 0.974 0.999 0.974 
P6 0.983 1.000 0.983 

 
Moreover, quality measurements are presented in Table 5.16. The quality indicators show that 

both Method 1 and Method 2 allow for accurate strain estimation, although the results from Method 1 
could be improved at locations ‘P1’ and ‘P6’. Method 2 shows better results at all locations, even 
though the integration of the modal coordinates is not required. However, it is worth noting that 
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experimental strain measurements on glass material typically present low noise levels, so these results 
could be worse for other materials. Moreover, considering that Method 2 uses strain measurements to 
estimate the strain modal coordinates and to validate the results, the same level of noise is present in 
both signals, whereas Method 1 show smoother results. If only strain measurements and estimated 
strains with Method 1 are compared, this effect is observed in Figure 5.35. These differences explain 
the lower TRAC, FRAC and R2 values for Method 1, since accelerometers present low noise in the 
signals. 

 
Figure 5.35: Estimated strains with Method 1 and measured strains at P5. 

5.3 Experimental case: a lab-scaled steel beam structure 
In this section only Method 8, due to its simplicity and promising potential applicability, is used to 
estimate strains on a lab-scaled steel cantilever structure. The estimated strains are compared with 
those measured with strain gauges.  

A steel beam, fixed supported on the base and with a rectangular hollow section of 100 x 40 x 4 
mm2 and length of 1.750 m, was used in the experiments. The modal parameters were estimated by 
operational modal analysis using the frequency domain decomposition technique. The test was carried 
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out using a sampling frequency of 1828 Hz over a period of approximately one minute, exciting the 
structure by hitting it with hands in the direction of the measurements. The experimental response 
was measured with seven accelerometers of 100 mV/g of sensitivity and equally spaced along the 
beam (Figure 5.36: ‘a’ DOFs). The experimental natural frequencies are shown in Table 5.17.  

 
Figure 5.36: Experimental setup. Active and deleted DOFs of the cantilever steel beam. 

A finite element model (Numerical model or Model B) of the structure was assembled in Abaqus. 
The cantilever beam was modelled with 2D shell elements, and the steel was modelled as a linear 
elastic material, with a Poisson’s ratio equal to 0.3, a mass-density of 7850 kg/m3 and a Young’s 
modulus of 210 GPa. The numerical natural frequencies were extracted using a frequency modal 
analysis and they are presented in Table 5.17 (𝑓𝐹𝐸𝑀0

). Due to the discrepancies in the natural 
frequencies (Table 5.17) and considering that this type of support is typically not perfectly fixed, it is 
assumed that there is no perfect clamping to the ground.  
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Table 5.17: Experimental and numerical natural frequencies [Hz] and error [%]. 

Mode 𝑓𝐸𝑥𝑝  [𝐻𝑧] 𝑓𝐹𝐸𝑀0
 [𝐻𝑧] Error0 [%]  𝑓𝐹𝐸𝑀  [𝐻𝑧] Error [%]  

Mode 1 11.34 15.30 34.91 11.25 0.75 
Mode 2 76.39 94.14 23.24 77.16 1.01 
Mode 3 216.84 255.81 17.97 221.57 2.18 
Mode 4 417.56 478.38 14.56 430.15 3.01 
Mode 5 647.60 740.52 14.35 683.61 5.56 

 
In order to achieve a better correlation, the fixed support was modified in Model B locating vertical 

springs and fixing the edges in the rest of directions. Model B was updated to improve the correlation 
with Model A. The objective of this updating procedure was to minimize the error between 
experimental and numerical natural frequencies and mode shapes. The model parameters scope of the 
updating process were: the stiffness of the springs (𝐾) and the Young’s modulus (𝐸). The values 
obtained after the model updating process are shown in Table 5.18.  

Table 5.18: Updated parameters of Model B. 

Modal parameters Updated value 
Springs stiffness 𝐾 1.3 x 108 𝑁/𝑚 
Young’s modulus 𝐸 200 𝐺𝑃𝑎 

 
The numerical natural frequencies of the updated model are also shown in Table 5.17. The mode 

shapes at the active ‘a’ DOFs were also extracted from the frequency analysis and the MAC between 
mode shapes of Model A and B is show in  Figure 5.37.   
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Figure 5.37: MAC between experimental and numerical mode shapes. 

The T-Mass and T-Stiffness indicators (Table 5.19) show some low angles at the last row, which 
may be due to modal truncation effects. Excluding the last row, some stiffness discrepancies are still 
present. 

Table 5.19: T-Mass and T-Stiffness indicators 

T-Mass  T-Stiffness 

--- 89.12 89.30 89.58 89.31 --- 89.70 89.67 89.92 89.86 
89.12 --- 89.61 88.26 88.09 88.43 --- 89.20 89.55 89.84 
89.30 89.61 --- 88.07 83.59 75.79 83.60 --- 89.15 89.80 
89.58 88.26 88.07 --- 82.00 78.07 76.48 86.87 --- 88.16 
89.31 88.09 83.59 82.00 --- 22.45 78.43 88.21 85.47 --- 

 
In order to estimate the strains of the cantilever structure, the same test setup was used (Figure 

5.36). The test was carried out using a sampling frequency of 1828 Hz and the beam was excited 
hitting it with hands in the direction of the measurements. Accelerations were registered at the ‘a’ 
DOFs and strains were measured with three strains gauges located in ‘d’ DOFs (d1, d2, d3 and d4) to 
validate the estimated strains.  

