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A B S T R A C T

Programming language detection from source code excepts remains an active research field, which has already
been addressed with machine learning and natural language processing. Identifying the language of short code
snippets poses both benefits and challenges across various scenarios, such as embedded code analysis, forums,
Q&A systems, search engines, source code repositories, and text editors. Existing approaches for language
detection typically require multiple lines or even the entire file contents. In this article, we propose a character-
level deep learning model designed to predict the programming language from a single line of code. To this
aim, we construct a balanced dataset comprising 434.18 million instances across 21 languages, significantly
exceeding the size of existing datasets by three orders of magnitude. Leveraging this dataset, we train a deep
bidirectional recurrent neural network that achieves a 95.07% accuracy and macro-F1 score for a single-line
code. To predict the programming language of multiple lines (e.g., code snippets) and entire files, we build
a stacking ensemble meta-model that leverages our single-line model to efficiently recognize the language
of multiple lines of code. Our system outperforms the state-of-the-art approaches not only for a single line
of code, but also for snippets of 5 and 10 lines and whole files of source code. We also present PLangRec,
an open-source language detection system that includes our trained models. PLangRec is freely available as a
user-friendly web application, a web API, and a Python desktop program.
1. Introduction

In the last decades, there has been a substantial growth in the avail-
ability of source code published in many ways [1]. Noteworthy among
these are source code repositories such as GitHub, SourceForge, GitLab,
BitBucket, and CodePlex, which represent databases of vast amounts of
source code. For example, GitHub hosts at the beginning of 2024 more
than 420 million repositories and boasts a community of 100 million
developers [2]. Besides source code repositories, source code snippets
are frequently encountered in other diverse digital sources, including
forums, chats, wikis, online courses, and web pages covering many
distinct topics.

Source code is written in a particular programming language. Pro-
gramming languages follow different paradigms (e.g., object-oriented,
functional, and logical), provide distinct features (e.g., explicit or im-
plicit memory management, static or dynamic typing, and binary or
managed by a virtual machine), and are often suitable for particular
domains (e.g., web systems, scientific computation, and system pro-
gramming) [3]. Thus, to discuss the quality, performance, security, or
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behavior of a source code excerpt, we must first know the programming
language in which it has been written.

There are situations where detecting the programming language
from a source code excerpt may be beneficial. Here are some common
scenarios where this capability is useful:

– Text editors. Most text editors infer the programming language
based on the file extension rather than the source code itself [4].
Consequently, when a new file is created, syntax highlighting,
code indentation, and other formatting features are not applied
until the file is saved with a specific file extension [5]. If an
incorrect file extension is chosen upon saving, the code may be
interpreted as being written in the wrong language. This issue is
particularly significant for file extensions associated with multiple
languages—for example, .h for C, C++, and Objective-C, and
.pl for Perl and Prolog.

– Source code intermingled with natural language text. Numer-
ous platforms predominantly feature natural language content
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Fig. 1. Code excerpts showing language detection from a single line of code (left) and an example where the first line is insufficient to determine the language (right).
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(e.g., English, French, or Spanish text). However, it is not un-
common to find instances where source code is also included.
Examples of such platforms are forums, chats, emails, Q&A sys-
tems such as Stack Overflow and Code Review, and code snippets
tools such as gist and pastebin. In some of the previous examples,
there is no standard way to represent the source code and its lan-
guage. In others, systems rely on tags written by the users that are
sometimes mis-tagged [6]. This leads to posts being downvoted
and flagged by moderators, even though they may add value
to the community. Furthermore, there are posts about language
comparison (e.g., Python vs. R for machine learning) where two
or more language tags are used. There are also language-agnostic
questions where snippets in different languages are utilized in the
responses.

– Embedded code. Source code sometimes embeds other code ex-
cerpts written in a different language. For example, SQL code to
access databases is usually embedded into code in another lan-
guage. Similarly, JavaScript and CSS code is commonly included
in HTML. For these case scenarios, file extensions do not represent
a reliable mechanism to know the programming language used in
(each part of) a text file.

– Search engines. In cases where source code or its programming
language cannot be accurately identified within natural language
text, conventional search engines, including those on the Internet,
may fail to yield optimal results. By implementing a mecha-
nism to detect both code and language from text, search engines
could provide more accurate responses to queries related to code
written in a particular programming language. This detection
technique would also be valuable for dedicated code search en-
gines (e.g., SearchCode or Codebase), allowing them to move
beyond reliance on file extensions and effectively determine the
language of embedded code.

– Source code repositories. Metadata describing the programming
language of source code repositories are often inaccurately
tagged, primarily due to reliance on manual tagging and file
extensions [4]. This issue is especially prevalent in projects that
involve the use of multiple programming languages.

Despite the importance of accurately identifying the programming
anguage, there are situations where discerning the language of a source
ode fragment proves challenging. Fig. 1 illustrates two contrasting
xamples. On the left, a line of SQL code is shown. A proficient

language detection system could accurately identify the language from
this single line. Conversely, the first line of the code snippet on the
right is valid for both C and C++. However, by examining the second
line, it becomes evident that the code is in C++ due to the presence
of the new operator, which is not supported in C. Additionally, even
the SQL code on the left could be part of a larger program written in
another language, such as Python, where the SQL statement would be
embedded to perform a database query. Thus, while it is important for
a system to accurately detect the language from a single line of code,
it must also consider the broader context provided by multiple lines to
nhance its prediction accuracy.

To deduce the programming language of a source code excerpt, the
esearch community has already leveraged machine learning and nat-
ral language processing (NLP) techniques [5]. Some systems achieve

remarkably high accuracies (up to 97.5%) by analyzing entire source
iles [7–9]. Unfortunately, the analysis of complete files does not solve
he problems discussed in the previous scenarios. Thus, certain works
educe the size of their inputs to code snippets, resulting in a notable
2 
decrease in performance (ranging from 75% to 93% accuracy) [5,10–
13]. Notably, all these approaches require various lines of source code
to perform their predictions.

As mentioned, open-source code repositories provide massive
databases of source code written in diverse programming languages.
With such a vast amount of data, it becomes plausible to train deep-
earning models with a high number of parameters. Such models could

thereby enhance the performance of the existing systems aimed at
detecting the language of source code. This improvement could also
allow the reduction of the input size to a single line of source code.
Aligned with this idea, this article presents the following contributions:

1. A 113.3 GB corpus of 8.5 million source files labeled with 21
distinct categories representing their respective programming
languages. We develop a GitHub crawler to download these files.
A language verification module validates the actual language of
each code file. Subsequently, the files are processed to construct
a perfectly balanced dataset containing 434.18 million instances
for 21 languages. This dataset significantly surpasses the scale
of the one curated by Yang et al. [11] (228,000 instances for 19
languages), widely used in many research studies (see Section 2).

2. A character-level deep-learning model designed to predict the
programming language of a single line of code from a pool of
21 different languages, achieving a 95.071% macro-F1 score and
95.069% accuracy. We detail the methodology used to create the
model, present its evaluation, and compare it to state-of-the-art
systems.

3. A multi-line meta-model that leverages our single-line prediction
model to identify the programming language from multiple lines
of code. This meta-model is created using a stacking ensem-
ble approach, incorporating a frequency distribution analysis of
the languages predicted for each line by our single-line model.
Our meta-model surpasses existing systems in classifying 5- and
10-line code snippets as well as entire source code files.

4. PLangRec (Programming Language Recognizer): an open-source
web application, web API, and Python desktop software that uses
our model and meta-model. With PLangRec, users can take any
source code and know the programming language in which it has
been written. The model is also available for download, ready to
be integrated into any application.

The rest of the paper is structured as follows. The next section
outlines the related work, while Section 3 elaborates on the con-
struction of the dataset (the first contribution of the article). The

ethodology used to create the deep learning models (second and third
ontributions) is depicted in Section 4. Subsequently, in Section 5, we

evaluate our system in comparison with the related work. Section 6
introduces PLangRec (fourth contribution), the web application, web
API, and Python desktop software that integrates our meta-model and
the top-performing single-line model. Conclusions and future work are
presented in Section 7.

