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RESUMEN (en español) 

El sector energético está experimentando una importante transformación impulsada por la 
integración de fuentes de energía renovables, la proliferación de vehículos eléctricos (VE) y la 
evolución de las demandas de las redes eléctricas modernas. Esta tesis explora estructuras de 
mercado innovadoras y estrategias de gestión de carga para abordar estos desafíos. Se centra 
en el desarrollo de mecanismos de comercio de energía local entre pares (P2P) que gestionen 
eficazmente la generación distribuida y la carga de vehículos eléctricos, empoderando a los 
prosumidores y consumidores para que participen activamente y proporcionen servicios 
auxiliares a la red. 

La investigación presenta un marco de comercio de energía P2P que optimiza el bienestar 
social para los propietarios de vehículos eléctricos a través de un mecanismo de negociación 
de múltiples problemas y la gestión de la carga de vehículos eléctricos en tiempo real. También 
examina un modelo multiagente para el comercio de energía P2P, diseñado para maximizar los 
beneficios individuales a través de negociaciones compuestas concurrentes de uno a muchos. 
Además, el estudio explora el uso de las tecnologías blockchain y de contratos inteligentes 
para implementar sistemas automatizados de comercio de energía P2P. 

Las contribuciones clave incluyen un protocolo de negociación de múltiples problemas para la 
carga de vehículos eléctricos en redes congestionadas y un marco multiagente para el 
comercio eficiente de energía P2P. La investigación demuestra reducciones significativas en la 
sobrecarga de la red y mejora la adaptabilidad de los programas de carga a las condiciones en 
tiempo real. También destaca el potencial de blockchain para mejorar la eficiencia y la 
transparencia de las transacciones energéticas. 

El trabajo futuro se centrará en el desarrollo de estrategias complejas para servicios públicos y 
vehículos, la integración de fuentes de energía renovables, la habilitación del intercambio de 
energía entre pares y el avance de los sistemas de comercio de múltiples agentes. El estudio 
tiene como objetivo mejorar la eficiencia y la flexibilidad de los sistemas de comercio de 
energía y promover ecosistemas energéticos sostenibles y orientados a la comunidad. 

RESUMEN (en Inglés) 

The energy sector is experiencing a significant transformation driven by the integration of 
renewable energy sources, the proliferation of electric vehicles (EVs), and evolving demands of 
modern electricity grids. This thesis explores innovative market structures and load 
management strategies to address these challenges. It focuses on developing peer-to-peer 
(P2P) local energy trading mechanisms that effectively manage distributed generation and EV 
charging, empowering prosumers and consumers to actively participate and provide ancillary 
services to the grid. 



                                                                 

 

The research introduces a P2P energy trading framework that optimizes social welfare for EV 
owners through a multi-issue negotiation mechanism and real-time EV charging management. It 
also examines a multi-agent model for P2P energy trading, designed to maximize individual 
benefits through one-to-many concurrent composite negotiations. Additionally, the study 
explores the use of blockchain and smart contract technologies to implement automated P2P 
energy trading systems. 
 
Key contributions include a multi-issue negotiation protocol for EV charging in congested 
networks and a multi-agent framework for efficient P2P energy trading. The research 
demonstrates significant reductions in network overload and enhances the adaptability of 
charging schedules to real-time conditions. It also highlights the potential of blockchain to 
improve the efficiency and transparency of energy transactions. 
 
Future work will focus on developing complex strategies for utilities and vehicles, integrating 
renewable energy sources, enabling peer-to-peer energy exchange, and advancing multi-agent 
trading systems. The study aims to enhance the efficiency and flexibility of energy trading 
systems and promote sustainable, community-oriented energy ecosystems. 
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Abstract

The energy sector is experiencing a significant transformation driven by the inte-
gration of renewable energy sources, the proliferation of electric vehicles (EVs), and
evolving demands of modern electricity grids. This thesis explores innovative market
structures and load management strategies to address these challenges. It focuses on
developing peer-to-peer (P2P) local energy trading mechanisms that effectively man-
age distributed generation and EV charging, empowering prosumers and consumers to
actively participate and provide ancillary services to the grid.

The research introduces a P2P energy trading framework that optimizes social
welfare for EV owners through a multi-issue negotiation mechanism and real-time EV
charging management. It also examines a multi-agent model for P2P energy trading,
designed to maximize individual benefits through one-to-many concurrent composite
negotiations. Additionally, the study explores the use of blockchain and smart contract
technologies to implement automated P2P energy trading systems.

Key contributions include a multi-issue negotiation protocol for EV charging in
congested networks and a multi-agent framework for efficient P2P energy trading. The
research demonstrates significant reductions in network overload and enhances the
adaptability of charging schedules to real-time conditions. It also highlights the poten-
tial of blockchain to improve the efficiency and transparency of energy transactions.

Future work will focus on developing complex strategies for utilities and vehicles,
integrating renewable energy sources, enabling peer-to-peer energy exchange, and ad-
vancing multi-agent trading systems. The study aims to enhance the efficiency and
flexibility of energy trading systems and promote sustainable, community-oriented en-
ergy ecosystems.
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Chapter 1

Introduction

1.1 Background

Electrification is accelerating across all end-use sectors. Distributed energy re-
sources (DERs) like rooftop solar, battery storage, electric vehicles, and digital tech-
nologies are proliferating and transforming the landscape. According to the Interna-
tional Energy Agency (IEA), global adoption of renewables and electric vehicles has
accelerated enormously over the past decade. In 2022, renewables accounted for 30%
of power generation, up from below 20% in 2010 [1]. Electric vehicle sales exceeded
10 million in 2022, bringing their total to over 25 million vehicles globally. Meanwhile,
annual investment in battery storage tripled from 2021 to over $5 billion in 2022.

The energy sector is pivotal in reducing greenhouse gas emissions and averting
catastrophic climate change. Achieving net-zero carbon dioxide emissions globally by
2050, as targeted by the 2015 Paris Agreement, requires the rapid decarbonization and
transformation of the energy system [1]. Two major trends are enabling this clean
energy transition: (1) the proliferation of distributed and renewable energy resources;
and (2) the digitalization and smartening of energy infrastructure through advanced
sensors, controls, and data analytics.

Higher electrification and more distributed, variable generation create grid manage-
ment challenges related to peak loads, potential congestion on distribution grids, and
coordinating numerous devices. Consequently, traditional ways of operating distribu-
tion systems struggle to accommodate evolving system requirements.

Modern, smart, and expanded grids are essential for successful energy transitions.
Planning for transmission and distribution grids needs to be further aligned and inte-
grated with broad long-term planning processes by governments. New grid infrastruc-
ture often takes five to 15 years to plan, permit, and complete, compared with one to
five years for new renewables projects and less than two years for new EV charging
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infrastructure. Grid plans need to integrate inputs from long-term energy transition
plans across sectors, anticipating and enabling the growth of distributed resources, con-
necting resource-rich regions including offshore wind, and reflecting links with other
sectors including transport, buildings and industry, and fuels such as hydrogen.

Modernized distribution infrastructure and integrated planning aligned to economy-
wide deep decarbonization roadmaps are essential but lacking currently, even as clean
energy deployments accelerate. Financing and investment overhauls are key to accel-
erating and optimizing grid capacity expansion Grid development is currently falling
short of the pace needed to ensure secure, reliable, and cost-effective energy transitions.
Substantial policy and regulatory reforms are urgently needed to incentivize timely grid
upgrades enabling renewable integration while maintaining reliability [2, 3].

To address the near-term challenges of integrating high penetrations of distributed
energy resources (DERs) while avoiding grid upgrades, innovative decentralized coor-
dination strategies are emerging as a promising solution. Specifically, localized trans-
active energy systems can help harness the inherent flexibility of DERs to provide grid
services and ease constraints, without needing traditional infrastructure investments
[4].

Transactive energy (TE) transitions the power grid from a traditional centralized,
hierarchical structure to a decentralized network enabling communication between dis-
tributed energy resources. Rather than one-way, top-down dispatch, TE allows bidi-
rectional coordination between assets of all sizes - from utility-scale generation to
customer-owned solar panels or batteries. This shift encourages the proliferation of
distributed energy nodes and empowers consumers as active market participants [5].

In summary, the imperative for reinvented distribution architectures to handle two-
way power flows and orchestrate numerous assets is critical to realize deep decarboniza-
tion. This background motivates examining transactive solutions tailored to localized
coordination challenges. The thesis examines next-generation peer-to-peer energy trad-
ing platforms and technical implementation details leveraging emerging digital innova-
tions. The goal is to provide a comprehensive roadmap to realize transactive energy
markets as a key enabler of deep decarbonization.

1.2 Motivation

The energy trilemma refers to the challenge of simultaneously achieving three core
energy policy goals: energy security, energy equity, and environmental sustainability.
As countries transition to clean, low-carbon energy systems, new complexities arise in
balancing these three pillars. Potential solutions fall into two main categories: fur-
ther developing large, interconnected energy systems to enable greater coordination of
resources across regions, or alternatively, creating more localized, distributed energy
systems that can operate autonomously [6].
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Experts believe a hybrid approach incorporating both interconnected and localized
solutions will likely be needed to fully address the energy trilemma. While large grids
allow optimal dispatch of energy resources, localized systems reduce infrastructure
requirements and mitigate grid issues like congestion and voltage violations. As such,
self-managed local energy systems can serve as robust building blocks in the broader
power distribution framework.

The integration of distributed energy resources (DERs) enables new opportunities
for coordination and control at the distribution level. Additionally, employing local
market mechanisms to manage DERs and harness customer flexibility adds further
complexity in the design of distribution management systems. Consequently, innova-
tive local energy market structures are required to effectively coordinate distributed
generation and demand-side participation [7].

Local energy markets and transactive energy systems show particular promise for
enabling decarbonization, digitalization, customer empowerment, and supporting grid
stability. By applying strategies to utilize available DERs and customer flexibility,
the potential of distributed clean energy can be fully harnessed. This thesis examines
recent literature on transactive energy systems and local market solutions, focusing
specifically on peer-to-peer energy trading frameworks. The goal is to explore existing
mechanisms for local energy markets and peer-to-peer trading, identify opportunities
for further innovation, and propose new developments to advance this critical area of
localized energy system coordination.

1.3 Scope

The scope of this thesis is to research transactive energy solutions, specifically
peer-to-peer energy trading frameworks, for coordinating distributed energy resources
(DERs) and harnessing customer flexibility in distribution grids. The research aims
to explore market design mechanisms, coordination techniques, and develop innovative
models to enable local energy trading. Additionally, this thesis examines the applica-
tion of blockchain technology and multi-agent systems to advance peer-to-peer trading
platforms.

While prior work on implementing these technologies in transactive energy sys-
tems exists, detailed technical explanations for developing such frameworks are lacking.
Providing explicit implementation details and architectures for enabling peer-to-peer
energy trading comprises a key contribution and focus of this thesis.

In summary, the scope encompasses designing and technically specifying next-
generation peer-to-peer trading platforms leveraging emerging technologies to unlock
the potential of DER coordination and customer participation through localized en-
ergy markets. Forecasting methodologies are considered outside the scope, as predic-
tion techniques are largely decoupled from market clearing and trading optimization
in localized coordination frameworks.
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1.4 Approach

The approach taken in this thesis is to develop innovative market models and ne-
gotiation techniques tailored for local energy markets and peer-to-peer transactive sys-
tems. Specifically, multi-issue bargaining (See Papers 1, 2, and 4) and one-to-many
concurrent composite negotiations (See Paper 5) are implemented in a transactive en-
ergy context for the first time. These methods allow more complex trades between
distributed energy resources compared to traditional techniques.

Additionally, this thesis leverages emerging technologies including the blockchain
(See work in Papers 6,7,8, and 9) and multi-agent systems (See work in Papers 4 and
5) to enable decentralized peer-to-peer trading platforms. Detailed technical architec-
tures, frameworks, and roadmaps are provided to equip energy sector researchers and
developers to build upon these solutions for real-world deployment.

In summary, the core innovations lie in designing specialized negotiation protocols
and integrating cutting-edge decentralized technologies to unlock new localized coor-
dination models. By open-sourcing these platforms and documentation, the goal is
to catalyze further research and accelerate the adoption of transactive coordination
schemes to fully harness distributed clean energy resources.

1.5 Contributions

• Proposed a negotiation algorithm that coordinates Electric Vehicles (EVs), pro-
viding system flexibility and reducing congestion, thereby mitigating the need for
heavy investments in distribution infrastructure for EV chargers.
Paper 1 Appendix B

• Established a load coordination mechanism between active consumers and a man-
agement platform in a highly congested network, which has been successfully ap-
plied to coordinate the charging of EVs in a distribution network where building
loads represent critical loads.
Paper 2 Appendix A

• Developed a software tool that generates artificial scenarios to study the impact
of EV charging on the distribution grid, adaptable to any defined characteristics
and capable of generating the schedule of EV charging, achieving the EV load
profile.
Paper 3 Appendix B

• Collaborated in developing a multi-agent system based real-time negotiation
framework for EV charging coordination systems. The application allows each
agent (representing the aggregator/seller and EV owners/buyers) to set their
preferences and negotiate charging terms like price, energy, and time flexibility.



1.5 Contributions 5

The algorithm helps reduce overloads and improve the satisfaction of both ag-
gregators and EV owners. The proposed framework is adaptive to real-time EV
charging stations and onboard EV systems with enhancements.
Paper 4 Appendix B

• Developed a three-stage multi-agent model that optimizes individual benefits,
ensures efficient grid support, and facilitates rapid computations and communi-
cations, achieving the primary objectives of maximizing social welfare, supporting
grid balancing and congestion management at the distribution power system, and
minimizing potential delays in the trading process.
Paper 5 Appendix A

• Provided comprehensive insights about the use of blockchain technology in smart
power systems, discussed the diverse background of blockchain applications, ad-
dressed the driving factors for the adoption of blockchain in the power sector,
summarized the main aspects of blockchain technologies, explored prominent
blockchain use cases and applications in the field of smart power systems, and
discuss future challenges pertaining to the adoption of blockchain technologies in
the mainstream.
Paper 6 Appendix C

• Provided a roadmap for researchers and developers in the energy sector, address-
ing the growing trend in research on smart contract applications and the lack of
scientific articles providing detailed information on the smart contracts’ develop-
ment process, particularly in the energy domain.
Paper 7 Appendix B

• Addressed the growing energy demand due to population growth, higher pene-
tration of electric vehicles, smart appliances, and superior living standards, fa-
cilitating the emerging requirements of prosumers (producers and consumers) to
participate in the electricity market and monetize their efforts towards distributed
energy deployment, and proposing blockchain-based ledger technology as a fea-
sible solution for a unique distributed local energy market model for beneficial
energy exchanges among participants.
Paper 8 Appendix B

• Contributed to the work that highlights the potential of smart contracts to en-
able the digital green transition of the energy industry towards more sustainable
and decentralized energy systems (Transactive Energy Systems). It also ana-
lyzes policy, legal, and legislative considerations regarding the adoption of smart
contracts, highlighting issues like governance, enforceability, and adapting to ex-
ternal events beyond the contract terms.
Paper 9 Appendix B



6 Introduction

1.6 Thesis Structure

The remainder of this thesis is divided into four chapters. These chapters are:

• Chapter 2 provides a brief introduction to give broader perspective to the
Transactive Energy concepts and its relation to the Peer-to-Peer energy market.

• Chapter 3 presents a comprehensive literature review on peer to peer energy
trading covering all aspects of the domain.

• Chapter 4 introduces the proposed frameworks for peer to peer energy trading
for LV distribution networks that involves the developed algorithms, simulation
results, discussion and conclusion.

• Chapter 5 introduces blockchain and smart contracts technology. The basic
components of this technology are discussed and its useful implementations in
transactive energy systems along with the simplified technical guidelines in the
published work, are indicated.

• Chapter 6 concludes this thesis by summarizing the relevant findings drawn
from the case studies undertaken throughout the research, providing compre-
hensive conclusions, and outlining directions for future work in this field.

1.7 Publications Originating from Thesis

Fig. 1.1 illustrates the classification of the peer-reviewed publications resulting from
this thesis work. The following papers are attached to this thesis:

1.7.1 Journal Papers

1. K. Khan, I. El-Sayed and P. Arboleya, ”A Multi-Agent Framework for Co-
ordinating One-to-Many Concurrent Composite Negotiations in a Multi-Stage
Postpaid P2P Energy Trading Model,” Electric Power Systems Research, 1:16,
2024 (Submitted for Publication).

2. K. Khan, I. El-Sayed and P. Arboleya, ”Multi-Issue Negotiation EVs Charg-
ing Mechanism in Highly Congested Distribution Networks,” in IEEE Transac-
tions on Vehicular Technology, vol. 71, no. 6, pp. 5743-5754, June 2022, doi:
10.1109/TVT.2022.3175266.
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and 

Smart Contracts

Multi-Agent Systems

A Definitive Technology Stack for Development of Smart
Contracts for Energy Applications
A Real Pilot-Platform Implementation for Blockchain-
Based Peer-to-Peer Energy Trading
The Use of Block Chain Technologies in Smart Power
Systems
Smart Contract as an Enabler for the Digital Green
Transition

A Multi-Agent Framework for Coordinating One-to-Many
Concurrent Composite Negotiations in a Multi-Stage
Postpaid P2P Energy Trading Model
Realtime framework for EV charging coordination using
Multi-Agent Systems

Coordination
Mechanisms 

Price and Time-Slot Negotiation Protocol for EVs
Charging in Highly Congested Distribution Networks
Multi-Issue Negotiation EVs Charging Mechanism in
Highly Congested Distribution Networks
Artificial Scenario Generator for the Impact Study of
Electric Vehicle Charging on the Distribution Grid

Three Realms
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Figure 1.1: Classification of Publications Aligned with the Three Realms of this Thesis

1.7.2 Conference Papers

1. K. Khan, U. Cali, P. Arboleya et al., “A Definitive Technology Stack for Devel-
opment of Smart Contracts for Energy Applications,” 2023 IEEE PES General
Meeting (PESGM), pp. 1-5.

2. K. Khan, I. El-Sayed and P. Arboleya, ”Artificial Scenario Generator for the
Impact Study of Electric Vehicle Charging on the Distribution Grid,” 2021 IEEE
Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 2021, pp. 1-5,
doi: 10.1109/VPPC53923.2021.9699197.

3. K. Khan, I. El-Sayed and P. Arboleya, ”Price and Time-Slot Negotiation Pro-
tocol for EVs Charging in Highly Congested Distribution Networks,” 2020 IEEE
Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 2020, pp. 1-6,
doi: 10.1109/VPPC49601.2020.9330999.

4. I. El-Sayed, K. Khan, X. Dominguez and P. Arboleya, ”A Real Pilot-Platform
Implementation for Blockchain-Based Peer-to-Peer Energy Trading,” 2020 IEEE
Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada,
2020, pp. 1-5, doi: 10.1109/PESGM41954.2020.9281855.

5. I. El-Sayed, K. Khan and P. Arboleya, ”Realtime framework for EV charging
coordination using Multi-Agent Systems,” 2021 IEEE Vehicle Power and Propul-
sion Conference (VPPC), Gijon, Spain, 2021, pp. 1-5, doi:10.1109/VPPC53923.
2021.9699306.

http://dx.doi.org/10.1109/VPPC53923.2021.9699306
doi: 10.1109/VPPC53923.2021.9699306
http://dx.doi.org/10.1109/VPPC53923.2021.9699306
doi: 10.1109/VPPC53923.2021.9699306
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1.7.3 Book Chapter

1. K. Khan, I. El-Sayed, and P. Arboleya, “The Use of Block Chain Technologies
in Smart Power Systems,” The Encyclopedia of Power Engineering, Elsevier,
2023, Pages 478-485, ISBN 9780128232118, https://doi.org/10.1016/B978-0-12-
821204-2.00071-4.

1.8 Other Contributions from Author

Since 2020, the author has been a member of the IEEE 2418.5 Smart Contract Task
Force, operating under the IEEE Standards Association. This task force has produced
several publications through collaborative efforts, as follows:

1. Umit Cali, K. Khan et al., “Smart Contract as an Enabler for the Digital Green
Transition”, 2022 IEEE Transactive Energy Systems Conference (TESC), 2022,
pp. 1-5. doi: 10.1109/TESC53336.2022.9917261

2. Umit Cali, et al., ”Standardization of Smart Contracts for Energy Markets
and Operation,” 2022 IEEE Power & Energy Society Innovative Smart Grid
Technologies Conference (ISGT), New Orleans, LA, USA, 2022, pp. 1-5, doi:
10.1109/ISGT50606.2022.9817542.

3. D. J. Sebastian-Cardenas et al., ”Cybersecurity and Privacy Aspects of Smart
Contracts in the Energy Domain,” 2022 IEEE 1st Global Emerging Technology
Blockchain Forum: Blockchain & Beyond (iGETblockchain), Irvine, CA, USA,
2022, pp. 1-6, doi: 10.1109/iGETblockchain56591.2022.10087129.



Chapter 2

Transactive Energy and
Peer-to-Peer Energy Trading

2.1 Transactive Energy Concept and Definition

Transactive energy is not a thoroughly novel concept, it builds upon existing whole-
sale energy markets that already utilize price signals to balance supply and demand.
However, the key innovation of transactive energy is extending this concept to dis-
tribution networks [8]. Transactive Energy (TE) encourages a network environment
for decentralized energy nodes in comparison to the traditional hierarchical grid struc-
ture. TE systems expand the current concepts of wholesale transactive power systems
into retail markets with end-users equipped with intelligent Energy Management Sys-
tems (EMSs) to enable small electricity customers to have active participation in the
electricity market. TE-based power systems allow faster and two-way power flow and
communication and utilize the demand-side resources to manage the network and per-
form energy transactions in the retail markets by employing decentralized intelligent
devices and systems.

This decentralized, transactive approach confers multiple advantages compared to
conventional energy systems:

• Better utilization of grid infrastructure assets as distributed energy resources can
provide targeted grid services where needed.

• Increased consumer empowerment and satisfaction by enabling their direct par-
ticipation in energy markets.

• Reduced energy costs and improved affordability through more transparent price
signals and the ability to shift usage to lower price periods.
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• Enhanced reliability from the coordination of many flexible distributed assets to
balance supply and demand.

Among various definitions of TE have been proposed by different individuals and
organizations, the extensive definition found to be is: “A software-defined grid man-
aged via market-based incentives to ensure grid reliability and resiliency. This is done
with software applications that use economic signals and operational information to
coordinate and manage devices’ production and/or consumption of electricity in the
grid. TE describes the convergence of technologies, policies, and financial drivers in an
active prosumer market where prosumers are buildings, electric vehicles, microgrids,
VPPs or other assets” [9].

While one of the most accepted definitions is proposed by the Gridwise Architecture
Council, as follows:

”A system of economic and control mechanisms that allows the dynamic balance
of supply and demand across the entire electrical infrastructure using value as a key
operational parameter” [10].

TE system comprises several layers of market, system, control mechanism, etc.,
which maintain a dynamic equilibrium between load and generation using economic or
market-based designs to increase electric power system reliability. It uses operational
data to coordinate and manage device production and grid utilization.

2.2 Key Drivers of Transactive Energy

The motivations for employing TE systems span technological maturation, regu-
latory reform, environmental sustainability, and evolving consumer preferences - all
steering toward more decentralized, interactive, and transactive electricity systems [9].

Technological Drivers

Grid modernization through advanced sensors, automation, controls and data ana-
lytics is enabling better visibility and control of distribution systems. This allows coor-
dinated management of decentralized energy resources. Integration of diverse commu-
nication networks, artificial intelligence/machine learning based control systems, and
data analytics facilitates system-wide, real-time optimization and balancing. Inter-
operability standards also allow coordination between hardware and software systems
across the energy value chain.

Regulatory Drivers

Ongoing industry restructuring to separate generation, transmission, distribution
and retail entities provides an avenue for decentralized energy services and peer-to-peer
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transactions. Deregulation enables new customer-centric business models beyond the
traditional utility structure.

Environmental Drivers

The growth of renewable energy is driving improved integration and coordination
capabilities to balance supply variability. Transactive platforms provide better asset
utilization and system efficiency to enable sustainability.

Social Drivers

Customers are seeking more participation in energy management, trading, and shar-
ing. User-friendly interfaces and controls allow optimization of efficiency and savings.
Localized coordination solutions between electric vehicles, buildings and distribution
grids is another area of interest.

2.3 Transactive Energy System Architecture

TE applies at all levels of the grid. It consists of a layer-type structure (i.e., in-
dependent system operators (ISOs), distribution system operators (DSOs)) or even
a single customer can act as one layer), and there is an exchange of only boundary
information as communication with others, i.e., each layer has its optimization ob-
jectives. TES has various functionalities and operations in the energy transactions
mechanism. These functionalities have been divided into seven main layers [11] as
elaborately demonstrated in Fig. 2.1.

2.4 Transactive Energy Markets and P2P Transac-
tions

In the TE framework, the energy market is considered as the platform or place
that enables different entities (buyers, sellers) to trade energy through various bilateral
contracts to maintain the balance between demand and supply. Transactive energy
(TE) markets do not necessarily have to involve only peer-to-peer (P2P) transactions,
although some proponents tend to equate TE with P2P exchange. A broader and
more evolutionary approach is to consider the staged implementation of markets at
the distribution level. A distribution-level market for DERs to voluntarily provide
bid-based services to the distribution system is a transactive market. Such a market
may be a place to start with distribution-level markets because it is the simplest and
may offer the greatest source of revenues for DERs in the near term P2P transactive
exchanges are in an exploratory or infancy stage. One should note that there are TE
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The regulation and governance of TES operation is required for
transparent energy transactions
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The communication layer is required to facilitate the information
exchange using wireless and wired communication platforms.

COMMUNICATION
LAYER

Digital platform for realization of a decentralized TES operation i.e.
each participant exchange their information among themselves for
both energy and economic transactions validation.

DECENTRALISED
PLATFORM LAYER

The market layer initiates the energy transactions while
considering the energy bids to find the local optimum minimum
clearing price.

MARKET LAYER

For monitoring the operation, analyzing and storing the data
during energy transactions

SYSTEM OPERATOR
LAYER

NETWORK LAYER 

USER LAYER 

A communication and power network responsible for the dynamic
supply–demand balance

participants and their advanced hardware platforms that exchange
data with other participants using secured information system.

Figure 2.1: 7-Layer Architecture of Transactive Energy System

systems designs where the message flow does not follow a hierarchy. The flow, for
example, might be P2P. The relation between the two is further clarified later in this
section.

Transactive energy (TE) markets comprise several key components that work to-
gether to enable decentralized coordination and optimization [12]:

1. Distributed assets like solar panels, batteries, electric vehicles, and flexible loads
that can respond to external signals or remote commands to modify genera-
tion/charging or consumption behaviors. Sensors and control devices enable this
automated responsiveness.

2. Monitoring and telemetry devices like smart meters, sensors, and outage detectors
that provide visibility into localized grid conditions and communicate this data
to optimization platforms.

3. Communication networks and protocols that allow the exchange of data and sig-
nals between distributed resources, devices, and software platforms. This includes
public/private networks and internet connectivity.

4. Software-based platforms that utilize wholesale market pricing signals and grid
condition data to run algorithms and simulations to determine optimal dispatch
of distributed assets.

5. Optimization engines and applications that process the inputs and outputs from
assets, markets, and grids to coordinate devices and deliver automated, decen-
tralized grid balancing through economic signals.
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The core innovation of transactive energy is thus leveraging advanced devices, commu-
nications, software, and price signals to incentivize distributed resources to dynamically
balance localized supply and demand in a market-based manner. The collective inter-
actions of these technologies enable optimized, automated coordination of the grid
edge.

In this context, transactive energy (TE) has become a fundamental component of
the envisioned future grid. TE utilizes economic and control mechanisms to maintain a
dynamic equilibrium of supply and demand throughout the electrical system, with value
serving as a crucial operational metric. Successfully adopting this innovative concept
necessitates leveraging the inherent flexibility of the demand side to support future
energy balance and provide ancillary services at the distribution level. Consequently,
one of the critical prerequisites for TE is the effective integration of distributed energy
resources (DER) into power systems, considering both technical and economic aspects.
This requirement drives the exploration of various methods and strategies designed to
enhance the integration of DER efficiently. Expanding on the above description of the
TE system, a concise overview of notable strategies for DER integration is found in
the literature [13]. This review begins by identifying major distinctions in how DER
integration strategies are developed, their ability to meet the needs of the system or
consumers, and their awareness of network conditions. Generally, DER integration
strategies are categorized into three types: (i) uncoordinated, (ii) coordinated, and
(iii) peer-to-peer [14, 15].

2.4.1 Uncoordinated Strategies

The initial steps toward leveraging the potential of distributed energy resources
(DER) involve uncoordinated approaches that focus on individual users with DERs,
operating solely for the owner’s benefit without any collective coordination. Two preva-
lent uncoordinated approaches include:

Home Energy Management System (HEMS)

This system equips users with tools to minimize their electricity costs by optimizing
local generation, storage, and consumption. It incorporates various tariff schemes like
feed-in tariffs and time-of-use tariffs to provide economic benefits [16]. However, this
approach does not consider the broader network constraints, potentially leading to
issues like overvoltage and overloading in networks with high DER penetration.

Home Energy Management System with Operating Envelopes (HEMS-OE)

Similar to HEMS, this approach aims to reduce electricity costs but includes op-
erating envelopes that restrict DER operations to prevent negative impacts on the
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network. These envelopes are defined and published by the Distribution System Oper-
ator (DSO), who may also require visibility into the network state to effectively manage
these constraints [17].

2.4.2 Coordinated Strategies

Transitioning to more collaborative models, coordinated approaches facilitate the
orchestration of DER operations for mutual benefits between users and intermediaries
like aggregators or DSOs. This is achieved through dynamic interactions involving
control and price signals that adjust consumption and generation patterns. Such par-
ticipation often offers financial incentives to end-users. Key coordinated approaches
include:

Virtual Power Plants (VPP)

VPPs aggregate numerous DERs across different locations, coordinating them to
utilize their flexibility. Unlike microgrids, VPPs are not geographically confined, cannot
operate in isolation, and face fewer regulatory challenges, making them more adaptable
to existing frameworks [18].

Optimal Power Flow (OPF)

This approach integrates traditional OPF methods with a broader range of mar-
ket participants to optimize DER dispatch while adhering to technical and network
constraints [19].

2.4.3 Peer-to-Peer Strategies

Peer-to-peer (P2P) energy sharing concept has gained attention as a prominent al-
ternative solution in the TE frameworks [20]. Unlike the traditional systems, the P2P
scheme enables energy sharing and trading among all consumers equipped with DERs,
which converts them into active customers (prosumers) in the market by selling/buying
energy from each interconnected nodes of the network. The P2P distributed market
platforms are currently possible due to continuing advances in information and commu-
nication technology, multi-agent systems, and distributed ledger technologies such as
blockchain, which support transparent and decentralized transactions. This approach
has been further dissected and studied in depth in the following chapter as it serves
the basis of this thesis.



Chapter 3

Peer-to-Peer Energy Trading

3.1 Overview of Key Concepts

In recent years, the increase in distributed energy resources has changed energy
distribution systems. How energy is produced and consumed is changing dramatically,
with traditional consumers becoming ”prosumers” who can both produce and consume
electricity. The generation of electricity by prosumers is intermittent and difficult
to predict, as it is highly influenced by weather conditions which constantly change.
When prosumers have an electrical surplus, they have options: store it for later use,
export it to the electricity grid, or sell it directly to other consumers through peer-
to-peer (P2P) energy trading. P2P energy trading has emerged in recent years as
an alternative model where prosumers equipped with distributed energy resources can
trade and share surplus energy directly with consumers in need, for mutual financial
benefit [21]. Like the sharing models of Uber and Airbnb, P2P energy trading creates
a ”sharing economy” where underutilized energy assets are shared for cheaper than
bulk grid prices. This win-win model matches producers and consumers directly. The
potential of P2P energy trading stems from the differing generation and demand profiles
among customers. Some customers need energy at times when others have a surplus to
share, creating opportunities for mutual exchange. Additionally, in most countries the
feed-in tariff for selling excess energy back to the grid is lower than the retail price for
buying that same energy. This price differential incentivizes customers to trade peer-
to-peer before interacting separately with the grid. Moreover, declining feed-in tariffs
in the United States, United Kingdom, Australia, New Zealand, Portugal and Spain
further motivate the formation of local P2P markets as an alternative. By matching
supply and demand directly, P2P trading allows customers to capture more value from
their distributed energy resources [6].

In light of the idea outlined by some researchers [22], a P2P energy network can be
defined as follows:
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A P2P energy network can be defined as a network, in which the members of the
network can share a part of their resources (for example, renewable energy and storage
space) and information to attain certain energy-related objectives. Example of such
objectives includes renewable energy usage maximization, electricity cost reduction,
peak load shaving, and network operation and investment cost minimization. Each
member can be a provider, a receiver or both of the network resources and can directly
communicate with the rest of the peers of the network without any intervention from
a third party controller. Further, a new peer can be added to or an old peer can be
removed from the network without altering the operational structure of the system.

3.2 Benefits of P2P Energy Trading

Peer-to-peer (P2P) energy markets offer several key advantages over traditional
centralized flexibility solutions [23]:

1. The only incentive for prosumers to provide flexibility in centralized markets
is lowering energy costs. In contrast, P2P markets allow prosumers to achieve extra
profits by directly trading their excess energy with other users.

2. Centralized markets require expensive capacity reserves to account for uncer-
tainty from variable renewable generation. In P2P markets, peers with diverse tech-
nologies and locations can collectively cover uncertainty and variability at lower cost.

3. Consumers bear the costs of capacity contracts equally in centralized markets.
P2P markets attribute costs directly to the peers involved in each trade.

4. Centralized markets handle risks from load and generation variability by charg-
ing consumers extra fees. Information sharing in P2P markets allows prosumers to
collaboratively contract their supplier and manage risks more efficiently.

5. Centralized markets treat energy as a homogeneous product focused narrowly
on system operation and balancing at low cost. P2P markets recognize energy source
as a factor in consumer preferences and usage decisions.

6. Grid operation in centralized markets follows a hierarchical structure that pushes
problems upstream to be solved by the main grid. Well-designed P2P markets can solve
local grid issues cooperatively at lower cost, while also providing valuable grid services.

P2P trading better aligns market incentives, costs, risks, and preferences while
strengthening local and system-wide resilience.

3.3 Components

A P2P energy network generally consists of two layers [20]: (1) a virtual energy
trading layer and (2) a physical energy transfer layer.



3.3 Components 17

3.3.1 Virtual Layer

• Provides a secure virtual platform for participants to decide on energy trading
parameters

• Ensures equal access for all participants to the virtual platform

• Facilitates transfer of information, creation of buy/sell orders, matching orders
through a market mechanism, and financial transactions upon successful order
matching

• Essentially handles all the trading activities and financial settlements between
buyers and sellers

The main elements are explained below:

Information system

The core of any peer-to-peer (P2P) energy trading network is a sophisticated and
secure information system. This system is crucial for facilitating communication among
all participants in the energy market, integrating them into a suitable trading platform,
ensuring equal market access for all, overseeing market operations, and imposing nec-
essary restrictions on trading activities to maintain network security and reliability.
Technologies such as blockchain-based smart contracts, consortium blockchain, and
platforms like Elecbay [24] are examples of such information systems. These systems
are designed to help end-users identify the most suitable energy market for their needs
and enhance communication efficiency. A well-secured information and communica-
tion technology (ICT) environment is essential for ensuring that all trading peers have
equal access to information, protecting the privacy of traders, and ensuring the smooth
operation of the market.

Energy Management System

An Energy Management System (EMS) plays a pivotal role in peer-to-peer (P2P)
energy trading by enabling prosumers to effectively manage their energy supply and
demand. The EMS operates by accessing real-time data on a prosumer’s energy produc-
tion and consumption through a transactive meter. This information is used to create
a detailed profile of the prosumer’s energy generation and usage patterns. Based on
this profile, the EMS devises a strategic plan for bidding in the energy market, ensuring
that the prosumer secures energy at optimal prices and times.

For instance, a well-calibrated EMS for a rational prosumer would automatically
purchase energy from the microgrid market whenever the market price drops below a
pre-set maximum price threshold. This approach allows the prosumer to capitalize on
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lower prices while maintaining a steady energy supply. The EMS can also control flex-
ible loads, adjusting energy consumption in response to fluctuating market conditions
and prices. Users have the ability to customize their EMS policies according to their
specific energy needs, market trends, and available energy sources, thereby optimizing
their participation in P2P energy trading [25].

Market Operation

The information system within a peer-to-peer (P2P) network underpins the func-
tioning of market operations, which include the distribution of market resources, the
establishment of payment protocols, and a well-defined bidding structure. The primary
aim of these market operations is to facilitate an effective and efficient energy trading
experience for participants by aligning sellers’ and buyers’ orders with a high degree
of temporal precision. In this system, the energy output from each producer sets the
parameters for the maximum and minimum energy distribution. Market operations
may encompass various timeframes, each designed to ensure sufficient energy distri-
bution throughout the operational stages. Pricing mechanisms are integral to market
operations, crafted to maintain equilibrium between energy supply and demand. The
pricing strategies employed in P2P energy trading differ fundamentally from those in
conventional electricity markets, where prices often include substantial surcharges and
taxes. Given that renewable energy sources typically incur minimal marginal costs,
participants in P2P networks—known as prosumers—have the opportunity to increase
their profits by strategically setting energy prices. Nevertheless, these pricing mecha-
nisms must accurately reflect the network’s energy status, meaning that an abundance
of energy should lead to lower prices, while scarcity should drive prices up.

3.3.2 Physical Layer

• Represents the physical electricity network that enables the actual transfer of
electricity from sellers to buyers

• Could be the traditional distributed grid network maintained by the system op-
erator

• Or it could be a separate microgrid distribution network used in conjunction with
the traditional grid

• Facilitates the physical delivery of electricity once the financial settlements are
completed on the virtual layer

In essence, the virtual layer handles all the trading activities and financial aspects,
while the physical layer is the underlying electricity network that enables the physical
transfer of energy from sellers to buyers after the trading is finalized on the virtual
platform. Following are the main elements of physical layer:
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Distribution Network

The distribution network plays a crucial role in transferring physical energy be-
tween peers and managing the power flow within the system. This infrastructure is
typically provided and maintained by Distribution Network Operators (DNOs), which
are companies responsible for the ownership and operation of the cables and towers that
distribute electricity. Peer-to-peer (P2P) energy trading introduces a dynamic compo-
nent to both grid-connected and islanded microgrid systems. In grid-connected setups,
identifying the main grid’s connection points is vital for balancing energy demand
and generation. The integration of smart meters at these points enables the evalua-
tion of the P2P network’s performance, including potential energy and cost savings.
For islanded microgrids, it is imperative that participants possess sufficient generation
capacity [25]. This ensures a reliable and secure energy supply to consumers, maintain-
ing the system’s integrity and functionality. Through these mechanisms, P2P trading
enhances the efficiency and resilience of both grid-connected and islanded microgrid
systems, offering a sustainable and flexible approach to energy distribution.

Metering

To fully engage in P2P trading, it is imperative for prosumers to be outfitted with
the proper metering infrastructure. This includes not only traditional energy meters
but also transactive meters, which are sophisticated devices that enable prosumers to
make informed decisions about entering the P2P market. These decisions are based on
a thorough analysis of demand and generation data, along with an understanding of
current market conditions such as energy prices, overall demand, available generation,
and network status. Transactive meters also possess the capability to communicate
with other prosumers within the network through various communication protocols,
ensuring a cohesive and efficient trading environment [25].

Communication Infrastructure

In the context of peer-to-peer (P2P) energy trading, a critical aspect of the commu-
nication infrastructure is the ability to identify prosumers and facilitate the exchange
of information across the network. The literature presents a variety of P2P commu-
nication architectures, such as structured, unstructured, and hybrid models. Selecting
an appropriate communication architecture is essential to meet the performance crite-
ria set forth by IEEE 1547.3-2007 for the integration of Distributed Energy Resources
(DER) [26]. These criteria encompass latency, throughput, reliability, and security,
ensuring that the communication infrastructure supports efficient and secure energy
trading activities.
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3.4 Market Designs

Market design refers to the way in which various mechanisms for price formation
are interconnected to establish a comprehensive market structure. For a more gran-
ular examination of these individual mechanisms, one can refer to [27]. Fig. 3.1
presents the workflow of each of the archetypal market designs covering pre-, peri-,
and post-settlement period. Each archetypal market designs cater to specific trading
and settlement needs within energy markets. For instance, futures markets involve
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Settled after the
fact
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Figure 3.1: Six Archetypal Market Designs

advance trading with settlement adjustments based on actual performance, commonly
mirroring traditional electricity market operations. Real-time markets adjust trades
within the settlement period itself, aiming for immediate balance based on live supply
and demand. Mixed decentralized/centralized markets combine initial bilateral negoti-
ations with subsequent centralized auctions to clear any remaining imbalances. Mixed
futures/real-time markets allow for both predictive trading and real-time adjustments,
providing flexibility to correct forecasting errors. Multi-layer markets operate with mul-
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Figure 3.2: Types of Peer to Peer Energy Market Structures

tiple settlement layers, where internal market imbalances are managed by higher-level
aggregators. Lastly, markets settled after the fact are characterized by post-settlement
adjustments where trades are not made in advance but are instead settled based on
a predetermined price, simplifying the trading process but potentially increasing risk.
Each design offers different mechanisms and strategies to optimize energy trading and
management, reflecting the diverse needs and dynamics of modern energy systems.

