
Nintendo Entertainment System (NES) emulator with educational purpose

Emulador de la consola Nintendo Entertainment System (NES) con fines
educativos.

Luis Vijande González

Directed by:

José Manuel Redondo López

An End of Degree Project presented for the degree of
Software Engineering.

Escuela de Ingeniería del Software
Universidad de Oviedo

24 January 2025

Page 2

Declaration of originality
According to the ruling regarding End of Degree Projects from BOLETÍN OFICIAL

DEL PRINCIPADO DE ASTURIAS, núm. 62 de 30-III-2020 artículo 8-3, it’s declared that this
work is completely original, and all sources have been correctly cited.

This whole project and documentation have been developed by the author Luis Vijande
González

It’s also declared that the author is aware that the jury can use anti plagiarism software on
both this document and the project.

28/01/2025

X
Luis Vijande González

Firmado por: VIJANDE GONZALEZ LUIS - 71827154V

Page 3

Acknowledgment
To my parents Marta González and Guillermo Vijande, for their endless support and love.

To my tutor, José Manuel, for agreeing to direct this mess of a project.

To my friends Nicolás, Miguel, Pelayo, Hugo and Mario for begin amazing people and
making my time in university a breeze.

To all the wonderful people I've met through this period of my life.

To the NES homebrew community, for their previous work on this subject, and their efforts
to help understand the inner workings of the NES.

Thank you for the bottom of my heart.

Page 4

Contents
1. WHAT IS THE PURPOSE OF THIS WORK? .. 13

1.1. ABSTRACT .. 13
1.2. KEYWORDS .. 13
1.3. RESUMEN .. 14
1.4. PALABRAS CLAVE ... 14

2. INFORMATION SYSTEM PLAN (ISP) ... 15

2.1. ISP 1: START OF THE ISP ... 15
2.1.1. ISP 1.1: Analysing why the ISP is needed ... 15

2.2. ISP 2: DEFINITION AND ORGANIZATION OF THE ISP .. 15
2.2.1. ISP 2.1: Scope and Context Specification ... 15

2.3. ISP 3: STUDY OF RELEVANT INFORMATION.. 16
2.3.1. ISP 3.1: Background Selection and Analysis .. 16

3. ISP 7: DEFINITION OF THE TECHNOLOGICAL ARCHITECTURE 16

3.1. ISP 7.1: IDENTIFYING TECHNOLOGICAL INFRASTRUCTURE NEEDS .. 16
3.1.1. Build Tool .. 17
3.1.2. Tests in the Emulator ... 17
3.1.3. Windowing .. 17
3.1.4. Renderer .. 17
3.1.5. Interface ... 18
3.1.6. Input Handling .. 19
3.1.7. File managing and Serialization .. 19

3.2. ISP 7.2: SELECTION OF TECHNOLOGICAL ARCHITECTURE .. 19
3.2.1. Build Tool .. 19
3.2.2. Tests in the Emulator ... 19
3.2.3. Windowing .. 19
3.2.4. Renderer .. 19
3.2.5. Interface ... 19
3.2.6. Input Handling .. 20
3.2.7. File managing and Serialization .. 20
3.2.8. Other Libraries .. 20

4. TFG PLANNING AND MANAGEMENT .. 20

4.1. PROJECT PLANNING ... 20
4.1.1. Identification of Stakeholders .. 20
4.1.2. Organization ... 20
4.1.3. Initial Planning. WBS ... 21
4.1.4. Risks .. 25
4.1.5. Initial Budget ... 25

4.2. CLOSING THE PROJECT .. 28
4.2.1. Final Planning ... 29
4.2.2. Final Risk Report ... 32
4.2.3. Final Cost Budget .. 32
4.2.4. Lessons Learned Report .. 33

5. ANALYSIS OF THE INFORMATION SYSTEM (ASI) .. 34

5.1. ASI 1: SYSTEM DEFINITION ... 34
5.1.1. Determination of the System Scope ... 34

5.2. ASI 2: REQUIREMENTS SPECIFICATION .. 35

Page 5

5.2.1. Obtaining System Requirements .. 35
5.2.2. System Actors Identification .. 39
5.2.3. Use Case Specification ... 40

5.3. ASI 3: IDENTIFICATION OF ANALYSIS SUBSYSTEMS .. 43
5.3.1. Subsystems Description .. 43
5.3.2. Description of Interfaces between Subsystems ... 44

5.4. ASI 4: USE CASE ANALYSIS .. 45
5.5. CLASS ANALYSIS .. 52

5.5.1. Class Diagram .. 52
5.5.2. Class Description .. 57

5.6. ASI 8: DEFINING USER INTERFACES .. 80
5.6.1. Interface Description ... 81
5.6.2. Description of the Interface Behaviour .. 93
5.6.3. Navigability Diagram .. 95

5.7. ASI 10: TESTING PLAN IDENTIFICATION ... 95

6. INFORMATION SYSTEM DESIGN (ISD) ... 96

6.1. ISD 4: CLASS DESIGN .. 96
6.1.1. Emulator .. 96
6.1.2. Renderer .. 113
6.1.3. Input Handler .. 115
6.1.4. Window System .. 117
6.1.5. File Manager ... 118
6.1.6. Application ... 118

6.2. ISD 5: DESIGNING THE SYSTEM MODULE ARCHITECTURE ... 120
6.2.1. ISD 5.1: System Module Design .. 120
6.2.2. ISD 5.2: Inter-Module Communications Design ... 121

6.3. ISD 10: TECHNICAL SPECIFICATION OF THE TEST PLAN.. 121
6.3.1. Unit Testing ... 121
6.3.2. Integration Testing ... 127
6.3.3. System Testing .. 127

7. BUILDING THE INFORMATION SYSTEM ... 128

7.1. ISC 1: PREPARATION OF THE GENERATION AND CONSTRUCTION ENVIRONMENT 128
7.1.1. Standards and Regulations Followed .. 128
7.1.2. Programming Languages ... 128
7.1.3. Tools and Programs Used for Development ... 128

7.2. ISC 2: CODE GENERATION OF COMPONENTS AND PROCEDURES ... 129
7.2.1. Stepping a Frame .. 129
7.2.2. Sending an Address Through the Bus .. 131
7.2.3. Saving State .. 132
7.2.4. Loading a ROM .. 133
7.2.5. Creating a Texture ... 134
7.2.6. Creating an Interface ... 135
7.2.7. Input Handling .. 136
7.2.8. Main Loop ... 137

7.3. ISC 3: UNIT TESTS EXECUTION .. 142
7.4. ISC 4: INTEGRATION TESTS EXECUTION ... 142
7.5. ISC 5: SYSTEM TESTS EXECUTION .. 142

7.5.1. NesTest .. 142
7.6. ISC 6: ELABORATION OF USER MANUALS ... 143

7.6.1. Installation Manual.. 143
7.6.2. Compilation Manual .. 143

Page 6

7.6.3. User Manual ... 143

8. CONCLUSIONS AND FUTURE WORK. ... 152

8.1. CONCLUSIONS.. 152
8.2. AMPLIATIONS .. 152

8.2.1. NES emulation .. 152
8.2.2. Quality-of-Life ... 153

9. ANNEX ... 153

9.1. RISKS ... 153
9.1.1. Risk Identification ... 153
9.1.2. Risk Impact... 154

9.2. PROJECT FILE STRUCTURE .. 156
9.3. LICENSING ... 157
9.4. GLOSSARY ... 158
9.5. BIBLIOGRAPHY .. 159

Page 7

Table Index
Table 1. Initial Planning ... 21
Table 2. System Analysis .. 21
Table 3. System Design .. 22
Table 4. System Documentation ... 22
Table 5. System Development .. 23
Table 6. System Testing .. 24
Table 7. Risk identification .. 25
Table 8. System Analysis Budget Item ... 26
Table 9. System Design Budget Item ... 26
Table 10. System Documentation Budget Item .. 26
Table 11. System Development Budget Item ... 27
Table 12. System Testing Budget Line .. 27
Table 13. Initial Direct Costs ... 27
Table 14. Initial Indirect Costs .. 28
Table 15. Initial Client Budget ... 28
Table 16. Final Planning .. 29
Table 17. Final System Analysis .. 29
Table 18. Final System Design .. 30
Table 19. Final System Documentation ... 30
Table 20. Final System Development .. 31
Table 21. Final System Testing .. 32
Table 22. Final Direct Costs .. 33
Table 23. Final Indirect Costs .. 33
Table 24. Final Client Budget .. 33
Table 25. Use case specification: Reset emulator .. 40
Table 26. Use Case specification: Load ROM ... 40
Table 27. Use Case specification: Play game ... 40
Table 28. Use Case specification: View Status: Memory .. 40
Table 29. Use Case specification: View Status: CPU .. 40
Table 30. Use Case Specification: View Status: PPU .. 41
Table 31. Use Case specification: Search address ... 41
Table 32. Use Case specification: Stop emulation ... 41
Table 33. Use Case specification: Continue emulation .. 41
Table 34. Use Case specification: Advance emulation: Frame .. 41
Table 35. Use Case specification: Advance emulation: Scanline 42
Table 36. Use Case specification: Advance emulation: Run Pixel 42
Table 37. Use Case specification: Advance emulation: PPU Cycle.................................. 42
Table 38. Use Case specification: Advance emulation: CPU cycle 42
Table 39. Use Case specification: Advance emulation: Instruction 42
Table 40: Use Case specification: Advance other systems ... 42
Table 41. Use Case specification: Load state .. 42
Table 42. Use Case specification: Save state ... 43
Table 43. Use Case specification: Increment state .. 43
Table 44. Use Case specification: Decrement state ... 43
Table 45. Use Case analysis: Restart emulator .. 45
Table 46. Use Case analysis: Load ROM .. 45

Page 8

Table 47. Use Case analysis: Play game .. 45
Table 48. Use Case analysis: View Status: Memory .. 46
Table 49. Use Case analysis: View status: CPU.. 46
Table 50. Use Case analysis: View Status: PPU .. 46
Table 51. Use Case analysis: Search address .. 47
Table 52. Use Case analysis: Stop emulation .. 47
Table 53. Use Case analysis: Continue emulation ... 47
Table 54. Use Case analysis: Advance emulation: Frame ... 48
Table 55. Use Case analysis: Advance emulation: Scanline ... 48
Table 56. Use Case analysis: Advance emulation: PPU Cycle ... 48
Table 57. Use Case analysis: Advance emulation: Pixel ... 49
Table 58. Use Case analysis: Advance emulation: Instruction .. 49
Table 59. Use Case analysis: Advance emulation: CPU cycle ... 49
Table 60. Use Case analysis: Advance other systems .. 50
Table 61. Use Case analysis: Save state .. 50
Table 62. Use Case analysis: Load state .. 50
Table 63. Use Case analysis: Increment state .. 51
Table 64. Use Case analysis: Decrement state .. 51
Table 65. Console Class Description ... 57
Table 66. Configuration Class Description ... 57
Table 67. Input Device Class Description .. 58
Table 68. Button (emulator) Class Description .. 58
Table 69. Bus Class Description ... 58
Table 70. PPU Class Description ... 59
Table 71. RegisterFlags Class Description ... 60
Table 72. CPU Class Description .. 60
Table 73. Instruction Class Description ... 61
Table 74. Cartridge Class Description ... 61
Table 75. IMapper Class Description ... 61
Table 76. iNesHeader Class Description ... 62
Table 77. NROM Class Description ... 62
Table 78. Assembler Class Description ... 62
Table 79. Disassembler Class Diagram ... 63
Table 80. Disassembly Class Description .. 63
Table 81. InstructionName Class Description ... 64
Table 82. AddressingModeName Class Description ... 64
Table 83. Renderer API Class Description .. 65
Table 84. TextureType Class Description .. 65
Table 85. Sprite Class Description .. 65
Table 86. TextureWindow Class Description .. 66
Table 87. ITexture Class Description ... 66
Table 88. VulkanAPIImpl Class Description ... 66
Table 89. Engine Class Description ... 67
Table 90. BatchRenderer Class Description .. 68
Table 91. VulkanTexture Class Description .. 68
Table 92. VulkanBindlessTexture Class Description ... 68
Table 93. AllocatedImage Class Description ... 69
Table 94. Vertex Class Description .. 69

Page 9

Table 95. FrameData Class Description .. 70
Table 96. DeletionQueue Class Description .. 70
Table 97. IInput Class Description .. 71
Table 98. Key Class Description .. 72
Table 99. Button (Input Handler) Class Description ... 73
Table 100. SDL2Input Class Description ... 73
Table 101. SDL3Input Class Description ... 73
Table 102. IWindow Class Description .. 74
Table 103. WindowExtent Class Description ... 74
Table 104. SDL2Window Class Description ... 75
Table 105. SDL3Window Class Description ... 75
Table 106. Event Class Description ... 75
Table 107. FileManager Class Description ... 76
Table 108. ISerializable Class Description ... 76
Table 109. Serializable Class Description .. 77
Table 110. Context Class Description ... 77
Table 111. Application Class Description .. 78
Table 112. Configuration (Application) Class Description ... 78
Table 113. IComponent Class Description .. 79
Table 114. CloseDialog Class Description ... 79
Table 115. MemoryView Class Description .. 79
Table 116. ShowCPUStatus Class Description .. 80
Table 117. ShowPPUStatus Class Description ... 80
Table 118. Instructions: Arithmetic ... 100
Table 119. Instructions: Store/load ... 100
Table 120. Instructions: Register transfers ... 101
Table 121. Instructions: Stack operations .. 101
Table 122. Instructions: Logical .. 101
Table 123. Instructions: Increments/decrements .. 101
Table 124. Instructions: Shifts .. 101
Table 125. Instructions: Jumps/Calls .. 102
Table 126. Instructions: Branches ... 102
Table 127. Instructions: Status Flag Changes .. 102
Table 128. Instructions: System functions ... 102
Table 129. MMIO Registers ... 103
Table 130. PPU Control Register ... 104
Table 131. PPU Status Register ... 104
Table 132. PPU Mask Register ... 105
Table 133. PPU Internal registers .. 105
Table 134. Nametable mirroring .. 106
Table 135. NES Memory Map .. 108
Table 136. PPU MMIO Registers .. 108
Table 137. Known Disassembly Constants .. 113
Table 138. New IInput class description .. 116
Table 139. Unit Tests: Arithmetic instructions .. 123
Table 140. Unit tests: Branch instructions ... 124
Table 141. Unit tests: Increment/Decrement instructions .. 124
Table 142. Unit Tests: Jump/Call instructions .. 124

Page 10

Table 143. Unit Tests: Load/Store instructions ... 125
Table 144. Unit Tests: Register transfer instructions ... 125
Table 145. Unit Tests: Shift instructions ... 125
Table 146. Unit Tests: Stack operations instructions .. 126
Table 147. Unit Tests: Status Flag Changes instructions ... 126
Table 148. Unit Tests: System Functions instructions. .. 126
Table 149. Unit Tests: Disassembler .. 126
Table 150. Unit Tests: Save states ... 127
Table 151. Integration Tests: MMIO.. 127
Table 152. System Tests: Nestest .. 127
Table 153. 6.3.1.11.ASSEMBLE_NESTEST results ... 142
Table 154.6.3.3.1.RUN_NESTEST results ... 143
Table 157. Risk identification .. 154
Table 158. Impact Probability Definitions .. 154
Table 159. Negative Impact Probability Matrix ... 154
Table 160. Positive Impact Probability Matrix ... 155
Table 161. Risk Impact ... 155
Table 162. Risk Response and Strategy ... 156
Table 163. Glossary .. 157

Figure Index
Figure 1. Initial Planning Gantt Diagram ... 21
Figure 2. System Analysis Gantt Diagram .. 21
Figure 3. System Design Gantt Diagram .. 22
Figure 4. System Documentation Gantt Diagram ... 23
Figure 5. System Development Gantt Diagram .. 24
Figure 6. System Testing Gantt Diagram .. 24
Figure 7. Final Planning Gantt Diagram .. 29
Figure 8. Final System Analysis Gantt Diagram .. 29
Figure 9. Final System Design Gantt Diagram .. 30
Figure 10. Final System Documentation Gantt Diagram ... 31
Figure 11. Final System Development Gantt Diagram .. 32
Figure 12. Final System Testing Gantt Diagram .. 32
Figure 13. Colour Palettes Used .. 35
Figure 14. User use cases ... 40
Figure 15. User use cases, continued .. 41
Figure 16. Interfaces between subsystems .. 44
Figure 17. Emulator class diagram .. 52
Figure 18. Renderer class diagram (simplified) .. 53
Figure 19. Input Handler class diagram ... 54
Figure 20. Window Class Diagram ... 54
Figure 21. FileManager Class Diagram .. 55
Figure 22. Application Class Diagram .. 56
Figure 23. Interface: Main Screen .. 81
Figure 24. Interface: File Menu .. 81
Figure 25. Interface: Emulation Menu 1 ... 82

Page 11

Figure 26. Interface: Emulation Menu 2 ... 82
Figure 27. Interface: View Menu .. 82
Figure 28. Interface: State Menu ... 82
Figure 29. Interface: CPU status 1 ... 83
Figure 30. Interface: CPU status 2 ... 84
Figure 31. Interface: Disassembly tooltip .. 85
Figure 32. Interface: PPU status 1 ... 85
Figure 33. Interface: PPU status 1 cont. ... 86
Figure 34. PPU status 2... 87
Figure 35. Interface: PPU Status 2 cont. .. 88
Figure 36. Interface: User holding click on pattern ... 89
Figure 37. Interface: Memory Status 1 ... 90
Figure 38. Interface: Memory Status 2 4 bits per pixel .. 91
Figure 39. Interface: Memory Status 2 1 bit per pixel .. 92
Figure 40. Interface: Search Address ... 92
Figure 41. Components tabbed in dock space ... 93
Figure 42. Components Docked onto each other ... 93
Figure 43. Components free on the screen .. 94
Figure 44. Error Message .. 94
Figure 45. Navigability Diagram ... 95
Figure 46. CPU Chip in NES motherboard (red), WRAM (blue)... 98
Figure 47. PPU Chip in NES motherboard (red) VRAM (blue .. 103
Figure 48. Controller Port 1 (red) and controller port 2 (blue) in NES motherboard 109
Figure 49. Cartridge Slot in NES motherboard (red) .. 110
Figure 50. NROM cartridge PCB, CHR ROM (blue) and PRG ROM (red) 111
Figure 51. Cartridge using mapper 024 (VRC6a) (red), CHR ROM (yellow) and PRG ROM
(blue) .. 111
Figure 52. Example of valid assembly .. 112
Figure 53. List of problematic keys .. 117
Figure 54. Package Diagram.. 120
Figure 55. Components Diagram .. 121
Figure 56. Running a frame 1 .. 129
Figure 57. Running a frame 2 .. 129
Figure 58. Running a frame 3 .. 130
Figure 59. CPU step .. 131
Figure 60.PPU NTSC Frame timing .. 131
Figure 61. Bus Address mapping ... 132
Figure 62. Saving state ... 132
Figure 63. Serialization in the File Manager .. 133
Figure 64. Console Serialization.. 133
Figure 65. Loading a ROM 1 .. 133
Figure 66. Loading a ROM 2 .. 134
Figure 67. Loading a ROM 3 .. 134
Figure 68. Create a Texture Sprite pair ... 135
Figure 69. Creating the texture in the API ... 135
Figure 70. Creating an interface 1 ... 135
Figure 71. Creating an interface 2 ... 135
Figure 72. Creating an interface 3 ... 136

Page 12

Figure 73. Input Handling 1 ... 136
Figure 74. Input Handling 2 ... 137
Figure 75. Main Loop .. 137
Figure 76. Event loop .. 138
Figure 77. Programming window events .. 139
Figure 78. Update method .. 140
Figure 79. Drawing the User Interface.. 141
Figure 80. User Manual: File Menu .. 144
Figure 81. User Manual: Emulation Menu 1 ... 144
Figure 82. User Manual: Emulation Menu 2 ... 145
Figure 83. User Manual: View Menu .. 145
Figure 84. User Manual: PPU Status 1 ... 146
Figure 85. User Manual: PPU status 2 .. 146
Figure 86. User Manual: PPU status 3 .. 147
Figure 87. User Manual: CPU status .. 148
Figure 88. User Manual: Memory Status 1 ... 149
Figure 89. User Manual: Memory status 2 .. 150
Figure 90. User Manual: Memory status 3 .. 150
Figure 91. User Manual: State menu ... 150
Figure 92. User Manual: Button mapping ... 151
Figure 93. Project root .. 156
Figure 94. Project libraries file structure .. 156
Figure 95. Renderer file structure .. 157
Figure 96. Application file structure .. 157
Figure 97. NesEmu file structure ... 157

Page 13

1. What is the Purpose of this Work?
1.1. Abstract
The goal of the present work is the implementation of a system capable of basic emulation
of the Nintendo Entertainment System (NES in the future) such that if a user does not
know how the console works, they can learn something about it, be it what instructions
the CPU is executing, what are the current contents in memory or the status of the pixel
processing unit. Another goal of this project is to help users understand how the insides of
a complex machine like the NES can work with the objective of teaching low level
concepts such as CPU registers or the instruction set of the 6502.

The user will be able to run their ROMs through the emulator if they remain within the
mapper 0 architecture. Then, the system will show the CPU, PPU and memory status, and
will allow the user to control the advancement of the emulation, whether by running it per
instruction, per frame or per pixel.

Must be noted that the main objective of this work is to teach what it takes to make an
emulator, and how do they work, any real system accuracy is a secondary result of
following correct and accurate guides on real hardware.

1.2. Keywords
Emulation, Console, Videogames, Graphics, Education, Retro, programming.

Page 14

1.3. Resumen
El objetivo de este trabajo es la implementación de un sistema capaz de emulación
básica de la consola Nintendo Entertainment System (NES en adelante) de tal forma que
si el usuario no entiende cómo funciona la susodicha, pueda aprender algo sobre ella, ya
sea las instrucciones que el CPU esté ejecutando, los contenidos actuales de memoria y
sus cambios o el estado de la unidad de proceso de pixeles. Otro objetivo de este
proyecto es ayudar a usuario a entender como una maquina relativamente compleja
como la NES puede funcionar con el resultado de enseñar conceptos de nivel bajo como
CPU registros de CPU o el set de instrucciones del 6502.

El usuario será capaz de ejecutar sus propias ROMs a través del emulador siempre y
cuando pertenezcan a la arquitectura del mapeador 0. Después, el sistema mostrará el
estado del CPU, PPU y la memoria; el sistema también permitirá al usuario controlar el
avance de la emulación, ya sea avanzando por instrucción, por fotograma o por píxel.

Debe ser señalado que el objetivo principal de este trabajo es enseñar como se hace y
cómo funciona un emulador, y que cualquier símil entre este trabajo y el Sistema real se
debe a seguir guías correctas sobre el hardware del sistema.

1.4. Palabras clave
Emulación, Consola, Videojuegos, Gráficos, Educación, Retro, Programación

Page 15

2. Information System Plan (ISP)
2.1. ISP 1: Start of the ISP
The objective of the present work is to create a system capable of basic NES emulation,
that is also capable of teaching the inner workings of the named console. Taking the above
into account, it has been decided that implementing a desktop application that won't be
replacing more powerful NES emulators such as MESEN, but one that can be used
alongside them. An emulator is a piece of software or hardware made to mimic that of a
different software or hardware such that the host system can run programs made for the
target system, in our case, the host will be the emulator (EMOO in the future), and the
target will be the NES. Emulators can be used as a preservation tool, or to use the software
of lost hardware with better accessibility. Must be noted that emulators are completely
legal and not considered piracy. (1)

The present work will not strive to be the most accurate emulator there is, as discussed
further, whether it is by time constraints or technical difficulties.

This work is motivated by the my desire to understand low level systems and the
possibility to emulate simple systems.

2.1.1. ISP 1.1: Analysing why the ISP is needed
As mentioned in the above excerpt, the project to be developed is similar to a common
emulator. The main requirements of the system are:

• Being able to run Mapper 0 NTSC ROMs.
• Design a user interface capable of showing the guts and inner workings of the NES.
• The emulator won't have an audio system.
• During the emulation, the user will be able to stop and continue the emulation as

they please, they will also be able to control the advancement of the emulation,
that means running it per CPU cycle, per CPU instruction, per PPU cycle, per PPU
pixel or per PPU scanline.

• The user should be able to change ROM at runtime.
• The user should be able to control the emulated game with a common controller

such as an Xbox or play station controller.

2.2. ISP 2: Definition and Organization of the ISP

2.2.1. ISP 2.1: Scope and Context Specification
To better tackle this project, it will be divided into three distinct parts, a rendering
backend, the emulator, and an interface.

2.2.1.1. Renderer
The renderer will oversee putting the pixel data provided by the emulator in our screen, it
will be an extremely simple renderer that will put the pixel data into a modifiable texture.

The renderer will also provide a backend for the interface system.

Page 16

2.2.1.2. Emulator
The emulator will be the 'brain' of the system, it will be the component that loads the ROM,
and executes it, providing the renderer and the interface the necessary data to function.
However, the emulator will not run by itself, as the frontend or the application will be the
one to run it, as it will need to be told when to run a frame, or a pixel, or an instruction...

The emulator will also come with a disassembler that will be used by the interface.

2.2.1.3. Interface
The frontend will be the 'body' of the application, the user will load a ROM to be sent to the
emulator through the interface, and the interface will make the emulator run per frame
until the user decides to either stop it, or to change ROM. The interface will allow the user
to show additional information such as internal status of the CPU, PPU or a memory
visualizer.

The system will also be implemented in stages or 'sprints', the stages will be as follow.
First, the system will be a working emulator of NES's processor, the Ricoh RP2A03, a chip
based in the extremely popular 6502; after the processor is fully functional and tested, the
second stage will be a semi working PPU and renderer, this semi working PPU will only
render the backgrounds of the games; once the backgrounds are properly rendered and
the test ROM passes, the second to last stage will be rendering sprites, and the last stage
will be the interface and user controls.

2.3. ISP 3: Study of Relevant Information

2.3.1. ISP 3.1: Background Selection and Analysis
To correctly design and develop the system, some guides have been followed. These
guides are:

• Emulator source code. The source code of other emulators like the MESEN
source code, which might be the premier emulator of the NES, other source code
studied includes olcNES or mos6502 which is a 6502 emulator.

• The NES Development Wiki. The NesDev Wiki is an incredibly powerful resource,
it includes a reference guide for the NES, a programming guide for NES and a lot of
useful information.

• Other Guides. Like YouTube videos explaining the NES rendering process by
NesHacker (2) or the emulator series by OneLoneCoder (3).

3. ISP 7: Definition of the Technological Architecture
3.1. ISP 7.1: Identifying Technological Infrastructure Needs
As we get closer to defining the structure of the project, some technologies must be
studied to make the development as smooth as possible. Up next some pondered
technologies will be discussed with pros and cons. First, this will be developed with
C++20, this is because I’m accustomed to C++, and like some of the more modern
features.

https://github.com/SourMesen/Mesen
https://github.com/OneLoneCoder/olcNES
https://github.com/gianlucag/mos6502
https://www.nesdev.org/wiki/Nesdev_Wiki

Page 17

3.1.1. Build Tool
Sadly, C++ is not like other programming languages, that come with a nice build tool that
works of the box for you, so a build tool must be chosen.

• Cmake: Cmake is the de-facto standard for building C++. Rather than saying that it
is a build tool, it’s a build tool for the build tool, since it can generate a gnu make or
visual studio solution for you to it with them. It has a scripting language that can be
incredibly cumbersome to use (4).

• PreMake: PreMake is an alternative to cmake made in Lua, it works like cmake, but
has very nice documentation, and the all-powerful Lua as a scripting language.
Sadly, it's not feature complete (5).