2. Related work

Various research projects are focused on predicting the program-
ming language of source code excerpts. None of these methods facilitate
language prediction with a single line of code. Instead, they typically
deal with code snippets, which consist of a few consecutive lines of
code. One such method is Source Code Classification (SCC), which
employs a multinomial naïve Bayes classifier to identify the program-
ming language of code snippets across 21 different languages [10].
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Their model is constructed upon a bag-of-words word-level classifier,
hich overlooks the order of word occurrence in the code. To train

he dataset, Alreshedy et al. downloaded 237,787 snippets from Stack
verflow. Their dataset comprises 12,000 snippets for 19 languages,
lus 8428 snippets for Lua and 1359 snippets for Markdown, resulting
n an imbalanced dataset. Snippets must contain at least two lines of
ode. They build a multinomial naïve Bayes classifier with an accuracy
f 75%.

DeepSCC is an LLM-based (Large Language Model) system designed
to classify the programming language from source code snippets of
at least two lines of code [11]. DeepSCC utilizes RoBERTa (Robustly
optimized BERT approach), a transformer-based deep learning model
for natural language processing (NLP) tasks [14] built upon the archi-
tecture of Google’s BERT (Bidirectional Encoder Representations from
Transformers) [15]. Yang et al. fine-tune the pre-trained word-level
RoBERTa model for language classification. The LLM encoder is fed
into a linear layer with a Softmax activation function for multi-class
classification. To mitigate the impact of the out-of-vocabulary (OOV)
problem in word-label models, they employ a Byte-Pair Encoding (BPE)
tokenizer [16]. They utilize the dataset created by Alreshedy et al. [10],
excluding Lua and Markdown, to compose a balanced dataset. They
achieve 87.2% accuracy for those 19 languages.

Guesslang is a Python tool for detecting the programming language
f source code snippets [12]. Guesslang utilizes a deep neural network

model combined with a linear classifier. The model’s hyperparameters
are fine-tuned, achieving a 93.45% accuracy for 54 programming lan-
guages. To train their model, they download 1.9 million source code
files, randomly selected from 170,000 public GitHub repositories. The
authors indicate that Guesslang encounters difficulty differentiating C
from C++ and JavaScript from TypeScript [12]. It is also noted that
Guesslang may not accurately identify the programming languages of
very small code snippets.

EL-CodeBert [13] is a code snippet classifier based on the CodeBert
pre-trained model, which is designed for both programming and natural
languages [17]. EL-CodeBert leverages the representational information
from each layer of CodeBert by treating them as a sequence of represen-
tational information. All the 12 elements of that sequence are passed
to a bidirectional recurrent neural network (Bi-LSTM). Subsequently,
an attention mechanism is employed to assign weights to each layer
based on their significance. Finally, two fully connected networks
are utilized for language classification. The model is trained on the
balanced dataset created by Yang et al., consisting of 12,000 snippets
for 19 programming languages [11]. With that dataset, EL-CodeBert
chieves an accuracy of 86% and a macro F1-score of 88.08%.

Other investigations focus on predicting the programming language
rom entire source code files, typically achieving higher performance

compared to the approaches based on snippets. However, these ap-
roaches require the entire file content for prediction. Van Dam and
aytsev utilize statistical language models from the NLP field, including
-grams, skip-grams, multinomial naïve Bayes, and normalized com-

pression distance, achieving 97.5% accuracy in classifying 20 different
languages [7].

Shlok Gilda employs a neural network with a word embedding
ayer, followed by a multi-layered convolutional network with multiple

filters and max-pooling layers [8]. The model achieves a 97% accuracy
n classifying 60 programming languages. Similarly, Khasnabish et al.
erform language classification for entire source code files using naïve
ayes, Bayesian network, and multinomial naïve Bayes models, classi-
ying 10 languages with 93.48% accuracy [18]. Odeh et al. also apply
ultinomial naïve Bayes models to classify 12 languages of entire code

iles with 95.09% accuracy [19].
While the previous systems train models exclusively with source

ode, others incorporate natural language alongside code input. Data
is sourced from Q&A platforms like Stack Overflow and Code Review.

lthough the natural language text enriches the input providing better
performance, the resulting models are specific for Q&A and related
 l

3 
systems.
SCC++ (Source Code Classification) identifies the programming

anguage of Stack Overflow questions by combining features from the
itle, body, and code snippets [5]. SCC++ achieves an accuracy of

88.9% for 21 programming languages, but the classifier’s performance
decreases to 78.9% when using only the title and body, and 78.1%
with only the code snippet. The dataset used is the same as the one
for SCC, described at the beginning of this section [10]—SCC++ is an
improvement of SCC. Alrashedy et al. trained XGBoost and Random
Forest models from the same dataset, obtaining slightly better results
with XGBoost.

HyperSCC is another programming language classifier that com-
ines code snippets and natural language [6]. XGBoost and Random
orest models are created, optimizing their hyperparameters with seven
ifferent automatic rule-based labeling approaches. The models are
rained with a dataset comprising Stack Overflow posts, obtaining an

accuracy of 85.5% for 24 programming languages.
The last kind of source code classification system is based on lever-

ging the advances of machine learning for image classification instead
f applying NLP approaches. A good example of this method is the
tudy of Kiyak et al., where they compare the performance of deep
earning algorithms for code classification on both image and text
iles [9]. They create a dataset from GitHub with 40,000 source code
iles and images for eight different languages. For text files, they build a

1D convolutional neural network (CNN) with a filter of size three, end-
ing with a softmax output over eight categories. For images, a similar
pproach with 2D CNN is followed. The comparative results indicate
hat the image-based classifier show slightly better performance than
he text-based model (99.38% accuracy vs. 98.81%).

Hong, Mizuno, and Kondo propose a classifier based on the existing
esNet, AlexNet, and SimpleNet convolutional neural networks [20].

They create two datasets by generating images from source code:
one with code snippets taken from Stack Overflow in ten different
languages; and another with functions from open-source GitHub reposi-
tories in five programming languages. In their evaluation, ResNet is the
CNN model with better performance, obtaining 92% accuracy for code
snippets (identifying 10 languages) and 99% accuracy for functions (5
languages).

3. Dataset construction

Deep-learning models involve learning numerous parameters from
data, necessitating a substantial amount of data to effectively train
those many parameters. The first part of our system is focused on
creating such a dataset (Fig. 2). Then, the dataset is used to train and
est different models, as we detail in Section 4.

3.1. Language selection

Before constructing the dataset, we need to determine the list of
programming languages from which we aim to create a source code
atabase. To that aim, we consult the 15 more popular languages ac-
ording to the Tiobe [21], PYPL [22], and RedMonk [23] programming

language rankings. Additionally, we also utilize BigQuery to ask GitHub
for the 15 languages with the highest number of open-source code
repositories. The findings are presented in Table 1, illustrating the 25
most popular languages based on the aforementioned criteria. All these
languages were considered for the construction of our dataset.

3.2. GitHub crawler

The construction of the dataset follows the steps outlined in Fig. 2.
All the input files are taken from public open-source repositories in

itHub. We implement a Python crawler for GitHub using the PyGithub
ibrary 1.53 [24]. The crawler queries GitHub for repositories in one
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Fig. 2. Architecture of the system that creates the dataset to train our single-line model.
Table 1
The 15 most popular languages in the Tiobe, PYPL, and RedMonk rankings along with
the 15 languages with the highest number of open-source repositories in GitHub.

Position TIOBE PYPL RedMonk GitHub

1 C Python JavaScript JavaScript
2 Java Java Python CSS
3 Python JavaScript Java HTML
4 C++ C# PHP Shell
5 C# C/C++ C# Python
6 VB.NET PHP C++ Ruby
7 JavaScript R Ruby Java
8 R Objective-C CSS PHP
9 PHP Swift TypeScript C
10 Swift TypeScript C C++
11 SQL Matlab Swift Makefile
12 Go Kotlin Objective-C Objective-C
13 Assembly Go Scala C#
14 Perl VBA R Perl
15 Matlab Ruby Go Go

of the 25 selected languages, receiving the repository URLs. Subse-
quently, the crawler analyzes these repositories, downloading files with
the language extensions outlined in Table 2. We then verify that the
actual language is the expected one (Section 3.3), rejecting all the
files that have not been validated. Notably, the crawler is designed to
seamlessly resume its execution from the point of interruption, ensuring
continuity in the event of any errors (for further details on its design
and implementation, please refer to [25]).