3.5 Market Structures

Based on the level of decentralization and the method of engaging DERs in the
network, a transactive energy market can be classified into three different structures
(as presented in Fig. 3.2): (a) Full P2P market. (b) Community-manager based
P2P market and (c) Hybrid P2P market. The key difference between the three types
of market structure is that in full P2P market peers trade energy directly without
a mediator. In contrast, mediators or aggregators are needed in community-based
markets to organize the trading process. In the hybrid market, the peer can choose
whether to trade with other peers directly or through a mediator [14].

3.5.1 Full P2P Market

A fully peer-to-peer (P2P) transactive energy market architecture involves dis-
tributed energy resources owners and consumers directly negotiating and establish-
ing bilateral transactions with each other to trade or share energy, without needing
a centralized intermediary platform or authority [28]. Participants can autonomously
agree on trades based on their preferences, motivations, and negotiated terms. This
allows incorporating product differentiation criteria beyond just cost, such as valuing
local renewable generation or specific green energy attributes. A prosumer-centric P2P
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architecture for a residential community to cooperatively exchange and plan energy
usage.

3.5.2 Community Manager Based P2P Market

A centralized P2P model includes a community manager (CM) entity to oversee and
coordinate energy trading activities between peers in a defined region or community
[29]. The CM acts as an intermediary interface between local prosumers and consumers
and the wider system. Trades occur between producers and consumers internal to the
community, with the CM interfacing with external markets. The CM enables more
centralized optimization, coordination of multi-objective priorities, and collaborative
participation compared to fully decentralized exchanges.

3.5.3 Hybrid P2P Market

Fully P2P systems can have unpredictable behaviors and convergence issues that
hybrid models help mitigate through some central coordination [30]. Prosumers defin-
ing their own economic and environmental preferences in an unregulated P2P market.
However, unchecked self-interest could lead to unintended consequences like gaming
and price volatility without mechanisms to align market signals with system reliabil-
ity needs. Hybrid architectures maintaining some central roles may aid adoption [31].
Hybrid architectures allow the blending of the benefits of peer autonomy and platform-
based transactions under centralized supervision. The oversight and coordination help
manage pricing dynamics, grid integration challenges, and risk exposures.

3.6 Key Stakeholders

Peer-to-peer (P2P) energy trading requires a robust network of participants, with
a portion capable of energy production. The specific aims of P2P trading significantly
shape pricing strategies and market structures, necessitating clear definition. The type
of energy exchanged, whether electrical or thermal, is a crucial factor. In this model,
prosumers and consumers interact directly, while also engaging with platform facili-
tators, grid managers, and energy retailers, creating a dynamic ecosystem of energy
exchange.

In P2P markets, around 94% feature prosumers, while 55% include pure consumers,
46% involve central market operators, and 29% incorporate grid operators as per lit-
erature survey [27]. Additionally, these markets also host aggregators and retailers,
though pure generators appear less frequently. This participant distribution under-
scores the emphasis of P2P markets on empowering individual energy end-users with a
platform for energy trading. Moreover, the presence of diverse participants like retail-
ers, grid operators, and aggregators illustrates the varied ways in which P2P markets
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integrate into the broader energy market landscape, highlighting their diversity and
adaptability.

Entities Generating Energy

Any player capable of generating or storing energy can participate as a seller in
the local energy trading market. Typically, Distributed Energy Resources (DER) such
as Distributed Generations (DGs), Energy Storage Systems (EESs), Plug-in Hybrid
Electric Vehicles (PHEVs), utility companies, and generators, or a combination of
these entities as prosumers, energy cells, smart homes, and microgrids, can act as
producers in the market.

Traditionally, generation companies have participated in the wholesale market.
However, with the advent of Peer-to-Peer (P2P) energy trading schemes, it has be-
come more profitable for some generation companies with distributed generations to
trade directly with local consumers.

The generation company model can be represented using a quadratic cost function
as eq.(3.1), a linear marginal cost function as eq.(3.2) , and power limit constraints as
eq.(3.3) . This model assumes the company owns a single generation unit.

Quadratic Cost Function:

Ct
G = cG + lG · pt + qG · (pt)2 (3.1)

Where:

• pt is the generation power at time t

• cG, lG, and qG are constant, linear, and quadratic cost coefficients, respectively

Linear Marginal Cost Function:

M t
G = lG + 2 · pG · pt (3.2)

Power Limit Constraint:

0 ≤ pt ≤ pmax,∀t (3.3)
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Key Points:

• For renewable generation assets, the cost function can be simplified to a linear
model qG = 0.

• Renewable generation typically involves an initial installation cost cGand a linear
operation and maintenance cost lG.

• To avoid non-linearity, the quadratic cost function can be approximated by a
piece-wise cost function with several generation blocks that are expressed as equa-
tions (3.4),(3.5) and (3.6).

Piece-wise Approximation (for each time block b):

• Cost function:

Cb
G = lbG · pb (3.4)

• Marginal cost:

M b
G = lbG (3.5)

• Power limit:

0 ≤ pb ≤ pmax,∀b (3.6)

This piece-wise approximation results in a step-wise linear marginal curve, simpli-
fying the model while maintaining its essential characteristics [32].

Entities Consuming Energy

Participants in the local energy market who solely require energy are known as
buyers. These buyers can be either consumers who only consume energy or prosumers
who, at times when their energy production exceeds their needs, act as sellers. However,
when prosumers find themselves in need of additional energy, they switch roles and
become buyers within the market. Additionally, entities equipped with flexible load
capabilities, which allow for the reduction and modification of energy consumption,
also participate as buyers in the market.

Entities Generating and Consuming Energy

An increasing number of distributed generators and energy storage systems,
equipped with smart energy management systems, enable residential consumers to
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generate electricity and feed it back into the distribution system. This transforma-
tion elevates residential consumers from mere consumers to prosumers. Consequently,
prosumers are active participants in the Peer-to-Peer (P2P) energy market, capable of
producing, consuming, and providing demand response services.

The prosumer aims to minimize their energy costs formulated as in eq.(3.7) while
balancing generation, consumption, storage, and trading activities that are defined as
in eq.(3.8) [32]. A generalised model for this purpose is stipulated below:

Objective Function:

Ct
PS = αt

ToU · p+,t
P2P − βt

F iT · p−,t
P2P (3.7)

Where:

• Ct
PS is the prosumer’s energy cost at time t

• p+,t
P2P is the energy bought from the retailer

• p−,t
P2P is the energy sold to the retailer

• αt
ToU is the time-of-use tariff for buying energy

• βt
F iT is the feed-in tariff for selling energy

Energy Balance Constraint:

ht + p+,t
P2P + p−,t

P2P − ut − vt = 0, ∀t (3.8)

Where:

• ht is the prosumer’s generation at time t

• ut is the prosumer’s consumption at time t

• vt is the storage system’s charging (vt > 0) or discharging (vt < 0) amount

Key Components:

1. Generation (ht): Prosumer’s power production, typically from renewable sources.

2. Consumption (ut): Prosumer’s energy demand.

3. Energy Storage (vt): Allows for temporal shifting of energy use or sale.

4. Energy Trading (p+,t
P2P , p

−,t
P2P ): Enables buying from or selling to the retailer.
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Additional Considerations:

• Storage Constraints: Limits on charging/discharging rates and capacity.

• Network Constraints: Potential limits on energy export/import.

• Voltage Regulation: May be necessary to maintain grid stability.

• Peer-to-Peer Trading: Could be incorporated for trading with other prosumers.

Aggregator

The definition of an aggregator as an ”independent agent who combines two or
more consumers into a single purchasing unit to negotiate the purchase of electricity
from retailers” aligns with common definitions found in the literature [33]. Aggrega-
tors can also take on various roles, such as smart energy service provider scheduling
flexible energy resources, acting as local energy market operators which perform like
balance scheme management, recording of closed contracts and operational forecast, as
community manager entity to oversee and coordinate energy trading activities between
peers in a defined community or serving as energy brokers to match sellers and buyers.

Aggregators can be classified into different types based on their functions, such as
production aggregators, demand aggregators, and commercial aggregators. Each type
has specific roles and responsibilities in the energy market.

Entity Connecting to Larger Markets

In the context of Peer-to-Peer (P2P) energy markets, prosumers often face lim-
itations in achieving complete self-sufficiency through direct trades. Moreover, these
individual participants typically lack the necessary resources or scale to engage directly
with the wholesale energy market. Consequently, energy retailers continue to play a
crucial role in the P2P ecosystem. These retailers serve as intermediaries, representing
a collective of energy consumers in wholesale market transactions, thereby bridging the
gap between small-scale prosumers and large-scale energy markets.

They serve several key functions:

• Market Intermediary: Retailers purchase energy from the wholesale market and
sell it to contracted users, accommodating prosumers who aren’t self-sufficient or
lack direct wholesale market access.

• Profit Maximization: Retailers aim to maximize profits by setting retail buying
(time-of-use) and selling (feed-in tariff) prices, while managing wholesale market
trading quantities.

• Energy Balance: They balance customer generation and demand with wholesale
market trading quantities.
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• Consumer Protection: Local regulators impose price caps on retail prices, based
on wholesale prices, to ensure fair market practices and protect consumer interests
[34].

Central Market Operator

A central market operator is a single entity responsible for running the market or
platform. This role can be fulfilled by a dedicated market operator, an aggregator,
a Distribution System Operator (DSO), or a transaction server. It does not involve
multiple entities sharing this task in a decentralized manner.

While terms such as ”Transmission System Operator” (TSO) or ”system opera-
tor” (including subvariants like Independent System Operator, ISO) and ”Distribution
System Operator” (DSO) are well-defined and consistent, the term ”market opera-
tor” is less clear and varies by country. Typically, a market operator performs certain
”system” roles in the electricity market, which may include tasks usually handled by
the TSO, such as balance scheme management, recording closed contracts, operational
forecasting, market balancing, and imbalance settlement.

The tasks of a market operator can be summarized as follows [35]:

• Administration of the Bilateral Electricity Market: Managing the market
where electricity is traded bilaterally between participants.

• Imbalance Calculation: Calculating the imbalances of the balancing responsi-
ble parties based on the final daily schedule and measurements from the electricity
transmission system operator and electrical distribution system operators.

• Information Submission: Timely submission of all necessary information to
the electricity transmission system operator for the preparation of final daily
schedules for electricity purchase and sale.

• Contract Management: Keeping records of all contracts for market participa-
tion concluded with market participants.

• Balance Group Management: Keeping records of all agreements for the estab-
lishment of balance groups between market participants and the market operator.

• Daily Market Plan Preparation: Preparing a daily market plan.

• Market Participant Register: Maintaining a register of market participants.

• Balance Group Register: Maintaining a register of balance groups in the
market.

• Contract Conclusion and Balance Responsibility: Concluding purchase
and sale contracts and taking balanced responsibility for the electricity generated
by privileged producers using a feed-in tariff.
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3.7 Technical Approaches

3.7.1 Game Theory Methods

Game theory is a specialized field within applied mathematics that provides a sys-
tematic approach to analyzing and forecasting the behavior of rational agents who are
motivated by self-interest in competitive scenarios. This includes a variety of contexts
such as board games like chess, card games like poker, social dilemmas exemplified
by the prisoner’s dilemma, political processes involving coalition building, and the dy-
namics of auction markets. By applying game theory, one can deduce the most advan-
tageous strategies for the participants and predict the likely results of these strategies
when put into action [36].

In the context of electrical power systems, game theory has proven to be an effective
tool for understanding the actions of players in liberalized energy markets and for
distributing costs among these participants. Research into game-theoretic methods
for local energy exchange has highlighted a range of game types that are relevant
for managing smart energy systems efficiently. Game theory is particularly adept at
modeling the interactions between independent distributed energy resources (DERs),
each seeking to optimize their individual gains [37].

Games can be sorted into different types based on several attributes, such as the
number of players involved, the extent of information available to them, the logic
behind their rationality and behavior, the variety of strategies they can employ, and
the nature of their potential rewards. The core division within game theory, however,
revolves around the behavioral logic of the players or peers, which falls into two main
categories: cooperative games, where players work together towards a common goal,
and non-cooperative games, where each player acts independently.

Non-cooperative games

In non-cooperative games, the emphasis is on examining how multiple independent
players, who may have partially or entirely opposing interests, make strategic decisions.
The results of these games are determined by the individual actions of each player.
Importantly, these decisions are made without any communication or collaboration
between the players [20].

The resolution of a non-cooperative game is achieved through a Nash equilibrium,
which is a condition in the game where no player can enhance their payoff by altering
their actions, provided the other players’ actions remain unchanged.

Strategic Form Game Model

A strategic form game can be represented as follows [36]:



3.7 Technical Approaches 29

• Players: N = 1, 2, ..., n

• Strategy Sets: For each player i, Si is their set of possible strategies

• Strategy Profile: s = (s1, s2, ..., sn) where si ∈ Si

• Payoff Functions: Ui(s) for each player i

• The game is formally defined as: G = N, (Si)i ∈ N, (Ui)i ∈ N

Nash Equilibrium

A strategy profile s∗ = (s∗1, s
∗
2, . . . , s

∗
N ) is a Nash equilibrium if criteria in eq.(3.9)

is fulfilled i.e.:

Ui(s
∗
i , s

∗
−i) ≥ Ui(si, s

∗
−i) ∀i ∈ N, ∀si ∈ Si (3.9)

Where s∗−i represents the strategies of all players except i. Key Points:

• Each player aims to maximize their own payoff

• In a Nash equilibrium, no player can unilaterally improve their payoff

• Multiple Nash equilibria may exist, requiring further analysis for game resolution.

In the literature on non-cooperative games applied to peer-to-peer (P2P) energy
trading, several key references stand out [38]. The Stackelberg game, a strategic model
where players are divided into leaders and followers[39], is prominently used to de-
sign trading strategies within P2P markets. This game type facilitates a hierarchical
decision-making process, where the leader commits to a strategy first, followed by the
followers who adjust their strategies accordingly, aiming to reach a Stackelberg equilib-
rium where no participant has an incentive to deviate from their chosen strategy [40].
Additionally, the Nash equilibrium concept is widely applied across various studies to
determine optimal bidding strategies in P2P energy trading, demonstrating its utility
in modeling market behaviors and enhancing transaction security within smart grids
and microgrids. Furthermore, the adaptation of game-theoretic models to optimization
problems using the Nikaido–Isoda function highlights the versatility of non-cooperative
games in addressing complex issues like energy cost minimization and demand balanc-
ing [41]. These references collectively underscore the significant role of non-cooperative
game theory in advancing the operational efficiency and strategic development of P2P
energy trading systems.
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Cooperative games

Conversely, cooperative games emphasize the collaborative actions and combined
outcomes of players who have the ability to communicate and work together. The goal
is to encourage players to establish coalitions and collaborate towards a solution that
serves the common good. This category of game theory includes Nash bargaining and
coalition games. Nash bargaining is concerned with the conditions under which players
decide to cooperate, whereas coalition games focus on the formation of these groups
[42]. In these games, a value function v is used to measure the worth of a coalition
C ⊂ Nc, where Nc represents the group of players interested in forming cooperative
alliances. Therefore, the objective is to create coalitions C that maximize the value
v(C) derived from their formation.

In cooperative game theory, we can model coalition formation using the following
framework: Let Nc be the set of all players interested in forming cooperative alliances.
For any subset C ⊆ Nc, we define a characteristic function v : 2Nc → R that assigns a
real value v(C) to each possible coalition C. The value v(C) represents the worth or
utility that the coalition C can achieve by working together. The goal in these games
is to find coalitions C∗ that maximize the value function as expressed in eq.(3.10):

C∗ = arg max
C⊆Nc

v(C) (3.10)

This formulation captures the key elements:

• The set of potential cooperating players (Nc)

• The coalition value function (v)

• The objective of maximizing coalition value

It allows for analyzing different coalition structures and determining which groupings
of players can generate the most value through cooperation. The specific properties
of v will determine the incentives for coalition formation and the resulting equilibrium
outcomes [36].

In the realm of cooperative games, three primary categories stand out, each with
distinct objectives and methodologies:

Canonical Coalition Game

Canonical coalition games focus on the formation of a grand coalition involving all
players, ensuring that no player is worse off by joining. The primary goal in these
games is to assess the stability of the grand coalition and to devise methods for equi-
table distribution of the coalition’s gains among the players [42]. The core concept is
typically employed to solve these games, alongside other distribution methods such as
the Shapley value, Kernel, nucleolus, and strong epsilon-core. These games are pivotal
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in scenarios like peer-to-peer (P2P) energy trading, where they help form stable, opti-
mal cooperative groups among prosumers, maximizing their monetary benefits through
efficient energy storage management.

Coalition Formation Game

This category explores the formation and dynamics of coalitions within a network.
Coalition formation games can be static, examining the network’s coalitional structure
at a single point, or dynamic, adapting to environmental changes such as fluctuations in
player numbers or network topology. The main focus is on how coalitions are formed
and evolve over time, their structural properties, and their adaptability to changes.
These insights are crucial for forming grand coalitions among prosumers in P2P energy
trading, encouraging their participation and optimizing the trading process.

Coalitional Graph Game

Coalitional graph games utilize graphs to facilitate and optimize communication
among players. These games are essential for developing distributed algorithms that
are low in complexity but effective in building and analyzing network graphs[42]. Such
games are particularly relevant in the context of smart grids and microgrid systems,
where they aid in maximizing social welfare and achieving fair profit allocation among
all stakeholders, including distribution network operators, buyers, and sellers in the
cooperative P2P energy market.

Each of these game types plays a crucial role in enhancing cooperation and opti-
mizing outcomes in various networked systems, particularly in energy sectors and other
utilities.

A generalized mathematical representation for cooperative games, particularly in
the context of a cooperative Stackelberg game can be presented as below:

Mathematical Framework

In the cooperative Stackelberg game, the grid G and a set of prosumers N interact
within a dynamic power system. The game is defined by the following elements:

Players : The grid G acts as the leader, and the prosumers N are the followers.

Strategies :

• πg,s(t): The pricing strategy chosen by the grid to influence prosumer behavior.

• ϵn,p2p(t) and πp2p(t): The amount and price of energy that each prosumer n
decides to trade in the P2P market.
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Utilities :

• Un(t): represents the utility of prosumer n for trading energy as either a seller
or buyer.

• Cg(t): represents the net cost to the grid for engaging in energy trades with
prosumers.

Game Representation The cooperative Stackelberg game Γ can be represented
as eq.(3.11):

Γ := {(N ∪G), Un(t), Cg(t), πg,s(t), ϵn,p2p(t), πp2p(t)} (3.11)

Objective The objective of the game is to find a cooperative Stackelberg equilib-
rium where the strategies (π∗

g,s(t), ϵ
∗
n,p2p(t), πp2p(t)) satisfy the equilibrium conditions

and form a stable coalition structure. This involves:

• Ensuring that the grid’s strategy π∗
g,s(t) optimally influences the prosumers’ de-

cisions.

• Prosumers’ responses (ϵ∗n,p2p(t), πp2p(t)) are such that they maximize their utili-
ties while contributing to a stable coalition.

Equilibrium Condition The equilibrium condition can be formally stated as:

Cg(π
∗
g,s)(t) = 0

This condition implies that the optimal strategy for the grid results in zero net cost,
indicating an efficient and balanced energy trade.

This representation captures the essence of cooperative interactions within a Stack-
elberg framework, highlighting the dependencies and strategic considerations between
the grid and prosumers [40]. It provides a structured way to analyze and solve for op-
timal strategies that benefit all parties involved in the dynamic energy trading market.

3.7.2 Agent-Based Methods

Agent-Based Simulation (ABS) represents another decentralized approach, widely
recognized for its effectiveness in simulating the behavior of electricity markets. This
technique is particularly suited for extensive systems involving diverse interacting en-
tities, each with unique roles and capabilities. Within ABS, every entity is modeled
as an agent, ranging from a basic variable in a software application to a sophisticated
entity capable of a potentially limitless array of behaviors and choices.
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Agent

As per definition proposed by Pipattanasomporn et al. (2009), A group of compu-
tational entities that can operate without human intervention (Autonomous), interact
with each other (sociality), perceive and react to its environment (re-activity), and
exhibit goal-oriented behavior by taking initiatives (pro-activity) are called agents.

This agent can be software, a hardware component, or a combination of both. For
example, software agents living on the Internet. Indeed, the Internet can be viewed as
the ultimate platform for interaction among self-interested, distributed computational
entities. Such agents can be trading agents of the sort discussed above, “interface
agents” that facilitate the interaction between the user and various computational
resources (including other interface agents), game-playing agents that assist (or replace)
human players in a multiplayer game, or autonomous robots in a multi-robot setting
[43].

Environment

This refers to the place where the agent is located. An agent uses the informa-
tion sensed from the environment for decision-making. There are a few key types of
environments that agents can operate in within multi-agent systems [44]:

1. Single-agent vs multi-agent environments

2. Competitive vs collaborative environments

3. Discrete vs continuous environments

4. Deterministic vs stochastic environments

5. Static vs dynamic environments

6. Accessible vs inaccessible environments

Action

Each agent can perform an action that results in some changes in the environment.
To achieve this aim, the agent first senses parameters from the environment. Empow-
ered with this data, the agent can build up knowledge about the environment. An
agent might also use the knowledge of its neighbors. This knowledge along with the
history of the previous actions taken and the goal is fed to an inference engine which
decides on the appropriate action to be taken by the agent [45].

Consider a simulation of multiple stock trading agents competing in a stock market
environment. Each trading agent senses real-time data like stock prices, volumes,
news events etc. from the environment. The trading agent’s machine learning-based
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inference engine takes the current stock data, environment knowledge, historical trading
outcomes, shared competitor information, risk tolerance, and profit goals as inputs. It
decides the optimal trading actions to take - whether to buy, sell, or hold stocks to
maximize profits while minimizing risks.

Design Stages of MAS

The development of multi-agent systems involves adapting traditional software engi-
neering and knowledge engineering approaches to create design methodologies tailored
for specifying and designing these complex systems. Typically, the design process
consists of three main phases: conceptualization, analysis, and design [43]. In the
conceptualization phase, the problem at hand is clearly defined. The analysis phase
involves a thorough examination of the specified problem, and the insights gained from
this analysis are then used in the design phase to create the agents and determine their
communication strategies.

STEP 2

STEP 3 STEP 5

STEP 6STEP 4

DECOMPOSITION

OF TASK

MODELING

AGENT’S

INTERACTIONS

DESIGNING

ONTOLOGY
MODELLING

AGENTS

SPECIFICATION

OF REQUIREMENTS

AND KNOWLEDGE

STEP 1

SPECIFICATION

OF AGENT’S

BEHAVIOUR

Figure 3.3: Multi Agents Designing Process

The methodology depicted in Fig. 3.3, starts by specifying the system requirements
and gathering the necessary knowledge to meet those requirements. During the task
decomposition stage, the specified requirements and acquired knowledge are organized
into a hierarchy of tasks and subtasks. The next stage focuses on designing the vocabu-
lary for agent communication, known as the ontology. The task hierarchy and ontology
are then utilized in the agent modeling stage to identify a group of autonomous agents
capable of performing the required tasks. This stage results in a set of agents, each with
specific tasks assigned to them. Following the agent modeling, the interactions between
the agents must be clearly defined to ensure effective collaboration and coordination
within the multi-agent system.
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Agents in Smart Grids

In smart grids, agents are utilized to tackle various challenges such as balancing en-
ergy supply and demand, negotiating energy prices between consumers and producers,
managing energy storage in homes, and restoring energy supply. A common and useful
tool i.e. Agent-Based Simulation (ABS) which is a distributed method is utilised for
modeling dynamics of the electricity market [46]. An agent-based service introduced
for smart grids supports distributed energy storage, employing switching and energy
storage agents[47]. The switching agent manages energy load and isolates faults, while
the energy storage agent supplies energy to the grid, enhancing system efficiency and
enabling dynamic islanding for disconnected grid parts.

Another method for energy storage management is found in [48] where each energy
producer, represented by an agent with a storage device, aims to maximize profit by
analyzing price signals from other agents. This involves recording storage usage in a
unique profile and using game theory to predict future usage, thereby deciding whether
to sell or store energy.

Multi Agent System Architectures

MAS is suitable for simulating the behaviours of the multiple prosumers that be-
have autonomously to maximise their individual benefits in P2P energy sharing mech-
anisms.The architectures and models of the agents are described in a general and
abstract way to highlight the major structure, functionalities and input/output rela-
tionship.

The energy sharing system can be conceptualized as a multi-agent architecture with
three key components:

1. Agent Types

• Energy Sharing Coordinator Agent (CA)

• Prosumer Agents (PAs)

• Retailer Agent (RA)

2. Functional Models

• Pricing Model (CA)

– Function: Calculate and issue internal prices

– Input: Bids from Prosumer Agents

– Output: Market clearing price

• Decision-Making Model (PAs)

– Function: Schedule energy consumption/generation

– Output: Bids for energy trading
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– Considers: Local constraints and preferences

• Implementation Model

– Function: Govern interactions between CA and PAs

– Defines: Rules and protocols for energy exchange

– Ensures: Fair and efficient market operation

3. Interaction Flow

(a) PAs submit bids based on their decision-making model

(b) CA processes bids using the pricing model

(c) CA issues internal price signals

(d) Energy exchanges occur according to implementation model rules

(e) RA interfaces with external grid/market as needed

This structure also represented in Fig. 3.4, enables decentralized decision-making
by prosumers while maintaining coordinated energy sharing through the central agent.
The modular design allows for flexibility in implementing different pricing mechanisms,
decision strategies, and market rules within the same overall framework [49].
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Figure 3.4: A General Architecture of Multi Agent Systems for Peer-to-Peer Energy Trading

Note that consumers can be seen as a special type of prosumers who do not own
any local generation. Therefore, for convenience, both prosumers and consumers are
collectively referred as prosumers.



3.7 Technical Approaches 37

Prosumer Agent Model in P2P Energy Sharing

Agent Representation The P2P energy sharing system is composed of multiple
autonomous prosumer agents, represented as[44, 49]:

PA = {PA1, PA2, ..., PAN} (3.12)

where N is the total number of participating prosumers.

Environment Variables Each prosumer agent PAi operates within an environ-
ment εPAi

defined by four key components:

1. Internal Pricing (pinternal): Set of prices used within the P2P sharing mecha-
nism

2. Device Parameters (A): Characteristics of electrical devices, including:

• Appliances

• Energy storage systems

• Distributed generators

3. Demand Profile (D): Time-varying energy consumption patterns (e.g., daily
hot water usage)

4. Renewable Generation (Prenewable): Power output from uncontrollable re-
newable sources owned by the prosumer

Thus, the environment for each prosumer agent is formally defined as:

εPAi
= {pinternal,A,D,Prenewable} (3.13)

This environment encapsulates the input data set for the prosumer agent’s decision-
making process. The data is sourced from both external entities (e.g., the system
coordinator) and internal systems (e.g., the prosumer’s energy management system).

Prosumer Agent Decision-Making Model

The prosumer agent’s decision-making process in P2P energy sharing can be for-
mulated as an optimization problem:

Objective Function Minimize the total electricity cost over the scheduling hori-
zon:

min
x

∑

t∈T

Costt(p
internal,Prenewable,x) (3.14)
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Constraints Subject to:

f(x,A,D) = 0 (Equality constraints) (3.15)

h(x,A,D) ≤ 0 (Inequality constraints) (3.16)

Where:

• T : Set of time steps in the scheduling horizon

• x: Decision variables (operational status of controllable devices)

• pinternal: Internal electricity prices

• Prenewable: Renewable generation output

• A: Device parameters

• D: Demand profile

Action Set The prosumer agent’s action set is defined as:

ACPA = {x, ebid, [pbid]} (3.17)

Where:

• x: Control signals for controllable devices

• ebid: Energy bid (resulting load profile)

• pbid: Price bid (optional, depending on the mechanism)

This formulation captures the prosumer’s goal of minimizing electricity costs while
adhering to device constraints and user preferences. The resulting actions include
device control signals and bids for the P2P energy sharing market.

Coordinator Agent Framework

The coordinator agent plays a pivotal role in managing local energy trading and
external grid interactions. Its functions can be broken down as follows:
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Environment Variables The coordinator agent operates within an environment
defined by:

εCA = {pexternal, ebid,pbid} (3.18)

Where:

• pexternal: External electricity prices for buying/selling with the retailer

• ebid: Energy bids from prosumers

• pbid: Price bids from prosumers

Pricing Model The coordinator uses a pricing function to determine internal
trading prices:

pinternal = PricingT (p
external, ebid,pbid) (3.19)

This function is central to the efficiency and fairness of the P2P market.

Action Set The coordinator’s actions are represented as:

ACCA = {pinternal, eexchange} (3.20)

Where:

• pinternal: Internal prices issued to prosumers

• eexchange: Energy traded with the external retailer

Key Responsibilities

1. Local Market Management:

• Receive bids from prosumers

• Issue internal prices

• Facilitate energy trading within the community

2. External Grid Balancing:

• Trade with retailer to balance local energy deficits/surpluses

• Act as an intermediary between the P2P community and the wider grid

This framework enables the coordinator to efficiently manage the local energy mar-
ket while ensuring grid stability through external interactions.
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Implementation model

The implementation model defines the trading process between the coordinator
agent and prosumer agents, specifically the bidding and pricing procedures during
peer-to-peer energy sharing. Based on the number of iterations required to determine
the internal price, there are two main types of implementation: one-shot and iterative.
The implementation model may also establish additional rules for the bidding process
to enhance convergence performance or mitigate the risk of market power abuse [50].

Retailer agent

The retailer agent represents the retailer and acts as a passive agent, buying and
selling electricity to and from the energy sharing coordinator agent at pre-announced
retail and export prices. The retailer is assumed not to adopt dynamic prices associated
with wholesale market price fluctuations, consistent with current practices in many
countries.

Designing P2P energy sharing mechanisms with an active retailer adopting dynamic
prices or demand response measures remains an open question, as existing mechanisms
assume a passive retailer providing electricity at pre-announced prices. An active re-
tailer would have strong market power compared to prosumers, necessitating additional
rules to limit their power and protect prosumers’ interests. In the presented paradigm,
the coordinator negotiates with the retailer on behalf of all prosumers to balance en-
ergy within the sharing region, which is applicable to grid-connected microgrids with
a single point of common coupling [51].

Agent-based simulation (ABS) techniques are adaptable, scalable, and can model
dynamic interactions among market players as agents. These methods have been ap-
plied to various power system applications, such as electricity markets. In the literature,
agents are used to represent homes [52], neighborhoods [53], and market players in the
distribution network [54], often utilizing the Java Agent DEvelopment (JADE) frame-
work. These agent-based models aim to minimize costs, manage energy, and facilitate
energy trading within communities and among smart microgrids.

3.7.3 Auction-Based Methods

An auction is a mechanism for distributing economic resources by employing a
competitive bidding process to equilibrate demand and supply [55]. An auction is
described as a clearly established negotiation process in which the negotiation is con-
ducted through an intermediary, which may not be an actual agent but rather a set
of automated guidelines. Within an auction market, numerous buyers and sellers can
place various bids and offers to the auctioneer, who then determines a clearing price
for the commodities. Specifically, an energy auction aims to secure the most favor-
able transaction that equates demand with electricity supply at the lowest possible
cost. This auction-based method draws inspiration from the stock market, treating
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P2P electricity trading as an auction where the auctioneer sets the market clearing
price, with the flexibility of distribution depending on the bidding strategies of the
participants.

The primary categories within auction theory include the reverse auction, forward
auction, and double auction models. In a reverse auction, multiple sellers compete to
offer goods or services requested by a single buyer, whereas in a forward auction, many
buyers vie for goods or services on sale. The double auction model allows multiple
buyers to submit bids for goods or services from multiple sellers. However, the reverse
and forward auction models are generally not considered suitable for electricity trading,
which typically involves multiple sellers and buyers simultaneously [56].

Double auction mechanism

In recent times, double-auction models have become a popular method for simu-
lating the clearing of the peer-to-peer (P2P) electricity market [57, 58]. These models
serve as the mechanism for clearing the market in P2P energy trading platforms, facil-
itating the pairing of buyers and sellers interested in engaging in P2P transactions.

The peer-to-peer (P2P) energy market operates on a bid-ask system for future
energy timeslots. The process can be broken down as follows:

1. Bid and Ask Submissions

During the open market period, participants submit two types of orders:

Bids (from energy consumers):

ob,t(ζt, πb,t, εb,t, τt) (3.21)

Where:

• ζt: Consumer identifier

• πb,t: Bid price (Rs/kWh)

• εb,t: Energy quantity (kWh)

• τt: Timestamp

Asks (from prosumers):

oa,t(ρt, πa,t, εa,t, τt) (3.22)

Where:
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• ρt: Prosumer identifier

• πa,t: Ask price (Rs/kWh)

• εa,t: Energy quantity (kWh)

• τt: Timestamp

2. Order Book Formation After the market closes, orders are sorted to create the
supply and demand curves:

• Bids: Sorted in descending order of πb,t

• Asks: Sorted in ascending order of πa,t

3. Market Clearing The intersection of the bid and ask curves determines:

• Market clearing price: πp2p,t

• Market clearing volume: εp2p,t

This mechanism ensures an efficient allocation of energy resources based on partic-
ipants’ willingness to buy and sell, creating a balanced and competitive P2P energy
market.

Recent studies have applied auction methods to small-scale energy trading. For in-
stance, an auction-based strategy for allocating storage among residential communities
is suggested [57], while another work maximizes the social welfare of plug-in hybrid
electric vehicles through a localized P2P trading using an iterative double auction [59].

3.7.4 Constrained Optimization Methods

Optimization, also referred to as mathematical programming, is a systematic ap-
proach for addressing quantitative problems encountered in various domains and real-
world situations. The core objective is to identify the optimal values (x∗

1, x
∗
2, . . . , x

∗
n)

for a set of decision variables (x1, x2, . . . , xn) that affect an objective function
f(x1, x2, . . . , xn), which needs to be either minimized or maximized.

Optimization problems can be classified into several categories:

1. Continuous or discrete

2. Constrained or unconstrained

3. Stochastic or deterministic

4. Single-objective or multi-objective
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5. Linear or nonlinear

Furthermore, based on the method used to solve them, optimization problems can
be categorized as:

1. Centralized

2. Decentralized

3. Distributed

This classification framework helps in understanding and approaching different
types of optimization challenges across various fields.

Recent studies [36], particularly in the context of peer-to-peer (P2P) energy trading
within smart grids, highlight the application of both centralized and distributed opti-
mization strategies. These include methods such as linear programming, mixed-integer
linear programming, nonlinear programming, and the alternating direction method of
multipliers.

Linear Programming

Linear Programming is an optimization technique used to find the best possible
solution within a set of constraints. It can be conceptualized as follows:

1. Goal: Maximize or minimize a specific outcome

2. Decision Variables: Quantities to be determined (x)

3. Objective Function: Linear equation to be optimized (cTx)

4. Constraints: Linear inequalities or equations that limit possible solutions (Ax ≤
b)

5. Non-negativity: Decision variables must be non-negative (x ≥ 0)

The standard form of an LP problem is:

Maximize: cTx

Subject to: Ax ≤ b

x ≥ 0

Where:
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• x is the vector of decision variables

• c is the vector of coefficients in the objective function

• A is the matrix of coefficients for the constraints

• b is the vector of right-hand side values for the constraints

LP has diverse applications, including:

• Resource allocation

• Production planning

• Transportation and logistics

• Financial portfolio optimization

In a specific application [60], researchers have utilized LP to develop an innovative
multi-energy management strategy for prosumers. This approach aims to optimize
energy scheduling by leveraging the complementary nature of multi-energy demand,
potentially leading to more efficient and cost-effective energy systems.

MILP

Mixed Integer Linear Programming (MILP) is an optimization technique that in-
corporates both continuous and discrete variables within a linear framework. It can be
formulated as:

Maximize: bTx

Subject to: Ax+ s = c

x ≥ 0, s ≥ 0

x ∈ Zn (for some entries)

Where:

• x represents decision variables (some integer, some continuous)

• b, A, and c are coefficient vectors/matrices

• s is a slack variable vector

Application in P2P Energy Trading

MILP has several applications in Peer-to-Peer (P2P) energy trading systems:
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Home Energy Management

• Optimizes scheduling of local energy generation and storage

• Determines energy surplus/deficit for trading

Market Optimization

• Maximizes revenue from solar PV power

• Allocates forecasted and uncertain PV generation to flexible loads

Problem Formulation

• Linearizes non-linear and bilinear terms

• Balances time-flexible and power-flexible consumer demands [61]

This MILP approach enables efficient optimization of P2P energy trading systems,
considering both discrete decisions and continuous variables within the constraints of
linear programming.

ADMM

ADMM is an optimization algorithm for solving large-scale convex problems by
breaking them into smaller, more manageable sub-problems. It combines the benefits
of dual decomposition and augmented Lagrangian methods.

Key Features

• Decomposes complex problems into simpler sub-problems

• Enables parallel processing

• Employs augmented Lagrangian method with partial dual variable updates

Mathematical Formulation

For a problem with two objectives and variable sets:

Maximizex,z f(x) + g(z)

subject to Ax+Bz = c

x ∈ X, z ∈ Y

Where:
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• x and z are variable vectors

• f(x) and g(z) are objective functions

• A and B are parameter matrices

• c is a constraint vector

Advantages

1. Efficient for large-scale problems

2. Handles problems with separate but coupled objectives

3. Suitable for distributed optimization

ADMM iteratively solves sub-problems related to x and z, updating dual variables
to converge on a solution that satisfies the coupling constraint Ax+Bz = c.

Within the context of P2P energy trading, authors in [62] have used ADMM to find
the generalized Nash equilibrium of a noncooperative game used to derive the energy
sharing profiles of energy buildings. Adaptive penalty parameter selection is used to
improve the convergence of the standard ADMM algorithm.

Nonlinear Programming

Nonlinear Programming (NLP) is an optimization technique that addresses prob-
lems where:

• The objective function is nonlinear, and/or

• The constraints are nonlinear

NLP aims to find the optimal solution within a feasible region defined by nonlinear
equations and inequalities. It’s particularly useful for problems where linear approxi-
mations are inadequate.

General Form

A nonlinear programming problem can be expressed in the following general form:

Optimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

x ∈ X
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Where:

• f(x) is the nonlinear objective function

• gi(x) are inequality constraints

• hj(x) are equality constraints

• X is the feasible region

Application in P2P Energy Sharing

Researchers applied constrained NLP to develop an optimization algorithm with a
rolling time horizon [63]. This approach:

• Minimized energy costs in P2P energy sharing communities

• Achieved a 30% cost reduction compared to traditional P2G (Peer-to-Grid) en-
ergy trading

This example demonstrates NLP’s potential in optimizing complex energy systems
with nonlinear characteristics.

3.8 Price Formation Mechanisms

Price formation mechanism refers to the process of determining market prices. This
occurs within the framework of a market institution, which outlines the rules for com-
munications (such as bids from buyers and asks from sellers), identifies the participants
allowed to exchange these messages, and dictates the manner in which transactions are
conducted. Therefore, market institutions establish the price formation mechanisms.
A survey in [27] shows classification of price formation methods as follows:

Single Auction

In single auctions, only one group, either buyers or sellers, submits bids or offers.
This format is often used when there’s just one buyer, like in procurement auctions
where a buyer requests bids from multiple suppliers with a market operator facilitating
the process[64]. This operator could be an aggregator, a local energy operator, or a
distribution system operator.
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Double Auction

Double auction allows both buyers and sellers to submit bids and offers, reflecting
their utility and costs, respectively. Double auctions promote efficiency and learning
among participants due to their iterative nature. The two main types are the double
clock auction [65], which clears at set times, and the continuous double auction [66],
which clears constantly, similar to stock markets.

System-determined Mechanisms

Price formation through system-determined mechanisms where prices are not based
on market bids but are set by a platform operator using specific formulas or agreements.
The ”system operator” role varies, potentially being a community energy aggregator,
local retailer, or DSO. Common pricing mechanisms include uniform prices, fixed feed-
in tariffs, time-of-use pricing, fixed ratios for local renewable energy prices, demand-
based pricing formulas, and redistribution of benefits using cooperative game theory
methods like the Shapley value [67].

Negotiation-based Mechanisms

Auction-based market platforms centralize buyer and seller interactions, while a de-
centralized approach uses negotiation-based mechanisms for peer-to-peer (P2P) trans-
actions. These negotiations are often facilitated by AI software, enabling automated
bargaining between parties. This method is less structured than auctions and relies
on individual or small group offers to determine prices, supporting truly decentralized
P2P energy trades.

Equilibrium-based Mechanisms

Equilibrium-based pricing mechanisms determine prices through the interaction of
bids and offers from market participants, such as prosumers or suppliers, reaching
a balance derived from game-theoretic principles [68]. Research shows that repeated
bidding can lead to a stable price equilibrium, often using the Nash equilibrium concept,
though Cournot and Stackelberg equilibria are also applied.

These price formation mechanisms are strung together by the market design to form
a complete market.



Chapter 4

Bilateral Negotiation
Mechanisms for Peer-to-Peer
Energy Trading

4.1 Research Context

As discussed in previous chapters, there is demand for innovative transactive energy
spaces and market structures capable of effectively managing distributed generation
and EV charging. Local transactive energy markets and peer-to-peer (P2P) energy
trading have emerged as potential solutions, providing market mechanisms that enable
prosumers and consumers to actively participate, gain monetary benefits, and provide
ancillary services to the grid.