3.1.2. Tests in the Emulator
The emulator will need to be tested, as it’s the most hard and important part of the
system; and in the C++ world choosing a testing tool is not as easy as it looks, as there are
very powerful options.

• GoogleTest. Gtest is a very popular testing tool, it includes testing a mocking
functionality and integrates nicely with Visual Studio, also has very nice libraries.
On the other hand, is a very bulky library (6).

• BoostTest. A very popular C++ library that integrates with other Boost libraries. I do
not like developing with Boost (7).

• Catch2. A very nice tool that also includes benchmarking. Not as widely adapted
as the other two (8).

3.1.3. Windowing
There are a lot of good windowing tools for C++, but we will mainly look at SDL and GLFW.

• SDL. Simple DirectMedia Layer, a cross-platform development library that
provides access to audio, controller, keyboard, mouse and graphics hardware, can
be used with OpenGL, Vulkan, or Direct3D; also has its own rendering library. It's
written in C, so developing for it can be annoying. In my own experience, its
documentation can be lacking. SDL is mainly a monolith, this means that even if
you only want the windowing system and the controller subsystem, you will also
get the rendering subsystem and audio subsystems (9).

• GLFW. An open source, multi-platform library mainly designed for OpenGL but can
also be used with other rendering APIs like Vulkan. It's also written in C so it can be
cumbersome to use, has support for controller access and very good
documentation since it's been widely used in the world of game engines and
application development (10).

3.1.4. Renderer
To present the emulator and interface to screen, a way to access graphics hardware is
needed. In the multi-platform world there are two main rendering APIs, OpenGL and
Vulkan, but there are also other libraries layered on top of them, like SDL.

• Vulkan. Vulkan is a cross-platform rendering specification developed by Khronos
Group, it's very low level and can be very powerful when used right, thanks to the

Page 18

level of control it offers, and the possible performance gain, it has taken the shape
of a industry standard, sadly, that level of control comes with a price, in this case,
it's a very steep learning curve, and some difficult concepts to grasp, like
synchronization and memory management; it can be very verbose, taking as much
as 1200 lines of code to display a triangle, but there are add-ons like C++ language
bindings in the form of vulkan-hpp or ways to bootstrap Vulkan and device
instantiation in the form of vkbootstrap that make this problem take a relative back
seat. It also has extensive documentation and very helpful guides in the shape of
vkguide or vulkan-tutorial. Also, it has a lot of community made plugins that make
things easier, like completely removing render passes with the dynamic rendering
layer, or making texture slots handling a non-issue with bindless resources (11)
(12) (13).

• OpenGL. OpenGL is another rendering specification originally developed by
Silicon Graphics Inc. but now maintained by the Khronos group, it's higher level
than Vulkan and easier to use, especially in tandem with GLFW. It has been widely
acclaimed as the industry's foundation ever since its conception. Its
documentation is widely available and very good, and it has been used by every
single developer that dabbles in graphics. Modern OpenGL has made some very
good quality of life changes to its API that make development easier (14).

• SDLRenderer. SDLRenderer comes with SDL out of the box, which makes it a
good choice if you are using SDL as a windowing system already, as it's not a
graphics specification like OpenGL or Vulkan, it comes with far less control. It also
comes with the downsides of SDL, lacking documentation and monolith design
(9).

3.1.5. Interface
To develop the interface some libraries have been selected to be discussed.

• Dear ImGui. Dear Imgui is an immediate mode bloat-free graphical user interface
library for C++, it can be slotted very easily in a very wide net of window-renderer
configurations that makes it using it in 2D and 3D applications a breeze. It's
developed in C++ so no need to interface with it using C. It follows the immediate
mode UI paradigm, which means that it has no state (15). It has two main
branches, docking and main, the docking branch provides window docking and
window viewports, allowing easy user customization of the interface. It's currently
in development which can make appear some extremely tough bugs, and the
immediate mode paradigm can be hard to grasp to developers unfamiliar with it
(16).

• Qt. Qt is a cross-platform software development framework, it makes developing
beautiful applications easier, but has a very weird license thing going on which
makes it unappealing (17) (18).

Other Ui libraries and oddities considered are WxWidgets, but frankly it looks awful, and
doing the interface with WPF in .NET and type marshalling it to the rest of the application.

https://vkguide.dev/
https://vulkan-tutorial.com/

Page 19

3.1.6. Input Handling
As one of the requirements of this project is being able to hand a modern games
controller, a robust and easy to use input handling technology is needed. Some of the
options that were considered are:

• XInput. A cross-platform API that enables Windows applications to interact with
modern controllers such as Xbox or third-party ones (19).

• SDLController. As stated before, SDLController is part of SDL, that comes with all
the good and the not so good of SDL (9).

3.1.7. File managing and Serialization
I did not find a lot of options to manage different files, but I did find that boost has a
serialization component.

• Boost. Part of the boost libraries, I do not like boost.
• FMan. A library of my own design (not published anywhere, as it was made to my

own needs for different projects), based on the architecture of ImGui, lacking in
features and exists as a wrapper to C++ fstream.

3.2. ISP 7.2: Selection of Technological Architecture

3.2.1. Build Tool
Since I have been using PreMake for all my other projects, I believe that changing to
Cmake will be a liability, so the build tool will be PreMake with some python scripting here
and there to provide the uncompleted features needed.

3.2.2. Tests in the Emulator
Taking all the above into account, it was decided to use GoogleTest since it has very good
documentation, and I have used it before.

3.2.3. Windowing
SDL was chosen since I have already used it in university so I was familiar with it.

3.2.4. Renderer
Taking the above and some things that will be discussed in the interface section, I have
chosen Vulkan, that may look like a brave choice taking into account the little graphics
experience I have, but, since Vulkan is the successor of OpenGL and considered the
industry standard, has excellent documentation and guides, and an incredibly powerful
debug layer, I believe that this will be a great learning experience.

3.2.5. Interface
After careful consideration, Dear Imgui on the docking branch was chosen, it was chosen
since it could be used with a wide net of render-window configurations, and since the idea
of immediate mode was more attractive to the more classic interface design; choosing
Imgui meant using Vulkan an even more enticing offer, since the Imgui implementation for
it already existed, so the performance impact of rendering the interface would be nil.

Page 20

3.2.6. Input Handling
I chose SDL since I had already used it before.

3.2.7. File managing and Serialization
As stated before, I do not like boost, so I decided to use my own previously developed
library.

3.2.8. Other Libraries
This project makes use of other libraries in less important parts of the system, these
libraries are:

• Compile Time Regular Expressions. Used in the toy assembler made to
write tests for the cpu. Everyone that has used C++’s native regex library
understands why I chose to not use it.

• Portable File Dialogs. Used to have a native window when loading ROMs.
• Freetype. A very bloated font rendering system used to replace Imguis

default one.
• GLM. OpenGL Math, a graphics Math library, can be used with Vulkan after

changing some configurations.
• cppicons. A set of font icon bindings to type icons easier.
• VMA: Vulkan memory allocator, to make allocate memory in Vulkan easier.
• vkBootstrap: Helps initialise Vulkan structures

4. TFG Planning and Management
4.1. Project Planning

4.1.1. Identification of Stakeholders
Identified stakeholders are:

• Users interested in emulation.
• Users interested in the NES.
• Users that want to learn about the internals of the NES.
• The author of the project.
• The director of the project.

4.1.2. Organization
This planning was created taking into consideration the following. The team behind the
development of this work is made of a single developer that works 8hrs from Monday to
Friday, the standard calendar.

This project starts the 20th of September 2023 and ends the 27th of February 2024.

This project is defined in such a way that the developer will work part time in
documentation and part time in development after the system analysis and design are
done.

Page 21

4.1.3. Initial Planning. WBS
WBS Task Name Work Duration Start Finish

1 End of Degree Project 729 hrs 114.38 days Wed 20/09/23 Tue 27/02/24

1.1 System Analysis 25 hrs 3.38 days Wed 20/09/23 Mon 25/09/23

1.2 System Design 56 hrs 7 days Mon 25/09/23 Wed 04/10/23

1.3 System Documentation 416 hrs 104 days Wed 04/10/23 Tue 27/02/24

1.4 System Development 216 hrs 54 days Wed 04/10/23 Tue 19/12/23

1.5 System Testing 16 hrs 4 days Tue 19/12/23 Mon 25/12/23

Table 1. Initial Planning

Figure 1. Initial Planning Gantt Diagram

4.1.3.1. System Analysis
WBS Task Name Work Duration Start Finish

1.1 System Analysis 25 hrs 3.38 days Wed 20/09/23 Mon 25/09/23

1.1.1 Problem Statement 4 hrs 4 hrs Wed 20/09/23 Wed 20/09/23

1.1.2 Identifying Stakeholder 3 hrs 3 hrs Wed 20/09/23 Wed 20/09/23

1.1.3 Identifying Users 2 hrs 2 hrs Wed 20/09/23 Thu 21/09/23

1.1.4 Identifying Requirements 8 hrs 1 day Thu 21/09/23 Fri 22/09/23

1.1.5 Scope Definition 0 hrs 2 hrs Fri 22/09/23 Fri 22/09/23

1.1.6 WBS definition 8 hrs 1 day Fri 22/09/23 Mon 25/09/23

Table 2. System Analysis

Figure 2. System Analysis Gantt Diagram

Page 22

4.1.3.2. System Design
WBS Task Name Work Duration Start Finish

1.2 System Design 56 hrs 7 days Mon 25/09/23 Wed 04/10/23

1.2.1 Usecase Design 16 hrs 16 hrs Mon 25/09/23 Wed 27/09/23

1.2.2 Architecture Design 16 hrs 2 days Wed 27/09/23 Fri 29/09/23

1.2.3 Class Design 8 hrs 1 day Fri 29/09/23 Mon 02/10/23

1.2.4 User Interface Design 16 hrs 2 days Mon 02/10/23 Wed 04/10/23

Table 3. System Design

Figure 3. System Design Gantt Diagram

4.1.3.3. System Documentation
System documentation is the longest part of the project, this is in thanks to the study
section, that includes investigating other emulators, and concepts related to this work.

WBS Task Name Work Duration Start Finish

1.3 System Documentation 416 hrs 104 days Wed 04/10/23 Tue 27/02/24

1.3.8 System Study 100 hrs 25 days Wed 04/10/23 Wed 08/11/23

1.3.1 Information System Plan 32 hrs 8 days Wed 08/11/23 Mon 20/11/23

1.3.2 System Feasibility Study 32 hrs 8 days Mon 20/11/23 Thu 30/11/23

1.3.3
 Analysis of the Information
System

52 hrs 13 days Thu 30/11/23 Tue 19/12/23

1.3.4 Information System Design 80 hrs 20 days Tue 19/12/23 Tue 16/01/24

1.3.5 Manuals 40 hrs 10 days Tue 16/01/24 Tue 30/01/24

1.3.5.1 User Manuals 40 hrs 10 days Tue 16/01/24 Tue 30/01/24

1.3.6 Conclusions 40 hrs 10 days Tue 30/01/24 Tue 13/02/24

1.3.7 Annexes 40 hrs 10 days Tue 13/02/24 Tue 27/02/24

Table 4. System Documentation

Page 23

Figure 4. System Documentation Gantt Diagram

4.1.3.4. System Development
WBS Task Name Work Duration Start Finish

1.4 System Development 216 hrs 54 days Wed 04/10/23 Tue 19/12/23

1.4.1 Emulator 108 hrs 27 days Wed 04/10/23 Fri 10/11/23

1.4.1.1 CPU 40 hrs 10 days Wed 04/10/23 Wed 18/10/23

1.4.1.2 PPU 60 hrs 15 days Wed 18/10/23 Wed 08/11/23

1.4.1.2.1 Base 40 hrs 10 days Wed 18/10/23 Wed 01/11/23

1.4.1.2.2 Scroll 20 hrs 5 days Wed 01/11/23 Wed 08/11/23

1.4.1.3 Cartridge Loader 8 hrs 2 days Wed 08/11/23 Fri 10/11/23

1.4.1.3.1 Mapper 8 hrs 2 days Wed 08/11/23 Fri 10/11/23

1.4.1.3.1.1 NROM 8 hrs 2 days Wed 08/11/23 Fri 10/11/23

1.4.2 Renderer 40 hrs 10 days Fri 10/11/23 Fri 24/11/23

1.4.3 Input Handler 4 hrs 1 day Fri 24/11/23 Mon 27/11/23

1.4.5 Window 4 hrs 1 day Mon 27/11/23 Tue 28/11/23

1.4.4 User Inferface 60 hrs 15 days Tue 28/11/23 Tue 19/12/23

1.4.4.1 CPU Status 20 hrs 5 days Tue 28/11/23 Tue 05/12/23

1.4.4.2 PPU Status 20 hrs 5 days Tue 05/12/23 Tue 12/12/23

1.4.4.3 Memory Status 20 hrs 5 days Tue 12/12/23 Tue 19/12/23

Table 5. System Development

Page 24

Figure 5. System Development Gantt Diagram

4.1.3.5. System Testing
WBS Task Name Work Duration Start Finish

1.5 System Testing 16 hrs 4 days Tue 19/12/23 Mon 25/12/23

1.5.1 CPU Tests 8 hrs 2 days Tue 19/12/23 Thu 21/12/23

1.5.2 PPU Tests 4 hrs 1 day Thu 21/12/23 Fri 22/12/23

1.5.3 ROM Tests 4 hrs 1 day Fri 22/12/23 Mon 25/12/23

Table 6. System Testing

Figure 6. System Testing Gantt Diagram

The file manager and serialization library does not appear in planification since it was
developed long before this project.

Page 25

4.1.4. Risks
In this section a brief risk assessment can be found, for a more detailed breakdown, go to
9.1.

The following table contains the identified risks.

ID Risk Category Description

1 Lack of experience Organizational

The author has little experience in the field of
emulation, which can led to time underestimation
since he has no time frame in which an emulator can
be finished

2 Over scoping Organizational

As the author does not know what is needed for the
emulator to be considered finished, some
unnecessary features can be added, which will led to
more time

3 Internship Managerial
At the time of developing this project, the author is
currently looking for an internship, which can led to
work stoppage.

4 Nintendo External
Even though emulators are legal, Nintendo has been
known to go after emulators with shady legal practices
to make them stop development

5 Incorrect estimation Organizational
Some sections of the project can be wrongly estimated
since the author is not the best at project planning and
management

6 External libraries Technical This project makes use of external third party libraries,
of which the author has no control, these libraries can
have bugs, or have incorrect documentation.

7 Hard concepts Technical

Low Level Emulators are made emulating the
hardware of consoles, in order to do that, it is crucial
to have a correct and accurate breakdown of the
hardware, if some part of the hardware is not correctly
documented, the author will have to look for that
information elsewhere.

Table 7. Risk identification

4.1.5. Initial Budget
The following section consists in a breakdown of the budget allocated for this project. This
budget is calculated using the previous planning defined in 4.1.3. and using the team
organization previously defined.

This developer will have a salary consisting of 18.75 Euros, since a C++ developer earns
39k a year in a 40 hrs week (according to Glassdoor (20)).

The Budget will be broken down in different budget items, this budget items are made up
of the main sections of the WBS.

Page 26

To get the total budget of this project refer to ¡Error! No se encuentra el origen de la
referencia. for the direct costs and 4.1.5.7 for the indirect costs, for the client budget,
refer to 4.1.5.8

4.1.5.1. Budget Item 1. System Analysis
System Analysis

I1 Description Amount Units Price Total
1 Problem Statement 4 hrs 18.75 75
2 Identifying Stakeholders 3 hrs 18.75 56.25
3 Identifying Users 2 hrs 18.75 37.5
4 Identifying Requirements 8 hrs 18.75 150
5 Scope Definition 2 hrs 18.75 37.5
6 WBS Definition 8 hrs 18.75 150

TOTAL SUM 506.25

Table 8. System Analysis Budget Item

4.1.5.2. Budget Item 2. System Design
System Design

I1 Description Amount Units Price Total
1 Use case Design 16 hrs 18.75 300
2 Architecture Design 16 hrs 18.75 300
3 Class Design 8 hrs 18.75 150
4 User Interface Design 16 hrs 18.75 300

TOTAL SUM 1050

Table 9. System Design Budget Item

4.1.5.3. Budget Item 3. System Documentation
System Documentation

I1 I2 Description Amount Units Price Subtotal(2) Total
1 Study 100 hrs 18.75 1875
2 Information System Plan 32 hrs 18.75 600
3 System Feasibility Study 32 hrs 18.75 600
4 Analysis of the Information System 52 hrs 18.75 975
5 Information System Design 80 hrs 18.75 1500
6 Manuals 40 hrs 18.75 750

 1 User Manuals 40 hrs 18.75 750
7 Conclusions 40 hrs 18.75 750
8 Annexes 40 hrs 18.75 750

TOTAL SUM 7800
Table 10. System Documentation Budget Item

Page 27

4.1.5.4. Budget Line 4. System Development
 System Development

I1 I2 I3 I4 Description Amount Units Price Subtotal (4) Subtotal (3) Subtotal (2) Total
1 Emulator 108 hrs 18.75 2025

 1 CPU 40 hrs 18.75 750
 2 PPU 60 hrs 18.75 1125
 1 Base 40 hrs 18.75 750
 2 Scroll 20 hrs 18.75 375
 3 Cartridge Loader 8 hrs 18.75 150
 1 Mappers 8 hrs 18.75 150
 1 NROM 8 hrs 18.75 150

2 Renderer 40 hrs 18.75 750
3 Input Handler 4 hrs 18.75 75
4 Window 4 hrs 18.75 75
5 User Interface 60 hrs 18.75 1125

 1 PPU Status 20 hrs 18.75 375
 2 PPU Status 20 hrs 18.75 375

 3 Memory View 20 hrs 18.75 375

TOTAL SUM 4050
Table 11. System Development Budget Item

4.1.5.5. Budget Line 5. System Testing
I1 Description Amount Units Price Total

1 CPU Tests 8 hrs 18.75 150
2 PPU Tests 4 hrs 18.75 75
3 ROM Tests 4 hrs 18.75 75

TOTAL SUM 300

Table 12. System Testing Budget Line

4.1.5.6. Direct Costs
Direct Costs

I1 Description Amount Units Price Total
1 System Analysis 25 hrs 18.75 468.75
2 System Design 56 hrs 18.75 1050
3 System Documentation 416 hrs 18.75 7800
4 System Development 216 hrs 18.75 4050
5 System Testing 16 hrs 18.75 300

TOTAL SUM 13668.75
Table 13. Initial Direct Costs

Page 28

4.1.5.7. Indirect Costs
Electricity cost has been calculated taking the kWh cost from 9 am to 17 pm (21) and
averaging them, then multiplying it by the average consumption of a personal computer
(22).

Internet cost has been calculated by taking Movistar’s monthly subscription (23) and
multiplying it by the project length (around 5 months)

Indirect Costs
I1 Description Amount Units Price Total Type
1 Microsoft 365 1 1 yr license 69.99 69.99 Rent
2 Computer 1 computer 1500 1500.00 Amortization
3 Electricity 320 kWh 0.141 45.12 Rent
4 Internet 1 Subscription 35 186.67 Rent

TOTAL SUM 1801.78

Table 14. Initial Indirect Costs

4.1.5.8. Client Budget
To calculate the client budget, indirect costs have been added to the direct costs and
multiplied by a 25% benefit increase.

Client Budget
I1 Description Price
1 System analysis 716.23
2 System Design 1485.51
3 System Documentation 11035.22
4 System development 5729.83
5 System Testing 424.43

TOTAL SUM 19391.22
Table 15. Initial Client Budget

4.2. Closing the Project
Aside from some small changes to some sections, there are two main differences
between the final planning and the initial planning, the first change is a work stoppage
from 2024/02/08 to 2024/03/15 since the author was in an internship; the second main
change is in system development, since the author had a flawed understating of NES’s
PPU, which lead to a restructuring of that section.

Page 29

4.2.1. Final Planning
WBS Task Name Work Duration Start Finish

1 End of Degree Project 857 hrs 139.38 days Wed 20/09/23 Tue 02/04/24

1.1 System Analysis 25 hrs 3.38 days Wed 20/09/23 Mon 25/09/23

1.2 System Design 80 hrs 10 days Mon 25/09/23 Mon 09/10/23

1.3 System Documentation 416 hrs 126 days Mon 09/10/23 Tue 02/04/24

1.4 System Development 320 hrs 80 days Mon 09/10/23 Mon 29/01/24

1.5 System Testing 16 hrs 4 days Mon 29/01/24 Fri 02/02/24

Table 16. Final Planning

Figure 7. Final Planning Gantt Diagram

4.2.1.1. System Analysis
WBS Task Name Work Duration Start Finish

1.1 System Analysis 25 hrs 3.38 days Wed 20/09/23 Mon 25/09/23

1.1.1 Problem Statement 4 hrs 4 hrs Wed 20/09/23 Wed 20/09/23

1.1.2 Identifying Stakeholder 3 hrs 3 hrs Wed 20/09/23 Wed 20/09/23

1.1.3 Indentifying Users 2 hrs 2 hrs Wed 20/09/23 Thu 21/09/23

1.1.4 Indentifying Requirements 8 hrs 1 day Thu 21/09/23 Fri 22/09/23

1.1.5 Scope Definition 0 hrs 2 hrs Fri 22/09/23 Fri 22/09/23

1.1.6 WBS definition 8 hrs 1 day Fri 22/09/23 Mon 25/09/23

Table 17. Final System Analysis

Figure 8. Final System Analysis Gantt Diagram

Page 30

4.2.1.2. System Design
WBS Task Name Work Duration Start Finish

1.2 System Design 80 hrs 10 days Mon 25/09/23 Mon 09/10/23

1.2.1 Usecase Design 16 hrs 16 hrs Mon 25/09/23 Wed 27/09/23

1.2.2 Architecture Design 24 hrs 3 days Wed 27/09/23 Mon 02/10/23

1.2.3 Class Design 16 hrs 2 days Mon 02/10/23 Wed 04/10/23

1.2.4 User Interface Design 24 hrs 3 days Wed 04/10/23 Mon 09/10/23

Table 18. Final System Design

Figure 9. Final System Design Gantt Diagram

4.2.1.3. System Documentation
WBS Task Name Work Duration Start Finish

1.3 System Documentation 416 hrs 126 days Mon 09/10/23 Tue 02/04/24

1.3.1 Study 100 hrs 25 days Mon 09/10/23 Mon 13/11/23

1.3.2 Information System Plan 32 hrs 8 days Mon 13/11/23 Thu 23/11/23

1.3.3 System Feasibility Study 32 hrs 8 days Thu 23/11/23 Tue 05/12/23

1.3.4
 Analisys of the Information
System

52 hrs 13 days Tue 05/12/23 Fri 22/12/23

1.3.5 Information System Design 80 hrs 20 days Fri 22/12/23 Fri 19/01/24

1.3.6 Manuals 40 hrs 10 days Fri 19/01/24 Fri 02/02/24

1.3.6.1 User Manuals 40 hrs 10 days Fri 19/01/24 Fri 02/02/24

1.3.7 Conclusions 40 hrs 10 days Fri 02/02/24 Tue 19/03/24

1.3.8 Annexes 40 hrs 10 days Tue 19/03/24 Tue 02/04/24

Table 19. Final System Documentation

Page 31

Figure 10. Final System Documentation Gantt Diagram

4.2.1.4. System Development
WBS Task Name Work Duration Start Finish

1.4 System Development 320 hrs 80 days Mon 09/10/23 Mon 29/01/24

1.4.1 Emulator 164 hrs 41 days Mon 09/10/23 Tue 05/12/23

1.4.1.1 CPU 60 hrs 15 days Mon 09/10/23 Mon 30/10/23

1.4.1.2 PPU 92 hrs 23 days Mon 30/10/23 Thu 30/11/23

1.4.1.2.1 Background 40 hrs 10 days Mon 30/10/23 Mon 13/11/23

1.4.1.2.2 Sprites 52 hrs 13 days Mon 13/11/23 Thu 30/11/23

1.4.1.3 Cartridge Loader 12 hrs 3 days Thu 30/11/23 Tue 05/12/23

1.4.1.3.1 Mapper 12 hrs 3 days Thu 30/11/23 Tue 05/12/23

1.4.1.3.1.1 NROM 12 hrs 3 days Thu 30/11/23 Tue 05/12/23

1.4.2 Renderer 60 hrs 15 days Tue 05/12/23 Tue 26/12/23

1.4.3 Window System 12 hrs 3 days Tue 26/12/23 Fri 29/12/23

1.4.4 Input Handler 12 hrs 3 days Fri 29/12/23 Wed 03/01/24

1.4.5 User Inferface 72 hrs 18 days Wed 03/01/24 Mon 29/01/24

1.4.5.1 CPU Status 32 hrs 8 days Wed 03/01/24 Mon 15/01/24

1.4.5.2 PPU Status 20 hrs 5 days Mon 15/01/24 Mon 22/01/24

1.4.5.3 Memory Status 20 hrs 5 days Mon 22/01/24 Mon 29/01/24

Table 20. Final System Development

Page 32

Figure 11. Final System Development Gantt Diagram

4.2.1.5. System Testing
WBS Task Name Work Duration Start Finish

1.5 System Testing 16 hrs 4 days Mon 29/01/24 Fri 02/02/24

1.5.1 CPU Tests 8 hrs 2 days Mon 29/01/24 Wed 31/01/24

1.5.2 PPU Tests 4 hrs 1 day Wed 31/01/24 Thu 01/02/24

1.5.3 ROM Tests 4 hrs 1 day Thu 01/02/24 Fri 02/02/24

Table 21. Final System Testing

Figure 12. Final System Testing Gantt Diagram

4.2.2. Final Risk Report
No changes.

4.2.3. Final Cost Budget
This section won’t be as detailed as 4.1.5, since it will be mostly the same breakdown but
changing some values, instead, only direct costs, indirect costs and client budget will be
shown.

Page 33

4.2.3.1. Direct Costs
Direct Costs

I1 Description Amount Units Price Total
1 System Analysis 25 hrs 18.75 468.75
2 System Design 80 hrs 18.75 1500
3 System Documentation 416 hrs 18.75 7800
4 System Development 320 hrs 18.75 6000
5 System Testing 16 hrs 18.75 300

TOTAL SUM 16068.75

Table 22. Final Direct Costs

4.2.3.2. Indirect Costs
Indirect Costs

I1 Description Amount Units Price Total Type
1 Microsoft 365 1 1 yr license 69.99 69.99 Rent
2 Computer 1 computer 1500 1500.00 Amortization
3 Electricity 390 kWh 0.141 54.99 Rent
4 Internet 1 Subscription 35 227.50 Rent

TOTAL SUM 1852.48

Table 23. Final Indirect Costs

4.2.3.3. Client Budget
To see how this table is defined, refer to 4.1.5.8.

Client Budget
I1 Description Price
1 System analysis 653.49
2 System Design 2091.16
3 System Documentation 10874.03
4 System development 8364.64
5 System Testing 418.23

TOTAL SUM 22401.54
Table 24. Final Client Budget

4.2.4. Lessons Learned Report
Estimating work in a field in which I have little to no previous experience is hard, this led to
an underestimation of development that was almost half of the result.

Page 34

5. Analysis of the Information System (ASI)
5.1. ASI 1: System Definition

5.1.1. Determination of the System Scope
The main objective of this work is, as stated before, to provide a system capable of basic
NES emulation, and to teach what it takes to build an emulator, how low-level emulators
(LLE from now on) work, and to help users understand some intricacies of the NES.

To determine the reach of the system, first, some decision will be explained, this decision
include the limitations of the system, these are:

• Only support Mapper 0 ROMs.
• Only support NTSC ROMs.
• No audio.
• Inaccurate colour display.
• Can only control emulation flow forward without save states.