Our crawler operated for six months, downloading a total of 9.17
million files, and accumulating more than 123 GBs (see Table 2). After
that process, four languages – Visual Basic for Applications (VBA) and
.NET (VB.NET), Objective-C, and Makefile – had notably fewer files
than the other languages. The four of them fall below 500 MBs, whereas
the subsequent language with fewer files have 5.12 GBs. That would
make it difficult to build a sufficiently large and balanced dataset.
Consequently, we opted not to include these four languages in our
dataset, focusing on the remaining 21 languages.

3.3. Language verification

The language verification module validates that a source file is
actually written in the language associated with its file extension—
otherwise, its content is not considered. For this purpose, we implement
a Java application that, using context-free grammars specifying the
selected languages, tells us whether the language used is the expected
one [25]. We use the ANTLR 4.10.1 parser generation tool [26] and its
collection of grammars for multiple programming languages [27].
4 
Table 2
File extensions, number of files, and sizes of the source code files for the 25
programming languages selected.

Language File extensions Number of files Size (MB)

Assembly .asm, .s, .S 228,425 5,128.56
C .c 295,052 10,419.27
C++ .cpp, .cc, .cx 242,096 5,133.16
C# .cs 425,687 5,122.58
CSS .css 137,399 5,121.30
Go .go 375,558 8, 648.69
HTML .html, .htm 210,792 5,120.19
Java .java 448,579 5,122.19
JavaScript .js 185,192 5,124.80
Kotlin .kt, .kts, .ktm 924,591 5,120.11
Makefile .cmake 32,813 421.34
Matlab .m 640,005 5,120.41
Objective-C .mm, .M 27,334 352.92
Perl .pl 368,872 5,120.23
PHP .php 433,230 5,169.38
Python .py 534,101 10,247.04
R .r 396,190 5,120.17
Ruby .rb 807,868 5,128.45
Scala .scala, .sc 456,885 5,121.60
SQL .sql 182,432 5,300.63
Swift .swift 510,825 5,158.72
TypeScript .ts 670,163 5,165.41
Unix shell .sh 592,844 5,122.12
VBA .vba 16,401 211.12
VB.Net .vb 33,587 435.80

Total 9,176,921 123, 256.19

Various challenges were addressed during the development of the
language verifiers. First, for some languages such as C and C++ we ran
a preprocessor prior to language recognition. Second, languages like
SQL exhibit numerous variants. To handle this, we used the grammars
for SQLite, MySQL, PostgreSQL, PL/SQL, and TSQL, requiring at least
one positive recognition to interpret the code as a valid SQL file. Third,
the grammars of Ruby and Matlab were obsolete, so we had to update
them. Fourth, the grammar of Unix Shell was not available, so we
had to implement it from scratch. Finally, issues arose with different
versions of the same language, where we applied the same approach
as for language variants (exemplified in the SQL scenario described
earlier).

The following error analysis process was followed. We pass the
language verifier to the source files. If the language is not the one
derived from its file extension (Table 2), we analyze its cause. In
cases where the code is indeed written in the expected language, we
refine its grammar as outlined in the preceding paragraph. Otherwise,
the verifier accurately rejects the source file. The refinement of the
grammar for a particular language ceases when the last 100 analyzed
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Table 3
Number of verified and accepted files. Languages with 𝜓 are supported by all the
systems evaluated (see Section 4.5).

Language Number Number of Acceptance
of files accepted files rate

Assembly 228,425 221,572 97.0%
C𝜓 295,052 286,200 97.0%
C++𝜓 242,096 222,244 91.8%
C#𝜓 425,687 387,375 91.0%
CSS𝜓 137,399 129,155 94.0%
Go 375,558 349,644 93.1%
HTML 210,792 194,139 92.1%
Java𝜓 448,579 400,132 89.2%
JavaScript𝜓 185,192 174,080 94.0%
Kotlin 924,591 878,361 95.0%
Matlab 640,005 582,404 91.0%
Perl𝜓 368,872 332,722 90.2%
PHP𝜓 433,230 421,099 97.2%
Python𝜓 534,101 502,054 94.0%
R𝜓 396,190 346,270 87.4%
Ruby𝜓 807,868 767,474 95.0%
Scala𝜓 456,885 452,316 99.0%
SQL𝜓 182,432 170,209 93.3%
Swift𝜓 510,825 485,283 95.0%
TypeScript 670,163 643,356 96.0%
Unix shell𝜓 592,844 567,351 95.7%

Total 9,066,786 8,513,440 93.9%

files are consistently verified correctly.
Table 3 presents the outcomes of the language verification process.

In total, we verified 9 million files. The language verifiers detected
553,346 files (6.1%) as incorrectly classified by its language extension.
The remaining files were included in constructing the dataset. The
resultant corpus (the first part of the first contribution of this article)
encompasses 113.3 GBs, comprising 8.5 million source files across 21
different languages.

3.4. Line extraction

Our system aims to predict the programming language from a single
line of code. To this aim, the line extraction module extracts valid lines
f code from the verified corpus of files. There are some lines of code
hat we do not consider valid to predict its language since they do not
ontain source code.

One scenario for discarding lines involves those containing natu-
ral language elements, such as comment lines and multiline strings.

hile certain comments, like Javadoc comments, might offer language-
elated information, most simply contain natural language text. Re-

garding strings, we exclude only multiline strings, allowing lines with
imple strings. We also consider interpolated strings (e.g., f-strings in
ython) since they usually include expressions in the corresponding
anguage.

Additionally, we exclude leading and trailing white spaces and
abular characters (not those in the middle). These characters do not
onvey information about the programming language and hence are not
onsidered in our analysis—while in Python leading space and tabular
haracters may provide information about scope with multiple lines,
ur predictions are based on individual lines. We also apply a criterion
or valid lines based on a minimum character threshold. Lines with
ewer than ten characters are discarded.

We implement the line extraction module as a native application
developed in Go 1.18.1. We selected this language because of its
untime performance and strong support for concurrent programming,
nabling parallel processing of numerous files. The line extraction pro-
ess heavily depends on the programming language being processed, so
e manually implemented all the patterns of characters to be discarded
escribed above. Several notable cases arise, such as the presence of
ested comments in Kotlin and Swift, or the nested string interpolation
eature found in languages like C#. The language extraction application
omprises 33 Go classes, detailed in [25].
 o
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3.5. Dataset creation

Utilizing the extracted lines as input, we create the dataset, cat-
egorizing each line with its respective programming language (an
nteger number from 0 to 20). The initial step in the dataset creation
odule involves transforming the source code files from UTF-16 (the

ile format used by the GitHub crawler in Section 3.2) to UTF-8.
Subsequently, we conduct a character frequency analysis to identify the

ost frequently used characters in the source code files. Following a
losed-vocabulary NLP approach [28], we employ a fixed number of

characters, designating those rarely used as a special out-of-vocabulary
(OOV) character.

Fig. 3 depicts a histogram illustrating the distribution of characters
across all the verified lines. Characters within the ASCII code range of
32 to 125 plus tabular (code 9) constitute 99.97% of the occurrences.
Table 4 shows the selected characters from the first 128 in the UTF-
8 table. All the characters outside this range (0.03% of occurrences)
are represented as a special OOV character. Another padding special
character is used to make all the lines have the same fixed size. We
set the maximum length of source code lines (after removing leading
and trailing blanks) at 40, truncating longer lines and adding padding
characters to shorter ones.

With these transformations, the vocabulary is streamlined to 97
characters. They are then converted to integers ranging from 0 to 96,
where 0 represents padding, 1 corresponds to OOV, and subsequent
numbers represent the ordered characters in Table 4. Each character
(integer) represents a category value, devoid of any inherent order
(i.e., a nominal variable, not an ordinal one). Consequently, we convert
each character into one-hot encoding, a more fitting representation for
machine learning. Each sample becomes a sparse vector of 97 dimen-
ions, where each binary feature represents the presence or absence of

the corresponding character. In this way, an instance (line of code) is
represented as a 40 × 97 matrix of binary values.

To ensure dataset randomness, we execute various shuffling actions.
nitially, all files are shuffled, irrespective of their programming lan-
uage. Subsequently, after the line extraction module (Section 3.4), we

shuffle all the lines within a file. Finally, the dataset creation module
shuffles all individuals within the final dataset.