Researchers are focused on improving these solutions and introducing novel ap-
proaches using various technical methods. By developing effective strategies, the flexi-
bility of both DERs and EVs can be harnessed to support grid stability and efficiency
while accommodating the ongoing electrification trend.

Significant efforts are dedicated for developing mechanisms for regulating vehicle
charging at various levels, including coordination for vehicle-to-grid (V2G) applications
[69]. Recent studies project that by 2030, V2G applications could cover one-third of
peak hour demand [70]. Methodologies for coordination of electric vehicles include
transactive energy mechanisms, such as multi-agent systems [71], game theory ap-
proaches [72, 73], and market-based mechanisms [61, 74].Regardless of whether the
coordination of vehicles is done explicitly or implicitly, and the methodology employed
for obtaining the control signals, the aggregator is somehow able to perform this man-
agement and use the flexibility for different purposes depending on its business model.
Aggregators can use EV flexibility for various purposes, including optimizing energy



50 Bilateral Negotiation Mechanisms for Peer-to-Peer Energy Trading

costs for vehicle owners [75], providing services to energy communities [76], participat-
ing in day-ahead markets [77, 78], frequency regulation [79], balancing markets [80],
other ancillary services [81], and reducing congestion in distribution networks [82].
Decentralized user-oriented EV charging control is also a significant application [83].

In the local energy market (LEM) context, research has focused on enhancing bid-
ding strategies and market mechanisms. Distribution system operators can achieve
globally optimal DER dispatch in a decentralized manner, helping prosumers obtain op-
timal bidding curves [84, 85]. Market-clearing schemes have been developed to preserve
participant privacy by focusing on bidding parameters rather than detailed preferences
and profiles [59, 86].

P2P energy trading has been enhanced through iterative peer-matching and nego-
tiation using a ”greediness factor” [87] and asynchronous online consensus negotiation
mechanisms [88]. Retail energy brokers have been introduced to control player bidding
strategies using advanced decision-making methods [89]. Multi-step optimal bidding
strategies for autonomous agents have been developed, considering risk preferences and
expected profit [90]. Home energy management systems have been optimized from an
aggregator’s perspective [91, 92, 61, 93].

Game theory, contract theory, and auction theory have been employed to cap-
ture the dynamics of competition and cooperation in P2P energy trading markets
[94, 95, 96]. Game theoretical analyses of prosumer behavior in combinatorial auctions
with resource constraints have been conducted [97, 98], and iterative double auction
mechanisms have been used to maximize social welfare [99].

Multi-agent system (MAS) theory has been applied to energy markets, with agent-
based architectures aiming to maximize social welfare [100]. Multi-agent decision sup-
port systems have been designed to assist market players in various negotiation types
[101]. Multi-agent deep reinforcement learning has been proposed for power dispatch
optimization in systems with multiple uncertainties [102], and technical constraints
such as line loadings and losses have been considered in multi-agent distribution systems
[103]. A multi-actor-attention-critic algorithm has been developed to reduce commu-
nity costs and peak demand while addressing scalability, non-stationarity, and privacy
limitations [104].

These approaches demonstrate the diverse range of bilateral negotiation mecha-
nisms being explored for P2P energy trading in local energy markets, including game-
theoretic models, multi-agent systems, and automated negotiation techniques.

Building upon these existing approaches, this chapter focuses on two pivotal as-
pects: the development of peer-to-peer (P2P) local energy trading markets and strate-
gic infrastructure management for accommodating increasing electricity demands. Ad-
dressing the overarching research question, ’How can innovative market structures and
load management strategies mitigate the challenges posed by the evolving energy land-
scape?’ we introduce two innovative P2P energy trading frameworks designed to inte-
grate EVs seamlessly and manage infrastructure investments efficiently.

The first part of the chapter delves into a framework aimed at coordinating EV
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charging within the distribution grid, presenting technical advancements for efficient
energy distribution. The second part introduces a multi-agent-based P2P energy trad-
ing framework that not only ensures efficient grid support but also facilitates rapid
computation and communication. Through these frameworks, we explore market mech-
anisms and management techniques that empower participants, offering both monetary
benefits and ancillary services to the grid.

This chapter is organized as follows:

• Section 4.1 presents a concise review of current literature on P2P energy trading
and EV integration challenges.

• Section 4.2 provides a detailed exploration of a novel P2P energy trading frame-
work for EV charging coordination.

• Section 4.3 introduces and technically analyzes a multi-agent-based P2P energy
trading framework.

• Section 4.4 offers a comparative analysis and discussion on the implications and
benefits of the proposed solutions for the energy sector’s transformation.

• Section 4.5 examines the current limitations of the proposed frameworks and
identifies potential areas for improvement and future research.

• Section 4.6 summarizes the main contributions of the research works and con-
cludes the chapter.

By focusing on these innovative strategies, this chapter contributes to the body of
knowledge on managing energy distribution systems in the face of modern power system
challenges.

4.2 Study 1: Multi-Issue Negotiation for EV Charg-
ing in Congested Networks

4.2.1 Problem Statement

A typical European urban distribution network is selected to demonstrate the ex-
tended model and a single line diagram of which has been represented in Fig. 4.1. This
network, operated by EDP in Spain, consists of 30 power transformer stations serving
8,500 consumers. The focus is on one such station and its components.

Fig. 4.1 represents one of these power transformer stations along with its elements.
All of the power transformers are with delta-wye (grounded) configuration. There
are 4-wire 3 phase feeders (F.1, F.2,..) which connects power transformer secondary
with circuit breaker (BR1), and are protected by a set of fuses (FF1, FF2,...). Each
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Figure 4.1: European low voltage urban distribution network representing the case defined in the
problem statement.

feeder can be monitored by means of an advanced supervisor monitoring equipment
(labeled in Fig. 4.1 as MF1, MF2,...). There are around 25 buildings per power station
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distributed in around 4 feeders, where the average distance is less than 300 meters from
power transformer to the connection points. Mostly, buildings have 3 phase connections
while the end-users inside buildings (L1,...,L6) are single phase constituting unbalanced
total load. Generally, there is a set of 3 phase fuses (for instance FL4) installed for the
protection of each building. Moreover, each end-user is also protected by it own fuse
(such as FB1) and supported with advance metering infrastructure (for instance M1).

The network faces significant congestion during peak hours, limiting the addition
of new loads like EV chargers without substantial infrastructure investments. This
constraint hinders the large-scale introduction of EV chargers by Distribution System
Operators (DSOs). However, the average daily load across feeders is less than 10%,
suggesting potential for flexible load management to alleviate congestion and accom-
modate new loads.

In this case study, certain buildings represent critical loads that must be continu-
ously supplied. Electric vehicles serve as flexible loads, negotiating charging parame-
ters (price, duration, energy) with an aggregation platform. The aggregator’s role is
to manage non-supplied energy while adhering to DSO-defined physical constraints.

The challenge is to develop a multi-issue negotiation model and real-time congestion
management algorithm that can:

1. Coordinate EV charging activities

2. Balance EV charging demand satisfaction with network congestion reduction

3. Avoid critical load shedding

4. Respect all physical constraints imposed by the DSO

The goal is to achieve this coordination using only low-latency measurements at the
power transformer’s secondary, demonstrating the negotiation protocol’s capacity to
manage congestion effectively. This approach aims to optimize the network’s capacity
to adopt new loads without requiring extensive infrastructure upgrades.

As detailed in the Appendix of the thesis, to simulate realistic conditions, a load
profile of EVs at public EV chargers in the network is generated using the EV load
simulation model. This model provides a foundation for testing the proposed negoti-
ation and congestion management strategies under various scenarios of EV charging
demand [105].

4.2.2 Methodology

Overview of Multi-issue negotiation protocol

The proposed methodology introduces a novel multi-issue negotiation protocol for
coordinating electric vehicle (EV) charging in congested networks. This protocol is
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inspired by the Rubinstein Alternating Offer Protocol, a well-established bargaining
model that provides a perfect equilibrium solution to negotiation problems between
transacting agents. While this protocol has been widely applied in automated negoti-
ations across various fields, this marks its first adaptation for peer-to-platform energy
trading applications.

Key Components

a. Negotiating Agents:

The negotiation process involves two key agents: EV owners and the aggregator.
EV owners represent flexible loads in the network, seeking to charge their vehicles
efficiently and cost-effectively. The aggregator, on the other hand, plays a crucial
role in managing non-supplied energy and adhering to system constraints imposed by
the Distribution System Operator (DSO). The aggregator’s primary objective is to
coordinate EV charging activities in a way that minimizes non-supplied energy while
ensuring that all physical constraints of the network are respected. This dual-agent
system allows for a balanced negotiation that considers both the individual needs of
EV owners and the overall stability and efficiency of the distribution network.

b. Negotiation Parameters:

In this framework, the negotiation revolves around three crucial elements: Price
(Pr), Time (T ), and Energy (E), making it a novel 3D protocol. Specifically, agents
(EV owners and the aggregator) negotiate on the price per unit energy (Pr), time slots
and duration required for the charging activity (T ), and energy packets (E) needed to
achieve a certain State of Charge (SoC) level.

Negotiation Process

To initiate a charging activity, the EV charger identifies the owner and negotiates
with the aggregator on the three key parameters: price, time duration, and energy
required for charging. These negotiations are based on the parameters defined in
the EV owner’s tariff. The aggregator’s role is crucial in this process. While the
aggregator’s utility function may benefit from higher prices, its primary objective is
to minimize non-supplied energy by coordinating with EV owners. This coordination
must be achieved while adhering to all physical constraints imposed by the distribution
system operator (DSO).

Given the specific characteristics of this case study - namely, the limited number
of EVs that can connect to a feeder and the high speed of the negotiation algorithm
- the aggregator adopts a FIFO (First In, First Out) strategy. This approach means
the aggregator negotiates sequentially with EV owners as they connect to the charging
station.
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Utility Function

Throughout the negotiation process, the algorithm determines the corresponding
benefits or satisfaction levels of the agents for each potential deal. This is quantified
as a number between 0 and 1, termed as utility. Each element of the negotiation is
evaluated by its utility for the agent, which is calculated using a utility function.

Information Flow

To initiate a negotiation, both the aggregator and the EV owner specify their pref-
erences for (Pr, T,E), along with other negotiation parameters such as negotiation
rounds and deadlines, and strategies like time-dependent concessions. For simplicity,
it’s assumed that when an EV connects to a charging station, the advanced metering
infrastructure provides the aggregator with information about the EV’s current SoC.
Based on this SoC level and the forecast of building power consumption, the aggregator
determines its (Pr, T,E) preferences and adapts its negotiation strategies accordingly.

Protocol Flexibility

It’s worth noting that forecasting techniques are beyond the scope of this research,
as the prediction methodology is decoupled from the trading methodology. The pro-
posed approach is formulated independently of the prediction methodology, assuming
that the aggregator may use aggregated building consumption forecasts. The paper
does, however, consider deviations between real and forecasted consumption, as these
significantly affect the network’s capacity to allocate EVs. Furthermore, while this
study uses a FIFO strategy, the methodology’s generality allows for adaptation to
other scenarios, such as parallel negotiations. This comprehensive approach aims to
balance the needs of EV owners with the constraints of the distribution network, pro-
viding a flexible and efficient method for managing EV charging in congested urban
environments.

Utility Functions Description

The negotiation protocol employs four primary utility functions to quantify the
preferences and satisfaction levels of both EV owners and the aggregator. These func-
tions - Price, Time, Energy, and Total utility - form the backbone of the bilateral
negotiation strategies. Let’s explore each in detail.

Price Utility Function:

The negotiation process begins with both parties establishing a price window. This
window is bounded by their most favorable price (initial price PrI) and least favor-
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able price (reserved price PrR). These boundaries are set to align with each party’s
economic interests.

The aggregator’s price window is dynamic, responding to price signals in the mar-
ket. During peak hours, the aggregator sets prices to discourage EV charging, while
during periods of surplus power, prices are adjusted to encourage more EV charging,
optimizing resource utilization.

Both parties also set a minimum acceptable price utility (uPrmin
). Any offer falling

below this threshold is automatically rejected. In subsequent negotiation rounds, coun-
teroffers are made while ensuring the price utility remains above this minimum.

The price utility functions for EV owners and aggregators are defined in equations
(4.1) and (4.2) respectively. These functions calculate the utility derived from a given
price point within the negotiation range.

UEV
Pr (Pr)=

{
uEV
Prmin

+(1− uEV
Prmin

)
∣∣∣ PrEV

R −Pr

PrEV
R −PrEV

I

∣∣∣ , P rEV
I ≤ Pr ≤ PrEV

R ,

0, otherwise
(4.1)

UAG
Pr (Pr)=

{
uAG
Prmin

+(1− uAG
Prmin

)
∣∣∣ PrAG

R −Pr

PrAG
I −PrAG

R

∣∣∣ , P rAG
R ≤ Pr ≤ PrAG

I ,

0, otherwise
(4.2)

Notably, the EV owner’s utility (UEV
Pr (Pr)) is inversely related to price, while the

aggregator’s utility increases with price. The price is defined per energy packet, a
concept elaborated on later.

Time Utility Function:

EVs are treated as flexible loads to manage network constraints. The protocol
allows for discontinuous charging to prioritize critical loads (such as buildings). This
flexibility necessitates a time utility function.

Both parties define their time preferences within a range bounded by their most
preferred (initial) and least preferred (reserved) time durations [TI , TR]. The time
utility functions, defined in equations (4.3) and (4.4), calculate the utility derived from
a proposed charging time slot and duration.

UEV
T (T )=

{
uEV
Tmin

+(1− uEV
Tmin

)
∣∣∣ TEV

R −T

TEV
R −TEV

I

∣∣∣ , TEV
I ≤ T ≤ TEV

R ,

0, otherwise
(4.3)

UAG
T (T )=

{
uAG
Tmin

+(1− uAG
Tmin

)
∣∣∣ TAG

I −T

TAG
I −TAG

R

∣∣∣ , TAG
R ≤ T ≤ TAG

I ,

0, otherwise
(4.4)
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EV owners typically prefer shorter charging times, setting a small TEV
I for maxi-

mum utility. Conversely, aggregators prefer longer TAG
I to maintain flexibility in case

of sudden demand from critical loads.

Energy Utility Function:

The aggregator forecasts demand from critical loads and quantifies available power
in each time slot as the number of EVs that can be accommodated. Energy is discretized
into packets of fixed duration ∆t and amplitude based on charger capacity.

Both parties define their energy preferences as a range of acceptable energy packets
[EI , ER]. The energy utility functions, given in equations (4.5) and (4.6), calculate the
utility derived from the proposed number of energy packets.

UEV
E (E)=

{
uEV
Emin

+(1− uEV
Emin

)
∣∣∣ EEV

R −E

EEV
R −EEV

I

∣∣∣ , EEV
R ≤ E ≤ EEV

I ,

0, otherwise
(4.5)

UAG
E (E)=

{
uAG
Emin

+(1− uAG
Emin

)
∣∣∣ EAG

R −E

EAG
R −EAG

I

∣∣∣ , EAG
R ≤ E ≤ EAG

I ,

0, otherwise
(4.6)

Total Utility Function:

The individual utilities (Price, Time, and Energy) are weighted and combined to
form a total utility for each agent. These weights (wPr, wT , wE) allow agents to adjust
their preferences and make trade-offs during negotiation. The total utility, defined in
equation (4.7), is used to evaluate offers and guide decision-making throughout the
negotiation process.

Utotal(Pr, T,E)=

{
0, if any of UPr, UT , UE = 0,

wPr · UPr + wT · UT + wE · UE , otherwise
(4.7)

This comprehensive utility function framework enables a nuanced and flexible nego-
tiation process, allowing both EV owners and aggregators to balance their preferences
and constraints while working towards a mutually beneficial agreement. The utility
functions are designed to reflect the different priorities of EV owners (who prefer lower
prices and shorter charging times) and aggregators (who aim to manage network con-
straints and optimize resource utilization).
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Negotiation Process and Strategies

The multi-issue negotiation protocol incorporates sophisticated strategies to en-
hance efficiency and accelerate the negotiation process. These strategies are designed
to facilitate rapid agreement while balancing the interests of both EV owners and ag-
gregators. The two primary strategies employed are the Burst Offer Mode and Time
Dependent Concession.

Burst Offer Mode

The Burst Offer Mode is an innovative approach that allows each agent to propose
multiple concurrent offers in a single negotiation round. This strategy significantly
expedites the negotiation process by providing a range of options that all yield the
same total utility for the proposing agent while potentially meeting the preferences of
the receiving agent.

In this mode, an agent can generate a burst proposal consisting of various combina-
tions of price, time, and energy elements. Each combination in the burst satisfies the
proposing agent’s utility requirements but offers different trade-offs among the negoti-
ation elements. This approach increases the likelihood of finding a mutually acceptable
offer more quickly.

Mathematically, a burst proposal from agent A1 to agent A2 at negotiation round
r can be expressed as eq.(4.8):

BPA1→A2
r = [(Pr1, T1, E1), (Pr2, T2, E2), ...(Prn, Tn, En)]r (4.8)

Where each tuple (Pri, Ti, Ei) represents a distinct offer within the burst, all
yielding the same total utility for agent A1.

Time Dependent Concession

The Time Dependent Concession strategy introduces a dynamic element to the
negotiation process, encouraging agents to reach an agreement more swiftly. This
strategy operates on the principle that the expected utility (Uexp) of each agent should
decrease over time, creating an incentive to conclude negotiations before losing too
much potential value.

The concession in utility is calculated based on three key factors:

1. The current negotiation round (r)

2. The predetermined negotiation deadline (τ)

3. The negotiation strategy parameter (λ)
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Eq.(4.9) exhibits the formula for calculating the expected utility for the next round
is:

Ur+1
exp = Ur

exp − Ur
exp ·

( r

τ

)λ

(4.9)

This formula ensures that the expected utility decreases with each passing round, with
the rate of decrease determined by the strategy parameter λ.

The value of λ defines the nature of the concession strategy:

1. Linear concession: λ = 1

2. Conciliatory strategy: 0 < λ < 1

3. Aggressive strategy: λ > 1

In the context of EV charging negotiations, a linear concession strategy (λ = 1)
has been adopted. This choice provides a balanced approach, allowing for steady and
predictable concessions throughout the negotiation process.

The combination of burst offer mode and time dependent concession creates a dy-
namic and efficient negotiation environment. The burst offer mode increases the proba-
bility of finding a mutually acceptable solution in each round, while the time dependent
concession strategy ensures that both parties are motivated to reach an agreement be-
fore their potential utility diminishes significantly.

By employing these strategies, the protocol aims to achieve rapid, fair, and mutu-
ally beneficial agreements that satisfy the requirements of both parties while ensuring
efficient utilization of the electrical grid.

Objective Function and Constraints

The multi-issue negotiation protocol is designed to facilitate a dynamic exchange
between EV owners and aggregators, with the primary goal of maximizing total utility
for both parties. This process is governed by a well-defined objective function and
a set of critical constraints that ensure the negotiation remains within practical and
operational limits.

Objective Function

The core of the negotiation algorithm is centered around maximizing the total utility
for each agent. This objective is mathematically expressed as equation (4.10):

maximize(Utotal(Pr, T,E)) (4.10)
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Where Utotal represents the total utility, which is a function of Price (Pr), Time (T ),
and Energy (E). This objective function encapsulates the desire of both EV owners
and aggregators to achieve the most favorable outcome across all three negotiation
elements.

Constraints

The negotiation process is subject to several important constraints that reflect the
physical and operational realities of the electrical grid and charging infrastructure:

1. Grid Capacity Constraint:

PEV < Pmax
tf − Pb (4.11)

This constraint as expressed in eq.(4.11) ensures that the power allocated for EV
charging (PEV ) does not exceed the available capacity of the transformer. The
available capacity is calculated as the difference between the maximum trans-
former capacity (Pmax

tf ) and the forecasted power consumption of buildings (Pb).
This constraint is crucial for preventing grid congestion and ensuring that critical
loads (buildings) are always prioritized.

2. Charging Point Availability Constraint:

ninst
EV <= nCP (4.12)

This constraint limits the number of EVs that can charge simultaneously (ninst
EV )

to the total number of available charging points (nCP ). It reflects the physical
limitations of the charging infrastructure and prevents overbooking of charging
stations.

3. Minimum Utility Constraint:

(Utotal, UPr, UT , UE) ≥ umin (4.13)

This constraint ensures that the negotiation remains within acceptable bounds
for both parties. It stipulates that the total utility and the individual utilities
for price, time, and energy must all remain above a specified minimum threshold
(umin). This prevents either party from accepting a deal that is significantly
unfavorable in any aspect of the negotiation.

4.2.3 Implementation Details

Multi-Issue Pr-T-E Negotiation Algorithm

This section provides a detailed explanation of the algorithm’s implementation,
highlighting its key features and operational steps.
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Algorithm 1 Multi-Issue Negotiation Mechanism

Require: (PI , PR, TI , TR, EI , ER, umin, λ, τ) for EV owner and AG.

Ensure: (Pr, T,E) final price, time and energy.

1: AG prepares burst offer based on SoCinit of EV.

2: r ⇐ 0 Set A1 = EV owner & A2 = AG.

3: (Pr, T,E) := f init
A2 (SoCinit) A2 burst offer preparation.

4: if (Pr, T,E)A2 is empty then

5: Process terminated, no agreement.

6: else

7: r ⇐ r + 1 Update negotiation round.

8: Execute eq.(4.9) for both agents.

9: Update Agent1 utility UA1
exp,r

10: (Pr, T,E) := f−1
A1 (U

A1
exp,r) A1 burst offer generation.

11: UA2
x,r := fA2(Pr, T,E) A2 burst offer evaluation.

12: if (r = τ & UA2
x,r < UA2

min) then

13: Process terminated, no agreement.

14: else if (r = τ & UA2
x,r ≥ UA2

min) | UA2
x,r ≥ UA2

exp,r+1 then

15: Process terminated, agreement reached.

16: else

17: Switch EV onwer and Aggregator in A1 and A2 roles.

18: Goto line 7 to create counter-offer.

19: end if

20: end if

Initialization Phase:

• Preference Declaration: Both the EV owner and aggregator begin by declaring
their initial preferences. These preferences are crucial for setting the boundaries
of the negotiation and include:

– Price window (PrI , P rR): Defining the most and least preferred prices

– Time duration window (TI , TR): Specifying the acceptable time ranges for
charging

– Energy packets window (EI , ER): Indicating the desired range of energy to
be transferred

• Parameter Setting: Additional parameters are set to govern the negotiation pro-
cess:

– Minimum utility (umin): The lowest acceptable utility for reaching an agree-
ment

– Negotiation strategy (λ): Determines the concession rate over time
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– Negotiation deadline (τ): The maximum number of allowed negotiation
rounds

• Agent Designation: Initially, A1 is designated as the EV owner and A2 as the
aggregator. These roles alternate in subsequent rounds to ensure fairness.

• Aggregator’s Initial Strategy: The aggregator prepares a burst offer based on the
initial State of Charge (SoCinit) of the EV. This offer includes packages ranging
from 10% to 100% SoC, each with corresponding price and time values. This
pre-prepared burst offer strategy is designed to accelerate the negotiation process.

Negotiation Process:

1. First Round (r = 1):

• The EV owner initiates the negotiation by sending a request to the aggre-
gator.

• This request contains the EV owner’s most preferred (Pr, T,E) combination.

• The EV owner’s expected utility (UA1
exp,r) is set to its maximum value.

2. Offer Evaluation:

• The aggregator evaluates the EV owner’s request using its utility function:
U := f(Pr, T,E)

• The aggregator compares the calculated utility against its expected utility
(Uexp), which is initially set to 1 (maximum).

3. Counter-Offer Generation:

• If the aggregator’s utility criteria are not met, it generates a counter-offer.

• The counter-offer is created using inverse utility functions: (Pr, T,E) :=
f−1(U)

• Note: These inverse functions often involve complex optimization methods
and may return approximated results.

4. Burst Offer Strategy:

• The aggregator sends multiple concurrent proposals (burst offer) to the EV
owner.

• This strategy increases the likelihood of finding a mutually acceptable solu-
tion quickly.

5. Offer Evaluation by EV Owner:

• The EV owner evaluates each proposal in the burst offer.
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• It selects the (Pr, T,E) combination that maximizes its utility (Ux).

6. Decision Making:

• The EV owner first checks if the negotiation deadline (τ) has been exceeded.
If so, the offer is rejected, and negotiations terminate.

• If the utility from the offer is below the minimum acceptable utility (umin),
the offer is automatically rejected.

• In the final round (r = τ), the offer is accepted if the utility is equal to or
greater than umin.

• In other rounds, the utility is compared with the expected utility for the
next round (Ux, r ≥ Uexp, r + 1).

7. Concession Strategy:

• Both agents adjust their expected utility in subsequent rounds based on
their concession strategy (λ).

• This gradual reduction in expected utility encourages convergence towards
an agreement.

8. Iteration:

• The process repeats with agents alternating roles until an agreement is
reached or the deadline is met.

Utility Function Usage:

• f functions are used to evaluate incoming offers.

• f−1 functions are employed to create outgoing offers.

By incorporating burst offers, time-dependent concessions, and flexible utility evalua-
tions, the protocol aims to achieve rapid, fair, and mutually beneficial agreements in
the complex domain of EV charging coordination.

Real Time EV Charging Management

The real-time EV charging management algorithm is designed to dynamically adjust
the charging schedule of electric vehicles (EVs) in response to real-time load deviations
at the feeder level. These deviations can impact the pre-negotiated charging schedules,
as they depend on forecasted energy consumption by buildings. To address this, the
algorithm leverages the flexibility provided by EV owners during negotiations, ensuring
that the system remains balanced and efficient.
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Algorithm 2 Real Time EV Charging Manager

Require: d {PI , PR, TI , TR, EI , ER, umin, λ, τ}
Ensure: Real Time EV Charging Management.

1: for ∀t ∈ T do

2: if t = tai and CP is available then

3: {EV i owner assigned to set di}
4: Send di as input to Algorithm 1 to negotiate

5: if Negotiation is successful then

6: EV plugged = EV plugged + output(Algorithm1)

7: else

8: continue;

9: end if

10: end if

11: if PRT < PF then

12: execute eqs. (4.15), (4.16), and (4.17);

13: Disconnect EV dis
plugged(t+ 1) and update Schedule;

14: else if PRT > PF then

15: execute eq. (4.15);

16: Charge more connected EVs than planned;

17: Update Schedule;

18: else if PRT = PF then

19: continue;

20: end if

21: Evaluate EV plugged;

22: if Ei = Eneg and Ti = Tneg then

23: EV charged = EV charged + EV i;

24: tdi = t and update Schedule;

25: end if

26: if Ei = Eneg and Ti < Tneg then

27: Disconnect electrically;

28: end if

29: if Ei < Eneg and Ti = Tneg then

30: Penalize Aggregator and repeat line 25;

31: end if

32: t = t+ 1;

33: end for

Algorithm Overview:

1. Monitoring and Initialization:

• At each time instant t, the algorithm checks for the arrival of EVs at any
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available charging stations (CP ).

• For each arriving vehicle i at time tai , the EV owner specifies initial param-
eter settings, which are recorded in a dataset labeled di.

• This dataset di is then passed to the negotiation algorithm to begin the
negotiation process.

2. Negotiation and Update:

• Upon successful negotiation, the list of plugged-in EVs (EV plugged) is up-
dated with the negotiated parameters (Pr, T,E) for the ith EV.

• The algorithm accounts for potential deviations from closed negotiations
due to real-time changes.

3. Objective Function:

• The primary goal formulated as eq.(4.14) is to minimize the deviation
∆Ptotal(t) between real-time power capacity (PRT ) and forecasted power
capacity (PF ) at time t.

minimize(∆Ptotal(t)) (4.14)

• This deviation is caused by unexpected changes in critical loads (e.g., build-
ings) and is managed by adjusting flexible loads (EVs).

4. Control Equations:

• Disconnecting EVs: If a negative deviation is observed, the number of EVs
to be disconnected (ndis

EV (t)) is calculated using eq.(4.15):

ndis
EV (t) = nF

EV (t)− nRT
EV (t) (4.15)

Here, nF
EV (t) is the forecasted number of EVs, and nRT

EV (t) is the real-time
capacity.

• Sorting EVs: EVs are sorted based on their remaining time (Ti(left)
) and

energy (Ei(left)
) required for charging:

EV sort
plugged(t) = sort(Ei(left)

/Ti(left)
) (4.16)

• Disconnecting Strategy: The top ndis
EV (t) EVs from the sorted list are dis-

connected:

EV dis
plugged(t+ 1) = EV sort

plugged(t)[1 : ndis
EV (t)] (4.17)

5. Handling Positive Deviations:
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• If a positive deviation is observed, more EVs are connected using the reverse
order of the sorted list, prioritizing those with less remaining time relative
to energy.

6. Ongoing Evaluation:

• The algorithm continuously evaluates the charging process of currently con-
nected EVs, updating the schedule as needed. Three scenarios are consid-
ered:

(a) Completion Within Time: EV completes charging within the negotiated
time and departs, updating the schedule.

(b) Early Completion: EV completes charging early and is disconnected,
with a penalty if it stays beyond the negotiated time.

(c) Incomplete Charging: If the EV is not fully charged by the negotiated
time, it is disconnected, and the aggregator is penalized for the shortfall.

This real-time management algorithm ensures that the charging schedule remains
adaptable and responsive to real-time conditions, optimizing the use of available re-
sources while maintaining system stability. By dynamically adjusting to deviations and
leveraging the flexibility of EVs, the algorithm effectively balances the needs of both
EV owners and the grid infrastructure.

Simulation Set-up

To evaluate the efficacy of our proposed model, we conducted a comprehensive case
study based on the network configuration detailed in Section 2. Our aim was to assess
the algorithm’s performance using real-world datasets, providing a robust and realistic
testing environment.

• Network Configuration and Load Profiles: We simulated a network com-
prising 7 buildings, each housing 30 households. The load curves for these con-
sumers were generated using authentic data from the ADRES-CONCEPT dataset
[ADRES2010]. This approach ensured that our baseline load profiles accurately
reflected real-world energy consumption patterns.

• Introduction of EV Chargers: To simulate the challenges of EV integration,
we introduced EV charger loads into the network. This addition allowed us to ob-
serve and quantify the congestion issues arising from uncoordinated EV charging,
providing a clear baseline for comparison with our coordinated approach.

• Implementation of Negotiation Protocol: We then applied our proposed
multi-issue negotiation protocol to coordinate EV charging within the network.
This was complemented by a real-time management algorithm designed to han-
dle any deviations from predicted loads, ensuring the system’s responsiveness to
dynamic conditions.
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• Simulation Environment: The entire simulation was developed and executed
using MATLAB R2019b. We utilized MATLAB’s object-oriented programming
capabilities, implementing Classes to emulate the interactions between EVs and
the Aggregator. This approach allowed for a more realistic representation of the
negotiation process and system dynamics.

• EV Load Profile Generation: To create a diverse and realistic set of EV charg-
ing scenarios, we employed the EV load simulation model presented in [105]. This
model generated a set of 100 EV charging profiles, each with unique characteris-
tics:

1. Battery Capacity: Randomly assigned within the range [22, 32, 40, 60] kWh,
reflecting the variety of EV models in the market.

2. Charging Power: A constant 7 kW charging power was assumed across
all 10 public chargers (CP ) in the network, simplifying the model while
maintaining realism.

3. Waiting Time: To simulate varying user behaviors and preferences, we as-
signed random waiting times to each EV, ranging from 5 to 30 minutes.
This feature captures the realistic scenario where EV owners have different
levels of patience and flexibility when faced with system congestion.

4. Arrival and Departure Times: These were generated to reflect typical usage
patterns of public charging stations.

5. Initial State of Charge: Varied for each EV to simulate different charging
needs.

This comprehensive simulation setup allows us to test our negotiation protocol and
management algorithm under conditions that closely mimic real-world scenarios. By
incorporating authentic load profiles, diverse EV characteristics, and dynamic waiting
times, we can assess the model’s effectiveness in managing network congestion and
coordinating EV charging in a practical, scalable manner.

4.2.4 Key Findings and Analysis

Simulation Results

The simulation results demonstrate the effectiveness of our proposed multi-issue
negotiation algorithm and real-time management model in addressing congestion issues
caused by uncoordinated EV charging. We present a detailed analysis of the network’s
performance before and after implementing our model.

• Uncoordinated EV Charging Scenario: Fig. 4.2a illustrates the initial sce-
nario where uncoordinated EV charging leads to network congestion:

– The red dotted line represents the transformer’s maximum capacity.
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Figure 4.2: Performance of the system before and after applying the multi-issue negotiation algorithm
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Figure 4.3: EV Charging before and after negotiations

– The grey curve shows the total EV charging consumption over time.

– The blue curve indicates the critical load (power consumption by buildings).

– The black curve represents the combined load of critical loads and EV charg-
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Figure 4.4: Achieved Satisfaction levels

ing.

Notably, the combined load exceeds the transformer’s maximum capacity, par-
ticularly during morning and evening peak hours, indicating severe congestion.

• Implementation of Proposed Model: To resolve this congestion, we applied
our multi-issue negotiation algorithm with the following initial parameters:

– Aggregator price range: [10, 200] price units

– EV owners’ initial price range: [5, 75] units

– EV owners’ final price range: [125, 200] units

– Maximum negotiation rounds (τ): 50

– Strategy parameter (λ): 1

Time duration [TI , TR] and energy packet [EI , ER] windows were defined based
on EV state of charge requirements and the aggregator’s assessment of critical
load forecast and transformer capacity.

• Results After Implementation: Fig. 4.2b shows the results after implement-
ing our model:
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– Congestion is effectively removed from the feeder.

– The combined load remains within the transformer’s capacity limits.

• Detailed EV Charging Analysis: Fig. 4.3 provides a comparative view of
EV charging patterns before and after model implementation:

– 52% of EVs successfully negotiated and charged (represented by blue lines).

– 48% of EVs couldn’t charge due to various reasons:

– 2% failed negotiations

– 46% left due to unavailability of chargers

– 3% were insufficiently charged due to real-time load deviations (resulting in
penalties for the aggregator)

The graph extends beyond 24 hours to account for charging periods starting at
midnight and continuing into the next day.

• Satisfaction Levels and Utility Analysis: Fig. 4.4 illustrates the satisfaction
levels of EV owners and Aggregator in terms of price, time, energy, and total
utility:

– Boxes represent the range of utilities achieved.

– Marks indicate the average utility received.

• Key observations:

1. EV owners showed significant flexibility in energy utility, contributing to
network load management.

2. This flexibility was compensated with higher time and price utilities.

3. Overall, EV owners achieved a high satisfaction level of 70%.

4. The aggregator provided great flexibility in price utility while achieving
higher time and energy utilities.

• System Stress Test: It’s important to note that this scenario represents a
highly congested network, where even critical loads alone occasionally exceed the
transformer’s rated power. This extreme case was deliberately chosen to stress-
test the system and evaluate its performance under challenging conditions.

The results demonstrate that our proposed model effectively utilizes EV flexibility to
alleviate network congestion while maintaining a high level of satisfaction for both EV
owners and the aggregator. This balanced approach ensures efficient grid management
without compromising user experience, showcasing the potential of our multi-issue
negotiation protocol in real-world applications.



4.2 Study 1: Multi-Issue Negotiation for EV Charging in Congested Networks 71

A B C D
0

5

10

15

20

O
ve

rl
oa

d 
R

ed
uc

ti
on

 (
%

 o
f 

To
ta

l C
ap

ac
ity

 2
70

 k
W

)

Case Studies
Figure 4.5: Overload Reduction Achieved in Case studies A,B,C,D

Case Studies

To thoroughly evaluate the performance of our proposed multi-issue negotiation
algorithm and real-time management model, we conducted an extensive set of sim-
ulations across various scenarios. These simulations were categorized into four main
case studies (A, B, C, D), each with five sub-cases, allowing us to assess the model’s
effectiveness under different conditions.

Base Scenario: Our base scenario consisted of 7 buildings with 30 households
each, 10 EV chargers, and 100 EVs arriving throughout the day. This setup repre-
sented a highly congested network where even critical loads occasionally exceeded the
transformer’s rated power.

Case Studies Overview:

1. Case A: Varied building load profiles

2. Case B: Varied number of EVs (40, 50, 60, 80, 100)
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Figure 4.6: Number of EVs Charged Achieved in Case studies A,B,C,D

3. Case C: Varied number of charging points (5, 7, 10, 12, 15)

4. Case D: Varied EV preferences (energy, price, time)

Key Performance Metrics:

1. Overload Reduction: Percentage reduction in network overload relative to total
capacity.

2. EV Charging Success Rate: Percentage of EVs successfully charged out of total
arrivals.

Results Analysis:

1. Case A - Impact of Building Load Profiles:

• Peak powers at mid-day ranged from 201 to 250 kW

• Peak powers at noon ranged from 197 to 267 kW
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• EV charging success rate remained consistent at around 60%

• Overload reduction varied significantly from 2% to 12%

Insight: The algorithm demonstrated robustness in maintaining a consistent EV
charging rate despite variations in building loads, though overload reduction ef-
fectiveness varied.

2. Case B - Impact of EV Numbers:

• EV charging success rate decreased from 80% to 50% as EV numbers in-
creased

• Maximum overload reduction (20%) achieved with the highest number of
EVs

Insight: Interestingly, more EVs led to better overall charging success due to
increased likelihood of arrivals during off-peak times. This showcases the algo-
rithm’s ability to efficiently utilize available capacity.

3. Case C - Impact of Charging Points:

• Increasing charging points from 5 to 15 did not substantially increase charg-
ing success or overload reduction

Insight: In highly congested networks, simply adding charging points is not an
effective solution. This underscores the importance of intelligent scheduling and
negotiation.

4. Case D - Impact of EV Preferences:

• EV charging success rate remained relatively stable

• Overload reduction varied significantly from 5% to 17%

Insight: EV preferences, especially price sensitivity, significantly impacted the
negotiation success and consequently the system’s ability to manage overload.

Across all scenarios, our model demonstrated:

1. Consistent ability to maintain EV charging services even under varying loads and
constraints.

2. Significant reductions in network overload, ranging from 2% to 20% depending
on conditions.

3. Adaptability to different EV numbers and preferences, showcasing the robustness
of the negotiation protocol.
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These comprehensive case studies validate the effectiveness of our multi-issue nego-
tiation algorithm in managing EV charging in congested networks. The model shows
particular strength in:

1. Maintaining consistent charging services across varied scenarios.

2. Significantly reducing network overload, especially in high-congestion situations.

3. Adapting to different EV preferences and network conditions.

The results highlight the importance of intelligent negotiation and scheduling in EV
charging management, demonstrating that our approach can effectively balance grid
constraints with user needs across a wide range of realistic scenarios.

This work was extended under the collaboration, to a multi-agent system based
real-time negotiation framework for EV charging coordination systems [106]. The ap-
plication allows each agent (representing the aggregator/seller and EV owners/buyers)
to set their preferences and negotiate charging terms like price, energy, and time flex-
ibility. The algorithm helps reduce overloads and improve the satisfaction of both
aggregators and EV owners. The proposed framework is adaptive to real-time EV
charging stations and onboard EV systems with enhancements.

4.3 Study 2: A Multi-Agent Framework for Coordi-
nating One-to-Many Concurrent Composite Ne-
gotiations in a Multi-Stage Postpaid P2P Energy
Trading Model

4.3.1 Problem Statement

In the context of evolving urban distribution networks, we focus on a microcosm
of a typical local community to address the challenges and opportunities presented by
peer-to-peer (P2P) energy trading. This section outlines the physical infrastructure,
key stakeholders, and the overarching problem we aim to solve through our proposed
energy market model.

Network Infrastructure

Our study centers on a small unit of an urban distribution network, representative
of a local community. The core components of this network include:

1. Power Transformer: The central node of our local grid.
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2. 4-wire 3-phase Feeders: Connected to the transformer’s secondary, protected by
a circuit breaker (BR1) as represented in Fig. 4.7.

3. Advanced Monitoring Equipment: Each feeder is equipped with supervisor mon-
itoring devices (labeled in Fig. 4.7 as MF1), enabling real-time data collection
and analysis.

4. Smart Meters: Every end-user is outfitted with advanced metering infrastruc-
ture (M1,M2,M3, etc.), facilitating precise energy consumption and production
measurements.
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Stakeholders

1. End-users: Comprising both traditional consumers and prosumers. Prosumers
are equipped with Distributed Energy Resources (DERs) such as solar panels,
electric vehicles (EVs), and batteries, capable of both consuming and producing
energy.

2. Utility: An overseeing entity responsible for managing energy imbalances and
serving as a backup system. The utility employs dynamic pricing schemes to
incentivize optimal energy consumption and injection patterns.

Problem Definition

The primary challenge we address is the efficient integration of prosumers and their
DERs into the existing distribution network through a P2P energy trading framework.
Specifically, we aim to:

1. Develop a robust energy market model that facilitates direct energy transactions
between prosumers while maintaining grid stability.

2. Implement a dynamic pricing mechanism that reflects real-time grid conditions
and encourages beneficial energy behaviors.

3. Utilize advanced metering and monitoring infrastructure to enable precise, real-
time energy trading and grid management.

4. Design a scalable system that can be applied across various aggregation levels,
from individual feeders to multiple power transformer groups.

Proposed Solution Approach

To tackle these challenges, we propose a multi-agent system (MAS) platform that
will:

1. Enable direct P2P energy transactions within the local community.

2. Incorporate the utility’s role in balancing energy supply and demand.

3. Implement adaptive pricing strategies to optimize grid operations.

4. Leverage advanced monitoring and metering data for real-time decision-making.

The subsequent sections will delve into the specifics of our proposed energy market
model, detailing the roles of each entity, the intricacies of the trading mechanism, and
the architecture of our MAS platform.