To estimate strains at locations d1, d2 and d3 Method 8 is applied. As the modal parameters are 
obtained from Model B, the number of modes considered in the estimation can be higher than the 
number of experimental modes. In this case, six bending modes are employed in the modal 
decomposition. 
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Accelerations are integrated twice and filtered (high-pass filter to avoid amplifications due to the 
integration and band-pass filter at 50 Hz to remove noise from the power supply) in the frequency 
domain to obtain the required displacements. The estimated modal coordinates �̃�𝒙𝒎 are shown in 
Figure 5.38 (a). It can be observed that many peaks appear outside the main frequency of each modal 
coordinate due to errors in the mode shapes (discrepancies between 𝝓𝒙𝒂𝒎  and 𝝓𝑭𝑬𝒂𝒎). As explained 
in section 4.4.2, these errors can be expressed as the contribution of the product 𝝓𝑭𝑬𝒂𝒎

+  𝚫𝝓𝒙𝑭𝑬 𝒒𝒙𝒎 . 

A possible solution to this problem is to apply a band-pass filter to each modal coordinate around its 
natural frequency. The modal coordinates �̃�𝒙𝒎 after the filtering process are shown in Figure 5.38  
(b). 

 
Figure 5.38: Modal coordinates �̃�𝒙𝒎: (a) without filtering and (b) filtered. 

Considering that the estimated strains are validated by comparing them with the strain 
measurements, the experimental strain responses are processed as follows: 

• Detrending and mean value removal: to eliminate the linear increase of the signals and to 
ensure a zero mean. 

• Filtering: high-pass filtered to eliminate low-frequency high values and band-pass filtered to 
remove noise from the power supply.  

• Decimation (by a factor of 4): to reduce high-frequency noise signal components. 

The signals before and after the processing are shown in Figure 5.39 and Figure 5.40. 
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Figure 5.39: Signal processing of the measured strains at ‘d3’: (a) time domain and (b) frequency domain. 

 
Figure 5.40: Signal processing details for measured strains at ‘d3’: (a) zoomed view in the time domain and (b) 
zoomed view in the frequency domain. 

The estimated strains at points d1, d2 and d3 are shown in Figure 5.41. A detailed view of the 
strains presented in Figure 5.41 are shown in Figure 5.42, from which is inferred that strains are 
estimated with a good accuracy. 

 
Figure 5.41:  Measured and estimated strains with Method 8 at ‘d1’, ‘d2’ and ‘d3’. 
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Figure 5.42: Measured and estimated strains with Method 8 at ‘d1’, ‘d2’ and ‘d3’. Zoom in the time scale. 

Moreover, the quality measurements (TRAC, FRAC and R2) are shown in Table 5.20. High values 
of the three indicators are obtained at the three locations of interest (d1, d2 and d3) indicating an 
accurate estimation. The best quality factors are obtained at location ‘d1’ (values of the quality 
indicators close to 1), whereas the worst results correspond to point ‘d3’ (values of the quality 
indicators higher that 0.945). However, it must be noticed that lower level of strains is achieved at 
point ‘d3’ and, consequently, higher errors are expected. On the other hand, the higher levels of strain 
are achieved at point ‘d1’. 

Table 5.20: Quality measurements of the estimated strains at ‘d’ DOFs. 

  TRAC FRAC R2 

M
eth

od
 8 d1 0.995 1.000 0.995 

d2 0.975 0.997 0.974 
d3 0.945 0.997 0.945 

 
 

 

 

             
  

  

  

 

 

 

 
  

  

             
  

  

  

 

 

 

 
  

  

           
  

    

 

   

 
  

  





 

6 
6 Conclusions and future work 

6.1 Conclusions 
This PhD thesis proposes a fatigue monitoring methodology to calculate the real-time accumulated 
fatigue damage based on the estimated stresses at specific points of interest. To accurately estimate 
stresses, a well-calibrated numerical model of the structure is essential, consequently, correlation 
methods were extensively studied. New correlation indicators were developed to detect discrepancies 
in mass, stiffness, or both. Additionally, a novel variation of the MAC, named ROTMAC was 
introduced. In terms of stress estimation techniques, eight methods based on modal superposition, 
using expanded mode shapes, were presented. 

The following conclusions are drawn and grouped in line with the objectives of this thesis. 

1. To develop a methodology for fatigue monitoring of structures, combining a numerical model and 
the experimental response of the structure measured at discrete points. 

• The most frequently used SHM techniques are modal-based methods; therefore, automated 
modal identification techniques are required. Damage detection techniques are widely spread 
in the literature and in real applications, while localization presents challenges, and damage 
assessment and prediction are still being explored. Thus, fatigue monitoring is essential for 
predicting the remaining life of structures and prevent future catastrophes.  
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• A methodology for fatigue monitoring of structures is proposed, which allows for the 
calculation of real time accumulated fatigue damage from estimated stresses at locations of 
interest or hot spots (previously identified). This methodology employs a numerical model 
of the structure together with the experimental responses measured at discrete points, which 
facilitates the combination with other vibration-based SHM techniques. 

• Stress time histories at critical points of interest can be directly measured with strain sensors 
installed at those same locations or by employing stress estimation techniques. These 
techniques involve real time measurement of experimental displacements, velocities, 
accelerations, or strain responses using a limited number of sensors. Among these methods, 
modal expansion and Kalman filter techniques are the most commonly utilized. 

• The most common practice in time domain fatigue analysis is to assume a Basquin linear S–
N field, cycle counting using the rainflow algorithm, and the use of Miner’s rule to estimate 
the accumulated fatigue damage. In the frequency domain fatigue analysis, the Miner’s rule 
is also commonly used, but the fatigue stress spectrum is obtained from the moments of the 
stress PSDs. 

2. To propose and validate novel indicators for correlation of numerical and experimental models.  

• New correlation indicators to detect mass discrepancies between models were proposed. In 
the absence of stiffness discrepancies, T-Mass off-diagonal entries must be 90◦, T-Mass-
norm off-diagonal entries must be 1, and the AUTOMAC of matrix 𝑻 should show off-
diagonal terms equal to zero. In cases where mass-normalized mode shapes are available for 
both models, the diagonal terms of the inner product 𝑻𝑻𝑻 also serve as an effective mass 
correlation indicator. 

