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Abstract—In this paper a surface inspection system for rails is
proposed. There is a lack of commercial systems and publications
about surface inspection of rails. Therefore, the quality control
developed by rail manufacturers depends on their own developed
systems or on the equipments provided by very few sellers.
Commercial systems must be configured manually by experts
of seller companies. The configuration process requires large
sets of all types of manufactured rails along several periods
of time and the active participation of the quality engineers
of the manufacturer. This is a long, cumbersome and very
expensive process. In this paper we propose a new system
that can be configured using a systematic method that can be
performed by the quality engineers of the manufacturer. The
proposed inspection system uses differential images of the rail
surfaces obtained with a technique called the Spectral Images
Differentiation Procedure. These images are processed using a
computer vision algorithm that looks for variations in the pixel
values among the images. In order to offer more information, a
neural network approach is used for classifying detected defects
into six types. The proposed system is an open solution for the
inspection of rail surface, easy to implement at an affordable cost,
which can be systematically configured by the quality engineers
of the manufacturing company.

Index Terms—Long steel products, Rail inspection, Surface
inspection, Defect detection, Differential images

I. INTRODUCTION

The steel industry needs quality control systems which
can ensure high reliability and efficiency in order to control
production. The manufactured rails must follow strict quality
standards about flatness, profile and surface quality.

Surface inspection is performed automatically with diverse
types of systems. These systems give information to quality
inspectors about the location of defects and suspicious regions
on rails and also information about them such as their shape or
dimensions. Due to the speed on modern industrial production
lines, surface inspection cannot be carried out manually; New
reliable and efficient inspection systems are needed in order
to ensure product quality.

Each time a defect is detected, a quality inspector must find
the defect in the proper rail to check that its dimensions do not
exceed the allowed tolerances. A system which detects each
minimum imperfection on the surface as a defect, even when
it is not, causes an overload of work for inspectors and lowers
their productivity.

Surface defect detection can affect not only one rail in
particular but the whole the production. Some types of defects
are produced by protrusions or scratches in rolling mills. Early

detection of these kinds of situations may help in maintenance
of the infrastructure.

This paper presents a new surface inspection system for rails
based on the processing of differential images obtained from
the surface of rails by a spectral image differentiation pro-
cedure. The parameters of this systems are configured with a
systematical procedure that can be easily carried out by quality
engineers of the manufacturer without specialized personal. In
fact, the systems is configured according to the industrial needs
of the manufacturer paying special attention on the amount of
erroneous detections. The proposed system is compared with
a commercial system available in the same factory improving
the ratio of real defects detected and reducing the number of
erroneous detections.

The rest of this paper is organized as follows: in Section II
some of the most relevant related works about defect detection
are introduced. In Section III a global vision of the proposed
system is given. In Sections IV and V methods of acquisition
and processing of images are described. In Section VI a
method for optimally configuring the parameters of the system
is described. Finally Sections VII and VIII give experimental
results and conclusions.

II. RELATED WORK

Surface inspection based on computer vision techniques is
suitable for diverse kind of materials and industries. Many
papers study this kind of image processing algorithms and
techniques applied to different fields [1][2][3]. These algo-
rithms and techniques are frequently used in defect detection
processes for metallic products [4] but they are also used in
other fields such as fabric [5], phone screens [6] or food [7].

Surface inspection based on computer vision can be done
with different techniques. One of these techniques uses lasers
which project lines over the surface. These lines are captured
by cameras and the resulting images are processed to produce
a three dimensional reconstruction of the piece as it goes
through the production line [8][9]. This technique requires
expensive hardware and periodical maintenance due to the
laser degradation but it provides an accurate measure of the
defects.

The most traditional surface inspection technique uses one
light source and gray level cameras to get images of the
surface. The resulting gray level images are processed to detect
variations of the gray level which can suggest the existence of



defects [6][10][11]. Using this technique, volumetric defects
such as protrusions or seams cannot be measured and a large
number of false detections are introduced in the diagnosis
due to color variations in the product surface or irregular
illumination.

