
TRABAJO FIN DE MÁSTER

MÁSTER UNIVERSITARIO EN

GEOTECNOLOGÍA Y DESARROLLO DE PROYECTOS SIG

Linea de Nieve:
Automated Snow Classification from Sentinel-2 Data Using

Python
˜

Clasificación Automatizada de Nieve a partir de Datos de
Sentinel-2 Utilizando Python

Autor: Jakob POPPELLER, BSc

Tutor: D. CABO GÓMEZ, Carlos

Febrero, 2025

Escuela Politécnica de Mieres
UNIVERSIDAD DE OVIEDO

Page 2 from 53

Abstract
Abstract in Spanish
Los métodos actuales para crear reportes diarios de aludes con el objetivo de informar a los
montañeros y a los habitantes afectados por dicho peligro, se basan en diversos datos. Éstos
datos incluyen informaciónes de las estaciones meteorológicas, observaciones del paisaje y
simulaciones de la cobertura de nieve. La integración de un análisis basado en imágines
satélites ofrece un gran potencial para mejorar la evaluación de riesgos de aludes, especial-
mente al principio y al final de la temporada cuando la capa de nieve está fragmentada.[1]
Éstas herramientas son esenciales para identificar las zonas cubiertas de nieve y las zonas sin
nieve que pueden ser una parte fundamental en la evaluación de los riesgos de aludes.
Éste trabajo fin de master se centra en el desarrollo de un sistema para procesar mapas de
la capa de nieve actual y generar estadı́sticas detalladas sobre la distribución de la nieve
utilizando datos de Sentinel-2. Éstas estadı́sticas tienen en cuenta las variaciones de altitud
sobre el nivel del mar y orientación. Reconociendo que la alturas de las lı́neas de nieve son
sustancialmente más altas en laderas soleadas y orientadas al sur que en laderas sombreadas
y orientadas al norte. En este documento la lı́nea de nieve se define como la lı́nea de altitud
entre nieve y ausencia de nieve.
El flujo de trabajo permite además generar estadı́sticas para cualquier zona de interés, garan-
tizando un análisis preciso y localizado. El algoritmo utilizado para clasificar la nieve es una
versión simplificada del algoritmo Thiea Snow Collection[2]. Los resultados de las clasifica-
ciones son prometedores. En una verificación groundtruth se comparan determinados puntos
del análisis con los puntos correspondientes de las imágenes de la webcam. Se alcanzó una
tasa de error inferior al 2 %. Éstos errores se producen principalmente en zonas afectadas por
nubes y sombras de nubes. Ya existen algoritmos de detección de nubes para las imágenes
Sentinel 2 que pueden solucionar éste problema y que podrı́an aplicarse en futuros desarrol-
los.

Palabras clave: mapa de nieve, Sentinel 2, elevación, orientación

Abstract in English
Current methods to create daily avalanche bulletins, to inform mountaineers and inhabitants
affected by avalnce danger, require many sources of inputs, including weather station data,
field observations, and snowpack simulations. The integration of satellite-based analysis of-
fers significant potential to enhance the monitoring process, particularly during early and late
seasons when snow cover is fragmented.[1] These tools are essential for identifying snow-
covered and snow-free areas, which can play a critical role in assessing avalanche risks.
This thesis focuses on the development of a processing pipeline maps of current snow cover
and generate detailed statistics on snow distribution using Sentinel-2 data. These statistics
take into account the variations in elevation and aspect because there are variations in the
elevation line between the presence and absence of snow, further referenced as the snowline,
on sunny, south-facing slopes compared to shaded, north-facing ones. This workflow gener-
ates statistics for any requested subregions, ensuring a precise and localized analysis.
The algorithm used to classify snow is a simplified version of the Thiea Snow Collection
algorithm[2]. The results of the classifications are promising. In a groundtruth check where
certain points in the analysis are compared to the corresponding points in webcam images.
A misclassification rate of under 2%. These misclassifications are mainly in areas affected

Jakob Poppeller, BSc

by clouds and cloud shadows. To address this, there are already cloud detection algorithms
developed for Sentinel 2 imagery that could be implemented for future development.

Key words: snow map, Sentinel 2, elevation, orientation.

3

Escuela Politécnica de Mieres
UNIVERSIDAD DE OVIEDO

Page 4 from 53

Foreword and acknowledgements
I was introduced to the interesting and widespread topic of Remotesensing and GIS during
my Esasmus stay in Oviedo. Thanks to the complex and intertwined Master in Innsbruck of
civil- and environmental engineering, I managed that the university of Innsbruck agreed to a
learning agreement that allowed me to take nearly all of the classes of this master in my year
at the EPM in Mieres. Thanks that this worked out.
This was really great because I was able to make good connections with my classmates and
was completely integrated into the study program of the EPM in Mieres.
At the end of my year in Spain, I consulted the university if I could finish this master and get
an degree, given that I have taken already most of the courses. The first response was, that
it is not possible, because I am enrolled in Innsbruck. But with the untiring help of Candela
we found a way to append all my credit points to a regular study course.
At this point there was still the internship and the thesis missing.
I managed that I could make my internship in Innsbruck at the Avalanche Warning Service.
Thanks the Avalanche Warning Service Team of Tirol, that I could do this internship and get
some unique insights into the workflow of this fascinating job. It was an unforgettable year.
Also special thanks to Patrick for writing and signing all the documents and evaluations for
the recognition of the internship in university in Spain.
Toward the end of this internship, I started writing and coding on this thesis. Thanks to
Azad for helping me start the project. He helped me a lot with his outstanding coding skills.
Especially for the part of automatically downloading the requested files from the Copernicus
homepage.
Thanks to Carlos for tutoring my work and making time for my correction on this very tight
time schedule.
Then I want to thank my friends and family for supporting me in my projects.
Very special thanks to Christine for editing some parts of the work to improve my English
and to support me in the last weeks, when the writing got more intense. I am very happy to
have you in my life.

Jakob Poppeller, BSc

Escuela Politécnica de Mieres
UNIVERSIDAD DE OVIEDO

Page 5 from 53

Declaration of Originality
I, Jakob Poppeller declare that i am the author of the Master’s Thesis called ”Linea de Nieve:
Automated Snow Classification from Sentinel-2 Data Using Python”. This work is original
and all sources have been cited according to the academic standards.
This work has also not been submitted previously in any form for the attainment of any other
academic degree.
Hall in Tirol, February 2025

Jakob Poppeller

Jakob Poppeller, BSc

Escuela Politécnica de Mieres
UNIVERSIDAD DE OVIEDO

Page 6 from 53

Contents
Abstract 2

Abstract in Spanish . 2
Abstract in English . 2

Acknowledgements 4

Declaration of Originality 5

Table of contents 5

List of figures 8

List of tables 9

1 Introduction 10
1.1 State of the art . 10

2 Objectives 14

3 Methods 15
3.1 Detection Method used in this Thesis . 15

3.1.1 Inputs . 16
3.1.2 Snowclasification . 16

3.2 Version Control and Documentation . 17
3.3 Workflow and Configuration . 18

3.3.1 Configuration . 21
3.3.2 Downloads and Preprocessing . 22
3.3.3 Processing . 23
3.3.4 Postprocessing . 25
3.3.5 Statistics . 26

3.4 Validation using Webcam Images . 27

4 Results and Discussion 31
4.1 Results of the Groundtruth analysis . 31
4.2 Discussion of the Output . 32
4.3 Limitations and Challenges . 34

5 Conclusion 37
5.1 Summary of the developed Code . 37
5.2 Summary of the experimental results . 37
5.3 Future Work . 38

6 Conclusiónes (Sı́ntesis en Español) 40

Bibliografı́a 41

Jakob Poppeller, BSc

CONTENTS CONTENTS

Appendices 43
6.0.1 Code sample and explanation of the 501 get microregion stats.py

script . 43

7

Escuela Politécnica de Mieres
UNIVERSIDAD DE OVIEDO

Page 8 from 53

List of Figures
1 Example of the SNOWGRID Simulation from the Website of the avalanche

warning service.[3] . 12
2 Comparison to Webcam image of the same day. [4] 12

3 Illustration of the refectance spectrum of snow and the used Bands for the
NDSI[5] . 17

4 Overview of the scripts in the Gitlab reopsitory. 18
5 https://gitlab.com/Jakob Poppeller/linea de nieve 19
6 Flowchart of the algorithms Workflow. 20
7 Overview of the structure from Downloads and Preprocessing 22
8 Overview of the structure from Downloads and Preprocessing 24
9 Example of a pixel value in the merged file 26
10 Overview or the Webcam positions in Austria 28
11 Example of the Controlpoints and Groundtruth Analysis San Isidro - León . 29
12 Example of the Controlpoints and Groundtruth Analysis Kitzbühler Horn -

Tirol . 30

13 Overview of the analyzed area . 32
14 Example of the Results Statistics File with one example region highlighted . 32
15 Overview of the aspects and analysis of the Nordkette (Region AT-07-04-

01 Westliches Karwendel) . 34
16 Diagram of the distribution of the Snow in the study area 35
17 Webcam footage of the study area with avalanche pathways 35
18 Overview of the wrongly classified points due to Cloud-shadow 36

19 Example for the classification of small areas of snow.
On the left: the analysis (snow - turquoise; no snow - magenta)
On the right: corresponding webcam image.[4] 38