• New correlation indicators to detect stiffness discrepancies between models were proposed. 
In the absence of stiffness discrepancies, T-Stiffness off-diagonal entries must be 90◦, T-
Stiffness-norm off-diagonal values must be 1 and the MAC between matrix 𝑻 and 𝝎𝑩

𝟐𝑻 
should have off-diagonal terms equal to zero. In cases where mass-normalized mode shapes 
are available for both models the diagonal terms of the product 𝑻𝑻𝝎𝑩

𝟐𝑻 also serve as an 
effective stiffness correlation indicator. 

• A novel version of the MAC, named ROTMAC, was proposed to address challenges in 
models with closely spaced or repeated modes. These modes mainly rotate in their local 
subspace, leading to low MAC values despite strong model correlation. The ROTMAC 
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overcomes this issue by detecting only shear effects, thus providing a more accurate 
assessment of model correlation in cases where modes are closely spaced or repeated. 

• All the proposed indicators were applied and validated in a simulated symmetric structure 
with repeated modes, where a mass change was introduced. Since mass-normalized modes 
were considered, the indicators provided extensive information and the mass discrepancies 
were successfully detected. 

• Different levels of mass or stiffness discrepancies were simulated in a numerical two-span 
simply supported beam. The proposed indicators effectively distinguished between mass and 
stiffness discrepancies, even when errors were induced in the mode shapes. A variation of 
the T-Stiffness indicator was proposed to better address errors in the mode shapes. 

• In an experimental glass plate with repeated modes, the ROTMAC demonstrated strong 
correlation with the numerical model, while the standard MAC showed significant 
discrepancies.   

• Truncation effects were examined in the discussed examples, which represent one of the main 
limitations of the use of 𝑻 matrix as a correlation indicator. 

3. To propose, compare and validate real time stress estimation techniques based on modal 
superposition and on the expansion of experimental mode shapes and/or strain mode shapes. 

Conclusions related to the theory: 

• A comprehensive review of stress estimation methods based on modal expansion techniques, 
along with the most commonly used quality indicators, was conducted.  

• The theory to perform modal expansion and feasible alternatives was developed. 
Additionally, the estimation of modal coordinates is also developed, which can be achieved 
by projecting structural responses onto either an experimental or a numerical subspace. 
Moreover, the structural response can be measure with accelerometers, strain sensors or both. 
Therefore, six alternatives to estimate modal coordinates are proposed.  

• Eight methods to estimate strains and stresses were proposed, with four of them projecting 
responses onto an experimental subspace and four onto a numerical subspace. The 
requirements and limitations of each method are discussed. Method 8, which avoids the use 
of a transformation matrix, is introduced as a novel and promising technique. 
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• The main sources of errors impacting modal coordinates—such as truncation, response noise, 
mode shape errors, and complexity—are theoretically quantified and illustrated. To reduce 
these errors and improve accuracy in estimated strains, filtering the modal coordinates is 
proposed as an effective solution. 

• The expected uncertainties in estimated strains for each method were mathematically 
developed. The results indicate that discrepancies due to the assumption 𝑻𝜺𝒎𝒎 ≠ �̆�𝒎𝒎 

depend on the differences  𝚫𝝓𝒙𝒂𝒎
′′  and  𝚫𝝓𝒙𝜺𝒂𝒎. Scaling issues were also addressed, noting 

that Method 3 converges to Method 1, while Method 4 is not applicable when experimental 
modes are not mass-normalized. 

• Three application cases were proposed in this thesis to validate the proposed stress estimation 
techniques. Model correlation was studied, as the accuracy in the stress estimation depends 
on the level of correlation between the numerical and the experimental models. A numerical 
case was used to avoid potential error sources from the experimental measurements or signal 
processing, while in two experimental cases, the estimation methods were applied under real 
conditions, including inherent errors such as noise and mode shape inaccuracies, as well as 
the presence of unscaled mode shapes. 

Conclusions related to the quality obtained with the methods: 

• When a good correlation exists between models, all proposed methods yield highly accurate 
results. In such cases, the selection of methods can be based primarily on the availability of 
required sensors. 

• Among the methods that project the experimental responses onto the experimental subspace 
(Methods 1 to 4), Methods 2 and 3 consistently deliver excellent results, even without filtering 
modal coordinates. Conversely, Methods 1 and 4 exhibit lower quality indicator values, but 
both of them demonstrate similar levels of accuracy.  

• It is important to note that in real applications, strain gauges often produce higher noise levels 
than accelerometer signals, which can introduce errors when using Method 2. However, since 
strain gauges are also utilized for validation, the same noise levels are present, potentially 
compromising the reliability of the high-quality values obtained. 

• For methods that project onto the numerical subspace (Methods 5 to 8), filtering of modal 
coordinates becomes almost mandatory to achieve reliable results. Method 5, when using 



 6 Conclusions and future work 

143 

filtered modal coordinates, attains precision levels comparable to those of Methods 1 and 4. 
Methods 6 and 7 also demonstrate high quality. In the case of Method 8, using unfiltered 
modal coordinates results in precision similar to Method 1; however, with filtered modal 
coordinates, it yields significantly higher quality results.  

Conclusions related to the advantages and disadvantages of each method and general comments: 

• Although Method 1 is not as effective as Methods 2 and 3, it has the advantage of not 
requiring the use of strain gauges, making it simpler to apply. This method can be 
implemented using only accelerometers, which are widely used in Structural Health 
Monitoring (SHM), representing a significant advantage.  

• Methods 2, 3, 6, and 7 require the use of strain gauges. The growing interest in strain gauge 
applications within SHM is likely to encourage the adoption of these methods, particularly 
Methods 2 and 6, which rely exclusively on strain sensors. However, special attention must 
be given to the interpretation of strain mode shapes, which can be more complex to analyse 
than traditional mode shapes.  