Using more than one light source, well placed for image
acquisition, a 3D reconstruction can be obtained. This kind
of technique is based on photometric stereo algorithms [12]
which use only one camera and several light sources to
produce a 3D reconstruction of the piece using the shadows in
the images. The obtained images give information about height
variations on the surface using several images. If light sources
are of different colors (red, green, blue), only one standard
color camera is needed to obtain the image corresponding to
each light source [13][14][15]. In fact, this technique is suit-
able for inspecting flat products as steel strips [16] due to the
easy way of placing the different light sources. However, when
the whole surface of very long products must be inspected, this
technique has a problem with the position of the light sources
in order to illuminate the entire surface homogeneously while
generating the needed amount of shadows.

In many cases, surface inspection is applied to small pieces
or flat products. Using these techniques in large products such
as rails [13] or wood [17] requires surrounding the pieces
with cameras and light sources or other type of sensors [9] in
order to acquire images of the whole surface. This requirement
makes these applications more complex as final images must
be pieced together from the images acquired by each camera
and some overlapping may be needed. The lack of published
works or commercial systems about this kind of application
forces industries to develop their own inspection systems or
buy them from the very few enterprises that offer them.

In terms of processing the resulting images, there are three
typical approaches: traditional pipeline with image processing
algorithms, machine learning approach with elements like
Convolutional Neural Networks (CNN) or an hybrid approach.
The first approach has already proved its good performance
in several fields as many algorithms can be used depending
on the type of image that must be processed [5][18]. In this
approach there are many parameters used by the algorithms
that must be configured in order to give a good result. In many
cases an ad-hoc pipeline of algorithms is needed to solve a
particular problem. In some particular applications a final step
of classifying the detected defects is needed, so in this cases a
machine learning element is usually used for this task [19] if
it cannot be solved using some easy rules according to some
defect features.

The second approach of processing is commonly used for
detecting defective pieces in a production line where all must
be similar [20]. However this approach it can also be used
on more complex images [21][22] so it can classify product
images they contain defects or not what can be applied to
long products giving a diagnosis meter by meter. Using this
approach, the image can be the input of a CNN or similar. The
developing of this kind of method includes only the design of
the CNN and the creation of its training set, but no further
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configuration of parameters or feature selection is needed.
The third approach of processing is an hybrid approach in

which some of the techniques of the first one are applied to
the images in order to make defects more visible and increase
the performance of the machine learning approach[23].

III. PROPOSED SYSTEM

The proposed inspection system is composed of two systems
working in cascade: a commercial image acquisition system,
which uses the technique proposed in [13], and an image
processing system. The commercial system performs its own
image processing and gives a diagnosis. Both systems works at
the same time on the same rails and, as the image acquisition
system is part of the commercial system, on the same images.

The image processing system is divided in four independent
modules which must collect the images from the acquisition
system, process the images, update information on demand,
and allow users to view rail information and defects. A viewing
module has been designed in order to allow several users
to view the information simultaneously. Figure 1 shows the
architecture of the proposed system.

IV. IMAGE ACQUISITION SYSTEM

The acquisition system uses the technique of spectral image
differentiation. This technique is used to detect volumetric
defects on the surface such as protrusions or scratches.

This technique works as follows. Two light sources are
placed before and after a line scan camera. These light sources
may be of different colors; in this case red and blue light
sources are used. Flat surfaces will reflect the same amount
of light from both sources, independently of their texture.
Surfaces with volumetric defects will reflect different amounts
of light from each source due the shadows that defects create.
Using a color camera it is possible to divide the image in two
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channels, red and blue, and compare the light reflected from
each source. Assuming that both light sources generate the
same amount of light over the surface and that the rail has the
same reflective properties all over its surface, the difference
between the red channel and the blue channel will be zero on
flat surfaces and non-zero on defects.

In Figure 2 a scheme of this system with a defect is shown.
On the acquisition at instant T0 the pixel values of red and
blue channels will be similar. On the acquisition at instant T-1
the pixel values of the red channel will be higher than the blue
ones because the defect creates a shade for the blue light on
the surface of the rail. On the acquisition at instant T+1 the
situation will be the opposite. This method can detect rises
and falls on the surface through the rail movement direction.