The first question I’ll answer is. Why the NES? It’s because it’s a very simple system that is
not in the realm of very old arcades or Atari consoles. Its processor, the 6502, has been
heavily documented, so I felt like taking this challenge instead of a more complicated
machine, like the PS1, would be possible to handle.

Why only mapper 0 ROMs, first I’ll explain what a mapper is. The NES only has 2kb of
memory, which is extremely limited, to counter that, the original engineers that designed
the system, added a circuit to the game cartridges, these systems could extend the
memory providing bank switching capabilities, adding new audio channels, storing the
sprites and graphical data of the games, and storing the executable code of the games.
These circuits are called mappers, since they map memory in the cartridge to memory in
NES RAM. The problem was, since these capabilities were in the cartridge and not in the
system, each game had their own, obviously, Nintendo had their own proprietary
mappers, and those are the most common, but there are other mappers, be it designed by
other companies at the time, or by the homebrew scene these days. I decided to only go
with mapper 0, since it’s the simplest, only providing graphical and code data, and I feel
that adding more complicated mappers could extend the development time of this project
considerably (24).

The decision to only support NTSC ROMs can be controversial, since we are in a PAL
region. First, why not support both? The PPU is different across these systems, which
would hinder development, then, Why NTSC? Simple, almost all guides I found were NTSC
exclusive, including a brilliant frame timing the greatly simplified PPU development for the
NTSC system, other reasons include, frame rate and resolution, since I prefer 60 FPS over
50.

No audio, there are two main reasons for audio, first, even though I believe emulating
audio is a very interesting topic I would love to dig in, I believe time constraints would
skyrocket adding those, coupled that with my inexperience with audio programming, and
that adding audio would require adding multithreading to the system, I think that the
technical difficulty of that subsystem greatly tops any other system included in this project

Page 35

excluding the renderer. The other reason, albeit more selfish, it’s that I hate dealing with
Windows APIs, and I did not find an audio library that could provide audio playback from
memory, not that I looked around that much.

Inaccurate colour display, what does this mean, first, some background. The NES is a
console designed to be used with CRT Televisions, so its PPU does not display an RGB
signal, it displays a composite signal to be interpreted by the television, this makes it so no
two TVs have the same colours. Some emulators do emulate that composite signal, but I
believe that the intricacies of a CRT are not part of the emulator, so instead of delving into
composite signal encoding/decoding, I would just use a colour palette and completely
negate that problem. The following Colour palette is courtesy of NES Dev Wiki (25).

Figure 13. Colour Palettes Used

Why only control forwards. Adding ways to fine control the emulation backwards would be
extremely taxing to the system, so save states will be able to emulate the functionality of
backwards control.

Now that the limitations and the reasons these limitations exist have been defined, the
next few paragraphs will entail what can be done with this system.

The user can load ROMs if they adhere to the previously stated limitations, and that they
follow the iNES format. The user can stop the emulation and resume it at any time, and
they can also advance the emulation by frame, scanline, pixel, PPU clock cycle, CPU
instruction, and CPU clock cycle, must be noted that advancing by PPU or CPU will also
advance the other, since they are coupled together. The user can use the interface to see
the current PPU status, that means, see the values in MMIO registers, the palettes being
used, and the sprites being loaded. The user can see the memory status, with image
representations of the memory for both the full memory range and the RAM, and a full HxD
inspired memory inspector (can’t modify data). The user can see the CPU status, that
means, the current values on the stack, the values on registers, and the disassembly of
the program, the disassembler used is a custom-made tool for this project.

5.2. ASI 2: Requirements Specification

5.2.1. Obtaining System Requirements

5.2.1.1. Functional Requirements
RF.1. The system must let the user load a valid ROM

RF.1.1. The User must provide the ROM
RF.1.1.1. iNES format
RF.1.1.2. Mapper 0 ROM
RF.1.1.3. NTSC ROM

RF.1.2. The ROM is valid

Page 36

RF.1.2.1. The ROM is immediately executed
RF.1.3. The ROM is not valid

RF.1.3.1. Invalid ROM is not executed
RF.1.3.2. Error message is shown

RF.1.4. The user loads a new ROM while the system is running
RF.1.4.1. The ROM is valid

RF.1.4.1.1. The emulator is reset
RF.1.4.1.2. The new ROM is executed

RF.1.4.2. The ROM is invalid
RF.1.4.2.1. The emulator is not reset
RF.1.4.2.2. The ROM is not executed
RF.1.4.2.3. The current ROM keeps being executed

RF.2. The user resets the emulator
RF.2.1. ROM is loaded

RF.2.1.1. Reset emulator parameters to reset values
RF.2.1.2. Restart ROM

RF.2.2. ROM is not loaded
RF.2.2.1. Reset emulator parameters to reset values

RF.2.3. Emulator is stopped
RF.2.3.1. Reset emulator parameters to reset values
RF.2.3.2. Emulator keeps being stopped

RF.2.4. Emulator is running
RF.2.4.1. Reset emulator parameters to reset values
RF.2.4.2. Emulator keeps running

RF.3. The system must let the user control the advance of emulation
RF.3.1. The user stops the emulation

RF.3.1.1. ROM is being executed
RF.3.1.1.1. Emulation is stopped

RF.3.1.2. ROM is not being executed
RF.3.1.2.1. When a ROM is loaded the Emulation will stop on load

RF.3.2. The user continues emulation
RF.3.2.1. ROM is being executed

RF.3.2.1.1. Emulation is resumed
RF.3.2.2. ROM is not being executed

RF.3.2.2.1. When a ROM is loaded the emulation will start immediately
RF.3.3. The user runs a frame

RF.3.3.1. Rom is loaded
RF.3.3.1.1. Emulation is running

RF.3.3.1.1.1. Emulation is stopped after running reminder of current frame
RF.3.3.1.2. Emulation is stopped
RF.3.3.1.3. Emulation is resumed
RF.3.3.1.4. Emulation is stopped after running reminder of current frame

RF.3.3.2. Rom is not loaded
RF.3.3.2.1. Emulation is running

RF.3.3.2.1.1. Emulation is stopped
RF.3.3.2.2. Emulation is stopped

RF.3.3.2.2.1. Nothing happens
RF.3.4. The user runs a scanline

Page 37

RF.3.4.1. Same structure as 2.3, swapping reminder of current frame with
reminder of current scanline

RF.3.5. The user runs a pixel
RF.3.5.1. Same structure as 2.3, swapping reminder of current frame with

reminder of current pixel
RF.3.6. The user runs a PPU cycle

RF.3.6.1. Same structure as 2.3, swapping reminder of current frame with PPU
cycle

RF.3.7. The user runs an instruction
RF.3.7.1. Same structure as 2.3, swapping reminder of current frame with

reminder of current instruction
RF.3.8. The user runs a CPU cycle

RF.3.8.1. Same structure as 2.3, swapping reminder of current frame with
reminder of current CPU cycle

RF.4. The user views PPU status
RF.4.1. ROM is being executed

RF.4.1.1. Show pattern tables
RF.4.1.1.1. Backgrounds
RF.4.1.1.2. Sprites

RF.4.1.2. Show palettes
RF.4.1.2.1. Backgrounds
RF.4.1.2.2. Sprites

RF.4.1.3. Show timing information
RF.4.1.3.1. Current scanline
RF.4.1.3.2. Current cycle
RF.4.1.3.3. Current frame number
RF.4.1.3.4. Frame time
RF.4.1.3.5. Time since last frame
RF.4.1.3.6. FPS counter

RF.4.1.4. Show internal registers
RF.4.1.4.1. V (VRAM address)
RF.4.1.4.2. X (fine x scroll)
RF.4.1.4.3. T (Temp address)
RF.4.1.4.4. W (address latch)

RF.4.1.5. Show MMIO registers
RF.4.1.5.1. PPU Control
RF.4.1.5.2. PPU Status
RF.4.1.5.3. PPU Mask

RF.4.1.6. Show current OAM
RF.4.1.6.1. Number
RF.4.1.6.2. X position
RF.4.1.6.3. Y position
RF.4.1.6.4. ID
RF.4.1.6.5. Attribute information

RF.4.1.6.5.1. Palette
RF.4.1.6.5.2. Behind background
RF.4.1.6.5.3. Filp vertically
RF.4.1.6.5.4. Flip horizontally

Page 38

RF.4.2. ROM is not being executed
RF.4.2.1. Show 3.1 fields with console reset information.

RF.5. The user views CPU status
RF.5.1. ROM is being executed

RF.5.1.1. Show registers
RF.5.1.1.1. Processor status

RF.5.1.1.1.1. Negative flag
RF.5.1.1.1.2. Overflow flag
RF.5.1.1.1.3. Unused flag
RF.5.1.1.1.4. Break flag
RF.5.1.1.1.5. Decimal flag
RF.5.1.1.1.6. Interrupt disable flag
RF.5.1.1.1.7. Zero flag
RF.5.1.1.1.8. Carry flag

RF.5.1.1.2. Index register X
RF.5.1.1.2.1. Decimal
RF.5.1.1.2.2. Hexadecimal

RF.5.1.1.3. Index register Y
RF.5.1.1.3.1. Decimal
RF.5.1.1.3.2. Hexadecimal

RF.5.1.1.4. Accumulator
RF.5.1.1.5. Stack pointer

RF.5.1.1.5.1. Decimal
RF.5.1.1.5.2. Hexadecimal

RF.5.1.2. Show disassembly
RF.5.1.2.1. Show PC
RF.5.1.2.2. Show instruction
RF.5.1.2.3. Show branch labels
RF.5.1.2.4. Show tooltip
RF.5.1.2.5. Highlight Current instruction

RF.5.1.3. Show stack
RF.5.1.3.1. Memory position
RF.5.1.3.2. Value

RF.5.2. ROM is not loaded
RF.5.2.1. The same as 5.1.1 with reset values
RF.5.2.2. Show empty disassembly
RF.5.2.3. The same as 5.1.3 with reset values

RF.6. The user view memory status
RF.6.1. ROM is being executed

RF.6.1.1. Show full memory range as image
RF.6.1.2. Show CPU RAM as image

RF.6.1.2.1. 1 bit per pixel
RF.6.1.2.2. 4 bits per pixel

RF.6.1.3. Show memory explorer
RF.6.1.3.1. Memory position
RF.6.1.3.2. Memory representation

RF.6.1.3.2.1. Hexadecimal
RF.6.1.3.2.2. String

Page 39

RF.6.1.3.2.3. The user can search for memory position
RF.6.1.3.2.3.1. The memory position is highlighted

RF.6.2. ROM is not loaded
RF.6.2.1. The same as 6.1 with reset values

RF.7. The user uses a modern controller to run the game
RF.7.1. User can control the game with controller
RF.7.2. The user can’t control the emulator with controller

RF.8. The user uses keyboard and mouse to control the emulator
RF.8.1. The user can control the emulator with keyboard and mouse
RF.8.2. The user can’t control the game with keyboard and mouse

RF.9. The user can Save and load states
RF.9.1. The save states are ROM based
RF.9.2. Only up to MAX_STATE + 1 states per ROM
RF.9.3. The user must be able to change the current save state number

RF.9.3.1. The user can increment save state
RF.9.3.1.1. If the save state is greater than the max, it will wrap to MIN_STATE

RF.9.3.2. The user can decrement the save state
RF.9.3.2.1. If the save state is lower than zero, it will wrap to MAX_STATE

5.2.1.2. Non-Functional Requirements
RNF. 1. The system must run at least at FPS_TARGET FPS
RNF. 2. The system must run on current systems
RNF. 3. The emulated games must be controlled with a modern controller
RNF. 4. The system will not provide ROMS

RNF.4.1. The system will not infringe in the intellectual property of Nintendo
RNF.4.2. The system will not teach how to obtain ROMs

RNF. 5. The system will not teach how to play emulated games
RNF. 6. The system will not teach basic computer concepts

RNF.6.1. The system will expect the user to have a baseline knowledge
RNF. 7. The save states will be stored in STATE_PATH

5.2.1.3. Requirements Dictionary
Name Value
STATE_PATH %appdata%/EMOO/states/<ROM_NAME>/
MAX_STATE 5
MIN_STATE 0
FPS_TARGET 60

5.2.2. System Actors Identification

5.2.2.1. System
System represents the application. Every action the user takes, it taken through the
system, so the system has been omitted for clarity in diagrams unless necessary.

5.2.2.2. User
User represents the person or group of persons that are using the system.

Page 40

5.2.3. Use Case Specification

User

Load ROM

Reset emulator

View Status

Memory

CPU

PPUPlay game

Search address<<extend>>

Figure 14. User use cases

Name
Reset emulator
Description
A user can reset the emulator to be the in a similar state as when it was started, the
loaded rom is not removed.

Table 25. Use case specification: Reset emulator

Name
Load ROM
Description
A user can load a ROM to be executed by the emulator

Table 26. Use Case specification: Load ROM

Name
Play game
Description
Is the user has loaded a ROM; the ROM can be played

Table 27. Use Case specification: Play game

Name
View Status: Memory
Description
A user can see the contents in the memory of the emulator

Table 28. Use Case specification: View Status: Memory

Name
View Status: CPU
Description
A use can see the status of the emulators CPU

Table 29. Use Case specification: View Status: CPU

Page 41

Name
View Status: PPU
Description
A user can see the status of the emulators PPU

Table 30. Use Case Specification: View Status: PPU

Name
Search address
Description
A user can inspect any memory address in the emulator’s memory space

Table 31. Use Case specification: Search address

User

Stop Emulation

Continue emulation

Advance emulation

Frame

scanline

PPU Cycle

Instruction

CPU cycle

<<include>>

Advance other
systems

System

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Pixel

<<include>>

Figure 15. User use cases, continued

Name
Stop Emulation
Description
If the emulation is running, a user can stop it

Table 32. Use Case specification: Stop emulation

Name
Continue Emulation
Description
If the emulation is stopped, a user can resume it

Table 33. Use Case specification: Continue emulation

Name
Advance emulation: Frame
Description
A user can advance the emulation by the reminder of the current frame

Table 34. Use Case specification: Advance emulation: Frame

Page 42

Name
Advance emulation: Scanline
Description
A user can advance the emulation by the reminder of the current scanline

Table 35. Use Case specification: Advance emulation: Scanline

Name
Advance emulation: Pixel
Description
A user can advance the emulation by the reminder of the current pixel

Table 36. Use Case specification: Advance emulation: Run Pixel

Name
Advance emulation: PPU cycle
Description
A user can advance the emulation by the reminder of the current PPU cycle

Table 37. Use Case specification: Advance emulation: PPU Cycle

Name
Advance emulation: CPU cycle
Description
A user can advance the emulation by the reminder of the current PPU cycle

Table 38. Use Case specification: Advance emulation: CPU cycle

Name
Advance emulation: Instruction
Description
A user can advance the emulation by the reminder of the current instruction.

Table 39. Use Case specification: Advance emulation: Instruction

Name
Advance other systems
Description
The system will advance other systems to keep the emulator synchronized when a user
advances emulation.

Table 40: Use Case specification: Advance other systems

User

Load state

Save state

Increment current
state

Decrement current
state

Name
Load state
Description
The previously saved state will be loaded from disk from STATE_PATH, and the emulator
will be set to it.

Table 41. Use Case specification: Load state

Page 43

Name
Save state
Description
The current state of the emulator will be saved to disk at STATE_PATH.

Table 42. Use Case specification: Save state

Name
Increment state
Description
The current state number will be incremented or set to MIN_STATE as needed

Table 43. Use Case specification: Increment state

Name
Decrement state
Description
The current state number will be incremented or set to MAX_STATE as needed

Table 44. Use Case specification: Decrement state

5.3. ASI 3: Identification of Analysis Subsystems
The next sections will explain the different subsystems this work is made of in order to
ease the understanding of its functions.

5.3.1. Subsystems Description

5.3.1.1. Emulator
This subsystem is the core of this work, it’s the part tasked with emulating the original
hardware, providing image data to the renderer, data to be displayed by the interface,
letting the user control the flow of emulation, providing disassembly when needed and
loading ROMs.

This system is made to be completely agnostic of other systems, this means that the
emulator does not know of the existence of other external systems, only provides data
when asked about it, and requests input data when necessary. The emulator could be
completely run without an interface, as it’s made to be controlled by other systems that do
know about the emulator.

5.3.1.2. Renderer
The renderer is tasked with displaying the aforementioned image data provided by the
emulator on the screen, other functions this subsystem has are providing a rendering
backend for the interface system.

5.3.1.3. Window system
This is an extremely simple system that is only tasked with providing an screen to the
renderer to display onto and a collection of events to allow moving, closing and resizing
the screen.

5.3.1.4. Input Handler
Another very simple system that is tasked with getting a controller and polling that
controller to send its data to the emulator, its also tasked with providing shortcuts to the
interface.

Page 44

5.3.1.5. Application
This subsystem is the system that is run when the system is executed, is tasked with
bridging the different components, and with sending the user controls to the systems, it
also provides an interface for the user to see the emulators data.

5.3.1.6. File Manager and Serialization
This subsystem is the one that handles serialization, file path, and file access. It provides a
set of functions to change current file path, to open files in the current folder, and to
serialize and deserialize data.

5.3.2. Description of Interfaces between Subsystems
All communication is performed through code, most of it it’s directly through the
application, with the notable exception of the communication between application and
renderer, since the renderer has been heavily abstracted, all communication is made
through API calls to not muddy the application code with rendering structures.

The Application holds references to the Input Handler, Emulator and Window System,
holds the emulator to instruct it and get its data, the window system to poll events
regarding the window, the input handler to send data to the emulator and to poll input
events. The application does not hold a reference to the renderer and only calls its API
when necessary.

The renderer does need a reference to the window subsystem to create a surface for it,
and to initialise some window data.

Both the application and the emulator make use of the FileManager, the application uses it
to send a path for the imgui ini file, and the emulator uses it for serialization and
deserialization.

Application

Renderer

Window system

Emulator

Input Handler

API calls

FileManager

Figure 16. Interfaces between subsystems

Page 45

5.4. ASI 4: Use Case Analysis
Restart Emulator

Preconditions None
Postconditions Emulator is set to initial state
Actors User
Description 1. User press restart button or shift +

F8
2. Emulator is restarted

Variations 1. If the emulator has a ROM loaded,
the ROM is not removed, so the
emulator is set to initial state with
a ROM

Exceptions None
Notes None

Table 45. Use Case analysis: Restart emulator

Load ROM
Preconditions None
Postconditions Rom is loaded by the emulator
Actors User
Description 1. User presses load ROM button or

ctrl + O
2. File dialog is open
3. User selects ROM with valid

extension
4. ROM is loaded by the system
5. ROM is executed if able

Variations 1. If the emulator is stopped, the
ROM is not executed until
emulation is resumed

Exceptions If the ROM is invalid the ROM will not be
loaded.

Notes If a ROM is already loaded when the invalid
ROM is being opened, the old ROM will
continue to be the loaded ROM

Table 46. Use Case analysis: Load ROM

Play game
Preconditions 1. Loaded ROM

2. Emulation running
Postconditions None
Actors User
Description 1. User plays the emulated ROM
Variations None
Exceptions None
Notes None

Table 47. Use Case analysis: Play game

Page 46

View status: Memory
Preconditions None
Postconditions View memory interface is shown
Actors User
Description 1. User presses view -> Memory

status or ctrl + M
2. View memory status interface is

shown
Variations None
Exceptions None
Notes If other status is shown, older status is

hidden but can be accessed by pressing a
tab button.

Table 48. Use Case analysis: View Status: Memory

View status: CPU
Preconditions None
Postconditions CPU status interface is shown
Actors User
Description 1. User presses view -> CPU status or

ctrl + C
2. CPU status interface is shown

Variations None
Exceptions None
Notes If there is no ROM loaded, the disassembly

is empty, and the stack is full.
If other status is shown, older status is
hidden but can be accessed by pressing a
tab button.

Table 49. Use Case analysis: View status: CPU

View status: PPU
Preconditions None
Postconditions View PPU status interface is shown
Actors User
Description 1. User presses view -> PPU status or

ctrl + P
2. PPU status interface is shown

Variations None
Exceptions None
Notes If other status is shown, older status is

hidden but can be accessed by pressing a
tab button.

Table 50. Use Case analysis: View Status: PPU

Page 47

Search address
Preconditions View memory status interface is shown
Postconditions Memory inspector is scrolled to around

address position, and address is
highlighted

Actors User
Description 1. User right clicks memory inspector

2. User inputs memory address in
text input

3. User presses enter or OK button
4. Address is searched

Variations If user presses cancel button, address is
not searched

Exceptions None
Notes Text input is in hexadecimal, and must be

in unsigned 16-bit value [0, 0xFFFF]
Table 51. Use Case analysis: Search address

Stop emulation
Preconditions Emulation is running
Postconditions Emulation is stopped
Actors User
Description 1. User presses stop button or F9

2. Emulation is stopped
Variations None
Exceptions None
Notes None

Table 52. Use Case analysis: Stop emulation

Continue emulation
Preconditions Emulation is stopped
Postconditions Emulation is resumed
Actors User
Description 1. User presses run button or F9

2. Emulation is resumed
Variations None
Exceptions None
Notes None

Table 53. Use Case analysis: Continue emulation

Page 48

Advance emulation: Frame
Preconditions None
Postconditions 1. Emulation is advanced to reminder

of current frame.
2. Emulation is stopped

Actors User
Description 1. User presses run frame button or

shift + F9
2. Emulation is stopped

Variations If emulation is already stopped, emulation
is resumed, reminder of current frame is
advanced, and then stopped again

Exceptions If ROM is not loaded, nothing happens
when you press the button

Notes None
Table 54. Use Case analysis: Advance emulation: Frame

Advance emulation: Scanline
Preconditions None
Postconditions 1. Emulation is advanced to reminder

of current scanline.
2. Emulation is stopped

Actors User
Description 1. User presses run scanline button

or F10
2. Emulation is stopped

Variations If emulation is already stopped, emulation
is resumed, reminder of current scanline
is advanced, and then stopped again

Exceptions If ROM is not loaded, nothing happens
when you press the button

Notes None
Table 55. Use Case analysis: Advance emulation: Scanline

Advance emulation: PPU cycle
Preconditions None
Postconditions 1. Emulation is advanced to reminder

of current PPU cycle.
2. Emulation is stopped

Actors User
Description 1. User presses run PPU cycle button

or ctrl + F10
2. Emulation is stopped

Variations If emulation is already stopped, emulation
is resumed, reminder of current ppu cycle
is advanced, and then stopped again

Exceptions If ROM is not loaded, nothing happens
when you press the button

Notes None
Table 56. Use Case analysis: Advance emulation: PPU Cycle

Page 49

Advance emulation: pixel
Preconditions None
Postconditions 1. Emulation is advanced to reminder

of current pixel.
2. Emulation is stopped

Actors User
Description 1. User presses pixel button or shift +

F10
2. Emulation is stopped

Variations If emulation is already stopped, emulation
is resumed, reminder of current pixel is
advanced, and then stopped again

Exceptions If ROM is not loaded, nothing happens
when you press the button

Notes The same as running PPU cycle, but
skipping nonvisible cycles and scanlines

Table 57. Use Case analysis: Advance emulation: Pixel

Advance emulation: Instruction
Preconditions None
Postconditions 1. Emulation is advanced to reminder

of current Instruction.
2. Emulation is stopped

Actors User
Description 1. User presses advance instruction

button or F11
2. Emulation is stopped

Variations If emulation is already stopped, emulation
is resumed, reminder of current
instruction is advanced, and then stopped
again

Exceptions If ROM is not loaded, nothing happens
when you press the button

Notes None
Table 58. Use Case analysis: Advance emulation: Instruction

Advance emulation: CPU cycle
Preconditions None
Postconditions 1. Emulation is advanced to reminder

of current Instruction.
2. Emulation is stopped

Actors User
Description 1. User presses advance CPU cycle

button or shift + F11
2. Emulation is stopped

Variations If emulation is already stopped, emulation
is resumed, reminder of current CPU cycle
is advanced, and then stopped again

Exceptions If ROM is not loaded, nothing happens
when you press the button

Notes None
Table 59. Use Case analysis: Advance emulation: CPU cycle

Page 50

Advance emulation: Advance other systems
Preconditions User has advanced emulation
Postconditions System has advanced all other systems.
Actors User
Description 1. User advances emulation

2. System advances rest of emulator
systems to keep synchronization

Variations If emulation is already stopped, emulation
is resumed, reminder of all other systems
in equivalent time to selected option is
advanced, and then stopped again

Exceptions If ROM is not loaded, nothing happens
when you press the button

Notes This is done automatically when the user
advances anything, since they are in the
same Step function call

Table 60. Use Case analysis: Advance other systems

Save state
Preconditions ROM is loaded
Postconditions Save state is loaded to file
Actors User
Description 1. The user saves state

2. Emulator state is saved to file
Variations If no previous state has been created, a

folder with name equal to the ROM without
the extension will be created in the states
path.
If a previous state has been created with
the same number, the old one will be
replaced.

Exceptions If ROM is not loaded, nothing happens
when you press the button

Notes None
Table 61. Use Case analysis: Save state

Load state
Preconditions ROM is loaded
Postconditions Emulator state is loaded from file
Actors User
Description 1. The user loads state

2. Emulator state is loaded from file
Variations None
Exceptions If ROM is not loaded, nothing happens

when you press the button.
If no state exists for that ROM and that
number, nothing happens.

Notes None
Table 62. Use Case analysis: Load state

Page 51

Increment state
Preconditions None
Postconditions None
Actors User
Description 1. The current state number is

incremented
Variations If the current state number is greater than

MAX_STATE, it will be set to MIN_STATE
Exceptions None
Notes None

Table 63. Use Case analysis: Increment state

Decrement state
Preconditions None
Postconditions None
Actors User
Description 1. The current state number is

decremented
Variations If the current state number is lower than

MIN_STATE, it will be set to MAX_STATE
Exceptions None
Notes None

Table 64. Use Case analysis: Decrement state

Page 52

5.5. Class Analysis

5.5.1. Class Diagram

5.5.1.1. Emulator

Console
CPU

PPU

BUS

Cartridge

<<Interface>>

IMapper

NROM

InputDevice

Disassembler

Assembler

<<Enumeration>>

InstructionName

<<Enumeration>>

AddressingModeName

<<struct>>

Opcode

<<struct>>

Disassembly

<<struct>>

Configuration

1

1

1

<<Enumeration>>

Button

1

<<struct>>

iNesHeader

<<struct>>

RegisterFlags

<<struct>>

Instruction

1

A
B
SELECT
START
UP
DOWN
LEFT
RIGHT

Figure 17. Emulator class diagram

InstructionName and AdressingModeName are only the names of instructions and
addressing modes.

Page 53

5.5.1.2. Renderer

<<Abstract class>>

ITexture

<<Enumeration>>

TextureType

Sprite

VulkanTexture

BatchRenderer

Engine

VulkanBindlessTexture

<<struct>>

TextureWindow

FrameData

DeletionQueue

1

2.1

1

adasdadasd

<<API>>

API

VulkanAPIImpl

AllocatedImage

<<struct>>

Vertex

<<struct>>

Rect

API calls

NORMAL
BINDLESS

+Init

+Shutdown

+Draw

+Resize

+DrawSprite

+CreateTexture

+BuildImGuiFrame

+BuildFontTexture

Figure 18. Renderer class diagram (simplified)

This is an extremely oversimplified diagram of the renderer, as the information omitted is
there to provide structures for Vulkan and explaining it would be pointless since it’s not the
point of this project and would only contribute to mudding the waters.

Page 54

5.5.1.3. Input Handler
Why SDL3Input is included even though is not used will be explained in 5.5.2.3

<<Abstract class>>

IInput

SDL2Input SDL3Input

<<Enumeration>>

Key

<<Enumeration>>

BUTTON

NONE
FACE_DOWN
FACE_LEFT
FACE_UP
FACE_RIGHT
DPAD_UP
DPAD_DOWN
DPAD_LEFT
DPAD_RIGHT
DPAD_UP
START
SELECT
R1
R3
L1
L3
MISC

Figure 19. Input Handler class diagram

The members of Key are not show due to image constraints, as it contains 114 members,
but Key contains, the Keys of a keyboard.