• Methods 3 and 7 involve a slightly more complex application as both the strain and the 
displacement experimental responses must be measured. When utilizing experimental and 
strain mode shapes, it is essential to pay attention to their signs (directions). Specifically, 
strain mode shapes should correspond to the second derivative of the mode shapes. While 
finite element models inherently satisfy this condition, it must be manually verified when 
numerical mode shapes and strain mode shapes are used together with experimental mode 
shapes and strain mode shapes estimated with Operational Modal Analysis (OMA). 

• The formulations developed for Method 3 with unscaled mode shapes yield expressions that 
are equivalent to those developed for Method 1. 

•  Method 4 cannot be applied with unscaled mode shapes. Additionally, the quality of its 
results, in relation to the sensor requirements and calculation process, suggests that Method 
4 is not particularly advantageous. 

• Methods 5 to 8 do not require automated OMA since the necessary modal parameters are 
obtained from numerical models. These models only need to be updated when changes occur 
in the experimental structure and the correlation with the numerical model deteriorates.  
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• Method 8 shows high-quality results in experimental cases, obtaining quality indicators 
higher than 0.94, even at locations where the strain magnitude was quite small. This 
technique seems to have promising potential due to several factors: it does not require 
experimental modal parameters, it is easy to use, and it delivers high-quality results. 
Variation b of Method 8, which incorporates strain measurements, is likely to be equally 
promising, particularly as the use of fiber-optic sensors becomes more widespread and well-
established.  

• It is well known that modal parameters, particularly damping ratios and natural frequencies, 
are influenced by environmental conditions. However, since the proposed methods rely 
solely on mode shapes, the estimated stress histories are minimally affected by these 
variations, because the information corresponding to natural frequencies and damping ratios 
are contained in the modal coordinates.  

Conclusions related to the modal coordinates 

• In numerical simulations, the filtering of modal coordinates in Methods 1 to 4 does not 
provide substantial advantages. However, filtering becomes important in experimental 
scenarios where mode shape estimation errors and measurement noise (often associated with 
strain gauges). 

• For Methods 5 to 8, filtering of modal coordinates is mandatory to ensure accurate results. 
• For the numerical and experimental cases addressed in this thesis, strain modal coordinates 

(both, projecting onto an experimental or numerical subspace) are more sensitive to 
truncation effects, leading to significant errors at higher frequencies.  

• Errors in mode shapes can induce inaccuracies in displacement coordinates across all 
frequencies. In the case of strain modal coordinates, errors in mode shapes primarily affect 
the higher frequencies.  

6.2 Future work 
Based on the conclusions presented above, the correlation techniques and stress estimation methods 
can be extended and improved to enhance the acquired knowledge. The planned future work can be 
summarized as follows:  
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Future work related to model correlation 

• Using unscaled mode shapes in one of the models, the scaling discrepancies cannot be 
studied. This implies a significant loss of information, especially in the case of repeated 
modes perturbed by a mass change, when shear does not appear. Therefore, it is essential to 
investigate whether scaling the mode shapes is worthwhile, despite the errors introduced, to 
determine if scaling ultimately leads to a more accurate and informative representation 

• To develop or modify existing correlation techniques to address the correlation between two 
systems with unscaled mode shapes. This is a common scenario in modal-based SHM, where 
the modal parameters of the structure in its ‘healthy’ state are compared with its current 
modal parameters; consequently, both mode shapes are usually unscaled. This approach is 
aimed at facilitating effective damage detection purposes. 

• To study and propose modifications to correlation techniques when complex mode shapes 
are considered. 

• To propose an approach for selecting which modes to use in the calculation of the matrix 𝑻, 
ensuring that the estimated matrix is accurate and provides reliable information 

Future work related to stress estimation 

• Continue to explore Method 8, given its promising results and ease of application, by 
extending its use to more complex, multiaxial, and real-world scenarios. 

• To apply Variation b of Method 8 by measuring strain responses, as advancements in fiber-
optic sensor research are likely to increase the popularity of this method.  

• To determine when it is necessary to update the numerical model in Method 8 applications, 
as the accuracy of the results is directly related to the correlation between the numerical and 
experimental models. 

 

 





 

6 
6 Conclusiones y trabajo futuro 

6.1 Conclusiones 
Esta tesis doctoral propone y desarrolla una nueva metodología de monitorización a fatiga de 
estructuras que permite calcular el daño acumulado a fatiga en tiempo real a partir de las tensiones 
estimadas en ciertos puntos de interés. Para estimar con precisión estas tensiones, se hace 
indispensable disponer de un modelo numérico bien calibrado de la estructura. En consecuencia, en 
primer lugar, se estudiaron y analizaron en profundidad los métodos de correlación más utilizados en 
la actualidad. Posteriormente, se propusieron y analizaron nuevos indicadores de correlación entre 
dos modelos, los cuales permiten identificar si existen discrepancias en términos de masa, rigidez, o 
ambas. Adicionalmente, se propuso una nueva técnica de correlación de modos derivadas del MAC, 
denominada ROTMAC, que permite identificar si existe una adecuada correlación en aquellos casos 
donde los modos son cercanos o repetidos. Finalmente, en cuanto a las técnicas de estimación de 
tensiones que se han desarrollado, se presentaron ocho metodologías diferentes para tal fin basadas 
en técnicas de superposición modal y utilizando métodos de expansión modal. 

En esta sección se presentan las conclusiones obtenidas, organizadas de acuerdo con los objetivos 
establecidos en esta tesis: 
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1. Desarrollar una metodología para la monitorización a fatiga de estructuras, combinando un 
modelo numérico y la respuesta experimental de la estructura medida en puntos discretos. 