20 Sketch of a graphical representation of the snowline 39

Jakob Poppeller, BSc

https://gitlab.com/Jakob_Poppeller/linea_de_nieve

Escuela Politécnica de Mieres
UNIVERSIDAD DE OVIEDO

Page 9 from 53

List of Tables
4.1 Results of ground truth analysis. 31

Jakob Poppeller, BSc

Escuela Politécnica de Mieres
UNIVERSIDAD DE OVIEDO

Page 10 from 53

1. Introduction
Numerous applications across various professional fields, particularly in avalanche predic-
tion, monitor actual snow cover.
The data used to generate daily avalanche bulletins are from multiple sources, including
weather stations distributed throughout the warning area, field observations from profes-
sionals such as mountain guides, hut staff, ski resort workers, and members of avalanche
commissions. Additional information is derived from snowpack simulations and on-site ob-
servations, and even webcam data can be helpful.
The integration of satellite-based analysis offers significant potential for improving snow
cover monitoring. These tools could be particularly valuable during the early and late sea-
sons, when snow cover is fragmented, making the identification of snow-covered and snow-
free areas essential.
If early season snowfall is followed by an extended period of stable, high-pressure weather or
precipitation-free weather, there is the possibility that a deep persistent weak layer develops.
Subsequent snowfall can be deposited in that weak layer, resulting in a dangerous avalanche
situation.[1] Therefore, it is important to know where there was some snow left before the
next snowfall.
In such cases, after a new snowfall, field tests can be performed to assess the stability of the
snowpack in areas previously covered with snow.
The snowline information is also valuable in the spring, when there is no snow below a cer-
tain elevation threshold, as it can be used to establish a lower boundary for the actual warning
area.
Mountaineers rely on accurate information about the snowline, particularly during spring
conditions, to plan their activities in detail and determine whether specific areas remain
snow covered. This information is valuable for climbers to assess whether routes are free
of snow, as well as for backcountry splitboarders and skiers to determine where to start their
approach and how far they need to go by foot or by bike to reach the snow. There is a high
demand for this data, and it would improve the practicality of planning tools. Therefore, data
must be preprocessed and provided on an easily accessible platform, such as a website, since
conducting individual analyses is too resource-intensive.

1.1.- State of the art methods of Snow Monitoring

Many techniques and approaches have been developed over the years to represent snow
cover, ranging from traditional manual measurements to advanced simulations and satellite-
based remote sensing. Each method has its strengths, limitations, and areas of application.

Jakob Poppeller, BSc

CHAPTER 1. INTRODUCTION 1.1. STATE OF THE ART

The oldest and still widely practiced method involves measuring snow depth at various
weather stations in different locations, providing point-based samples of the current snow
conditions.
This can be done manually, by measuring the accumulation of snow each day at the same
time. This is still be done [6], but it is very time consuming and can only be done in places
where there are people around all year.
There are also automatic stations to determine the snow depth. In this setup an ultrasonic
or laser sensor mounted above the snow cover measures the distance to the snow surface[7].
These automatic measurement apparatuses can be installed in remote and high elevation ar-
eas. For example there is over a 160 stations monitoring the snow height in the state of
Tirol.1 [8]. Also Switzerland has around 130 snowmeasuring stations. This creates a dense
network of point samples in the alpine regions, especially in the higher elevated regions that
are harder to access.[7]
While this approach delivers even the depth of the snow at specific locations, it is limited
by its inability to represent spatial variability comprehensively. Despite this limitation, snow
depth measurements remain a valuable and reliable source of data, offering unmatched pre-
cision for localized observations.

Snow cover can also be modeled through simulations, such as the SNOWGRID model
[9], developed by GeoSphere Austria. This model integrates data from weather simulations
and weather station observations. With a resolution of up to 100 meters and simulations
performed in 15-minute intervals, SNOWGRID incorporates the physical properties of snow
into its calculations [10], providing a powerful tool to analyze the snow cover and depth
over an extended area. This simulation is used to generate the snow maps of the avalanche
warning service. Figure 1 shows the SNOWGRID simulation combined with the point mea-
surements of the weather stations displayed in the circles. The figure shows the analysis from
January 17, 2025, and can be compared with Figure 2, the webcam image of the same day.
The view of the webcam is also pictured in the image of the simulation. It can be observed,
that the simulation often still shows thin snow cover in the border areas of the snow, although
the regions are already free of snow.

Several snow classification products are available for remote sensing applications. The
Fractional Snow Cover (FSC) [11] product, developed within the Copernicus High-Resolution
Snow and Ice Monitoring framework, provides a spatial resolution of 20x20 m. It employs

1The data can be found on avalanche.report/weather/measurements

11

https://avalanche.report/weather/measurements?activeRegion=AT-07&activeYear=2024&sortValue=name&temp=false&wind=false

1.1. STATE OF THE ART CHAPTER 1. INTRODUCTION

Figure 1: Example of the SNOWGRID Simulation from the Website of the avalanche warn-
ing service.[3]

Figure 2: Comparison to Webcam image of the same day. [4]

12

CHAPTER 1. INTRODUCTION 1.1. STATE OF THE ART

the Let It Snow (LIS) algorithm, developed by Theia [2], to determine snow presence and
compute fractional snow cover using optical bands, relying primarily on the Normalized Dif-
ference Snow Index (NDSI)[12] for classification. However, due to the reliance on optical
data, snow under cloud cover cannot be detected.

Additionally, the Gap-filled Fractional Snow Cover product [13], also developed by
Copernicus, addresses this limitation by combining FSC with Synthetic Aperture Radar
(SAR) data. This product achieves a spatial resolution of 60x60 m and effectively fills gaps
caused by cloud cover, providing more comprehensive snow cover mapping. By compro-
mising on the spatial resolution of the image due to the resolution of the radar sensor.

13

Escuela Politécnica de Mieres
UNIVERSIDAD DE OVIEDO

Page 14 from 53

2. Objectives
The objective of this thesis is to develop a method for generating maps of the current snow
cover. In addition, it aims to produce statistics on the snow distribution while taking into
account the aspect and elevation.
The method must support the subdivision of the study area into small individual regions. The
subdivision is crucial because snow conditions can vary significantly across areas.
It is also a priority to use freely available data sources with high spatial and temporal resolu-
tion and use open-source software for the analysis.
Moreover, the results should be designed for future integration into the website of the avalanche
warning service, www.lawinen.report. Therefor the code should run autonomously without
further user interaction, so that it can be implemented into automatic workflows of daily up-
dates.
The workflow should be optimized to update the data incrementally, avoiding the need to re-
generate all outputs from scratch during each execution. This design will reduce processing
time and data usage.
The output format must be designed for compatibility with other software, enabling full au-
tomation of subsequent processes. This ensures that the generated data can be integrated into
broader workflows for snowline analysis and integrated on the website.

Jakob Poppeller, BSc

www.lawinen.report

Escuela Politécnica de Mieres
UNIVERSIDAD DE OVIEDO

Page 15 from 53

3. Methods
The code developed for this thesis can process Sentinel 2 imagery and automates the clas-
sification of snow cover. After setting up the configurations, it is possible to run the code
by executing one command to meet the objectives for the implementation into automatized
workflows that update daily. If there is new data available it automatically updates the maps
and statistical output.
Despite the availability of existing programs for snow classification[2][11][13], this code has
been freshly developed for two main reasons.
First, it ensures a comprehensive understanding of the processing steps involved. Addition-
ally, unique features will be implemented to meet the requirements of the objectives. This
includes the automatic analysis of snowline elevation for each aspect, in different requested
sub-regions, using masks generated out of the DEM.
Second, Sentinel-2 data offers diverse applications beyond snow classification. For example,
forest health monitoring can be conducted to detect bark beetle infestations by analyzing the
Normalized Difference Vegetation Index (NDVI), and tracking changes over time. Declines
in vegetation health, because of bark beetle activity, can be effectively identified through
spectral analysis.
By applying modifications to the classification component, this processing pipeline could
also be adapted for alternative applications in various fields, such as forestry.

3.1.- Detection Method used in this Thesis

The snow classification implemented in this algorithm follows a simplified version of the
Theia Snow Collection algorithm [2]. The methodology is based on guidance provided in a
tutorial by Copernicus Research and User Support (RUS), a service of the European Space
Agency (ESA) [14]. This tutorial uses the software SNAP [15] from the European Space
Agency to process the satellite images.
The spatial resolution of the generated map is 10 × 10 meters. However, it is important to
note that the Shortwave Infrared (SWIR) band used in the calculation of the Normalized
Difference Snow Index (NDSI)[12] originally has a resolution of 20 × 20 meters. To align
it with the higher resolution of the other bands, the SWIR band was resampled using the
nearest-neighbor method, effectively dividing each 20-meter pixel into four 10-meter pixels
with identical values.
In this thesis the workflow has been implemented in Python scripts to automate the process,

Jakob Poppeller, BSc

3.1. DETECTION METHOD USED IN THIS THESIS CHAPTER 3. METHODS

utilizing the Rasterio library for satellite image processing. 1

In addition, data downloads and statistical analyzes have also been automated.
The chapter 3.3 Workflow and Configuration provides a very detailed explanation of the code
workflow.

3.1.1.- Inputs

The user inputs required for the analysis are kept minimal to simplify the workflow. The pri-
mary inputs include the coordinates of the area of interest and the observation period’s start
and end dates, with an option for continuous analysis by setting the end date to the current
day.
Additional adjustments can be made for parameters such as classification thresholds, folder
locations, log-in credentials for the Copernicus website, and some options related to post pro-
cessing and statistical analysis. All of these parameters can be set in the configuration file.
That file lists all the changeable variables of this program, the file is called config.yaml and
a more detailed description of this file and the containing variables can be found in Chapter
3.3.1.
Additionally, for generating statistics, a file containing different regions in vector format
(.shp) can be incorporated to facilitate the subdivision of data. For example, a single execu-
tion of the code could analyze an entire state while still providing detailed regional statistics.
This approach aligns with the needs of the avalanche warning service, which operates with
smaller microregions within its warning areas. Generating snowline statistics for each of
these microregions is essential to enable seamless integration into their existing workflows.
Moreover, the code requires a Digital Elevation Model (DEM) that covers the area of inter-
est. The statistic part of the code is the most accurate if the DEM has the same resolution as
the processed image (10x10m). If there are only lower resolutions available, the code will
resample the image using the nearest-neighbor method. This method gives the pixel in the
new resolution the value of the nearest pixel in the old resolution.
Both the vector file and the DEM must be placed in designated folders during the initial
execution of the code. Subsequent runs do not need any additional user input.