5.5.1.4. Window System
Why SDL3Window is included even though is not used will be explained in 5.5.2.4.

<<Abstract class>>

IWindow

SDL2Window SDL3Window

<<Enumeration>>

Event

<<struct>>

WindowExtent
1

NONE
RESIZED
MINIMIZED
RESTORED
MAXIMIZED
CLOSE
MOVED
FOCUS_LOST_MOUSE
FOCUS_GAIN_MOUSE
FOCUS_LOST_KEYBOARD
FOCUS_GAIN_KEYBOARD

Figure 20. Window Class Diagram

Page 55

5.5.1.5. FileManager

<<Interface>>

ISerializable

FileManager Serializable

Context

Console CPU

PPU Bus

Cartridge

IMapper

InputDevice

Serialize
Deserialize

GetCurrent
GetRoot
SetRoot
PushFolder
PopFolder
AllocateFileName
PushFile
PopFile
Write

SerializeStatic
DeserializeStatic
SerializeArrayStoresStatic
DeserializeArrayStoresStatic
SerializeData
DeserializeData
SetSerializeFilename
Serialize
Deserialize

+folders
+root
+current_folder
+current_file
+allocations
+serialize_filename

Figure 21. FileManager Class Diagram

Page 56

5.5.1.6. Application

<<Abstract class>>

IComponent

CloseDialog

MemoryView

ShowCPUStatus

ShowPPUStatus

<<singleton>>

Application

<<Abstract class>>

IWindow

Console

<<API>>

API

<<Abstract class>>

ITexture

Sprite

<<Abstract class>>

IInput

API calls

<<struct>>

Configuration

Figure 22. Application Class Diagram

Page 57

5.5.2. Class Description

5.5.2.1. Emulator
Name
Console
Description
Holds all the different components of the emulator, interfaces with the outside, also
runs the emulator.
Proposed attributes
None.
Proposed methods

• Step: runs the emulation for 1 master clock cycle.
• Reset: resets the emulator (RF.2).
• LoadCartridge(string): loads a cartridge from disk (RF.1).
• LoadCartridgeFromMemory: loads a cartridge from disk (testing purposes).
• UnloadCartridge: unloads current cartridge.
• RunFrame: runs reminder of current frame (RF.3.3).
• RunCpuInstruction: runs reminder of current instruction (RF.3.7).
• RunPpuPixel: runs reminder of current pixel (RF.3.5).
• RunPpuScanline: runs reminder of current scanline (RF.3.4).
• RunPpuCycle: runs reminder of current PPU cycle (RF.3.6).
• RunCpuCycle: runs reminder of current CPU cycle (RF.3.8).
• CanRun: true if the emulator can run.
• GetFrameTime: return time this frame took (RF.4.1.3.4).
• GetTimeSinceLastFrame: returns time since last frame ended (RF.4.1.3.5).
• GetCpu: getter for CPU.
• GetPpu: getter for PPU.
• GetBus: getter for bus.
• GetConfig: getter for Configuration.
• GetController: returns requested controller port.

Table 65. Console Class Description

Name
Configuration
Description
Contains information regarding the type of emulation to be done, like target framerate
and resolution.
Proposed attributes

• cpu_clock_divisor: required amount of master clock ticks to run a CPU cycle.
• ppu_clock_divisor: required amount of master clock ticks to run a PPU cycle.
• frame_rate: desired frame rate.
• frame_time: ms that a single frame takes.
• width: width of the emulator screen (in pixels).
• height: height of the emulator screen (in pixels).

Table 66. Configuration Class Description

Page 58

Name
InputDevice
Description
Writes to the specific memory location reserved for the first input device of the NES.
Proposed attributes

• data: data to be set by input handler.
Proposed methods

• Write: updates inner data with data.
• Read: sends a bit of inner data to bus.
• Peek: return inner data.
• SetPressed: ors data with button mask.
• SetPressed: ors data with button mask array.

Table 67. Input Device Class Description

Name
Button
Description
Enum that contains the buttons of a NES controller
Proposed attributes

• A
• B
• SELECT
• START
• UP
• DOWN
• LEFT
• RIGHT

Table 68. Button (emulator) Class Description

Name
Bus
Description
An abstraction of the contents of the NES memory range, components use this to read
or write to memory.
Proposed attributes
None.
Proposed methods

• Read: returns data in memory address, may modify emulator state.
• Peek: returns data in memory address, does not modify state (RF.5.1.3, RF.6.1.1,

RF.6.1.3).
• Write: writes data in memory address.
• ConnectCartridge: connects to cartridge.
• ConnectPPU: connects to PPU.
• DMA: does DMA operation in PPU.
• ConnectController: connects to controller.
• Reset: resets bus state.

Table 69. Bus Class Description

Page 59

Name
PPU
Description
Component that emulates the Ricoh 2C02, the “graphical unit” of the NES.
Proposed attributes
None.
Proposed members

• Step: steps a ppu cycle.
• GetCycles: returns current ppu cycle number (RF.4.1.3.2).
• GetFrames: returns number of frames since last reset (RF.4.1.3.3).
• GetScanlines: returns number of current scanlinse (RF.4.1.3.1)
• IsScanlineDone: true if scanline is finished.
• IsFrameDone: true if frame is done.
• IsNMI: true if DMA is in progress.
• SetNMI: to be set by bus.
• IsDMATransfer: if DMA transfer is in progress.
• IsDMADummy: false if DMA can begin this frame.
• SetDMADummy: to be set by bus.
• SetDMAData: current dma byte.
• GetOAMEntry: returns OAM entry at position (RF.4.1.6).
• HasUpdatedPatternTables: true if the pattern tables have changed.
• HasUpdatedPalettes: true if the palettes have changed.
• ConnectCartridge: connects to the cartridge.
• Reset: resets PPU state.
• CpuRead: to be called by the bus in MMIO register range, returns MMIO register

data, may modify state.
• CpuPeek: to be called by the bus in MMIO register range, returns MMIO register

data, does not modify state.
• CpuWrite: to be called by the bus in MMIO register range, sets MMIO register

data.
• DMA: starts DMA.
• X: returns X register (RF.4.1.4.2).
• W: returns W register (RF.4.1.4.4).
• V: returns V register (RF.4.1.4.1).
• T: returns T register (RF.4.1.4.3).
• GetScreen: returns screen colour data.
• GetPatternTable: returns colour data for requested pattern table with requested

palette colours (RF.4.1.1).
• GetPalette: returns palettes color data (RF.4.1.2).
• GetColorFromPalette: returns color for palette and index.

Table 70. PPU Class Description

Page 60

Name
RegisterFlags
Description
A struct to made flags operations on MMIO registers easier
Proposed attributes

• reg u8: attribute holding the register data
Proposed methods

• Constructor: Constructs and sets the value of the register
• operator(): returns reg.
• is_flag_set: ands reg with value provided.
• set_flags: sets or unsets flags according to control parameter

Table 71. RegisterFlags Class Description

Name
CPU
Description
Component that emulates the Ricoh 2A03, the CPU of the NES .
Proposed attributes
Constants:

• STACK_VECTOR: position of the stack in the memory.
• IRQ_VECTOR_LO: low byte of the irq vector.
• IRQ_VECTOR_HI: high byte of the irq vector.
• NMI_VECTOR_LO: low byte of the nmi vector.
• NMI_VECTOR_HI: hight byte of the nmi vector.
• RESET_VECTOR_LO: low byte of the reset vector.
• RESET_VECTOR_HI: high byte of the reset vector.

Proposed methods
• ConnectBus: connects to bus.
• IsDone: true if the current instruction is done.
• Step: runs a cpu cycle.
• Reset: resets state.
• IRQ: raises hardware interrupt.
• NMI: raises non maskable interrupt.
• A: getter for accumulator (RF.5.1.1.4).
• X: getter for index register x (RF.5.1.1.2).
• Y: getter for index register y (RF.5.1.1.3).
• S: getter for stack pointer (RF.5.1.1.5).
• P: getter for processor status (RF.5.1.1.1).
• PC: getter for program counter.
• SetA: setter for accumulator.
• SetX: setter for index register x.
• SetY: setter for index register y.
• SetS: setter for stack pointer.
• SetP: setter for processor status.
• SetPC: setter for program counter.
• GetCycles: returns current cycles until CPU is done.
• GetTotalCycles: returns total cycles executed by CPU.

Table 72. CPU Class Description

Page 61

Name
Instruction
Description
Struct that bundles function pointers for both instruction and addressing mode
Proposed attributes

• name: the name of the instruction.
• addressing_mode_fn: function that represents the addressing mode, does the

addressing mode operation so the operand can be sent to the instruction.
• instruction_fn: function that represents the instruction, does the instruction

with the operand obtained from addressing_mode_fn.
• cycles: number of cycles this instruction will take

Proposed methods
None

Table 73. Instruction Class Description

Name
Cartridge
Description
Emulates the cartridge that holds the “game”, provides access to PRG and CHR rom.
Proposed attributes
None
Proposed methods

• Constructor: Loads cartridge from disk.
• Constructor: Loads cartridge from memory.
• ConnectBus: connects to bus.
• CpuRead: for CPU reads in cartridge memory space, from PRG ROM.
• CpuWrite: for CPU reads in cartridge memory space, from PRG ROM.
• PPURead: for PPU reads in cartridge memory space, from CHR ROM.
• PPUWrite: for PPU writes in cartridge memory space, from CHR ROM.
• GetMirroring: returns mirroring type.

Table 74. Cartridge Class Description

Name
IMapper
Description
Interface for mapper implementations
Proposed attributes
None
Proposed methods

• Constructor: constructs setting amount of PRG and CHR banks.
• CpuMapRead: maps CPU read to new address in cartridge space, in PRG ROM.
• CpuMapWrite: maps CPU write to new address in cartridge space, in PRG ROM.
• PpuMapRead: maps PPU read to new address in cartridge space, in CHR ROM.
• PpuMapWrite: maps PPU write to new address in cartridge space, in CHR ROM.
• GetName: returns name assigned to mapper, for NROM would be “NROM”.

Table 75. IMapper Class Description

Page 62

Name
iNesHeader
Description
Structure containing the data of an iNES header file format.
Proposed attributes

• name: contains the characters for NES and following by MS-DOS end-of-file
“\x4E\x45\x53\x1A”.

• prg_rom_chunks: amount of PRG ROM chunks.
• chr_rom_chunks: amount of CHR ROM chunks.
• flags_6: mapper, mirroring, battery, trainer.
• flags_7: maper, vs/Playchoice, NES 2.0.
• prg_ram_size: PRG RAM size
• flags_9: tv system.
• flags_10: tv system, PRG RAM presence.
• unused: padding.

Proposed methods
None

Table 76. iNesHeader Class Description

Name
NROM
Description
Emulates mapper 0 “NROM”, implements IMapper.
Proposed attributes
Same as IMapper.
Proposed methods
Same as IMapper.

Table 77. NROM Class Description

Name
Assembler
Description
A custom tool made to make tests easier.
Proposed attributes
None
Proposed methods

• ConnectBus: connects to bus in order to insert assembled code.
• Assemble: assembles provided string into code.
• GetInstructionName: gets InstructionName from string.
• ParseAddressingMode: parses addressing mode from string.

Table 78. Assembler Class Description

Page 63

Name
Disassembler
Description
A custom tool made to show disassembly in the interface
Proposed attributes
None
Proposed methods

• ConnectBus: connects to bus in order to insert assembled code.
• Get: returns disassembly of provided address in the PRG ROM, if address is not

disassembled, it will call DisassembleFromAddress from it.
• Cotains: returns true if has disassembled address provided.
• Init: initialises data and calls DisassembleFromAddress into the reset, IRQ and

NMI vectors, if the control parameter is set to true, it would replace some values
with known constants.

• GetCache: returns all disassembly (RF.5.1.2).
• DisassembleFromAddress: disassembles addresses starting at provided value

and stops when it founds existing disassembly or a return instruction, if the
control parameter is set to true, it would replace some values with known
constants.

Table 79. Disassembler Class Diagram

Name
Disassembly
Description
Struct representing disassembly.
Proposed attributes

• repr: string representation of the disassembly.
• label: if exists, label for disassembly.
• size: size in bytes of instruction.
• instruction: string name of the instruction.
• addressing: string addressing mode of the instruction.
• has_register: true if the disassembly is accessing a known constant.
• register_name: name of the known constant.
• register_value: value of the known constant.

Proposed methods
None

Table 80. Disassembly Class Description

Page 64

Name
InstructionName
Description
Enumeration of instruction names.
Proposed attributes

Table 81. InstructionName Class Description

Name
AddressingModeName
Description
Enumaration of addressing mode names.
Proposed attributes

Table 82. AddressingModeName Class Description

Name
Opcode
Description
Struct representing instruction addressing mode pair.
Proposed attributes

• instruction InstructionName: instruction.
• mode AddressingModeName: addressing mode.

Proposed methods
• operator<=>: defaulted to provide ordering.

Page 65

5.5.2.2. Renderer
Name
API
Description
Not a class, a collection of unimplemented functions grouped in a namespace, it
abstracts the rendering backend in a collection of functions to be used by the other
systems without the complexity and structures required for the renderer to work
Proposed attributes
None
Proposed functions

• Init: Initialises the underlying renderer
• Shutdown: shuts down the underlying renderer
• Draw: draws all sprites sent to renderer
• Resize: resize renderer surface
• DrawSprite: sents the sprite to be drawn by the batcher, is not presented to the

screen until Draw is called
• CreateTexture: Creates a texture of the desired type with desired dimensions
• CreateTexture: Create a texture of the desired type with desired dimensions, and

fills it with provided data.
• BeginImGuiFrame: Starts ImGui frame.
• BuildFontTexture: Builds ImGui Font texture.

Table 83. Renderer API Class Description

Name
TextureType
Description
Enumeration holding the supported types of textures
Proposed attributes

• BINDLESS: texture is not bound to a texture slot
• NORMAL: texture is bound to texture slot

Table 84. TextureType Class Description

Name
Sprite
Description
A rect that holds a texture a position and a size
Proposed attributes

• rect: position and size of the sprite
• z_index: “depth” of the sprite
• texture: texture of the sprite
• texture_window: texture window of the sprite, more on table 78

Proposed methods
• Constructor: Constructs a sprite with a rect.
• ConstructorConstructs an sprite with a texture, a rect and a texture window
• SetTexturesets texture and texture window
• Draw: sends sprite to the batcher

Table 85. Sprite Class Description

Page 66

Name
TextureWindow
Description
Class used to be able to load different textures in the shape of a spritesheet, not a
useful feature in this work, but a good thing to have If I reuse this renderer.
Provides a “window” into a texture rendering only the parts of the texture between (x0,
y0) and (x1, y1)
Proposed attributes

• x0: point 0 x
• y0: point 0 y
• x1: point 1 x
• y1: point 1 y

Proposed methods
None

Table 86. TextureWindow Class Description

Name
Rect
Description
A struct that holds a point and a size
Proposed attributes

• x: x position of the rect
• y: y position of the rect
• w: width of the rect
• h: height of the rect

Proposed methods
None

Name
ITexture
Description
Abstract class like interface, definition of a texture without the renderer implementation
Proposed attributes
None
Proposed methods

• Constructor: constructs texture with width and height.
• Constructor: constructs texture with width, height, and texel data.
• SetData: sets texel data of the texture.
• ToImgui: returns imgui equivalent to be able to be used with the interface.

Table 87. ITexture Class Description

Name
VulkanAPIImpl
Description
Not a class, provides implementation of renderer API functions
Proposed attributes
None
Proposed functions
Implementation of API functions

Table 88. VulkanAPIImpl Class Description

Page 67

Name
Engine
Description
Backbone of the renderer, initialise and closes vulkan and imgui, provides rendering
support.
Proposed attributes
None
Proposed methods

• Get: class is a singleton, returns instance.
• Init: inits renderer and sets it to render to window, if control parameter is set,

initialises imgui.
• Cleanup: cleans up renderer.
• Draw: draws background and draws batched data.
• Resize: resizes swapchain.
• RequestResize: requests a swapchain resize.
• AddTextureToBatcheradds texture to batcher, only works with bindless textures

in order to not create a texture atlas.
• RemoveTextureFromBatcher: removes given texture from batcher.
• CreateImage: creates empty vulkan, if control parameter is set, image will be

mipmapped.
• CreateImage: creates vulkan image with texel data, if control parameter is set,

image will be mipmapped.
• DestroyImage: destroys vulkan image.
• SetImageData: sets texel data in image.
• CreateBuffer: creates vulkan buffer.
• DestroyBuffer: destroys vulkan buffer.
• SubmitDrawRect: adds rect to batcher.
• GetDevice: returns vulkan device (GPU abstraction from Vulkan).
• GetAllocator: returns vma allocator.
• GetSampler: returns default image sampler.

Table 89. Engine Class Description

Designed using both vkguide and vulkan-tutorial until 3D concepts start appearing,
modified it with bindless support in order to save texture slots in the gpu, since I did not
find enough information on how to build a texture atlas from textures of different sizes.

https://vkguide.dev/
https://vulkan-tutorial.com/

Page 68

Name
BatchRenderer
Description
Class that stores provided rects and textures, and renders them at once in order to save
draw calls.
Proposed attributes
Constants

• MAX_SPRITE_AMOUNT: max number of rects that can be submitted to the
batcher.

Proposed methods
• StartBatch: copies vertex and index data to GPU memory
• Add: adds a rect to batcher.
• PrepareDescriptor: prepares descriptor set used by the rendererer, binds

textures to it
• Draw: draws data stored in GPU memory.
• AddTexture(VulkanBindlessTexture*): adds texture to batcher.
• RemoveTexture(VulkanBindlessTexture*): removes texture from batcher.
• HasTexture(VulkanBindlessTexture*): true if batcher contains texture
• Flush: cleans vertices, indices and textures.
• GetVertexCount: returns number of vertices in the batcher currently.
• GetIndexCount: removes current number of indices.
• GetAddress: returns address of the mesh buffer used by the batcher.

Table 90. BatchRenderer Class Description

Engine has a list of BatchRenderers, when one is full, it adds another. Completely overkill
for the end implementation of this project, but at the time of analysis, it was not known
whether to draw the emulator screen it would be better to use a quad for each internal
screen pixel, or a single texture that uses internal screen pixels as texels.

Name
VulkanTexture
Description
Vulkan specific implementation of ITexture, uses a texture slot.
Proposed attributes
None.
Proposed methods
Implementation of ITexture.

Table 91. VulkanTexture Class Description

Name
VulkanBindlessTexture
Description
Vulkan specific implementation of ITexture, does not use a texture slot.
Proposed attributes
None.
Proposed methods
Implementation of ITexture.

Table 92. VulkanBindlessTexture Class Description

The existence of this class is complex, its existence is tied to the BatchRenderer, since I
did not find much literature on 2D rendering, like, I found a lot, but not on more technical

Page 69

details like building texture atlas of misshaped textures and batch rendering, so I decided
to investigate this “new” technology named Bindless resources.

Name
AllocatedImage
Description
Vulkan image and memory allocation bundled together.
Proposed attributes

• Image: handle to vulkan image
• view: handle to vulkan image view
• format: the image format
• extent: the size of the image
• allocation: memory allocation of the image

Proposed methods
None

Table 93. AllocatedImage Class Description

This is one of the internals of the renderer that I am cautious on adding, but I since this is
basically what textures are, an AllocatedImage and maybe a descriptor set depending on
the image, I decided to show it here since it provides context.

Name
Vertex
Description
Vertex data that will be sent to the GPU when drawing.
Proposed attributes

• position: position of this vertex in space.
• tex_coords: texture coordinates used for this vertex, also named UV in other

programs.
• texture_id: id of the texture, if not defined, will use a default texture

Proposed methods
None

Table 94. Vertex Class Description

Other internal I am not keen to add, but vertex definitions are extremely important, and I
think adding them is important.

Page 70

Name
FrameData
Description
A class used to delete structures when are not used.
Proposed attributes

• command_pool: pool from which Vulkan commands will be allocated.
• command_buffer: Command buffer that will record Vulkan commands.
• swapchain_semaphore: GPU to GPU synchronization, used to make render

commands wait on the swapchain request
• render_semaphore: GPU to GPU synchronization, used to control presenting

mage
• render_fence: GPU to CPU synchronization, blocks CPU until GPU finishes work
• deletion_queue: deletion queue of this frame
• frame_descriptor: descriptor of this frame, a descriptor set hold information on

how to send data to the GPU.
Proposed methods
None

Table 95. FrameData Class Description

The last of the set of implementation details that will be shown here, added since this is
the most important structure of the renderer. The engines will have n frames in-flight, that
means, that it renders one while it cleans or prepares the next.

Name
DeletionQueue
Description
A class used to delete structures when are not used.
Proposed attributes
None.
Proposed methods

• PushFunction: adds a cleanup function (deletor) to be added to the deletion
queue

• Flush: calls every function added and then cleans the queue.
Table 96. DeletionQueue Class Description

There is a main deletion queue for the engine class, and each FrameData has its own.

Page 71

5.5.2.3. Input Handler
Name
IInput
Description
Abstract class for Input handlers, provides actions functionality, but not event or
keyboard/mouse functionality, that is to be provided by implementers (RF.7, RF.8).
Proposed attributes
Implementation details:

• current key is the key to which current action being run is linked to
• current button is the button to which current action being run is linked to

if current key is defined, current button is not defined, and vice versa.
Proposed methods

• GetButton: returns true whether passed button is pressed.
• GetKey: returns true whether passed key is pressed.
• IsKeyModified: returns true if key is being modified by a mod key (ctrl, shift, alt,

win)
• IsRepeating: returns true if current key or button is being hold down after being

pressed.
• IsKeyRepeating: returns true if given key is being hold down after being pressed.
• IsButtonRepeating: returns true if given button is being hold down after being

pressed.
• CanRepeatAfter: returns true if time amount has passed since last current key

or button was pressed
• CanRepeatKeyAfter: returns true if time amount has passed since last given key

press.
• CanRepeatButtonAfter: returns true if time amont has passed since last given

button press.
• CanRepeatEvery: returns true every time some time amount has passed since

current key or button was pressed.
• CanRepeatKeyEvery: returns true every time amount has passed since given key

was pressed.
• CanRepeatButtonEvery: returns true every time amount has passed since given

button was pressed.
• ClearActions: deletes all actions
• AddGamepadAction: ads an action to be run when a given button is pressed,
• AddKeyboardAction: ads an action to be run when a given button is pressed.
• RunActions: runs all actions that can be run, (key or button is pressed)
• RunGamePadActions:
• RunKeyboardActions: runs actions for key if key is pressed.
• RunGamePadActions: runs actions for button if button is pressed.
• Update: calls platform specific update implementation, updates state and runs

actions.
• ProcessEvents: runs input related events of underlying implementation.

Table 97. IInput Class Description

An implantation of IInput has to be an adapter to easily slot in new technologies in case
the old one is faulty, or a new one is better, without modifying existing code; this is the
reason SDL2Input exists, as SDL3Input was the original, and at some point in
development, a rollback from SDL3 to SDL2 was needed. This is made more complex than

Page 72

it needs to be in order to make easier future reuses n other projects or ampliations in this
work if any.

Name
Key
Description
An enumeration of keys that can be used in this input handler
Proposed attributes

Table 98. Key Class Description

Page 73

Name
Button
Description
An enumeration of all valid buttons for this input handler
Proposed attributes

• NONE
• FACE_DOWN
• FACE_LEFT
• FACE_UP
• FACE_RIGHT
• DPAD_DOWN
• DPAD_LEFT
• DPAD_UP
• DPAD_RIGHT
• START
• SELECT
• R1
• R3
• L1
• L3

Table 99. Button (Input Handler) Class Description

Name
SDL2Input
Description
IInput implementation using SDL2 as backed.
Proposed attributes
None.
Proposed methods
Same as IInput.

Table 100. SDL2Input Class Description

Name
SDL3Input
Description
IInput implementation using SDL3 as backed.
Proposed attributes
None.
Proposed methods
Same as IInput.

Table 101. SDL3Input Class Description

Page 74

5.5.2.4. Window System
Name
IWindow
Description
The same idea as IInput, provide an adapter with which implementors interface with
underlying system to make swapping libraries easier, almost pure virtual only provides
adapter interface.
Proposed attributes
None.
Proposed methods

• GetDimensions: returns a WindowExtend with window dimensions.
• GetDimensions: modifies passed parameters to window dimensions, made this

way since its common for window systems to have a similar function.
• CreateRendererSurface: used to provide a rendering surface to renderer, to be

called exclusively by renderer.
• GetWindowID: to know what window is the main one when using multiple

windows.
• InitImguiForRenderer: initialises Imgui to work with vulkan, since imgui window

requires it, to be called by renderer.
• ShutdownImGuiWindow: shuts down imgui window subsystem.
• BeginImGuiFrame: Begins window imgui frame.
• AddEventFunction: sets function to be run when given event is being polled.
• ProcessEvents: runs event related code for the underlying system.

Table 102. IWindow Class Description

As stated before, IWindow only provides a adapter interface for other implementations to
use so in case of a library change, the main code does not need to be changed; SDL3 was
the original implementation, but a bug in the SDL3 imgui implementation that was way
above what I could fix forced me to roll back to SDL2, luckily, this system made swapping
from SDL3 to SDL2 incredibly easy.

This system and the input handler have been used in other personal projects, and thanks
to their flexibility, I could implement a new version with the Windows API in no time.

Name
WindowExtent
Description
Struct that represents the size of a window.
Proposed attributes

• w: the width of the window.
• h: the height of the window.

Proposed methods
None.

Table 103. WindowExtent Class Description

Contrary to what GetWindowID might led you to believe, this system is not designed to
have multiple windows, and the renderer is definitely not designed to render to multiple
windows, that’s why WindowExtend does not support position, and why IWindow does not
have a position getter of any sort, GetWindowID to not close the main window when
closing an imgui viewport.

Page 75

Name
SDL2Window
Description
SDL2 implementation of IWindow.
Proposed attributes
None.
Proposed methods
Implementation of IWindow.

Table 104. SDL2Window Class Description

Name
SDL3Window
Description
SDL3 implementation of IWindow.
Proposed attributes
None.
Proposed methods
Implementation of IWindow.

Table 105. SDL3Window Class Description

Name
Event
Description
Enumeration of supported events by window system
Proposed attributes

• NONE
• RESIZED
• MINIMIZED
• RESTORE
• MAXIMIZED
• CLOSE
• MOVED
• FOCUS_LOST_MOUSE
• FOCUS_GAIN_MOUSE
• FOCUS_LOST_KEYBOARD
• FOCUS_GAIN_KEYBOARD

Table 106. Event Class Description

Page 76

5.5.2.5. FileManager
Name
FileManager
Description
Not a class but a collection of functions that provide file managing support
Proposed attributes
None.
Proposed functions

• GetCurrent: returns path of current folder.
• GetRoot: returns path of current root folder.
• SetRoot: sets new root folder.
• PushFolder: appends folder structure to current folder.
• AllocateFileName: returns new file name put in current folder.
• PopFolder: goes back last folder structure added.
• PushFile: opens file in current folder in provided openmode, openmode is a thin

wrapper on C++ std::ios::openmode.
• PopFile: closes current file.
• Write: writes to current file.

Table 107. FileManager Class Description

Name
ISerializable
Description
Interface that any class that wants to be serialized has to implement, the class only
provides two methods to be called by Serializable functions
Proposed attributes
None
Proposed methods.