• Las técnicas de monitorización más utilizadas son aquellas basadas en parámetros modales; 
por lo tanto, se requieren técnicas de identificación modal automatizadas. A partir de dichas 
identificaciones, existen diferentes técnicas ampliamente desarrolladas tanto a nivel teórico 
en la literatura como en aplicaciones reales, que permiten la detección de daño. Sin embargo, 
si bien la detección de daño es ya una técnica ampliamente utilizada, la localización del daño, 
así como la evaluación y predicción del mismo requieren de técnicas adicionales que han de 
ser mejoradas, desarrolladas y exploradas. Por lo tanto, la propuesta de monitorización a 
fatiga que se presenta en esta tesis es esencial para predecir la vida remanente de las 
estructuras y prevenir futuras catástrofes. 

• Se propone una metodología para la monitorización a fatiga de estructuras, que permite el 
cálculo en tiempo real del daño por fatiga acumulado a partir de las tensiones estimadas en 
las ubicaciones de interés o puntos críticos (previamente identificados). Esta metodología 
emplea un modelo numérico de la estructura junto con las respuestas experimentales medidas 
en puntos discretos, lo que facilita su combinación con otras técnicas de monitorización 
basadas en vibraciones (vibration-based SHM).  

• Las tensiones en los puntos críticos de interés se pueden medir directamente con sensores de 
deformación instalados en esos mismos lugares o mediante técnicas de estimación de 
tensiones. Estas técnicas implican la medición experimental en tiempo real de 
desplazamientos, velocidades, aceleraciones o deformaciones utilizando un número limitado 
de sensores. Entre estos métodos, la expansión modal y las técnicas de filtro de Kalman son 
las más comúnmente utilizadas.  

• La práctica más común en el análisis de fatiga en el dominio del tiempo es asumir un campo 
lineal S–N de Basquin, el conteo de ciclos utilizando el rainflow y el uso de la regla de Miner 
para estimar el daño acumulado. En el análisis de fatiga en el dominio de la frecuencia, la 
regla de Miner también se utiliza comúnmente, pero el espectro de tensiones de fatiga se 
obtiene a partir de los momentos de las densidades espectrales de las tensiones.  

2. Proponer y validar nuevos indicadores de correlación entre modelos numéricos y experimentales. 

• Se propusieron nuevos indicadores de correlación para detectar discrepancias de masa entre 
dos modelos. En ausencia de discrepancias de rigidez, los elementos fuera de la diagonal de 
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T-Mass deben ser de 90°, mientras que en el caso de T-Mass-norm los elementos fuera de la 
diagonal deben ser 1. Adicionalmente, el AUTOMAC de la matriz 𝑻 debe mostrar términos 
fuera de la diagonal iguales a cero. En casos donde los modos están normalizados a la masa 
para ambos modelos, la diagonal del producto 𝑻𝑻𝑻 también sirve como un indicador de 
correlación en términos masa. 

• Se propusieron nuevos indicadores de correlación para detectar discrepancias de rigidez entre 
dos modelos. En ausencia de discrepancias de masa, los elementos fuera de la diagonal de T-
Stiffness deben ser de 90°, mientras que en el caso de T-Stiffness-norm los elementos fuera 
de la diagonal deben ser 1. Adicionalmente, el MAC entre la matriz 𝑻 y 𝝎𝑩

𝟐𝑻 debe mostrar 
términos fuera de la diagonal iguales a cero. En casos donde los modos están normalizados 
a la masa para ambos modelos, la diagonal del producto 𝑻𝑻𝝎𝑩

𝟐𝑻 también sirve como un 
indicador de correlación en términos de rigidez. 

• Se propuso una versión novedosa del MAC, llamada ROTMAC, para abordar desafíos en la 
correlación entre modelos con modos cercanos o repetidos. Estos modos rotan 
principalmente en su subespacio local, lo que da lugar a valores bajos de MAC a pesar de 
una buena correlación entre modelos. El ROTMAC soluciona este problema al detectar solo 
efectos de shear, proporcionando así una evaluación más precisa de la correlación en casos 
donde hay modos cercanos o repetidos. 

• Todos los indicadores de correlación se aplicaron y validaron en una estructura simétrica 
simulada con modos repetidos mediante un modelo de elementos finitos. Como perturbación 
del sistema se introdujo un cambio de masa. Dado que se consideraron modos normalizados 
a la masa, los indicadores proporcionaron información extensa y muy buenos resultados, 
detectando de manera exitosa las discrepancias de masa. 

• Se simularon diferentes niveles de discrepancias en términos de masa y rigidez en una viga 
de dos vanos simplemente apoyada. Los indicadores propuestos pudieron diferenciar si las 
discrepancias eran debidas a cambios de masa o rigidez, incluso cuando se introdujeron 
errores en los modos de vibración. Adicionalmente se propuso una variación del indicador 
T-Stiffness para abordar mejor estos errores en los modos. 

• Se analizó experimentalmente el caso de una placa de vidrio con modos repetidos mediante 
el ROTMAC. La técnica demostró una buena correlación con el modelo numérico, mientras 
que el MAC mostraba discrepancias significativas en algunos modos. 
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• Se examinaron los efectos del truncado del número de modos de vibración en los ejemplos 
presentados. Como se pudo demostrar, el efecto del truncado es significativo y representa 
una de las principales limitaciones del uso de la matriz 𝑻 como indicador de correlación.  

3. Proponer, comparar y validar técnicas de estimación de tensiones en tiempo real basadas en la 
superposición modal y en la expansión de modos experimentales. 

Conclusiones relacionadas con la teoría:  

• Se llevó a cabo una revisión exhaustiva de los métodos de estimación de tensiones basados 
en técnicas de expansión modal, así como de los indicadores de calidad más comúnmente 
utilizados para evaluar la precisión de las tensiones estimadas.  

• Se desarrolló la teoría para llevar a cabo la expansión modal y se presentaron las alternativas 
existentes. También se desarrollaron las ecuaciones necesarias para la estimación de 
coordenadas modales, la cual se puede realizar proyectando las respuestas estructurales o 
bien en un subespacio experimental o bien en un subespacio numérico. Además, dado que la 
respuesta estructural se puede medir con acelerómetros, sensores de deformación o ambos, 
se proponen seis alternativas para estimar las coordenadas modales. 