The resulting dataset comprises 858.223 million individuals. We
store it in binary as a NumPy array, serialized using the pickle
Python module. While less portable than a comma-separated file (CSV),
its binary representation allows for faster loading. The dataset creation
module was implemented in Python 3.10 [25].

4. Methodology

The generated dataset with 858.223 million instances is not bal-
nced. Thus, we randomly downsample our dataset to obtain a perfectly
alanced dataset for the 21 different languages. The balanced dataset,

now totaling 434.18 million samples (the second part of our first
contribution), is then divided into three stratified sets: the training set,
comprising 432.18 million samples; and the validation and test sets,
each containing 1,000,020 instances.

4.1. Deep single-line models

We tried to construct various single-line models for predicting the
language of a single line of code. However, all the offline models we
experimented with, including XGBoost, Random Forest, Support Vector
Machine, and Softmax Regression [25], encountered memory resource
issues when handling datasets exceeding 3.5 million instances. To fully
everage our dataset, we opted for training neural network models using
ini-batch learning, wherein model parameters are updated based on

he average gradient computed for each mini-batch of instances [29].
This approach eliminates the need to load the entire dataset into mem-
ry while ensuring that all instances contribute to the model training



O. Rodriguez-Prieto et al.

t

v
h
t
r

o
t
d
S
i
f
b
c
t
w

l
t
2

r
h
s
w
b

Future Generation Computer Systems 166 (2025) 107640 
Fig. 3. Histogram showing the occurrence of characters in all the source-code lines extracted.
Table 4
Selected characters (bold font) from the first 128 in the UTF-8 table.

Code Char Code Char Code Char Code Char Code Char Code Char Code Char Code Char

0 NUL 16 DLE 32 ESP 48 0 64 @ 80 P 96 ‘ 112 p
1 SOH 17 DC1 33 ! 49 1 65 A 81 Q 97 a 113 q
2 STX 18 DC2 34 " 50 2 66 B 82 R 98 b 114 r
3 ETX 19 DC3 35 # 51 3 67 C 83 S 99 c 115 s
4 EOT 20 DC4 36 $ 52 4 68 D 84 T 100 d 116 t
5 ENQ 21 NAK 37 % 53 5 69 E 85 U 101 e 117 u
6 ACK 22 SYN 38 & 54 6 70 F 86 V 102 f 118 v
7 BEL 23 ETB 39 ’ 55 7 71 G 87 W 103 g 119 w
8 BS 24 CAN 40 ( 56 8 72 H 88 X 104 h 120 x
9 TAB 25 EM 41 ) 57 9 73 I 89 Y 105 i 121 y
10 LF 26 SUB 42 * 58 : 74 J 90 Z 106 j 122 z
11 VT 27 ESC 43 + 59 ; 75 K 91 [ 107 k 123 {
12 FF 28 FS 44 , 60 < 76 L 92 \ 108 l 124 |
13 CR 29 GS 45 - 61 = 77 M 93 ] 109 m 125 }
14 SO 30 RS 46 . 62 > 78 N 94 ˆ 110 n 126 ∼
15 SI 31 US 47 / 63 ? 79 O 95 _ 111 o 127 DEL
b
o

m

process.
We devise two deep artificial neural network (ANN) topologies: one

based on the Multi-Layer Perceptron (MLP) architecture and the other
on Recurrent Neural Networks (RNN). For the MLP, Fig. 4 illustrates the
architecture used. We explore two different inputs. The first one utilizes
he one-hot representation described in Section 3.5, so the embeddings

layer in Fig. 4 is not employed. The second input representation assigns
each character a unique integer, which is then translated into a dense
ector (embedding) of fixed size—the length of the embedding is a
yperparameter described in Section 4.3. The embedding layer learns
o represent characters as fixed-size vectors, capturing the semantics
equired for language recognition.

Whether using the one-hot input or the embeddings layer, each line
f code is represented as a matrix with 40 rows and 97 (or the size of
he embedding) columns. As each hidden block of layers requires a one-
imensional input, a flatten layer converts the matrix to a 1D vector.
ubsequently, the MLP concatenates 𝑛 hidden blocks of layers (where 𝑛
s a hyperparameter to be determined). Each hidden block starts with a
ully connected (dense) layer of 𝑚 neurons (another hyperparameter). A
atch normalization layer is incorporated to maintain the mean output
lose to 0 and its standard deviation close to 1, thereby mitigating
he vanishing gradient problem commonly observed in deep MLP net-
orks [30]. Additionally, an optional dropout layer in each hidden

block serves as a regularization mechanism to prevent overfitting.
After the concatenation of 𝑛 hidden blocks, the MLP network con-

cludes with a dense layer of 21 outputs (one for each programming
anguage). This layer employs a softmax activation function, assigning
o each output the probability that the input line belongs to one of the
1 programming languages.

Fig. 5 depicts the second neural network employed: a deep Bidi-
ectional Recurrent Neural Network (BRNN). This type of network
as demonstrated notable efficacy in classifying sequences—lines are
equences of characters—, considering both past and future contexts
ithin sequences—the context of a character involves information from
oth preceding and succeeding characters [31].
 t

6 
Similar to the MLP architecture, we explore two input configura-
tions for the BRNN: one utilizing one-hot encoding for characters and
another one with an embedding layer to learn vector representations
for each character. Subsequently, a series of bidirectional recurrent
network blocks are stacked, the number of which is a hyperparameter.
Each block features an initial layer with a recurrent forward cell (GRU
or LSTM, determined by another hyperparameter) and a corresponding
recurrent backward cell. The outputs of both cells (with the num-
er of neurons being another hyperparameter) are concatenated and,
ptionally, passed through a dropout layer for regularization.

Following the BRNN blocks, we incorporate 𝑑 dense layers (a hy-
perparameter) to take the information acquired from the sequence of
characters and employ it in classifying the programming language.
An optional dropout layer precedes the final dense layer, consisting
of 21 output neurons with a softmax activation function. Analogous
to the MLP topology, the output comprises 21 values between 0 and
1, representing the probability that the input line of code has been
written in each programming language. For both architectures, we use
the cross-entropy loss function.

4.2. Meta-model

The previous single-line models return 21 real values indicating the
probability that the input line belongs to one of the 21 programming
languages. To predict the language of a sequence of 𝑙 𝑜𝑐 lines of code,
the 𝑙 𝑜𝑐 vectors produced by the model can be used. Various approaches
exist for predicting the language of 𝑙 𝑜𝑐 lines, such as averaging the
probabilities for each line, using a majority voting system to determine
the most frequent language, or performing a length-weighted average
of the probabilities.

A more sophisticated approach is stacking (also called stack gener-
alization or blending) [32]. Stacking is an ensemble learning technique
used to improve the predictive performance of other machine learning

odels. In our case, we use stacking to train a meta-model (or blender)
hat predicts the language of 𝑙 𝑜𝑐 lines of code by combining the
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Fig. 4. Multi-layer perceptron architecture followed.
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predictions produced by the best single-line model.
The input to the meta-model is a sequence of 𝑙 𝑜𝑐 vectors (one per

line). RNNs are commonly employed for such sequential inputs, pro-
cessing each value in the sequence one step at a time, while maintaining
a hidden state that captures information from previous steps. However,
for long sequences (e.g., all the lines in a file) the effectiveness of RNNs
is limited by sequence length and model architecture [33]. For this
eason, we perform a frequency distribution analysis that aggregates
he sequence of vectors into a fixed-size matrix.

The probability that each input line belongs to one of the 𝑙 pro-
ramming languages (𝑙 = 21) is categorized into 𝑏 bins. Then, we

compute a (𝑙 , 𝑏) matrix as indicated in Eq. (1). Each cell 𝑀𝑖,𝑗 in the
matrix counts the number of lines the 𝑖th language predicted by our
ingle-line model within the probability of the given 𝑗 bin (𝑝𝑟𝑜𝑏𝑘,𝑖 ∈
𝑏𝑖𝑛(𝑗)). These values are finally divided by 𝑙 𝑜𝑐 × 𝑙 so that they represent
robabilities—i.e., they all sum 1, regardless of the number of lines.