3.1.2.- Snowclasification

The classification of snow is done in two steps for better results.
In both steps Snow is classified using the NDSI

NDSI =
Green−SWIR
Green+SWIR

(3.1)

1Rasterio is a Python library designed for reading, writing, and manipulating geospatial raster data, allowing
efficient handling of large datasets and integration with geospatial analysis tools.

16

CHAPTER 3. METHODS 3.2. VERSION CONTROL AND DOCUMENTATION

Figure 3: Illustration of the refectance spectrum of snow and the used Bands for the NDSI[5]

and the Red band.
The NDSI indicates a value from -1 to 1 due to the fact that snow surfaces are very bright in
the visible spectrum and very dark in the shortwave infrared spectrum. This is visualized in
figure 3. Turbid water surfaces like some lakes or rivers may also have a high NDSI value,
therefore, an additional condition using the red band is applied to minimize false snow de-
tection in these areas.[2]

In the first step more conservative thresholds for NDSI and red band are applied for the
classification. Then a snowline elevation is determined. This is the elevation where a certain
percentage of the pixels are classified as snow. All pixels above this snowline are classified
again using the same method with less conservative thresholds because it is more likely that
a pixel is considered snow in that area. The classification process is shown in the flowchart
Figure 6 and described in detail in chapter 3.3.3.

3.2.- Version Control and Documentation

The code developed for this thesis is written in Python, and its progress is documented in
GitLab to ensure version control. GitLab is a web-based platform for managing repositories,
offering tools for collaboration, issue tracking, and continuous integration in software devel-
opment projects. A screenshot of this project in Gitlab is shown in Figure 4. Hosting the
project on GitLab provides an additional layer of redundancy, safeguarding against data loss
caused by local storage failures or accidental user errors.
The project can also be stored locally, with changes on the web interface applied only after

17

3.3. WORKFLOW AND CONFIGURATION CHAPTER 3. METHODS

Figure 4: Overview of the scripts in the Gitlab reopsitory.

modifications to the code are committed and pushed. Keeping the change history transparent
and reproducible.
If the code is already running, a development branch can be created to preserve the original
scripts. This allows new versions to be tested before being integrated into the production
code, ensuring that the functioning code remains unaffected.
It is also very helpful to add issues of the code directly to the GitLab project, because it
makes it easier to keep an overview of what has to be done.
The link to the code of this project can be found in Figure 5

3.3.- Workflow and Configuration

The script is structured into three main sections: Download, Processing, and Postprocessing.
The workflow is initiated by executing the script 000 linea de nieve.py, which sequen-
tially runs all other scripts in the correct order. This is illustrated graphically in the flow-chart

18

CHAPTER 3. METHODS 3.3. WORKFLOW AND CONFIGURATION

Figure 5: https://gitlab.com/Jakob Poppeller/linea de nieve

6.
A detailed explanation of the functionality and operation of these scripts is provided in the
following sections after the explanation the configuration file in chapter 3.3.1.

19

https://gitlab.com/Jakob_Poppeller/linea_de_nieve

 Downloads:

- Get Relevant Sentinel 2 L2A data
 (green, red, NIR, SWIR, Cloud confidence)

[_101_main_download_sentinel_2.py]

No

Yes

Do Static masks exist for AOI?

 Downloads:

- Forest [_102_forest_download.py]
- DEM [Add manually]

 Processing I:
(Each Sentinel 2 Image separate)

- change file format of Sentinel image and
 apply atmospheric correction

[_312_convert_jp2_tiff_and_correct.py]
- Create NDSI layer [_313_calc_NDSI.py]
- Create Cloud mask [_314_Cloudclass.py]
- Snowpass 1 (1 -> No snow,

2 -> Snow,
0 -> no image)

[_315_snowpass.py]

 Preprocessing:

- cut + reproject files [_201_cut_reproject_merge_and_save.py]
- calculate aspect from DEM [_202_calc_aspect_N_E_S_W.py]
- calculate elevation steps [_203_calc_dem_steps.py]

ADD DEM file(s)
form AOI

Aspects
Elevation Steps

Forest mask

Static Masks:

-Elevation Steps
-Aspects
- Forest

 Processing II [_316_snowpass2.py]:

Snowpass 2: re-run Snowpass 1 with less conservative thresholds
for NDSI and red band to get a more complete snowcover above
snowline thershold

Calculate the snowline elevation
(elevation at which snow cover exceeds a specified

threshold percentage)

Yes

No

Is Snow in
Snowpass2?

No

Yes

Is above Snowline?

Yes
No

Was Snow in
 Snowpass1?

SNOW

Yes

No

Is Cloud?
CLOUD

Yes

No

Is Forest?

NO SNOW

FOREST

Elevation Steps

Forest mask

 Statistics [_501_get_microregion_stats.py]

- Computes the upper and lower snowline thresholds for each region and requested aspect and returns a
csv file
- Optionally generates elevation and aspect percentages per region as CSV and graphical diagrams.

 Postprocessing:

- Merge to AOI [_401_merge_sp2.py]
- Cut date info from merged file [_402_cut_date_info_from_merged.py]

 Start [_000_linea_de_nieve.py]
with correct config.yaml file

ADD REGIONS OF INTREST
File

(Vector data)

STATISTIC
.CSV

STATISTIC
DIAGRAMM

.PNG

SNOW-MAP OF
AOI
.TIFF

Figure 6: Flowchart of the algorithms Workflow.

CHAPTER 3. METHODS 3.3. WORKFLOW AND CONFIGURATION

3.3.1.- Configuration

To configure the code, a config.yaml file is provided, where all necessary configurations
can be made. These configurations must be set before running the scripts.
The config.yaml file includes all adjustable variables used in the code, accompanied by
a brief explanation for each variable. This ensures that users can easily modify parameters
without directly changing the script.
The configuration file is divided into five sections:

• 1. Downloads: In this section, it is possible to set a start- and an end-date for the
analysis, with the option to set the end-date to ’today’. This feature is particularly use-
ful for the option of continuous analysis, as the code can recognize if the scripts have
already been run. If so, it searches for newly available satellite imagery, downloads it,
and updates the latest output file with the newly gathered data. Continuous analysis
can also be activated in this section.
Additionally, this section allows the configuration of the bounding box for the analy-
sis. Either preset regions can be selected, or custom coordinates can be defined for the
desired region.
Furthermore, login parameters for copernicus.eu can be set in this section to en-
able access to satellite data. The maximum allowable cloud coverage percentage for
downloaded images can also be specified, ensuring that only images with a sufficient
amount of usable data are included in the analysis.

• 2. Folders and Files: This section allows for the configuration of all necessary paths.
These include the path to the download and process folder, where all downloaded
and processed files are stored. Additionally, paths to static layer masks and the regions
file, which is used to subdivide the area of interest into smaller regions, can also be
specified.

• 3. Processing: Various aspects of the analysis can be configured in this part. For
instance, it is possible to specify whether the folder containing individual satellite im-
ages, or parts of it, should be removed after the analysis to conserve disk space.
Additional settings include the step size of the digital elevation model (DEM) used
in the analysis, with a default value of 100 meters, the thresholds for each parameter
used in the analysis, and other minor configuration options to adjust the processing
workflow.

21

3.3. WORKFLOW AND CONFIGURATION CHAPTER 3. METHODS

• 4. Postprocessing and Statistics: This section contains options for the statistical out-
put of the code.
For instance, the number of days to look back parameter allows the specification
of how many days before the last downloaded image should be included in the output
file and the statistic calculations.
Different exposition settings can be defined, such as including only north and south
exposures, all four exposures, or excluding them entirely from the output statistics in
the .CSV file.
In addition, upper and lower percentage thresholds for snow-covered pixels can be set.
The.CSV file will return the lowest elevation with this specified percentage of snow
for each region. Furthermore, the detailed analysis option, when activated, gener-
ates in addition another .CSV file and a plot of the percentage of snow over the height
for each smaller region of the are of interest. This is explained in detail in chapter 3.3.5.

• 5. Debugging: The final part of the settings includes options that facilitate debugging,
such as enabling additional comments to describe the code’s actions and infos about
the progress of the script while running. There is also an option of saving files from
the last run for comparison of diferent settings.

3.3.2.- Downloads and Preprocessing

The first section of the code has the scripts named like 1xx or 2xx as seen in 7.