By addressing these challenges, we aim to create a more resilient, efficient, and
sustainable urban distribution network that empowers end-users while maintaining
grid stability and reliability.
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4.3.2 Methodology

Trading Mechanism Overview

The proposed trading mechanism for the local energy community involves a struc-
tured approach with distinct roles for the Utility and community members. This section
will delve into the key aspects of this mechanism.

Utility’s Role

The Utility plays a central role in the trading process:

1. Price Setting: The Utility is responsible for establishing and regularly broadcast-
ing energy prices.

2. Grid Optimization: Leveraging historical market data, the Utility strategically
reorganizes to balance the grid and maximize economic benefits.

3. Final Trading Phase: The Utility engages in energy transactions at its predeter-
mined price, without peer negotiations.

Community Members’ Participation

Consumers and prosumers are active participants in the market:

1. Designated Trading Periods: Community members engage in energy trading dur-
ing specific timeframes.

2. Negotiation Phases: Participants have the opportunity to negotiate deals within
set periods.

3. Fallback Option: If agreements are not reached during the allocated time, commu-
nity members must trade directly with the Utility without further negotiations.

This section will explore these key elements of the trading mechanism in greater
detail, examining their implications and potential impacts on the local energy commu-
nity.

Multi-Agent System in Local Energy Markets

The proposed trading scheme for the Local Energy Market (LEM) incorporates
three primary types of participants, each modeled as agents within a Multi-Agent
System (MAS) platform. These agents are designed with specific behaviors and roles
to facilitate efficient energy trading within the community.
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Agent Types and Their Characteristics

1. Utility Agent (αu) This agent oversees the power flow both entering and exiting
the power distribution transformer. Its primary responsibilities include:

• Selling grid energy to distributed energy end users

• Purchasing surplus distributed energy from local producers when there’s a
deficit

• Controlling price signals to maintain a balance between grid demand and
supply

2. Prosumer Agent (αp) This agent represents a local distributed energy producer
with the following capabilities:

• Generates energy to support its own needs

• Sells excess energy to other agents within the distributed network

• Purchases energy to cover any deficits from other LEM participants or the
utility

• Actively participates in the LEM by negotiating with multiple agents or
peers for energy trading

• Self-sufficient prosumers, as depicted in Fig. 4.7, remain inactive in the
market

3. Consumer Agent (αc) This agent is characterized by the following behaviors:

• Purchases energy from the utility or other LEM participants to meet its
energy demands

• Engages in negotiations and transactions with multiple agents or peers to
secure energy at economical prices

• Prosumers with energy demands, as shown in Fig. 4.7, may adopt consumer
agent behavior to participate in the market as consumers

Pricing Mechanism in Local Energy Markets

The pricing mechanism serves as a critical regulatory factor in Local Energy Mar-
kets (LEM). The utility plays a central role in this mechanism by monitoring power
flows, including both injection and consumption, and analyzing any imbalances in grid
demand and supply, as well as congestion at power distribution transformers.

It’s important to note that while other control signals, such as voltages at various
points in the feeders, could be used to determine the price scheme, this model uses
transformer power as the control signal for simplicity while maintaining generality.
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Utility’s Objective Function The primary objective of the utility is to mini-
mize the difference between the real energy demand (Er

d) and the optimal energy de-
mand (Eopt) as committed day-ahead, for each time period t. This can be formulated
as eq.(4.18):

minimise | Er
d − Eopt | ∀t ∈ T (4.18)

The difference between Eopt and Er
d represents deviations in the form of positive

or negative energy imbalances that need to be addressed through price control.

Price Control Function To balance demand and supply or prevent congestion
at the power distribution transformer, the utility controls the buying (prbu) and selling
(prsu) prices of energy units. The control function is defined as eq.(4.19):

prxu=





prNu , Er
d = Eopt

a1 ∗ prNu , Er
d ≤ Eopt

a2 ∗ prNu , Er
d ≥ Eopt

∀t ∈ T (4.19)

Where:

• prNu represents the nominal selling or buying price set by the utility, valid for the
time period t when the distribution network is balanced and congestion-free

• x can be either s or b , corresponding to selling or buying prices respectively

• a1 < 1 and is a positive real number

• a2 > 1 and is a positive real number

Price Adjustment Strategy The utility employs the following strategy to ad-
just prices based on network conditions:

1. When transformer consumption falls below the nominal level:

• Both purchase and selling prices are decreased by a factor of a1

• This reduction in selling price encourages greater consumption among agents

• The decrease in purchase price discourages excessive generation

2. In situations of high demand or network congestion:

• Both buying and selling prices are increased by a factor of a2

• This increase stimulates prosumers to promote generation
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• It also deters agents from consuming excessively

The overarching goal of the utility is to encourage peer-to-peer (P2P) energy trading
during periods of high demand by increasing the unit price. This strategy allows
other peers to impose slightly lower prices for selling their excess energy, making P2P
transactions more attractive. Conversely, when demand is low, the utility reduces
energy unit prices to encourage peers to purchase energy directly from the utility,
thereby maintaining grid stability and economic efficiency.

Response to Price Signal

Prosumer Behavior Prosumers are assumed to be economically rational entities
who aim to maximize their individual economic surplus through participation in peer-
to-peer (P2P) trading, either as sellers or buyers. At the beginning of each trading
session, prosumers receive a price signal from the utility. Based on this signal, they set
their preferential selling price for their surplus energy.

The prosumer controls the selling price of their exported surplus energy (es) using a
trade preferential coefficient, as defined in equations (4.20) and (4.21). This approach
ensures that their price is slightly lower than the utility’s price, making their offer more
attractive to potential buyers while still maintaining financial returns.

Prosumers set their orders with preferred selling prices (prsp) by selecting a desired
value for τ , which they can later negotiate:

prsp = τ ∗ prsu ∀t ∈ T (4.20)

s.t. 0 < τ ≤ 1, τ ∈ R+ (4.21)

It is important to note that the mechanism governing agent prices is automated
rather than manual. To further optimize agent prices, a tariff system can be imple-
mented. This system offers various pricing schemes, including premium tariffs, allowing
customers to choose between strategies that prioritize surplus sales through significant
price reductions or those that focus on profit improvement, even if it means risking
unsold energy due to prices closely aligned with utility rates.

Customers also have the option to inject their own intelligence and business rules
into the pricing engine. This customer-specific pricing engine can be integrated at the
platform level, with accessibility and configurability determined by the chosen scheme.

The term ”utility” could be replaced with a more encompassing entity, such as
an aggregator, marketer, or even a Distributed System Operator (DSO). Another in-
novative approach involves transforming the utility into an energy community where
other agents actively participate. This system offers remarkable flexibility. The paper’s
primary focus is on exploring trading mechanisms applicable to various configurations
and case studies.
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The prosumer’s main objective, as expressed in equations (4.22) and (4.23), is to
optimize profits by selling their energy at the most advantageous price point:

max u(αp) = (prsp − prbu)e
s (4.22)

s.t. prbu ≤ prsp ≤ prsu (4.23)

This strategy considers that if the prosumer sets a selling price higher than the
utility’s rate, potential buyers are more likely to purchase from the utility. Conversely,
by reducing the selling price, the prosumer increases the likelihood of selling energy to
peers. However, it’s crucial that the selling price never falls below the utility’s purchase
price, as this would result in losses for the prosumer.

Finding the ideal balance involves selecting a price that ensures sales while maxi-
mizing overall profit. Future implementations could involve artificial intelligence tools
to aid in this process, leveraging historical data to determine optimal price coefficients
for consumers. However, this topic is beyond the scope of the current paper.

Consumer Behavior Consumers receive a list of offers (prices and amount of
energy) from the utility and different prosumers, as represented in equations (4.24),
(4.25), and (4.26):

O = {(o1, ....., on)} (4.24)

oi = (pri, ei) where i ∈ {1, ......, n}, i ∈ N (4.25)

pr1 ≤ ..... ≤ prn (4.26)

Consumers choose the most economical options based on prices (pri) and the
amount of available energy (ei) that may fulfill their demand (edi). They then ne-
gotiate these offers with respective prosumers to reach mutually beneficial, economical
deals. This negotiation strategy is similar to that used in service composition and
mashups, where a buyer wants to purchase several atomic services to compose a com-
posite service.

To strike multiple deals, a consumer (αc) engages in multiple negotiations with pro-
sumers (αp1, ..., αpn) and combines their outcomes. The consumer’s goal, as expressed
in equations (4.27) and (4.28), is to maximize the utility u(αc) of the aggregate outcome
of all negotiations:
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Algorithm 3 Utility Agent Behaviour

Require: (usr, pwd, id) for αu registration in the system.

Ensure: (prbu, pr
s
u) per unit energy for each t ∈ T , satisfying eq.(4.18)

1: for ∀t ∈ T do

2: (prbu, pr
s
u) := f(Er

d , Eopt, t) using eq. (4.19) satisfying eq.(4.18), a1, a2
3: Broadcast prbu, pr

s
u to all market agents.

4: if ρ ⇐ 3 (ρ ∈ t) then

5: Receive buying/selling requests from all αp ,αc .

6: Accept all requests and trade @ prbu, pr
s
u.

7: Process terminated

8: end if

9: end for

max u(αc) = −
∑

i,c

priei(c) (4.27)

∑

j

ej(c) ≤ edi where j, c ∈ N (4.28)

Here, c represents each composite unit of energy offered (ej) as discrete values, and
j denotes the number of deals or agreements.

The consumer views this as a coordination problem, aiming to aggregate and coor-
dinate multiple, potentially overlapping agreements such that the composite outcome
satisfies the buyer’s overall demand at the minimum price.

4.3.3 Implementation Details

Negotiation Mechanism

The proposed model implements a sophisticated One-to-Many Concurrent Compos-
ite Negotiations strategy, which represents a significant advancement in energy trading
systems. This approach allows for complex, multi-faceted negotiations where the final
outcome can be composed of multiple partial outcomes, each resulting from a sepa-
rate deal with different sellers. This strategy is particularly well-suited to the dynamic
nature of energy markets, where supply and demand can fluctuate rapidly.
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Algorithm 4 Prosumer Agent Behaviour

Require: (usr, pwd, id) for αp registration in the system.

Ensure: maximum u(αp) for each t ∈ T .

1: for ∀ρ ∈ t do

2: identify es
3: prsp := f(prsp, t) using eq. (4.20)

4: Broadcast (prsp, es) to all market agents

5: if requests received then

6: Accept requests based on first come first serve

7: trade and update es
8: rejects others

9: end if

10: if es > 0 AND ρ ⇐ 2 then

11: Repeat the process from lines 5 to 14

12: end if

13: if es > 0 AND ρ ⇐ 3 then

14: make request/s to utility and trade at prbu
15: Terminate Process

16: end if

17: if es = 0 then

18: Terminate Process

19: end if

20: end for

Key Features of the Negotiation Mechanism

1. Composite Negotiations: The buyer (typically a consumer or prosumer needing
energy) has the capability to engage in multiple simultaneous bilateral interac-
tions. This concurrent approach allows for greater efficiency in the negotiation
process, as the buyer doesn’t have to wait for one negotiation to conclude before
starting another.

2. Aggregation of Partial Deals: The primary objective of the buyer is to satisfy their
total energy demand at the lowest possible price. This is achieved by combining
multiple partial deals from different sellers. The aggregation of these deals forms
the complete solution to the buyer’s energy needs.

3. Complex Decision-Making Process: Given that multiple sellers may offer the
same product (energy) in different quantities and at varying prices, the buyer
faces a complex decision-making challenge. They must determine:

• Which sellers to negotiate with

• What specific quantities to negotiate for with each seller

• How to optimally combine these partial deals to meet their overall demand
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Algorithm 5 Consumer Agent Behaviour

Require: (usr, pwd, id) for αc registration in the system.

Ensure: maximum u(αc) for each t ∈ T .

1: for ∀ρ ∈ t do

2: receive prbu, pr
s
u and save

3: Identify ed
4: if ρ ⇐ 1 then

5: Receive O and evaluate u(αc) using eq. (4.27),(4.28)

6: Send requests to the best offers.

7: if acceptance received then

8: trade and update ed
9: end if

10: if rejection recieved then

11: update ed
12: end if

13: end if

14: if ed > 0 AND ρ ⇐ 2 then

15: Repeat the process from lines 5 to 14

16: end if

17: if ed > 0 AND ρ ⇐ 3 then

18: make request/s to utility and trade at prsu
19: Terminate Process

20: end if

21: if ed = 0 then

22: Terminate Process

23: end if

24: end for

4. Combinatorial Optimization: The buyer must navigate the complexities related
to the combinatorial explosion of possible sets of partial deals. This is done using
equation (4.27) while satisfying the constraints in equation (4.28). This process
involves sophisticated algorithms to find the optimal combination of deals that
meets the buyer’s demand at the lowest total cost.

Illustrative Example To better understand this mechanism, consider the fol-
lowing scenario:

• Prosumer αp1 offers 2 kWh energy units at $3 each: o1 = (3, 2)

• Prosumer αp2 offers 5 kWh energy units at $4 each: o2 = (4, 5)

• Consumer αc has an energy demand (ed) of 3 kWh
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In this case, a deal might be reached as follows:

• e1 = {2kWh× $3} from αp1

• e2 = {1kWh× $4} from αp2

The final aggregated deal would be: e1 ⊕ e2 = {2kWh × $3 + 1kWh × $4} =
3kWhfor$10

This example demonstrates how the buyer can optimally combine offers from dif-
ferent sellers to meet their exact energy needs while minimizing costs.

Negotiation Strategy and Phases The model employs an aggressive negotia-
tion strategy, characterized by strict time constraints. This approach is designed to:

1. Encourage rapid decision-making by agents

2. Facilitate quick deal closures

3. Maximize benefits for all parties involved

The negotiation process is structured into three distinct phases:

1. Initial P2P Trading Phase: User agents (consumers and prosumers) engage in
peer-to-peer trading, attempting to close deals directly with each other.

2. Secondary P2P Trading Phase: A continuation of the first phase, allowing for
further negotiations and deal closures between peers.

3. Utility Trading Phase: Any agents unable to close deals in the first two phases
must trade with the utility at the utility’s set price. This serves as a fallback
option, ensuring that all energy needs are met, even if not at the most optimal
price for the agent.

This phased approach ensures that the market operates efficiently, with most trades
occurring between peers, and the utility serving as a reliable backstop for any unmet
demand or excess supply. It also incentivizes agents to actively participate in the P2P
phases to potentially secure more favorable deals than what the utility might offer.

Structured Energy Trading Period

A realistic timeframe is established for conducting energy trades, divided into three
distinct stages. A graphical overview is provided in Fig. 4.8.
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Figure 4.8: Timeline of Trading Mechanism

Stage 1: Energy Exchange

During this initial stage, all participants, including prosumers and consumers, en-
gage in the routine exchange of energy over the grid distribution network. Prosumers
inject their surplus energy into the grid, while consumers draw energy from it. It is
important to note that the strategies for energy consumption and injection should ide-
ally be influenced by historical price data. However, developing specific strategies for
each agent is beyond the scope of this work, which focuses on proposing a framework
for trading.
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Stage 2: Data Collection

In this stage, the distribution network, equipped with advanced metering infras-
tructure, collects all data related to energy exchanges by prosumers and consumers.
This data is crucial for processing market operations. The utility uses this information
to set the market price, as previously described, and broadcasts it to all agents. Fol-
lowing this, prosumers determine their selling prices and prepare offers or bids for the
surplus energy they wish to sell to peers through negotiations.

Stage 3: Negotiation and Financial Transaction Settlements

This stage involves the negotiation and settlement of financial transactions and is
divided into two sub-stages:

Sub-stage 3a: Negotiation Process The negotiation algorithms for all three
agent types—utility, prosumer, and consumer—are detailed in Algorithms 3, 4, and 5.
Prosumers broadcast their offers to all market participants, including buyers and con-
sumers, as outlined in lines 2-4 of Algorithm 4. Buyers receive a list of available offers
from various sellers and select the most suitable ones to cover their energy usage from
Stage 1, as indicated in lines 4-13 of Algorithm 5. They then enter into negotiations
with these sellers to fulfill their energy needs within the specified negotiation timeframe,
aiming to close deals efficiently. If agreements are not reached, participants have the
opportunity to iterate the process, re-evaluating offers and continuing negotiations.

Sub-stage 3b: Final Negotiation Phase This aggressive negotiation strategy
is designed to encourage rapid deal closure within the first two phases, promoting
efficient and environmentally friendly networking and communication. However, a
third negotiation phase is available for participants who were unable to secure deals
in the initial stages. In this phase, they can trade directly with the utility at its
predetermined buying and selling prices, as directed in lines 4-7 of Algorithm 3.

Financial Settlements Once deals are finalized, all financial transactions are
executed. These settlements are verified by the utility against the clients’ energy usage
data, ensuring accuracy and transparency in the trading process. This structured
approach not only facilitates efficient energy trading but also supports the broader
goals of sustainability and optimized resource management within the energy market.

Simulation Environment

To evaluate the proposed framework, we designed a simulation scenario represent-
ing a local energy market with a group of agents. The simulation employs multi-agent
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Table 4.1: DATA INPUT

Agents/Peers Count Energy Units Pricing per unit energy

Utility 1 grid supply (prsu: 5, pr
b
u: 3)

Consumers
3 3

-
3 7

Prosumers
2 10

[0.6, 1]prsu2 7

systems technology to create autonomous software entities that act as prosumers, con-
sumers, and the utility. These intelligent agents are programmed to interact and com-
municate naturally with each other.

Technical Framework

We chose SPADE (Smart Python Agent Development Environment) as our multi-
agent system platform. SPADE is based on instant messaging (XMPP) and offers
several advantages:

1. Incorporates modern technologies

2. Addresses open issues such as communication protocol standardization

3. Provides elasticity in communication

4. Supports human-agent integration

5. Facilitates open systems

6. Enables device-independent agent connection

SPADE 3, the version used in this implementation, is built on the XMPP (eX-
tensible Messaging and Presence Protocol). This communication protocol provides an
open, decentralized, and federated architecture for multi-agent systems, which was a
key factor in our selection of SPADE.

Simulation Scenario

To implement the proposed strategies and assess the model’s overall performance,
we conducted a simulation with the following parameters:

• Total agents: 11 (including the utility)
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• Composition: 1 utility and 10 other agents (mix of consumers and prosumers)

Table 4.1 outlines the input settings for the simulation, including:

• Number of consumers and prosumers

• Energy demands/surplus for each agent type

• Trading preferential settings for prosumers (used to propose selling prices or make
offers)

• Strategic coordination function parameters for consumers (used to strike and
combine multiple offers)

This setup allows us to test the effectiveness of the proposed framework in a realistic
local energy market scenario, evaluating how agents interact, negotiate, and trade
energy within the defined parameters.

4.3.4 Key Findings and Analysis

Simulation Results

Peer-to-Peer Energy Trading Dynamics

Fig. 4.9 provides a visual representation of the peer-to-peer (P2P) energy trades
within the simulated group, illustrating the outcomes of the one-to-many concurrent
composite negotiations strategy. In this diagram, arrows with tails represent sellers,
while arrows with heads denote buyers. The results show that prosumer agents [0, 1, 2]
successfully completed transactions, selling all their available energy units to consumer
agents [4, 5, 9, 6]. However, prosumer agent 3 was unable to sell its entire energy
surplus and consequently engaged in transactions with the grid utility to offload the
remaining units.

Energy Transaction Analysis

Figure 5 presents a comparative analysis of energy transactions between peers and
the utility, showcasing two scenarios (Case A and Case B) before and after the imple-
mentation of our P2P energy trading model. The input data for both cases is detailed
in Table 1.

In Case A:

• Prosumer agents collectively generated [3, 3, 10, 10] kWh of energy, totaling 26
kWh.
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Figure 4.9: Graph illustrating 1 to many concurrent composite energy trading between peers.

• After applying the proposed local energy trading algorithm, they sold [7, 6, 1,
10] kWh.

• This resulted in 24 kWh of energy being conserved for consumer use within the
local network.

• Only 2 kWh was sold back to the utility grid.

In Case B:

• Prosumer agents generated [3, 3, 2, 2] kWh of energy.

• All generated energy was successfully sold to consumer agents [4, 6, 7].

• The consumers closed deals for [4, 1, 5] kWh respectively.

These results demonstrate the efficiency of the P2P trading model in maximizing
local energy consumption and minimizing grid dependence.

Individual Trading Performance

Fig. 4.5 offers insights into the trading activities of individual peers, detailing:
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Figure 4.10: Energy transaction before and after model implementation.

1. The number of trades executed by each prosumer and consumer.

2. Individual savings achieved through P2P trades compared to utility trading.

Key observations

• The graph only includes agents who successfully completed peer transactions.

• Prosumer agent 2 emerged as the most active trader, executing 5 deals with
multiple consumers.

• Prosumer agent 2 accumulated 250 price units, the highest among all participants.

• This emphasis on multiple small trades (atomic services) with various consumers
is expected to encourage greater participation in local energy trading among peers
in future scenarios.
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Figure 4.11: Aggregated simulation results of model conducted on batches of 5 - 50 agents.

Table 4.2: PARAMETERS SETTING FOR BATCHES

Parameter ed,es τ prsu,pr
b
u

Value rand(10,30) rand(0.6,1) 5,3

Scalability Tests

To demonstrate the model’s scalability beyond the initial 10 user agents and 1 utility
agent, additional simulations were conducted. These tests maintained the same time
horizon as the earlier case studies to ensure efficient computation and communication
using the SPADE3 multi-agent system.

Methodology

• 6 experiments were conducted, progressively increasing the number of prosumer
and consumer agents.

• Various system parameter combinations were tested.

• Agent batches ranged from 5 to 50, as detailed in Table 2.
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Evaluation Metrics

1. Aggregated profits

2. Traded energy

3. Total trade count among peers

Results Analysis Fig. 4.11 visualizes the scalability test results across the batch
simulations.

Key Findings

1. Local energy trading volume grows substantially with the increase in prosumer
numbers, leading to higher overall profits.

2. The proposed approach demonstrates excellent scalability in terms of computa-
tional and communication demands, even with a consistent time horizon across
all experiments.

3. Prosumer agents consistently earn higher rewards compared to consumer agents.
This disparity is attributed to:

• Incentives for surplus energy generation

• Active participation in local energy markets

4. While consumers engage in economic transactions within local energy markets,
their participation also indirectly benefits the utility by:

• Alleviating grid imbalances

• Reducing distribution network congestion

The results indicate that the proposed model not only scales effectively but also
creates a fair mechanism that benefits all participants while contributing to overall grid
stability and efficiency.

4.4 Comparative Analysis and Discussion

Both studies present market-based solutions for managing congestion in distribution
networks, but they differ in their specific approaches. Study 1 focuses on EV charging,
utilizing a multi-issue negotiation protocol implemented in MATLAB, while Study
2 addresses broader P2P energy trading using a one-to-many concurrent composite
negotiation mechanism built on the SPADE platform. A key distinction lies in their
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level of centralization: Study 1 relies on a utility-dependent management platform,
whereas Study 2 aims for a more decentralized approach.

The strengths and unique contributions of each study are noteworthy. Study
1’s multi-issue negotiation protocol for EV charging simultaneously addresses times-
lots, energy packets, and prices, demonstrating robustness in handling real-world con-
straints. It also lays the groundwork for flexible tariffs and EV charging strategies. In
contrast, Study 2’s three-stage multi-agent framework for P2P energy trading offers a
scalable solution for local markets, providing flexibility to optimize individual benefits
or support grid balancing. Its simplicity in design facilitates real-world deployment.

Synthesizing insights from both studies suggests that market-based mechanisms can
effectively manage congestion in distribution networks. Multi-issue and multi-agent ne-
gotiation protocols offer promising solutions for complex energy trading scenarios. The
research highlights the importance of balancing individual benefits with system-level
objectives for successful implementation, while emphasizing scalability and simplicity
as key factors for real-world applicability.

These studies have significant implications for advancing negotiation algorithms
in energy trading. Future development should focus on integrating multiple flexible
loads and distributed energy resources in negotiation protocols. More sophisticated
agent behavior models are needed to better reflect real-world decision-making processes.
Exploring hybrid approaches that combine centralized and decentralized negotiation
mechanisms could yield more comprehensive solutions. Additionally, investigating in-
centive structures to promote cooperation and flexibility in energy communities, and
considering network constraints and grid stability in negotiation algorithms, will be
crucial.

By addressing these aspects, future research can build upon the foundations laid
by these studies to create more comprehensive and effective negotiation algorithms
for energy trading and congestion management in smart grids. This work paves the
way for more efficient, flexible, and sustainable energy systems that can adapt to the
evolving needs of modern power networks.

4.5 Limitations and Future Research Directions

Both studies have identified areas for improvement and expansion. This section
outlines the current limitations and proposes future research directions for each study.
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4.5.1 Study 1: Multi-Issue Negotiation Protocol for EV Charg-
ing

Current Limitations

The study primarily focused on a parametric negotiation methodology that allows
strategy variation by both vehicles and utilities. However, the definition of complex
strategies associated with different types of flexible tariffs was beyond the scope of this
paper.

Future Research Directions

1. Complex Strategy Definition: Future work will explore the development of com-
plex strategies for both utilities and vehicles, associating them with various types
of flexible tariffs.

2. Integrated Load Management: The authors are working on a methodology to
simultaneously manage flexible vehicle loads along with other flexible household
loads.

3. Renewable Integration: Incorporation of solar production at the household level
is planned for future research.

4. Peer-to-peer Energy Exchange: Enabling users to exchange energy with each
other and with vehicles on public roads is a key area for future development.

5. Multi-agent Trading System: The future trading system will be multi-agent
based, moving away from the utility-dependent intermediate management plat-
form used in the current study.

4.5.2 Study 2: Three-Stage Multi-Agent Framework for Peer-
to-Peer Energy Trading

Current Limitations

While the study demonstrated successful P2P energy trading, there is room for
improvement in agent behavior modeling and community-level energy management.

Future Research Directions

1. Advanced Agent Behavior Modeling: Future research will focus on adding ad-
vanced features to the agent’s behavior modeling.
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2. Energy Communities: Exploration of establishing energy communities at com-
mon coupling points in the network, allowing prosumers and nearby consumers
to form bilateral contracts.

3. Coordinated Response to Price Signals: Research into how energy communities
can coordinate their responses to price signals to aid grid stability.

4. Network Loss Minimization: Study of how close-knit energy communities can
minimize network losses.

5. Collaborative Energy Management: Investigation of community collaboration
during high demand periods, including surplus energy sharing by prosumers and
adaptive charging of electric vehicles.

6. Incentive Mechanisms: Development of incentive structures to promote coopera-
tion and flexibility within energy communities.

4.6 Conclusion

Research studies demonstrate how effective approaches for managing congestion in
distribution networks through market-based mechanisms. Key findings of both studies
can be summarised as follows:

1. Multi-Issue Negotiation Protocol for EV Charging

The study introduced an innovative multi-issue negotiation protocol for electric
vehicle (EV) charging. This approach represents a significant advancement in
managing EV charging in congested distribution networks. Key features and
findings of the study include:

• Comprehensive Negotiation Mechanism: The protocol considers multiple
factors simultaneously, allowing for more nuanced and effective negotiations
between EVs and the charging management platform.

• Realistic Testing and Validation: The algorithm’s effectiveness was validated
through testing in a realistic environment, demonstrating its stability and
performance in line with expectations.

• Robustness in Handling Constraints: Importantly, when agreements could
not be reached, it was due to inherent system constraints rather than flaws
in the algorithm design. This indicates the protocol’s ability to handle real-
world scenarios where EV charging requirements may conflict with power
system limitations.

• Practical Utility in Congestion Management: The research showcased the
algorithm’s practical utility in resolving congestion issues within a realistic
power system using market mechanisms.
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• Foundation for Flexible Tariffs: The work laid the groundwork for develop-
ing flexible tariffs that can define negotiation strategies for EVs, enabling
efficient management of their flexibility to address network congestion.

• Implementation Methodology: The proposed algorithms were implemented
using MATLAB classes, emulating a multi-agent system where each vehicle
acts as an agent interacting with the management platform.

• Potential for Broader Applications: While the study focused on EV charg-
ing, the protocol’s design is generic and could potentially be applied to other
scenarios requiring multi-issue negotiations in energy systems.

2. Three-Stage Multi-Agent Framework For Peer-To-Peer Energy Trading

The proposed peer-to-peer (P2P) energy trading framework represents a signif-
icant advancement in the field of decentralized energy markets. This innovative
system leverages intelligent software agents developed on the SPADE (Smart
Python Agent Development Environment) platform, incorporating a sophisti-
cated one-to-many concurrent composite negotiation mechanism to facilitate lo-
cal energy transactions. Key aspects of this framework include:

• Intelligent Agent Architecture: The use of SPADE-based intelligent agents
allows for autonomous decision-making and adaptive behavior in the energy
trading process. These agents can represent various market participants
such as prosumers, consumers, and grid operators.

• Flexible Optimization: The framework’s design allows for customization to
either maximize individual benefits for market participants or to support
broader grid balancing objectives. This flexibility makes it applicable in
various regulatory and market contexts.

• Successful Negotiation Demonstration: Through rigorous testing, the model
has proven its capability to facilitate successful negotiations and transactions
between agents. This demonstrates the framework’s potential to create effi-
cient and effective P2P energy trading ecosystems in local markets.

• Simplicity and Ease of Deployment: Despite its sophisticated functional-
ity, the mechanism boasts remarkable simplicity. This characteristic sig-
nificantly reduces barriers to implementation, making it highly suitable for
real-world deployment across diverse energy market environments.

• Scalability: One of the most promising aspects of this framework is its
scalability. Extensive examinations conducted with larger groups of agents
yielded exceptionally positive results, closely aligning with projected perfor-
mance expectations. This scalability is crucial for the framework’s viability
in larger, more complex energy markets.

• Potential for Market Transformation: By enabling effective P2P energy trad-
ing at the local level, this framework has the potential to revolutionize tra-
ditional energy market structures. It could facilitate greater integration
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of distributed energy resources, enhance grid flexibility, and empower con-
sumers to become active participants in the energy market.

• Grid Balancing Support: The framework’s ability to be adjusted for grid
balancing purposes suggests its potential role in maintaining grid stability
and reliability, especially in scenarios with high penetration of renewable
energy sources.

Both research studies highlight the potential of market-based solutions for man-
aging congestion in distribution networks, offering promising avenues for integrating
renewable energy sources and flexible loads while maintaining grid stability.



Chapter 5

Blockchain and Smart
Contracts in Power Systems

5.1 Blockchain Beyond Cryptocurrencies

Although mostly known for its digital financial asset applications (like Bitcoin),
blockchain technology has the potential to transform the functioning of a wide range of
industries. Its features can increase the transparency and traceability of goods, data,
and financial assets, facilitate market access, and improve the efficiency of transactions.
Fulfilling blockchain’s potential, however, depends on a policy environment that allows
innovation and experimentation, while balancing the risks of misuse. Governments will
play a significant role in shaping policy and regulatory frameworks that help address
challenges presented by the technology, and foster transparent, fair and stable markets
as blockchain develops.

Fundamentally, blockchain is a combination of already existing technologies that to-
gether can create networks that secure trust between people or parties who otherwise
have no reason to trust one another. Specifically, it utilizes distributed ledger technol-
ogy (DLT) to store information verified by cryptography among a group of users, which
is agreed upon through a pre-defined network protocol, often without the control of a
central authority. The amalgam of these technologies gives blockchain networks key
characteristics that can remove the need for trust, and therefore enable a secure trans-
fer of value and data directly between parties. Due to this unique ability, blockchain
technology can diminish the role of intermediaries, who can command market power,
collect significant fees, slow economic activity, and are not necessarily trustworthy or
altruistic keepers of personal information.
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Definition

A blockchain is a shared ledger of transactions between parties in a network, not
controlled by a single central authority. You can think of a ledger like a record book:
it records and stores all transactions between users in chronological order. Instead of
one authority controlling this ledger (like a bank), an identical copy of the ledger is
held by all users on the network, called nodes[107].

5.2 Structure of Blockchain

Blockchain technology is a revolutionary digital ledger system that operates in a
decentralized and distributed manner. Its name derives from its unique data structure,
where encrypted information is stored in ”blocks” that are cryptographically linked in
a ”chain,” ensuring data integrity and preventing tampering or forgery.

The blockchain grows as new data or transactions are verified through a consensus
mechanism and added to the ledger. Each block is assigned a unique cryptographic
hash, analogous to a human fingerprint, for identification. With the exception of the
initial ”genesis block,” every block contains the cryptographic hash of its predecessor,
creating an unbroken chain as depicted in Fig. 5.1.

A typical block consists of two main components:

1. Header: Contains metadata such as timestamp, current and previous block
hashes, and mining details (nonce).

2. Payload: Comprises the actual set of data or transactions.

The cryptographic linking of blocks provides tamper-resistance. Any alteration to
a block’s content would change its hash, causing a mismatch with the stored ”previous
hash” in the subsequent block and invalidating the entire chain.

Blockchain’s decentralized nature is maintained by replicating the entire chain
across all nodes in the network. This distributed ledger is kept in sync through contin-
uous updates and consensus mechanisms, ensuring data consistency and security across
the system.

5.3 Properties of Blockchain

Some key features make blockchain a game-changing technology across industries.
These characteristics solve issues of trust and transparency in transactions. Prominent
one’s include [108]:
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Figure 5.1: Block Structure

1. One of the core aspects of a blockchain is that it is a distributed ledger, meaning
that the database is maintained and held by all nodes in the network. No central
authority holds or updates the ledger, rather each node independently constructs
its own record by processing every block (group of transactions), deciding if it
is valid, then voting via the consensus mechanism on their conclusions. Once a
change in the record is agreed, each node updates its own ledger. In contrast,
traditional databases are stored and maintained centrally, which can make them
high-value targets for hackers and criminals.

2. In general, once a transaction is added to a blockchain ledger, it cannot be un-
done. This immutability is one of the principal aspects that contribute to the
trustworthiness of blockchain transactions. A blockchain’s immutability is se-
cured through its use of cryptography (see below for an explanation of hashing).
In a traditional, centralised database, an authorised user can connect to the
server to add or modify the data without the approval or detection of other
users. Because all the data is held in one place, if the security of the server or
the authority that runs the server is compromised, data can be modified or per-
manently deleted. This may sometimes be irreversible and occur without anyone
else realising it.

3. Agreed by consensus No block can be added to the ledger without approval from
specified nodes in the network. Rules regarding how this consent is collected are
called consensus mechanisms. Consensus protocols are crucial in ensuring that
every block is valid and that all participants agree and maintain the same version
of the ledger. They heavily affect the incentives for nodes to act honestly and
are therefore the most important variables when designing a blockchain.

5.3.1 Hashing: A Cryptographic Fingerprint

A hash is like a digital fingerprint; it is unique to each piece of data on the
blockchain. Users put information regarding their transaction (name of receiver and
sender along with the amount transferred) into a cryptographic hashing algorithm –
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a complex mathematical formula – and receive a set of letters and numbers that is
distinct to that transaction. The specific input, if unchanged, will always produce the
same exact hash. If, however, any part of the data input is changed (for example a
malicious actor changes the amount transferred), the hash would change to an entirely
different set of characters and make it incompatible with the rest of the chain. There-
fore, even without seeing the details of the transaction, nodes can quickly tell that the
data within the block has been tampered with and reject that version of the ledger.
It is this cryptographic security that makes blockchain ledgers more trustworthy and
“almost” immutable.

5.3.2 Mining

For some blockchains, in order to add blocks to the ledger, transfers must go through
a mining process. Mining is a way of adding transaction records, via blocks, onto a
public ledger. Miners are nodes in the network that ensure the transactions in the
block are valid. Specifically, they ensure that senders have not already used the funds
they want to send to receivers. Once miners finish the verification, they have to ask
the network for consent to add the new block to the ledger. In order to do so, they
have to follow the consensus mechanisms chosen for the platform.

5.3.3 Consensus Mechanism

One of blockchain’s key characteristics is the consensus mechanisms it uses to gather
consent. Agreement among nodes regarding the ”state” of the ledger is essential for the
function of the blockchain. The bitcoin blockchain utilizes a consensus model called
Proof of Work (PoW), which requires miners to compete against each other to create
and broadcast blocks for approval. If successful, they are rewarded in Bitcoin.

There are other consensus mechanisms like Proof of Stake (PoS), Proof of Authority
(PoA), Proof of Elapsed Time (PoET), and Proof of Burn – all variations on the means
for the network to agree on changes to the ledger [109]. These protocols aim to improve
the efficiency of Byzantine Fault Tolerance (BFT) and PoW.

While there are even more proposed consensus protocols e.g. few mentioned in Fig.
5.2, there is still a demand for more work to practically design and implement these
protocols.

Blockchain allows for the secure management of a shared ledger, where transactions
are verified and stored on a network without a governing central authority. Blockchains
can come in different configurations, ranging from public, open-source networks to pri-
vate blockchains that require explicit permission to read or write. Computer science
and advanced mathematics (in the form of cryptographic hash functions) enable trans-
actions and protect a blockchain’s integrity and anonymity [110, 107].
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 The original consensus mechanism used by Bitcoin. Miners compete to solve complex
mathematical puzzles, consuming significant computational power and energy

Validators are chosen to create new blocks based on the amount of cryptocurrency
they hold and are willing to "stake" as collateral

A consensus algorithm designed to work efficiently in asynchronous systems and
tolerate byzantine faults

A variation of PoS where token holders vote for "delegates" who are responsible for
validating transactions and maintaining the blockchain.

Reputation-based consensus algorithm where blocks are validated by approved
accounts known as validators

Miners use available hard drive space to solve challenges. The more space a miner has,
the higher their chances of mining the next block

Developed by Intel, this protocol uses a trusted execution environment to enforce
random waiting times for block construction

Miners show proof that they burned coins (sent them to an unspendable address) to
gain mining rights

A hybrid approach that combines elements of PoW and PoS

Federated Byzantine
Agreement (FBA)

It allows nodes to select their trusted peers, ensuring that consensus can be reached
even in the presence of malicious or faulty nodes.

Figure 5.2: Types of Consensus Mechanisms
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Figure 5.3: Types of Blockchain Technology from an Organizational Perspective
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Fig. 5.3 presents different types of blockchain based on accessibility, permissions
and modification capabilities.

5.5 Technical Evolution of Blockchain

Blockchain technology has undergone significant evolution since its inception and
continues to develop. Four generations of blockchain have been identified based on
their target audience [111]. As depicted in Fig. 5.4, Blockchain 1.0, the initial
stage, introduced bitcoin blockchain and focused on digital cryptocurrency transac-
tions. Blockchain 2.0 brought smart contract technology through Ethereum, enabling
decentralized blockchain applications beyond just cryptocurrencies. Blockchain 3.0
expanded to include decentralized applications (Dapps) in various fields such as gover-
nance, law, healthcare, and society.
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Figure 5.4: Generational Evolution of Blockchain Technology

Blockchain 4.0 aims to provide blockchain technology as a business-ready platform
for creating and running applications, potentially integrating with other advanced tech-
nologies like Artificial Intelligence, Virtual/Augmented Reality, Internet of Things and
Cloud Computing. It seeks to enable seamless integration of different platforms under a
single system to meet business and industry demands [112]. The latter two generations
of blockchain are still in early stages of development and undergoing modifications to
reach their full potential for serving humanity [113, 110].

5.6 Smart Contracts

Smart contracts are automated agreements that self-execute and enforce terms be-
tween parties. While primarily digital, they can incorporate human input. The lifecycle
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of a smart contract involves four key steps: agreement, establishment, criteria verifica-
tion, and value transfer execution [114]. In energy systems, particularly local electricity
markets, smart contracts offer a novel advantage by enabling automated peer-to-peer
energy trading. Smart meter data can verify energy transactions and initiate billing
processes, leading to faster and fairer settlements that benefit both consumers and
producers. The primary objectives of smart contracts are to enhance transaction secu-
rity and reduce processing time and costs compared to traditional methods. Despite
their suitability for cryptocurrency transactions, smart contracts in the energy sector
are still evolving. Challenges persist in areas such as security, privacy, scalability, and
billing, indicating that further development is needed in this field.

5.6.1 Technology Stack for Energy Applications

Figure 5.5: Technology Guide Stack for Smart Contracts Development for Decentralised Energy
Applications

Blockchain technology and smart contracts have emerged as powerful tools in the
energy sector, offering new possibilities for decentralized and automated energy man-
agement systems. This section explores the fundamental concepts of blockchain and
smart contracts, with a particular focus on their applications in the energy domain.
Furthermore, it presents a comprehensive technology stack for developing smart con-
tract energy applications, providing researchers and practitioners with a structured
guide for contribution opportunities in this field [115].
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Fig. 5.5 illustrates the developmental stages of smart contract applications, detail-
ing essential elements at each level and highlighting prominent examples. This stack
serves as a valuable resource for developers, offering direct and relevant information
about each stage to align with specific project requirements. The following subsec-
tions introduce and discuss key elements of this technology stack, emphasizing their
significance in the creation of smart contract energy applications.