Once the sequence of 𝑙 𝑜𝑐 vectors is converted into a fix-sized (𝑙 , 𝑏)
matrix (both 𝑙 and 𝑏 are constant), we train a MLP neural network
s our meta-model. The first layer performs batch normalization on
he 𝑙 × 𝑏 inputs. This is followed by 𝑛 dense hidden layers with ℎ

neurons each (where 𝑛 and ℎ are hyperparameters). The output is a
dense layer with 𝑙 (𝑙 = 21) neurons and a softmax activation function.
The cross-entropy loss function is used for training.

𝑀𝑖,𝑗 =

∑𝑙 𝑜𝑐
𝑘=1

{

1 if 𝑝𝑟𝑜𝑏𝑘,𝑖 ∈ 𝑏𝑖𝑛(𝑗)
0 otherwise
𝑙 𝑜𝑐 × 𝑙

here 𝑝𝑟𝑜𝑏𝑘,𝑖 is the probability predicted by our single-line model

that the line 𝑘 belongs to the language 𝑖 i

7 
(1)

4.3. Hyperparameter tunning and model training

The different ANN topologies identified encompass numerous hy-
perparameters that play an important role in shaping the architecture
nd behavior of the networks. These hyperparameters significantly in-
luence the network’s capacity to learn and generalize from data. Some
yperparameters define the network architecture (e.g., the number of
idden layers and neurons per layer) and others pertain to the training
rocess (e.g., batch size and learning rate).

To ensure the optimal performance of the designed ANN topologies,
e conduct an exhaustive grid hyperparameter search for the single-

ine models and the meta-model. This method systematically explores
 predefined set of hyperparameter values to identify the combination
hat produces the most favorable model performance. In each iteration
f the search, a model is trained with the train set using a specific
ombination of hyperparameters. Subsequently, the validation set is
mployed to assess the model’s performance—we use the accuracy

measure since all the datasets are perfectly balanced. After completing
the search process, we select the hyperparameters yielding the best
performance.

Tables 5, 6, and 7 show all the values used for each hyperparameter
in each model and meta-model, along with the values corresponding
to the best performances. For each iteration of the hyperparameter
search process, models are trained with 10 epochs. Concerning the
nitialization methods, He is utilized for the ReLU, Leaky ReLU, and



O. Rodriguez-Prieto et al.

s

Future Generation Computer Systems 166 (2025) 107640 
Fig. 5. Bidirectional recurrent neural network architecture followed.
Table 5
Hyperparameters of the deep multi-layer perceptron architecture followed (embedding
ize=0 means no embedding layer and input code in one hot).
Hyperparameter Range Result

Hidden blocks [2, 4, 6, 8, 10] 8
Neurons in hidden [500, 1000, 2000, 3000, 4000, 5000] 3000dense layers
Embedding size [0, 7, 14, 28, 56] 28
Dropout factor [0, 0.1, 0.2] 0
Activation function [ELU, SELU, ReLU, Leaky ReLU] ELU
Learning rate [10−6, 10−5, 10−4, 10−3, 10−2, 0.1, 1, 10] 10−2

Batch size [32, 64, 128, 256, 512, 1024, 2048] 1024

ELU activations, while LeCun is applied for SELU [34].
Once the final set of hyperparameters is determined, we conduct

a concluding fine-tuning training session. The stopping criterion is
defined as an increase in validation loss over three consecutive epochs.
The learning rate is dynamically reduced by a factor of 0.2 when
validation loss is not reduced in the last epoch. We select the model that
exhibits the best validation performance. The best MLP and BRNN mod-
els have 66,499,977 and 9,005,621 trainable parameters, respectively.
The best MLP meta-model has 640,821 parameters.

Various optimizers were explored for the distinct ANN architectures.
For the Multi-Layer Perceptron (MLP) topologies, we opted for the
Nesterov Accelerated Gradient (NAG) optimizer with a momentum of
8 
Table 6
Hyperparameters of the bidirectional recurrent neural network architecture followed
(embedding size=0 means no embedding layer and input code in one hot).

Hyperparameter Range Result

BRNN blocks [2, 4, 6, 8, 10] 8
RNN cell [LSTM, GRU] LSTM
Embedding size [0 , 8, 16, 24, 32, 64] 32
Output neurons of [32, 64, 128, 256, 512, 1024] 256RNN cells
Hidden dense layers [1, 2] 1
Neurons in hidden [32, 64, 128, 256, 512, 1024] 512dense layers
Dropout factor [0, 0.1, 0.2] 0.2
Activation function [ELU, SELU, ReLU, Leaky ReLU] ReLUdense layers
Learning rate [10−6, 10−5, 10−4, 10−3, 10−2, 0.1, 1, 10] 10−3

Batch size [32, 64, 128, 256, 512, 1024, 2048] 256

0.9 [35]. As for the Bidirectional Recurrent Neural Network (BRNN),
the most favorable outcomes were achieved using Adam, a stochastic
gradient descent method based on adaptive estimation of first-order
and second-order moments [36].

For hyperparameter tuning and model training, we use two different
computers, each dedicated to one of the ANN architectures presented
in Sections 4.1 and 4.2. For the BRNN, we utilize a Bull Atos equipped
with 2 AMD EPYC 7413 2.65 GHz processors, 512 GB RAM, and an
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Table 7
Hyperparameters of the meta-model (multi-layer perceptron architecture).

Hyperparameter Range Result

Number of bins [5, 10, 20, 50, 100, 500] 100
Hidden dense layers [1, 2, 3] 1
Neurons in hidden [50, 100, 200, 300, 400] 300dense layers
Activation function [ELU, SELU, ReLU, Leaky ReLU] ReLU
Learning rate [10−6, 10−5, 10−4, 10−3, 10−2, 0.1, 1, 10] 10−2

Batch size [32, 64, 128, 256, 512] 128

Nvidia A100 GPU with 80 GB HBM2e. On the other hand, the two MLP
models are trained with a Dell PowerEdge T630 featuring 2 𝑥 Intel Xeon
E5-2630 2.4 GHz processors, 128 GB RAM, and an Nvidia GeForce RTX
2060 6 GB GDDR6.

4.4. Evaluation

As mentioned, the training set is utilized to train the models, and the
validation set is employed for hyperparameter tuning. Model evaluation
is conducted using the test set since these data have been utilized in
neither the training nor the validation processes.

The metrics used to assess all the models encompass accuracy, preci-
sion, recall, and F1-score. As detailed in Eq. (2), accuracy gauges how
often a model correctly predicts the outcome, calculated by dividing
the number of correct predictions by the total number of predictions—
sometimes expressed as a percentage.

𝐴𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 = 𝐶 𝑜𝑟𝑟𝑒𝑐 𝑡 𝑝𝑟𝑒𝑑 𝑖𝑐 𝑡𝑖𝑜𝑛𝑠
𝑇 𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐 𝑒𝑠 (2)

Another performance metric we use is F1-score, computed as the
harmonic mean of precision and recall metrics. Eqs. (3) and (4) elu-
idate the precision and recall metrics for each target class (output).
ased on those two equations, macro-precision, and macro-recall are
alculated by computing the arithmetic mean of precision and recall
or all the classes in the output variable. On the other hand, micro-
recision and micro-recall consider precision and recall globally across

all classes, treating the entire set of predictions as a single binary
classification problem.

𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛𝑖 =
𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖

𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖 + 𝐹 𝑎𝑙 𝑠𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖
where 𝑖 ∈ classes (3)

𝑅𝑒𝑐 𝑎𝑙 𝑙𝑖 =
𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖

𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖 + 𝐹 𝑎𝑙 𝑠𝑒𝑁 𝑒𝑔 𝑎𝑡𝑖𝑣𝑒𝑠𝑖
where 𝑖 ∈ classes (4)

Micro F1-score is computed as the harmonic mean of micro-
recision and micro-recall (Eq. (5)). For macro F1-score (Eq. (6)),

individual F1-scores are computed for each class (𝐹 𝑖1 in Eq. (6)) and then
averaged. These metrics collectively provide a comprehensive evalua-
tion of the models’ performance across various aspects, contributing to
a thorough understanding of their effectiveness.