Figure 7: Overview of the structure from Downloads and Preprocessing

22

CHAPTER 3. METHODS 3.3. WORKFLOW AND CONFIGURATION

The script 101 main downlaod sentinel 2.py searches for newly available data from the
Copernicus Sentinel 2 program. It constructs the download URL based on the settings and
bounds provided in the config.yaml file and executes the downloads. The script is designed
to download only the required bands for the analysis. It looks also for the latest output prod-
uct (if continous analysis is set to true in the configuration file) and changes the start
date of the files to download accordingly so that only new files that came up since the last
run are downloaded.
The following scripts generate static layer masks for the specified area of interest, but only
if these files do not already exist from previous runs for the same region. The files are iden-
tified based on the coordinates of the bounding box, which are also included in their static
filenames.
The script 102 forest downlaod.py downloads the required part of the forest layer from
the EU SCIENCE HUB Global forest cover if necessary.
The digital elevation model (DEM) must be added manually for any region containing the
area of interest2 prior to the first run of the script. Multiple files can also be placed for use
in the construction of the DEM of the area of interest. This is done automatically in the next
step.
Once all the files are saved, the script 201 cut reproject merge and save.py repro-
jects3 and cuts the downloaded DEM and forest files to the area of interest, which will be
saved in a static layer masks folder.
The scripts 202 calc aspect N E S W.py and 203 calc dem steps.py use the DEM to
calculate two files.
First an aspect file, where each pixel is assigned a value from 1 to 4, representing the main
aspects. Inclinations below 15 degrees are filtered out of the analysis to not include any flat
areas in this mask.
And the second file, a stepped elevation file, that rounds all elevations to a specified step
size, as defined in the configuration file (e.g., 100m steps). These files are also saved in the
static-layer-masks folder.

3.3.3.- Processing

The order of the scripts in the processing section can be seen in 8. There is also a script called
300 go through subfolders and classify images.py. This script navigates through

all downloaded folders of Sentinel 2 images and runs all the scripts seen in figure 8 in the
right order for each of the satellite images. The processing part can also be run alone by just

2It can be downloaded for each country from sonny.4lima.de/
3For the projection, the script calculates the center point of the area of interest and determines the corre-

sponding UTM zone (EPSG:326XX). This approach ensures that the most suitable coordinate reference system
is applied consistently.

23

sonny.4lima.de/

3.3. WORKFLOW AND CONFIGURATION CHAPTER 3. METHODS

running this script.
At the beginning of the processing the downloaded image gets converted from .jp2 format

Figure 8: Overview of the structure from Downloads and Preprocessing

to .tiff format using the script 312 convert jp2 tiff and correct.py And in the same
step the offset and quantification values are extracted from the metadata and applied to the
downloaded images to get the actual physical reflectance values by adding the offset and
dividing the result through the quantification value.
With the appropriate reflectance values, the NDSI can be calculated for each image, utilizing
the green and shortwave-infrared bands as described in Formula 3.1 in chapter 3.1.2. This
is done in the script 313 calc NDSI.py. It calculates the NDSI for the AOI and stores the
results in the processing folder, along with the outputs of the following calculations.
The script 314 Cloudclass.py generates a cloud mask. The calculations use the quality
cloud confidence (QCC) layer4 along with the bands and the near infrared (NIR). It contains
the values 2: Cloud QCC > 90, 1: Light Cloud QCC > 40 and NIR > 0.3 and everything
else is 0: No Cloud.
To prevent misclassifications of bright clouds as snow, which was an issue in the develop-
ment process of this code, a more conservative threshold is applied for now, utilizing only
pixels with a cloud mask value of 0 for classification. This ensures that even light clouds are
classified as clouds, and snow classification occurs only when the absence of clouds is cer-
tain. The application of an already existing cloud detection algorithm for Sentinel 2 imagery
would be beneficial. More details on this topic are discussed in chapter 5.3 on future work
in this code.
The script 315 snowpass.py runs the first step of the snowclassification process by using
the NDSI and the red band: The lower thresholds for NDSI is 0.45 and for the red band is
0.25. Creating a mask containing three values: 1 - No Snow, 2 - Snow, 0 - No image.
In the second classification step, running 316 snowpass2.py, a more detailed classification
of the snow takes place. Using the static layer generated earlier, the stepped elevation file

4Downloaded automatically together with the different bands from the Copernicus web services.
5The values can be adjusted in the configuration file to calibrate the algorithm.

24

CHAPTER 3. METHODS 3.3. WORKFLOW AND CONFIGURATION

and the just generated snowpass mask. The workflow of this script can also be seen in the
flowchart 6 in the ’Processing II’ part in the top right corner of the flowchart.
The classified data is combined with the elevation file (100m5 steps) to determine the lowest
elevation threshold where a certain percentage (25 %5) of the pixels6 are classified as snow.
This elevation is named the snowline elevation.
The second classification step uses less conservative values for the classification: NDSI =
0.155 and red band = 0.045 and re-runs the 315 snowpass.py with these values.
All pixels that have a higher elevation than the snowline elevation get their values from the
second classification to minimize the gaps in the closed snow surface in areas where it is
more likely that there is snow. Pixels below the snowline elevation get their values assigned
from the first classification step.
All pixels get checked if this pixel is part of the cloudmask. If so it gets classified as Cloud.
Then all pixels that are classified as forest in the forest mask and not classified as snow get
classified as forest. This ensures that the forest is classified as snow when there is snow
visible, but if there is no snow visible it does not get classified as no-snow because of the
possibility that there is snow on the ground hidden under the tress from the optical sensor of
the Sentinel 2 satellite. Due to this uncertainty, the forest is completely excluded from the
statistics, and only open areas will contribute to the analysis.

3.3.4.- Postprocessing

In this section, the script 401 merge sp2.py processes all Snowpass2 files by merging and
cropping them to the Area of Interest as defined in the configuration file. The filenames of
the resulting files include the date of the most recently classified image as well as the edge
coordinates of the boundaries and the used coordinate reference system.
The output is stored in the UINT8 format, allowing each pixel to hold a value between 0 and
255.
For classification purposes, only values between 0 and 4 are utilized: 0 - No image, 1 - No

snow, 2 - Snow, 3 - Forest, 4 - Cloud.
The UINT8 format enables each pixel to contain temporal information as well. The first two
digits of each pixel represent the number of days before the merge date that the pixel was
classified. If the classification information is older than 25 days, the first two digits are set to
25. The last digit encodes the classification information. An example is shown in Figure 9.
To ensure the maximum of useful data in the merged file the code does not allow to overwrite
valid pixels with cloud or nodata values.
For example, if there is continous analysis activated, in the first run a pixel was classified

6excluding the pixels classified as forest

25

3.3. WORKFLOW AND CONFIGURATION CHAPTER 3. METHODS

Figure 9: Example of a pixel value in the merged file

as snow and merged the value would be 002. Five days later another image is available and
will be downloaded and merged. Here, the same pixel is classified as cloud, it will remain
snow in the merged data with changed date information: 052. Indicating that the processing
date of this pixel is already five days in the past.
To display the .TIFF file in a GIS program correctly, further modification is required to
extract useful data for visualization.
This task is performed by the script 402 cut date info from merged.py. The script
utilizes the information provided in the configuration file regarding the number of days to
look back at in the analysis. If this information is unavailable or the script is run standalone,
user input is requested to specify the desired temporal range for the analysis. Once the script
has the information, it deletes all pixels that are older than the defined days to look back
and creates a new .TIFF file without the date info printed in the pixel. The filename has the
prefix pixel date info removed xx days before xxxx-xx-xx. This file can be opened with an
program like GIS program and also be visualized using a fitting layermask.7

3.3.5.- Statistics

The final script in the processing pipeline, 501 get microregion stats.py, is responsi-
ble for generating statistics based on the current analysis. Calculations can be performed for
smaller subdivisions within the Area of Interest (AOI), referred to as microregions. These
microregions must be defined in a vector layer and the path to this file has to be specified in
the configuration file.
The code iterates through all microregions. First, it checks if the amount of classified pix-
els is above a certain threshold to even start the statistical analysis of that region, default is

7The layermask used in all the visualisations of the classification in this thesis can be found in the Gitlab
repository of the project.

26

CHAPTER 3. METHODS 3.4. VALIDATION USING WEBCAM IMAGES

30%8, to ensure the credibility of the data.
With the help of the static layermasks, the snowline statistics will be calculated.
There are two levels of detail that can be obtained depending on if in the configuration file
detailed analysis is set to true or false.
The standard output that always gets created analyzes for each elevation step and for each
requested aspect the percentage of snowcovered pixels. Excluding the forest pixels totally
from the analysis because the forest floor can be covered in snow even tough the satellite
only absorbs the green canopy of the trees.
Then a .CSV file is generated. In that file each line corespondents to one of the microregions.
For each region there is a column like North 10% and North 70% and the script writes in each
field the first elevation where at least this percentage of snow was found. There are columns
for all requested aspects in that format. An example of this file can be seen in chapter 4.2,
figure 14
If the detailed analysis is activated, an additional .CSV file for each microregion is generated
in a separate statistic folder. This contains more detailed information on the snowline. It
shows the percentage of snow in open areas without cloud coverage for each elevation step
and aspect of the region.
Additionally this data will be also plotted in a diagram where the x-axis shows the altitude
and y-axis displays the percentage of snowcover. For each requested aspect, a graph will be
plotted into the diagram to visualize the snowcover in that region. Examples can be seen in
chapter 4.2.

3.4.- Validation using Webcam Images

To validate the snow detection process, snow classification results were cross-referenced with
manual observations derived from webcam imagery. Six different webcams9 were selected
for this purpose, five in Tirol, Austria, and one in León, Spain. The locations of the webcams
in Tirol can be seen in figure 10, the Webcam in León is situated in the skiing resort San
Isidro at the Cebolledo station.

Validation samples were collected during the winter season of 2023–2024 10.
Using the Copernicus web browser, all dates with cloud cover below 40% were identified
and listed. Subsequently, five dates were randomly selected from this list.11

For each validation date, 5 to 10 control points were identified based on the availability

8The threshold can be adjusted in the configuration file
9Webcam data for validation were obtained from www.foto-webcam.eu and www.infonieve.es.