5.6.2 Development Essentials

Integrated Development Environments (IDEs)

Smart Contract Integrated Development Environments (IDEs) offer specialized
tools for writing, compiling, and deploying smart contract applications to blockchain
networks. These IDEs streamline the development process and simplify deployment
procedures. Popular options include Remix IDE, Brownie, Truffle, Embark, Buidler,
and Hardhat. Developers choose among these based on personal preferences and project
requirements. For energy-specific applications, the Energy Web (EW) chain, built on
Ethereum, provides a tailored blockchain solution. The EW ecosystem features a de-
centralized operating system with an energy web stack, offering a comprehensive frame-
work for developing smart contract energy applications. This ecosystem is particularly
valuable for newcomers to energy-focused blockchain development 1.

Languages

Smart contract development primarily relies on three programming languages: So-
lidity, Rust, and Vyper. Solidity and Vyper are the predominant choices for creating
smart contracts compatible with the Ethereum Virtual Machine (EVM). In contrast,
Rust is utilized for developing non-EVM smart contracts.

These languages draw inspiration from widely-used programming languages such as
Java and Python. This familiarity in syntax and structure makes it easier for developers
with experience in these popular languages to transition into smart contract program-
ming. As a result, newcomers to blockchain development can leverage their existing
programming knowledge to quickly adapt to these specialized languages, facilitating a
smoother entry into the field of smart contract creation.

Wallets and Faucets

Interacting with a blockchain network requires a cryptocurrency wallet, which serves
as a digital identity for transactions, validation, and authorization. These wallets store
the cryptocurrency necessary for developing, testing, and deploying smart contract ap-
plications on the network. For enhanced security, multi-signature wallets, similar to

1https://www.energyweb.org/tech/
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joint bank accounts, are available. To facilitate development and testing, various plat-
forms offer free cryptocurrency through channels known as faucets. These resources
provide developers with the means to experiment and refine their smart contract ap-
plications without incurring real-world costs, thus lowering the barrier to entry for
blockchain development.

Libraries

Open-source smart contract libraries provide developers with pre-built, secure com-
ponents reusable functions and implementations of various standards for blockchain
development. OpenZeppelin, a prominent example, is widely used for Solidity devel-
opment. It offers a comprehensive set of tools and contracts that enable developers
to enhance their smart contracts with additional functionalities. By leveraging these
libraries, developers can streamline the creation of decentralized applications, reduce
potential vulnerabilities, and build upon a foundation of tested, industry-standard
code.

Oracles

Oracles play a pivotal role in smart contract ecosystems by bridging the gap between
blockchain networks and external systems. These entities facilitate the integration of
off-chain data, enable external computations, and allow smart contracts to interact
with various external platforms and data sources. In the realm of blockchain ora-
cles, ChainLink has emerged as a prominent solution, widely adopted for developing
hybrid smart contracts. These hybrid contracts leverage ChainLink’s capabilities to
connect with existing energy infrastructure, incorporating diverse data sources such
as consumption profiles, IoT sensor outputs, and weather information. This integra-
tion opens up possibilities for applications like renewable energy credits and ownership
certifications.

Testing

Smart contracts, once deployed, are inherently immutable on the blockchain. This
characteristic necessitates thorough quality assessment prior to deployment to identify
and rectify any errors or vulnerabilities that could lead to computational complexities
or increased costs. To ensure robustness and reliability, smart contracts undergo a
comprehensive evaluation process that includes various levels of functional testing 2.
This testing process is typically divided into three main categories:

1. Unit testing: Focuses on individual components or functions of the smart contract

2. Integration testing: Examines how different parts of the contract work together

2https://ethereum.org/en/developers/docs/smart-contracts/
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3. System testing: Evaluates the entire smart contract system as a whole

By conducting these rigorous testing procedures, developers can significantly reduce
the risk of deploying flawed smart contracts, thereby enhancing the overall security
and efficiency of blockchain-based applications.

Security and Auditing

Before deploying smart contracts on the blockchain, it’s crucial to conduct thorough
security analyses and audits. These processes involve both automated and manual
testing methods to ensure the contract’s integrity and protect user funds. Automated
security analysis employs two main tools [116]:

• Static analysis: Examines the code without execution

• Dynamic analysis: Tests the code during runtime

These automated tools help identify potential vulnerabilities and defects in the smart
contract code, enhancing its quality and efficiency. Manual testing approaches include:

• Code audits: Involve detailed examination of the code, either through automated
tools or human expertise, to detect security flaws and potential failure points

• Bug bounty programs: Engage the wider developer community to find and report
bugs in exchange for rewards

Figure 5.5 provides examples of these testing methods. Upon completion of the audit,
a comprehensive report is generated. This report details the findings, resolutions, and
any outstanding issues, along with a plan for addressing them. This thorough process
allows projects to deploy their smart contracts with confidence, ensuring application
integrity and user fund protection.

Deployment

Once a smart contract has undergone compilation, testing, security analysis, and
auditing, it is ready for deployment on the blockchain network. The deployment process
varies depending on the development platform used.

For most Ethereum Virtual Machine (EVM) compatible smart contracts, deploy-
ment involves several steps:

1. Preparation of a deployment script using the bytecode and Application Binary
Interface (ABI) files generated during compilation

2. Translation of this script by Web3 into JavaScript terms
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3. Communication of these terms to an Ethereum node

Developers have multiple options for connecting to an Ethereum node:

1. Running a local node

2. Connecting to a public node

3. Using a node service like Infura 3 or Alchemy 4 via an API key

These methods allow the deployment script to interact with the Ethereum network,
facilitating the smart contract’s placement on the blockchain.

Analysis and Monitoring (Block Explorer)

Following smart contract deployment on the blockchain network, developers can
leverage block explorers to monitor and analyze their contracts’ performance. These
explorers, provided by various development platforms, offer a range of functionalities:

1. Transaction visualization and confirmation

2. Access to real-time and historical blockchain data

3. Detailed information on blocks, transactions, and addresses

Block explorers serve as powerful tools for developers to track and evaluate their
smart contracts’ operations. They provide insights into contract interactions, transac-
tion histories, and overall network activity.

Several prominent block explorers exist for the Ethereum blockchain:

1. Etherscan 5: Widely recognized as one of the most comprehensive and free
Ethereum block explorers

2. Ethplorer 6: Offers competitive features and services

These platforms enable developers to gain valuable insights into their smart con-
tracts’ behavior and performance on the blockchain.

3https://www.infura.io/
4https://www.alchemy.com/
5https://etherscan.io/
6https://ethplorer.io/
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Maintenance Tools

The smart contract ecosystem has evolved to address the unique maintenance
challenges posed by blockchain’s immutability [117]. Developers have devised vari-
ous strategies and patterns to manage deployed smart contracts effectively. However,
potential maintenance issues can still arise, potentially resulting in significant costs or
complications down the line.

To mitigate these risks, it’s crucial for developers to conduct thorough evalua-
tions of their smart contracts, particularly for more complex implementations. This
process involves identifying and implementing appropriate maintenance patterns and
mechanisms. Given the rapidly evolving nature of blockchain technology and smart
contract development, staying informed about the latest advancements, best practices,
and emerging patterns is essential for developers working in this field.

Front-end Utilities

Front-end development for smart contract applications requires a blend of tradi-
tional web technologies and blockchain-specific tools. Developers need proficiency in
core web languages like CSS, HTML, and JavaScript to create intuitive user inter-
faces. Popular frameworks such as Angular7 and React8 provide robust architectures
for building complex, interactive front-ends.

To bridge the gap between the blockchain and the user interface, developers often
utilize specialized JavaScript libraries. Web3.js9 and Ethers.js10 have gained promi-
nence for their ability to facilitate seamless interaction with smart contracts from the
front-end. These libraries enable developers to integrate blockchain functionalities into
web applications effectively.

Environments like Hardhat11 offer streamlined architectures that simplify the pro-
cess of constructing application user interfaces tailored for blockchain interactions. By
leveraging these technologies, developers can create sophisticated, user-friendly inter-
faces that interact seamlessly with smart contracts, enhancing the overall user experi-
ence of decentralized applications.

7https://angular.dev/
8https://react.dev/
9https://web3js.readthedocs.io/en/v1.10.0/

10https://docs.ethers.org/v5/
11https://hardhat.org/
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Figure 5.6: Design Model of Blockchain-Based P2P Energy Trading using IoT Devices

This section intends to impart technical implementation details of a simple yet prac-
tical demonstration on how the energy trade occurs between the peers [118]. Moreover,
all the source codes are accessible online in IEEEDataPort repository[119].This may
support academics and entrepreneurs at the initial development stage of these kind of
initiatives.

5.7.1 Key Players in P2P Energy Trading

It is important to define main players in the P2P energy market.

Peers

They come in two types:

1. Consumers: These are regular electricity users who only consume energy.

2. Prosumers: These are both producers and consumers of energy, typically owning
renewable energy systems like solar panels.
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Local Aggregator

Think of the local aggregator as a neighborhood energy broker. Their role includes:

• Managing smaller community-based energy networks

• Facilitating energy trades between peers in their community

• Handling the token economy by:

– Purchasing tokens from public exchanges

– Selling tokens to local participants as needed

The local aggregator essentially acts as a middleman, making it easier for peers
to trade electricity within their community. This structure helps organize larger P2P
energy networks into more manageable local groups.

5.7.2 Case Scenario

To demonstrate the functionality of our peer-to-peer energy trading platform, a
user-friendly mobile application is developed. This app serves as the interface for
participants to engage in energy transactions within a regulated market framework. A
typical trading scenario involving two registered users, Peer A and Peer B is stated
below:

1. Listing Surplus Energy: Peer A, who has excess energy to sell, uses the mobile
app to create and publish an offer on the trading platform.

2. Purchase Decision: Peer B, in need of energy, browses available offers through
the app and decides to purchase from Peer A.

3. Energy Transfer Initiation: Upon confirmation of the transaction, the local
aggregator signals Peer A to begin exporting energy and notifies Peer B to start
consumption.

4. Verification Process: The local aggregator utilizes smart meter data from both
peers to confirm the Proof of Delivery (PoD) for the energy transfer.

5. Financial Settlement: Once the PoD is verified, the local aggregator completes
the transaction by transferring payment to Peer A, deducting the corresponding
amount from Peer B’s token balance.
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Figure 5.7: Components used for Peer-to-Peer Energy Trading Platform

5.7.3 Tools

In the process of conducting our comprehensive literature review, we evaluated a
wide range of technological solutions. After careful consideration, we selected the tools
and approaches illustrated in Fig. 5.7. This figure showcases the hardware and software
components that were deemed most suitable for our research objectives.

It is crucial to emphasize that while the most current software tools available during
this implementation were utilised, the rapidly evolving nature of blockchain technology
necessitates ongoing vigilance and adaptability. As the field progresses, certain tools
may become deprecated or undergo significant updates. Therefore, researchers and
practitioners must:

• Stay informed about the latest developments in blockchain technology

• Regularly assess the relevance and efficiency of their toolsets



114 Blockchain and Smart Contracts in Power Systems

Table 5.1: Energy Trade Offer.

Structure of an Offer
Size Arguments Details
4 bytes ID offer ID
20 bytes seller seller address
4 bytes energy amount of electricity for sale (Wh)
4 bytes price price of electricity for sale (tokens)
4 bytes timeOffered time when offer is added

• Be prepared to adapt their methodologies and implementations as needed

5.7.4 Proposed Methodology

Leveraging the Energy Web Foundation Ecosystem

To establish our blockchain-based energy trading platform, we chose to deploy our
Ethereum-based smart contracts using the Energy Web Foundation (EWF) ecosystem.
This decision was driven by EWF’s prominence in the energy sector:

• EWF is recognized as the world’s largest energy-focused blockchain framework.

• It caters specifically to regulatory energy sectors and addresses unique business
and market requirements.

Deployment Process

Our implementation began with the following steps:

1. Client Installation: We downloaded and installed the Energy Web Client UI
from the EWF platform.

2. Environment Setup: This user interface provided a desktop environment
crucial for:

• Connecting peers within the blockchain network

• Creating user accounts

• Facilitating transactions

• Enabling interactions with smart contracts

By utilizing the EWF ecosystem and its associated tools, we were able to create a
robust foundation for our Ethereum-based smart contract structure.
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Account Creation Process

To facilitate our peer-to-peer energy trading platform, we established Parity
Ethereum wallet accounts for all registered users and the local aggregator. This pro-
cess was streamlined through the Energy Web UI, providing a user-friendly interface
for account setup.

Accessing Test Tokens

For development and testing purposes, we leveraged the Energy Web Tobalaba
network. This testnet environment allows developers to:

1. Obtain simulated tokens at no cost

2. Deploy and interact with smart contracts in a risk-free setting

3. Validate the functionality of the trading platform before live implementation

Developing the Smart Contract

To implement our peer-to-peer energy trading scenario, we utilized the Energy Web
UI’s smart contract development capabilities. Using Solidity, we created a comprehen-
sive smart contract with the following key functions:

• addOffer

– Purpose: Enables prosumers to list their surplus energy for sale

– Details: Prosumers specify energy amount and price

– Note: Offer structure details are available in Table X

• pickOffer

– Purpose: Allows consumers to choose and reserve available offers

– Action: Locks the selected offer in the system

• confirmP2L Tx

– Purpose: Confirms the consumer’s payment to the local aggregator

– Action: Updates the transaction status in the system

• PoD

– Purpose: Enables the local aggregator to verify energy transfer

– Trigger: Initiates the final stage of the transaction
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• confirmL2P Tx

– Purpose: Records the local aggregator’s payment to the prosumer

– Action: Finalizes the P2P energy trade

This smart contract design reflects the core components of our P2P energy trading
model, facilitating interactions between prosumers, consumers, and the local aggrega-
tor.

Design Model

A model is designed to demonstrate how a local energy trading community might
function within a regulated market environment. This model consists of four key
elements:

1. A blockchain-based smart contract

2. A local aggregator

3. Smart meters

4. A mobile application service

These components work together to create the foundation of the energy trading system.
The relationship between these elements is visually represented in a Fig. 5.6.

Advanced Metering

As earlier mentioned, smart meters are modelled with Raspberry Pi’s (pro-
grammed employing Node-Red visual programming) and the user’s energy genera-
tion/consumption are emulated with potentiometers. Moreover, the user’s smart me-
ters are registered in the platform with a unique ID. They send their measured energy
information to the local aggregator server once per second.

Smart Meter Simulation and Data Transmission

A system was developed to simulate smart meters for our local energy trading
community model. The set up is described as follows:

Hardware and Software Setup

We chose to model our smart meters using Raspberry Pi devices. To program these
compact computers, we employed Node-Red, a visual programming tool that allowed
us to create data flows with ease.
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Energy Data Simulation

To replicate real-world energy generation and consumption patterns, potentiometers
were utilised. These adjustable resistors enabled us to manually vary the ”energy”
readings, effectively simulating the fluctuations one would observe in actual household
energy use or solar panel output.

Meter Identification and Data Reporting

The simulated smart meters were assigned a unique identifier, mirroring the indi-
vidual serial numbers found on real smart meters. This ID system allowed our platform
to distinguish between different ”households” or energy sources within our model.

Communication with Central System

The simulated meters were configured to communicate with a central server, which
we referred to as the local aggregator. We set up each meter to send its current energy
reading to this server every second. This frequent reporting schedule was designed to
emulate how real smart meters might continuously update a utility company about
energy usage.

Through this setup, a small-scale model was created that closely approximated the
functioning of a network of smart meters in a local energy trading community.

Figure 5.8: Energy Trade Mobile Application Panels
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It displays the general menu of all services provided.

It permits the user to buy tokens from the local aggregator.
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PANEL DESCRIPTION

The system displays available energy offers to the user. The back-end uses a
smart contract to list offers and allow selection. Once an offer is chosen,
user details are provided as arguments. The selected offer is removed, and
the energy price is transferred from the user to the aggregator account.

It displays the selected energy offer being now in the transaction process.

It contains the login access. As part of the back-end, the mobile application
makes a signin http request to the local aggregator server. Once the
credentials are validated, the user us redirected correspondingly to the menu.

It exhibits the profile page, where the personal user data (name, address,
available tokens) is displayed so that a balance of the account can be
inferred.

It provides the user with real time monitoring regarding the energy
consumption/production. The mobile application makes getdata http request
to the local aggregator server to have in turn the corresponding smart meter
data.

In this panel, the user is able to make an energy offer invoking a specific
function (Add Offer) of the smart contract so that details such as transaction
ID, energy, price, time and user data are passed as arguments.

Figure 5.9: Details of Energy Trade Mobile Application Panels

Mobile Application

To enhance user interaction with this energy trading platform, a mobile application
was developed that serves as the primary front-end interface. This app was designed
to be intuitive and user-friendly.

Multi-panel Design

Our mobile application features a multi-panel layout, with each panel dedicated to
a specific service or function within the energy trading ecosystem.

Visual Representation

For a clearer understanding of the application’s structure, two visual aids have been
provided:

• Fig. 5.8: This figure presents a visual representation of the app’s interface,
showcasing the layout and design of the various panels.
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• Fig. 5.9: This table offers a detailed breakdown of the different panels available in
the app, along with a brief description of each panel’s purpose and functionality.

Local Aggregator Server

The local aggregator server serves as the core component of the energy trading
platform, functioning as the central management system for the entire operation. The
following details outline its implementation:

Development Environment

Node-Red was selected as the primary programming tool for developing the local
aggregator services. This visual programming tool facilitates the creation of complex
data flows and logic, making it suitable for the requirements of this system..

Server Configuration

The local aggregator services were implemented on a dedicated server to ensure
robust performance and reliable data management for the energy trading community.

Functionality

The local aggregator server is responsible for a wide range of tasks, including:

• Processing data from smart meters

• Managing energy trading transactions

• Coordinating communication between various system components

The presentation of a generic model offers readers a foundational understanding
of blockchain implementation principles that can be adapted to various contexts and
technological advancements. This approach ensures that the core concepts remain
applicable even as specific tools and technologies evolve.

5.8 Applications in P2P Energy Trading

When blockchain technology converges with smart power systems, it opens up a
wide array of innovative applications across various domains of the energy sector [108,
120]. These applications can be broadly categorized into three main areas: data storage,
energy trading, and energy financing[121].

In the realm of data storage, blockchain offers solutions for:
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5.8.1 User and Asset Management

Blockchain technology offers secure, tamper-proof, and decentralized storage of
ownership records and related transactions in the energy sector. This technology can
regulate the ownership and management of various energy assets, including:

• Smart meters

• Renewable energy generation units

• Batteries

• Electric vehicle charging stations

• Thermostats

Benefits of Blockchain in Energy Asset Management can be summarised as:

1. Operational Flexibility: Energy assets can be automatically registered with
a blockchain ledger of identities, enabling operational flexibility for grid services, par-
ticularly in frequency regulations and reactive power support.

2. Transparency and Traceability: Blockchain supports audit trails from asset
registration and ownership records to sales, transfers, and credit claims.

3. Automated Energy Credit Recording: In pilot projects, existing rooftop
solar customers can automatically record their generated energy credit data to systems
like the Energy Web Chain.

4. Standardized Asset Registration: Projects like recorDER (formerly DER
Asset Register) provide blockchain-based shared registers for transmission and distri-
bution system energy resources, standardized for system operators.

Smart contracts in the energy sector primarily facilitate energy trades, with key
functions focusing on user and asset management [122, 30]:

User Management:

• Registration of different users (prosumers, consumers, producers)

• Profile definition and linking to monitoring devices

• Authentication using smart meter addresses

• Money deposits for participation validation

• Access granting to data streams

• User list updates and statistics recording
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Asset Management:

• Sorting and categorizing assets

• Managing energy storage systems (charging/discharging)

• Recording producer types for buyer preferences[123]

These functions enable efficient management of both users and assets in blockchain-
based energy systems, facilitating transparent, secure, and automated energy transac-
tions.

5.8.2 Billing and Operations

The integration of blockchain with smart metering infrastructure offers new possi-
bilities in the energy sector, including automated billing and increased consumer control
over meter data and electricity contracts. This combination enhances transparency and
traceability in metering and billing processes [124, 30].

Blockchain’s decentralized nature could reduce intermediary reliance, potentially
lowering service charges and addressing data security issues[125]. It enables peer-to-
peer transactions and secure sharing of smart meter data with stakeholders like DSOs
and TSOs, potentially improving power system management.

In electric vehicle (EV) charging, blockchain is being explored for automatic billing.
Companies like LO3 are developing transactive grid smart meters that interact directly
with blockchain systems.

Smart contracts are being developed to enable various services without third-party
involvement, including smart charging for EVs, managing charging station distribution,
and facilitating Vehicle-to-Grid energy trading.

In distributed energy generation, prosumers trade energy using blockchain tech-
nology, which records energy flow, clears pricing, and stores data in a distributed
ledger. Utility companies are also exploring micro-payments for pre-paid or pay-as-
you-go billing solutions [126].

5.8.3 Energy Certifications

Blockchain technology is being explored as a potential solution to address challenges
faced by small-scale prosumers in claiming renewable energy certificates or carbon cred-
its [127, 128]. These challenges arise from the complex, fragmented market structure
and costly procedures currently in place.

The technology offers a new approach to issuing energy certificates that demonstrate
the origin of renewable energy and could help create supportive markets. Blockchain’s
key features in this context include:
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1. Providing an immutable and transparent record of certificate generation and
transactions

2. Enabling faster, more detailed, and potentially more accurate tracking of energy
production compared to traditional methods

3. Allowing for advanced incentive schemes to be encoded in smart contracts that
execute automatically on the blockchain

One notable development in this area is the Energy Web Origin toolkit [129], being
developed by the Energy Web Foundation. This open-source toolkit aims to:

1. Facilitate the recording of renewable energy generation provenance

2. Automatically track ownership of renewable energy

3. Support various green energy attribution systems globally

The goal of these blockchain-based solutions is to make the process of claiming
and trading renewable energy certificates more accessible, efficient, and transparent,
particularly for smaller-scale energy producers. However, it’s important to note that
these applications are still in development, and their effectiveness in real-world scenarios
is yet to be fully proven.

The energy trading category encompasses:

5.8.4 Peer-to-peer Energy Transactions

Peer-to-peer energy trading has emerged as a prominent blockchain application in
the energy sector, representing one-third of all blockchain initiatives in power systems.
This innovative approach enables consumers and prosumers to trade energy directly,
providing greater control over consumption and generation. Blockchain technology
offers a decentralized energy trading market infrastructure that can be integrated into
existing distribution grids, managed by utilities, retailers, or grid operators.

The advantages of blockchain-based P2P energy trading are numerous. It pro-
vides enhanced privacy and transaction security compared to traditional centralized
approaches. Additionally, it offers lower transaction costs, reduced intermediary in-
volvement, and increased transparency for all participants. These benefits, coupled
with maintained data privacy and integrity, are expected to encourage wider partici-
pation and faster adoption of Distributed Energy Resources (DERs) [130].

Several companies and startups are making significant strides in this field. Power
Ledger, an Australian blockchain startup, has introduced two energy trading mod-
els: a retail model for existing regulated market structures and a direct peer-to-peer
model for deregulated markets.Real-world examples of blockchain-based P2P energy
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trading are already in operation. The Brooklyn Microgrid 12 in New York City allows
rooftop solar panel owners to sell excess electricity directly to their neighbors using
an Ethereum-based blockchain for smart contracts. Similar pilot projects have been
launched globally, including SOLshare13 in Bangladesh, powerpeers14 in the Nether-
lands, and Grid Singularity15 in Germany. The application of blockchain technology
extends to the e-mobility sector as well. In Germany, bloXmove 16 has built the frame-
work for a worldwide decentralized mobility infrastructure to create a multi-modal,
efficient, and frictionless mobility world.

The shift towards P2P energy trading is driven by growing environmental concerns
and awareness of resource depletion [131]. Consumers are becoming increasingly proac-
tive in purchasing electricity from sources with minimal carbon footprints. This trend
necessitates a move towards decentralized grid infrastructure, where nodes can function
as either consumers or prosumers at any given time.

5.8.5 Wholesale Energy Market Participation and Operation
Flexibility

Blockchain technology has the potential to transform wholesale energy markets
(WEM), including both regulated and deregulated bilateral markets, by addressing
key challenges and introducing new efficiencies. It promises to reduce counterparty
risk in bilateral markets while enhancing transparency and maintaining privacy. The
technology offers solutions to trade confirmation and reconciliation issues in wholesale
energy trading, replacing current email and fax-based systems used by trading offices.

By introducing decentralized ledgers, blockchain creates shared logs of trades among
trading offices, eliminating the need for individual data storage by traders. This allows
counterparties to reconcile and verify transactions in real-time, increasing workflow
efficiency and significantly reducing human error. Furthermore, blockchain enables the
convergence of market mechanisms and system operations, leading to better resource
management, improved operational flexibility, and incentives for renewable energy gen-
eration, storage, and demand response.

In response to these opportunities, multi-energy trading firms are collaborating to
develop EnerChain, a blockchain-based P2P trading platform designed to complement
and potentially replace the wholesale energy market.

Wholesale Energy Market operations typically involve three main processes [132].
The first encompasses pre-market clearing inputs such as contracts, trade executions,
regulations, and logistics. The second process consists of market operation, including
optimization, economic dispatch, and contingency management, which may vary by

12https://www.brooklyn.energy/
13https://solshare.com/
14https://powerpeers.nl/
15https://gridsingularity.com/
16https://bloxmove.com/bloxlab
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jurisdiction. The third process covers post-market activities like settlement, billing,
and reporting.

Blockchain technology can be applied across these processes. It can store WEM
rules, regulations, and analysis using smart contracts. Financial trading to clear the
WEM via market clearing price (MCP) can be performed on blockchain platforms
using digital assets. Additionally, executed trading information and subsequent billing
settlements can be recorded permanently on the blockchain ledger.

This technological shift represents a significant advancement from traditional meth-
ods, offering a more efficient, transparent, and flexible approach to wholesale energy
trading and market operations.

Energy financing applications include:

5.8.6 Fundraising for Renewable Energy Projects and Energy
Tokens

Blockchain initiatives in the energy sector extend beyond peer-to-peer trading, with
the second largest category focusing on using cryptocurrency to fund energy projects.
This approach leverages blockchain technology to create energy tokens, enabling secure
investments and shared ownership in green energy ventures.

Several startups have pioneered this method:

1. WePower17 and Sun Exchange18 have conducted token sales to crowdfund renew-
able energy projects.

2. These sales are recorded on blockchain platforms, allowing token owners to access
discounted services or sell tokens at a profit once the project is operational.

3. Smart contracts automatically distribute generated revenues to investors, while
the blockchain tracks ownership.

SolarCoin19 represents another innovative use of blockchain, aiming to incentivize
renewable energy production by monetizing global solar energy output. These energy-
focused cryptocurrencies can often be exchanged for fiat currencies or other digital
assets.

Recent research has explored tokenizing Renewable Energy Certificates (RECs),
providing a decentralized, trustworthy mechanism for REC issuance, trading, verifi-
cation, and retirement [128]. This approach aims to optimize energy management
procedures and offer industry stakeholders a secure environment for transactions.

17https://we-power.com.my/
18https://sunexchange.com/
19https://solarcoin.org/
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These examples represent only a fraction of the ongoing research and development
in this field. Collaborations between companies, foundations, industries, and aca-
demics are driving extensive innovation. The International Renewable Energy Agency
(IRENA) report from 2019 provides comprehensive statistics on blockchain project
development in the power sector [133]. Additionally, a survey has cataloged details
of approximately 140 blockchain-based energy projects, including their focus areas,
platforms used, consensus mechanisms, and deployment locations [130].

5.9 Challenges of Applying Blockchain to Smart
Power Systems

The growing interest in blockchain technology for power systems is evident from
the numerous energy projects, research initiatives, and investor attention in this field.
This surge of activity underscores the potential value that blockchain could bring to
the energy sector. However, the technology’s implementation in power systems is still
in its early stages. Many projects remain at the proof-of-concept level, while others
are in various phases of development or small-scale trials. The industry has yet to
witness substantial, concrete benefits from blockchain integration in power systems.
As a result, the path to mainstream adoption of blockchain technology in the power
sector is fraught with challenges, stemming from this lack of proven, large-scale success
stories. Some of these challenges across various domains are listed below [134, 108].

5.9.1 Infrastructure and Performance Challenges

The application of blockchain technology to smart power systems faces significant
infrastructure and performance hurdles. These include high costs for upgrading existing
systems, substantial expenses for mining and transaction validation, and increased
bandwidth requirements. Such challenges lead to communication overhead, reduced
efficiency, and potential limitations during emergencies. Scalability is a major concern,
with current blockchain platforms processing only a limited number of transactions per
second, which is insufficient for the vast number of devices in smart grids.

5.9.2 Consensus Algorithm Limitations

Consensus algorithms present another set of challenges for blockchain implemen-
tation in power systems. There is a pressing need for an efficient algorithm that
balances energy savings, security, privacy, and scalability. Existing algorithms like
Proof-of-Work, Proof-of-Stake, and others have limitations ranging from high energy
consumption to potential monopoly formation and privacy concerns. These issues have
significant implications for power systems, including excessive energy consumption and
potential market inefficiencies.
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5.9.3 Regulatory and Legal Obstacles

Regulatory and legal issues pose substantial obstacles to blockchain adoption in
the energy sector. The digitization of assets and actions creates difficulties in taxing
digital currencies and legal ambiguities surrounding smart contracts. User anonymity
raises concerns about unregulated transactions and the lack of a central intermediary
for regulatory enforcement. The industry is grappling with the choice between permis-
sionless and permissioned blockchains, with a growing preference for the latter in the
energy sector due to better control and privacy features.

5.9.4 Security Vulnerabilities

Security concerns remain a critical challenge for blockchain implementation in power
systems. The technology is vulnerable to various attacks, including 51% attacks, Sybil
attacks, and Denial of Service attacks. Long-term concerns about quantum computing
threats to cryptography also loom large. These security issues could potentially lead to
market monopolies, major power supply interruptions, and data breaches, underscoring
the need for advanced cybersecurity measures.

5.9.5 Adoption and Integration Hurdles

Adoption and integration of blockchain in power systems face additional hurdles.
The technology lacks long-term usage experience, which affects its acceptance. The
complexity of scheduling mechanisms for distributed energy markets and challenges in
interoperability with other technologies further complicate adoption. The immutable
nature of blockchain ledgers makes it difficult to implement changes, and the substantial
power consumption from mining and advanced metering infrastructure raises concerns
among users and producers [135].



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The energy sector is undergoing a significant transformation, driven by the inte-
gration of renewable energy sources, the proliferation of electric vehicles (EVs), and
the evolving demands of modern electricity grids. This thesis addresses the overarch-
ing research question: ’How can innovative market structures and load management
strategies mitigate the challenges posed by the evolving energy landscape?’ The focus
is on developing peer-to-peer (P2P) local energy trading market mechanisms capa-
ble of effectively managing distributed generation and EV charging, while empowering
prosumers and consumers to actively participate, reap monetary benefits, and provide
ancillary services to the grid.

This research investigates a P2P energy trading framework that optimizes the so-
cial welfare of EV owners through a multi-issue negotiation mechanism and real-time
EV charging management, while also providing grid services such as congestion mitiga-
tion through EV flexibility. The thesis then examines a three-stage multi-agent model
for P2P energy trading, strategically designed to maximize individual benefits by or-
chestrating one-to-many concurrent composite negotiations. Additionally, the research
explores in depth how blockchain and smart contract technologies can be leveraged to
implement automated P2P energy trading systems.

Specifically, we studied how to empower P2P energy trading using efficient market
mechanisms from the following two aspects:
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6.1.1 Multi-Issue Negotiation for EV Charging in Congested
Networks

This research addresses the challenge of coordinating electric vehicle (EV) charging
in highly congested distribution networks. The problem statement highlights the need
for effective load coordination in networks where building loads represent critical loads
that cannot be shed, and uncoordinated EV charging could lead to network congestion
and overloading.

The paper proposes a multi-issue negotiation protocol between active consumers
(EVs) and a management platform. This protocol simultaneously considers three key
aspects: the consumption interval, the price, and the size of energy packages. The
approach uses MATLAB classes to emulate a multi-agent system, where each vehicle
is an agent interacting with the platform (another agent). The algorithm is designed
to coordinate EV charging while considering network constraints. A graphical abstract
of the research is presented in Fig.6.3.

The case study applied the proposed multi-issue negotiation protocol to a distri-
bution network consisted of 10 EV chargers with 100 EVs and 7 buildings with 30
households. Varying building load profiles, number of charging points and EV prefer-
ences(energy, price and time), reduction in network overload related to total capacity
and overall EV charging rate success was examined. Model demonstrated consistent
ability to maintain EV charging services even under varying loads and constraints.
Significant reductions in network overload, ranging from 2% to 20% depending on con-
ditions.Adaptability to different EV numbers and preferences, showcasing the robust-
ness of the negotiation protocol.This real-time management algorithm ensures that the
charging schedule remains adaptable and responsive to real-time conditions, optimiz-
ing the use of available resources while maintaining system stability. By dynamically
adjusting to deviations and leveraging the flexibility of EVs, the algorithm effectively
balances the needs of both EV owners and the grid infrastructure.

This comprehensive simulation setup allows us to test our negotiation protocol and
management algorithm under conditions that closely mimic real-world scenarios. By
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incorporating authentic load profiles, diverse EV characteristics, and dynamic waiting
times, we can assess the model’s effectiveness in managing network congestion and
coordinating EV charging in a practical, scalable manner.

The research also investigates the broader applicability of the proposed algorithm.
Although designed for EV charging coordination, the paper notes that the algorithm is
presented in a generic form and could potentially be applied to other scenarios requiring
load coordination in congested networks.

6.1.2 Three-Stage Multi-Agent Framework for Peer-to-Peer
Energy Trading

This study underscores the need for an efficient and scalable peer-to-peer (P2P)
energy trading framework that can simultaneously optimize individual market player
profits, support grid balancing, and minimize trading process delays. Existing solutions
often rely on complex computations and precise predictions, leading to scalability issues
and implementation difficulties. Uncoordinated trading and energy management could
result in grid instability, congestion, and inefficient resource allocation.

To address these challenges, the paper proposes an innovative multi-stage postpaid
P2P energy trading model based on a multi-agent systems framework. The approach
achieves three key objectives: maximizing social welfare, supporting grid balancing
and congestion management, and minimizing trading process delays. The core of the
methodology is the implementation of a ”One-to-Many Concurrent Composite Negoti-
ations” strategy within a three-stage scheme, featuring a distinctive postpaid method
that ensures seamless service delivery and payment. A graphical abstract of the re-
search is presented in Fig.6.4.
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The proposed approach’s simplicity and computational efficiency, which does not
rely on ultra-precise predictions, enables easy deployment on edge platforms and fa-
cilitates large-scale scalability. This contributes significantly to the evolving landscape
of P2P energy trading by offering a practical and efficient solution to modern energy
market challenges.

The effectiveness of the proposed framework was tested in a realistic local energy
market scenario, evaluating how agents interact, negotiate, and trade energy within
the defined parameters. The case study implemented two specific scenarios to evaluate
the proposed peer-to-peer (P2P) energy trading model.The case studies collectively
demonstrated the model’s efficiency in facilitating P2P energy trading, optimizing en-
ergy distribution, and supporting increased participation among market agents.

The methodology of this research work also involved a series of six experiments de-
signed to evaluate the scalability and effectiveness of the proposed peer-to-peer energy
trading model. These experiments progressively increased the number of prosumer
and consumer agents, with agent batches ranging from 5 to 50. Various system pa-
rameter combinations were tested to assess the model’s performance under different
conditions. The experiments were conducted with a consistent time horizon across all
scenarios, enabling direct comparisons and insights into the model’s scalability in terms
of computational and communication demands.

This methodological approach provided a robust foundation for analyzing the
model’s performance, its impact on local energy trading volumes, overall profits, and
the distribution of benefits among different types of agents.

The results showed that the model could effectively handle energy transactions,
promote economic benefits for prosumers by allowing them to sell surplus energy di-
rectly to consumers, and reduce grid dependency, thereby enhancing the sustainability
and efficiency of local energy markets.

6.1.3 Blockchain in the Realm of P2P Energy Trade

This thesis additionally explores the integration of blockchain technology within
smart power systems, particularly focusing on its application in peer-to-peer (P2P)
energy trading. The chapter provides a comprehensive overview of how blockchain can
enhance the efficiency and transparency of energy transactions. It discusses the de-
centralized nature of blockchain, which eliminates the need for intermediaries, thereby
reducing transaction costs and improving data security and privacy. The chapter high-
lights the potential of blockchain to facilitate direct energy trading between producers
and consumers, leveraging smart contracts to automate and secure transactions. It ad-
dresses both the benefits and challenges of implementing blockchain in energy systems.

The thesis also examines the transformative potential of DLT-based smart con-
tracts in energy systems, presenting an illustrative technology stack as a guide for
developing energy applications. By providing this framework, the thesis aims to accel-
erate innovation in decentralized energy solutions, motivate energy experts to engage
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with smart contract technology, and foster a community of developers in this field.
The research not only highlights the capabilities of smart contracts to simplify and
decentralize energy operations but also offers practical guidelines for implementation.
While establishing this foundation, the thesis anticipates future expansions to include
more detailed aspects of the technology stack, further supporting the advancement of
decentralized energy applications.

Furthermore, the study explores the practical implementation of blockchain technol-
ogy in facilitating peer-to-peer (P2P) energy trading. The study focuses on developing
a pilot platform that leverages blockchain’s decentralized and transparent nature to
enable direct energy transactions between producers and consumers without the need
for intermediaries.

6.2 Future Work

The current studies have laid a foundation for innovative approaches in EV charging
coordination and peer-to-peer energy trading. However, there are several areas for
improvement and expansion. Future research will focus on the following key directions:

1. Complex Strategy Development: Exploration of complex strategies for both util-
ities and vehicles, associated with various types of flexible tariffs. This will en-
hance the parametric negotiation methodology to allow for more sophisticated
strategy variation.

2. Integrated Load Management: Development of a methodology to simultaneously
manage flexible vehicle loads along with other flexible household loads, creating
a more comprehensive energy management system.

3. Renewable Integration: Incorporation of solar production at the household level,
furthering the integration of renewable energy sources into the local energy
ecosystem.

4. Peer-to-peer Energy Exchange: Enabling users to exchange energy with each
other and with vehicles on public roads, fostering a more dynamic and flexible
energy trading environment.

5. Multi-agent Trading System: Evolution towards a multi-agent based trading sys-
tem, moving away from the utility-dependent intermediate management platform
used in the current studies.

6. Advanced Agent Behavior Modeling: Enhancement of agent behavior models
with more advanced features to better reflect real-world decision-making pro-
cesses.
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7. Energy Communities: Exploration of establishing energy communities at com-
mon coupling points in the network, allowing prosumers and nearby consumers
to form bilateral contracts and collaborate on energy management.

8. Coordinated Response to Price Signals: Investigation into how energy commu-
nities can coordinate their responses to price signals to aid grid stability and
optimize energy use.

9. Network Loss Minimization: Study of how close-knit energy communities can
minimize network losses through localized energy trading and management.

10. Collaborative Energy Management: Research into community collaboration dur-
ing high demand periods, including surplus energy sharing by prosumers and
adaptive charging of electric vehicles.

11. Incentive Mechanisms: Development of incentive structures to promote coop-
eration and flexibility within energy communities, encouraging participation in
peer-to-peer trading and grid support activities.

12. Decentralized Energy Applications: This thesis also explored the potential of
blockchain technology in power systems, particularly in the context of peer-to-
peer (P2P) energy trading. This research initiative aims to promote the de-
velopment of energy-focused smart contract applications and to build a strong
community of developers working on decentralized energy solutions. Future work
is planned to include a more detailed and granular examination of various as-
pects of this technology stack. The development of decentralized applications
(DApps) based on Blockchain 4.0, with extensive features for P2P energy trad-
ing platforms that meet business and industry demands, is a priority in our future
research agenda.

Future research directions aim to address current limitations, enhance the efficiency
and flexibility of energy trading systems, and promote the development of sustainable,
community-oriented energy ecosystems. By pursuing these avenues, we can further
advance the field of peer-to-peer energy trading and EV charging coordination, con-
tributing to the ongoing transformation of the energy sector.
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6.3 Conclusiones

El sector energético está experimentando una importante transformación, impul-
sada por la integración de fuentes de enerǵıa renovables, la proliferación de veh́ıculos
eléctricos (VE) y la evolución de las exigencias de las redes eléctricas modernas. Esta
tesis aborda la pregunta de investigación general: ’¿Cómo pueden las estructuras de
mercado innovadoras y las estrategias de gestión de la carga mitigar los retos que
plantea el cambiante panorama energético?’. La tesis se centra en el desarrollo de
mecanismos de mercado local de comercio de enerǵıa entre pares (P2P) capaces de
gestionar eficazmente la generación distribuida y la carga de veh́ıculos eléctricos, al
tiempo que permiten a prosumidores y consumidores participar activamente, obtener
beneficios económicos y prestar servicios auxiliares a la red.

Esta investigación estudia un marco de comercio de enerǵıa P2P que optimiza el
bienestar social de los propietarios de veh́ıculos eléctricos a través de un mecanismo de
negociación de múltiples temas y la gestión de la carga de veh́ıculos eléctricos en tiempo
real, al tiempo que proporciona servicios de red como la mitigación de la congestión
a través de la flexibilidad de los veh́ıculos eléctricos. A continuación, la tesis examina
un modelo multiagente de tres etapas para el comercio de enerǵıa P2P, diseñado es-
tratégicamente para maximizar los beneficios individuales orquestando negociaciones
compuestas concurrentes de uno a muchos. Además, la investigación explora en profun-
didad cómo las tecnoloǵıas blockchain y de contratos inteligentes pueden aprovecharse
para implementar sistemas automatizados de comercio de enerǵıa P2P.