𝑀 𝑖𝑐 𝑟𝑜 𝐹1-𝑠𝑐 𝑜𝑟𝑒 = 2 × 𝑀 𝑖𝑐 𝑟𝑜-𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 ×𝑀 𝑖𝑐 𝑟𝑜-𝑅𝑒𝑐 𝑎𝑙 𝑙
𝑀 𝑖𝑐 𝑟𝑜-𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 +𝑀 𝑖𝑐 𝑟𝑜-𝑅𝑒𝑐 𝑎𝑙 𝑙 (5)

𝑀 𝑎𝑐 𝑟𝑜 𝐹1-𝑠𝑐 𝑜𝑟𝑒 =
𝐹 1
1 + 𝐹 2

1 +⋯ + 𝐹 𝑛1
𝑛

where 𝐹 𝑖1 = 2 × 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛𝑖 × 𝑅𝑒𝑐 𝑎𝑙 𝑙𝑖
𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑅𝑒𝑐 𝑎𝑙 𝑙𝑖

and 𝑖 ∈ classes
(6)

4.5. Selected systems

We assess the performance of the proposed models and compare
hem with the existing state-of-the-art systems described in Section 2.

We specifically choose the systems designed for predicting program-
ming languages from code snippets, excluding those requiring entire
input files, natural language text, and code images. The selected works
9 
for comparison are DeepSCC [11], Guesslang [12], SCC++ [5], and
EL-CodeBert [13] (we exclude SCC since SCC++ is an enhancement of
CC [10]).

As the five systems to be evaluated support different languages, we
select those common to all, resulting in 15 languages (represented with

in Table 3). Subsequently, we construct test sets comprising snippets
f various sizes and entire source code files for these 15 languages. As

detailed in Section 3.3, we acquire 113.3 GB of verified source code
iles, allocating 5% of these files for testing purposes. These files are
tilized to generate four test sets: one using the entire files, and three
ith code snippets with 10, 5, and 1 line(s) of code. For snippets, we

xtract 𝑛 sequential and contiguous lines of code from each file (𝑛 being
0, 5, and 1). We construct four perfectly balanced (15 languages) test
ets: 1,000,005 samples for each type of snippet and 90,000 samples
or entire files.

To compare the performance of different models and determine
tatistically significant differences, confidence intervals are provided
longside the performance measures outlined in Section 4.4. To achieve

this, we employ bootstrap resampling (10,000 boot samples) to esti-
mate the models’ performance (average performance of all boot sam-
ples) and calculate the 95% confidence intervals [37]. Bootstrap resam-
ling involves repeatedly sampling with replacement from the observed

data to create multiple resampled datasets. The resulting 95% confi-
dence intervals enable us to determine whether statistically significant
differences exist among the compared systems [38].

4.6. Resource consumption

In addition to evaluating the classification performance of our mod-
els, we also assess the computational resources they consume during
inference. That is, we measure the execution time and memory con-
sumption when the models are utilized by an application for source
ode classification.

For runtime performance analysis, we follow the approach proposed
by [38]. First, we gauge the startup execution time required to load the
model into memory and conduct a single prediction—one line of code
for the single-line models and two lines for the meta-model. The clock
time of the whole process is recorded 30 times. Subsequently, we com-
pute the arithmetic mean of these values along with the corresponding
95% confidence interval [38].

The second evaluation method, termed steady state by Georges et al.,
involves measuring the execution time of a single operation (in our
case, model and meta-model prediction) when the system is in a stable
state [38]. This steady state is reached when the model has been
loaded into memory, and previous predictions have been executed. The
steady-state methodology only measures the execution time of model
prediction. It assumes system stability when the coefficient of variation
of the last 10 predictions is below 2%. Under such conditions, the
xecution time is computed as the arithmetic mean of the last 10 values.
imilar to the startup evaluation, this process is repeated 30 times,
eturning the arithmetic mean and 95% confidence interval for the
teady-state execution times [38].

Memory consumption assessment follows the startup methodology.
For each program execution, we measure the peak size of the working
et memory utilized by each process since its inception (i.e., Peak-
WorkingSet). The working set of a process is the set of memory pages
urrently visible to a process in physical RAM memory, which is avail-
ble to be used without triggering a page fault. Memory consumption
easurements are conducted using the psutil Python package [39]

for CPU memory and gpustat for GPU memory [40]. The evaluation
is performed on the Dell PowerEdge T630 computer equipped with
Nvidia GeForce RTX 2060 described in Section 4.3.
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Fig. 6. Evaluation of the single-line models following the MLP and BRNN architectures outlined in Section 4.1. Bars show the average performance using the bootstrap resampling
ethod described in Section 4.5, with whiskers indicating 95% confidence intervals. Notice that the Y-axis has been truncated to enhance visibility and highlight distinctions

mong the compared systems.
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5. Results

We initially show the performance of the single-line models intro-
duced in Section 4.1 for predicting 21 languages. Subsequently, we
conduct a comparative analysis between our meta-model (that includes
the top-performing single-line model) and the related work outlined in
Section 4.5.

5.1. MLP and BRNN single-line models

Fig. 6 presents the accuracy and macro-averaging metrics for the
top-performing MLP and BRNN single-line models, achieved through
the hyperparameter tuning process outlined in Section 4.3. In a mul-
iclass classification problem, where each instance can only have one
ingle class, micro-averaging measures for precision, recall, and F1-
core have the same values as accuracy [41]. For this reason, we only

show accuracy and macro-averaging metrics.
The peak performance, with an accuracy of 95.069% and a macro-

1 of 95.071%, is attained by the BRNN architecture described in
ection 4.1 for the hyperparameters outlined in Section 4.3. Fig. 6

provides a comparative analysis of models with 6, 8, and 10 BRRN
locks, showing how the one with 8 layers outperforms the other
nes with significant differences—95% confidence intervals exhibit no
verlap. The most effective MLP configuration features 8 layer blocks,
elivering an accuracy of 94.31% and a macro F1-score of 94.308%.

5.1.1. Discussion
Fig. 7 illustrates the proficiency of the optimal BRNN model in

etecting the programming language of a single line of code. The
upper part of Fig. 7 portrays the distribution of a stratified random
sample comprising 1000 instances drawn from the test set. Given that
these instances are 40 × 32-dimensional, we apply the t-distributed
tochastic Neighbor Embedding (t-SNE) algorithm [42] to reduce their

dimensionality to 2D. The lower part of Fig. 7 shows the output of the
second last dense layer in the BRNN for the same random sample. It can
be seen how the deep network effectively segregates instances across
the 21 distinct programming languages.

The confusion matrix presented in Fig. 8 offers more detailed insight
nto the BRNN model’s performance. Due to its distinctive syntax, CSS
10 
achieves the highest classification accuracy (99.8%). Following closely
are Go (98.4%), Assembly (98.3%), Matlab (98.2%), Perl (97.7%),
Python (97.5%), Unix Shell (97.2%), and SQL (97.1%). R, C, PHP,
TypeScript, and Ruby exhibit classification accuracies above 95%.

We discuss classifications with an error rate exceeding 1% in the
onfusion matrix in Fig. 8. The predominant misclassification involves

labeling C++ as C (7.3% error)—a predictable outcome given that C is
 subset of C++. Something similar happens between TypeScript and
avaScript: TypeScript is a superset of JavaScript, causing 2.9% and
.3% classification error between them. Certain misclassifications arise
mong C-syntax-based languages like Java, C#, C, and C++, owing

to their analogous syntax. HTML is occasionally mistaken for other
anguages commonly embedded within it, such as CSS, JavaScript, and
HP.

We perform a more detailed analysis to identify some other mi-
or wrong classifications—all the misclassified instances can be found

on [43]. After analyzing the misclassifications of Java, Kotlin, and
Scala, we found out they are caused by the following features shared
by these languages: they all provide package and import clauses,
share the same syntax for method invocation and field access, utilize
the same API comprising all the classes of the Java platform, employ
the same camelCase naming convention for methods and fields (unlike
C#, where methods and fields start with capital letter), and the syntax
f if and while statements and most operators are the same.

Swift is occasionally misclassified as Kotlin. That is mostly because
f the construction ‘‘var <ID> : <type> = <exp>’’ for variable defini-
ion provided by both languages. Something similar happens between
otlin and Scala: they both provide ‘‘val <ID> : <type> = <exp>’’ for
onstant definition and ‘‘private var <ID> : <type> = <exp>’’ for

field definition. Ruby and Python share different pretty rare features:
ef for function and method definition, self for the implicit object,
nake_case naming convention, raise for throwing exception, lists
iterals (arrays in Ruby) with [ and ], and multiple (parallel in Ruby)

assignment with comma separated expressions (Python tuples). Finally,
Swift is sometimes classified as Go because they both provide nil, and
if and switch constructs without parenthesis.