• Se propusieron ocho métodos para estimar deformaciones (y tensiones), cuatro de los cuales 
proyectan las respuestas en un subespacio experimental y cuatro en un subespacio numérico. 
Además, se discutieron los requisitos y limitaciones de cada método. Cabe resaltar que el 
Método 8, que evita el uso de una matriz de transformación, se presenta como una técnica 
novedosa y prometedora. 

• Se cuantificaron e ilustraron teóricamente las principales fuentes de error que afectan a las 
coordenadas modales, tales como el truncado de los modos, el contenido en ruido de la 
respuesta, los posibles errores en los modos de vibración, así como la aparición de modos 
complejos. Para reducir estos errores y mejorar la precisión en la estimación de las 
deformaciones, se propone el filtrado de las coordenadas modales como una solución 
efectiva. 

• Se desarrollaron matemáticamente las ecuaciones de la incertidumbre esperada en las 
deformaciones estimadas con cada método. Los resultados indican que las discrepancias 
debidas a la suposición 𝑻𝜺𝒎𝒎 ≠ �̆�𝒎𝒎 dependen de las diferencias 𝚫𝝓𝒙𝒂𝒎

′′  y 𝚫𝝓𝒙𝜺𝒂𝒎 . 

También se abordó el problema del tipo de escalado de los modos, señalando que el Método 
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3 converge al Método 1, mientras que el Método 4 no es aplicable cuando los modos 
experimentales no están normalizados a la masa. 

• En esta tesis se utilizaron tres casos prácticos para validar las técnicas de estimación de 
tensiones propuestas. Además, se estudió la correlación entre modelos, ya que la precisión 
en la estimación de tensiones depende del nivel de correlación entre el modelo numérico y 
experimental utilizados. Dichas técnicas se analizaron a través del estudio con casos de 
modelización numérica con el fin de evitar posibles fuentes de error derivadas tanto del 
proceso de adquisición de las mediciones experimentales así, como, por ejemplo, del 
tratamiento de las señales. Los métodos también se aplicaron a dos estructuras de laboratorio, 
utilizando en estos casos datos experimentales, incluyendo así errores inherentes como el 
ruido presente en las señales o las imprecisiones en la identificación de los modos de 
vibración. También, al utilizar OMA como método de identificación modal, se analizó la 
opción de disponer únicamente en el caso experimental de modos sin escalar a la masa. 

Conclusiones relacionadas con la calidad de los métodos propuestos: 

• Cuando existe una buena correlación entre el modelo experimental y el modelo numérico, 
todos los métodos propuestos ofrecen resultados con errores muy bajos. En dichos casos, la 
selección de los métodos puede basarse principalmente en la disponibilidad de sensores de 
medida. 

• Entre los métodos que proyectan las respuestas experimentales en el subespacio experimental 
(Métodos 1 a 4), los Métodos 2 y 3 ofrecen excelentes resultados, incluso cuando las 
coordenadas modales no se filtran. Por el contrario, los Métodos 1 y 4 arrojan valores más 
bajos en los indicadores de calidad aplicados, demostrando niveles similares de precisión 
entre ellos (Métodos 1 y 4). En aplicaciones reales, las medidas con galgas extensométricas 
suelen contener niveles más altos de ruido en comparación con las medidas de los 
acelerómetros, lo que puede introducir errores al utilizar el Método 2. Sin embargo, dado que 
las galgas extensométricas también se utilizan para la validación, los mismos niveles de ruido 
están presentes en la señal estimada y en la de referencia, lo cual podría comprometer la 
fiabilidad de los buenos valores obtenidos en los indicadores de calidad. 

• Para los métodos que se basan en proyectar en el subespacio de los modos numéricos 
(Métodos 5 a 8), se ha comprobado como el filtrado de las coordenadas modales se vuelve 
un paso necesario para lograr resultados precisos en la estimación de las deformaciones. El 
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Método 5, al utilizar coordenadas modales filtradas, alcanza niveles de precisión comparables 
a los de los Métodos 1 y 4. Los Métodos 6 y 7 muestran valores muy altos en los indicadores 
de calidad. En el caso del Método 8, el uso de coordenadas modales sin filtrar da lugar a 
niveles de precisión similares a los del Método 1; sin embargo, con coordenadas modales 
filtradas, ofrece resultados significativamente mejores. 

Conclusiones relacionadas con las ventajas y desventajas de cada método y comentarios generales: 

• Aunque el Método 1 no es tan efectivo como los Métodos 2 y 3, tiene la ventaja de evitar el 
uso de galgas extensométricas, lo que facilita su aplicación. Este método se puede 
implementar utilizando solo acelerómetros, los cuales son ampliamente utilizados en la 
monitorización de estructuras lo que supone un beneficio significativo. 

• Los Métodos 2, 3, 6 y 7 requieren el uso de galgas extensométricas. El creciente interés en 
utilizar también sensores de deformaciones en los procesos de monitorización estructural 
(SHM), favorecerá la potencial utilización de estos métodos, en particular los Métodos 2 y 6, 
que utilizan únicamente sensores de deformación. Sin embargo, se debe prestar especial 
atención a la interpretación de los modos de vibración de deformaciones, ya que puede 
resultar un proceso más complejo en comparación con la interpretación de los modos de 
vibración tradicionales. 

• La aplicación de los Métodos 3 y 7 resulta aplicación ligeramente más compleja, al requerir 
tanto la respuesta experimental en desplazamientos como en deformaciones. Al utilizar 
modos de vibración experimentales de desplazamiento y de deformación, es crucial prestar 
atención a sus signos (direcciones). Teniendo en cuenta que, las formas modales de 
deformación se deben corresponder con la segunda derivada de los modos de desplazamiento. 
Mientras que los modos obtenidos a través de modelos numéricos cumplen inherentemente 
con esta condición, debe verificarse manualmente cuando se usan conjuntamente modos de 
desplazamiento y deformación, numéricos y experimentales. 