En concreto, estudiamos cómo potenciar el comercio de enerǵıa P2P utilizando
mecanismos de mercado eficientes desde los dos aspectos siguientes:

6.3.1 Negociación multiproblema para la recarga de veh́ıculos
eléctricos en redes congestionadas

Esta investigación aborda el reto de coordinar la carga de veh́ıculos eléctricos (VE)
en redes de distribución muy congestionadas. El planteamiento del problema pone de
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relieve la necesidad de una coordinación eficaz de la carga en redes en las que las cargas
de los edificios representan cargas cŕıticas que no pueden desprenderse, y la carga no
coordinada de VE podŕıa provocar la congestión y sobrecarga de la red.

Este art́ıculo propone un protocolo de negociación multitemática entre consum-
idores activos (VE) y una plataforma de gestión. Este protocolo considera si-
multáneamente tres aspectos clave: el intervalo de consumo, el precio y el tamaño
de los paquetes de enerǵıa. El planteamiento utiliza clases de MATLAB para emu-
lar un sistema multiagente, en el que cada veh́ıculo es un agente que interactúa con
la plataforma (otro agente). El algoritmo está diseñado para coordinar la recarga de
veh́ıculos eléctricos teniendo en cuenta las restricciones de la red. En la Fig.6.3 se
presenta un resumen gráfico de la investigación.

El estudio de caso aplicó el protocolo de negociación multitemática propuesto a una
red de distribución formada por 10 cargadores de VE con 100 VE y 7 edificios con 30
hogares. Variando los perfiles de carga de los edificios, el número de puntos de recarga
y las preferencias de los VE (enerǵıa, precio y tiempo), se examinó la reducción de la
sobrecarga de la red en relación con la capacidad total y el éxito general de la tasa
de recarga de VE. El modelo demostró una capacidad consistente para mantener los
servicios de carga de VE incluso bajo cargas y restricciones variables. Este algoritmo
de gestión en tiempo real garantiza que el programa de recarga se adapte y responda
a las condiciones en tiempo real, optimizando el uso de los recursos disponibles y
manteniendo la estabilidad del sistema. Al ajustarse dinámicamente a las desviaciones
y aprovechar la flexibilidad de los VE, el algoritmo equilibra eficazmente las necesidades
tanto de los propietarios de VE como de la infraestructura de la red.

Este completo sistema de simulación nos permite probar nuestro protocolo de nego-
ciación y algoritmo de gestión en condiciones muy similares a las reales. Mediante de
carga auténticos, diversas caracteŕısticas de los veh́ıculos eléctricos y tiempos de espera
dinámicos, podemos evaluar la eficacia del modelo para gestionar la congestión de la
red y coordinar la carga de los veh́ıculos eléctricos de forma práctica y escalable.

La investigación también estudia la aplicabilidad más amplia del algoritmo prop-
uesto. Aunque está diseñado para la coordinación de la recarga de veh́ıculos eléctricos,
el documento señala que el algoritmo se presenta de forma genérica y podŕıa aplicarse
a otros escenarios que requieran la coordinación de la carga en redes congestionadas.

6.3.2 Marco multiagente de tres etapas para el comercio de
enerǵıa entre pares

Este estudio subraya la necesidad de un marco eficiente y escalable de comercio de
enerǵıa entre pares (P2P) que pueda optimizar simultáneamente los beneficios individ-
uales de los agentes del mercado, apoyar el equilibrio de la red y minimizar los retrasos
en el proceso de comercio. Las soluciones existentes suelen basarse en cálculos com-
plejos y predicciones precisas, lo que plantea problemas de escalabilidad y dificultades
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de aplicación. La falta de coordinación en el comercio y la gestión de la enerǵıa puede
provocar inestabilidad en la red, atascos y una asignación ineficiente de los recursos.

Para hacer frente a estos retos, este art́ıculo propone un innovador modelo de com-
ercio de enerǵıa P2P postpago basado en un marco de sistemas multiagente. El enfoque
persigue tres objetivos clave: maximizar el bienestar social, apoyar el equilibrio de la
red y la gestión de la congestión, y minimizar los retrasos en el proceso de negociación.
El núcleo de la metodoloǵıa es la aplicación de una estrategia de negociaciones com-
puestas concurrentes de uno a muchos dentro de un esquema de tres etapas, con un
método de pospago distintivo que garantiza la prestación de servicios y el pago sin
fisuras. En la Fig.6.4 se presenta un resumen gráfico de la investigación.

La simplicidad y eficiencia computacional del enfoque propuesto, que no depende
de predicciones ultraprecisas, permite un fácil despliegue en plataformas periféricas y
facilita la escalabilidad a gran escala. Esto contribuye significativamente a la evolución
del comercio de enerǵıa P2P, ofreciendo una solución práctica y eficiente a los retos del
mercado energético moderno.

La eficacia del marco propuesto se puso a prueba en un escenario realista de mercado
energético local, evaluando cómo los agentes interactúan, negocian y comercian con
enerǵıa dentro de los parámetros definidos. El estudio de casos puso en práctica dos
escenarios espećıficos para evaluar el modelo propuesto de comercio de enerǵıa entre
pares (P2P). Los estudios de casos demostraron colectivamente la eficiencia del modelo
para facilitar el comercio de enerǵıa P2P, optimizar la distribución de enerǵıa y apoyar
una mayor participación entre los agentes del mercado.

La metodoloǵıa de este trabajo de investigación también incluyó una serie de seis
experimentos diseñados para evaluar la escalabilidad y eficacia del modelo de comercio
de enerǵıa entre iguales propuesto. Estos experimentos aumentaron progresivamente
el número de agentes prosumidores y consumidores, con lotes de agentes que oscilaban
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entre 5 y 50. Se probaron varias combinaciones de parámetros del sistema para evaluar
el rendimiento del modelo en distintas condiciones. Se probaron varias combinaciones
de parámetros del sistema para evaluar el rendimiento del modelo en diferentes condi-
ciones. Los experimentos se llevaron a cabo con un horizonte temporal coherente en
todos los escenarios, lo que permitió realizar comparaciones directas y comprender la
escalabilidad del modelo en términos de demandas computacionales y de comunicación.

Este enfoque metodológico proporcionó una base sólida para analizar el rendimiento
del modelo, su impacto en los volúmenes locales de comercio de enerǵıa, los beneficios
globales y la distribución de beneficios entre los distintos tipos de agentes.

Los resultados mostraron que el modelo pod́ıa gestionar eficazmente las transac-
ciones energéticas, promover beneficios económicos para los prosumidores al permitirles
vender el excedente de enerǵıa directamente a los consumidores, y reducir la dependen-
cia de la red, mejorando aśı la sostenibilidad y eficiencia de los mercados energéticos
locales.

6.3.3 Blockchain en el comercio energético P2P

Esta tesis explora además la integración de la tecnoloǵıa blockchain en los sistemas
energéticos inteligentes, centrándose especialmente en su aplicación en el comercio de
enerǵıa entre pares (P2P). El caṕıtulo ofrece una visión general de cómo blockchain
puede mejorar la eficiencia y la transparencia de las transacciones energéticas. Analiza
la naturaleza descentralizada de blockchain, que elimina la necesidad de intermediarios,
reduciendo aśı los costes de transacción y mejorando la seguridad y privacidad de los
datos. El caṕıtulo destaca el potencial de blockchain para facilitar el comercio directo
de enerǵıa entre productores y consumidores, aprovechando los contratos inteligentes
para automatizar y asegurar las transacciones. Aborda tanto los beneficios como los
retos de la implantación de blockchain en los sistemas energéticos.

La tesis también examina el potencial transformador de los contratos inteligentes
basados en DLT en los sistemas energéticos, presentando una pila tecnológica ilustrativa
como gúıa para el desarrollo de aplicaciones energéticas. Al proporcionar este marco, la
tesis pretende acelerar la innovación en soluciones energéticas descentralizadas, motivar
a los expertos en enerǵıa a comprometerse con la tecnoloǵıa de contratos inteligentes
y fomentar una comunidad de desarrolladores en este campo. La investigación no sólo
destaca las capacidades de los contratos inteligentes para simplificar y descentralizar las
operaciones energéticas, sino que también ofrece directrices prácticas para su aplicación.
Al tiempo que establece esta base, la tesis anticipa futuras ampliaciones para incluir
aspectos más detallados de la pila tecnológica, apoyando aún más el avance de las
aplicaciones energéticas descentralizadas.

Además, el estudio explora la aplicación práctica de la tecnoloǵıa blockchain para
facilitar el comercio de enerǵıa entre pares (P2P). El estudio se centra en el desarrollo
de una plataforma piloto que aprovecha la naturaleza descentralizada y transparente



6.3 Conclusiones 137

de blockchain para permitir transacciones directas de enerǵıa entre productores y con-
sumidores sin necesidad de intermediarios.
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Abstract—The work presented in this paper describes a multi-
issue negotiation protocol between active consumers and a manage-
ment platform in order to establish load coordination in a highly
congested network. The multi-issue negotiation protocol considers
simultaneously the consumption interval, the price, and the size
of the energy packages, which is the main contribution of this
work . Regarding the implementation methodology, the proposed
algorithms have been implemented using MATLAB classes that
allow emulating the behaviour of a multi-agent system in which
each vehicle is an agent that interacts with the platform, which is an-
other agent. In the present work, and without loss of generality, the
algorithm is applied to coordinate the charging of electric vehicles
(EVs) in a distribution network in which building loads represent
critical loads. The algorithm is tested in a realistic environment,
and its stability and performance are evaluated. Furthermore, the
description of the algorithm is provided in a generic form, and it
could be applied to any other scenario.

Index Terms—Congestion management, coordinated charge,
distribution systems, electric vehicles, flexibility, market
mechanism, multi-issue negotiation.

NOMENCLATURE

Pr price.
T time.
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nCP number of charging points.
PEV available power or energy packets for the EV

charging.
Pmax
tf maximum transformer capacity.

Pb forecast of buildings power consumption.
r negotiation rounds.
τ maximal number of negotiation rounds.
Ur
exp expected utility at r.

λ negotiation strategy.
wPr weight of price utility.
wT weight of time utility.
wE weight of energy utility.
SoCinit initial state of charge of EV.
CP available charging points.
PRT feeder power capacity in real-time.
PF feeder power capacity forecasted.
ΔPtotal deviation of PRT from PF

ndis
EV number of EVs disconnected electrically from

chargers.
nF
EV number of EVs forecasted.

nRT
EV number of EVs in real-time.

EV sort
plugged sorted list of electrically connected EVs to

chargers.
EV dis

plugged disconnected EVs from chargers.
Eneg negotiated energy.
Tneg negotiated time.

I. INTRODUCTION

A. Background and Research Motivation

E LECTRIFICATION is an unstoppable trend nowadays
since it has become an extremely useful tool for achieving

decarbonisation targets defined by most countries. Transporta-
tion will be one of the sectors where electrification will have the
greatest impact. Electric vehicles are one of the key players in the
paradigm change that the transportation sector will undergo [1].
By 2030, a huge rise in EV circulation worldwide is projected by
the International Energy Agency from being 5 million in 2018
to around 230 million, largely due to falling battery costs with
the expansion of battery manufacturing capacity and increasing
fuel density [2].

Despite the benefits offered, the fast-growing EVs devel-
opment may introduce a profound influence on the existing
power grid. It must be considered, for instance, that nowadays,
electricity demand from EVs accounts for only about 1% of
current electricity total final consumption worldwide. According

0018-9545 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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to [2], by 2030, in the Stated Policies Scenario and Sustainable
Development Scenario, electricity demand for EVs will account
for at least 2% of global electricity total final consumption.
Even when that amount of energy does not represent a major
impact on the total energy delivered by the distribution network,
the uncoordinated charging of electric vehicles would create
peak power that at best requires large infrastructure investments,
generating large increases in the electricity tariff for end users.
To reduce the aforementioned investments and avoid problems
in the distribution grid such as grid congestion, voltage viola-
tions, transformer overloading, and impact on power quality,
it is necessary to implement load management strategies [3].
With the correct strategies, the flexibility of the EVs could be
used to mitigate their impact in the transmission or distribution
system [4].

B. Related Works

For the reasons stated above, researchers are devoting an enor-
mous amount of effort to research on mechanisms for regulating
vehicle charging at different levels. Recently, coordination for
vehicle-to-grid (V2G) applications was considered [5]. Recent
studies [2] demonstrated that one third of the demand at peak
hours could be covered by 2030 using V2G applications. The
ways of coordinating vehicles are based on three criteria: 1)
how charging control is performed (centralized or distributed);
2) the methodology used to obtain the signals with which they
coordinate the electric vehicles; and 3) the business model of
the aggregators and what they use the flexibility of the EVs
for. Regarding how the charging control is executed, it can be
distinguished between; a) Techniques based on implicit demand
response, in which case the load of the vehicles is normally
controlled in a distributed way, generally based on price [6], [7].
With respect to the methodology employed by the aggregator, it
can be distinguished basically between signals [8], since there is
no central agent that explicitly connects or disconnects the vehi-
cles. Different EVs respond in different ways to the price signals,
and thus a certain degree of coordination can be executed [9].
b) Techniques based on explicit demand response in which a
central manager, usually an aggregator, controls the load of the
vehicles in a centralized way according to different criteria [10].
In this case, there are two groups of techniques, those that use
optimization algorithms [11]–[15] or those that use transactive
energy mechanisms. In this last group, a wide variety of ap-
proaches can be found, such as multi-agent systems [16], game
theory approaches [17], [18], market based mechanisms [19],
[20], among others. Regardless of whether the coordination of
vehicles is done explicitly or implicitly, and the methodology
employed for obtaining the control signals, the aggregator is
somehow able to perform this management and use the flexibility
for different purposes depending on its business model. The
models in which an aggregator can participate vary and can range
from optimizing the cost of energy for vehicle owners [21] or
providing some service to the energy community [22], partici-
pating in operating markets such as the day-ahead market [23],
[24], or participating in operating markets such as frequency

regulation [25] or balancing markets [26] or other ancillary ser-
vices markets [27] or the use of flexibility to reduce congestion
problems in the distribution network [28]. Aggregator-based EV
charging control in a decentralized, user-oriented fashion is also
one of the most important applications [29].

In the case presented in this paper, the vehicles negotiate
with an aggregation platform both the charging interval and the
charged energy packages, as well as their price. The aggregation
platform exercises centralized control over the vehicles, and in
the case study, the target of the aggregation platform is to avoid
overloading at a given transformer station, considering the load
of the buildings as a critical load that cannot be shed.

C. Key Contribution

The main contribution of the article is the negotiation proto-
col that simultaneously considers the charging interval, price,
and energy. None of the works presented to date consider all
three aspects simultaneously in the negotiation protocol. For
instance, [30] aims to maximize the utilities of EVs and charging
stations by proposing a negotiation scheme based on two aspects,
that is, time and energy. The algorithm does not leverage the
EVs to make negotiation with stations over the prices. There is
more flexibility provided to charging stations for constraining
EVs. However, [22] proposes an iterative auction framework to
compute optimal charging schedules that maximize the social
welfare of all users given their time preferences and the state
of charge, but it does not consider the impact of charging
schedules on grid stability. Most of the papers, in the context
of negotiation mechanisms, differ in the way they model the
negotiation elements and flexibility for EVs and the grid, so
an explicit comparison between metrics could not be justified.
This paper captures the social welfare of EV owners with a
multi-issue negotiation mechanism and real time EV charging
management along with the grid service support, i.e., congestion
removal by EV flexibility. The concept of multiple negotiation
has been successfully used in systems in the field of cloud
services (see, for instance, the work presented in [31]), where
different users automatically negotiate according to their tariff
to obtain computational intervals and computational power. The
algorithm presented in this paper is an extension of the one
presented in [32]. In this work, the main core of the algorithm
was presented, but the negotiation did not include the energy
packets, and only independent negotiation rounds were tested.
The present work has the next contributions:� It presents a multi-issue negotiation algorithm in which the

EVs can negotiate simultaneously the charging interval, the
price and the amount of energy charged.� The negotiation parameters can be varied to emulate dif-
ferent tariffs or user preferences.� The system uses forecast consumption of critical loads
during the negotiation process but it is able to adapt the
charging patterns in real time when deviations from pre-
dicted critical loads occur.

It should be noted that what is presented as a contribution in
this article is the multiple negotiation methodology. In this case,
the methodology has been applied to a case study whose purpose
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Fig. 1. Schematic overview of paper.

is to solve a congestion management problem in the distribution
network. However, the negotiation algorithm is general, and it
can be applied in other scenarios in which the aggregator pursues
a different target.

D. Organization

The remainder of this paper is organized as follows: Sec-
tion 2 entails the description of the problem being taken into
consideration for the application of the proposed negotiation
protocol. Section 3 covers the detailed systematic description
of the proposed multi-issue negotiation mechanism. Section
4 includes the case study and simulation results to prove the
effectiveness of the proposition. Section 5 concludes the research
work presented in this paper. The schematic overview of the
proposed work is presented in Fig. 1.

II. PROBLEM STATEMENT

A typical European urban distribution network, the same as
considered in [32], is selected to test the extended model and a
single line diagram of which has been represented in Fig. 2. It
is a part of a real network in Spain that is operated by Energias
de Portugal (EDP) and is composed of 30 power transformer
stations supplying energy to 8,500 consumers. Fig. 2 represents
one of these power transformer stations along with its elements.
All of the power transformers are in a delta-wye (grounded) con-
figuration. There are 4-wire 3 phase feeders (F.1, F.2,..) which
connect the power transformer secondary with the circuit breaker
(BR1), and are protected by a set of fuses (FF 1, FF 2,...). Each
feeder can be monitored by means of an advanced supervisor
monitoring equipment (labeled in Fig. 2 as MF 1, MF 2,...). There
are around 7 buildings per power station distributed in around
4 feeders, where the average distance is less than 300 meters
from the power transformer to the connection points. Mostly,
buildings have 3 phase connections while the end-users inside
buildings (L1,...,L6) are single phase, constituting an unbalanced
total load. Generally, there is a set of 3 phase fuses (for instance
FL4) installed for the protection of each building.

Moreover, each end-user is also protected by it own fuse
(such as FB1) and supported with advance metering infras-
tructure (for instance M1). During the peak hours of the day,
the feeders are highly congested, which makes it impossible

Fig. 2. European low voltage urban distribution network representing the case
defined in the problem statement.

to add more loads, such as installing EV chargers, without
making huge investments in network extensions or deploying
new infrastructure. This scenario restricts distribution system
operators (DSOs) from introducing EV chargers into the network
on a large scale. However, the statistics reveal that the average
load of different feeders during a complete day is less than
just 10%. This fact opens the possibility of utilising flexible
loads to reduce congestion problems and increase the system’s
capability to adopt new loads. Under our specific case study,
buildings in Fig. 2 (labeled in red) present critical loads that need
to be fed under all circumstances. On the other hand, electric
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vehicles (labeled in blue) will take part as flexible loads and will
negotiate price, charging duration, and energy packets required
for charging with the aggregation platform (represented as AG).
The role of the aggregator will be to manage the non-supplied
energy while respecting all physical constraints defined by the
DSO. For this purpose, the aggregator will use the price signals,
demand forecast, and proposed multi-issue negotiation model
(the main contribution of this paper), to coordinate the charging
activity with each EV connected to the system. Furthermore,
the proposed real time congestion management algorithm will
be implemented to balance out any deviation with respect to
predicted demand. The ultimate goal of the aggregator is to ac-
complish a trade-off between EV charging demand satisfaction
and congestion reduction in the network without critical load
shedding and violating any physical constraint imposed by DSO.
Moreover, only low latency measurements at the secondary
of the power transformer are considered to demonstrate the
capacity of the negotiation protocol for dealing with congestion,
and a simple but realistic model is used to avoid overloads in
the transformer. In future work, more detailed models of the
grid that keep under consideration possible voltage drops in
order to update the hosting capacity of the specific nodes will
be developed.

III. METHODOLOGY

A. Multi-Issue Negotiation Protocol

Electric vehicles in the network will represent flexible loads,
and to initiate a charging activity, an EV charger will identify the
EV owner and will negotiate with the aggregator the price, time
duration, and energy required for charging using the negotiation
parameters defined in the EV owner tariff. Even when the ag-
gregator increases its utility function (later defined) with higher
prices, its final target will be to minimise the non-supplied energy
by coordinating with EV owners while meeting all the physical
constraints imposed by the DSO. In this pursuit, the aggregator
uses a multi-issue negotiation protocol to negotiate with EVs
and obtain a mutually beneficial EV charging schedule without
exerting congestion on the system. Furthermore, considering the
two important aspects of this specific case of study, i.e., 1). the
limited number of EVs that can be connected to a feeder 2). the
high speed of the negotiation algorithm (explained later), FIFO
(first in first out) strategy is acquired by the aggregator to negoti-
ate with the incoming EVs owners for charging. Aggregator will
negotiate with the EV owner which connects first to the charging
station, and then to the others in sequence. This will not reduce
the generality of the methodology that could be adapted under
other premises, for instance, parallel negotiations.

The proposed multi-issue negotiation mechanism (price/time-
slot/energy package) is inspired by the Rubinstein Alternating
Offer Protocol, which is basically a bargaining model that pro-
vides a perfect equilibrium solution to a bargaining problem
among the transacting agents. The model basically finds an
agreement upon which the payoff of each agent is not lower than
the minimum acceptable payoff. This protocol is well known
and has been extensively applied to automated negotiations in
different fields [20], [31], but this is the first time that it has

been adapted to be used in peer-to-platform energy trading
applications. Price Pr, Time T and Energy E are the three
crucial elements involved in the whole negotiation process,
therefore making it a novel 3D protocol. In other words, agents
(EV owners and aggregators) will negotiate on the price per
unit energy Pr, time slots and duration required for charging
activity T and E energy packets required to achieve a certain
state of charge (SoC) level. To start a negotiation, both agents
i.e aggregator and EV owner will specify their preferences of
(Pr, T,E), other negotiation parameters (negotiation rounds,
deadline..) and strategies (time dependent concessions..). For the
sake of simplicity, it is assumed that when an EV is connected
to the charging station, the advanced metering infrastructure
provides information to the aggregator about the current SoC
of the EV. Hence, based on the actual SoC level and the fore-
cast of the building’s power consumption, the aggregator de-
cides Pr, T,E and adapts its negotiation strategies. Forecasting
techniques are beyond the scope of this research work since
the prediction methodology is completely decoupled from the
trading methodology. Therefore, the proposed methodology is
formulated independently from the prediction methodology. It
is assumed that the aggregator may use the aggregated building
consumption forecast. Deviations between real consumption and
forecasted deeply affect the network capacity to allocate EVs and
are considered in this paper. Based on the agent’s preferential
settings, the negotiation algorithm determines corresponding
benefits or the level of satisfaction of the agents for a deal, which
is quantified as a number between 0 and 1, and termed “utility.”
During a negotiation process, each element of the negotiation is
evaluated for its utility for the agent, which is achieved using a
utility function.

1) Utility Functions Description: Utility functions are de-
fined for each negotiation element to calculate its corresponding
utility under the lens of prescribed preferences by the agent.
The proposed negotiation algorithm is based on four main
utility functions: price, time, energy, and total utility functions,
which are used to calculate the respective utilities of the EV
and aggregator to implement the bilateral negotiation strategies
acquired in this paper. This section will provide details about
the above-referred functions.

a) Price Utility Function: Both agents set a price window
(bargain margin of price) for price negotiation, bounded by
most preferred price (initial price PrI ) and least preferred price
(reserved price PrR), which are decided accordingly to target
individual economic benefits. Aggregator controls its price win-
dow based on the price signals, the details of which are not
the aim of this research. Therefore, in the peak hours of the
day, the aggregator’s price window setting is to discourage EV
charging, and in the case of surplus power available, the target of
the price window setting will be to accommodate more EVs for
efficient utilisation of the resources. Moreover, both agents will
set their threshold or minimum required price utility (uPrmin

)
below which the offer will not be accepted. In the successive
negotiation rounds the agents will make counter offers keeping
its price utility not less than uPrmin

, and the same criteria is
followed for the other negotiation elements. Based on these
settings, price utility functions, as defined below in (1) for EV

Authorized licensed use limited to: UNIVERSIDAD DE OVIEDO. Downloaded on September 18,2023 at 14:28:11 UTC from IEEE Xplore.  Restrictions apply. 

A.1 Multi-Issue Negotiation Protocol for EV Charging 145



KHAN et al.: MULTI-ISSUE NEGOTIATION EVs CHARGING MECHANISM IN HIGHLY CONGESTED DISTRIBUTION NETWORKS 5747

owners and (2) for aggregators, calculate utility for them against
the price under negotiation. Superscripts EV and AG are used
to correspond to the EV owner and aggregator, respectively.

UEV
Pr (Pr) =

⎧
⎪⎪⎨
⎪⎪⎩

uEV
Prmin

+
(
1 − uEV

Prmin

) ∣∣∣ PrEV
R −Pr

PrEV
R −PrEV

I

∣∣∣ ,
P rEV

I ≤ Pr ≤ PrEV
R

0, otherwise
(1)

UAG
Pr (Pr) =

⎧
⎪⎪⎨
⎪⎪⎩

uAG
Prmin

+
(
1 − uAG

Prmin

) ∣∣∣ PrAG
R −Pr

PrAG
I −PrAG

R

∣∣∣ ,
P rAG

R ≤ Pr ≤ PrAG
I

0, otherwise
(2)

Both functions are similar, however, as it can be observed that EV
owner’s utility(UEV

Pr (Pr)) is high at low prices while aggregator
utility function provides low utility at high prices.Pr, PrI and
PrR are defined as the cost per energy packet (energy packets
ep are discussed later). The prices drastically determine the ne-
gotiation strategy. However, the definition of complex strategies
by both the utility and the vehicles, which will be associated
with different types of flexible tariffs, is beyond the scope of
this paper and is being studied for proposal in future work.

b) Time Utility Function: EVs are treated as flexible loads
to cope with the net load constraint according to the transformer
capacity restrictions. EVs are facilitated with a discontinuous
charging process because of the fact that critical loads (buildings
in this case) are required to be fed primarily. Hence, additional
time may be required to meet an EV charging demand, and for
this reason, some time flexibility is expected from EV owners
for charging activities. To negotiate the time slot and duration
T required for a charging activity, both agents define their
margin of bargaining, confined by initial (most preferred) and
reserved (least preferred) time duration [TI , TR] based on their
flexibility. The time utility function for EV owners in (3) and
for an aggregator in (4), is used to calculate their utility against
the given time slot and duration. This time utility is significant
for both agents to offer or assess the time element under the
negotiation, keeping in view their respective TI and TR.

UEV
T (T )=

⎧
⎪⎪⎨
⎪⎪⎩

uEV
Tmin

+
(
1− uEV

Tmin

)∣∣∣ TEV
R −T

TEV
R −TEV

I

∣∣∣,
TEV
I ≤T ≤TEV

R

0, otherwise

(3)

UAG
T (T )=

⎧
⎪⎪⎨
⎪⎪⎩

uAG
Tmin

+
(
1− uAG

Tmin

)∣∣∣ TAG
R −T

TAG
R −TAG

I

∣∣∣,
TAG
R ≤ T ≤TAG

I

0, otherwise

(4)

It can be seen that EV owner prefers to finish charging activity
early therefore defining a small time duration as TEV

I to recieve
maximum utility whereas aggregator prefers to keep TAG

I large
so that it may use this flexibility to coordinate with the schedule
in case of a sudden demand from critical loads.

c) Energy Utility Function: Based on the aggregated de-
mand forecast of critical loads (buildings in this case without lost
of generality), aggregator quantifies each time-slot of available
power as number of EVs that can be accommodated in that
time, considering in this case that all chargers provide the same
maximum power for the sake of simplicity. Therefore, depending
upon the capacity available in each time-slot, charging facilities
can be provided to EVs. For this reason, the aggregator requires
some flexibility in terms of charging demand from EV own-
ers to facilitate the charging while meeting all the operational
constraints (discussed later). Energy is discretised into energy
packets of length Δt and amplitude of charger power capacity,
which makes it convenient for agents to deal in terms of energy
packets. Both agents define their margin/window for negotiating
energy packets with each other within these respective windows
and agree on the number of energy packets which may facilitate
EV charging while meeting all constraints. Both agents specifies
their bounds of energy window i.e most and least preferred
number of energy packets [EI , ER], as per their preferences.
Similar to the other elements, energy utility is calculated against
the number of energy packets based on the window prescribed
by the agent. Energy utility functions in (5) for EVs and in (6) for
aggregator are defined to calculate energy utilities respectively.

UEV
E (E)=

⎧
⎪⎪⎨
⎪⎪⎩

uEV
Emin

+
(
1− uEV

Emin

)∣∣∣ EEV
R −E

EEV
R −EEV

I

∣∣∣,
EEV

R ≤E≤EEV
I

0, otherwise

(5)

UAG
E (E)=

⎧
⎪⎪⎨
⎪⎪⎩

uAG
Emin

+
(
1− uAG

Emin

)∣∣∣ EAG
R −E

EAG
R −EAG

I

∣∣∣,
EAG

R ≤E≤EAG
I

0, otherwise

(6)

d) Total Utility Function: All three utilities, i.e.,
UPr, UT , UE are adjusted and aggregated to receive the
total utility of an agent. The total utility is evaluated to take
decisions like accepting or rejecting an offer or making a
counter offer during a negotiation process. wPr, wT and wE

are the weights set by the negotiating agents to adjust their
respective preferences for price, time and energy utilities, such
that wPr + wT + wE = 1. Using these weights, agents make
trade-offs in the offers or counteroffers to show flexibility, e.g.,
reducing the weight of the price because the agent is in a rush to
receive the service, which will reduce the portion of the price in
total utility and keeping the other factors the same. Hence, this
offer is more likely to be accepted. In general, the total utility
Utotal(Pr, T,E) for a specific agent (EV owner or aggregator)
can be stated as (7):

Utotal(Pr, T,E) =

⎧
⎪⎨
⎪⎩

0, if any ofUPr, UT , UE = 0

wPr · UPr + wT · UT + wE · UE ,

otherwise
(7)

2) Negotiation Process and Strategies: Agents adopt differ-
ent negotiation strategies to accelerate the negotiation process,
which makes the protocol more efficient. The following are
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the detailed descriptions of the applied negotiation process and
strategies:

a) Burst Offer Mode: Agents adopt different negotiation
strategies to accelerate the negotiation process, which makes the
protocol more efficient. The following are the detailed descrip-
tions of the applied negotiation process and strategies:

During the negotiation process, it is devised that each agent
can make multiple concurrent proposals, i.e. different combina-
tions of price, time, and energy elements, which yield the same
total utility, satisfying the preferences (utility) of the agent. Burst
offer mode is useful for speeding up the negotiation process
where opponents can provide multiple choices to each other,
making it more likely to get one of the offers accepted. A burst
proposal from agent A1 to agent A2 at negotiation round r can
be expressed as (8).

BPA1→A2
r =[(Pr1, T1, E1), (Pr2, T2, E2), . . .(Prn, Tn, En)]r

(8)
b) Time Dependent Concession: The second adopted

strategy to fasten the process of negotiations is to make time
dependent concessions. In simple words, the expected utility
(Uexp) of each agent will be reduced by the amount of con-
cession with each passing round that will encourage the agents
to get to the agreement without losing utility w.r.t time. This
degradation, or concession in utility, is dependent on the negoti-
ation round r, the maximal number of negotiation rounds τ , and
the negotiation strategy λ, and is calculated using the following
expression:

Ur+1
exp = Ur

exp − Ur
exp ·

( r

τ

)λ

(9)

Depending on the value of λ the negotiation strategy can be
classified as 1) linear: λ = 1, 2) conciliatory: 0 < λ < 1, and 3)
aggressive: λ > 1. In our specific case, agents have acquired the
linear strategy to make concessions.

3) Objective Function: Both agents will engage in alternat-
ing offers while establishing a trade-off in the price, time, and
energy elements to maximize their total utility. The operation
of the proposed automated negotiation algorithm is centered on
the main objective, which is to maximise the total utility of each
agent, expressed as an objective function in (10):

maximize(Utotal(Pr, T,E)) (10)

The objective of the negotiation mechanism is subjected to
following constraints:

PEV < Pmax
tf − Pb (11)

Aggregator will decide the available power or energy packets for
the EV charging (PEV ) based on forecast of buildings power
consumption(Pb) and maximum transformer capacity(Pmax

tf ).
The constraint in (11) ensures EV charging load must not cause
congestion in the system because critical loads, i.e., buildings in
the community, must be fed at all times. EVs will behave like
flexible loads.

ninst
EV <= nCP (12)

The second constraint in (12) specifies that at any instant, the
number of vehicles that charge simultaneously (ninst

EV ) must not

Algorithm 1: Multi-Issue Negotiation Mechanism.

Input: (PI , PR, TI , TR, EI , ER, umin, λ, τ) for EV owner
and AG.

Output: (Pr, T,E) final price, time and energy.
1: AG prepares burst offer based on SoCinit of EV.
2: r ⇐ 0 Set A1 = EV owner & A2 = AG.
3: (Pr, T,E) := f init

A2 (SoCinit) A2 burst offer
preparation.

4: if (Pr, T,E)A2 is empty then
5: Process terminated, no agreement.
6: else
7: r ⇐ r + 1 Update negotiation round.
8: Execute (9) for both agents.
9: Update Agent1 utility UA1

exp,r

10: (Pr, T,E) := f−1
A1(U

A1
exp,r) A1 burst offer generation.

11: UA2
x,r := fA2(Pr, T,E) A2 burst offer evaluation.

12: if (r = τ & UA2
x,r < UA2

min) then
13: Process terminated, no agreement.
14: else if (r = τ & UA2

x,r ≥ UA2
min) | UA2

x,r ≥ UA2
exp,r+1

then
15: Process terminated, agreement reached.
16: else
17: Switch EV onwer and Aggregator in A1 and A2

roles.
18: Goto line 7 to create counter-offer.
19: end if
20: end if

exceed the total number of charging points (nCP ).

(Utotal, UPr, UT , UE) ≥ umin (13)

Finally, (13) ensures that all the negotiation elements (Pr, T,E)
must remain above the minimum specified utilities.

4) Multi-Issue Pr-T-E Negotiation Algorithm: The main fea-
tures and steps of the proposed multi-issue negotiation mecha-
nism are summarised in Algorithm 1. At first, EV and aggregator
declare their initial preferences which are mainly consist of
price window (PrI , P rR), time duration window (TI , TR) and
energy packets window (EI , ER). Apart from them, there are
other parameters which include the agent’s minimum utility,
negotiation strategy, and maximal number of negotiation rounds
(umin, λ, τ). umin is minimum utility received by the agent for
reaching an agreement at its least preferred price or time duration
or energy. Initially A1 is set to be an EV owner and A2 to be
an aggregator (AG) which are later switched in the successive
rounds. The initial strategy of the aggregator, which is acquired
in this protocol, is that the aggregator prepares beforehand the
burst offer using function (Pr, T,E) := f(SoCinit) based on
SoCinit that is measured when the EV is connected to the
charger. This burst offer consists of packages ranging from
10 to 100 percent SoC level with corresponding price and time.
This strategy speeds up the negotiation process. At first round
(r = 1) of the negotiation, EV owner initiates a request to ag-
gregator which consist of a set of its most preferred (Pr, T,E),
keeping his utility UA1

exp,r to the maximum. The expected utility
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in the first round is always kept at the maximum. However,
based on the concession strategy, the agents diminish this util-
ity through the successive negotiation rounds. The aggregator
evaluates this request by first calculating (U) utility obtained
from the requested (Pr, T,E) by means of its utility function
U := f(Pr, T,E). This proposal should maximise aggregator
utility i.e. equal or greater than its expected utility (Uexp) which
is the maximum ‘1’ in the first round. If the utility obtained from
the requested proposal doesn’t meet the expected utility criteria,
then AG makes a counter offer with its earlier created multiple
concurrent proposals, so called a burst offer. An agent creates the
burst offer using the inverse functions (Pr, T,E) := f−1(U).
It must be noted here that there are no analytical expressions
for these inverse functions. On many occasions, the calculations
involve complex optimization methods that return approximated
results. In short, it can be stated that f−1 functions are used for
creating offers while f functions are used of evaluate offers.
EV receives a burst counter offer from the aggregator, evaluates
the proposals and selects the set of (Pr, T,E) that maximises
its utility, referred to as (Ux). The evaluation includes the first
check that the negotiation deadline has not been violated; if yes,
the offer is rejected and the negotiation process is automatically
terminated. There is another factor that causes the automatic
rejection, i.e., the utility obtained from the offer is lower than
the minimum utility accepted by the agent. In the last round
of negotiation (r = τ), agent evaluates the utility obtained from
the proposed offer by comparing it with its minimum acceptable
utility, i.e., if it is equal or greater, the offer is accepted, otherwise
rejected. In other rounds, this utility is compared with the agent’s
expected utility for the next round (Ux,r ≥ Uexp,r+1). This
means the agent is expecting a utility that should be higher than
the utility that it can achieve by making a counter offer in the
next round. In this manner, the negotiation protocol is followed
until an offer meets the criteria of both agents.

B. Real Time EV Charging Management

In real time, load deviations at feeder are anticipated, which
may possibly cause a direct impact on the negotiated schedule.
It must be considered that the trade depends on the forecasted
energy of the buildings, so there must be a mechanism to deal
with the deviations in the forecast with respect to the real
consumption. Therefore, a real time management algorithm is
designed to handle these differences by taking advantage of the
flexibility provided by EV owners in the negotiations. The main
functionalities of the proposition are summarised in Algorithm
2. For each time instant t, Algorithm 2 checks if there is an arrival
of EV at any of the available charging points CP , then for each
vehicle i arriving at time tai , it asks the EVi owner to specify its
initial parameters settings which are recorded in a set (labeled as
di). di is then passed to Algorithm 1 to start negotiation process.
After a successful negotiation process, EV plugged which is the
list of plugged-in EVs is updated with the output of Algorithm
1 i.e. negotiated parameters (Pr, T,E) of ith EV. As it will be
observed, on some occasions, the real time management requires
making deviations with respect to closed negotiations.

Algorithm 2: Real Time EV Charging Manager.

Input: d → { PI , PR, TI , TR, EI , ER, umin, λ, τ}
Output: Real Time EV Charging Management.
1: for ∀t ∈ T do
2: if t = tai & CP available then
3: { EV i owner assigned to set di};
4: Send di as an input to Algorithm 1 to negotiate
5: if Negotiation is successful then
6: EV plugged =

EV plugged + output(Algorithm1);
7: else
8: continue;
9: end if

10: end if
11: if PRT < PF then
12: execute (15),(16) & (17);
13: Disconnect EV dis

plugged(t+ 1) & Update Schedule;
14: else if PRT > PF then
15: execute (15);
16: Charge more connected EVs than planned;
17: Update Schedule;
18: else if PRT == PF then
19: continue;
20: end if
21: Evaluate EV plugged;
22: if Ei == Eneg & Ti == Tneg then
23: EV charged = EV charged + EV i;
24: tdi = t & Update Schedule;
25: end if
26: if Ei == Eneg & Ti < Tneg then
27: Disconnect electrically;
28: end if
29: if Ei < Eneg & Ti == Tneg then
30: Penalise Aggregator & repeat lines 24,27;
31: end if
32: t = t+ 1;
33: end for

The next step, which is the main objective of Algorithm 2, is
to minimise the ΔPtotal(t) as stated in (14), which is the value
of deviation of PRT from the reference PF at time t. Where
PRT is the real time power capacity of the feeder available to
accomodate EVs and PF is the forecast power capacity of the
feeder to facilitate EVs charging based on which negotiations
are carried out. These deviations are caused by the unexpected
changes in critical loads (buildings) that are compensated for
in real time by the flexible loads (EVs), which is the aim of
Algorithm 2. As will be seen below, real-time management in
some cases involves making changes to the negotiated terms.

1) Objective Function:

minimize(ΔPtotal(t)) (14)

2) Control Equations:

ndis
EV (t) = nF

EV (t)− nRT
EV (t) (15)
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EV sort
plugged(t) = sort(Ei(left)/Ti(left)) (16)

EV dis
plugged(t+ 1) = EV sort

plugged(t)[1 : ndis
EV (t)] (17)

If there is any negative deviation observed, using (15), the
number of EVs ndis

EV (t) that need to be disconnected electrically
to keep the total load of the community less than the maximum
capacity of the transformer can be calculated. In (15), nF

EV (t)
represents the number of EVs forcasted and nRT

EV (t) stands
for the number of total EVs that can only be accommodated
in the real time. In order to choose among the electrically
connected EVs, which ones need to be disconnected, the strategy
is acquired that is to sort them all based on their remaining
timeTi(left) and energyEi(left) required for charging. Equation
(16) is used to create a sorted list of EVs EV sort

plugged(t) that
are electrically connected to the chargers, so that the EVs that
have the most remaining time relative to the remaining energy
to complete their charging are placed first in the list. This
disconnection strategy has been chosen, but any other strategy
could be implemented with no loss of generality. Depending
on this sorted list, EVs on the top are disconnected electrically
EV sort

plugged(t)[1 : ndis
EV (t)]. It must be remarked that the meter

readings are not of the current instant but of the past one, so
the control action is actually taking place in (t+ 1) after the
deviation is observed. Equation (17) represents the disconnected
EVs EV dis

plugged(t+ 1).
In the case of positive deviation observed in (14), more EVs

are entertained acquiring the same strategy. The only differ-
ence is that instead of disconnecting, more EVs are connected
electrically if there are any, in the reverse order of sorted list
EV sort

plugged(t) so that the EVs which have less remaining time
relative to remaining energy are connected first. The other part
of the algorithm 2 is based on the evaluation of the currently
charging EVs that keeps a check on their charging process and
keeps the schedule updated. Three cases were undertaken in this
evaluation, and their respective actions are scripted below:

1) The EV completes its charging within the negotiated time
and leaves. The departure time of the EV tdi is recorded.
The list ofEV charged has been updated. The schedule has
been updated for the incoming EVs.