• Serialize: Serializes data of class
• Deserialize: Deserialize data of class

Table 108. ISerializable Class Description

Page 77

Name
Serializable
Description
Collection of functions that provide serialization support
Proposed attributes
None
Proposed methods.

• SerializeData: provides flexible way to serialize data
• DeserializeData: provides flexible way to deserialize data
• SerializeStatic: serializes static data, uses SerializeData internally
• DeserializeStatic: Deserializes static data, uses DeserializeData internally
• SerializeArrayStoresStatic: Serializes static arrays, (no vectors, deques or lists)

that contain static data (no strings, or custom classes that can vary in size)
• DeserializeArrayStoresStatic: Deserializes static arrays, (no vectors, deques or

lists) that contain static data (no strings, or custom classes that can vary in size)
• Serialize: To be called in application, serializes provided ISerializable
• Deserialize: To be called in application, deserializes provided ISerializable
• SetSerializeFilename: Sets the filename to serialize to

Table 109. Serializable Class Description

Name
Context
Description
Internal struct used in FileManager
Proposed attributes

• folders: list of folders pushed to current path
• root: current root
• current_folder: current folder
• current_file: current opened file
• allocations: list of allocated file names
• serialize_filename: name of serialization filename

Proposed methods.
None

Table 110. Context Class Description

Page 78

5.5.2.6. Application
Name
Application
Description
This is the “main” class of this project, is the one that is run when starting the project
and is the one that ties all other systems together.
Proposed attributes
None.
Proposed methods.

• Constructor: constructs class with given configuration.
• Get: class is a singleton, returns instance.
• GetDelta: returns time since last frame.
• Error: puts error message on screen.
• GetConsole: returns emulator.
• SetUpdate: if set to false then nor emulator nor components will be updated

each frame.
• AddComponent: adds a component to the interface.
• RemoveComponent: removes component from the interface.
• Run: starts main loop of the application.
• Close: closes application
• RestartEmulator: restarts emulator.
• GetScreenSize: returns screen size

Table 111. Application Class Description

Name
Application
Description
A struct representing the configuration of the application window.
Proposed attributes

• name: name of the application, will be passed down to the window.
• w: width of the window.
• h: height of the window.

Proposed methods.
None

Table 112. Configuration (Application) Class Description

Page 79

Name
IComponent
Description
Abstract class like interface, classes that inherit this will be able to be put into the
interface and interact with the application, will be used to show different “windows” or
to display error messages.
Proposed attributes

• removed: if set to true, the component will be removed from the application on
the end of this frame.

• name: name of the component, must be unique
Proposed methods.

• Constructor: constructs the component with a name
• OnCreate: called when a component is added to the application.
• OnRender: called when the component is renderer.
• OnUpdate: called when the component is updated.
• operator==: overload of == with another component
• operator==: overload of == with the name of another component

Table 113. IComponent Class Description

Name
CloseDialog
Description
Implementation of IComponent, used as a popup to display error messages, can be
unrecoverable or recoverable.
Proposed attributes
Same as IComponent.
Proposed methods.
Same as IComponent.
New:

• Constructor: constructs with a name, an error message, and if the error is
unrecoverable.

Table 114. CloseDialog Class Description

Name
MemoryView
Description
Implementation of IComponent, used to view the memory of the emulator (RF.6).
Proposed attributes
Same as IComponent.
Proposed methods.
Same as IComponent.
New:

• Constructor: constructs with a name, and a monospaced font to display the
memory inspector.

Table 115. MemoryView Class Description

Page 80

Name
ShowCPUStatus
Description
Implementation of IComponent, shows the status of the CPU (RF.5)
Proposed attributes
Same as IComponent.
Proposed methods.
Same as IComponent.
New:

• Constructor: constructs with a name, and a monospaced font to display
information.

Table 116. ShowCPUStatus Class Description

Name
ShowPPUStatus
Description
Implementation of IComponent, shows the status of the PPU (RF.4).
Proposed attributes
Same as IComponent.
Proposed methods.
Same as IComponent.
New:

• Constructor: constructs with a name, and a monospaced font to display
information.

Table 117. ShowPPUStatus Class Description

5.6. Asi 8: Defining User Interfaces
All images shown that contain a loaded ROM are from GPL-3.0 licensed game thwaite by
Damian Yerrick (26), this emulator will not shown materials under copyright of any
company.

Page 81

5.6.1. Interface Description

5.6.1.1. Main screen

Figure 23. Interface: Main Screen

The main screen has three parts, two of which are always visible, the first visible part is the
menu on top, it has three buttons, File, Emulation and View, their functions will be shown
in a moment; the other always visible part is the emulator screen, the black square, the
emulator will display to that; the part that is not always visible is the dock space, the dock
space is the part of the screen where the components go by default.

Figure 24. Interface: File Menu

The file menu has the load ROM, reset, and exit capabilities, exit has not been described
until now, but it closes the application, it acts as another way to close the application.

Page 82

Figure 25. Interface: Emulation Menu 1

Figure 26. Interface: Emulation Menu 2

The emulation button has the advance emulation controls, if the emulator is stopped, the
Stop button is converted to a Run button.

Figure 27. Interface: View Menu

The buttons in the view lets the user show or hide the different elements of the UI.

Figure 28. Interface: State Menu

The buttons in the state menu lets the user save, load, decrement and increment state.

Page 83

5.6.1.2. CPU status

Figure 29. Interface: CPU status 1

The CPU status component, show all data regarding the CPU. The image shown above is
without a ROM loaded.

Page 84

Figure 30. Interface: CPU status 2

The image presented above is with a ROM loaded, the Go to PC button allows the user to
go back to the current value of the program counter when scrolling, the disassembly
window can only be scrolled when the emulator is stopped.

If the user hovers a line of the disassembly that is not a label while the emulator is
stopped, a tooltip will be shown explaining the name of the instruction, and what it does.

Page 85

Figure 31. Interface: Disassembly tooltip

5.6.1.3. PPU Status

Figure 32. Interface: PPU status 1

Page 86

Figure 33. Interface: PPU status 1 cont.

The images show above are the UI of PPU status when no ROM is laoded

Page 87

Figure 34. PPU status 2

Page 88

Figure 35. Interface: PPU Status 2 cont.

The other two images are when a ROM is loaded. There are three distinct parts on this
interface, the first part is the pattern tables and the palettes, these show what sprites and
palettes are currently loaded by the ROM, a user can click in any part of a pattern table to
see its pattern index

Page 89

Figure 36. Interface: User holding click on pattern

The user can also click on the palettes to swap the palette of the pattern table above, can
only use sprite palettes with sprite patterns and background palettes with background
patterns.

The second part of this interface is where the bulk of the information is, like timing
information, internal registers, and MMIO registers. None of this is interactable in any way,
and its only there to show information.

The last part is the OAM, OAM means Object Attribute Memory, but we call them sprites, a
OAM, this only shows the loaded sprites, be it 1 or 64, the user can scroll this part to see
more.

Page 90

5.6.1.4. Memory Status

Figure 37. Interface: Memory Status 1

The image presented above is how the memory status looks when no ROM is loaded.

Page 91

Figure 38. Interface: Memory Status 2 4 bits per pixel

Page 92

Figure 39. Interface: Memory Status 2 1 bit per pixel

The two images shown above this paragraph are shown when a ROM is loaded and the
respective bits per pixel are set for the CPU RAM, 4 bits per pixel uses 16 colours, and uses
the dawnbringer 16 colour palette (27).

Figure 40. Interface: Search Address

This dialog appears when the user right clicks the memory inspector, the dialog in
question allows the user to go to any memory address they wish if it’s a valid address;
when the address is selected, it will be highlighted for a few moments. The user can also
scroll the inspector with their mouse wheel.

Page 93

5.6.2. Description of the Interface Behaviour

5.6.2.1. Docks and Viewports
The interface is made with the concept of docking and viewports in mine, that means, that
the application has a dock space, and components are put in the dock space by default,
but components can be undocked and put on other screens or docked into each other to
enable user customization.

Figure 41. Components tabbed in dock space

Figure 42. Components Docked onto each other

Page 94

Figure 43. Components free on the screen

5.6.2.2. Error messages.
If an error message occurs, be it invalid ROM or STP opcode reached, an error message
will be shown, if the error is unrecoverable, the application will be closed, if the error is
recoverable, the application will be stop while the error message is on screen.

Figure 44. Error Message

Page 95

5.6.3. Navigability Diagram

Menu

Memory view CPU status PPU Status

Figure 45. Navigability Diagram

All parts of the interface are accessible at any time using the menu on top of the
application.

5.7. ASI 10: Testing Plan Identification
The tests in this project are quite unique, since we will be using ROMs to do system and
integration testing, and normal Unit Testing to test the CPU.

Only the CPU contains unit tests, since it’s the most important part of the project, the
‘brain’ so to speak; every single instruction has been tested, and every single addressing
mode has been tested, but not every single combination of both has been tested, this is
because every single type of addressing mode is equal in every opcode that makes use of
it, since they use the same function call and testing them each time would be redundant.

To run the tests, the startup project must be changed from Application to NesEmu-Test,
and MSVC integration must not be used, since it would break project generation as it uses
some external scripting to patch it. Once the startup project is set, just press F5 or run it.

The tests are made as follow, CPU tests are unit tests, PPU tests are integration tests, and
ROM tests are integration tests, the ROM tests are made with the NesTest ROM (28). There
are more unit tests, like the tests made to the disassembler or the save-states, but those
are less thorough than the CPU ones.

Other testing was made ‘on the field’ that means, testing notorious ROMs with known
bugs, like green sky in Super Mario Bros, or any other hard mapper 0 ROM; as this is an
emulator, if there are some code in bug, it would be extremely easy to spot since the game
will look extremely off, this includes (bugs found in development) mangled sprites, a
continuously scrolling screen, black screen, colour palette out of place…

Other Systems have not been tested, this includes parts of the project that are not the
focus of this work, like the Renderer, Window System, Input Handler and interface.

Page 96

6. Information System Design (ISD)
6.1. ISD 4: Class Design
This section contains a more detailed description of the class design, and how that design
came to be.

I’ll preface this section with general ideas on the design of this application.

First, this application is completely single threaded, since the performance goal I wanted
was easily achievable with one thread.

Second, I really dislike DLLs, so I had to recompile a lot of libraries to use them as static
libraries. This was to achieve a single executable file.

 As I want to have a single executable file, I don’t want to have other files around, like files
containing fonts, texts, shaders or colour palettes; to achieve this, I used different
embedding techniques, from compiling shaders and fonts to a file and then feeding that
file to the compiler, from putting texts in a unordered map in a header file to be used by the
application, to putting palettes in an array to be accessed when needed. Each strategy has
their reason to exist, the palettes where put in arrays since they were constant and already
defined, fonts where put in an “.embed” file, that was a header, since I used a tool called
font-to-cpp, texts where compiled into a map with a python script, and that file was a
header since it could be accessed by different cpp files and I did not want to deal with
redefinitions, and the shaders where compiled to a cpp during their compilation step and
they were loaded by engine using extern since they were only used there.

The only files this application produces are from imgui, a file that stores user preferences,
and I did not want to remove it, its stored in %appdata%/EMOO; and the files containing
the serialization data for the save states.

6.1.1. Emulator
Before starting this section, it must be noted that this is an LLE or Low-Level Emulator, as
this emulator is done by individually implementing the necessary components and CPU
instructions. An HLE or High-Level Emulator would intercept and execute system calls
sent by the game.

The architecture of the emulator is based on a fetch decode execute loop that uses a jump
table. The different parts of the system can speak through internal memory provided by
the bus class.

One decision that had to be taken extremely early, was how to synchronize the
components, to that, I had two answers, one was using a master clock and running the
components when their cycles were at 0, and the other possibility was allocating a thread
per component, and then sleeping the thread and notifying them accordingly. The chosen
answer was to not parallelise the system at all, running the whole application in a single
thread, so the components are run in a sequential way, controlled by a master clock, since
synchronization is easier this way. This design is fundamentally flawed, as there are games
that require dummy reads to function, but this approach will generally work and was close
enough. Another decision was to fake parallelism using coroutines, but at the time of
development, I was not confidence on making that system work. Other solution to this

Page 97

problem is how Mesen does it, it makes the CPU execute the PPU, when the CPU reads or
writes memory, it advances the PPU, so in this case, the CPU would command
synchronization.

The NES works in the following way: all components are being run in their own
compartments, without caring much about each other, except when the PPU triggers an
NMI, then, the CPU can communicate with the PPU by modifying the PPUs MMIO registers,
in truth, this can be done with the programmers discerption, but, accessing PPU at any
other time that NMI would lead to corruption or unexpected behaviour, so it’s
recommended to only access MMIO registers in the NMI subroutine. So, in less precise
terms, first, the CPU is running game logic, while the PPU renders the frame, when the PPU
ends the frame, it triggers an NMI and the work being done by the CPU is completely
stopped, which is normally an endless loop waiting for the NMI, and the CPU goes to the
NMI subroutine, which in this case, its setting the PPU data to run the next frame, and this
repeats until the game is closed or it crashes. If you ever wondered how lag can happen in
the NES, it would be if the time the CPU takes to complete a frame of game code was
longer than the time the PPU takes to render that frame.

All motherboard images have been extracted from this video, credits to NesHacker.

6.1.1.1. Console
The console class is the ‘emulator’ in itself, it holds and links all the components together,
and it’s the piece of software that runs these components in a synchronized way, there are
a bunch of ways to run this class, as described in 5.5.2.1 in the Console Class, but all
those methods internally call the Step method, the Step method is the way this emulator
is run. The Step method works as following, first, it checks if any of the components can be
run, and then it increments the master clock, basically the master clock is modelled after
the real system, which is different from the PPU or CPU clock, and the clock of the
individual components is derived from it, assigning It a divisor, its done this way since PAL
and NTSC have different CPU and PPU clocks. So every time the Step function is called,
the master clock is checked against the different divisions, like 12 for the CPU and 4 for
the PPU in NTSC of 16 for the CPU and 5 for the PPU in the PAL version.

Other methods provided for this class are ways to interface with its components without
needing to access them, like the LoadCartridge method, that takes a path to a file, and
opens a ROM.

The final responsibility of this class is to link the components together, since they are not
linked by default.

6.1.1.1.1. Configuration
The original idea with this structure, was so it could be passed to the console, and you
would be able to load PAL or NTSC ROMs, this was thought with a very basic
understanding of the NES, since I thought that those versions were only differentiated by
the televisions they were using, but reality is stranger, since they do have different
components, so this class ended up being kind of useless in the end.

It did provide some useful features, like resolution and framerate, but it could not be used
for its original purpose in the end.

https://www.youtube.com/watch?v=mMq4FFUnBPc

Page 98

6.1.1.2. CPU

Figure 46. CPU Chip in NES motherboard (red), WRAM (blue)

The CPU class is modelled after the Ricoh A2A07 chip, which is a modified 6502 that does
not have decimal mode and contains the APU of the NES (APU is the Audio Processing
Unit, is not implemented in this work).

This class is extremely simple, when its reset, it gets the address at the reset vector, which
is provided by the ROM, and sets the PC to that address, then, every time the Step method
is called, it decrements the internal clock, and if the clock is 0, it fetches, decodes and
executes the next instruction in PGR ROM.

The fetch decode execute cycle is made with a jump table, an array that contains
functions, so, it fetches the next instruction by means of getting the value at PC, then with
the value obtained, it gets the next addressing mode and instruction function, that are
stored in the jump table, this is the decode part, then, the execute part, first, the function
of the addressing mode is called, to prepare the data that is going to be sent to the
instruction, and then, the instruction is executed, setting the internal clock to the number
of clock cycles required for that instruction to be executed.

As implied, this CPU does not have sub-cycle precision which makes it not cycle accurate,
so if a game requires it, it won’t run.

All official opcodes have been implemented, and the unofficial opcodes that are required
to pass NesTest are also implemented, if an unimplemented opcode is reached, the
system will throw, and the application will notify of an unrecoverable error.

Funnily enough, to accurately implement this CPU, some bugs were implemented
knowingly, since the real system had them, like in indirect addressing, where it does not

Page 99

advance page if the low byte of the address is $FF, a list of hardware bugs can be found
here.

An alternative design would be to use a state machine, as that implementation would
provide feasible cycle accuracy, but it would completely break the current implementation
of opcodes. Either way a reimplementation would be needed in order to implement an
APU.

A solution for the cycle accuracy problem, that does not require on redoing the whole CPU
or adding coroutines would be to run it the same way its being run now, but in a dummy
memory, and recording memory accesses, and then, doing the memory accesses in real
memory when needed.

6.1.1.2.1. Instruction
This is what is stored in the jump table, is a collection of function pointers, and aggregated
data, like the clock cycles required and the name of the instruction.

The following tables contain a simple explanation of what each addressing mode and
instruction does, the operand is whatever the addressing mode returns.

Name Description Syntax
IMP Implicit.

What the instruction does is implied by the instruction, i.e. INX.
INX

ACC Accumulator.
The operand is the accumulator.

LSR A

IMM Immediate.
The operand is the byte next to the instruction (next in the program code after the one that
signals the instruction)

LDA #23

ZPI Zero Page.
The operand is the contents of the memory location in the zero page [$0000-00FF]
provided by the next byte in the program

LDA $23

ZPX Zero Page, X.
The operand in a the contents of the memory location in the zero page provided by the
next byte in the program plus X

STY 34,x

ZPY Zero Page, Y
The same as ZPX but uses Y instead of X

LDX 23,y

REL Relative
The operand is the next signed byte in the program

BCC -15
BCC label
BCC *-3

ABS Absolute
The operand is the contents of the word located in the address provided by the next two
bytes in the program, low first, high second.

JMP $2323

ABX Absolute, X
The operand is the contents of the word located in the address provided by the next two
bytes in the program, then adding X.
If there is a page cross, that means, that the contents of the high byte have changed after
adding X, this takes an extra cycle (oops cycle).

STA $2323,x

ABY Absolute, Y.
The same as ABX but changing X with Y.

ORA $2323,y

IND Indirect.
Only used by JMP. The next word in the program contains 16 bits that identifies the
location of the least significant byte of another word memory address which is the
operand.

(i.e. $2323 contains $10, and $2323+1 contains $11, then the operand is $1110)

This mode is bugged in real hardware, if the first byte in the program equals $FF, then the
high byte of the operand is taken again from the word in the program instead of the word +
1

JMP ($2323)

INX Indirect, X (Indexed indirect). LDA ($23,x)

https://www.nesdev.org/wiki/Errata

Page 100

The next word in the program added to X is used as a pointer to the address of the low
byte of the operand.

INY Indirect, Y (Indirect indexed).

The next word in the program is used as a pointer to the address of the low significant byte
of the word that will be added to Y to form the operand.

The difference between INX and INY is that in INX you add before reading, and in INY you
add after reading.

LDA ($23),y

Name Description Flags
ADC Add with carry.

Adds the value of the operand with the accumulator and the carry bit.
• Negative
• Carry
• Overflow
• Zero

SBC Subtract with carry.
Subtract the value of the operand to the accumulator together with the not of
the carry bit.

• Negative
• Carry
• Overflow
• Zero

CMP Compare accumulator.
Compares the operand and the accumulator, result is discarded.

• Negative
• Zero
• Carry

CPX Compare X register.
Compares the operand and the X register, result is discarded

• Negative
• Zero
• Carry

CPY Compare Y register.
Compares the operand and the Y register, result is discarded.

• Negative
• Zero
• Carry

Table 118. Instructions: Arithmetic

A detail, the SBC instruction was one of the most difficult things to implement correctly,
since in the beginning I tried to implement it like a normal subtraction, but that did not
pass the ROM tests, so in the end I used twos complement and the ADC implementation
since that was the implementation used in other emulators.

Name Description Flags
LDA Load accumulator.

Loads a byte of the operand into the accumulator.
• Negative
• Zero

LDX Load X register.
Loads a byte of the operand into the X register.

• Negative
• Zero

LDY Load Y register.
Loads a byte of the operand into the Y register.

• Negative
• Zero

STA Store accumulator.
Stores the accumulator into the operand.

STX Store X register.
Stores the X register into the operand.

STY Store Y register.
Stores the Y register into the operand.

Table 119. Instructions: Store/load

Name Description Flags
TAX Transfer accumulator to X.

Copies the contents of the accumulator to X.
• Negative
• Zero

TXA Transfer X to accumulator.
Copies the contents of X to the accumulator.

• Negative
• Zero

TAY Transfer accumulator Y.
Copies the contents of the accumulator to Y.

• Negative
• Zero

Page 101

TYA Transfer Y to accumulator.
Copies the contents of Y to the accumulator

• Negative
• Zero

Table 120. Instructions: Register transfers

Name Description Flags
TSX Transfer stack pointer to X.

Copies the contents of the stack pointer to X.
• Negative
• Zero

TXS Transfer X to stack pointer.
Copies the contents of X to the stack pointer.

PHA Push accumulator on stack.
Pushes the contents of the accumulator to the stack and increments stack
pointer.

PHP Push processor status to stack.
Pushes the contents of the processor status to the stack and increments stack
pointer.

PLA Pull accumulator from stack.
Pulls a byte from the stack and copies it to the accumulator, decrements the
stack pointer.

• Negative
• Zero

PLP Pull processor status from stack.
Pulls a byte from the stack and copies it to the processor status, decrements
the stack pointer.

All of them.

Table 121. Instructions: Stack operations

Name Description Flags
AND Logical AND.

Performs logical and, bit by bit, on the accumulator with the operand.
• Negative
• Zero

EOR Exclusive OR.
Performs an exclusive or, bit by bit, on the accumulator with the operand.

• Negative
• Zero

ORA Logical inclusive OR.
Performs an inclusive or, bit by bit, on the accumulator with the operand.

• Negative
• Zero

BIT Bit test.
Tests if bits in operand are set with a bitmask in the accumulator.

• Negative
• Overflow
• Zero

Table 122. Instructions: Logical

Name Description Flags
INC Increment the operand. • Negative

• Zero
INX Increment the X register. • Negative

• Zero
INY Increment the Y register. • Negative

• Zero
DEC Decrement the operand. • Negative

• Zero
DEX Decrement the X register. • Negative

• Zero
DEY Decrement the Y register. • Negative

• Zero
Table 123. Instructions: Increments/decrements

Name Description Flags
ASL Arithmetic Shift Left.

Shifts all bits of the operand to the left and sets the carry to bit old bit 7.
• Negative
• Zero
• Cary

LSR Logical Shift Right.
Shifts all bits of the operand to the right and sets the carry bit to old bit 0.

• Negative
• Zero
• Carry

ROL Rotate Left.
Rotates all bits of the operand with the carry bit to the left, the carry is set to old
bit 7 and bit 0 is set to old carry.

• Negative
• Zero
• Carry

ROR Rotate Right.
Rotates all bits of the operand with the carry bit to the right, the carry is set to
old bit 0 and bit 7 is set to old carry.

• Negative
• Zero
• Carry

Table 124. Instructions: Shifts

Name Description Flags

Page 102

JMP Jump to another location.
Sets the program counter to the operand

JSR Jump to a subroutine.
Sets the program counter the operand and pushes the old program counter
minus one to the stack

RTS Return from subroutine.
Pulls twice from the stack and sets the program counter to the word made from
the pulls.

Table 125. Instructions: Jumps/Calls

Name Description Flags
BCC Branch if carry clear.

Add the operand to the PC if the carry is clear.

BCS Branch if carry set.
Add the operand to the PC if the carry is set.

BEQ Branch if zero set.
Add the operand to the PC if the zero is set.

BNE Branch if zero clear.
Add the operand to the PC if the zero is clear.

BMI Branch if negative set.
Add the operand to the PC if the negative is set.

BPL Branch if negative clear.
Add the operand to the PC if the negative is clear.

BVC Branch if overflow clear.
Add the operand to the PC if the overflow is clear.

BVS Branch if overflow set.
Add the operand to the PC if the overflow is set.

Table 126. Instructions: Branches

Name Description Flags
CLC Clear carry flag. • Carry
SEC Set carry flag. • Carry
CLD Clear decimal mode flag. • Decimal
SED Set decimal mode flag. • Decimal
CLI Clear interrupt disable flag. • Interrupt

disable
SEI Set interrupt disable flag. • Interrupt

disable
CLV Clear overflow flag. • Overflow

Table 127. Instructions: Status Flag Changes

Name Description Flags
BRK Force and interrupt.

The program counter and the processor status are pushed to the stack and then
the interrupt vector is loaded onto the PC.

• Break

NOP No operation.
RTI Return from interrupt.

Pulls the processor status from the stack followed by the program counter
All of them

Table 128. Instructions: System functions

These tables do not contain unofficial instructions, to learn more about them you can
check these websites.

• https://www.oxyron.de/html/opcodes02.html
• https://www.pagetable.com/?p=39
• https://www.nesdev.org/wiki/Programming_with_unofficial_opcodes

https://www.oxyron.de/html/opcodes02.html
https://www.pagetable.com/?p=39
https://www.nesdev.org/wiki/Programming_with_unofficial_opcodes

Page 103

6.1.1.3. PPU

Figure 47. PPU Chip in NES motherboard (red) VRAM (blue

This class is modelled after the chip used in the NTSC NES the Ricoh RP20C2. This was by
far the hardest part of this project to develop, especially the sprite rendering part since I
couldn’t find information on how the sprites are stored after the sprite evaluation process
is completed.

To preface the implementation details, and general thoughts on the design, I’d like to
explain how the chip works on a surface level.

MMIO registers have been mentioned already, they are eight memory-mapped registers
exposed by the PPU to achieve communication with the CPU. They are stored in the
$2000-$2007 range, and they are mirrored every 8 bytes until $3FFF, there is a ninth
register outside this range that is used to start the DMA process, more on that later.

Name Description Location Access
PPU Control Miscellaneous settings $2000 Write
PPU Mask Rendering settings $2001 Write
PPU Status Rendering events $2002 Read
OAM Address Sprite RAM address $2003 Write
OAM Data Sprite RAM data $2004 Read/Write
PPU Scroll X and Y Scroll $2005 Write twice
PPU Address VRAM address $2006 Write twice
PPU Data VRAM data $2007 Read/Write
OAM DMA Sprite DMA $4014 Write

Table 129. MMIO Registers

Page 104

Most registers are very easy to understand, like the address and data ones, the address
ones set the address that will be used to read/write data, and the data one is used to read
what is on that address or write data on that address. When a register has write twice, it
means that a sequential write will do different things, in the case of PPU Scroll, it writes x
scroll on first write and y on second, and in the case of PPU Address is to make a 16 bit
address since the address space is large enough to require it, OAM Address does not
require 16 bit addressing. The most special registers are those of PPU Control, PPU Mask
and PPU Status.

PPU Control is the register that controls how the rendering is done, this register can only
be written to and is used by the CPU to instruct the PPU on how to render things, providing
where the sprites are located, and how to render them.

Bit Controls
0-1 Base nametable address

• 0 = $2000
• 1 = $2400
• 2 = $2800
• 3 = $2C00

2 VRAM increment per CPU read or write of PPUDATA.
• 0 = 1, going across
• 1 = 32, going down

3 Sprite pattern table address for 8x8 sprites, large sprites, or 8x16 ignore this.
• 0 = $0000
• 1 = $1000

4 Background pattern table address
• 0 = $0000
• 1 = $1000

5 Sprite size
• 0 for 8x8 sprites
• 1 for 8x16 sprites

6 PPU mater/slave select, unused in this work as its never used on stock consoles
(29).

7 Can trigger NMI on Vblank
Table 130. PPU Control Register

PPU Status is mainly used for timing purposes with the CPU and reflects the current state
of the CPU. This register can only be read and when read it clears the W register.

Bit Controls
0-4 PPU open bus, this has stale bus contents.
5 Sprite overflow flag, as stated before, a scanline can only have 8 sprites, if there

are found more than 8, this bit is set.
6 Sprite 0 hit flag, this flag is set when the sprite 0 (the first in Object Attribute

Memory) and a non-transparent background pixel are on top of each other. used
to synchronize with the CPU.