10The Winter Season was defined between 01.11.2023 and 30.04.2024
11An online random number generator was used: www.calculator.net/random-number-generator

27

www.foto-webcam.eu
www.infonieve.es
www.calculator.net/random-number-generator

3.4. VALIDATION USING WEBCAM IMAGES CHAPTER 3. METHODS

Figure 10: Overview or the Webcam positions in Austria

of matching points in each webcam image and the satellite underlay of the analysis. Two
examples can be found in Figure 11 and Figure 12. These points were marked on a mask
layer using GIMP[16] and subsequently represented as a point layer in QGIS[17], resulting
in a total of 38 unique control points across all regions. Each individual point was classified
as either ’Snow’ or ’Not Snow’. In some cases, for example when the control point was on
the edge between a Snow and no snow or when the webcam image showed only chunks of
snow on the control point, there is also the option for Fractional Snowcover. The results of
this analysis can be found in chapter 4.1

28

CHAPTER 3. METHODS 3.4. VALIDATION USING WEBCAM IMAGES

Figure 11: Example of the Controlpoints and Groundtruth Analysis San Isidro - León

29

3.4. VALIDATION USING WEBCAM IMAGES CHAPTER 3. METHODS

Figure 12: Example of the Controlpoints and Groundtruth Analysis Kitzbühler Horn - Tirol

30

Escuela Politécnica de Mieres
UNIVERSIDAD DE OVIEDO

Page 31 from 53

4. Results and Discussion
4.1.- Results of the Groundtruth analysis

For each of the control areas covered by a webcam, five diferent dates of the season 2023-
2024 where analyzed for each position, resulting in a total sample size of N=190 validation
points. The thresholds for the analysis are set as mentioned in chapter 3.1.2. Due to the sub-
jective nature of interpreting fractional snow cover, it has been excluded from the accuracy
assessment. Consequently, only the colored fields in Table 4.1 were considered. Green fields
indicate correct classifications, while red fields represent incorrect classifications.

Analysed Sentinel 2 Data

W
eb

ca
m

N=190 Snow Not Snow Fractional Snowcover Cloud No Data
Snow 63 3 0 1 0

Not Snow 0 93 0 5 0
Fractional Snowcover 2 6 1 3 0

Cloud 3 2 0 2 0
No Data 0 5 1 0 0

Table 4.1: Results of ground truth analysis.

Among the 190 samples analyzed, 165 were definitively classified as either snow or no
snow. Of these, 98.1% were correctly classified, demonstrating a high degree of accuracy,
while 1.9% were misclassified. 4.7% of the control points were situated on the boundary be-
tween snow and no snow. These cases were not included in the validation, as it is acceptable
for these images to be classified as either snow or no snow due to the natural uncertainty in
these boundary areas. Furthermore, 8.4% of the points were obscured by clouds, either in
the webcam imagery or during the analysis process, limiting the ability to make a definitive
classification. Another 3.2% of the data were missing due to the absence of webcam imagery
for a specific day in one of the regions.
The results obtained from this analysis are consistent with the validation data, which further
supports the reliability and robustness of the approach used.
The misclassified pixels were investigated further, revealing that the errors were caused by
the presence of thick cloud shadows. While the reflectance beneath thin cloud shadows re-
mains relatively high, allowing the NDSI to be applied effectively, this is not the case under
thick cloud shadows, where snow becomes difficult to identify.[18] This issue is examined
in more detail in Chapter 4.3, with potential solutions proposed in Chapter 5.3 Future Work.

Jakob Poppeller, BSc

4.2. DISCUSSION OF THE OUTPUT CHAPTER 4. RESULTS AND DISCUSSION

4.2.- Discussion of the Outputdata

An analysis of the day 17.01.2025 of the region of Tirol, has been done, to discuss the dif-
ferent output data. The microregion of AT-07-04-01 Westliches Karwendel was selected for
a closer analysis of the results that can be seen marked in yellow in the overview map Figure
13. Figure 14 shows the Output file from the statistic analysis. The entry of the study area
was also highlighted in yellow after the analysis for a better overview.

Figure 13: Overview of the analyzed area

Figure 14: Example of the Results Statistics File with one example region highlighted

Within the selected area lies a prominent south-facing ridge, the Nordkette above Inns-
bruck, which serves as an exemplary case to demonstrate the 10% and 70% snow cover
thresholds for the south-facing aspects. The aspect layer from the analysis was used to high-
light the south facing areas on the map to get a good overview of the region, as depicted in

32

CHAPTER 4. RESULTS AND DISCUSSION 4.2. DISCUSSION OF THE OUTPUT

Figure 15 the first map. The second map illustrates the .tiff file of the output, styled with a
custom layer design. The corresponding layer style, along with the code used for this analy-
sis, is accessible in the GitLab project.1

Both maps highlight the elevations corresponding to the snow cover thresholds, with 10%
marked at 900 meters in blue and 70% at 1400 meters in red. Additionally, the 700-meter line
is displayed in black to represent the lower threshold for snow levels in north-facing areas.
while coincidentally the 70% value also aligns with the blue 900-meter line. Remembering
that forest is excluded from the statistical analysis, both the 10% and the 70% threshold ap-
pears qualitatively accurate.

Figure 16 presents the graphical output of the detailed analysis, where the steepness of
the curve reflects the sharpness of the snowline. A vertical ascent like the blue curve of the
north sector indicates a sudden transition from no-snow to snow within a single elevation
step. In contrast, the graph for the south-facing areas shows a gradual rise, transitioning
from no snow to predominantly snow-covered conditions.
A potential explanation for the difference in the steepness of the north- and south-facing
curves in this case lies in the varying exposure to sunlight. On north-facing slopes, the
absence of direct solar radiation results in slower snowmelt, resulting in an still intact snow-
cover reaching into lower elevations. Also, rainfall below a certain elevation accelerates
snowmelt, leading to a more abrupt transition between snow-covered and snow-free areas,
thereby creating a sharp boundary in the snowline. On the other hand, the south-facing
slopes experience more uniform melting as a result of their increased solar exposure. How-
ever, snow accumulation persists in avalanche pathways, resulting in a more fractional snow
cover across a broader elevation range. These pathways can be seen in Figure 17, the web-
cam footage of the same day as the analysis.

1The link to the project can be found in chapter 3.2.

33

4.3. LIMITATIONS AND CHALLENGES CHAPTER 4. RESULTS AND DISCUSSION

Figure 15: Overview of the aspects and analysis of the Nordkette (Region AT-07-04-
01 Westliches Karwendel)

4.3.- Limitations and Challenges

The missclassification of snow as no snow due to a thick cloud shadow. This is a known issue
for the optical analysis of satellite data. During ground truth validation, a textbook example
of wrong cloud shadow detection occurred. This is addressed here in more detail here to
show the importance for the implementation of a better cloud and cloud-shadow detection
algorithm.
The classification of snow with the NDSI (3.1) includes the green band and the short wave
infrared band. However, cloud shadows result in reduced reflectance in these bands, leading

34

CHAPTER 4. RESULTS AND DISCUSSION 4.3. LIMITATIONS AND CHALLENGES

Figure 16: Diagram of the distribution of the Snow in the study area

Figure 17: Webcam footage of the study area with avalanche pathways

to darker regions in the imagery.[19]. This is illustrated in 18. In the B3 - green band, the
area covered by the cloud shadow is still visible in the bottom left corner of the image. But
in B11 - SWIR band this area is not visible. This results in missclasification with the NDSI.
That can be seen in the image of the wrong classification. Turquoise represents snow, pink
the absence of snow and green shows forest. The webcam footage shows the shadow. The
webcam image was taken from the bottom left corner of the images observing the area in
the direction of the top right corner. This possible solutions for this issue are mentioned in
chapter 5.3 on future work.

35

4.3. LIMITATIONS AND CHALLENGES CHAPTER 4. RESULTS AND DISCUSSION

Figure 18: Overview of the wrongly classified points due to Cloud-shadow

Another limitation is that the temporal resolution of 5 days, combined with the issue that
the optical analysis can only take place in areas without cloud coverage. It can take several
days to get updated information on the snowcover.
This issue is adressed in this algorithm by allowing the definition of a maximum of days to
look back for the output images. If this variable is set for example to 14 days, the statistics
don´t use older data and also the output map shows nodata in areas that have not been
updated for too long. Resulting to be able to guarantee a certain up-to-dateness of the data.

36

Escuela Politécnica de Mieres
UNIVERSIDAD DE OVIEDO

Page 37 from 53

5. Conclusion
5.1.- Summary of the developed Code

This thesis has addressed the challenge of snow classification from Sentinel-2 data. The
developed program code provides a simple-to-operate solution for snow classification with
high spatial resolution. In addition to the classification of snow cover on a map, it offers
more features: For example, the generation of valuable statistical parameters, including the
distribution of snow across different aspects and elevations. It is also possible to subdivide
the area of the analysis into many smaller regions.
The outputs are provided in universal formats, including the classified maps as .GeoTIFF
files, statistical data in .CSV format, and visualizations of snow distribution by elevation and
aspect as .PNG files.
The code also includes a configuration file that allows users to adapt settings without modi-
fying the code itself.
It is freely accessible on GitLab, a link to the project can be found in Chapter 3.2.
Designed for integration into existing workflows, the program can be operated on a daily
basis to update snow cover maps without reclassifying everything again, which saves time
and resources. It can be even implemented in automatic workflows without user interaction.
This tool is particularly useful for the Avalanche Warning Service. For example, the analysis
of snow cover can support the identification of a lower threshold elevation for the avalanche
warning area in different regions. If the processed results of the code are published, this
would also be a very useful tool for mountaineers to assess the current state of the snow.
Despite its advantages, the code has limitations, notably the obstruction of classification by
cloud coverage, which can impact accuracy in regions with frequent cloud presence.