• Las ecuaciones desarrolladas para el Método 3 con modos sin escalar producen expresiones 
equivalentes a las desarrolladas para el Método 1. 

• El Método 4 no puede aplicarse con modos sin escalar. Además, los indicadores de calidad 
de sus resultados, en relación con los requisitos de los sensores y el proceso de cálculo, 
sugieren que el Método 4 no es particularmente ventajoso.  
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• Los Métodos 5 a 8 no requieren OMA automatizado, ya que los parámetros modales 
necesarios se obtienen de modelos numéricos. Estos modelos solo necesitan ser calibrados 
cuando ocurren cambios en la estructura experimental y, por lo tanto, la correlación con el 
modelo numérico disminuye.  

• El Método 8 muestra muy buenos resultados en casos experimentales, obteniendo indicadores 
de calidad superiores a 0.94, incluso en ubicaciones desfavorables donde la magnitud de la 
deformación era considerablemente pequeña. Esta técnica parece tener un potencial 
prometedor debido a varios factores: no requiere parámetros modales experimentales, es fácil 
de utilizar y proporciona resultados de gran calidad. La Variación 2 del Método 8, que utiliza 
mediciones experimentales de deformaciones, tiene un alto potencial, especialmente a 
medida que el uso de sensores de fibra óptica se vuelva una técnica más común y se consolide. 

• Se sabe que los parámetros modales, en particular el amortiguamiento y las frecuencias 
naturales, están influenciados por las condiciones ambientales. Sin embargo, dado que los 
métodos de estimación de tensiones propuestos se basan únicamente en los modos de 
vibración, las tensiones estimadas se ven mínimamente afectadas por estas variaciones, ya 
que la información correspondiente a las frecuencias naturales y el amortiguamiento se 
encuentra en las coordenadas modales. 

Conclusiones relacionadas con las coordenadas modales: 

• En las simulaciones numéricas, el filtrado de las coordenadas modales en los Métodos 1 a 4 
no ofrece ventajas sustanciales. Sin embargo, el filtrado se vuelve importante en escenarios 
experimentales donde existen errores en la estimación de los modos de vibración, así como 
se tenga presenta ruido en las mediciones.  

• Para los Métodos 5 a 8, el filtrado de las coordenadas modales es necesario para garantizar 
resultados precisos. 

• En los casos numéricos y experimentales abordados en esta tesis, las coordenadas modales 
de deformación (tanto proyectadas en un subespacio experimental como en uno numérico) 
son más sensibles a los efectos del truncado, lo que resulta en errores significativos a 
frecuencias más altas. 

• Los errores en los modos de vibración pueden inducir inexactitudes en las coordenadas de 
desplazamiento en todas las frecuencias. Con respecto a las coordenadas modales de 
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deformación, los cálculos con errores en los modos de vibración afectan principalmente a 
frecuencias altas.  

6.2 Trabajo futuro 
A partir de las conclusiones presentadas anteriormente, los estudios relativos a las técnicas de 
correlación y los métodos de estimación de tensiones pueden ampliarse y mejorarse para profundizar 
en el conocimiento adquirido. El trabajo futuro planificado se resume en los siguientes puntos: 

Trabajo futuro relacionado con métodos de correlación: 

• El uso de modos sin escalar en uno de los modelos impide el estudio de las discrepancias de 
escalado. Esto implica una pérdida significativa de información, especialmente en el caso de 
modos repetidos afectados por un cambio de masa, donde no aparece shear. Por ello, es 
esencial investigar si vale la pena escalar las formas modales, a pesar de los errores 
introducidos, para poder obtener una representación más fiel de la correlación. 

• Desarrollar o modificar las técnicas de correlación existentes para abordar la correlación entre 
dos sistemas con modos sin escalar. Este es un escenario común en la monitorización basada 
en modos, donde los parámetros modales de la estructura en su estado ‘sano’ se comparan 
con sus parámetros modales actuales; en consecuencia, ambos modos suelen estar sin escalar. 
Esta mejora permitiría mejorar en la detección efectiva de daño. 

• Estudiar y proponer modificaciones a las técnicas de correlación para los casos en los que se 
consideran modos complejos. 

• Proponer un enfoque para seleccionar qué modos se deben utilizar en el cálculo de la matriz 
𝑻, garantizando que dicha matriz estimada sea precisa y proporcione información fiable. 

Trabajo futuro relacionado con estimación de tensiones: 

• Continuar explorando el Método 8, dado los resultados prometedores y la facilidad de 
aplicación, extendiendo su uso a escenarios más complejos, multiaxiales y/o reales. 

• Aplicar la Variación 2 del Método 8 midiendo respuestas de deformaciones, ya que los 
avances en la investigación de sensores de fibra óptica probablemente aumentarán la 
popularidad de este método.  
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• Determinar cuándo es necesario calibrar el modelo numérico durante la utilización del 
Método 8, ya que la precisión de los resultados está directamente relacionada con la 
correlación entre los modelos numéricos y experimentales. 

 





 

A 
A  Appendix  

This appendix includes some correlation matrices that were not reproduced in the main text for clarity. 