After performing the error analysis described in the previous para-
graphs, we can raise the following discussion. We found out that all
the misclassified individuals indeed represent valid lines of code for
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Fig. 7. Above, the distribution of a stratified random sample of 1000 instances from the test set, after reducing its dimensionality with the t-SNE algorithm. Below, the output of
the second last layer of the BRNN model for the same instances, with its dimensionality reduced using t-SNE.
l

both the actual and predicted languages [43]. Moreover, many of these
ines are also correct in other languages (e.g., ‘‘return false;’’). In

such cases, the classifier learns to assign a language to one line of code
ased on how likely it is for that language, even though it is correct for
ther languages. For instance, the statement ‘‘object.Method()’’ is
dentified as C# instead of Java because, although it is possible, it is
ot common to name Java methods with the first letter as capital. As
he programmer adds more lines of code, this misclassification will be
orrected, allowing the meta-model to accurately determine the actual
anguage of the source code (next subsection).
11 
5.2. Comparison with related work

Fig. 9 and Table 8 present the evaluation results of the selected
systems detailed in Section 4.5.1 Our system, PLangRec, uses the single-
ine model with the best performance obtained in Section 5.1: BRNN

architecture with 8 layers. As highlighted in Section 4.5, we utilize

1 It can be seen how the performance outcomes for a single line of code
in Table 8 are higher than those presented in Section 5.1 This difference is
caused by the distinct number of languages classified (15 vs. 21).



O. Rodriguez-Prieto et al.

e
i
W
F
B

a
9
E
t
t
t
a
n
X
F

5

h
a
D
l
t

Future Generation Computer Systems 166 (2025) 107640 
Fig. 8. Confusion matrix for the BRNN classifier.
Table 8
Accuracy and macro F1-score measures of the evaluated systems for snippets of 1, 5, and 10 lines of code, and entire files. 95% confidence intervals are expressed as percentages.
XGB stands for XGBoost and RF stands for Random Forest.

System Accuracy Macro F1-score

1-line 5-lines 10-lines Entire files 1-line 5-lines 10-lines Entire files

Guesslang 0.2457 ± 0.3% 0.6519 ± 0.1% 0.7854 ± 0.1% 0.9511 ± 0.1% 0.1942 ± 0.4% 0.6421 ± 0.1% 0.7806 ± 0.1% 0.9508 ± 0.1%
SCC++ XGB 0.3812 ± 0.3% 0.6268 ± 0.2% 0.7176 ± 0.1% 0.9071 ± 0.2% 0.4015 ± 0.2% 0.6268 ± 0.1% 0.7155 ± 0.1% 0.9049 ± 0.2%
SCC++ RF 0.3831 ± 0.3% 0.6130 ± 0.2% 0.7060 ± 0.1% 0.9100 ± 0.2% 0.3958 ± 0.2% 0.6125 ± 0.2% 0.7041 ± 0.1% 0.9082 ± 0.2%
DeepSCC 0.6269 ± 0.2% 0.8065 ± 0.1% 0.8524 ± 0.1% 0.9340 ± 0.2% 0.6288 ± 0.1% 0.8060 ± 0.1% 0.8517 ± 0.1% 0.9339 ± 0.2%
EL-CodeBert 0.6697 ± 0.1% 0.8367 ± 0.1% 0.8715 ± 0.1% 0.8985 ± 0.2% 0.6696 ± 0.1% 0.8360 ± 0.1% 0.8715 ± 0.1% 0.8981 ± 0.2%
PLangRec 0.9604 ± 0.1% 0.9886 ± 0.1% 0.9916 ± 0.1% 0.9953 ± 0.1% 0.9605 ± 0.1% 0.9886 ± 0.1% 0.9916 ± 0.1% 0.9953 ± 0.1%
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ntire files and snippets spanning 1, 5, and 10 lines of code written
n 15 distinct languages (those supported by all the assessed models).

hen classifying a single line of code, PLangRec uses the BRNN model.
or multiple lines, it utilizes the meta-model that, in turn, leverages the
RNN model.

Fig. 9 shows how PLangRec outperforms the rest of the systems for
ll kinds of snippets and whole files. Its macro F1-score ranges from
6.05% (one line of code) up to 99.53% (entire files). For code snippets,
L-CodeBert ranks as the second-best model, achieving 66.96% (1 line)
o 87.15% (10 lines) macro-F1, showing significant lower performance
han our system. For entire files, Guesslang is the second-best sys-
em, with a macro-F1 of 95.08%, considerably lower than the 99.53%
chieved by PLangRec. The third model, another LLM-based system
amed DeepSCC, shows F1-scores ranging from 62.88% to 93.39%. The
GBoost model of SCC++ performs slightly better than its Random
orest model across most of the evaluation scenarios.

.2.1. Discussion
We have seen how LLM-based models (EL-CodeBert and DeepSCC)

ave the closest performance to PLangRec for code snippets. There
re some differences between those models and ours. EL-CodeBert and
eepSCC are word-level deep models, whereas PLangRec is a char-

evel model. The multi-headed attention mechanism implemented by
hese systems might be not as powerful for programming language
 H

12 
ecognition as it is for NLP, when using char-level inputs. Another
mportant difference between our system and the LLM-based models
ies in the datasets used to train the models—our dataset is 3.2 orders
f magnitude larger.

As expected, the classification performance of all the systems grows
s the number of lines of code in the snippets increases. However,
he growing curve is significantly different. Our system provides the
reatest performance gains compared to the related systems when one
ingle line of code is used, showing its greatest benefits when the input
s small. The stacking ensemble meta-model used also allows PLangRec
o outperform the rest of the systems for increasing lines of code,
esulting in the best system to classify not only single lines of code but
lso snippets and entire files.

In the particular case of multi-line inputs, there are potential im-
rovements that can be made to the preprocessing of the source code
Section 3.4). Currently, we remove comments, as they do not typically
epresent code and most comments are in natural language. However,
hen processing multiple lines, delimiting characters of comments

ould provide valuable context. For this scenario, the input prepro-
essor could consider the opening and closing comment characters to
rovide additional information about the language. Another way the
reprocessor could be modified to enhance the performance of our
ystem would be to detect and discard embedded code. For example,
TML and PHP often include embedded JavaScript and CSS code.
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Fig. 9. Evaluation of the six systems for programming language prediction from source code. Bars show the average performance using the bootstrap resampling method described
n Section 4.5, with whiskers indicating 95% confidence intervals.
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This embedded code is easily identifiable through specific tags and
ttributes, and its removal could streamline the preprocessing and
mprove overall accuracy.
PLangRec currently supports 21 languages. To extend the system

to predict new languages, an incremental learning approach could
be followed [44]. This method updates the existing model with new
anguage data without requiring a complete retraining from scratch.
pecifically, the final layer of the single-line model should be extended
o accommodate the new number of languages. Subsequently, the

existing model can be fine-tuned on a dataset that includes both the
new languages and a subset of the original languages, thereby saving
training time and computational resources. To prevent the model from
forgetting previously learned languages, Elastic Weight Consolidation
(EWC) regularization can be applied [45]. While the meta-model will
need to be retrained due to modifications in its input layer, this
process is not computationally expensive—it takes 66 min to train
he meta-model in the Dell PowerEdge T630 computer described in

Section 4.3.

5.3. Resource consumption

Tables 9 and 10 depict the runtime performance of our top MLP and
BRNN single-line models (Section 5.1), as well as the entire PLangRec
ystem (i.e., the meta-model combined with the BRNN model), under

both CPU and GPU configurations on the computer identified in Sec-
tion 4.6. Table 9 highlights how the BRNN model takes significantly
longer to load into memory (and perform one first prediction) than
MLP (15.4 vs. 8.3 s) when a GPU is not used. For two lines of code, the
meta-model invokes the BRNN single-line model twice, constructs the
meta-model input, and passes it to the MLP meta-model (Section 4.2).
This process requires only 5.7% more execution time than using the
BRNN model alone, as the majority of the startup execution time is
spent loading the models into memory.

When employing a GPU, execution time experiences a 7.5% increase
or MLP, 6.3% for BRNN, and 6% for the whole system. Therefore, using
 GPU does not improve startup execution time for a single prediction.