7 VBlank flag, set when entering VBlank, will be cleared after being read.
Table 131. PPU Status Register

Page 105

PPU Mask is the register that contains rendering settings, it can only be written by the CPU
and modifies the behaviour of the PPU by modifying colour output or disabling parts of the
rendering process.

Bit Controls
0 Grayscale mode.
1 Show background on the leftmost 8 pixels of the screen.
2 Show sprites on the leftmost 8 pixels of the screen.
3 Enable background rendering.
4 Enable sprite rendering.
5 Emphasize red on NTSC, green on PAL.
6 Emphasize green on NTSC, red on PAL.
7 Emphasize blue.

Table 132. PPU Mask Register

This register is a bit tricky to understand, especially bits 1 and 2, this is mainly done in
games with horizontal scroll with one page or vertical mirroring, since that does not
provide smooth scrolling. The grayscale mode is done by binary ANDing the palette index
with $30, making it draw the only the first column on the palette, if the palette had
different colours there, it would not draw grayscale.

The PPU also contains some internal registers.

Name Description
X Fine X scroll
V VRAM address
T Temporal VRAM address
W Address latch

Table 133. PPU Internal registers

These registers are used internally by the PPU, they are used in tandem with the MMIO
registers, i.e. T is used on the first write to PPU ADDRESS and is used mostly to store scroll
position and to send 16-bit address to V after the second read to PPU ADDRESS. W is used
on the MMIO registers that require two reads, after the first one, its set to 1, and after the
second one is set to 0. X is used to store the remaining scroll, most of the scroll data is
stored in T and V in the following way yyyNNYYYYYXXXXX, where y is the fine y scroll, N is
the nametable selection, Y is the coarse y scroll and X is the coarse x scroll, since there is
not enough bits to store the needed information, the PPU contains a 3-bit register to store
fine x scroll.

Now that some concepts like pattern table, palettes, or attributes are starting to appear I’d
like to explain them.

The pattern tables are the areas of memory that make the backgrounds and the sprites,
they are in CHR ROM, there are 2 pattern tables, usually one for sprites and one for
backgrounds and each contains 256 tiles, every tile is comprised of 2 8-byte planes. If you
do the math, you will realize that 16 bytes per tile is not enough to store colour information
in a RGB setting, this is because the NES is limited to 4 colour per tile, this is achieved by
adding the two planes since each plane provide two colours. For example, in each plane, a
pixel would be 0 or 1, and when added, they can be 00, 01, 10 or 11, this is the index of the
palette that will be used in this tile (30).

Page 106

Even though I already mentioned that the NES outputs composite signal, it uses an
internal palette RAM that groups colours together for the sprites to use, there are 8
palettes, 4 for background and 4 for sprites, and each palette contains 4 colours (31).

Nametables are the area of memory in which the PPU would lay backgrounds, the NES
contains 4 nametables, and each nametable contains 30 rows of 32 tiles, the remaining
64 tiles needed to create a perfect square do exists, but they are called attribute memory.
As mentioned, the NES technically contains 4 nametables, but in reality, it contains two,
while the other two may be provided by the mapper, when these two nametables are not
provided, a mirroring, also provided by the mapper is used, there are mainly two types of
mirroring, horizontal and vertical, but there are more uncommon ones like four-screen and
single-screen mirroring (32).

Name Original address Mapped address
Horizontal $2000 $2800

$2400 $2C00
Vertical $2000 $2400

$2800 $2C00
Single Page All nametables refer to a single nametable.
Four-screen The cartridge provides additional nametables.

Table 134. Nametable mirroring

This is a neat implementation detail, but since the only thing changing in different
mirroring is where the address is mapped to, I used template metaprogramming to reduce
code amount.

As mentioned above, attribute memory is contained in the last two rows of each
nametable, there are 4 attribute tables, one for each nametable, and they contain
information regarding how the tiles in the nametables are rendered, it’s a 64-byte section
of memory arranged in and 8 by 8 byte array, and each byte contains information on a 4 by
4 tile sections, you may notice that since a byte controls 8 palettes it may not be enough to
cover palette needs for each tile since 1 bit is not enough to discern between the 4
palettes used for backgrounds, that’s because each byte is divided into 4 nibbles, and
each nibble control a 16 by 16 pixel area, or 2 by 2 tiles, this translates that each 16 by 16
pixel area is limited to 3 unique colours plus the universal background colour (33).

The last important concept of the PPU is the Object Attribute Memory or OAM, not to be
confused with attribute memory, different things, this is an internal memory of the PPU
that contains Sprite information, that is, the palette the sprite uses, if the sprite is flipped
horizontally or vertically, priority of the sprite and the ID of the sprite (which sprite is it on
its pattern table). In order to fill this memory, MMIO registers can be used, but this is
incredibly slow, taking 4 write to OAM Address and 4 writes to OAM Data per sprite, in
order to combat that, the DMA or Direct Memory Access is used, when this process is
started, the CPU is suspended, and then it copies 256 bytes from CPU memory to the OAM
memory in the PPU, once this process ends, the CPU is resumed (34) (35).

Now I’d like to explain the rendering process.

To render a frame, the PPU must complete 261 scanlines with 340 cycles each, scanlines
can be roughly divided into three categories, pre-render scanlines, visible scanlines and

Page 107

VBlank scanlines, cycles can be divided into visible cycles, and HBlank cycles, each
visible cycle draws a pixel to the screen.

The first scanline, is the pre-render scanline, normally identified as scanline -1 or scanline
261, this scanline exists to fill the data for the first two tiles in the first scanline.

The visible scanlines are the ones that render both the backgrounds and the sprites, while
the PPU is busy rendering, the CPU must not access any MMIO register, or that would lead
to corruption or errors in the rendering process. In the HBlank cycles, data for the sprites
and first two tiles in the next scanline are fetched.

This process is repeated until scanline 2 40 is reached, this is the post-render scanline
and is an idle scanline. In scanline 241 cycle 1, the VBlank flag is set, and the NMI process
is started, the remaining VBlank scanlines are completely idle, and the PPU is safe to be
accessed to, for a more detailed information refer to the wiki, this process is repeated
every frame (36).

This Sprite evaluation process is more complicated and is the one that gave me the most
trouble.

The sprite evaluation process takes place in two stages, first, a memory section called
secondary OAM is filled with $FF in cycles 1-64 of visible scanlines, and then, that
secondary OAM is filled with the first eight sprites that are contained in the next scanline,
when the process ends, the data from the secondary OAM is put in internal memory, this is
the part that I’m not sure about; for a sprite, to be in a scanline, its y position has to
intersect the next scanline, if more than 8 sprites are found in the next scanline, a bug
name sprite evaluation bug appears, in which the memory is increased diagonally instead
of linearly (think of ach entry in OAM as a 4 byte box, normally, you would go from
beginning of one box to the beginning of the next one, but in this case it would go from
beginning of that box to the second byte in the next box, and then the third, and etc).

This class works in a similar way to the CPU class, it has an step function that is called
every time the master clock is perfectly divided by the PPU Clock divisor, in NTSC that
would be each 4 master clock ticks, and in PAL it would be every 5, this class is also fitted
with helpers used to represent data in the application, like a helper to get a palette or a
helper to get a pattern table.

6.1.1.3.1. RegisterFlags
At the beginning, I thought of using an union containing an u8 and a bit field to model the
registers that were fields of flags (37), but since using unions this way (accessing non
active member) is undefined behaviour, I decided against it as even if it worked on MSVC,
it might not work in other system or compiler.

So the solution was between using a single u8 and modifying it with bit manipulation on
the spot, or with using a thin wrapper of that u8 that contained some quality of life
members to set flags, remove them, or check if they were set.

This is a class whose only purpose is to reduce code duplication, since the PPU has three
registers that are a set of flags, these registers are: PPU control, PPU mask and PPU status.

https://www.nesdev.org/wiki/PPU_rendering

Page 108

This class is only used in the PPU, even though the CPU has a register composed of flags
(Processor Status), since the CPU was already finished when I made it, and I didn’t want to
change the CPU.

6.1.1.4. Bus
This class is, as stated before, an abstraction of the memory and real bus that exists in the
NES, it only does one thing, and is communicating memory accesses to their respective
components, for example, if the CPU reads CPU range, it would access CPU memory, but
if it access MMIO registers, it would access PPU memory.

Address Range Size Device
$0000 $07FF $0800 2 KB internal RAM

$0000 $00FF $0100 Zero page
$0200 $02FF $0100 Stack

$0800 $0FFF $0800
Mirrors of $0000-$07FF $1000 $17FF $0800

$1800 $1FFF $0800
$2000 $2007 $0008 PPU MMIO Register
$2008 $3FFF $1FF9 Mirrors of $2000-$2007 repeats every 8 bytes
$4000 $4017 $0018 APU and I/O registers
$4018 $401F $0008 APU and I/O registers, test mode
$4020 $FFFF $BFE0 Cartridge space

$6000 $7FFF $2000 Usually, cartridge RAM
$8000 $FFFF $8000 Usually, cartridge ROM

Table 135. NES Memory Map

The table above contains the contents of the NES memory range, the bus class is tasked
with properly communicating devices.

Address Name
$2000 PPU Control
$2001 PPU Mask
$2002 PPU Status
$2003 OAM Address
$2004 OAM Data
$2005 PPU Scroll
$2006 PPU Address
$2007 PPU Data
$4014 OAM DMA (when written to it, will trigger DMA)

Table 136. PPU MMIO Registers

When the CPU accesses memory in the range of the PPU Registers, the bus will call the
CpuRead or CpuWrite method in PPU.

Page 109

6.1.1.5. Input Device

Figure 48. Controller Port 1 (red) and controller port 2 (blue) in NES motherboard

There’s not a lot to explain here, but the functionality of this class is as follows: the
application sets which buttons have been pressed this frame, and then, the CPU writes to
$4016 or $4017, this sets the internal register to the buttons pressed, after that, the CPU
reads the same address 8 times, to check which buttons have been pressed, since the
input device shifts the internal register 1 bit to the left every time it has been read.

This is done by having two internal registers, one that is being modified all the time by the
application, and one that is only modified when the address is written to, so, the
application sets the data every time the user uses their controller, and the emulator
overwrites the internal register with that data when needed.

Page 110

6.1.1.6. Cartridge

Figure 49. Cartridge Slot in NES motherboard (red)

This class is made to model the physical cartridge that would be used with the real
hardware. It’s tasked with reading the ROM from file or memory, with making sure it’s valid
and with returning the correct data from the PRG or CHR ROM when accessed.

When a ROM is loaded, this class will load the whole contents of the ROM, they are kind of
small, and it will validate it, the validation process is simple, it checks the header in the
iNES format, I decided to use iNES 1.0 and not iNES 2.0 since the ROMS that will be
supported are simple enough to not need the extensions that iNES 2.0 provides, and iNES
2.0 ROMS are retro compatible with iNES 1.0.

If the header is valid, the loader will set its internal memories, PRG and CHR, so they can
be accesses from the bus when needed.

There is a functionality to load ROMs from memory that is only used in testing.

6.1.1.6.1. INesHeader
This is a struct that contains the information that can be found in a mapper, it only exists to
provide a way to access those fields without encumbering the code more than necessary.

6.1.1.7. IMapper
Image extracted from nescartdb.

https://nescartdb.com/

Page 111

Figure 50. NROM cartridge PCB, CHR ROM (blue) and PRG ROM (red)

The other visible chip is the CIC lockout chip used to validate the cartridge with the CIC
lockout chip present in the NES motherboard.

Figure 51. Cartridge using mapper 024 (VRC6a) (red), CHR ROM (yellow) and PRG ROM (blue)

This class is made to be equivalent to a real mapper, a mapper is a piece of hardware
made to extend the capabilities of the system, it can be done by adding more memory and
having the system access it with bank switching capabilities, adding persistent memory
with the help of batteries, or adding RAM to the system.

The current interface only has methods to map addresses, so in the future will need to be
expanded to provide the extra functionalities.

Page 112

6.1.1.7.1. NROM
This is mapper 0, a mapper that basically holds maps the ROMs that use it to themselves,
it can only map PRG ROM.

The real mapper has more things, in case of an arcade version of the Nes, the Famliy
Basic, as that version contains PRG RAM, but this version is only intended to work with the
NES, so it does not have that functionality.

6.1.1.8. Assembler
The assembler class is an extremely simple 6502 assembler made as a custom tool to be
able to test the CPU without needing to check a machine code table all the time.

Its regex based and has almost no features outside of assembling the provided code to
machine code, the only features it has is, set reset, nmi and irq vector position and change
current memory address with the .at directive.

Figure 52. Example of valid assembly

Other limitations are that it only supports hexadecimal numbers and does not support
labels.

6.1.1.9. Disassembler
A more complex sister to the assembler, its tasked with sending a disassembly to the
application.

It’s not perfect disassembly, since that would require executing the code beforehand
thanks to the indirect jump instruction. But its correct enough, since accessing an address
that is not currently mapped would add it to the disassembly.

It works by following paths to reach other sectors of code, since a sector has to be
traversable in order to be executed. When the disassembler is created, it will traverse
three paths of code, one would be the reset vector, this includes power up section, and
most of the game code, other path is the NMI vector, that is the section when the CPU
speaks with the PPU, and the last version is the IRQ vector, that is almost empty. The
disassembler will disassemble until it either founds an instruction that has already been
disassembled, and instruction that would return from a subroutine, like BRK, RTS or RTI,
and it would exit when encountered the STP instruction. Every time the disassembler finds
a branch, be it conditional or unconditional, it would recursively call another
DisassembleFromAddress from that branch so all paths are reached, the disassembler
does not check if that branch can be taken, it will take it nonetheless.

Page 113

The current number one limitation of this approach is that it can not take indirect jumps,
since those jumps require executing the code. Other pressing limitations are that it does
not support bank switching since the emulator neither does.

6.1.1.9.1. Disassembly
This is what is returned from the disassembly, it contains a string version of the machine
code, the “disassembly”, a string version of the label this address may have, if it has it, and
a register name and value in case this disassembly contains a known constant.

Name Value
PPU_CONTROL $2000
PPU_MASK $2001
PPU_STATUS $2002
OAM_ADDRESS $2003
OAM_DATA $2004
PPU_SCROLL $2005
PPU_ADDRESS $2006
PPU_DATA $2007
PULSE_1_VOLUME $4000
PULSE_1_SWEEP $4001
PULSE_1_LO $4002
PULSE_1_HI $4003
PULSE_2_VOLUME $4004
PULSE_2_SWEEP $4005
PULSE_2_LO $4006
PULSE_2_HI $4007
TRIANGLE_VOLUME $4008
TRIANGLE_SWEEP $4009
TRIANGLE_LO $400A
TRIANGLE_HI $400B
NOISE_VOLUME $400C
NOISE_LO $400E
NOISE_HI $400F
DMC_FREQUENCY $4010
DMC_LOAD_COUNTER $4011
DMC_START $4012
DMC_LENGHT $4013
OAM_DMA $4014
APU_STATUS $4015
JOYPAD_1 $4016
JOYPAD_2 $4017
APU_TEST_1 $4018
APU_TEST_2 $4019
APU_TEST_3 $401A
CPU_TIMER_1 $401C
CPU_TIMER_2 $401D
CPU_TIMER_3 $401E
CPU_TIMER_4 $401F

Table 137. Known Disassembly Constants

6.1.1.10. Opcode
This is an internal structure used in both assembler and disassembler to bundle
instruction and addressing mode names.

6.1.2. Renderer
I will not go into much detail, since its not the focus on this work. I will only detail the
functions of the Engine, Batch Renderer, Sprite, ITexture and API classes.

Creating a renderer was not necessary, since I could use the SDL Renderer one, and I had
experience using that renderer, but I wanted to learn how to make one, and decided to use

Page 114

this work as training and study in this realm, this is way this renderer has features that are
not needed for this work.

6.1.2.1. Engine
Engine is the so called “renderer” it was made following mainly vkguide and with some
vulkan-tutorial and was modified to have bindless resources since I intended to use a
batch renderer.

Another difference between those two guides, is that these guides are meant mainly for
3D rendering, and I do not want 3D rendering, so I had to modify it a bit to achieve that.
One massive challenge with that was a deceivingly complicated concept called
projection, 3D generally uses perspective projection, but that does not really work in 2D
rendering, since 2D rendering generally uses orthographic projection, at the time I found it
incredibly hard to access information related to orthographic projection, since I did not
know how it was called, or much about the concept, so this part was a huge stump in
development. Other problem with projection was understanding orthographic projection,
especially what zNear and zFar parameters in glm meant, since I misunderstood those
parameters and thought they worked inversely as they really work.

Other small roadblock was understanding the different types of coordinates, specially
NDC coordinates (38).

This class is the one that holds all Vulkan structures and is the one that sends data to the
GPU, it’s kind of messy, that’s why I used an API to interface with it.

6.1.2.1.1. Batch Renderer
Batch rendering is a rendering strategy used to save draw calls, thus improving the
performance of the rendering process, this strategy is achieved by putting all the vertex
information in a single vertex buffer and drawing that vertex buffer.

This batch renderer exists since at the time I did not know if rendering a single texture and
modifying its texel data or drawing multiple quads of different colour would be better, so I
decided to implement a batch renderer to prepare me for future refactoring, and to learn
how a batch renderer works.

In the end, I decided to use a single texture, but the batch renderer was functional, and it
made no sense to remove it.

The batch renderer is the reason I decided to use bindless resources, the reason was that I
did not found much literature on 2D rendering that explained more complex processes like
creating a texture atlas from different sized textures, so I decided to circumvent that
problem using bindless textures and adding a texture ID to the vertex structure.

On small detail, is that in the current implementation, the descriptors are being recreated
every frame, and I don’t know if I should reuse them or not since I was unable to find
information on it.

6.1.2.2. ITexture
This class is a generic interface for a texture, it’s meant to have an implementation that
uses the rendering API being used in the background, in this case, Vulkan.

Page 115

This is a texture meant to be modifiable and to be created from memory, so it does not
provide a way to load a texture from file, only from memory data.

In this framework, textures are not bound to sprites, since they could be used by multiple
sprites, so they must be created and managed outside a sprite.

To create a texture, I decided to create them through the API, and the API would return the
correct implementation as requestsd.

6.1.2.3. Sprite
A sprite is a bundle containing a texture, a position and a size, to be seen, it requires a rect
and a texture, the texture can be reused, and the texture can be windowed in case of using
a sprite sheet.

To be drawn, the sprite will call functionality in the API.

6.1.2.4. API
This is not a class, is a collection of functions in the Renderer namespace, it could be put
into a fully static class, but I saw no benefit to that so instead of using an interface, all
these functions are unimplemented by default, and the renderer must create these
implementations.

This class exists to abstract the complexity of the renderer, for example, creating a texture,
requires a size, data, and a type instead of a image format, a size, an usage or if the image
is mipmapped, as those are the parameters required by engine.

This could be done by changing the interface of engine, but I liked the idea of having an API
for the renderer.

6.1.2.4.1. RendererAPIVulkanImpl
This is the Vulkan implementation of the API, these functions interface with the Engine
class and are the ones that are meant to be called by the outside.

6.1.3. Input Handler
The input handler is made up to be an action-based input handler, that means that you
assign actions to inputs, and when the input is pressed, the actions are run.

I am not completely happy with how this ended up working, since it currently does not
have a way to rebind inputs, but that could be expanded in the future by means of adding
alias to keys and swapping the aliased keys.

6.1.3.1. IInput
This class has been changed from the design step, as it has been flattened, originally the
enums where enum classes, the C++ type enforced enum, but I found that working with
that was extremely annoying to this use case, so the enums have been changed to pure int
backed enums, so a function like CanRepeatKeyAfter now is CanRepeatAfter, and can be
used with both Key and Button.

Page 116

Name
IInput
Description
Abstract class for Input handlers, provides actions functionality, but not event or
keyboard/mouse functionality, that is to be provided by implementers (RF.7, RF.8).
Proposed attributes
Implementation details:

• current is the trigger whose action is being run
• a trigger is a key or a button

if current key is defined, current button is not defined, and vice versa.
Proposed methods

• GetButton: returns true whether passed button is pressed.
• GetKey: returns true whether passed key is pressed.
• IsKeyModified: returns true if key is being modified by a mod key (ctrl, shift, alt,

win)
• IsRepeating: returns true if current is being hold down after being pressed.
• CanRepeatAfter: returns true if time amount has passed since last current was

pressed
• CanRepeatEvery: returns true every time some time amount has passed since

current was pressed.
• ClearActions: deletes all actions for all triggers or a trigger.
• RunActions: runs all actions that can be run for all triggers and a trigger.
• Update: calls platform specific update implementation, updates state and runs

actions.
• ProcessEvents: runs input related events of underlying implementation.

Table 138. New IInput class description

This is the class that provides the action system, so that makes it not an interface, in C++,
more like an abstract class, but I think its fine.

This class is also made to be an adapter interface, that means, that an implementation of
IInput must interface with another library, and IInput provides a common interface for
different libraries to be used in application code. This is achieved thanks to the enums
provided by the system, there are two, one for keys and one for buttons, the implementee
would need to convert that enum member to a proprietary version of that enum provided
by the library being used.

One huge problem I had developing this library, was naming the keys enum, since I use an
Spanish keyboard, but keyboards are different depending to layout, so I had to discover
how to name the members, I used a combination of how SDL names its keys, and
kbdlayout.

https://kbdlayout.info/

Page 117

Figure 53. List of problematic keys

6.1.3.1.1. SDL2Input
This is the implementation of IInput that uses SDL2, the original used SDL3, but thanks to
a bug in ImGuis SDL3 implementation, I had to rollback the library to SDL2, luckily, it was
an easy process.

As stated before, this class maps the enums defined on IInput to sdl constants, i.e.
Button::FACE_DOWN would be mapped to
SDL_GameControllerButton::SDL_CONTROLLER_BUTTON_DPAD_DOWN.

This class is also tasked with connecting to an active controller, it connects automatically
when a controller is connected, and if a controller is disconnected, it would disconnect
from the controller.

6.1.3.1.2. SDL3Input
The same as SDL2Input but with the more modern version of SDL3.

6.1.4. Window System
There is not much insight to be provided hare as this library follows the same principles as
the Input handler.

This library works very similarly to the Input, it provides an adapter interface to be used to
interface with other window libraries like win32 API, GLFW or SDL.

A difference between this and the Input Handler, is that this system is made to work with
the Renderer, and the Input Handler does not care about other systems.

Page 118

6.1.4.1. IWindow
Class that provides the adapter interface to be implemented, mayor difference with IInput,
is that it requires the user to define an event loop with callbacks, in IInput, the same event
loop is static.

The events work in a similar way to the enums in IInput, they are a generic definition of
events that can be used by this application, and they are mapped to the real events in the
library.

6.1.4.1.1. SDL2Window
SDL2 inplementation of IWindow, as stated before, a rollback from SDL3.

6.1.4.1.2. SDL3Window
The same as SDL2Window, but with SDL3.

6.1.5. File Manager

6.1.5.1. FileManager
As stated before, this is a collection of functions inspired by the imgui architecture, that
means that the library uses push and pop to add or subtract to the current file structure.

When I say that this library was inspired by imgui, I mean that the library holds a “context”
that represents its current state, in this case it would be the current file path or open file
being used, so if you want to modify the context, you would “push” or “pop” a folder or file
to move the context to it.

6.1.5.2. Context
This is an internal struct that holds all data required for the FileManager functions to work.

6.1.5.3. ISerializable
An interface that provides a way for other classes to be serialized or deserialized.

6.1.5.4. Serializable
Another collection of functions that serialize or deserialize data, all of them make use of
SerializeData or DeserializeData internally. They also provide a way to set the current
serialization file.

6.1.6. Application
This is the system meant to be run by the user, it’s the one that sets up all other systems
and is the one that link them together, like creating a window, sending it to the renderer,
and setting up the key binds.

6.1.6.1. Application
The application class is a singleton and is the main class, it has a collection of
IComponents to be renderer as the interface and is the one that does all the things
described above.

A problem I have with it right now is that the top menu bar is not a component, so is
coupled to the application instead of a component.

Page 119

6.1.6.2. IComponent
This is the “interface” to be used in the application, this class provides an interface that
has a way to update the component, to create the component and to render the
component.

A detail in the implementation of this class, is that I struggled to identify components, at
first I thought of using UUIDs, but in the end I went with unique names, that way I could
access a component without retrieving its UUID and only knowing their given name, this is
mainly used to delete them and to check if they are already added to the application.

Components also have a way to be deleted by setting a member to true.

If someone inspects the code, they will realize that I gradually change my approach to
working with ImGui, as I was testing different ways to do things with it.

6.1.6.2.1. CloseDialog
A component used to show error messages, they can be recoverable, like loading an
invalid ROM, or unrecoverable, like reaching an STP instruction.

If the error is unrecoverable, the application will be closed.

6.1.6.2.2. ShowCPUStatus
This class is the one that shows the information that is in the CPU, like the stack, its
registers and a disassembly, the user can scroll the disassembly and go back to the PC
when scrolled.

A problem with the representation of the disassembly, is that the icon font I’m using is not
monospaced, so the instruction that holds the PC is slightly to the right compared to the
rest.

6.1.6.2.3. ShowPPUStatus
This is the component that holds the information of the PPU, this class creates a lot of
images to show data, like the pattern tables or the palettes, this is also the class that
caused the rollback from SDL3, this was because I was adding a tooltip to the pattern
tables when holding click, it shows the pattern you are clicking, but zoomed in, and shows
its number, the problem, when moving the mouse outside the window the application
would crash, and that affected normal tooltips if you moved the mouse fast enough, I
thought that the tooltips provided important information, and I would rather rollback to
SDL2 than losing them.

6.1.6.2.4. MemoryView
This class is the one I dislike the most, it’s the one that show the memory, but it’s also the
most bugged class, if you made the component window small, the memory inspector
disappears.

This class has two images on top that provide representation of the memory, one of the full
memories, and one of the CPU RAM, they are not useful, but I think they show cool
patterns in memory, like PPU MMIO registers and mirroring in the different sections.

The memory inspector part is the problematic one, is made in a way that does not render
the full memory to avoid lag, but thanks to that implementation, a lot of problems appear,
since its height is based in available scroll, and does not provide feedback when scrolling,

Page 120

this is part that will need to be redesigned in the future. Other things the user can do with
the inspector, is search for an address, by right clicking the inspector, a dialog that asks for
an address will appear, and if the user inputs something, the inspector will be scrolled to it
and highlight it for a while.

6.2. ISD 5: Designing the System Module Architecture

6.2.1. ISD 5.1: System Module Design

Application Emulator

Emulator UtilsRenderer

Input Handler

Window System

Application Components

SDL2

Vulkan ImGui

FileManager

Figure 54. Package Diagram

This package diagram includes the main libraries used in the background.

Page 121

6.2.2. ISD 5.2: Inter-Module Communications Design

6.2.2.1. Component Diagram

Figure 55. Components Diagram

6.3. ISD 10: Technical Specification of the Test Plan

6.3.1. Unit Testing
Unit testing is done in the CPU part of the emulator, since other components cannot work
alone, the tests are divided by instruction type. These tests were made during CPU
development and are made completely obsolete by test ROMs.

As stated before, there are more non-CPU related unit tests for the disassembler and the
save states functionality.

These tests are not really “Unit” tests since they come with the precondition that the bus is
functioning correctly and are more a way to test that an input program executes as
intended while isolating parts of the emulator, i.e. the CPU tests do not take into account
the PPU.

6.3.1.1. Arithmetic
The addressing modes are only tested once since they share the same function call for all
instructions. ADC are used as a baseline test for the cpu and after them all tests use heavy
assembly to run tests

Name Description Expected result
ADC_IMM_N Test ADC instruction in immediate mode while

setting negative flag.
• Set the accumulator to 10.
• Execute adc #$80 (assembly).