Using this technique, the acquisition system provides dif-
ferential images generated by the differences between the red
and blue channels of the image captured by the color camera.
Subtracting the values of the red and blue channels pixel by
pixel, flat surfaces will have a near zero value. Otherwise,
depending on whether the change is a rise or a fall, the value
will be positive or negative but always different from zero.
The position of the light sources determines whether positive
or negative values represents rises or falls in the surface.

The resulting images contain values in [-127,127]. In order
to make them more suitable for user visualization, a value
of 127 is added to all the pixels of the image. This gives a
gray level image as output. These images still give the same
information about the surface but flat surfaces will have a
value of near 127, while the rest will have values closer to 0
or 255. Although these images give information about height
variations, they do not give a quantitative measure about the
variations. These images will be called ”differential images”
in this paper.

V. IMAGE PROCESSING SYSTEM

Image processing has two main objectives: defect detection
and defect classification. Defect detection is performed using
several computer vision algorithms working on differential
images. Classification uses neural networks as classifiers.

Foreground 

Extraction
Segmentation Selection

Original 

Image
Foreground

Potential

 Defects

Neural

Filter

Selected

 Defects

Detected

Defects

Fig. 3: Defect Detection Steps

On each image provided by the acquisition system, a se-
quence of steps is performed to detect defects in this particular
type of images, see Figure 3.

In the first step the foreground of the image is extracted.
Using a filter, defects can be easily differentiated from the
background due to the kind of images that the acquisition
method produces. As the shape or the rail is complex, the
median gray level is not exactly 127 in all zones of the
image, so an adaptive filter should be used instead of a simple
subtraction of the mean value of the image.

In a second step, a segmentation must be performed for
locating the potential defects in the image. Due to the type of
images, a thresholding is selected over other methods as region
growing or clustering as it fits better the needs of detection.
Usually each defect is represented as two zones (white/rise and
black/fall), and a closing operation is performed for joining
them into one region per defect.

After these steps are done, all defects should be detected
generating also so many erroneous detections so some filters
are needed. First, in selection step, some erroneous detections
are filtered using some features extracted from them and from
their environment. This selection is useful for the next step, so
it filter some defects that otherwise should be included into the
set of potential defects degrading the neural networks training.
After that two neural networks, specialized in some types of
erroneous detections, are used to filter more erroneous defects.

A. Foreground Extraction

The differential images provided by the acquisition system
contain zones with a small displacement from zero, positive
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or negative. These zones appear along both the longitudinal
and the transversal direction. In order to work with the image
uniformly, these displacements must be eliminated.

A differential image centered in zero value can also be
obtained. In this kind of image the foreground is represented
by pixels whose values tend to ±127. To perform this step,
a median filter has been designed. The median of the envi-
ronment of each pixel is subtracted from the pixel value. The
environment of each pixel is defined by a mask whose size
defines the intensity of the filtering. If the mask is too large,
the foreground is retained, but the small displacements from
zero of the pixel values are not eliminated. If the mask is
too small, foreground is also filtered. These two situations are
shown in Figure 4.

Subtracting the median from the pixel values, a differential
image is obtained with negative and positive values. The
relevant information for defect detection is the absolute value
of the pixels. In terms of defects in rails, a deviation in the
surface height is characterized by its absolute magnitude for
both rises or falls. This characterization is useful for the next
step, in which the absolute values of the pixels of the image are
used. Thus, images in Figure 4 must be interpreted as follows:
black represents pixels whose value is near zero and white
or gray represent pixels whose value is significantly different
from zero.

B. Segmentation

Segmentation is done by thresholding and morphological
operations. Thresholding is performed on the foreground ex-
tracted from the differential image in the absolute value. The
value of the threshold is one of the main values that determines
the detection of defects. If this value is too low or too high,
thresholding will produce an excess or lack of detections.

(a) (b) (c) (d) (e)

Fig. 5: Evolution of the segmentation of a rolled-in material.
(a) Original image (b) After thresholding (c) After opening
(d) After closing (e) After area filtering

After thresholding, several morphological operations are
performed on the resulting pixels in the binary image.

First an opening operation is performed on the regions. This
operation filters most of the noise in the image, eliminating
the pixels with outlier values. After this, a closing operation
is performed to join adjacent regions and to fill holes.