5.2.- Summary of the experimental results

The developed code effectively demonstrated its capability to classify snow, no-snow from
Sentinel 2 data. The tool provides detailed statistical analysis, and the results met the expec-
tations. For example, that the snowline calculated by the code is in most of the cases clearly
higher on south facing slopes than on north facing ones.14
The maps have a high accuracy. A good example for that can be seen in Figure 19 where
there is an image of the rests of a skiing slope in spring with chunks of snow of around 15-20
m in diameter correctly classified as snow.

Jakob Poppeller, BSc

5.3. FUTURE WORK CHAPTER 5. CONCLUSION

Figure 19: Example for the classification of small areas of snow.
On the left: the analysis (snow - turquoise; no snow - magenta)
On the right: corresponding webcam image.[4]

5.3.- Future Work

Some aspects of the project can be changed to improve its accuracy.
The most urgent improvement should be implementing a more precise cloud and cloud
shadow detection algorithm. Several existing solutions could be integrated into the work-
flow. For example, the CloudS2Mask algorithm employs a deep learning approach to identify
clouds and cloud shadows [20]. Another promising option is the F-mask algorithm, which
incorporates a global water map to improve the separation of land and water and utilizes a
digital elevation model (DEM) to normalize thermal and cirrus bands during the classifica-
tion process [21]. Enhancing the accuracy of cloud and cloud shadow detection would allow
for the application of less conservative thresholds in the cloud mask, thereby reducing cloud
coverage in the classified outputs.
Furthermore, the integration of data from additional satellites, for example the MODIS-
Satellite[22], into the classification process could improve the temporal resolution. By uti-
lizing different image sources, the frequency of updates could be increased, resulting in
higher update frequency of the snow cover maps. However, this approach introduces new
challenges, such as the different spatial resolutions of the satellites. Clear rules would need
to be established to determine which data should be prioritized in cases of overlap or conflict.
The validation process should be improved to archive more precise results. For example the
data could be validated on a spatial area using already existing snow maps and calculating

38

CHAPTER 5. CONCLUSION 5.3. FUTURE WORK

Figure 20: Sketch of a graphical representation of the snowline

the area of overlap and the areas where the analyses differ. With this approach there are not
only point samples taken into account and it can be validated on a much larger scale.
Additionally, the statistical analysis process offers significant potential for further devel-
opment. Depending on the needs of the users, specific improvements can be made. For
example, a pictogram of all aspects with the snowline plotted for each region see the sketch
Figure 20.

39

Escuela Politécnica de Mieres
UNIVERSIDAD DE OVIEDO

Page 40 from 53

6. Conclusiónes (Sı́ntesis en Español)
El código del programa desarrollado en éste trabajo fin de máster proporciona una solución
para crear mapas clasificando la nieve en alta resolución espacial. Además también se gen-
eran parámetros estadı́sticos incluyendo la distribución de la nieve a través de diferentes
orientaciónes y para todos los niveles sobre el mar del área del análisis. También es posible
subdividir el área del análisis en regiones más pequeñas para obtener una clasificación más
precisa.
Los resultados se proporcionan en formatos universales, incluyendo los mapas clasificados
como archivos .GeoTIFF, los datos estadı́sticos en formato .CSV y las visualizaciones de la
distribución de la nieve en los niveles de altura y aspecto como archivos .PNG.
El código también incluye un archivo de configuración que permite a los usuarios adaptar
los ajustes sin modificar el propio código.
El código es de libre acceso en GitLab.
El programa se puede iniciar diariamente para actualizar los mapas de la cobertura de nieve
sin tener que reclasificar todo de nuevo. El código se puede implementar incluso en flujos de
trabajo automáticos sin interacción del usuario.
También hay limitaciones, en particular la obstrucción de la clasificación por la cobertura
nubosa, que puede afectar a la precisión en regiones frecuentemente nubladas.
También deberı́a implementarse un algoritmo de detección de nubes más preciso, como por
ejemplo el algoritmo Cloud2Mask que tiene un enfoque de aprendizaje profundo para iden-
tificar nubes y sombras de nubes [20].

Jakob Poppeller, BSc

Escuela Politécnica de Mieres
UNIVERSIDAD DE OVIEDO

Page 41 from 53

Bibliography
[1] R. Mair and P. Nairz, Lawine: Das Praxis-Handbuch. Die entscheidenden Probleme

und Gefahrenmuster erkennen. Innsbruck, Austria: Tyrolia Verlag, 2015.

[2] S. Gascoin, M. Grizonnet, M. Bouchet, G. Salgues, and O. Hagolle, “Theia snow col-
lection: high-resolution operational snow cover maps from sentinel-2 and landsat-8
data,” Earth System Science Data, vol. 11, no. 2, pp. 493–514, 2019.

[3] avalanche.report, “Snow height map.” https://avalanche.report/weather/map/snow-
height, n.d. Accessed: 2025-01-20.

[4] Foto-Webcam, “Foto-webcam: Live webcams.” Accessed: 2025-02-01.

[5] E. S. A. (ESA), “Reflectance curves of snow, vegetation, water, and rock.” Image re-
trieved from ESA’s multimedia gallery, 2011. Accessed: 2025-01-20.

[6] B. und Steigen Redaktion, “Wie entsteht der lawinenlagebericht? teil 1: Die daten-
quellen,” n.d. Accessed: 2025-01-20.

[7] MeteoSchweiz, “Meteoschweiz publiziert automatisch gemessene schneehöhen auf der
webseite,” 2024. Accessed: 2025-01-20.

[8] L. Report, “Weather measurements for tirol,” 2024. Accessed: 2025-02-01.

[9] Z. für Meteorologie und Geodynamik (ZAMG), “Snowgrid - klimatographien,” n.d.
Accessed: 2025-01-20.

[10] Z. für Meteorologie und Geodynamik (ZAMG), “Analyse und prognose der schneehöhe
für 28 millionen datenpunkte.” https://www.zamg.ac.at/cms/de/klima/news/analyse-
und-prognose-der-schneehoehe-fuer-28-millionen-datenpunkte, n.d. Accessed: 2025-
01-20.

[11] Copernicus Land Monitoring Service, “Fractional snow cover (fsc),” n.d. Accessed:
2024-12-30.

[12] J. Dozier, “Spectral signature of alpine snow cover from the landsat thematic mapper,”
Remote sensing of environment, vol. 28, pp. 9–22, 1989.

[13] Copernicus Land Monitoring Service, “High-Resolution Gap-Filled Fractional Snow
Cover (HR FSC),” 2024. Accessed: 2024-12-30.

Jakob Poppeller, BSc

BIBLIOGRAPHY BIBLIOGRAPHY

[14] C. Research and U. S. (RUS), “Copernicus rus training materials cryo03 –
snow cover mapping with sentinel-2.” https://eo4society.esa.int/resources/

copernicus-rus-training-materials/, 2022. Accessed: [June 2024].

[15] E. S. A. (ESA), “Snap: Esa sentinel application platform,” 2024. Software.

[16] The GIMP Team, “Gimp: Gnu image manipulation program,” 2024.

[17] QGIS Development Team, “Qgis: A free and open source geographic information sys-
tem,” 2024.

[18] Y. Zhang, C. Ye, R. Yang, and K. Li, “Reconstructing snow cover under clouds and
cloud shadows by combining sentinel-2 and landsat 8 images in a mountainous region,”
Remote Sensing, vol. 16, no. 1, p. 188, 2024.

[19] T. Wang, J. Shi, H. Letu, Y. Ma, X. Li, and Y. Zheng, “Detection and removal of
clouds and associated shadows in satellite imagery based on simulated radiance fields,”
Journal of Geophysical Research: Atmospheres, vol. 124, no. 13, pp. 7207–7225, 2019.

[20] N. Wright, J. M. Duncan, J. N. Callow, S. E. Thompson, and R. J. George,
“Clouds2mask: A novel deep learning approach for improved cloud and cloud shadow
masking in sentinel-2 imagery,” Remote Sensing of Environment, vol. 306, p. 114122,
2024.

[21] S. Qiu, Z. Zhu, and B. He, “Fmask 4.0: Improved cloud and cloud shadow detection
in landsats 4–8 and sentinel-2 imagery,” Remote Sensing of Environment, vol. 231,
p. 111205, 2019.

[22] N. E. S. D. Systems, “Modis (moderate resolution imaging spectroradiometer),” 2025.
Accessed: 2025-01-21.

42

https://eo4society.esa.int/resources/copernicus-rus-training-materials/
https://eo4society.esa.int/resources/copernicus-rus-training-materials/

Escuela Politécnica de Mieres
UNIVERSIDAD DE OVIEDO

Page 43 from 53

Appendices
6.0.1.- Code sample and explanation of the 501 get microregion stats.py script

As an example parts of the statistics script has been selected for explaination the whole script
can be found here:

In the beginning of the script all necessary Python packages are imported. Including a
functions file that is part of the codes and contains some functions that are used in various
scripts of this project. Followed by a brief description on how the script works.
Then there are some more functions defined. But to make it easier to follow these functions
will be described when called. Therefore the description starts with the main function.

370 def main(stats_run_as_standalone = False):

371 config = functions.load_config ()

372 root_folder = config[’download_and_processfolder ’]

373 file_prefix = config[’

filename_prefix_for_merged_file_without_pixel_date_info ’]

374 files = functions.list_files_with_prefix(root_folder , file_prefix)

First the configuration file gets loaded into the variable config followed by the definition of
the path to the files. The function list files with prefix returns a list of all files where the
filename starts with a certain prefix out of the requested folder.