• The result is stored in the
accumulator.

• The result is 138.
• The negative flag is set.
• Correct cycle amount passed

Page 122

ADC_ZPI_C Test ADC instruction in zero-page index mode while
setting carry flag.

• Write $80 to memory position $0002.
• Set the accumulator to $80.
• Execute adc $02 (assembly).

• The result is stored in the
accumulator

• The operand is taken from
$0002.

• The operand is $80.
• The result is 0.
• The carry flag is set.
• Correct cycle amount passed.

ADC_ZPX_Z Test ADC instruction in Zero Page X mode while
setting zero flag.

• Write $80 to $0003.
• Set the accumulator to $80.
• Set X to 1.
• Execute adc $02,x (assembly).

• The result is stored in the
accumulator.

• The result is 0.
• The operand is taken from $02

+ X.
• The operand is $80.
• The Zero flag is set.
• Correct cycle amount passed.

ADC_ABS_C Test ADC instruction in Absolute mode while
setting carry flag before the operation.

• Write 13 to $0003.
• Set the carry flag.
• Set the accumulator to 12.
• Execute adc $0003 (assembly).

• The result is stored in the
accumulator.

• The operand is taken from
$0002.

• The operand is 13.
• Correct cycle amount passed.
• The result is 26.
• The carry flag is cleared.

ADC_ABX_OOPS Test ADC instruction is Absolute X mode while
making it oops cycle (taking an extra cycle)

• Write 13 to $0100.
• Set carry flag.
• Set the accumulator to 12.
• Set X to 1.
• Execute adc $00ff,x.

• The result is stored in the
accumulator.

• Correct cycle amount passed.
• The result is 26.
• The operand is extracted from

$00FF + X.
• The operand is 13.
• The instruction takes extra

cycle thanks to page wrap.
ADC_ABY_OOPS Test ADC instruction in Absolute Y mode while

making it oops.
• Write 13 to $0100.
• Set the carry flag.
• Set the accumulator to 12.
• Set Y to 1.
• Execute adc $00ff,y.

• The result is stored in the
accumulator.

• Correct cycle amount passed
• The result is 26.
• The operand is extracted from

$00FF + Y.
• The operand is 13.
• The instruction takes extra

cycle thanks to page wrap.
ADC_INX Test ADC instruction in indirect X mode.

• Write 0 to $000D.
• Write 15 to $000C.
• Write 23 to $000F.
• Set the accumulator to 12.
• Set X to 2.
• Execute adc ($000A,x).

• The result is stored in the
accumulator.

• Correct cycle amount passed.
• The result is 25.
• The operand is taken from

$000F.
o First read at $000A +

X to get $0F.
o Second read at

$000A + X + 1.
o To get $00.
o Make word to get

$000F.
• The operand is 23

ADC_INY_NO_OOPS Test ADC instruction in indirect Y mode and make it
no oops.

• Write 13 to $000A.
• Write 0 to $000B.
• Write 23 to $000F.
• Set the accumulator to 12.
• Set Y to 2.
• Execute adc ($000A),Y.

• The result is stored in the
accumulator.

• Correct cycle amount passed.
• The result is 25
• The operand is taken from

$000D + Y
o First read at $000A

to get $D.
o Second read at

$000A + 1 to get
$00.

Page 123

o Make word to get
$000D.

• The operand is 23.
ADC_INY_OOPS Test ADC instruction in indirect Y mode and make it

oops
• Write $FF to $000A.
• Write 0 to $000B.
• Write 23 to $0101.
• Set the accumulator to 12.
• Set Y to 2.
• Execute adc ($000A),y.

• The result is stored in the
accumulator.

• Correct cycle amount passed.
• The result is 25
• The operand is taken from

$0101
o First read at $000A

to get $FF.
o Second read at

$000A + 1 to get
$00.

o Make word to get
$00FF.

o Add Y to get $0101.
• The operand is 23.

ADC_V Test ADC instruction and make it overflow.
First make it overflow.
Then make it not overflow.

• After first program the overflow
is set.

• After second program the
overflow is cleared.

SBC Test SBC instruction.
Test it to set carry flag.
Test it to set negative flag.
Test it to set zero flag.
Test it to set overflow flag.

• The result is correct.
• The flags are correct.

CMP Test CMP instruction.
Test it to set carry flag.
Test it to set zero flag.
Test it to set negative flag.

• The flags are correct.

CPX Test CPX instruction.
Test it to set carry flag.
Test it to set zero flag.
Test it to set negative flag.

• The flags are correct.

CPY Test CPY instruction.
Test it to set carry flag.
Test it to set zero flag.
Test it to set negative flag.

• The flags are correct.

BIT Test BIT instruction.
Test it to set Zero and overflow flags.
Test it to set negative and clear zero flag.

• The flags are correct.

Table 139. Unit Tests: Arithmetic instructions

6.3.1.2. Branch
Name Description Expected result
GENERAL_BRANCH_PAGECROSS General branch test to check if the branch

adds extra cycle on page cross.
• The extra cycle is

registered.
BCC_BRANCH Tests if the BCC instruction branches

when the carry is clear.
• Branches.

BCC_NOBRANCH Tests if the BCC instruction branches
when the carry is set.

• Does not branch.

BCS_BRANCH Tests if the BCS instruction branches
when the carry is set.

• Branches.

BCS_NOBRANCH Tests if the BCS instruction branches
when the carry is clear.

• Does not branch.

BEQ_BRANCH Tests if the BEQ instruction branches
when the zero flag is set.

• Branches.

BEQ_NOBRANCH Tests if the BEQ instruction branches
when the zero flag is clear.

• Does not branch.

BMI_BRANCH Tests if the BMI instruction branches when
the zero flag is clear.

• Branches

BMI_NOBRANCH Tests if the BMI instruction branches when
the zero flag is set.

• Does not branch.

BNE_BRANCH Tests if the BNE instruction branches
when the negative flag is set.

• Branches.

Page 124

BNE_NOBRANCH Tests if the BNE instruction branches
when the negative flag is clear.

• Does not branch.

BPL_BRANCH Tests if the BPL instruction branches when
the negative flag is clear.

• Branches.

BPL_NOBRANCH Tests if the BPL instruction branches when
the negative flag is set.

• Does not branch.

BVC_BRANCH Tests if the BVC instruction branches
when the overflow flag is clear.

• Branches.

BVC_NOBRANCH Tests if the BVC instruction branches
when the overflow flag is set.

• Does not branch.

BVS_BRANCH Tests if the BVS instruction branches when
the overflow flag is set.

• Branches.

BVS_NOBRANCH Tests if the BVS instruction branches when
the overflow flag is clear.

• Does not branch.

Table 140. Unit tests: Branch instructions

6.3.1.3. Increment & Decrement
Name Description Expected result
INC Test the INC instruction.

Set negative flag with INC.
Set zero flag with INC.

• The value at the operand is incremented by one.
• The flags are set correctly.

INX Test the INX instructions.
Set the negative flag with INX.
Set the zero flag with INX.

• The value of X is incremented by one.
• The flags are set correctly.

INY Test the INY instruction.
Set the negative flag with INY.
Set the zero flag with INY.

• The value of Y is incremented by one.
• The flags are set correctly.

DEC Test the DEC instruction.
Set the negative flag with DEC.
Set the zero flag with DEC.

• The value of the operand is decreased by one.
• The flags are set correctly.

DEX Test the DEX instruction.
Set the negative flag with DEX.
Set the zero flag with DEX.

• The value of X is decreased by one.
• The flags are set correctly.

DEY Test the DEY instruction.
Set the negative flag with DEY.
Set the zero flag with DEY.

• The value of Y is decreased by one
• The flags are set correctly

Table 141. Unit tests: Increment/Decrement instructions

6.3.1.4. Jump & Call
Name Description Expected result
JMP Tests the JMP instruction in both absolute and

indirect addressing modes.
Tests the hardware bug in indirect addressing.

• The program counter is set correctly in both
modes.

• The bug is reproduced correctly.
JSR Tests the JSR instruction. • The old program counter is pushed to the stack

• The program counter is set to the operand.
RTS Tests the RTS instruction. • The PC is retrieved from the stack.

• The PC is set to the retrieved value.
• The program continues normal execution after

RTS.
 Table 142. Unit Tests: Jump/Call instructions

Page 125

6.3.1.5. Load & Store
Name Description Expected result
LDA Tests the LDA instruction. • The accumulator is set to the correct value.

• The negative and zero flags are set correctly.
LDX Tests the LDX instruction. • The X register is set to the correct value.

• The negative and zero flags are set correctly.
LDY Tests the LDY instruction. • The Y register is set to the correct value.

• The negative and zero flags are set correctly.
STA Tests the STA instruction. • The value stored in the accumulator is written to

the correct memory value.
STX Tests the STX instruction. • The value stored in the X register is written to the

correct memory value.
STY Tests the STY instruction. • The value stored in the Y register is written to the

correct memory value.
Table 143. Unit Tests: Load/Store instructions

6.3.1.6. Register Transfer
Name Description Expected result
TAX Tests the TAX instruction. • The value in the accumulator is copied to the X

register.
• The negative and zero flags are set correctly.

TAY Tests the TAY instruction. • The value in the accumulator is copied to the Y
register.

• The negative and zero flags are set correctly.
TXA Tests the TXA instruction. • The value in the X register is copied to the

accumulator.
• The negative and zero flags are set correctly.

TYA Tests the TYA instruction. • The value in the Y register is copied to the
accumulator.

• The negative and zero flags are set correctly.
Table 144. Unit Tests: Register transfer instructions

6.3.1.7. Shift
Name Description Expected result
ASL Tests the ASL instruction and the

accumulator addressing mode.
• The value in the accumulator is properly

shifted to the left.
• The carry and negative flags are set

correctly.
ASL_WRITE_MEMORY Tests the ASL instruction without an

immediate type addressing mode.
• The value in the operand is properly

shifted to the left.
• The carry and negative flags are set

correctly.
LSR Tests the LSR instruction. • The value in the accumulator is properly

shifted to the right.
• The carry and negative flags are set

correctly.
ROL Tests the ROL instruction. • The value in the accumulator is properly

rotated with the carry to the left.
• The carry and negative flags are set

correctly.
ROR Tests the ROR instruction. • The value in the accumulator is properly

rotated with the carry to the right.
• The carry and negative flags are set

correctly.
Table 145. Unit Tests: Shift instructions

Page 126

6.3.1.8. Stack Operations
Name Description Expected result
TSX Tests the TSX instruction. • The value in the stack pointer is copied to the

X register.
• The zero and negative flags are set correctly.

TXS Tests the TXS instruction. • The value in the X register is copied to the
stack pointer.

• The zero and negative flags are set correctly.
STACK_PUSH Tests push operations to the stack. • The stack pointer is incremented correctly.

• The pushed values are in the correct memory
locations.

• The pushed values are correct.
o For PHA the value of the

accumulator is pushed.
o For PHP the value of the processor

status is pushed.
STACK_POP Tests the pop operations to the stack. • The stack pointer is decremented correctly.

• The values are popped from the correct
memory locations.

• The popped values are correct.
o For PLA the accumulator is set to

the popped value
o For PLP the processor status is set

to the popped value and the
unused flag is set

Table 146. Unit Tests: Stack operations instructions

6.3.1.9. Status Flag Changes
Name Description Expected result
SEC Tests the SEC instruction. The carry flag is set.
CLC Tests the CLC instruction. The carry flag is clear.
SED Tests the SED instruction. The decimal flag is set.
CLD Tests the CLD instruction. The decimal flag is clear.
SEI Tests the SEI instruction. The IRQ disable flag is set.
CLI Tests the CLI instruction. The IRQ disable flag is clear.
CLV Tests the CLV instruction. The overflow flag is clear.

Table 147. Unit Tests: Status Flag Changes instructions

6.3.1.10. System Functions
Name Description Expected result
NOP Tests the NOP instruction. Nothing happens
BRK Tests the BRK instruction. • The PC and processor status are pushed to the

stack.
• The PC is set to the value in the NMI vector.
• The break flag is set.

RTI Tests the RTI instruction • The operations in the BRK instruction are
reverted.

• The PC and processor status are set to the
popped values from the stack.

• The unused flag is set.
Table 148. Unit Tests: System Functions instructions.

6.3.1.11. Disassembler
These tests are made to tests the disassembler used in the CPU view interface.

Name Description Expected result
ASSEMBLE_DISASSEMBLE Tests that a previously assembled set of

instructions are disassembled
correctly.

The output program is the same as the
assembled one.

ASSEMBLE_NESTEST Tests that the nestest ROM is
disassembled correctly.

The output program is the same as the nestest
one.

Table 149. Unit Tests: Disassembler

Page 127

6.3.1.12. Save States
Name Description Expected result
SAVE_STATE_DEFAULT Tests that the state of the emulator

is saved correctly to disk.
The state is saved properly and can be
loaded later.

SAVE_STATE_MULTIPLE_SAME_ROM Tests that multiple save states can
exists at the same time for a
singular ROM.

Multiple stats are saved and can be
loaded individually while preserving their
correct values.

SAVE_TEST_LOAD_EMPTY If a save state that does not exist is
loaded nothing happens.

Nothing happens.

SAVE_STATE_MULTIPLE_ROM Tests that multiple ROMs can have
different save states.

The different states are saved properly
and they can be loaded when their ROM
is active.

Table 150. Unit Tests: Save states

6.3.2. Integration Testing
The PPU tests are used as integration tests since the PPU requires the CPU to work.

There are not a lot of PPU tests since it being a “visual” component, any glaring issue
would make the emulated image completely broken, i.e, mangled sprites or the screen
always scrolling.

6.3.2.1. MMIO
These are the most delicate MMIO registers, the rest can be tested by running ROMs.

Name Description Expected result
CONTROL Tests the PPU Control MMIO register. The register is properly modified when writing to

$2000.
ADDRESS_DATA Tests the PPU Data MMIO register. • The register is properly read or wrote when

accessing the $2007 address.
• The Dummy read functionality works.

SCROLL Tests the PPU Scroll MMIO register. • The Scroll Values are set correctly.
Table 151. Integration Tests: MMIO

6.3.3. System Testing
System testing is made by running ROMs, an initial test was run by tracing the execution of
the emulator (both PPU and CPU) and comparing it to a known correct trace, that test no
longer exists since it was made purely to bugfix the PPU and have it in a working state
before testing it with nestest.

6.3.3.1. Nestest
Nestest is a test ROM made to test emulators, it can be run both manually and
automatically, the tests are made with the automatic mode, but the manual mode ahs
been run multiple times to tests the correctness of the CPU.

Sadly, a lot of information on this ROM has been lost to time, like the meaning of the error
codes, so a lot of blind steps were run when first testing the emulator with it, that’s why
the trace was needed, since I couldn’t figure why something was failing and the error code
meant nothing. In the future, I’d like to test the emulator with multiple test ROMs like the
ones provided by the NES development wiki.

Name Description Expected result
RUN_NESTEST The nestest ROM is run until it crashes, each

time the console is stepped, the values in
the error memory locations ($0002 and
$0003) are checked, if they are non-zero the
test fails.

The tests runs until it crashes.

Table 152. System Tests: Nestest

Page 128

7. Building the Information System
7.1. ISC 1: Preparation of the Generation and Construction
Environment

7.1.1. Standards and Regulations Followed
I did not follow any particular standard in the development, of this project, I did loosely
follow the Google C++ Style guide (39), but I did not followed 100% of the time since this
project was a learning experience in my C++ development and I wanted to experiment with
different naming conventions, like swapping to snake case in private methods; and in
architecture design.

7.1.2. Programming Languages

7.1.2.1. C++
I mainly used C++20, but I wanted to use features from C++23, like std print, or std
unreachable, so in the end I used the C++latest configuration in MSVC.

7.1.2.2. 6502 Assembly
6502 Assembly was used for programming the emulated CPU in tests, I did not use any
official 6502 Assembly definition since I built my own assembler to my own needs, but it
still follows the main 6502 assembly instruction set.

7.1.2.3. Lua
Lua is the native language used for PreMake, the build tool used by this project.

7.1.2.4. Python
Python is a scripting language used in this project to help with the compilation and
building process.

7.1.3. Tools and Programs Used for Development

7.1.3.1. Microsoft Visual Studio Community Edition 2022
Visual Studio is a very popular IDE for windows C++ development, it can be extremely
bulky and demanding, but it provides excellent debugging and refactoring tools.

It also provides a way to easily compile C++.

7.1.3.2. Visual Studio Code
Even though MSVC is my main development platform, sometimes I want to quickly modify
something without loading MSVC, so I normally use Visual Studio since I prefer the coding
experience in it, I would love to be able to 100% code in Visual Studio, but the ctre hpp
header was crashing the C++ extension for Visual Studio, so I couldn’t do that

7.1.3.3. PreMake
PreMake is a Lua-based build tool for C++, it’s not as popular as CMake, but, as stated
before, is the one I know how to use.

Page 129

7.1.3.4. GitHub
I used GitHub for Source Control, and code portability to have the same code base in
multiple machines.

7.1.3.5. Compiler Explorer
Compiler explorer is a way to test C++ code generation in different compiler setups
without having to set up the compiler pipeline in a local machine. I use compiler explorer
mainly to check if the code I’m writing works as I expect it to work since I’m not the best
C++ developer out there.

7.2. ISC 2: Code Generation of Components and Procedures
The following sections contains an overview that highlights some of the most important
parts of this project.

7.2.1. Stepping a Frame
The first relevant part of this functionality happens on Application.cpp on the update
method.

Figure 56. Running a frame 1

First, it is check if the application is not minimized and if the emulation is currently
running, if both checks pass, the console will run a frame, the try catch is only for STP
opcode, since that opcode crashes the console in real hardware.

The second relevant part happens on Console.cpp, this is the method that runs the frame.

Figure 57. Running a frame 2

Page 130

There are three relevant parts to RunFrame, as highlighted in the image above, the red part
checks if there is a ROM loaded so the emulation can be run, the yellow part is the one
that handles frame timing to ensure stable FPS so the emulation does not run faster than
required and the green part is the one that calls the underlying Step method.

Figure 58. Running a frame 3

Again, relevant parts highlighted in the image. The yellow part steps the CPU when
needed, the green part handles the PPU, the blue part is the one that runs the DMA
process when the PPU asks for it and the red part is the one that makes a hardware
interrupt happen.

Page 131

7.2.1.1. CPU Step

Figure 59. CPU step

As stated before, the CPU step follows a fetch decode execute, the fetch part is in blue,
the decode part in green and the execute part in red. This process works by subtracting to
the cycles the last instruction took until it reaches 0 to run the next fetched instruction.
The fetch part works in conjunction with a jump table that holds the relevant function
pointers for addressing mode and instruction and holds the base cycles of the opcode, the
oops part is in case the opcode took more cycles than normal.

7.2.1.2. PPU Step

Figure 60.PPU NTSC Frame timing

I won’t show the code of this part since it is a very long process, but in happens in the Step
method on PPU.cpp and it follows the image shown above.

The Frame image is created by filling an image one pixel at a time until is full, that image is
then sent to the renderer and loaded into a texture to be rendered in the screen.

7.2.2. Sending an Address Through the Bus
This happens in Bus.cpp in the Read or Write methods.

Page 132

Figure 61. Bus Address mapping

The code excerpt shown above, shows the memory range of the NES and how each
section of it is sent to a different component (the APU part is a placeholder and does
nothing). The rede part is the NES RAM, which is completely handled by the bus, the green
part represents the PPU MMIO registers, the blue one is relevant to input and audio, but
also holds the PPU DMA MMIO register in the write version of this method and the yellow
part is the cartridge space; the cartridge space will be mapped further in accordance to
the current mapping circuit, in this case, only mapper 0 is allowed, so the map would be 1
to 1 with some restrictions in range.

7.2.3. Saving State
This call happens in Console.cpp.

Figure 62. Saving state

The save/load state is very straight forward; first, you move to the relevant file path for
states, then you call the Serialize method in the ISerializable to be serialized.

Page 133

Figure 63. Serialization in the File Manager

This code is part of FileManagerImpl.cpp, it opens the file in binary write mode and then
calls the serialization method of the object to be serialized, it passes the current fstream
in case the provided API for serialization is not enough.

Figure 64. Console Serialization

This is what the serialization method in the console class looks like, I won’t show how the
different components serialization works as it is almost the same, you take all the relevant
data needed to maintain the current state of the emulation, and you save it to a file; for a
similar reason I won’t show the deserialization part since it would be the same but
changing the Serialize prefix with Deserialize.

7.2.4. Loading a ROM
The ROM loading process starts in application.cpp.

Figure 65. Loading a ROM 1

Page 134

The red part is the one that handles opening a native file dialog to load the ROM, the green
part is the one that tries to load a ROM after the file has been selected and the blue part is
error handling in case the ROM is not valid.

Figure 66. Loading a ROM 2

This is the function called in application, this fragment of code creates the cartridge, and
links it to the different components, after linking it, it resets the console.

Figure 67. Loading a ROM 3

This is the main constructor of the Cartridge class; quite a lot of things are happening here,
as highlighted they are: the blue part is file opening, the green part is header validation, the
yellow part is header parsing and the red part is mapper selection.

7.2.5. Creating a Texture
Creating a texture is a vital part of the visual part of the application, since a texture is used
to render the emulation screen.

Page 135

Figure 68. Create a Texture Sprite pair

In this fragment of code, we are creating a bindless texture, and then tying it to a sprite that
will hold it since the sprite is the one that holds all the positional data.

Figure 69. Creating the texture in the API

Then, in the Renderer API, the texture is created. Two types of textures can be created, the
normal ones are meant for ImGui, and the bindless ones are meant for the application.
Then, the texture is created in Engine.cpp, the finer detail will not be show here, but it must
be noted that it is verbatim the same as the one in vkguide chapter 4.

7.2.6. Creating an Interface
To create the different components, as stated before, I went with a component system, in
that way I could create different components without needing to modify the main code to
accommodate them. This is an example of how the CPU status component is created.

Figure 70. Creating an interface 1

First, we check if the component is already added, and if it is, we remove it, if it isn’t, the
AddComponent teamplate function is called.

Figure 71. Creating an interface 2

https://vkguide.dev/docs/new_chapter_4/textures/

Page 136

The AddComponent template function will create a smart ptr to that component, call the
OnCreate of that component, and insert it into an unordered map to be stored.

Figure 72. Creating an interface 3

Then all components have an OnRender function, that is the one that creates the user
interface; an onUpdate function, that is called on the update part of the application main
loop; and an OnCreate function that is called when the component is created.

7.2.7. Input Handling
The Input Handler library that I built for this project works with actions, that means,
“prerecorded” functions that are executed when some conditions are met.

Figure 73. Input Handling 1

In this case, some macros are used to restrict how this actions are called, for example, the
INPUT_NOT_REPEATED one makes the action to be called only once until the button is
released and pressed again, the INPUT_KEY_NOT_MODIFIED forbids the action to be run if
any modifiers (ctrl, shit, alt…) are pressed.

Page 137

Figure 74. Input Handling 2

Once the action is recorded, then it is assigned to a trigger, that can be a key or a gamepad
button. I’m not happy with the current design, and I’d like to change it to an alias-based
action system, that would mean, that you would create an alias, then you would assign the
triggers to the alias, and finally you would bind the actions to the alias, that would make
rebinding actions pretty easy.

7.2.8. Main Loop

Figure 75. Main Loop

This is the main loop of the application, this is the beating heart of the application, is the
code that makes sure that events are propagated to their components (yellow), is the code

Page 138

that keeps track of the application delta (blue), is the code that tells the renderer to draw
to screen and is the code (red) that updates the application (green).

Figure 76. Event loop

This is the event loop, since both the window and the input handler need to know when
their respective events are fired, this code will extract all events from the SDL event queue
until its exhausted (that’s why the application freezes when its being dragged or resized, I
don’t like it) and propagates the events to the input handler and the window.

Page 139

Figure 77. Programming window events

Since I intend for the window library to be standalone, I needed a way to program the
events since I could use this library in other application with different needs in the window
events. These events are then mapped in the SDL implementation to SDL window events,
and when they are fired, the recorded function is executed. The last event, the close one,
is needed so when a window that is not the main one is closed, for example, the memory
view, the whole application is not closed.

Page 140

Figure 78. Update method

This is the update function, it runs the emulator (green), sets the texel data for the
emulator screen (red), updates the components (yellow) and when the app is resized, it
changes the dimensions of the sprite that holds the screen texture (blue).

Page 141

Figure 79. Drawing the User Interface

This is the code that orders the renderer to draw things, first, it needs to begin the frame for
ImGui (blue), then it draws the application (yellow), if any error happens in drawing the
application, an error component is created, and the application is closed when the user
OKs the error message (green) and finally it ends the ImGui frame (red).

In future iterations of this project, I’d like to rework the menu bar as a component to
decouple it from the application.

Page 142

7.3. ISC 3: Unit Tests Execution
This section contains the results found while executing the tests defined in 6.3.1.

The first run was very successful with 79 successful tests of 80 total. The singular test that
failed is the following.

Description Expected result
6.3.1.11.ASSEMBLE_NESTEST
The NesTest ROM will be run through the
disassembler and compared to a known
excerpt of the original assembly.

The retrieved assembly should match the
known assembly.

 Obtained result
 The retrieved assembly contained a lot of

labels pointing to empty addresses before
the known assembly.

Problem Solution
The disassembler is creating paths
through the JMP instruction in indirect
addressing.

The disassembler cannot trace through
Indirect addressing with the JMP
instruction.

Table 153. 6.3.1.11.ASSEMBLE_NESTEST results

7.4. ISC 4: Integration Tests Execution
No errors were found in the integrations tests.

7.5. ISC 5: System Tests Execution
This section contains the results found while executing the tests defined in 6.3.3. It also
contains the reason these results were found to begin with.

7.5.1. NesTest
The NesTest test was unsuccessful at first, it kept showing errors that traced back to the
SBC instruction and to the JMP instruction, this errors were not detected by the unit tests
because I made the tests with a flawed understanding of how the overflow flag should
work in the SBC instruction since I applied the same process to the ADC overflow, and in
the case of the JMP, the error was in the indirect addressing mode, since the original
hardware has aa bug that I was not replicating properly; so even if 79 of the 80 tests were
successful, some of them were faulty since they were not properly made.

In order to fix these errors, the execution of the emulator had to be traced and compared
to a known valid trace created by a highly accurate emulator since the meaning of the error
codes provided by NesTest were lost to the internet long ago.

Page 143

Description Expected result
6.3.3.1.RUN_NESTEST
The NesTest ROM is run.

No error codes are generated by NesTest.

 Obtained result
 Errors are generated by NesTest.
Problem Solution
SBC overflow flag is faulty.
Indirect addressing hardware bug is not
properly implemented.

Fix to SBC overflow.
Fix to the indirect addressing hardware
bug.

Table 154.6.3.3.1.RUN_NESTEST results

7.6. ISC 6: Elaboration of User Manuals

7.6.1. Installation Manual
This project is a desktop app compiled for windows, in order to instal it properly, the user
needs the following:

• A Vulkan SDK installation.
• Up to date drivers that support Vulkan 1.3

If those two are installed, just download the executable file.

7.6.2. Compilation Manual
Some previous requirements are needed to compile this system.

• C++ compiler that is compliant with C++20/23 (MSVC).
• Vulkan SDK.
• Python 3.

PreMake is not needed since it’s included in the project files. For the compiler I
recommend MSVC, and I don’t promise that it works with Cygwin or MinGW since I have
not tested, I know for a fact that the GNU make result generated with PreMake does not
work.

For the Vulkan SDK I used the 1.3.280.0 version, I don’t know if it complies with newer
versions.