The closing operation is crucial due to the way that defects
are represented in differential images; as a rise or a fall
from the height level of previous pixel of the surface in the
longitudinal direction of the rail. As long as the height level of
the surface is constant in the longitudinal direction, the pixels
will have zero values even if their height levels are greater than
their surroundings in the transversal direction.Thus, any single
defect will be detected in two parts that must be joined. The
closing operation does this when the two parts of the defects
are close enough.

Finally, an area filter is applied to the resulting regions.
The area of a region is calculated as the count of its pixels.
During this operation all the regions whose area is less than
a minimum value are eliminated. This eliminates some of the
noise that the opening operation could not filter due to the size
of the noise region. This filter does not affect the real defects
detected because these must have their size increased because
of the closing operation.

In Figure 5 the evolution of the segmentation of a defect (a
rolled-in material) during this process is shown.

C. Selection

After segmentation, the regions obtained are treated as
potential defects. The main objective of this step is to choose
those regions which represent real defects and discard those
which represent rough textures (erroneous detections). For this
purpose each potential defect is compared with the first result
after the thresholding in the segmentation step called First
Detection. Each potential defect is dilated to get a dilated
region than contains both the defect and its environment. The
environment is the result of subtracting the pixels in the defect
from the set of pixels that defines the dilated region (1).

The relation between the number of the pixels filtered in
each environment of a potential defect, I , and the size of the
proper potential defect, D, can be used as the differentiating
value. The value of I is calculated as the cardinality of the
intersection between each environment and the first detection
produced after segmentation thresholding (2). The value of D
is the cardinality of the set of pixels that defines each defect



(3). Using these two values, all potential defects that do not
satisfy (4) are eliminated. Thus, all the potential defects which
are similar to their environment are filtered as noise.

Environment = DilatedDefect−Defect (1)

I =
∣∣∣Environment⋂FirstDetection

∣∣∣ (2)

D = |Defect| (3)

I < D (4)

In the last operation in the selection step, the value of the
pixels of each potential defect are analyzed in order to filter
erroneous detections. If each pixel, i, has its own value, p(i),
then the volume of a Defect D can be defined as (5).

V =
∑
i∈D

p(i) (5)

Using this definition of the volume of a defect, a volume filter
is designed to eliminate defects that do not reach a minimum
value of volume. This filter eliminates potential defects that
are not real defects but intensity changes in the images or
residual noise.

After this step, the retained potential defects go through
a new closing operation with the same purpose as in the
segmentation step. Due to the lack of noise in the image, the
radius of the closing operation is now larger and the parts of
a defect can be properly joined.

D. Neural Filter

At the beginning of this step, the set of selected defects
contains detections of engravings and erroneous detections,
such as scales.

Engravings, embossed characters that identify a rail, are eas-
ily classified visually. They are imperfections on the surface,
but they are needed and must not be considered as defects.
They are also different from other types of erroneous detec-
tions. That is why engravings are filtered with an independent
filter before the general filtering of erroneous detections.

Identifying an engraving automatically using a set of ad-
hoc rules would make the detection method unstable and
not automatically configurable. Because of this, a machine
learning approach for classification is used. In this paper
engravings and also erroneous detections are filtered using
neural networks.

First, a specialized neural network filters engravings and
then a second one filters the rest of erroneous detections. In
Figure 6 both engravings and erroneous detections are shown.
These regions are the targets of the neural networks.

In order to train the neural networks, 41 features are
obtained from each instance. These features are divided in
two sets [25].

The first set of features is based on the morphology of the
region. In this set there are 14 features, among them are: length
and width, center of the rectangular bounding box, both axis of
the minor ellipsis that contains the region and its orientation,
convexity, compactness, etc. This first set gives information
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Fig. 6: Erroneous defect detections. (a-b) Engravings (c-f)
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about where the defect is located and what shape it has. This
is suitable for regions that likely appear on one particular zone
of the rail as engravings that also should have a regular length
and width depending on the image acquisition.

The second set of features contains 26 features that use
the information of the gray level of the region. Features of
this set gives information about the general appearance of the
defect, as volume (5) or mean value, and also information
about how the values are located using features as correlation,
gravity center or homogeneity. This information can be useful
for differentiate some False Positive that are very similar to
some defects, specially rolled-in material.