382 #if activated user interaction is necesary

383 if config[’ask_which_file_to_analyse ’] or stats_run_as_standalone:

384 if functions.display_files(files):

385 snow_raster_path = functions.choose_file(files)

386 print(f"You have selected: {snow_raster_path}")

387 else:

388 print(’\n\nNo merged files found. Script stops. Create a

merged File first!’)

Jakob Poppeller, BSc

BIBLIOGRAPHY BIBLIOGRAPHY

389 time.sleep (5)

390 quit()

In line 383 the if statement checks if ask which file to analyse was set to true in the con-
figuration. If so the code proceeds with a user interaction, where it lists all available files,
defined in line 374. To choose which file should be analyzed. If there are no files the script
stops.
The second option for user interaction is when the script was run directly and not in the pro-
cess pipeline. Then the variable stats run as standalone is set to true. This is because the if
name == " main ": runs the main with that variable set to true. Only if the script is

run on its own this variable is true. Otherwise it is defined as false (line 370)

391 #else latest date with will be choosen

392 else:

393 latest_date= None

394 for file in files:

395 amount_of_days_looked_back = file.split(’/’)[-1]. split(’_’

)[-13] #extracts how many days looked back info

396 if amount_of_days_looked_back != config[’

number_of_days_to_look_back ’]:

397 continue

398 else:

399 file_date=file.split(’/’)[-1]. split(’_’)[-10] #

extreacts date

400 if latest_date == None or latest_date < file_date:

401 latest_date=file_date

402 snow_raster_path = file

403

404 if latest_date == None:

405 print(’\n\nNo valid merged file found. Script stops .\nYou

can set ask_which_file_to_analyse to yes and choose the file on

your own if there is one.’)

406 time.sleep (5)

407 quit()

408 else:

409 print(’\n\n’)

410 print(’Following file is being used for analysis of the

snowline:’, snow_raster_path)

411 print(’\n\n’)

The else part in line 392, when no user interaction is requested and the script is not run as
standalone, extracts from the filenames the processing dates and uses the latest file for the
analysis. If no file was found, the code stops and returns an error message. Otherwise an

44

BIBLIOGRAPHY BIBLIOGRAPHY

info which file is beeing processed is printed.
The next part of the code constructs the paths of the static masks and loads the microregions
file into the variable microregions. And the id and name column is defined. 1

463 #detailed analysis creates an extra folder and for each region a

file with stats and a diagramm

464 detailed_file_path=None #stays None if there is no detailed

analysis

465 if config[’detailed_analysis ’]:

466 detailed_analysis_path= f’{snow_raster_path.split (".") [0]}

_stats ’

467 if not os.path.exists(detailed_analysis_path):

468 os.makedirs(detailed_analysis_path)

469

470 initialize_file_overview(microregions[’area_label ’],

snow_raster_path)

Detailed file path gets first set to None so that the variable still exists if there is no detailed
analysis requested. This part creates a folder for the detailed analysis if requested with the
name of the analyzed file stats. Then the initialize file overview function2 is called. This
function creates the .csv file and writes the header with information about the data. It creates
also all columns that are possible. Always one column for the lower threshold and one for
the upper threshold percentage. And this for each aspect and tow columns for all aspects.
After entering the data the empty columns will be deleted again.
Then the microrgions file gets tested and reprojected if necessary to the UTM CRS of the
project. This is defined by the function get ideal utm zone epsg for bounds() from the
function script determines the center of the AOI and calculates the ideal CRS for this point.

491 for index , region in microregions.iterrows ():

492 if config[’debugging_comments ’]:

493 print(’Now processing:’,region)

494 geom = [region[’geometry ’]]

495 #check if geom is in bounds

496 geom_in_bounds=functions.is_geometry_in_bounds(geom)

497 if not geom_in_bounds:

498 print(’Regin ’, region[’area_label ’],’is not in Bounds!

Continuing with next region !\n’)

499

500 if not regions_out_of_bounds:

501 regions_out_of_bounds = []

502

503 regions_out_of_bounds.append(region[’area_label ’])

1This part is not shown but can be seen in the original file.
2This function can be found in line 105 of the script

45

BIBLIOGRAPHY BIBLIOGRAPHY

504 continue

505 if geom_in_bounds:

506

507 with rasterio.open(snow_raster_path) as src_snow:

508 crs=src_snow.crs

509 snow_class_region , out_transform = mask(src_snow , geom

, crop=True)

510 meta_cropped_snow = src_snow.meta.copy()

511 meta_cropped_snow.update ({

512 "driver": "GTiff",

513 "height": snow_class_region.shape [1],

514 "width": snow_class_region.shape [2],

515 "transform": out_transform

516 })

517 pixel_width , pixel_height = src_snow.res

The script starts iterating through all microregions with the for loop. Each of the following
steps is executed for each microregion.
In line 492 there is the config[’debugging comments’] that can be activated to get addi-
tional comments and data while the code is running to make it easier to find errors.
In line 497 there is a check if the microregion is within the AOI. If it is out of bounds the
region is added to a list and the code proceeds with the next microregion. This list will be
printed into the .csv file at the end of the analysis.
If the geometry is in the boundaries the code opens the file of the snowclassification and
crops it to the shape of the microregion. This is also done with the aspect elevation and file
in the same way.

559 if len({ snow_class_region.shape [1:], elev_region.shape

[1:], aspect_region.shape [1:]}) != 1:

560 height = min(snow_class_region.shape[1], elev_region.

shape [1], aspect_region.shape [1])

561 width = min(snow_class_region.shape [2], elev_region.

shape [2], aspect_region.shape [2])

562 # Update snow_class_region for the output files

563 meta_cropped_snow.update ({

564 ’crs’: crs ,

565 ’height ’: height ,

566 ’width ’: width

567 })

The if len statement checks for the snowclassification and the other masks if they have the
same dimensions. If not it is cut to the smallest dimensions of given masks. And the metadata
gets updated with the new dimesions. This is done also for the other masks. Now everything

46

BIBLIOGRAPHY BIBLIOGRAPHY

is set up for the calculations with the actual data.

587 # Set pixels to 1 if they equal snow_val or no_snow_val ,

otherwise set to 0

588 valid_pixels_mask = np.where ((snow_class_region ==

snow_val) | (snow_class_region == no_snow_val), 1, 0)

589

590 #cropped_snow is only snow or no snow now

591 cropped_snow = np.where(valid_pixels_mask ,

snow_class_region , nodata_val)

592

593 snow_pixels = np.sum(snow_class_region == snow_val)

594 no_snow_pixels = np.sum(snow_class_region == no_snow_val)

595 cloud_pixels = np.sum(snow_class_region == cloud_val)

596 forest_pixels = np.sum(snow_class_region == forest_val)

597 nodata_pixels = np.sum(snow_class_region == nodata_val)

598 total_pixels = forest_pixels+snow_pixels+no_snow_pixels+

cloud_pixels

599 total_pixels_excl_forest = total_pixels -forest_pixels

600

601 # Calculate the percentage of valid pixels

602 # Count the number of valid pixels (snow or no snow)

603 num_valid_pixels = valid_pixels_mask.sum()

604 percentage_valid_pixels_forest = (num_valid_pixels /

total_pixels_excl_forest) * 100

The valid pixel mask sets all classified pixels to 1 and everything else to 0. snow val and
all other values like no snow, cloud, forest are defined at the beginning of the script to allow
easy adaption if the values should change in an updated version of the project.
The valid pixels mask gets applied to the classified area to recive a layer with only snow, no
snow and nodata values called cropped snow. The Block from line 590 to 596 counts the
pixels for each of the categories. To calculate the percentage of classified pixels without the
forest in line 604.

616 message=f"Percentage of classified pixels in open areas (

excluding forests) in {region[’area_label ’]}: {

percentage_valid_pixels_forest :.2f}%"

617

618 if percentage_valid_pixels_forest < config[’

threshold_percentage_of_classified_pixels_to_continue_with_stats ’

]:

This information message is later on printed into head of the .csv file of the detailed analysis.
If the percentage is below the thershold for classification (line 618) the message gets updated
to a warning that there is to little data to continue the statistics for this region. This gets

47

BIBLIOGRAPHY BIBLIOGRAPHY

printed into the main .csv file instead of the elevations. And the code proceeds with the next
microregion.

628 # Ensure that the shapes of the masks match before

applying the mask

629 if valid_pixels_mask.shape == elev_region.shape:

630 # Apply the valid_pixels_mask to the masked_elev

631 nodata_value_elev =9000

632 filtered_elevation = np.where(valid_pixels_mask ,

elev_region , nodata_value_elev)

633

634 else:

635 print(f"\n\nShape mismatch: valid_pixels_mask shape is

{valid_pixels_mask.shape}, masked_elev shape is {elev_region.

shape} ")

636 quit()

If there is enough data classified, the code checks if the shapes of the valid pixels mask
match with the elevation file. This part is implemented because there where issues regarding
matching shapes in the development process. And it is still a good check if everything runs
as planned.
Line 631 assigns the nodata value for the elevation file. It is 9000 because it is higher than
the highest elevation on earth.

638 if config[’detailed_analysis ’]:

639 unique_altitudes = np.unique(filtered_elevation[

filtered_elevation < 8999])

640 detailed_file_path=os.path.join(detailed_analysis_path

,f"{region[’area_label ’]}_stats.csv")

641 initialize_file_detailed(detailed_file_path ,

unique_altitudes ,region[’area_label ’],message)

This part sets up the .csv file for the detailed analysis. If detailed analysis is requested in
the configuration file. unique altitudes filters all elevation steps for that particular region.
Then the filename of the .csv file gets created. Initialize file detailed creates the header of
the file. Including the printing of the message from line 616 in the head. And the file is saved.