2) The EV completes charging earlier than the time negoti-
ated. It is electrically disconnected and charges a penalty
if the EV stays beyond the negotiated time. The schedule
is updated accordingly.

3) The EV is not charged up to Eneg however, negotiated
time has passed. The EV is electrically disconnected. In
that case, the aggregator is penalized for the unattended
charge.

IV. SIMULATION RESULTS ANALYSIS

A. Simulation Set-Up

A simple case study has been carried out in order to test the
performance of the presented model. Considering the network,
the details of which are explained in Section 2, The performance
of the proposed algorithm is evaluated using real-world datasets.
The load curve of consumers of 7 buildings with 30 households

per building is generated based on the real dataset provided by
ADRES-CONCEPT [33] that provide secondly sampled load
profiles. The load of EV chargers is introduced into the network
to observe the congestion caused by uncoordinated EV charging
in the system. Later, our proposed multi issue negotiation pro-
tocol is applied to coordinate EV charging in the network with
the real time management algorithm to handle any deviations in
the predicted load. Simulation results are presented to show the
effectiveness and validity of the proposed model in solving the
congestion management problem in the network. The algorithm
was designed and implemented in MATLAB R2019b using the
script language. The participation and co-ordination of EVs
and aggregator are emulated and implemented using MATLAB
Classes.

A load profile of EVs at public EV chargers in the network, is
generated using the EV load simulation model presented in [34].
Some parameters are discussed next, which were considered for
generating these load profiles in this case study. The battery
capacity of an EV is randomly generated within the range
defined as [22, 32, 40, 60]kWh. For the sake of simplification, a
constant/fixed charging power level of 7 kW is assumed at all 10
public charging points (CP ) in the studied network. It is assumed
that EV owners will not wait more than their maximum waiting
time for their turn to charge their EVs. Realistically, each EV
owner has different preferences, flexibility, and patience levels
that decide their waiting time in case of congestion in the system.
To achieve a realistic situation, a random waiting time for
each EV is assigned using a realistic range of 5 − 30 minutes
waiting time. A set of 100 EV charging profiles, including arrival
time, departure time, state of charge, and battery capacity, are
generated using the earlier mentioned scenario generator.

B. Simulation Results

The EVs charging load profiles, as generated, are introduced
into the network to observe the congestion on the feeder caused
by the uncoordinated EVs charging. In Fig. 3(a), red dotted line
represents the transformer’s maximum capacity to supply load,
the pink curve indicates the total EVs charging consumption
over the time period, while the blue curve shows the critical
load, i.e., power consumption by the buildings in the community.
The overall load exerted by the critical loads plus EVs charging
is represented by the black curve. It can be observed that this
exceeds the maximum capacity defined for the transformer, thus
causing congestion in the system due to higher EVs charging
demands during the morning and evening hours. This conges-
tion problem is resolved by applying the proposed multi-issue
negotiation algorithm and real-time management model, which
efficiently coordinates flexible loads, i.e., EV charging consump-
tion. There are some initial settings of parameters made by the
aggregator and EVs to execute negotiations. In this simulation,
the aggregator fixes its initial and reserve prices [PrI , P rR] to
be 200 and 10 price units, respectively. It should be noted that
prices are measured in price units since no specific currency is
selected. Besides, EV owners may have different settings, which
is why the initial and reserve prices of the EV owners may be
different. In this simulation, the initial price oscillates between
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Fig. 3. Performance of the system before and after applying the multi-issue negotiation algorithm.

Fig. 4. EV charging before and after negotiations.

5 and 75 units, and the final price oscillates between 125 and
200 depending on the EV owner. Moreover, τ is fixed to be 50
and the strategy λ to be 1.

Furthermore, EV owners define time duration windows
[TI , TR] and energy packets windows [EI , ER] based on their
state of charge requirements, while aggregator determines these
windows taking the critical load forecast and available trans-
former capacity into account. After the implementation of the
proposed model with these settings, the congestion is removed
from the feeder, which can be observed in Fig. 3(b).

A clear representation of EVs charging consumption before
and after the implementation of the proposed model is depicted
in Fig. 4. Blue lines in this figure represent the charging time
of the 52% of EVs that had successful negotiations, while the
rest of them couldn’t charge mainly because of congestion, of
which 2% had failed negotiations and 46% EVs left because
of unavailability of chargers. Whereas, 3% of the EVs were
not charged sufficiently because of real time load deviation
for which the aggregator is penalised. The extension in the 24

Fig. 5. Achieved satisfaction levels.

hours of the day is to account for the charging period of the
EVs, which started charging at midnight and continued charging
till the next day. It should be noted that the chosen scenario
represents a highly congested network in which the rated power
of the transformer is only exceeded at some points when the
critical loads are present. This scenario was selected in order to
stress the system and test its performance. The proposed model
utilises the flexibility of EVs to remove congestion from the
network while achieving a certain level of EV owner satisfaction,
which is exhibited in Fig. 5(a) in terms of its price, time, energy,
and total utility. In this study, the satisfaction level of an agent
can be defined by the utility or benefit achieved from closing a
negotiation deal for a charging service. It is scaled by percentage.
The blue boxes represent the range of utilities achieved by the
agents, while the red marks represent the average utility that
agents received. The main objective of the proposed mechanism
is to satisfy both the EV owners and the aggregator. It can be
observed that EVs show a lot of flexibility in energy utilization to
participate in network load management, thus receiving a lower
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Fig. 6. Overload reduction achieved in case studies A,B,C,D.

Fig. 7. Number of EVs charged achieved in case studies A,B,C,D.

energy utility as in Fig. 5(a). However, EVs are rewarded in the
form of higher time and price utilities, therefore achieving an
overall higher satisfaction level, i.e., 80% and 70% respectively.
On the other hand, the aggregator offers great price flexibility
to EVs, which results in lower price utility for the aggregator in
Fig. 5(b). But, the aggregator achieves higher satisfaction levels
for time and energy utilities.

C. Case Studies

In order to test the model’s performance under various scenar-
ios, a set of simulations varying different parameters is carried
out that can be categorised into four different case studies. The
aim is to observe the overload in the network under different
situations that is reduced with the implementation of the algo-
rithm and the charging service provided to the EVs has been
analysed and a comparison has been made. A total of four cases
or scenarios (A,B,C,D) are presented, and for each case, five
sub-cases were tested. The four cases are represented by the
different blocks represented in Figs. 6 and 7 labeled with A,
B, C and D. For each of the four scenarios A, B, C or D, the
five subcases are represented with bars of different colors. In

Fig. 6 the overload reduction obtained by the charging procedure
in percentage related to the total capacity is depicted. Fig. 7
represents the number of EVs charged successfully in percentage
with respect to the total number of vehicles arriving on the street
searching for a parking spot for charging. It must be noted that
the number of EV chargers in the base case (10 in total) is very
reduced compared to the number of cars arriving on the street
during the day (100 in total in the base cases).

1) Case A: In this case, the same simulation set-up as in the
base case is used, with seven buildings and 30 households per
building. The 5 sub-cases are random variations using different
load profiles in the 30 houses, so the total load of the seven build-
ings will be different in each of the 5 sub-cases of the scenario A.
In the base case, the peaks at mid-day and noon reached 250 and
267 kW, respectively. The peak power reached by the buildings
in kW for midday and noon in the five sub-cases was respectively
[209,201,205,238,250] and [197,233,228,220,267]. In all cases,
around 60% of the vehicles were successfully charged (see
Fig. 6), and the overload reduction varied from around 2% to
12% depending on the sub-case.

2) Case B: In this case, the used building load profiles are
similar to the ones used in the base case scenario as described
in the previous section, but the number of EVs arriving during
the day varied, considering 40, 50, 60, 80, and 100 EVs arriving
on the street, respectively in the 5 sub-cases. The percentage of
EVs charged in the sub-cases goes from 80% to around 50%. It
must be remarked that in the case of a lower number of vehicles
(40 vehicles), vehicles are more likely to arrive at times of peak
congestion, so having fewer vehicles does not mean that the
number of charged vehicles increases. In fact, the number of
charged vehicles increases as the number of vehicles arrives,
because this means that, statistically, many of them will arrive
at times when there will be overcapacity. The maximum overload
reduction reaches 20% with the maximum number of vehicles.
However, it must be noted that in this case, the percentage of
charged vehicles also dropped to 50%.

3) Case C: In this case, the same building profiles as in base
case are used, but the number of charging points is varied. There
were 5 simulations performed for different numbers of charging
points in the network, i.e., [5,7,10,12,15]. As it can be observed,
the number of vehicles charged and the overload reduction does
not increase substantially when the number of EV chargers is
increased. That is because the system is highly congested already
in the base case, so increasing the number of EV chargers does
not allow us to increase the number of vehicles managed during
the congested hours. In this case, the bottleneck is created by the
network capacity, so increasing the number of chargers does not
have a positive impact on the overload reduction or the number
of charged EVs.

4) Case D: Finally, case D used the same building load
profile as the base case, but in this case, for each of the 5
sub-cases, different EV charging profiles were generated by
randomly changing their preferences as to the desired energy,
price, and time. As it can be observed in Fig. 7, the changes did
not have a high impact on the total EVs successfully charged.
However, these parameters do have quite an impact on the
overload reduction, which varies from around 17% to 5% (see
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Fig. 6). The case with the lower overload reduction corresponds
to a case in which fewer cars arrive during the peak hours, so the
overload reduction is lower. It must also be considered that the
preferences of the vehicles, mostly in terms of price, have a lot of
impact on the probability of achieving a successful negotiation
with the platform.

V. CONCLUSION

This paper demonstrates how congestion problems in low
voltage distribution networks can be managed by means of
market mechanisms. The main findings of the presented work
can be summarized as follows:� A multi-issue negotiation protocol has been proposed

to handle the simultaneous timeslot, energy packets and
prices.� The algorithm has been tested in a realistic environment
to check the convergence and performance, and the work
demonstrated that it is stable and behaves according to the
plan.� In cases where agreement is not reached, it is not due to in-
correct design of the algorithm but to boundary conditions
that make the vehicle requirements incompatible with the
existing situation in the power system.� This research work has shown that the algorithm is useful
for solving congestion problems in a realistic system using
market mechanisms.� The development carried out in this work is applicable to
the creation of flexible tariffs that define the negotiation
strategies of the vehicles and that allow the flexibility
provided by the vehicles to be managed efficiently for the
resolution of network congestion.

A parametric negotiation methodology has been presented
that allows the strategy to be varied by both the vehicles and
the utility. However, the definition of complex strategies by
both the utility and the vehicles, which will associate them with
different types of flexible tariffs, is beyond the scope of this paper
and is being studied for proposal in future work. In addition,
work on a methodology is currently under process that will
simultaneously manage flexible vehicle loads along with other
flexible household loads, add solar production at the household
level, and allow users to exchange energy with each other and
with vehicles on the public road. The main core of the algorithm
will be similar to the one presented in this paper with multi-issue
trading, but much more complexity will be added to the trading
system, which in the future will be multi-agent and will not
rely entirely on a utility-dependent intermediate management
platform as is the case in this paper. This information will be
added in future work.
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A B S T R A C T
Fast-growing distributed energy resources, prosumers, and electric vehicles are going to overload
the grid and may require heavy investments in redesigning and extending the infrastructure of
power distribution systems that may not be sustainable. In this respect, local energy markets seem
to be a promising solution that enables the participation of prosumers and consumers in the local
energy market for peer-to-peer energy transactions. To address this paradigm shift, we present
an advanced three-stage multi-agent model for peer-to-peer energy trading within the context
of local energy markets. This model is strategically designed to optimize individual benefits
by orchestrating a one-to-many concurrent composite negotiations strategy. This approach not
only ensures efficient grid support but also facilitates rapid computation and communication.
Empowered by the smart python multi-agent development environment, which harnesses the
instant extensible messaging and presence protocol, our model ensures seamless execution
of peer-to-peer energy transactions while maintaining performance excellence. Furthermore,
the methodology presented is of extreme simplicity when compared, for example, with other
procedures presented in the literature. This simplicity is one of the main characteristics since it
allows the implementation in edge devices with low computational power and the scalability of
the proposed system.

Word count: 4770 words

Nomenclature
Number sets
ℕ Natural numbers
ℝ+ Positive real numbers
Parameters
𝑝𝑟, 𝑒 price per unit energy (p.u), energy units (kWh)
𝑝𝑟𝑁𝑏

𝑢 Utility nominal buying energy unit price (p.u)
𝑝𝑟𝑁𝑠

𝑢 Utility nominal selling energy unit price (p.u)
𝑝𝑟𝑏𝑢 Utility buying energy unit price (p.u)
𝑝𝑟𝑠𝑢 Utility selling energy unit price (p.u)
𝐸𝑟
𝑑 Energy demanded actually (kWh)

𝐸𝑜𝑝𝑡 Optimum energy demand (kWh)
𝑎1, 𝑎2 utility price setting coefficients
𝜏 trading preferential coefficient
𝑢𝑠𝑟 username of agent account
𝑝𝑤𝑑 password of agent account
𝑖𝑑 identification number of agent
Sets and Indexes:
𝛼𝑢 Utility agent
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𝛼𝑐 Consumer agent
𝛼𝑝 Prosumer agent
𝑜, 𝑂 𝑂 is a set of offers 𝑜 including 𝑝𝑟, 𝑒 by Consumer
𝑇 Time
𝑡 market session time period
𝜌 negotiation phases
Variables:
𝑝𝑟𝑠𝑝 Preferred selling energy unit price by prosumer (p.u)
𝑝𝑟𝑏𝑐 Preferred buying energy unit price by consumer (p.u)
𝑒𝑑 Consumer energy demand (kWh)
𝑒𝑠 Surplus energy injected by prosumer (kWh)

1. Introduction
1.1. Background and Research Motivation
The proliferation of distributed energy resources (DERs) in power systems has been observed over the past decade, with
credit attributed to advancements in information and communication technology and their cost reduction [1]. This trend
brings both benefits and challenges to the power grid. Among the benefits, it reduces the load burden on the grid and
dependence on fossil fuels/carbon, while also creating opportunities for prosumers to participate in the market. This also
presents challenges, such as introducing complexities to manage, including network congestion and the requirement to
coordinate a significant number of devices. This underscores the necessity for revising the infrastructure of power
system networks, as traditional ways of operating distribution systems struggle to accommodate evolving system
requirements. Consequently, there exists a demand for innovative transactive energy spaces and market structures
capable of effectively managing distributed generation. These structures can facilitate prosumers in participating and
leveraging their involvement optimally to support the grid.
In this pursuit, many solutions have come to the surface and have gathered the attention of researchers. Among them
are local transactive energy markets and peer-to-peer(P2P) energy trading. These solutions provide market mechanisms
and market-based management techniques that help the prosumer and consumer to actively participate, gain monetary
benefits, and provide ancillary services to the grid [2, 3]. Researchers are focused on improving these solutions and
introducing novelty using various technical approaches.
1.2. Related Works
Numerous research endeavors have been directed toward enhancing the bidding strategies employed by participants in
the local energy market (LEM). For instance, in [4, 5] distribution system operators (DSO) are able to achieve a globally
optimal DER dispatch in a decentralized manner that helps each prosumer obtain its own optimal bidding curve.
Correspondingly, market-clearing schemes discussed in [6, 7] focus on players’ offering or bidding parameters rather
than their preferences and profiles (detailed utilization parameters of each appliance), helping preserve the privacy of
participants. Researchers enhance P2P energy trading with iterative peer-matching and negotiation using a "greediness
factor" [8]. Another method reduces computation using an asynchronous online consensus negotiation mechanism [9].
In the context of [10], scholars introduce retail energy brokers controlling player bidding strategies via Markov decision
process, reinforcement learning, and data-driven methods for day-ahead bidding, similar to wholesale electricity
markets. Minuto et al. [11] assess energy-sharing mechanisms within renewable energy communities, proposing three
algorithms for distributing net profit among members based on their contribution to financing and self-consumption
services.
Researchers in [12] present a multi-step optimal bidding strategy for autonomous agents, considering agents’ risk
preferences and expected profit, and analyzing their impact on local electricity markets. Concurrently, specific
investigations delve into optimizing home energy management systems from an aggregator’s perspective managing
residential flexibilities [13], employing strategic bidding to reduce day-ahead operational costs [14, 15], and addressing
uncertainties while adhering to market obligations [16, 17]. Hahnel et al. [18] investigate the pricing decisions in peer-
to-peer and prosumer-centered electricity markets through a cross-national experiment in Germany and the United
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Kingdom, revealing that trading decisions are influenced by political orientation, place attachment, and climate change
beliefs.
A substantial body of research is dedicated to employing game theory, contract theory, and auction theory to capture
the dynamics of competition and cooperation among diverse participants in the P2P energy trading market. Their
objective is to achieve optimal and mutually beneficial trade for all involved parties [19–21]. A framework considering
both cooperative game theory and non-cooperative game theory is proposed in [22], where a pivotal player acts as a
controller to distribute revenue among the peers fairly. In some specific studies [23, 24], researchers conduct a game
theoretical analysis of the strategic behavior exhibited by intelligent agents representing prosumers in combinatorial
auctions with resource constraints. In this context, a community manager assumes the role of making energy allocation
decisions for a community of prosumers. The iterative double auction mechanism is used to elicit hidden information
from all participants to achieve maximum social welfare [25, 26]. In a recent work [27], researchers employed a
Nesterov-based algorithm for generalized Nash equilibrium using distributed communication in an energy-sharing
game of prosumers. Some scholars emphasized Bayesian learning methods for optimal decision-making among
generation companies in a power pool [28].
A number of recent studies have addressed the application of multi-agent system (MAS) theory to energy markets.
An agent-based architecture where seller and buyer entities modeled as agents, aim to maximize social welfare while
considering real-time imbalance penalties [29]. A multi-agent decision support system is designed that uses real market
data derived from past and current simulations, and external sources to support the decision-making process of a
manager agent supporting market players for each different market negotiation type and participation in auction-based
markets [30]. Adaptive agent-tracking strategies have been developed for generation company agents, which resulted
in greater payoffs in bilateral negotiations compared to utility-based strategies [31]. A multi-agent deep reinforcement
learning-based control framework is proposed for multi-dimensional power dispatch optimization in systems featuring
multiple uncertainties [32, 33] and to analyze risk-averse strategic interactions in complex market environments [34].
Some researchers concentrate on considering line loadings and losses, as technical constraints in the management of
multi-agent distribution systems [35]. The authors in [36], propose a multi-actor-attention-critic algorithm reducing the
community’s cost and peak demand and overcoming scalability, non-stationary, and privacy limitations of multi-agent
deep reinforcement learning approaches. A systematic review of barriers and policies affecting the adoption of energy-
efficient technologies by households is provided, emphasizing the role of agent-based modeling in understanding and
influencing consumer behavior [37, 38].
1.3. Key Contribution
Our paper proposes a multi-stage postpaid P2P energy trading model based on a multi-agent systems framework. Our
primary focus lies in achieving simultaneously three goals:

1. Maximize social welfare i.e. each individual market player’s profit.
2. Support grid balancing and congestion management at the distribution power system.
3. Minimize any potential delays in the trading process by prioritizing fast and less complex computations and

communications.
To fulfill these objectives, we propose the implementation of the "One-to-Many Concurrent Composite Negotiations"
strategy. Our model operates through a three-stage scheme: energy exchange, data exchange, and negotiations, all
culminating in efficient financial transactions. A key characteristic is the postpaid method, where energy exchange
occurs before negotiations. This creates a seamless flow, ensuring that services are availed first, and payments are
then made. The simplicity of the method is also one of its main contributions, since unlike the proposals described
above, this methodology does not depend on ultra-precise disaggregated consumption and generation predictions and
is extremely light computationally speaking, which makes it very easy to deploy on edge platforms, thus also favoring
large-scale scalability.
A SPADE (Smart Python multi-Agent Development Environment) a multi-agent system platform is used to develop
our three-stage P2P trading model with participants as agents. Specifically, SPADE incorporates XMPP (eXtensible
Messaging and Presence Protocol), which is an open communication protocol for instant messaging and presence
notification [39]. This distinctive feature significantly reduces computation and communication overheads. Simulation
results demonstrate the effectiveness of the proposed scheme for energy trading in the local electricity market.
K. Khan et al.: Preprint submitted to Elsevier Page 4 of 16
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Figure 1: Schematic overview of proposed model

1.4. Organization
The remainder of this paper is organized as follows. Section 2 entails the description of the distribution network
ecosystem taken into consideration for the application of the proposed multi-agent-system (MAS) based P2P local
energy trading model. This section also includes a detailed systematic description of the proposed trading mechanism
and it’s implementation. Section 3 includes the case study and simulation results to prove the effectiveness of the
proposition. Section 4 and 5 concludes the research work presented in this paper and the expected future work. The
schematic overview of the proposed work is presented in Fig. 1.

2. Methodology
We are considering a small unit of a typical urban distribution network as a local community, that consists of a power
transformer with 4-wire 3-phase feeders connected to its secondary with circuit breaker (BR1) as represented in Fig.
2. Each feeder can be monitored by means of advanced supervisor monitoring equipment (labeled in Fig. 2 as M𝐹1).
Each end-user connected to the feeders is also supported with advanced metering infrastructure (M1, M2, M3...). End
users may include consumers and prosumers (i.e. consumers with DERs such as solar panels, electric vehicles (EVs),
and batteries, having the ability to produce energy). This local community is supervised by an entity called utility.
The utility will cover the energy imbalances and will act as a backup system absorbing any net surplus or demand
for energy. The utility will vary the price scheme as a signal to incentivize end-users to consume or inject more in
order to operate the system within the limits. The proposed energy market model is designed taking into account this
configuration of the local community. The role of each entity, trading mechanism, and MAS platform details are going
to be discussed in the following subsections.
It is significant to clarify at this stage that the proposed methodology without losing its generality can be applied across
various aggregation levels, such as a feeder, a phase of a feeder, or even a group of multiple power transformers as the
most common aggregation unit in Europe is the MV/LV power station.
2.1. Trading Mechanism
Within the local energy community setting under consideration, a proposed approach involves the Utility taking charge
of setting and periodically broadcasting its prices. Drawing insights from past market behavior, the Utility adeptly
reorganizes itself to achieve grid balancing and economic advantages. In the final phase of financial trading, the Utility
engages in buying or selling energy at its established price, bypassing any negotiations with peers.
Meanwhile, consumers and prosumers actively participate in the market during the designated periods and negotiation
phases. In the event that deals cannot be reached within these time frames, they are required to conduct trades with the
Utility directly, without the need for further negotiations. The main aspects of the suggested trading mechanism are
going to be the topic of discussion in this section.
2.1.1. Multi Agents
There are basically three main types of players in the LEM suggested in this trading scheme. These players are modeled
as agents in the MAS platform and their behaviors are designed.
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Figure 2: Power Distribution Network and P2P energy Trading

• Utility(𝛼𝑢): This agent which supervises in and out of the power distribution transformer, is responsible for
selling the grid energy to the distributed energy end users and buying from them the surplus distributed energy
in case of deficit. It controls the price signal to balance the grid demand/supply.

• Prosumer(𝛼𝑝): This agent is a local distributed energy producer that supports its own energy needs, sells surplus
energy to the other agents in the distributed network, or buys the deficit from other LEM players or the utility.
It participates in the LEM by negotiating with multiple agents/peers to trade energy. However, self-sufficient
prosumers in Fig. 2 will stay stagnant in the market.

• Consumer(𝛼𝑐): This agent buys energy from the utility or from the LEM players to fulfill its energy demands.
This agent may negotiate and make deals with multiple agents/peers to buy the energy at economical prices.
Moreover, prosumers with demand as presented in Fig. 2 adopt the consumer agent behavior to participate in
the market as consumers.

2.1.2. Pricing Mechanism
The pricing mechanism is one of the significant regulating factors of the local energy markets (LEM). The utility
monitors the power flows (injection and consumption) and analyzes the unbalancing of grid demand/supply and
congestion at power distribution transformers. It is worth mentioning here that other control signals like for instance the
voltages in the different points of the feeders could be used to determine the price scheme, but in this case, for the sake
of simplicity while maintaining generality we used the transformer power as control signal. In order to balance out the
demand/supply or to avoid congestion at the power distribution transformer of the grid, utility controls buying 𝑝𝑟𝑏𝑢 and
selling prices 𝑝𝑟𝑠𝑢 of energy unit according to the given real energy demand 𝐸𝑟

𝑑 during operation and optimum energy
demand 𝐸𝑜𝑝𝑡 as committed day-ahead, for time period 𝑡. The difference between 𝐸𝑜𝑝𝑡 and 𝐸𝑟

𝑑 represents deviations as
positive/negative energy imbalances that are required to be settled by price control. So the main objective function of
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the utility can be formulated as (1) and the control function as (2):
𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∣ 𝐸𝑟

𝑑 − 𝐸𝑜𝑝𝑡 ∣ ∀𝑡 ∈ 𝑇 (1)

𝑝𝑟𝑥𝑢 =
⎧⎪⎨⎪⎩

𝑝𝑟𝑁𝑢 , 𝐸𝑟
𝑑 = 𝐸𝑜𝑝𝑡

𝑎1 ∗ 𝑝𝑟𝑁𝑢 , 𝐸𝑟
𝑑 ≤ 𝐸𝑜𝑝𝑡

𝑎2 ∗ 𝑝𝑟𝑁𝑢 , 𝐸𝑟
𝑑 ≥ 𝐸𝑜𝑝𝑡

∀𝑡 ∈ 𝑇 (2)

𝑠.𝑡. 𝑎1 < 1, 𝑎1 ∈ ℝ+ (3)

𝑠.𝑡. 𝑎2 > 1, 𝑎2 ∈ ℝ+ (4)
Where 𝑝𝑟𝑁𝑢 in (2) represents the nominal selling/buying price as set by the utility, valid for the time period 𝑡 when
the distribution network is balanced and congestion-free where superscript 𝑥 can be 𝑠 or 𝑏 that corresponds to selling
or buying prices respectively. According to Equation (2), when the transformer consumption falls below the nominal
level, both the purchase price and the selling price of the utility are decreased by a factor of 𝑎1. This reduction in
the selling price encourages greater consumption among agents, while the decrease in the purchase price discourages
excessive generation. In contrast to previous scenarios, in situations of high demand or network congestion, the buying
and selling price of the utility is increased by a factor of 𝑎2 to stimulate prosumers to promote the generation and deter
agents from consuming excessively.
The target of the utility is to encourage P2P energy trading in case of high demand by increasing the unit price while
other peers impose a little lower price for selling their excess energy. Similarly, when the demand is low, the utility
reduces the energy unit prices to encourage peers to buy energy from the utility.
2.1.3. Response to Price Signal
Prosumers are assumed to be economically rational who try to maximize their individual economic surplus through
participating in P2P trading, either as a seller or a buyer. Prosumers receive a price signal from the utility at the start of
every trading session and then set their preferential selling price. Prosumer controls the selling price of their exported
surplus energy 𝑒𝑠 using the trade preferential coefficient as stated in eq. (5) and (6) to ensure that it is a little lower than
the utility price in order to attract more buyers and gain financial returns. They set orders with their preferred selling
prices 𝑝𝑟𝑠𝑝 by selecting a desired value for 𝜏 which they can negotiate later.

𝑝𝑟𝑠𝑝 = 𝜏 ∗ 𝑝𝑟𝑠𝑢 ∀𝑡 ∈ 𝑇 (5)

s.t. 0 < 𝜏 ≤ 1, 𝜏 ∈ ℝ+ (6)
It is important to highlight that the mechanism governing agent prices is inherently automated rather than manual. To
enhance the optimization of agent prices, a tariff system can be implemented. This system offers a range of pricing
schemes, including premium tariffs, giving customers the freedom to choose between strategies that ensure surplus
sales by significantly reducing selling prices, or tariffs that prioritize profit improvement, even if it involves the risk of
not making sales due to closely aligning prices with those of the utility. Alternatively, customers can inject their own
intelligence and business rules into the pricing engine. This customer-specific pricing engine can be integrated at the
platform level, with accessibility and configurability determined by the chosen scheme.
Additionally, we have the option to replace the term "utility" with a more encompassing entity, such as an aggregator,
marketer, or even a Distributed System Operator (DSO). Another innovative approach involves transforming the utility
into an energy community, in which other agents actively participate. This system offers remarkable flexibility. In this
paper, our primary focus centers on exploring the trading mechanisms applicable to a myriad of diverse configurations
and case studies.

max 𝑢(𝛼𝑝) = (𝑝𝑟𝑠𝑝 − 𝑝𝑟𝑏𝑢)𝑒
𝑠 (7)
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s.t. 𝑝𝑟𝑏𝑢 ≤ 𝑝𝑟𝑠𝑝 ≤ 𝑝𝑟𝑠𝑢 (8)
The prosumer’s primary goal as expressed in eq. (7) and (8), is to optimize profits by aiming to sell their energy at the
most advantageous price point. This strategy considers the dynamic that if the prosumer sets a selling price surpassing
the utility’s rate, potential energy buyers are more inclined to purchase from the utility. Conversely, by reducing the
selling price, the prosumer can increase the likelihood of selling energy to peers. However, it’s crucial to note that the
selling price should never drop below the utility’s purchase price. Doing so would result in the prosumer incurring
losses by selling surplus energy to peers when a more profitable option exists in selling to the utility at a higher rate.
Finding the ideal balance revolves around selecting a price that ensures sales while maximizing overall profit. In
the future, implementing artificial intelligence tools could aid in this process, leveraging historical data to determine
optimal price coefficients for consumers. It’s worth mentioning, though, that this topic falls beyond the scope of this
paper.

𝑂 =
{
(𝑜1, ....., 𝑜𝑛)

} (9)

𝑜𝑖 = (𝑝𝑟𝑖, 𝑒𝑖) where 𝑖 ∈ {1, ......, 𝑛}, 𝑖 ∈ ℕ (10)

𝑝𝑟1 ≤ ..... ≤ 𝑝𝑟𝑛 (11)
Consumers, as represented in eq. (9) and (10), receive a list of offers (prices and amount of energy) including from
utility and different prosumers. Subsequently, they choose the most economical options based on prices 𝑝𝑟𝑖 (as per
eq. (11)) and the amount of energy 𝑒𝑖 available that may fulfill their demand 𝑒𝑑 𝑖. Then, they negotiate over the offers
with respective prosumers to reach economical deals mutually beneficial for both negotiating parties. This negotiation
strategy is used in service composition and mashups e.g. a buyer wants to buy several atomic services to compose a
composite service. In this case, the goal of the agent negotiating with multiple opponents is to reach an agreement with
more than one (maybe all) of its opponents.
To be able to strike multiple deals, a consumer 𝛼𝑐 needs to engage in multiple negotiations with prosumers 𝛼𝑝1, ..., 𝛼𝑝𝑛and combine their outcome. The consumer’s goal as expressed in eq. (12) and (13), is to maximize the utility 𝑢(𝛼𝑐) of
the aggregate outcome of the entire negotiations by viewing it as a coordination problem, in which the buyer needs
to aggregate and coordinate multiple, overlapping agreements such that the composite outcome satisfies the buyer’s
overall demand with minimum price.

max 𝑢(𝛼𝑐) = −
∑
𝑖,𝑐

𝑝𝑟𝑖𝑒𝑖(𝑐) (12)

∑
𝑗
𝑒𝑗(𝑐) ≤ 𝑒𝑑 𝑖 where 𝑗, 𝑐 ∈ ℕ (13)

c represents each composite unit of energy offered 𝑒𝑗 as discrete values and j denotes the number of deals or agreements.
2.1.4. Negotiation Mechanism

• Our model coordinates a One-to-Many Concurrent Composite Negotiations strategy that allows for composite
negotiations, in which the outcome can comprise multiple partial outcomes, each originating from a deal with a
different seller.

• The buyer is able to obtain multiple deals through each of the concurrent bilateral interactions, with the goal of
satisfying, in the aggregate, a predefined demand for the lowest possible price.

• Several sellers might offer the same product at different quantities (as illustrated in the example), the buyer needs
to decide which sellers to negotiate with, and over what. Moreover, while doing so, the buyer needs to deal with
complexities related to the combinatorial explosion of possible sets of partial deals using eq. (12) satisfying
eq.(13).
Example: Different prosumers supply units of energy in bundles of varying quantities and unit prices; let’s
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Procedure 1 Utility Agent Behaviour
Input: (𝑢𝑠𝑟, 𝑝𝑤𝑑, 𝑖𝑑) for 𝛼𝑢 registration in the system.
Output: (𝑝𝑟𝑏𝑢, 𝑝𝑟

𝑠
𝑢) per unit energy for each 𝑡 ∈ 𝑇 , satisfying eq.(1)

1: for ∀𝑡 ∈ 𝑇 do
2: (𝑝𝑟𝑏𝑢, 𝑝𝑟

𝑠
𝑢) ∶= 𝑓 (𝐸𝑟

𝑑 , 𝐸𝑜𝑝𝑡, 𝑡) using eq. (2) satisfying eq.(1),(3),(4)
3: Broadcast 𝑝𝑟𝑏𝑢, 𝑝𝑟𝑠𝑢 to all market agents.
4: if 𝜌 ⇐ 3 (𝜌 ∈ 𝑡) then
5: Receive buying/selling requests from all 𝛼𝑝 ,𝛼𝑐 .
6: Accept all requests and trade @ 𝑝𝑟𝑏𝑢, 𝑝𝑟

𝑠
𝑢.

7: Process terminated
8: end if
9: end for

Procedure 2 Prosumer Agent Behaviour
Input: (𝑢𝑠𝑟, 𝑝𝑤𝑑, 𝑖𝑑) for 𝛼𝑝 registration in the system.
Output: maximum 𝑢(𝛼𝑝) for each 𝑡 ∈ 𝑇 .

1: for ∀𝜌 ∈ 𝑡 do
2: identify 𝑒𝑠
3: 𝑝𝑟𝑠𝑝 ∶= 𝑓 (𝑝𝑟𝑠𝑝, 𝑡) using eq. (5)
4: Broadcast (𝑝𝑟𝑠𝑝, 𝑒𝑠) to all market agents
5: if requests received then
6: Accept requests based on first come first serve
7: trade and update 𝑒𝑠
8: rejects others
9: end if

10: if 𝑒𝑠 > 0 AND 𝜌 ⇐ 2 then
11: Repeat the process from lines 5 to 14
12: end if
13: if 𝑒𝑠 > 0 AND 𝜌 ⇐ 3 then
14: make request/s to utility and trade at 𝑝𝑟𝑏𝑢
15: Terminate Process
16: end if
17: if 𝑒𝑠 = 0 then
18: Terminate Process
19: end if
20: end for

assume, 𝛼𝑝1 may have 2 kWh energy units for $3 each, and seller 𝛼𝑝2 may have 5kWh energy units for $4 each
on offer (which we denote as 𝑜1 = (3, 2), 𝑜2 = (4, 5)). And 𝛼𝑐 has an energy demand 𝑒𝑑 of 3 kWh, and a deal
is reached with two sellers: 𝑒1 = {2𝑘𝑊 ℎ × $3} and 𝑒2 = {1𝑘𝑊 ℎ × $4}. The aggregation of these two deals
results in 𝑒1 ⊕ 𝑒2 = {2𝑘𝑊 ℎ × $3 + 1𝑘𝑊 ℎ × $4}.

• Aggressive negotiation strategy is applied that is negotiations are restricted with time constraints to ensure agents
behave fast and close the deals shortly with greater benefits. Therefore, our negotiation model is comprised of
three phases. The first two phases are for the user agents to trade with each other and close the deals while the
last phase is for the rest of the agents who could not close the deals will have to trade with utility and accept its
price.

K. Khan et al.: Preprint submitted to Elsevier Page 9 of 16

164 Journal Publications



Peer-to-Peer Energy Trading Model

Procedure 3 Consumer Agent Behaviour
Input: (𝑢𝑠𝑟, 𝑝𝑤𝑑, 𝑖𝑑) for 𝛼𝑐 registration in the system.
Output: maximum 𝑢(𝛼𝑐) for each 𝑡 ∈ 𝑇 .

1: for ∀𝜌 ∈ 𝑡 do
2: receive 𝑝𝑟𝑏𝑢, 𝑝𝑟

𝑠
𝑢 and save

3: Identify 𝑒𝑑
4: if 𝜌 ⇐ 1 then
5: Receive 𝑂 and evaluate 𝑢(𝛼𝑐) using eq. (12),(13)
6: Send requests to the best offers.
7: if acceptance received then
8: trade and update 𝑒𝑑
9: end if

10: if rejection recieved then
11: update 𝑒𝑑
12: end if
13: end if
14: if 𝑒𝑑 > 0 AND 𝜌 ⇐ 2 then
15: Repeat the process from lines 5 to 14
16: end if
17: if 𝑒𝑑 > 0 AND 𝜌 ⇐ 3 then
18: make request/s to utility and trade at 𝑝𝑟𝑠𝑢
19: Terminate Process
20: end if
21: if 𝑒𝑑 = 0 then
22: Terminate Process
23: end if
24: end for

2.2. Time Horizon
A realistic time period for the energy trade is set. The trading time is split into 3 stages and a graphical summary is
provided in Fig. 3

• Stage 1 - Time for energy exchange: During this time, all participants/multi-agents(prosumers and consumers)
exchange energy normally over the grid distribution network i.e. Prosumers inject their surplus energy into the
grid while consumers consume the grid energy. It is to be noted that the strategy for consuming or injecting
energy should be clearly affected by the historic prices but defining such strategy for each agent is beyond the
scope of this work that is focused on proposing the framework for trading.

• Stage 2 - Data Collection: Since we are considering a distribution network that is equipped with advanced
metering infrastructure, all exchanged energy data of the prosumers and consumers will be collected. This whole
data is then used for processing the market operation. In this stage, the utility will set the market price as explained
in the previous sections, and broadcast it to all agents. Subsequently, the prosumers will set their selling price and
prepare the offers/bids for the injected surplus energy to the grid which they want to sell to the peers following
negotiations.

• Stage 3 (a,b) - Negotiation and Financial Transaction Settlements: The training behavior algorithms of all
three types of agents including utility, prosumer, and consumer are outlined in Procedures 1, 2 and 3.In this
stage, prosumers broadcast their offers to all participants/buyers/consumers in the market following lines 2-4 of
Procedure 2. Buyers receive a list of offers from different sellers available in the market and choose the potential
offers to pay for the energy usage in phase 1 as indicated in lines 4-13 in Procedure 3. They start negotiations
with suitable sellers to meet the energy demand within the specific time duration allowed for negotiations and
the deals are closed. However, if participants cannot reach a deal and want to continue negotiations, another
chance is provided by iterating the process of offers, collection, and negotiations. Two phases of negotiations
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Figure 3: Timeline of Trading Mechanism

are dedicated to allowing players to close deals. Moreover, due to the aggressive negotiation approach, the deals
are expected to be concluded in the first two phases, promoting green networking and communications. There
is a third phase of negotiation that is for the rest of the peers who were not able to get any deal in the previous
two phases to trade with utility at utility’s defined buying and selling prices as directed in lines 4-7 in Procedure
1. All financial transactions are executed once the deals are closed. These settlements are verified by the utility
against the energy usage data of the clients.

2.3. Implementation
The proposed framework is tested with a simple case scenario of a group of agents in a local energy market
setting. Multi-agent systems technology is used to develop autonomous software entities i.e. intelligent agents
acting as prosumers, consumers, and utility. These agents are designed to naturally communicate or interact
with each other. SPADE, a multi-agent system platform based on instant messaging (XMPP), is used to develop
the proposed framework. It incorporates modern technologies and addresses open issues such as communication
protocol standardization, elasticity in communication, human-agent integration, support for open systems, and device-
independent agent connection. SPADE 3 is based on XMPP (eXtensible Messaging and Presence Protocol) i.e. a
communication protocol, which provides an open, decentralized, and federated architecture for multi-agent systems
and that is one of the reasons for choosing SPADE.