The described set of features is the input to the neural
networks which are multilayer perceptrons such as the one
shown in Figure 7. A hyperbolic tangent is used as activation
function in hidden layer nodes (6), where matrix α and vector
b1 are the weights of the input layer and the bias respectively.

hj = tanh(

n∑
i=1

αi,jxi + b1j ), j = 1...m (6)

The values of the hidden layer are obtained using a different
activation function. This is a normalized exponential function
shown in (7) and (8), where matrix β and vector b2 are the
weight of the hidden layer and the bias respectively.
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aj =

m∑
i=1

βi,jhi + b2j , j = 1...k (7)

cl =
eal∑k
t=1 e

at
, l = 1...k (8)

The output layer is composed of k nodes. Each of these
nodes represent one class. The output of each node is the
confidence or probability of an instance belonging to that class.
Thus, the sum of the confidences of all classes must be 1. The
class with the highest confidence will be selected to classify
each instance.

The described neural networks do not get the features as
input but, rather the output of pre-processing them. To improve
performance, a Principal Component Analysis (PCA) is done
over the features in order to determinate which ones are most
relevant for the classification process. From the 41 features,
only n principal components will be used as input of the
neural networks. This n is a parameter in neural network
configuration.

E. Classification

After detection, the defects must be classified to offer
inspectors all the information they might need.

Classification is done using a neural network with the
same architecture used for neural filtering of engravings and
erroneous detections. In this case, the neural network has
as many output nodes as types of defects. Possible defect
types are: roll marks, rolled-in material, lack of material,
straightening marks, wire and others. In Figure 8 examples
of these defect types are shown.

VI. PARAMETER CONFIGURATION METHOD

The defect detection method has several parameters that
must be configured. These parameters are: median filter mask
size, segmentation threshold, opening and closing radius, min-
imum value of area filter, minimum value of volume filter and
neural network configuration.

Parameter configuration is done sequentially following the
phases of detection method shown in Figure 3. The first param-
eters of the method, corresponding to the first phase, which are
foreground extraction and segmentation, are configured with
a factorial design. The parameters of the selection phase are
configured analytically using the results of the previous phases.
The neural filter is configured using an exhaustive exploration
of the parametric space.

The classification neural network is configured using the
same method used for the neural filter. These neural networks
have two parameters: the number of nodes in the hidden layer
and the number of principal components for PCA.

A. Evaluation metric

To configure the parameters of a method, a metric to
evaluate the adequacy of the values given to the parameters
is needed. In this case the metric estimates the goodness of a
detection comparing it with a “perfect detection” which comes
from a Knowledge Base (KB). In this work, the Knowledge
Base is composed of images from 245 rails with 2017 defects
produced in a factory of ArcelorMittal over four months in
2016. These images were checked by the quality inspectors of
the company in order to assure that all defects were marked.
Knowledge Base composition is shown in Table I.

Defect Type Amount Defect Type Amount

Roll Mark 147 Straightening Marks 153
Rolled-in Material 1425 Wire 247
Lack of Material 19 Others 26

Total 2017

TABLE I: Knowledge Base Composition

Comparison is done as an intersection between detected
defects and marked defects in the Knowledge Base. If a region
of a detected defect intersects with a defect of the KB, it is
a True Positive (TP).If it does not it is a False Positive (FP).
Using the same method if a defect marked in the KB does not
intersect with any detected defect, it is a False Negative (FN).
Thus the best performance is obtained by maximizing TP and
minimizing FP and FN.

Using these values (TP, FP and FN), some metrics to
estimate the goodness of a detection can be defined. Selected
metrics must be coherent with the objectives of the system:
detect the maximum number of defects and minimize erro-
neous detections. The fulfillment level of these objectives can
be easily mapped to two metrics using TP, FP and FN values.

For the erroneous detections objective, the selected metric
is the mean of the erroneous detections per rail obtained by
processing the Knowledge Base rails.The lower the value of
this metric, the better the detection.

A similar metric cannot be used to estimate the number
of correct detections, because the metric must consider how
many defects should have been detected. Therefore, a standard
metric called Recall is used to do so. This metric is defined as
the relation between what has been detected and what should
have been detected (9). The higher the value of this metric, the
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better the detection. Other common metrics that are used in
the following sections are Precision (10) and F-Measure (11).