Next, we evaluate whether this is the case for multiple predictions and
hen the models are already loaded into memory.

In Table 10, the execution time for language prediction is presented,
assuming that the models have been loaded into memory and the
system has reached a steady state (Section 4.6). Across all configura-
ions, the MLP single-line model is faster than BRNN. The recurrent
rocessing of data makes BRNN require more execution time than a
13 
feed-forward MLP, even though the latter has more parameters than
the former. Predicting a single line of code takes between 54.9 (MLP
GPU) and 185.4 ms (BRNN GPU). However, when 1000 instances are
fed to the models in one batch, one prediction ranges between 0.36
(MLP GPU) and 6.5 ms (BRNN CPU). For two lines of code, the meta-
model requires 1.73 more execution time than BRNN since it performs
two invocations to that single-line model plus the forthcoming call to
the MLP meta-model—this value is reduced to 1.1 when 1000 instances
are classified in the CPU configuration.

Similar to the startup phase, using a GPU for a single prediction does
not provide any runtime performance improvement under steady-state
conditions. However, the GPU offers substantial performance gains dur-
ing inference when 1000 instances are processed by PLangRec. Under
these conditions, the improvements are 66.5% for the MLP model, a
tenfold increase for BRNN, and an eightfold gain for the meta-model.

Table 11 outlines the virtual memory consumption measurements
or the two top single-line models and the meta-model. In CPU, the MLP
ingle-line model consumes more memory than BRNN because of its
igher parameter count. Surprisingly, the meta-model, which includes
he BRNN model, only consumes 0.66% more memory than BRNN,
howing the small memory resources consumed by the MLP ensemble
eta-model.

When a GPU is used, CPU memory usage increases by an average
of 1.1 GB. Analyzing GPU memory – a critical resource due to its
high cost – reveals that the BRNN single-line model requires 12 times
more memory than MLP. This discrepancy may be due to differences in
how GPUs handle parallel processing by managing memory differently
from CPUs. When predicting two lines of code using the meta-model,
CPU memory usage remains largely unchanged, while GPU memory
requirements increase by 26.4%.

Although the required hardware resources are not excessively de-
manding, they may pose a barrier to deploying PLangRec. To address
his, we provide a web API for programming language prediction using
LangRec (Section 6). This solution avoids any hardware limitations,
equiring only an Internet connection.

6. Software applications

To show the functionality and assess the performance of our system,
e have developed three different software applications. These appli-

ations are freely available for download. Our system, called PLangRec
(Programming Language Recognizer), is accessible as a web applica-
tion, web API, and a Python desktop application. All these versions of
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Fig. 10. PLangRec web application.
Table 9
Execution time (seconds) of a process that loads the models into memory and perform
one single prediction (startup)–the meta-model includes the single-line BRNN model.

Hardware Model Mean 95% Confidence interval

CPU
MLP 8.308 (8.276, 8.380)
BRNN 15.449 (15.391, 15.606)
Meta-model 16.329 (16.267, 16.495)

GPU
MLP 8.931 (8.734, 9.041)
BRNN 16.430 (16.237, 16.501)
Meta-model 17.308 (17.244, 17.484)

PLangRec can be downloaded from [46].
The PLangRec web API offers a single predict GET method, which

accepts the input source code (via the source_code parameter) and
returns the probabilities of the code being written in 21 different
programming languages. In cases where the input code spans multiple
lines, the meta-model described in Section 4.2 is employed to predict
the programming language. The web API is hosted at https://www.
reflection.uniovi.es/plangrec/webapi/BRNN/predict—the source code
must be passed as a source_code GET parameter.

The PLangRec web application is a straightforward JavaScript appli-
cation that consumes the web API. Fig. 10 illustrates its user-friendly
interface. Users can input the source code into the text area or select
14 
Table 10
Execution time (milliseconds) of one prediction, when the models have been loaded into
memory and the system reaches a steady state—the meta-model includes the single-line
BRNN model.

Hardware N. instances Model Mean 95% Confidence
in batch interval

CPU

1 MLP 126.823 (124.614, 130.698)
1 BRNN 173.435 (172.113, 174.449)
1 Meta-model 472.865 (469.261, 475,630)

1000 MLP 0.596 (0.591, 0.602)
1000 BRNN 6.464 (6.278, 6.825)
1000 Meta-model 13.624 (13.490, 13.727)

GPU

1 MLP 54.904 (54.858, 55.469)
1 BRNN 185.352 (170.544, 192.577)
1 Meta-model 505.356 (501.504, 508.311)

1000 MLP 0.358 (0.348, 0.371)
1000 BRNN 0.552 (0.535, 0.556)
1000 Meta-model 1.505 (1.494, 1.514)

examples from different pieces of code for the 21 programming lan-
guages supported, using the dropdown list. Upon clicking the ‘‘predict
language’’ button, the probabilities for the 21 languages (sorted in
descending order) inferred by PLangRec are displayed in the ‘‘program-
ming language’’ area. Both languages and probabilities can be sorted by
clicking on their respective titles. Additionally, the application supports

https://www.reflection.uniovi.es/plangrec/webapi/BRNN/predict
https://www.reflection.uniovi.es/plangrec/webapi/BRNN/predict
https://www.reflection.uniovi.es/plangrec/webapi/BRNN/predict
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Table 11
CPU and GPU memory (GBs) consumed by the models—the meta-model includes the
single-line BRNN model.

Hardware Model CPU Memory GPU Memory

CPU
MLP 5.479 –
BRNN 5.310 –
Meta-model 5.345 –

GPU
MLP 6.116 0.060
BRNN 6.710 0.780
Meta-model 6.754 0.986

language prediction while typing if the checkbox above the source code
text area is enabled.

The web application is compatible with any web browser and
equires no additional software installation. We have implemented it
ollowing responsive web design principles and tested the application
cross various devices and window sizes. It can be accessed at https:

//www.reflection.uniovi.es/bigcode/plangrec.
Furthermore, PLangRec is available as a Python desktop applica-

tion [46]. Its functionality closely mirrors that of the web application
and represents an example of how the meta-model, together with the
single-line BRNN model, could be included in any Python application.

ll the required packages are detailed in the requirements.txt
ile, to be installed with the PIP Python package manager. Both the
eta-model and the BRNN model are also available for download [43].

The first time you run PLangRec, it downloads the models from the
Internet. A detailed description of PLangRec’s functionality, installa-
tion instructions, and examples are available at https://github.com/
ComputationalReflection/PLangRec.

7. Conclusions

We present a character-level bidirectional RNN deep neural network
to predict the programming language of a single line of code with
95.07% accuracy and macro-F1 score. To train all the parameters of our
eep model, we create a perfectly balanced dataset of 434.18 million

individuals sourced from 123 GB of code downloaded from GitHub.
The neural network architecture comprises eight blocks of bidirectional
LSTM recurrent layers, augmented by one dense layer featuring 512
units for final classification, resulting in a total of 9 million parameters.
Notably, this architecture outperforms a deep MLP network possess-
ing seven times more parameters. For predictions involving multiple
lines of code, a stacking ensemble meta-model leverages the BRNN
single-line model to efficiently determine the programming language.

Compared to the state-of-the-art systems, PLangRec outperforms
the rest of the systems in classifying individual lines, 5- and 10-line
snippets, and entire source code files. The key elements that make
ur system surpass the existing ones are its char-level approach, the
omprehensive dataset built to train its model, the deep neural net-
ork architecture proposed, and the stacking ensemble meta-model for

lassifying multiple lines of code.
We provide detail insights into the runtime performance and mem-

ory consumption of our model. Additionally, for users with limited
resources, we offer a free web API for source code classification,
requiring only an Internet connection. A web application and desktop
program are also freely available.

Future research endeavors will explore the evaluation of our single-
ine model trained with varying numbers of characters and see its
mpact on the systems’s performance. Furthermore, we plan to assess
he effectiveness of multiheaded attention for char-level source code
lassification, since word-level multiheaded attention has been shown
ffective in addressing long-range dependencies in RNNs [47].

The source code and binaries of PLangRec, the serialized MLP and
RNN single-line models, the meta-model, the source code used to train
ll the models, the evaluation data, the corpus, and the dataset pre-

sented in this article are freely available for download (MIT license) at
https://www.reflection.uniovi.es/bigcode/download/2024/plangrec.
15 
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