For Python I use the 3.10.11 version.

If the project was to be clone from its repository when I decide to make it public, it’s
imperative to clone with the recursive flag since It makes heavy use of submodules.

Once all requirements are fulfilled, run the MakeProkect.bat batch file, this program will
generate the project files needed for the compilation to work, after running, open MSVC
with the generated solution file, and make sure that the starting project is Application,
once the start project is properly defined, just build as normal in either release or debug,
this will create an exe file in the bin/<configuration-platform-architecture>/Application
folder.

7.6.3. User Manual
This section contains a detailed guide on the systems contained in the system.

Page 144

7.6.3.1. The File Menu
The Rom Loading process, reset process and exit process can be found in the File menu.

Figure 80. User Manual: File Menu

These processes can also be accessed with the help of the following key binds:

• Load ROM: Ctrl + O.
• Reset: Shift + F8.
• Exit: Shift + Esc.

7.6.3.2. The Emulation Menu
The emulation menu contains the tools to stop and advance the emulation in a controlled
way.

Figure 81. User Manual: Emulation Menu 1

Page 145

Figure 82. User Manual: Emulation Menu 2

The functionality of each button has been explained already, but these actions can be
accessed with the following key binds:

• Stop or continue: F9.
• Run frame: Shift + F9.
• Run scanline: F10.
• Run pixel: Shift + F10.
• Run PPU cycle: Ctrl + F10.
• Run Instruction: F11.
• Run CPU Cycle: Ctrl + F11.

7.6.3.3. The View Menu
The view menu contains the tools to show and hide the CPU, PPU and memory views.

Figure 83. User Manual: View Menu

These views can also be accessed with the following key binds:

• PPU status: Ctrl + P.
• CPU status: Ctrl + C.
• Memory status: Ctrl + M.

7.6.3.3.1. PPU Status
The PPU status view is mostly used to check on the PPU status with little to do besides
that, that does not mean the user can’t do anything.

Page 146

Figure 84. User Manual: PPU Status 1

In the section that contains the pattern tables and palettes the user can swap the palettes
by pressing the desired palette and check the patterns by holding click on the pattern.

Figure 85. User Manual: PPU status 2

Page 147

Figure 86. User Manual: PPU status 3

7.6.3.3.2. CPU status
The CPU status is like the PPU status, the only way to interact with it is to check the
disassembly when the emulation is stopped.

Page 148

Figure 87. User Manual: CPU status

The user can also press the “Go to PC” button to scroll to the current instruction.

7.6.3.3.3. Memory status
The memory status view is the most flexible way, the user can change the representation
of the CPU RAM (the second image) by pressing the button above it, and can inspect any
memory address.

Page 149

Figure 88. User Manual: Memory Status 1

Page 150

Figure 89. User Manual: Memory status 2

The user can hover any location in the inspector, and it will show, what section of the
memory it belongs to, and its address.

Figure 90. User Manual: Memory status 3

The user can also right-click in the inspector to look up any desired address.

7.6.3.4. The State Menu
The state menu holds the functionality to save state, load state, increment state and
decrement state, the current state is shown in the menu bar between brackets.

Figure 91. User Manual: State menu

Page 151

These functionalities can also be accessed via the following key binds:

• Save state: F5
• Load state: Shift + F5
• Increment state: F1
• Decrement state: F2

7.6.3.5. Playing a game
To play a game, a controller is needed, I use an Xbox controller.

Figure 92. User Manual: Button mapping

The image above contains the button mappings for a modern controller, they are as
follows:

• The d-pad is mapped to the d-pad.
• Start is mapped to start.
• Select is mapped to select.

Page 152

• B is mapped to face up (Triangle or Y).
• B is mapped to face left (Square or X).
• A is mapped to face down (Cross or A).
• A is mapped to face right (Circle or B).

8. Conclusions and Future Work.

8.1. Conclusions
The main objective of this project was to learn and show what it takes to build a simple
emulator, in the end, even the simplest emulator is a brutal thing to build, and this project
excels in showing that, I also think that I was able to show how the NES works on the
surface.

This project has been an incredible learning experience for me, thanks to undertaking it, I
learnt about emulation, serialization, graphics programming, shader programming, user
interface design, low level programming, optimization… It also has been a gateway to
learn new code libraries and code techniques, it has changed the way I manage projects
and the way I view coding.

There were less than stellar ideas in this project, the main one was a custom rendering
solution that this project does not need or require, a problem that could have been fixed
with a couple lines of SDL code, nonetheless, I’m happy I did it, even as it was the most
painful and annoying part of this system.

I’m very happy with the overall architecture of the system even though is all over the place
as I was trying new things while developing.

Personally, I think taking this project head on was one of the best things I have done in my
short life as a developer, it was a theme that I found fascinating, and I was able to learn a
lot while developing it.

8.2. Ampliations
This project is nowhere near close to being done, there are a lot of NES features left to
implement and some quality-of-life things to do.

8.2.1. NES emulation
I would like to extend the system in the near future with the following features:

• Audio, the third and last major component would be to emulate the APU and add
an audio system.

• Mappers, currently only mapper 0 is supported, and I’d like to add at least MMC1,
MMC3 and VRC6.

• Cycle accuracy, as expected before, the CPU is not cycle accurate, I’d like to make
sure it is.

• Colour correctness, as stated before, the current system makes use of a colour
palette instead of the original composite signal, the NES dev wiki provides an
algorithm to work it out, so I want to implement it.

Page 153

There are probably more features that are missing, but these are the most important.

8.2.2. Quality-of-Life
As it is now, the application is a bit rough, here are some ideas to make it better.

• A way to rebind input, right now the inputs are hardcoded, that includes the
controller and the key binds for the application, allowing the user to modify them
would be great.

• Feedback when saving states, right now there is not feedback when saving state,
so the user does not have a way to make sure the state was created.

• The application should not stop when resizing or dragging it, it stops right now and I
don’t like it.

• Multiplatform application, some steps have been taken already to ensure a
multiplatform application, and in order to make it work I’d need to recompile some
libraries and change the way the file manager works, but it’s on the realm of
possibility.

• Make the renderer better, as I went with the fully custom renderer, I’d like to make it
thinner and better, the current iteration is my first take on it and I already have
ideas on how to make it better.

9. Annex

9.1. Risks

9.1.1. Risk Identification

ID Risk Category Description

1 Lack of experience Organizational

The author has little experience in the field of
emulation, which can lead to time underestimation
since he has no time frame in which an emulator can
be finished

2 Over scoping Organizational

As the author does not know what is needed for the
emulator to be considered finished, some
unnecessary features can be added, which will led to
more time

3 Internship Managerial
At the time of developing this project, the author is
currently looking for an internship, which can lead to
work stoppage.

4 Nintendo External
Even though emulators are legal, Nintendo has been
known to go after emulators with shady legal practices
to make them stop development

5 Incorrect estimation Organizational
Some sections of the project can be wrongly estimated
since the author is not the best at project planning and
management

Page 154

6 External libraries Technical This project makes use of external third-party libraries,
of which the author has no control, these libraries can
have bugs or have incorrect documentation.

7 Hard concepts Technical

Low Level Emulators are made emulating the
hardware of consoles, to do that, it is crucial to have a
correct and accurate breakdown of the hardware, if
some part of the hardware is not correctly
documented, the author will have to look for that
information elsewhere.

Table 155. Risk identification

9.1.2. Risk Impact
Using the values defined in table 26. We can assess the probability of a risk occurring.

Impact Range Value
Very Low [0%..20%] 10%
Low (20%..40%] 30%
Medium (40%..60%] 50%
High (60%..80%] 70%
Very High (80%..100%] 90%

Table 156. Impact Probability Definitions

The following tables contains the probability of a risk given the impact given to it

Pr
ob

ab
ili

ty

Very
High

0.9

0.05

0.14

0.27

0.50

0.81

High

0.7

0.04

0.11

0.21

0.39

0.63

Medium

0.5

0.03

0.08

0.15

0.28

0.45

Low

0.3

0.02

0.05

0.09

0.17

0.27

Very
Low

0.1

0.01

0.02

0.03

0.06

0.09

 0.05 0.15 0.3 0.55 0.9

 Ve
ry

 L
ow

Lo
w

M
ed

iu
m

H
ig

h

Ve
ry

 H
ig

h

 Negative Impact
Table 157. Negative Impact Probability Matrix

Pr
ob

ab
ili

ty
 Very

High

0.9

0.81

0.50

0.27

0.14

0.05

High

0.7

0.63

0.39

0.21

0.11

0.04

Medium

0.5

0.45

0.28

0.15

0.08

0.03

Page 155

Low

0.3

0.27

0.17

0.09

0.05

0.02

Very
Low

0.1

0.09

0.06

0.03

0.02

0.01

 0.9 0.55 0.3 0.15 0.05

 Ve
ry

 H
ig

h

H
ig

h

M
ed

iu
m

Lo
w

Ve
ry

 L
ow

 Positive Impact
Table 158. Positive Impact Probability Matrix

Positive impact risks are considered opportunities, that is, risks that will benefit us,
instead of being a ‘risk’ to development.

Table 29 shows the impact assigned to each risk based in the previous two tables.

ID Risk Probability
Impact

Impact
Budget Planning Scope Quality

1 Lack of experience High High High High Critical

0.68

2 Over scoping Low Medium Medium Low Very Low

0.06

3 Internship Medium Low Medium Very Low Very Low

0.07

4 Nintendo Very Low High Low Critical Low

0.04

5
Incorrect
estimation High High High Low Low

0.25

6 External libraries High Low Low Medium High

0.20

7 Hard concepts High Medium Low Low Medium

0.16
Table 159. Risk Impact

The following table contains the strategy and response given to each risk.

ID Risk Strategy Response

1 Lack of experience Mitigate
The only way to get experience it's through work, and
planning, so the planning will be estimated taking the
lack of experience into account

2 Over scoping Avoid To avoid over scoping, the author will study other
emulators, and the original hardware.

3 Internship Accept The author needs an internship to get his degree, so
the risk will be gladly accepted

4 Nintendo Accept
If Nintendo decides that this project is worthy of being
c&d'd, then there's nothing that I can do, hence, the
risk will be accepted.

5 Incorrect
estimation Mitigate

To mitigate incorrect estimation, a study of similar
projects led by developers of similar skill may be
needed.

Page 156

6 External libraries Mitigate
The author will only use libraries that have been
already tested, this will have led to a steep decline in
bugs, but they can't be avoided completely

7 Hard concepts Mitigate
The author will keep an eye in the forums of the NES
dev wiki to cleanse any kind of hardware question that
may arise

Table 160. Risk Response and Strategy

9.2. Project File Structure
The structure of this project is very simple

Figure 93. Project root

Each different project has its own branch, in this case the different branches are
Application, FileManager, Input, NesEmu, Renderer and Window; the utility folder
contains scripts to help compilation, and the vendor folder contains project wide
dependencies like imgui or sdl2. Then each project can contain an additional vendor
folder if they contain specific dependencies like in the case of the renderer with
vkbootstrap.

Figure 94. Project libraries file structure

FileManager, Input and Window are meant to be used as libraries, so they contain an
include folder and a src folder, the include folder then contains the name of the library as
another layer in the folder structure so #includes have to contain the name of the library
instead of just the file i.e #include “Input.hpp” would be “input/Input.hpp”.

Page 157

Figure 95. Renderer file structure

The renderer is an exception to the outlines defined above, it contains a Shader folder
containing shader code, while the src folder contains the source code.

Figure 96. Application file structure

The application project contains a resources folder that holds a collection of fonts, texts
and the project icon.

Figure 97. NesEmu file structure

NesEmu contains a test folder containing the project of the emulator tests

9.3. Licensing
All relevant licenses are stored next to the relevant licensed component, in the case of
fonts, the license is stored in the font file and in the case of code libraries, in their
respective LICENSE file.

The source code of this project is under the zLib licensing, the license is as follows:

Copyright (C) 2023-2025 Luis Vijande González

This software is provided 'as-is', without any express or implied

warranty. In no event will the authors be held liable for any damages

arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,

including commercial applications, and to alter it and redistribute it

freely, subject to the following restrictions:

Page 158

1. The origin of this software must not be misrepresented; you must not

 claim that you wrote the original software. If you use this software

 in a product, an acknowledgment in the product documentation would be

 appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be

 misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

9.4. Glossary
 Term Description
C
 CHR ROM Character ROM, part of a ROM containing graphical data

CRT Cathode Ray Tube, a technology used by old televisions in which a tube sent

rays to the screen in vertical lines called scanlines to display images.

D

DMA Direct memory access, a period in which the PPU gets direct acces to CPU

memory in order to copy sprite data

I

IRQ Hardware interrupt, an interrupt raised by hardware, in the NES case,
normally the APU or a mapper, in the context of this emulatur, this might not
exist

M

MMIO Memory mapped I/O, in the NES, these are PPU registers mapped in the

memory range to be accessed by the CPU

N
 NMI Non-maskable interrupt, interrupt raised by the PPU at the end of a frame

NTSC National Television System committee, an analogic tv system using mainly in
north America, pars of south America, and parts of Asia, notably Japan;
different from the PAL system used in Europe, their main differences being
framerate (60 vs 50), scanline count (525 vs 625) and resolution (720x480 vs
720 vs 576).

R

ROM In the emulator world, a ROM is a dump of a games code in a computer
understandable file format, NES ROMs also contain additional information
like the required mapper and if they require persistent storage.

O

Opcode An operation code refers to a portion of machine language, in 6502 they are 1-
byte integers that refer to both the instruction and addressing mode of the
instruction.

P
 PRG ROM Program ROM, part of a ROM containing code and data structures
T
 Texel Smallest unit of a texture, like a pixel on a screen

Table 161. Glossary

Page 159

9.5. Bibliography
1. Circuit, United States Court of Appeals for the Ninth. Sony Computer Entm't, Inc. v.
Connectix Corp., 203 F.3d 596 (9th Cir. 2000). [Online] 2000.
https://www.copyright.gov/fair-use/summaries/sony-connectix-9thcir2000.pdf.

2. NesHacker. NES Graphics Explained. [Online] 06 2021.
https://www.youtube.com/watch?v=7Co_8dC2zb8.

3. Barr, David. NES Emulator From Scratch. [Online] 07 2019.
https://www.youtube.com/watch?v=nViZg02IMQo&list=PLrOv9FMX8xJHqMvSGB_9G9nZZ
_4IgteYf.

4. cmake. Cmake. [Online] 2024. https://cmake.org/.

5. Premake. Premake. [Online] 2024. https://premake.github.io/.

6. Google. GoogleTest. [Online] 09 2024. https://github.com/google/googletest.

7. Boost. Boost. Test. [Online] 12 2020.
https://www.boost.org/doc/libs/1_75_0/libs/test/doc/html/index.html.

8. catchorg. Catch2. [Online] 09 2024. https://github.com/catchorg/Catch2.

9. SDL. SDL. [Online] 09 2024. https://www.libsdl.org/.

10. GLFW. GLFW. [Online] 02 2024. https://www.glfw.org/.

11. Gasimzada, Gamis. Managing BindlesS Descriptors in Vulkan. [Online] 05 2023.
https://dev.to/gasim/implementing-bindless-design-in-vulkan-34no.

12. Hector, Tobias. Dynamic Rendering. [Online] Khronos Group, 10 2021.
https://registry.khronos.org/vulkan/specs/1.3-
extensions/man/html/VK_KHR_dynamic_rendering.html.

13. Khronos Group. Vulkan. [Online] 09 2024. https://www.vulkan.org/.

14. —. OpenGl. [Online] 06 2021. https://www.opengl.org/.

15. Chuchem, Yair. The revolution in UI paradigms . [Online] 29 09 2021.
https://yairchu.github.io/posts/ui-paradigms.

16. ocornut. Dear Imgui. [Online] 09 2024. https://github.com/ocornut/imgui.

17. Qt. Qt. [Online] 2024. https://doc.qt.io/.

18. —. Licensing. [Online] 2024. https://www.qt.io/qt-licensing.

19. Microsoft. Getting started With XInput. [Online] 31 10 2023.
https://learn.microsoft.com/es-es/windows/win32/xinput/getting-started-with-xinput.

20. GlassDoor. Sueldos Desarrollador en España. [Online] 09 2024.
https://www.glassdoor.es/Sueldos/desarrollador-sueldo-SRCH_KO0,13.htm.

21. Fernández, Jorge Morales. ¿Cuánto cuesta el kilovatio hora de luz (kWh) en España?
[Online] https://tarifaluzhora.es/info/precio-kwh.

Page 160

22. Repsol. ¿Cuál es el consumo de un ordenador? . [Online] 2024.
https://www.repsol.es/particulares/asesoramiento-consumo/cuanto-consume-
ordenador/.

23. Movistar. Tarifas de fibra. [Online] 2024. https://www.movistar.es/fibra-optica/.

24. Various. Nes Dev Wiki. Mappers. [Online] https://www.nesdev.org/wiki/Mapper.

25. —. Nes Dev Wiki. PPU Palettes. [Online] https://www.nesdev.org/wiki/PPU_palettes.

26. Yerrick, Damien. pineight. Thwaite. [Online] 2011.
https://pineight.com/mw/page/Thwaite.xhtml.

27. DawnBringer. PixelJoint. DawnBringer's 16 Col Palette v1.0. [Online] 19 8 2011.
https://pixeljoint.com/forum/forum_posts.asp?TID=12795.

28. Various. Nes Dev Wiki. Emulator Tests. [Online]
https://www.nesdev.org/wiki/Emulator_tests.

29. Unknown. [Online]
https://www.nesdev.org/wiki/PPU_registers#Master.2Fslave_mode_and_the_EXT_pins.

30. Various. Nes Dev Wiki. PPU Pattern tables. [Online]
https://www.nesdev.org/wiki/PPU_pattern_tables.

31. —. Nes Dev Wiki. PPU Palettes. [Online]
https://www.nesdev.org/wiki/PPU_palettes#Palette_RAM.

32. —. Nes Dev Wiki. PPU nametables. [Online]
https://www.nesdev.org/wiki/PPU_nametables.

33. —. Nes Dev Wiki. PPU Attribute tables. [Online]
https://www.nesdev.org/wiki/PPU_attribute_tables.

34. —. Nes Dev Wiki. PPU OAM. [Online] https://www.nesdev.org/wiki/PPU_OAM.

35. —. Nes Dev Wiki. DMA. [Online] https://www.nesdev.org/wiki/DMA.

36. —. Nes Dev Wiki. [Online] https://www.nesdev.org/wiki/PPU_rendering.

37. Villa, Alberto. Mapping IO Registers With Union And Structs. [Online] 7 1 2018.
https://docbrown85.github.io/mapping-io-registers-with-c-unions-and-structs/.

38. Unknown. learn OpenGL. Coordinate Systems. [Online]
https://learnopengl.com/Getting-started/Coordinate-Systems.

39. Google. Google C++ Style Guide. [Online]
https://google.github.io/styleguide/cppguide.html.

	1. What is the Purpose of this Work?
	1.1. Abstract
	1.2. Keywords
	1.3. Resumen
	1.4. Palabras clave

	2. Information System Plan (ISP)
	2.1. ISP 1: Start of the ISP
	2.1.1. ISP 1.1: Analysing why the ISP is needed

	2.2. ISP 2: Definition and Organization of the ISP
	2.2.1. ISP 2.1: Scope and Context Specification
	2.2.1.1. Renderer
	2.2.1.2. Emulator
	2.2.1.3. Interface

	2.3. ISP 3: Study of Relevant Information
	2.3.1. ISP 3.1: Background Selection and Analysis

	3. ISP 7: Definition of the Technological Architecture
	3.1. ISP 7.1: Identifying Technological Infrastructure Needs
	3.1.1. Build Tool
	3.1.2. Tests in the Emulator
	3.1.3. Windowing
	3.1.4. Renderer
	3.1.5. Interface
	3.1.6. Input Handling
	3.1.7. File managing and Serialization

	3.2. ISP 7.2: Selection of Technological Architecture
	3.2.1. Build Tool
	3.2.2. Tests in the Emulator
	3.2.3. Windowing
	3.2.4. Renderer
	3.2.5. Interface
	3.2.6. Input Handling
	3.2.7. File managing and Serialization
	3.2.8. Other Libraries

	4. TFG Planning and Management
	4.1. Project Planning
	4.1.1. Identification of Stakeholders
	4.1.2. Organization
	4.1.3. Initial Planning. WBS
	4.1.3.1. System Analysis
	4.1.3.2. System Design
	4.1.3.3. System Documentation
	4.1.3.4. System Development
	4.1.3.5. System Testing

	4.1.4. Risks
	4.1.5. Initial Budget
	4.1.5.1. Budget Item 1. System Analysis
	4.1.5.2. Budget Item 2. System Design
	4.1.5.3. Budget Item 3. System Documentation
	4.1.5.4. Budget Line 4. System Development
	4.1.5.5. Budget Line 5. System Testing
	4.1.5.6. Direct Costs
	4.1.5.7. Indirect Costs
	4.1.5.8. Client Budget

	4.2. Closing the Project
	4.2.1. Final Planning
	4.2.1.1. System Analysis
	4.2.1.2. System Design
	4.2.1.3. System Documentation
	4.2.1.4. System Development
	4.2.1.5. System Testing

	4.2.2. Final Risk Report
	4.2.3. Final Cost Budget
	4.2.3.1. Direct Costs
	4.2.3.2. Indirect Costs
	4.2.3.3. Client Budget

	4.2.4. Lessons Learned Report

	5. Analysis of the Information System (ASI)
	5.1. ASI 1: System Definition
	5.1.1. Determination of the System Scope

	5.2. ASI 2: Requirements Specification
	5.2.1. Obtaining System Requirements
	5.2.1.1. Functional Requirements
	5.2.1.2. Non-Functional Requirements
	5.2.1.3. Requirements Dictionary

	5.2.2. System Actors Identification
	5.2.2.1. System
	5.2.2.2. User

	5.2.3. Use Case Specification

	5.3. ASI 3: Identification of Analysis Subsystems
	5.3.1. Subsystems Description
	5.3.1.1. Emulator
	5.3.1.2. Renderer
	5.3.1.3. Window system
	5.3.1.4. Input Handler
	5.3.1.5. Application
	5.3.1.6. File Manager and Serialization

	5.3.2. Description of Interfaces between Subsystems

	5.4. ASI 4: Use Case Analysis
	5.5. Class Analysis
	5.5.1. Class Diagram
	5.5.1.1. Emulator
	5.5.1.2. Renderer
	5.5.1.3. Input Handler
	5.5.1.4. Window System
	5.5.1.5. FileManager
	5.5.1.6. Application

	5.5.2. Class Description
	5.5.2.1. Emulator
	5.5.2.2. Renderer
	5.5.2.3. Input Handler
	5.5.2.4. Window System
	5.5.2.5. FileManager
	5.5.2.6. Application

	5.6. Asi 8: Defining User Interfaces
	5.6.1. Interface Description
	5.6.1.1. Main screen
	5.6.1.2. CPU status
	5.6.1.3. PPU Status
	5.6.1.4. Memory Status

	5.6.2. Description of the Interface Behaviour
	5.6.2.1. Docks and Viewports
	5.6.2.2. Error messages.

	5.6.3. Navigability Diagram

	5.7. ASI 10: Testing Plan Identification

	6. Information System Design (ISD)
	6.1. ISD 4: Class Design
	6.1.1. Emulator
	6.1.1.1. Console
	6.1.1.1.1. Configuration

	6.1.1.2. CPU
	6.1.1.2.1. Instruction

	6.1.1.3. PPU
	6.1.1.3.1. RegisterFlags

	6.1.1.4. Bus
	6.1.1.5. Input Device
	6.1.1.6. Cartridge
	6.1.1.6.1. INesHeader

	6.1.1.7. IMapper
	6.1.1.7.1. NROM

	6.1.1.8. Assembler
	6.1.1.9. Disassembler
	6.1.1.9.1. Disassembly

	6.1.1.10. Opcode

	6.1.2. Renderer
	6.1.2.1. Engine
	6.1.2.1.1. Batch Renderer

	6.1.2.2. ITexture
	6.1.2.3. Sprite
	6.1.2.4. API
	6.1.2.4.1. RendererAPIVulkanImpl

	6.1.3. Input Handler
	6.1.3.1. IInput
	6.1.3.1.1. SDL2Input
	6.1.3.1.2. SDL3Input

	6.1.4. Window System
	6.1.4.1. IWindow
	6.1.4.1.1. SDL2Window
	6.1.4.1.2. SDL3Window

	6.1.5. File Manager
	6.1.5.1. FileManager
	6.1.5.2. Context
	6.1.5.3. ISerializable
	6.1.5.4. Serializable

	6.1.6. Application
	6.1.6.1. Application
	6.1.6.2. IComponent
	6.1.6.2.1. CloseDialog
	6.1.6.2.2. ShowCPUStatus
	6.1.6.2.3. ShowPPUStatus
	6.1.6.2.4. MemoryView

	6.2. ISD 5: Designing the System Module Architecture
	6.2.1. ISD 5.1: System Module Design
	6.2.2. ISD 5.2: Inter-Module Communications Design
	6.2.2.1. Component Diagram

	6.3. ISD 10: Technical Specification of the Test Plan
	6.3.1. Unit Testing
	6.3.1.1. Arithmetic
	6.3.1.2. Branch
	6.3.1.3. Increment & Decrement
	6.3.1.4. Jump & Call
	6.3.1.5. Load & Store
	6.3.1.6. Register Transfer
	6.3.1.7. Shift
	6.3.1.8. Stack Operations
	6.3.1.9. Status Flag Changes
	6.3.1.10. System Functions
	6.3.1.11. Disassembler
	6.3.1.12. Save States

	6.3.2. Integration Testing
	6.3.2.1. MMIO

	6.3.3. System Testing
	6.3.3.1. Nestest

	7. Building the Information System
	7.1. ISC 1: Preparation of the Generation and Construction Environment
	7.1.1. Standards and Regulations Followed
	7.1.2. Programming Languages
	7.1.2.1. C++
	7.1.2.2. 6502 Assembly
	7.1.2.3. Lua
	7.1.2.4. Python

	7.1.3. Tools and Programs Used for Development
	7.1.3.1. Microsoft Visual Studio Community Edition 2022
	7.1.3.2. Visual Studio Code
	7.1.3.3. PreMake
	7.1.3.4. GitHub
	7.1.3.5. Compiler Explorer

	7.2. ISC 2: Code Generation of Components and Procedures
	7.2.1. Stepping a Frame
	7.2.1.1. CPU Step
	7.2.1.2. PPU Step

	7.2.2. Sending an Address Through the Bus
	7.2.3. Saving State
	7.2.4. Loading a ROM
	7.2.5. Creating a Texture
	7.2.6. Creating an Interface
	7.2.7. Input Handling
	7.2.8. Main Loop

	7.3. ISC 3: Unit Tests Execution
	7.4. ISC 4: Integration Tests Execution
	7.5. ISC 5: System Tests Execution
	7.5.1. NesTest

	7.6. ISC 6: Elaboration of User Manuals
	7.6.1. Installation Manual
	7.6.2. Compilation Manual
	7.6.3. User Manual
	7.6.3.1. The File Menu
	7.6.3.2. The Emulation Menu
	7.6.3.3. The View Menu
	7.6.3.3.1. PPU Status
	7.6.3.3.2. CPU status
	7.6.3.3.3. Memory status

	7.6.3.4. The State Menu
	7.6.3.5. Playing a game

	8. Conclusions and Future Work.
	8.1. Conclusions
	8.2. Ampliations
	8.2.1. NES emulation
	8.2.2. Quality-of-Life

	9. Annex
	9.1. Risks
	9.1.1. Risk Identification
	9.1.2. Risk Impact

	9.2. Project File Structure
	9.3. Licensing
	9.4. Glossary
	9.5. Bibliography