Recall =
TP

TP + FN
(9)

Precision =
TP

TP + FP
(10)

Fβ = (1 + β2) ∗ Precision ∗Recall
β2 ∗ Precision+Recall

(11)

Detection of all defects (Recall = 1) leads to a large num-
ber of erroneous detections (FP >> 0). Thus, a compromise
must be found. When using two metrics at the same time, it
is useful to represent them in a two dimensional plot to select
the optimum configuration.

B. Foreground Extraction and Segmentation configuration

The configuration of the parameters of these phases is done
in the same step due to their dependencies. The configuration
of foreground extraction parameters directly influence the ones
in segmentation, especially the threshold value.

The configuration of the size of the median filter must assure
that its value captures the foreground of the image but does not
filter any defects. Thus, a method to estimate an appropriate
value is to look at the maximum size of any defect which
has a radius of about 30 pixels in Knowledge Base. Based on
this information, possible values of this factor in experimental
design could be: 10, 30, 60 and 90 pixels. An extreme value
is added in order to use the whole image size as the value for
the filter.

The value of the segmentation threshold is directly related to
the images. The background of the image has been eliminated
in a previous step, so this value must represent how different
a pixel value should be to be considered as a defect. This
can be done by analyzing the distribution of pixel values in
images. For this some images are selected including head,
middle and tail rail images. Examples of density functions
of these distributions are shown in Figure 9. According to
these graphics, possible values for segmentation threshold in
the experimental design could be: 20, 25, 30, 40, 60 and
70 in order to assure that background is not retained after
thresholding.
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The value of the opening operation radius is kept as a
constant established with ad-hoc tests. The closing operation
starts working properly with radius values greater than or equal
to 3, so 3, 6 and 9 are established as values for this factor.

The area filter must eliminate noise and preserve defects
so the minimum area of the known defects must be used
to determine the possible minimum values of the area filter.
The smallest defects in the Knowledge Base is 73 pixels so
appropriate values for this factor are 75, 100, 125 and 150
pixels.

Using these values for factors, the experiment is carried
out and all possible configurations are evaluated using the
rails in the Knowledge Base. After this, a graph for all
possible configurations can be obtained representing Recall
as a function of False Positives detected in the rails of the
Knowledge Base. This graph is shown in Figure 10. It can
be seen that in order to capture approximately an 80% of
the defects detected, an overhead of nearly 3000 erroneous
detections (approximately, 1.5 times more erroneous detections
than correct detections) is needed.

From all the possible configurations, those with the max-
imum Recall value and low FP counts are selected. These
can be obtained by analyzing the effect of each factor on the
metrics. The selected configurations have a: median filter mask
size of 60, a threshold value of [25;30], a closing radius of
6 and an area filter value of [75; 100]. These configurations
also have maximum levels for F-Measure (11) using β = 1.

C. Selection Configuration

Using the regions of the images obtained from the selected
configurations in the previous step, the distribution of the
volume of True Positives and False Positives is analyzed.

In Figure 11 the cumulative distribution function is shown
for TP and FP. According to this graph, a value of 8000 for
the threshold of the volume filter should eliminate 10% of the
FPs without filtering any TPs.

D. Neural filter Configuration

After the configuration of the parameters in previous phases,
neural networks must be trained and their parameters must be
configured. To do so, an exhaustive search is performed on
their two parameters.

The number of principal components of PCA varies from 1
to 41 and the number of hidden nodes vary in the same range.
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In some studies the number of hidden nodes is selected as the
2-base logarithm of the number of training instances. As the
optimization of this factor is still an unresolved problem [26],
an exhaustive search is performed its configuration because it
is computationally viable.

Initial results showed that the training set had to be modified
to train the networks correctly. In this set, 98% of the instances
are False Positives. This leads to an optimal configuration that
classifies all instances as False Positives with a success rate
of 98%. A situation of imbalanced classes is frequent in clas-
sification problems. There are several fix methods to modify
the training set [27][28]. In this case, random undersampling
is selected to fix the problem. This method selects one from
N instances for training. In these experiments, N varies from
1 to 512. Each trained neural network is evaluated with the
K-Fold Cross Validation method using 4 folds.