643 #diferent options to choose in config No expositions , only

north and south or all expositions

644 if config[’expositions_to_look_at ’] not in [0,1,2]:

645 print(’Check Config file: expositions_to_look_at has

wrong value it should be 0,1 or 2 ’)

646 quit()

48

BIBLIOGRAPHY BIBLIOGRAPHY

647

648 if config[’expositions_to_look_at ’] == 0:

649 current_exposition = ’All Aspects ’

650 Snowline_low , Snowline_high = calc_snowline_stats(

snow_class_region , filtered_elevation , current_exposition ,

detailed_file_path)

651 update_file_overview(snow_raster_path , region[’

area_label ’], current_exposition , Snowline_low , Snowline_high)

652

653 elif config[’expositions_to_look_at ’] == 1:

654 for aspect_condition , exposition_label in [(1, ’North’

), (3, ’South’)]:

655 process_exposition(aspect_condition ,

exposition_label , snow_class_region , elev_region ,

nodata_value_elev , aspect_region , detailed_file_path ,

snow_raster_path , region)

In line 644 there is a check if the input in the configuration file was done correctly. Oth-
erwise the code stops with an error message. Then (line 648) is a check if the input was 0
which means to look at all aspects without distinguishing between different ones. With this
information the clac snowline stats function is called.
If there is more diferent aspects to look at, like in line 652 the process exposition function
is called for each aspect. This function cuts the filtered elevation mask to the curent aspect,
and runs the calc snowline stats and update file overview as seen in lines 649 and 650 in the
loop for each aspect.
The next part shows the function calc snowline stats.

30 def calc_snowline_stats(filtered_snow , modified_elevation ,

current_exposition , detailed_file_path):

31 config = functions.load_config ()

32 threshold_value_low=config[’lower_threshold_classification ’]

33 threshold_value_high=config[’upper_threshold_classification ’]

34

35 #nodata vlaue for elevation files (higher than the highest point

possible)

36 nodata_value_elev = 9000

First the function is called with following variables:
filtered snow is the classification file cut to the current microregion. It is called snow class region
in the main function.
modified elevation is the elevation mask but only with values on pixels that have been clas-
sified as snow or no snow and that are in the right aspect.
current exposition contains the current aspect as a string.

49

BIBLIOGRAPHY BIBLIOGRAPHY

detailed file path contains the path to the .csv from the detailed analysis. If requested, oth-
erwise it is set to None.
In the following lines the threshold values for the lower and upper boundary are defined,
from the configuration file and the nodata value for the elevation is defined again.

37 #Creates elveation map for snow or no snow pixels

38 filtered_elevation_all = np.where(np.logical_or(filtered_snow ==

1, filtered_snow == 2), modified_elevation , nodata_value_elev)

39 #Creates elevation map for only snow pixels

40 filtered_elevation_snow = np.where(filtered_snow == 2,

modified_elevation , nodata_value_elev)

41

42 #writes all unique values down

43 # but exludes everything above 8999 (9000 is used as elevation

nodata value)

44 unique_values = np.unique(filtered_elevation_all[

filtered_elevation_all < 8999])

filtered elevation all creates an elevation mask with only values on pixels that are classified
as snow or no snow in the right aspect.
filtered elevation snow does the same but only for pixels classified as snow.

43 #all unique elevations , excluding everything above 8999 (9000 is

used as elevation nodata value)

44 unique_values = np.unique(filtered_elevation_all[

filtered_elevation_all < 8999])

45

46 #for exposition in cropped_aspect:

47 percentages = {}

48

49 for value in unique_values:

50 # Create a mask where inputfile_mask equals the current value

and input_snowpass1 snow or no snow but not nodata

51 total_pixels_each_elev = np.sum(filtered_elevation_all ==

value)

52

53 # Count pixels where both count_value and input_snowpass1 == 2 are

true

54 count_snow = np.sum(filtered_elevation_snow == value)

Line 44 creates a list of all unique elevations that contain classified values in that given
aspect. The for loop stats iterating through all elevation steps and counts in line 51 all
classified pixels in that step and in line 54 it counts all snow pixels in that same step.

56 if total_pixels_each_elev > 0:

57 percentage = (count_snow / total_pixels_each_elev) * 100

50

BIBLIOGRAPHY BIBLIOGRAPHY

58 else:

59 percentage = 0.0 # I case of division by zero

60

61 percentages[value] = percentage

62 if config[’detailed_analysis ’]:

63 update_file_detailed(detailed_file_path , current_exposition ,

percentages)

In this part the percentage of the snowcover is caclulated and if requested printed for that
elevation step in the .csv file.
After that the loop ends. So there is now a percentage of snow for each elevation step.

65 sorted_percentages = sorted(percentages.items (), reverse=True)

66 last_value_above_threshold_high = None

67 last_value_above_threshold_low = None

68

69 for value , percentage in sorted_percentages:

70 if percentage > threshold_value_low:

71 last_value_above_threshold_low = value

72 else:

73 break

74

75 if last_value_above_threshold_low is not None:

76 print(’ ’)

77 print(f"The last Elevation on the {current_exposition}-Side

above {threshold_value_low }% Snowcover is: {

last_value_above_threshold_low}")

78 print(’ ’)

79 else:

80 print(f"No elevation found above {threshold_value_low }%

Snowcover")

81 last_value_above_threshold_low =9000

In line 65 the list gets sorted so that the highest elevation is analyzed first.
The for loop assigns now in each step the percentage to the last value above threshold low,
until it is below the threshold value low then it breaks the loop because a lower threshold
was found.
Line 75 writes a message in the commandline with the info of the percentage.
If no threshold was found, that means mainly that there is not enough snow in that region in
given aspect. And the last value above threshold low is set to the nodata value.
The same for loop is applied for last value above threshold high to find the upper threshold.

98 return last_value_above_threshold_low ,

last_value_above_threshold_high

51

BIBLIOGRAPHY BIBLIOGRAPHY

Finally the function returns the high and the low threshold. Which get written in the .csv file
as allready seen in line 651.

662 if config[’detailed_analysis ’]:

663 remove_empty_columns_detailed(detailed_file_path)

664 create_plots_detailed(detailed_file_path)

665

666 remove_empty_columns_overview(snow_raster_path ,

regions_out_of_bounds)

At the end of the loop for each microregion the remove empty columns detailed cuts all as-
pects that did not get any data asigned. And saves a clean .csv file.
After that the diagrams are plotted in line 664. This is the end of the loop that iterated
through all microregions. The code proceeds now with the next microregion until it has
looped though all regions each one has percentages assigned.
At last also the main .csv file gets all empty columns removed.
At the end the function create plots detailed is explained. It uses the python package matplotlib.pyplot:

320 def create_plots_detailed(detailed_file_path):

321 output_png_path = detailed_file_path.replace(".csv", ".png")

322 region_name = os.path.basename(detailed_file_path).replace(".csv",

"")

323 region_name = region_name.replace("_stats","").replace("_"," ")

324 with open(detailed_file_path , ’r’) as file:

325 lines = file.readlines ()

First the output path is defined by changing the sufix of the stats file from .csv to .png. Then
the regions name is extracted out of the filename.
Line 325 opens the .csv file to extract the data for the diagram.

328 header_index = 1

329 data_index = 2

330

331 header = lines[header_index]. strip().split(’;’)

332 data = [line.strip().split(’;’) for line in lines[data_index :]]

333 #print(data)

334 # Create a DataFrame

335 df = pd.DataFrame(data , columns=header)

336 df = df.apply(

337 lambda col: col.str.replace(’%’, ’’).replace(’-’, ’NaN’).astype(

float) if col.name != "Altitude" else col

338)

339 df["Altitude"] = df["Altitude"]. astype(float)

340

341 # Plot the data

52

BIBLIOGRAPHY BIBLIOGRAPHY

342 plt.figure(figsize =(10, 6))

343

344 for column in df.columns [1:]: # Skip the Altitude column

345 plt.plot(df["Altitude"], df[column], label=column)

Then the header is defined and a dataframe is created.
Line 342 defines the size of the diagram. And in the following lines each column, one for
each aspect is is plotted.

347 # Add labels , title , and legend

348 plt.xlabel("Altitude (m)")

349 plt.ylabel("Snow Cover Percentage (%)")

350 plt.title(f"Snowline Statistics for: \n {region_name}")

351 plt.legend ()

352 plt.grid(True)

353 plt.ylim(0, 100)

354

355 # Save the plot

356 plt.savefig(output_png_path)

357 plt.close()

358 print(f"Plot saved to {output_png_path}")

Finally, lables and titel are added and the file is saved.

53

	Abstract
	Abstract in Spanish
	Abstract in English

	Acknowledgements
	Declaration of Originality
	Table of contents
	List of figures
	List of tables
	Introduction
	State of the art

	Objectives
	Methods
	Detection Method used in this Thesis
	Inputs
	Snowclasification

	Version Control and Documentation
	Workflow and Configuration
	Configuration
	Downloads and Preprocessing
	Processing
	Postprocessing
	Statistics

	Validation using Webcam Images

	Results and Discussion
	Results of the Groundtruth analysis
	Discussion of the Output
	Limitations and Challenges

	Conclusion
	Summary of the developed Code
	Summary of the experimental results
	Future Work

	Conclusiónes (Síntesis en Español)
	Bibliografía
	Appendices
	Code sample and explanation of the _501_get_microregion_stats.py script