A two-spanned steel beam 
In this section, the diagonal values of the product 𝑻𝑻𝝎𝑩

𝟐  𝑻 compared to 𝝎𝑨
𝟐  are showed in Table A 1 

for models A1 and in Table A 2 for models A2 of the two-spanned beam presented in section 3.4. 
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Table A 1: Diagonal values of the product 𝑻𝑻𝝎𝑩
𝟐  𝑻 compared to 𝝎𝑨

𝟐  for models A1 

A1 
𝛥𝑀1 𝛥𝑀2 𝛥𝑀3 𝛥𝑀4 𝛥𝑀5 

√𝑇𝑇𝜔𝐵
2𝑇 𝜔𝐴 √𝑇𝑇𝜔𝐵

2𝑇 𝜔𝐴 √𝑇𝑇𝜔𝐵
2𝑇 𝜔𝐴 √𝑇𝑇𝜔𝐵

2𝑇 𝜔𝐴 √𝑇𝑇𝜔𝐵
2𝑇 𝜔𝐴 

41.7 41.7 42.7 42.7 43.7 43.7 45.4 45.4 46.5 46.5 
71.6 71.6 72.2 72.2 72.9 72.9 74.1 74.1 75.1 75.1 

154.8 154.8 158.1 158.1 161.9 161.9 168.6 168.6 173.9 173.9 
206.6 206.6 207.7 207.8 209.2 209.2 212.4 212.4 216.0 216.0 
338.8 338.8 345.8 345.9 352.9 353.0 363.5 363.8 370.3 370.9 
412.7 412.6 415.7 415.5 419.4 419.3 426.9 427.0 433.7 434.4 
592.6 593.0 605.4 605.5 621.3 618.9 649.1 639.2 664.0 650.5 
682.8 687.8 675.4 692.2 666.6 698.8 653.0 716.4 650.3 737.6 

 

Table A 2: Diagonal values of the product 𝑻𝑻𝝎𝑩
𝟐  𝑻 compared to 𝝎𝑨

𝟐  for models A2  

A2 
𝛥𝐾1 𝛥𝐾2 𝛥𝐾3 𝛥𝐾4 𝛥𝐾5 

√𝑇𝑇𝜔𝐵
2𝑇 𝜔𝐴 √𝑇𝑇𝜔𝐵

2𝑇 𝜔𝐴 √𝑇𝑇𝜔𝐵
2𝑇 𝜔𝐴 √𝑇𝑇𝜔𝐵

2𝑇 𝜔𝐴 √𝑇𝑇𝜔𝐵
2𝑇 𝜔𝐴 

41.3 41.1 41.5 40.8 43.7 39.8 49.3 38.4 57.1 36.9 
71.5 70.1 72.4 68.5 77.7 63.9 83.7 60.0 87.5 57.1 

153.5 152.6 154.2 151.6 159.2 148.5 166.7 145.5 173.3 143.1 
206.6 202.8 208.1 198.6 213.5 189.6 216.3 183.9 216.7 180.6 
335.8 333.9 337.0 331.8 343.1 326.4 349.2 322.2 353.2 319.4 
411.8 405.0 412.9 397.7 414.0 384.5 412.3 377.8 410.2 374.3 
587.4 584.6 588.4 581.3 592.5 573.6 595.2 568.6 596.5 565.5 
691.2 675.8 693.8 665.1 690.1 648.5 684.3 641.1 680.3 637.6 

 

A cantilever beam 
In this section, the T-Mass and T-Stiffness matrices for the numerical cantilever beam presented in 
section 5.1.2 are presented. The T-Mass and T-Stiffness indicators for model A1 are shown in Table 
A 3 and Table A 4, while those for model A2 are shown in Table A 5 and Table A 6. 
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Table A 3: T-Mass for model A1. 

--- 90.000 89.951 90.000 89.817 90.000 89.538 89.998 
90.000 --- 89.999 89.894 89.999 89.973 89.997 89.530 
89.951 89.999 --- 89.999 89.876 90.000 89.393 89.996 
90.000 89.894 89.999 --- 89.999 89.881 89.999 89.746 
89.817 89.999 89.876 89.999 --- 90.000 89.766 89.998 
90.000 89.973 90.000 89.881 90.000 --- 90.000 89.882 
89.538 89.997 89.393 89.999 89.766 90.000 --- 89.998 
89.998 89.530 89.996 89.746 89.998 89.882 89.998 --- 

 

Table A 4: T-Stiffness for model A1. 

--- 90.000 89.057 90.000 89.638 90.000 89.848 90.000 
90.000 --- 90.000 89.022 90.000 89.998 90.000 89.700 
78.923 89.999 --- 89.999 87.948 90.000 89.144 89.999 
89.996 69.825 89.997 --- 90.000 89.972 89.998 88.259 
59.466 89.998 75.700 90.000 --- 90.000 87.676 89.997 
90.000 89.715 90.000 89.818 90.000 --- 90.000 89.883 
37.032 89.934 67.420 89.982 81.310 90.000 --- 89.999 
89.928 38.749 89.962 77.073 89.988 89.866 89.999 --- 

 

Table A 5: T-Mass for model A2. 

--- 90.000 89.914 89.999 89.690 89.997 89.289 90.000 
90.000 --- 89.999 89.797 89.998 89.156 89.996 89.970 
89.914 89.999 --- 89.997 89.744 89.992 88.893 90.000 
89.999 89.797 89.997 --- 89.999 89.722 89.998 89.840 
89.690 89.998 89.744 89.999 --- 89.997 89.923 90.000 
89.997 89.156 89.992 89.722 89.997 --- 89.996 89.841 
89.289 89.996 88.893 89.998 89.923 89.996 --- 90.000 
90.000 89.970 90.000 89.840 90.000 89.841 90.000 --- 
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Table A 6: T-Stiffness for model A2. 

--- 90.000 88.248 90.000 89.241 90.000 89.693 90.000 
90.000 --- 90.000 87.989 90.000 89.384 89.999 89.995 
76.986 89.999 --- 89.999 86.045 89.997 88.417 90.000 
89.996 65.764 89.996 --- 90.000 86.761 89.996 89.955 
56.909 89.997 67.294 90.000 --- 89.995 86.094 90.000 
89.933 30.718 89.949 67.290 89.982 --- 89.997 89.818 
37.661 89.932 56.316 89.971 75.853 89.997 --- 90.000 
90.000 89.642 90.000 89.730 90.000 89.841 90.000 --- 
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