The results from all configurations of the networks are
plotted in Figure 12 using True Positive and True Negative
rates as axes. Each point of the figure represents the proportion
of TP/TN classified correctly by a particular configuration of
the neural network. The large crosses mark those selected. In
this figure, several sets of points are represented for various
N values. N is the value used for the undersampling method.
Thus each combination of values of the two parameters of
the neural net is represented several times depending on the
training set used. This graph is used to select the configuration
that maximizes the TN rate for filtering erroneous detections
while keeping high enough the TP rate so as not to filter real
defects.

To select the best neural filter for engravings and false pos-
itives, all configurations are plotted so that quality inspectors
can decide which ones best fulfill their needs.

Neural Network 1

Neural Network 2

Neural Network 3

Before Neural Filter

Fig. 13: Performance of proposed configurations

These configurations are shown in Figure 13. In this figure
the initial selected configurations from Figure 10 are used. The
performance of the configurations with no neural network is
shown on the right side of the graph and the performance using
three different neural networks for filtering false positives on
the left side of the graph. The neural networks used are those
marked with large crosses in Figure 12.

Using Figure 13 as an example, the configurations marked
as blue squares are much better than the ones marked as red
rhombuses in terms of Recall but they generate more erroneous
detections (false positives). In order to select a configuration
for the system, the quality inspector must make a compromise
between the number of false positives and the Recall. Taking
this into account, the best solution proposed is the blue square
using Neural Network 3, which differs by only 0.1 from Neural
Network 1 but also detects 55 fewer erroneous detections.

The final configuration must be selected by quality in-
spectors. These systems are very sensitive to the number
of erroneous detections which is a very important value for
quality inspectors. When the system detects a defect on a rail
surface, an inspector must check the region of the rail manually
in order to confirm that defect if it exists. Each erroneous
detection leads quality inspectors to lose time and productivity.

E. Classifier Configuration

The configuration of the neural network that classifies the
defects follows the same procedure as the networks that
filter erroneous detections. From each defect 41 features are
extracted. These features are the input of a PCA whose output
is the input of the neural network. An exhaustive search is
performed to configure both the number of hidden nodes and
the number of principal components from 1 to 41.

All possible configurations are evaluated using a cross
validation method with 4 folds. As the training set has only
real defects, with no false positives, there is no need to
undersample false positives instances.

In order to select a configuration, the rates of success in the
classification of all the classes are calculated. Thus, the mean
of these rates (MSR, Mean of Success Rates) gives information
about the overall success rate without weighting the classes by
their count of instances. The configuration with the maximum
MSR value is selected.

In Figure 14 all the possible configurations are shown
using their two parameters. In this figure, the color of each



10 20 30 40

10
20

30
40

0.2

0.3

0.4

0.5

0.6

PCA Components

H
id

de
n 

N
od

es

Fig. 14: Performance of possible configurations for classifica-
tion

configuration represents the value of MSR. In this figure
several configurations with a high MSR can be seen. Most
of these configurations use a complex neural network with a
high number of hidden nodes and high number of principal
components. These complex solutions need all the information
from all features to carry out an accurate classification. How-
ever, the one selected (marked in a white rectangle), needs
much less information and gives better classification results.

The set of samples that compose the Knowledge Base can
be seen in Table I. In this set, there is one class which
has by far the largest number of samples, rolled-in material.
This situation is similar to that of FP and TP instances. In
this case, using a method like undersampling would waste
real-defect instances with the consequent loss of information.
The distribution of defect classes and the fact that there are
more than two classes, allows the use of a metric like MSR
to evaluate this neural network without undersampling. This
metric weights all classes equally, so the set of rolled-in
material instances has exactly the same weight as the set of
any other class.

VII. RESULTS

Results obtained from the selected configuration can be
validated by comparing them with the results of a commer-
cial system over the same set of rails. The set used is the
Knowledge Base.

The proposed system and the commercial system work si-
multaneously and the results of both are included in the viewer
module of the proposed system to give quality inspectors
both sets of detected defects. Table II shows the results of
processing the Knowledge Base by these two systems.

Metric Commercial System Proposed System

Detected Defects 756 946
Total Defects 2017 2017

Recall 0.3748 0.4690
FP/Rail Mean 27.10 8.86

FP/Rail Median 24 7

TABLE II: Detection Results

The metrics of False Positives must be validated with a
larger set of rails than the one in the Knowledge Base. To do
so, the whole rail production of an ArcelorMittal factory over

four months was processed. This large set contains 24,869
rails. This validation provides similar results to the ones
obtained with the Knowledge Base. In this case the value of
metrics are 10 for the FP/Rail mean and 8 for the median.

The result of the defect detection, 46% of real defects
detected, may be understood as a bad result even improving the
commercial system results , but there are two reasons because
it seems to be so low.

On the one hand, the aim of the parameter configuration
is fulfill the needs of the industry. As it has been said
before, quality inspectors loose time because of each erroneous
detection. According to this, in Figure 13 the configuration
represented by the blue square of Neural Network 3 is selected.
However, the one of Neural Network 1 could be selected de-
tecting 57.9% of the defects with a increment of 54 erroneous
detections. Without the neural filter, 63% of the defects could
be detected with an overhead of 444 defects per rail. Going
at the beginning of the configuration, in Figure 10 the same
election has been made, choosing configurations below 80%
of defect detection instead of those near 90% for prevent the
system to reach unacceptable erroneous detections rates.

On the other hand, roll-marks and rolled-in material, see
Figure 8, are frequently too smooth in the images because
of their low height or depth. This makes them difficult to
differentiate from the background. This type of defects are
part of the Knowledge Base even when distinguish them from
the background is a hard task for the quality inspectors. This
two types of defects can also be misclassified as scales, see
Figure 6, because of their similarity. In order to improve the
percent of defects detected without increasing the number of
false positives, it would be needed to clean the scales from
the surface before the inspection.

Classification evaluation can only be done by comparing the
result of the system with the real defects manually classified
by quality inspectors, which are those of the Knowledge Base.
The results of this evaluation are shown in Table III. These
results are not compared with a commercial system because
it does not provide classification of defects. As a result of
using the MSR metric to select a configuration for a neural
network, all classes with a reasonable number of instances
have an acceptable success rate.

Success Rate in Value Success Rate in Value

Global 78% Straightening marks 45%
Roll Marks 87% Wire 67%

Rolled-in Material 86% Others 44%
Lack of Material 51% Mean 63%

TABLE III: Classification Results

VIII. CONCLUSION

This paper proposes a new surface inspection system for
rails which uses images acquired with the Spectral Image
Differentiation Procedure. System parameters are configured
using a sequential method based on the phases of the detection
method. This configuration method can be automated using a



training set of rails inspected manually by quality inspectors
to compare the detections using standard metrics.

Using the configuration selected by the quality inspectors,
the proposed system detects 46.9% of the existing defects in
rails with an average overhead for quality inspectors of 10
erroneous detections per rail. These defects are classified into
6 different types with a global success rate of 78%. This value
increases to 86 % for the most common defect, which is rolled-
in material. The new system improves the results provided by
an available commercial system, which detects 37.48% of the
existing defects with an overhead of 27 erroneous detections
per rail.

The number of erroneous detections is a critical value that
can slow down the quality inspection speed of the factory
because each erroneous detection must be checked by quality
inspectors by hand. The configuration selected in this paper
gives better performance than a commercial surface inspection
system tested, detecting 9% more defects with 17 fewer
erroneous detections per rail.

Surface inspection systems are developed and sold by very
few companies, even fewer for those specifically designed
for rails. The inspection performed by rail manufacturers
depends on these commercial systems unless they develop
their own systems. This work presents an open design for
surface inspections systems that allows rail manufacturers to
easily build and configure their own systems according to
their needs in terms of real defect detection and erroneous
detections.

The systematic configuration method described in this paper
can be carried out easily by quality engineers of the manufac-
turer and is based on the user point of view of the system,
which is focused in defect detection with the least amount of
erroneous detections. In the last step of the method, quality
inspectors and engineers much reach a compromise between
the number of erroneous detections they can handle without
slowing down the production speed, and the number of real
defects detected.
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