3. Results
To implement the proposed strategies and evaluate the overall performance of the model, a simulation is conducted
considering a scenario that involves a group consisting of a utility and 10 agents. In Table 1, input settings are defined,
which include the number of consumers and prosumers, along with their energy demands/surplus. Trading preferential
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Table 1
Data input

Agents/Peers Count Energy Units Pricing per unit energy

Utility 1 grid supply (𝑝𝑟𝑠𝑢: 5, 𝑝𝑟𝑏𝑢: 3)

Consumers 3 3 -3 7

Prosumers 2 10 [0.6, 1]𝑝𝑟𝑠𝑢2 7

Figure 4: Graph illustrating 1 to many concurrent composite energy trading between peers.

settings are established for the prosumers to propose their selling prices or make offers, while consumers will utilize
their strategic coordination function to strike and combine multiple offers.
A simple illustration of the P2P energy trade within the group, resulting from the one-to-many concurrent composite
negotiations strategy, is presented in Fig. 4. Arrows with tails represent sellers, while arrows with heads represent
buyers. It can be observed that prosumer agents [0, 1, 2] successfully closed deals and transacted all energy units with
consumer agents [4, 5, 9, 6]. Prosumer agent 3, however, was unable to sell all energy units and therefore engaged in
transactions with the grid utility.
Fig. 5 illustrates the energy transactions taking place between peers and the utility. This illustration showcases two
cases (A and B) of energy trading before and after the implementation of our P2P energy trading model. Data inputs
for both cases are defined in Table. 1. Notably, in case A, the prosumer agents collectively generated [3, 3, 10, 10]
kWh of energy units, resulting in a total injection of 26 kWh of energy into the grid. However, after applying the
proposed local energy trading algorithm, they managed to sell [7, 6, 1, 10] kWh of energy units. This conserved 24
kWh of energy for consumer use, in contrast to the mere 2 kWh sold to utility to feed back into the grid. In case B, the
prosumer agents were able to sell all generated [3, 3, 2, 2] kWh of energy units to the consumer agents [4, 6, 7] closing
deals of [4, 1, 5] kWh. Further insights into the peers’ trading activities are presented in Fig. 6. This visualization
provides a breakdown of the number of trades executed by each prosumer and consumer. Additionally, it sheds light
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on the individual savings achieved through P2P trades as opposed to trading with the utility. The graph exclusively
portrays agents who have achieved successful transactions with their peers. Notably, prosumer agent 2 engaged in the
highest number of trades, striking 5 deals with multiple consumers and amassing a total of 250 price units—the highest
among all participants. This emphasis on atomic services to multiple consumers encourages greater participation in
local energy trading among peers in the future.
3.1. Scalability Tests
Previous simulations were carried out based on 10 user agents and a utility agent, demonstrating the applicability of
the algorithm. However, to showcase the model’s scalability, further simulations were conducted. The time horizon
remained consistent with the earlier case studies, ensuring efficient computations and communications using the
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Table 2
Parameters settings for batches

Parameter 𝑒𝑑 ,𝑒𝑠 𝜏 𝑝𝑟𝑠𝑢,𝑝𝑟
𝑏
𝑢

Value rand(10,30) rand(0.6,1) 5,3

5 10 20 30 40 50
Batches
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M
et

ric

Scalability Test
Aggregated savings of consumers
Aggregated savings of prosumers
Aggregated energy traded consumers
Aggregated number of trades

Figure 7: Aggregated simulation results of model conducted on batches of 5 - 50 agents.

SPADE3 multi-agent system. A series of 6 experiments was executed by gradually increasing the number of prosumer
and consumer agents in each iteration, along with diverse system parameter combinations. The aggregated profits,
traded energy, and total trade count of peers were evaluated by deploying agent batches ranging from 5 to 50, as
outlined in Table 2. Fig. 7 visually encapsulates the aforementioned aspects across a sequence of batch simulations.
Evidently, local energy trading experiences substantial growth alongside the rise in the number of prosumers, as
depicted in Fig. 7, leading to increased profits. Despite maintaining a uniform time horizon across all experiments,
the proposed approach exhibits exceptional scalability in the face of computational and communication demand.
Additionally, prosumer agents notably earn higher rewards compared to consumer agents. This discrepancy arises from
prosumers being incentivized for both surplus energy generation and participation in local energy markets. Conversely,
consumers engage in economic transactions with peers within the local energy markets. Importantly, this not only
benefits consumers but also assists utility in alleviating imbalances and distribution network congestion, reflecting a
fair mechanism.

4. Conclusion
The proposed P2P energy trading framework utilizes intelligent software agents developed using the SPADE platform
and coordinating one-to-many concurrent composite negotiation mechanism to support local energy markets. The
framework may be adjusted to optimize individual benefits and/or support grid balancing. The model demonstrates
successful negotiations and transactions between agents, indicating the potential for effective P2P energy trading
in local markets. The expreme simplicity of the mechanism makes it very easy to deploy in real environments and
the results of the scalability examinations conducted on larger groups of agents were exceedingly positive, in close
alignment with the projected expectations.

5. Future Work
Our next approach is to add advanced features to the agent’s behavior modeling and research further on the following.
Energy communities can be established at common coupling points in the network, allowing prosumers and nearby
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consumers to form bilateral contracts, coordinating their responses to price signals, and aiding grid stability. These
close-knit communities minimize network losses. In times of high demand, members collaborate to meet energy needs,
with prosumers sharing surplus energy and electric vehicles adjusting their charging. However, incentives are crucial
to promote such cooperation, as flexibility often requires a reward.
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Abstract—Ongoing fast paced research work on electric vehicles
(EVs) demands efficient software tools to emulate different
aspects of the EVs for more advancement and development
of EV charging infrastructure in the power systems to assist
massive adoption in coming years. In this regard an efficient EV
load simulation model has been developed acquiring probabilistic
method for characterizing the stochastic nature of EVs which
generates the schedule of EVs charging to ultimately achieve the
EV load profile for impact study of EVs on distribution network.
Model has been tested under different settings and by generating
different scenarios to make it viable, realistic and adaptable to
any defined characteristics. Moreover, all the source codes have
been socialised and uploaded to the IEEEDataPort repository.

Index Terms – electric vehicles, charging systems, battery
SOC, EV chargers, EV charging infrastructure, charging load
simulation, transactive energy, power distribution system.

I. INTRODUCTION
One of the recent hot research topic in the field of transactive
energy is the coordination of electric vehicles (EVs) and design
of smart charging systems to support high penetration of EVs
in power systems. Electric vehicles may potentially alter load
profile in a distribution network as it represents remarkable
differences when compared with other electrical loads due to
its unexpected charging locations and iterations. Since EVs
are still not adopted at a big scale in worldwide therefore real
data-sets of EVs charging load profile are not readily available
at all platforms and global regions. These data-sets are of
high significance for distribution grid planning, evaluating
voltage profiles, transformer loading, grid peak power, power
losses and so on. Therefore, to analyse the impact of these
mobile loads on the existing power system and to plan
EV charging infrastructure accordingly, such modeling and
simulation tools are required which can simulate different EV
operation schedules and charging load profiles under various
scenarios. In this regard, various studies have been performed
to develop these models with different approaches and targets.

Several stochastic models have been developed based on
behavioral characteristics of EVs to simulate the charging
demands of individual and groups of EVs [1], [2].The impacts
of slow and fast charging services of different geographical
locations and different time periods are considered in
stochastic collaborative planning model for distribution

This work was partially supported by the Government of the Principality of
Asturias - (FICYT) under grants FC-GRUPIN-IDI/2018/000241 and BP19-069
and by Phoenix Contact Foundation.

systems and EV charging infrastructure [3]. The authors in
[4] and [5] presented stochastic methodology to model EVs
charging load and analyse its impact on distribution grid under
various scenarios. A comparative study has been presented
on different battery charging scenarios which are simulated
using stochastic methodology Moreover, the spatial-temporal
dynamics of EVs are investigated in [6] and [7] to capture
the moving EV flows among power system buses. Different
approaches have been acquired for EV load modeling. For
example, queuing theory has been discussed in [8] and [9] for
predicting EVs charging demand while other works in [10] and
[11] adopted agent based model approach to predict human
charging behavior to model charging demands of EVs. The
authors in [12] validated the predicted charging patterns of
plug-in EVs with the actual vehicle usage data in the city
of Winnipeg, Canada from a large database. Furthermore,
to achieve realistic models of large scale EVs mobility
scenarios, electric vehicle supply equipment, and bidirectional
communication between simulated and real components of
a scenario, a cosimulation platform composed of SUMO
(a vehicular traffic simulator) and OMNET++ (a network
simulator) has been developed in [13].

In this paper, we have developed an artificial stochastic
scenario generator for modeling EV load profiles under various
scenarios. The model is parametric which can be adaptive
to defined characteristics. Unlike other related works, this
simulation model has been socialised and the source codes
are available online on IEEEDataPort at [14]. Moreover, it is
simple, scalable and does not posses complex computations
like other models and it can be adapted to create any scenario
by it’s configurable parameters.This model is generalized for
systems with different EV specifications and to anticipate
increased EV population in the future which could not be
served because of congestion. It can further be used for other
variety of applications such as for designing peer to peer
energy trading platforms, one such application is referenced
in the article submitted for publication [15]. A stochastic
approach has been acquired in this simulation model which
considers realistic factors namely EV battery capacity, state
of charge, plug-in/out time, charging power rate, residential,
commercial and industrial load profiles, seasonal variations in
load profile. The model provides user friendly, with simple and
quick features to manage parameters, constraints and results
for the scenario generation.

The rest of the paper is structured as follows. Section
II introduces the artificial scenario generator algorithm
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Population Densities,

Time Horizon,
Battery Capacities,
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Artificial Scenario
Generator for EV

Charging Load
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Initialize parameters;
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Functions evaluation 
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Fig. 1: Basic Structure of the Adopted Scheme

formulation and other details including assumptions and
constraints to set up the idea of the work. Section III presents
simulation results including EVs charging load profiles
obtained under different generated scenarios considering
residential, commercial and industrial sectors with different
penetration levels of EVs. Finally, the conclusion of the work
is drawn in Section IV.

II. ARTIFICIAL SCENARIO GENERATOR FOR EVS
CHARGING LOAD SIMULATION

A simulation model for generating EV charging load scenerios
is implemented using MATLAB.The basic structure of adopted
scheme in this work is represented in Fig. 1. The simulation
model intakes the definition of EVs population densities in
percentages over the time periods. This statistical information
is inferred from the analysis of the EVs charging behaviour
or acquired from travel survey data depending on the regions.
This simulation model allows user to create own profiles with
different statistics. Therefore, a set of factitious EV charging
profiles, which can represent charging profiles on day of the
week, will be generated instead. However, these profiles are
based on the charging behavior of EVs at different sectors of
the region which has been analysed to provide a probabilistic
method for characterizing the stochastic nature of EVs. This
section follows up with the details of the Algorithm 1 which
has been developed to generate the schedule of EVs charging
and ultimately achieve the load profile in a more realistic
manner.

Assuming a community with nCP charging points where n
EVs as an average number of cars are charged in a normal
weekday. Based on the general EVs charging behaviour, time
intervals have been defined over the time horizon of a normal
winter weekday by means of tI that is a vector containing
m specific hours that divide the day in m − 1 time intervals.
For each interval, an expected percentage of EVs arriving to
the charging stations is declared using the vector evexp

tI
that

contains m − 1 elements. Each time interval may have a
duration of hours. However, the day is divided in k time slots
of fixed duration (usually 15 minutes). tislot represent the ith

time slot of the day. The duration of all time intervals must
be an exact multiple of the duration of the time slots, even
when different time intervals may have different duration. The
number of electric vehicles (ni

EV ) arriving in each specific
tislot can be calculated according to the next expression.

ni
EV = fd(tI, evexp

tI
, tislot); where lb < nEV < ub (1)

Where fd is a probability density function that provides the
number of EVs arriving during every 15 minutes of the day.

Algorithm 1 EVs load simulation model

Input: tI, evexp
tI

, lb, ub, parameters in Table 1.
Output: pdj(evj , t

a
j , soc

a
j , bcj , soc

e
j , t

d
j , evj load).

1: for ∀j ∈ n do
2: execute eqn1 & obtain nEV (t);
3: apply constraints eq.3, 4, 5, 6 to eq.2;
4: execute eqn2 ;
5: obtain evj , t

a
j , soc

a
j , bcj , soc

e
j , t

d
j ;

6: while nEV (t) > nCP do
7: if wEV < wmax then
8: taj ++;
9: else

10: evj exits;
11: end if
12: loadj= d(socaj , bcj , soc

e
j)*cc;

13: end while
14: end for

ni
EV is bounded to a minimum lb and a maximum ub numbers

of EVs. These bounds are defined keeping in view the real
scenario e.g. there could be a maximum of 5 EVs arriving in
a 15-minute time-slot or at minimum there could be no EV
at the charging station. Based on these definitions, a scheduler
function is built to generate the arrival time of each EV along
with its charging characteristics, following the output of eq.1
and respecting some constraints as in eq.3 to 5.

pdj [evj , t
a
j , soc

a
j , bcj , soc

e
j , t

d
j ] = fs(nEV , tslot) (2)

ninst
EV <= nCP (3)

∀j wEV <= wmax (4)

∀j td >= ta + d (5)

Considering j = 1 to n. Eq. 2 represents the scheduling
function fs based on nEV and tslot, which generates the profile
data pdj of jth electric vehicle evj . This profile data includes
taj arrival time, socaj actual state of charge, bcj battery capacity,
socej state of charge after charging process and tdj departure
time of jth electric vehicle evj . In addition, Eq. 3 to 5 are
the constraints which need to be satisfied by Eq. 2, while Eq.3
doesn’t allow the count of charging cars at any instant(second)
of the day symbolised as ninst

EV , to exceed the total number of
available charging points nCP . Besides, it is also assumed that
an EV waiting time denoted as wEV cannot wait for more
than the maximum waiting time represented as wmax, if all
the EV-chargers are occupied, so this constraint is applied in
Eq. 4. Whereas Eq. 5 imposes our assumption that EVs cannot
leave before its departure time and d represents the charging
duration of the EV. Moreover, for the sake of simplification,
a constant/fixed charging power level cc is assumed at all
charging stations for charging EVs. Using these charging
parameters, charging load loadj is calculated to draw the load
profile. A summary of how these functionalities are executed
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Fig. 2: Different Aspects of Generated EV Charging Profile at Residential Sector with 65% Penetration Level

step wise including the main considerations, is represented
in Algorithm 1. Finally, all the parameters acquired in these
simulations are defined in Table I.

Using Algorithm 1, a set of n EVs charging profiles
pdj including arrival time, departure time, SoC and other
parameters as mentioned in the output of Algorithm 1, can be
generated in a random fashion under defined configurations.

III. RESULTS AND DISCUSSION
In this section, the simulation results are presented for
the different generated scenarios considering the default
parameters as stated in Table I, however these parameters
are configurable. These parameters are assumption based and
applied to all the generated profiles, i.e. for any moment of the
simulation, these parameters are the same. These are default
values but can be changed according to user preferences. The
scenarios of area considered consist of domestic, commercial
and industrial zones i.e. (a) residential area, (b) workplaces, (c)
academic sector, (d) commercial buildings and shopping mall.
The presented work gives probabilistic model of EV charging
pattern over a period of 24 hours of a normal winter weekday
for three different EV penetration levels of 35%, 50% and
65%.

Fig.2 illustrates different aspects of the generated EV load

TABLE I: PARAMETERS FOR EV LOAD SIMULATION
MODEL

Charging Points, nCP 10
Electric Vehicles,n 100
Fixed charging power,cc 7kW
Battery Capacities,bc [22,32,40,60] kWh
Maximum Waiting Time,wmax 15 minutes
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Fig. 3: Aggregated Electric Vehicles Charging Load at
Residential Sector with 65% Penetration Level

profile in a residential sector with 65%. As per assumed
population densities and parameters, the algorithm generated
arrival time of each EV with different battery capacities and
calibrated its departure time based on its SOC demand which
is a randomly defined entity matching the stochastic nature of
EVs. Fig.2 (a) represents majority of the EVs arriving in the
evening of a weekday between hours 16:00 to 20:00 which is
because usually people return home a bit early during working
days and prefer to plug-in their cars for recharging so that their
EV battery is fully charged on time. SOC demanded by EVs
are generated in random fashion which are expressed in Fig.2
(c) corresponding to each EV. Moreover, the frequency of the

Authorized licensed use limited to: UNIVERSIDAD DE OVIEDO. Downloaded on September 18,2023 at 14:28:09 UTC from IEEE Xplore.  Restrictions apply. 

178 Conference publications



EVs w.r.t to their charging durations can be observed from
Fig.2 (d) where trends in charging intervals can be visualised.
This generated data is then used to model the aggregated
charging load of EVs over the day period in the network.

As depicted in Fig.3, the overall power consumption by the
EVs charging (represented in grey) along with each individual
EV charging periods (represented in green). Charging peaks
could be observed during the late hours of the evening since
the probability of coincidence of several EVs to be recharged
simultaneously at these hours are high. This data helps in
estimating, analysing and predicting the load coming from EVs
penetration in the grid, for planning EV charging infrastructure
accordingly.
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Fig. 4: Generated Electric Vehicles Charging Load Profiles
with 3 different Penetration Levels(PL) at (a) Residential

Sector (b) Workplace (c) Academic Sector (d) Commercial
Sector

Fig. 4 shows the pattern of aggregated EVs charging load for
different sectors of a region under different penetration levels.
Fig. 4 (a) represents generated charging load in a residential
area where a general pattern can be observed for the three
penetration levels that in the office hours (8:00 – 16:00) the
EV charging load is only around 10-30% while in the evening
time (16:00 – 24:00) it gets high around 60% and in the night

it dips. In the workplace area, Fig. 4 (b) demonstrate that from
(8:00 – 12:00 Noon) the load is around 40–45% and it drops at
14:00 while in evening from (17:00 – 20:00) it goes to 40–45%
again. In the academic sector, as expressed in Fig. 4 (c) there
is 10–30% load insertion in the morning (7:00 -11:00) which
dips to around 20% at mid noon and then rises to 40–60%
from (13:00 – 16:00). However, there is no load observed in
the night time. For the commercial sector in Fig. 4 (d), general
pattern reflects a high load insertion during 7:00 – 20:00 and
there is a fall observed at 20:00 P.M. The simulation results
demonstrate that realistic patterns can be generated using this
model with configurable parameters to analyse EVs integration
with the grid system and its impact study.

Furthermore, different scenarios can be developed to analyse
EV charging load pattern e.g. presented results were based on a
normal winter weekday however, seasonal effects of summers,
winters and spring can also be analysed while taking into
account different activity behaviour of the individuals.

IV. CONCLUSIONS
A generic, scalable and less-complex artificial scenario
generator has been presented for modeling EVs charging load
profile in any region. Scenarios for areas including residential,
industrial and commercial under different penetration levels
have been generated. Results demonstrate realistic pattern of
community life. Model is configurable and can be extended
with various feature depending on the location and network
conditions i.e. grid loading conditions, usage diversity and so
on. Moreover, the model has been shared on IEEEDataPort
which can be used as a basis for further investigation
in the respective field. The proposed EV load modeling
approach and associated test platform can also be used as
a benchmark to simulate different EV penetration levels and
market patterns and to assess the impacts of different EV
charging infrastructure expansion plans on the power grid
operation.

REFERENCES

[1] B. Wang, D. Zhao, P. Dehghanian, Y. Tian, and T. Hong, “Aggregated
electric vehicle load modeling in large-scale electric power systems,”
IEEE Transactions on Industry Applications, vol. 56, no. 5, pp.
5796–5810, 2020.

[2] Z. Fotouhi, M. R. Hashemi, H. Narimani, and I. S. Bayram, “A
general model for ev drivers’ charging behavior,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 8, pp. 7368–7382, 2019.

[3] S. Wang, Z. Y. Dong, F. Luo, K. Meng, and Y. Zhang, “Stochastic
collaborative planning of electric vehicle charging stations and power
distribution system,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 1, pp. 321–331, 2018.

[4] S. Rezaee, E. Farjah, and B. Khorramdel, “Probabilistic analysis of
plug-in electric vehicles impact on electrical grid through homes and
parking lots,” IEEE Transactions on Sustainable Energy, vol. 4, no. 4,
pp. 1024–1033, 2013.

[5] K. Qian, C. Zhou, M. Allan, and Y. Yuan, “Modeling of load demand
due to ev battery charging in distribution systems,” IEEE Transactions
on Power Systems, vol. 26, no. 2, pp. 802–810, 2011.

[6] D. Tang and P. Wang, “Probabilistic modeling of nodal charging demand
based on spatial-temporal dynamics of moving electric vehicles,” IEEE
Transactions on Smart Grid, vol. 7, no. 2, pp. 627–636, 2016.

[7] S. Yang, M. Wu, X. Yao, and J. Jiang, “Load modeling and identification
based on ant colony algorithms for ev charging stations,” IEEE
Transactions on Power Systems, vol. 30, no. 4, pp. 1997–2003, 2015.

Authorized licensed use limited to: UNIVERSIDAD DE OVIEDO. Downloaded on September 18,2023 at 14:28:09 UTC from IEEE Xplore.  Restrictions apply. 

B.1 EV Load Simulator 179



[8] M. Alizadeh, A. Scaglione, J. Davies, and K. S. Kurani, “A scalable
stochastic model for the electricity demand of electric and plug-in
hybrid vehicles,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp.
848–860, 2014.

[9] O. Hafez and K. Bhattacharya, “Integrating ev charging stations as smart
loads for demand response provisions in distribution systems,” IEEE
Transactions on Smart Grid, vol. 9, no. 2, pp. 1096–1106, 2018.

[10] L. Sun and D. Lubkeman, “Agent-based modeling of feeder-level
electric vehicle diffusion for distribution planning,” IEEE Transactions
on Smart Grid, vol. 12, no. 1, pp. 751–760, 2021.

[11] K. Chaudhari, N. K. Kandasamy, A. Krishnan, A. Ukil, and H. B.
Gooi, “Agent-based aggregated behavior modeling for electric vehicle
charging load,” IEEE Transactions on Industrial Informatics, vol. 15,
no. 2, pp. 856–868, 2019.

[12] A. Ashtari, E. Bibeau, S. Shahidinejad, and T. Molinski, “Pev charging
profile prediction and analysis based on vehicle usage data,” IEEE
Transactions on Smart Grid, vol. 3, no. 1, pp. 341–350, 2012.

[13] L. Bedogni, L. Bononi, M. Di Felice, A. D’Elia, R. Mock, F. Morandi,
S. Rondelli, T. Salmon Cinotti, and F. Vergari, “An integrated simulation
framework to model electric vehicle operations and services,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 8, pp. 5900–5917,
2016.

[14] K. K. I. E.-S. P. Arboleya, “Artificial scenario generator for the impact
study of electric vehicle charging on the distribution grid,” 2021.
[Online]. Available: https://dx.doi.org/10.21227/1f1g-tp69

[15] K. Komal, E.-S. Islam, and A. Pablo, “Multi-issue negotiation evs
charging mechanism in highly congested distribution networks,” 2021
IEEE Transactions on Vehicular Technology (TVT), pp. 1–8 (Manuscript
submitted for publication), 2021.

Authorized licensed use limited to: UNIVERSIDAD DE OVIEDO. Downloaded on September 18,2023 at 14:28:09 UTC from IEEE Xplore.  Restrictions apply. 

180 Conference publications



B.2 Price and Time-Slot Negotiation Protocol for P2P Energy Trade 181

B.2 Price and Time-Slot Negotiation Protocol for
P2P Energy Trade



182 Conference publications



Price and Time-Slot Negotiation Protocol for EVs
Charging in Highly Congested Distribution

Networks
Komal Khan

LEMUR Group, Electrical Eng. Dept.
University of Oviedo, Gijón, SPAIN

khankomal@uniovi.es

Islam El-Sayed
LEMUR Group, Electrical Eng. Dept.
University of Oviedo, Gijón, SPAIN

islam@uniovi.es

Pablo Arboleya
LEMUR Group, Electrical Eng. Dept.
University of Oviedo, Gijón, SPAIN

arboleyapablo@uniovi.es

Abstract—This paper presents a multi-issue bargaining
mechanism in order to negotiate simultaneously the price and
time-slot for electric vehicles (EVs) charging in congested power
distribution networks. Alleviating the need for investments in
distribution infrastructure to install EV chargers, an aggregator
coordinating EVs provides flexibility to the system and reduces
congestion. The proposed negotiation algorithm is based on well
known Rubinstein alternating offers which is implemented and
tested using a simple case scenario between EV and aggregator.
Results achieved validates application of proposed negotiation
mechanism for EV charging systems. Moreover, the general
detailed description of the protocol as well as the implemented
utility functions in this paper could expand its viability for more
complex applications.

Index Terms—electric vehicles, charging systems, energy trading,
transactive energy, congestion management.

I. INTRODUCTION

Transactive energy has been one of the most widely debated
disciplines in the recent years. There is not a single definition
of this term. However, Edison Electric Institute [1] proposal is
fairly general and integrates in a holistic way all the tendencies
present in this very broad concept that is in itself a highly
multidisciplinary field of study. Basically, referring to the
term transactive energy means grouping a set of economic
management techniques that are combined with traditional
control techniques which allow an integral management of
power systems.

Among the tools provided by this new power system
control framework, there is a vast set which is related to
trading techniques. Even when electrical markets and trading
techniques are widely implemented at transmission level in
nearly all developed power systems, the degree of penetration
of these techniques in real terminal distribution systems is
still marginal due to several reasons listed hereafter; 1) The
lack of regulation, or in many cases the existence of a very
restrictive one. 2) The size of the data generated by the

This work was partially supported by the Government of the Principality
of Asturias - (FICYT) under grants FC-GRUPIN-IDI/2018/000241 and
BP19-069 and by Phoenix Contact Foundation.

terminal distribution systems containing from hundreds to
million nodes and users. 3) The latency with which we obtain
data, that is far from real time in the majority of cases.
4) The heterogeneity of the different devices present in the
distribution network and in many cases the impossibility of
their remote operation.

The adverse conditions described above may be a delay,
but in no way represent a medium-term brake on this
new paradigm of electrical systems operation. This system
advances in an unstoppable way supported by emerging
technologies such as all those related to the internet of
things, big data management systems, fast, robust and efficient
communications, artificial intelligence, blockchain technology,
the development of distributed generation and energy storage
systems, electric vehicles, ...among others.

The efforts of the researchers during the last years proposing
and implementing new solutions have been tremendous. A
huge part of these efforts was invested in investigation related
to the peer-to-peer energy trading as a tool to coordinate
different agents participating in the terminal distribution
network. A good set of examples are provided in [2]. The
case presented in [3] proposes a trading system codified
using blockchain technology in order to trade with the
reactive power injected by PV generators in a microgrid.
An open code example of how to implement a simple
blockchain-based trading platform can be observed in [4].
In [5], the researchers use a transactive energy approach
to coordinate the charging/discharging of the energy storage
systems and the electric vehicles in commercial buildings
considering some uncertainties for instance, those coming
from PV generation. The framework proposed in [6] allows
the coordination of a set of residential buildings trading with
the energy stored in the PV storage systems. In most of the
cases, the authors focus their proposal in solving a specific
problem since the coordination of the entire system is too
broad a problem to be attacked in a single work. Even the
research works that propose a "general framework", like the
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one presented in [7] for coordinating a distribution system
combining optimal power flow with transactive energy trading,
assume a large set of simplifications of the real problem.

A common denominator of all research works is the
implementation of some kind of market mechanism applied to
the flexible loads. The basic differences between the proposals
lie in: 1) the agents involved in the market mechanism; 2) the
time-horizon in which the market is operated (real-time, day
ahead,...); 3) the rules applied to the market; 4) the level of
hierarchy of the system (a central agent controls the system
or it is controlled in a distributed way).

The work proposed in this paper is mainly focused on
the coordination of the EVs in a congested distribution
system in which the buildings represent the critical loads
and the EVs provide some flexibility. Of course, with such
perspective, the work is not new since there are many
researchers that propose different techniques to implement
this coordination. For instance, the work presented in [8]
proposes a framework in which the aggregators run the
market where the prosumers participate. The DSO operates
the distribution network and an external agent has the role
of price coordinator. The idea is to operate the network
fulfilling all physical constraints using the price signal among
the other parameters. In [9], a market mechanism proposes
the interaction between the EV aggregators and TSOs. The
solution proposed in [10] allows the consumers to create
coalitions in a multi-agent environment. These coalitions of
prosumers are able to negotiate with each other. Probably,
one of the most sophisticated approaches is the one presented
in [11], in which the authors use a price signal as indirect
control of the EV owners managed by aggregators. As a
conclusion, the authors state that the monopolistic profitability
of the aggregator must be somehow limited in order to
guaranty an adequate competition in the market. Among
the above-described research works, we find cases in which
the charging schedule is determined by using different
market mechanisms. However, in none of them, the trading
mechanism consider simultaneously the price and time-slot
negotiation. Therefore, this is the contribution of the presented
work. This combined price and time-slot negotiation has been
employed in the last years to determine the optimal cloud
services reservation (see for instance the work presented in
[12] that constitutes the conceptual basis of our proposal).
However, this is the first time that this multi-issue bargaining
technique is being implemented in a transactive energy
environment.

The document is structured as follows. In section II, the
specific problem in which we applied the proposed negotiation
protocol, is stated. Of course, this problem is a simplification
of the real case scenario but it is still valid to test the
performance of the price and time-slot negotiation protocol
presented in section III. In section IV, the description of
the utility functions used during the bargaining process are
presented. In section V, the performance of the implemented

Fig. 1: European low voltage urban distribution network
representing the case defined in the problem statement.

negotiation protocol is analysed and the conclusions are
discussed in section VI.

II. PROBLEM STATEMENT

The scenario selected to test the system is a typical urban
distribution network. In Fig. 1, a real network is represented in
the top left corner. This network is a portion of a real network
operated by EDP in Spain containing 30 power transformer
stations and around 8500 customers. The details about this
network can be found in [13]. As it can be observed, European
low voltage networks are operated in small islands fed through
power transformers. It must be considered that the elements
belonging to a specific island may vary depending on the
position of the breakers (BR) in the secondary side of the
power transformer. Usually, each island contains several four
wires three-phase feeders (F.1, F.2,..) protected by a set of
fuses (FF1, FF2,...). Each feeder can be monitored by means of
an advanced supervisor monitoring equipment (here labeled as
MF1, MF2,...). Buildings have mostly three-phase connections
however, most of the loads and also the end-users inside the
buildings (L1,...,L6) are single phase unbalancing the total
load. Usually each building is protected by a set of three-phase
fuses (see for instance FL4) and each individual user also
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has its own fuse protection (See for instance FB1) and its
own advance metering infrastructure (see for instance M1).
As a general data, we could state that the average distance
from the power transformer to the connection points is less
than 300 meters with around 25 buildings per power stations
distributed in around 4 feeders. In many cases, the feeders
are highly congested during the peak hours and it is not
possible to add more loads, like the ones represented by the
EV chargers without deploying new infrastructure or making
new investments in the existing one. This situation prevents the
DSOs from installing public EV chargers in a massive way.
However, according to statistics, the average load during the
whole day of the different feeders is less than 10%. That is the
reason why flexible loads may help to reduce the congestion
and make the system more receptive to embed new loads.

In this specific case of study, the existing buildings labeled in
red in Fig. 1 represent the critical loads and that should be
fed under all circumstances. Electric vehicles (in blue) will
represent flexible loads that will negotiate with the aggregator
the price and the time-slot in which they are going to receive
the requested power. As it is mentioned earlier, this scenario
is quite simple yet representing a real problem. The target of
the aggregator will be to minimize the non-supplied energy
fulfilling all the physical constraints defined by the DSO.
To achieve this, the aggregator will use price signals and
the proposed multi-issue negotiation technique to determine
the price of the energy supplied and the charging period for
each of the electric vehicles connected to the system. Even if
the ultimate goal of the aggregator is to obtain an economic
benefit. This benefit is limited by a pre-set range of variation
in price signals and the imperative to minimize as much as
possible the energy not supplied to flexible loads. This is a
common practice in monopolistic scenarios such as the one
we are discussing [11].

III. ALTERNATING OFFERS PROTOCOL

Each EV owner will have a specific contract in which all
the parameters that define its negotiation strategy will be
determined. The full set of parameters will be described later
in this paper. However in this section, and for the sake of
simplicity let us assume that when the vehicle is connected, the
aggregator will receive the information from the vehicle that
will cross with the one provided by the metering infrastructure
and the forecast energy in order to adapt in real time its
negotiation strategy. It is far beyond the scope of this paper to
define the forecasting techniques or the negotiation strategy of
the aggregator and the one defined in the contracts of the EV
owners. This work focuses in defining the negotiation protocol
but not the negotiation strategy that should be addressed in
future works. In addition, in this specific case of study, and
due to the limited number of vehicles that can be connected
to a feeder and the high speed of the negotiation algorithm
(demonstrated later), the negotiation between the EVs and the
aggregator will be made in a sequential way using a first in
first out strategy (FIFO). The first vehicle connected will be

the first starting the negotiation with the aggregator, this will
not reduce the generality of the methodology that could be
used under other premises for instance parallel negotiations.

The proposed price and time-slot negotiation protocol is based
on Rubinstein alternating offers protocol [14], with the whole
procedure shown in Algorithm 1. Rubinstein alternating offers
is a bargaining model which presents perfect equilibrium
solution (see [15]) to a bargaining problem that is to find an
agreement upon which the payoff of each agent is no less
than the payoff received from the disagreement. This protocol
is well recognized and extensively applied to automated
negotiations in different fields [7], [12].

In Algorithm 1, the agents are referred as Agent1 (A1)
and Agent2 (A2). A1 and A2 represent the EV s and AG.
A1 will be the one that make the offer and A2 the one
that evaluate the offer. A1 is initialised to be the EV and
A2 to be the AG but these roles will be switched in the
successive rounds. In this specific case and w.l.o.g., EV is
selected as the agent that starts the negotiation. Both agents
will set their initial preferences and time ranges for each
negotiation process. These preferences consists mainly in the
initial and reserve prices (IP,RP ) and the first and last time
slot (FT,LT ) selected for this negotiation by each agent.
Apart from the previous parameters, there are other parameters
that define the negotiation strategy. For instance, agents utility
ranges (Umin, Umax) and (λ) that will be defined in the next
paragraphs. EV will query the AG for the set of available time
slots (Ta) depending on its required power and its charging
time horizon. In order to compute the available time slots, the
AG will use real measurements from the critical loads and
other EV s, information about already reserved time slots by
other EV s and forecast values. If the set of available time-slots
is not empty, them both agents fix a deadline (τ) for the
negotiation (expressing the number of allowed rounds) and
the initialise the first round (t = 1) of the negotiation process.

A1 (EV in the first round) will update it expected utility
UAg1
exp,t. The expected utility in the first round is always the

maximum. The agents diminish their expected utility through
the successive negotiation rounds according to a concession
protocol determined by the next expression. The parameter λ
determines the negotiation strategy.

U t+1
exp = U t

exp − U t
exp ·

( t

τ

)λ

(1)

The EV evaluates the sets of available time-slots if any, and
generates an offer containing multiple concurrent proposals
of time slots and prices in a so called burst offer generation
procedure. These proposals should maximize the EV utility
being the target utility the expected utility (Uexp). In the
first round the expected utility is the maximum one. Each
agent can calculate the utility (U) obtained from a set of
(P, T ) by means of its utility function U := f(P, T ) (a deep
description of the utility functions is provided in the next
section). Inversely, an agent can generate an offer containing a
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Algorithm 1 Multi-Issue Negotiation Mechanism

Input: (IP,RP, FT, LT, Umin, Umax, λ, τ) for EV and AG.
Output: (P, T ) final price and reserved time-slots.

1: EV query AG for the available time slots (Ta).
2: AG obtain (Ta) and send to EV.
3: t ⇐ 0; Set Agent1 = EV & Agent2 = AG.
4: if Ta is empty then
5: Process terminated, no agreement.
6: else
7: t ⇐ t+ 1 Update negotiation round.
8: Update Agent1 utility UA1

exp,t

9: (P, T ) := f−1
Ag1(U

A1
exp,t) Agent1 burst offer generation.

10: UA2
x,t := fA2(P, T ) Agent2 burst offer evaluation.

11: if (t = τ & UA2
x,t < UA2

min) then
12: Process terminated, no agreement.
13: else if (t = τ & UA2

x,t ≥ UA2
min) | UA2

x,t ≥ UA2
exp,t+1 then

14: Process terminated, agreement reached.
15: else
16: Switch EV and AG in Agent1 and Agent2 roles.
17: Goto line 7 to create counter-offer.
18: end if
19: end if

set of (P, T ) using the inverse of its utility function (P, T ) :=
f−1(U). It must be remarked that there is no analytical
expressions for these inverse functions, in many occasions,
the calculations involve complex optimization methods that
return approximated results. In short, we could state that f−1

functions are used for creating offers while f functions are
used of evaluate offers.

Once EV generates the burst offer, it is evaluated by the AG
that will select the pair of prize and time-slot (P, T ) that
maximizes its utility. Let us refer to this utility as (Ux). In
order to accept the offer or make a counter offer, the AG
check first that the negotiation deadline is not violated, in such
case the offer is automatically rejected and the negotiation is
terminated. Another condition that will trigger an automatic
rejection is that the utility obtained by the AG with the best
set of (P, T ) is lower than the minimum utility accepted by the
AG. In case that the agents are in the last allowed negotiation
round (t = τ), the AG will accept automatically the offer if
it provides a utility greater or equal than the minimum. Other
condition for accepting the offer provides a utility greater than
the utility expected in the next round (UAG

x,t ≥ UAG
exp,t+1).

Otherwise the AG will make a counter proposal, this means
that the AG is expecting a utility in the next round higher than
the utility provided by the best proposal in the actual round.

IV. UTILITY FUNCTIONS DESCRIPTION

Proposed negotiation algorithm is based on three main
functions: Price, Time-slot and Aggregated utility functions
which are used to model the preferences of the EV and AG
to implement bilateral negotiation strategies acquired in this
paper. These utility functions defines the level of satisfaction
of the agents in the form of a number between 0 to 1 (low to
high) for any negotiation deal. In this section we will describe
the above-referred functions.

A. Price Utility Function

Price utility functions for EVs and AG are described below
(see 2 and 3). They are similar, however, as it can be observed
EV utility is high at low prices while AG utility functions
behaves in an opposite way. An agent always get maximum
price utility when the price (P ) is equal to its initial price
(IP ) and minimum price utility (up

min) when P is equal to
its reserve (least preferred) price (RP ).

Uev
p (P )=

{
up
min+(1− up

min)
∣∣∣ RP−P
RP−IP

∣∣∣, IP ≤P ≤RP

0, otherwise
(2)

Uag
p (P )=

{
up
min+(1− up

min)
∣∣∣ P−RP
IP−RP

∣∣∣, RP ≤ P ≤ IP

0, otherwise
(3)

B. Time-Slot Utility Function

Time is another factor governing the decisions of the EV and
AG. Both agents define their preferences of charging time
of EV, prior to start a negotiation based on these settings.
Time utility functions are applied model of these order of
preferences.
1) EV’s Time-Slot Utility Function: The EV owner establishes
the preferred charging time intervals according to its utility
function. These preferences can be predefined or set manually.
For instance, the expression (3) represents how the utility vary
in a given interval of time (x) being T x

h and T x
t the starting

time slot and the final time slot of that specific time interval.
In that specific time interval, the utility reaches its maximum
(Ux

m) between time slots T x
mh and T x

mt and decreases outside
this interval according to the cited expression in which the
coefficient (αx

h) determines the rate of variation of the utility
outside the maximum interval. The function represented in
(4) is an example, but other functions could be proposed. The
total utility function during the whole horizon of negotiation
(Uev

t (T )) can be obtained as an aggregation of the different
partial utility functions (Uev

t (T )x). In case of overlap of two
partial utility functions, the total utility is defined as the highest
of them. The time utility would be zero for that time region
where no partial function is defined. This is just a general
example of how to build this function but other methodologies
may be applied.

Uev
t (T )x =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut
min T ≤ T x

h or T ≥ T x
t

Ux
m T x

mh ≤ T ≤ T x
mt

Ux
m ·

{
T−Tx

h

Tx
mh−Tx

h

}αx
h

T x
h < T < T x

mh

Ux
m ·

{
Tx
t −T

Tx
t −Tx

mt

}αx
t

T x
mt < T < T x

t

(4)
2) Aggregator’s Time-Slot Utility Function: Prioritising the
available time for AG depends on several factors since
aggregator has the key responsibility to coordinate with grid
services, multiple EVs requests and managing the distributed
energy produced by the prosumers within the community.
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Fig. 2: Prioritised time-slots regarding available power and
reservation queue

Therefore, aggregator’s time-slot preferences are based on the
following.
Energy Demand and Grid Infrastructure Availability: AG
selects the time range specifying LTP and FTP , and then
splits the time into time-slots. Each time-slot indexed T is
assigned with the priority value VD(T ) depending on the
aggregated energy demand forecast of the community, actual
consumption, grid availability and other factors. The study of
the influence of such factors in the priority curve is far beyond
the scope of this paper but in general we could state that for
higher expected demand or peak time-slots, AG will assign
low priority and vice versa. Fig. 2 represent an example of
the priority curve and the power forecast for the critical loads.
Time and Energy Devaluation: Since the unused energy would
be the loss of revenue for the aggregator therefore it will prefer
to reserve the earliest available time-slots.
Request Accommodation: Depending on the EV charging
requirements i.e. number of time-slots fulfilling the energy
requirement, the request is accommodated to best fit set of
the available time-slots. Aggregator prepares the reservation
queue for the selected time range which provides information
about already reserved time slots and available time-slots. This
queue is updated after every successful negotiation when an
agreement is confirmed.

Assuming LJ be the requested charging demand by the EV.
And Li

A represents the length of i sets of continuous time-slots
available to the aggregator in the reservation queue which
fulfills the LJ . Relying on the earlier mentioned three main
factors, the available time slots are finally prioritised using (5).

V i = wD
1

LJ

i+Lj−1∑

T=i

VD(T ) + wF
LTP − i

LTP − FTP
+ wB

LJ

Li
A

(5)

wD ,wF and wB are the weights selected by the aggregator
to prioritise i sets of available time-slots satisfying the
above mentioned preferences i.e. 1) energy demand and grid
infrastructure availability, 2) energy devaluation and 3) request
accommodation. Thus, keeping wD+wF +wB = 1. Based on
V i in equation (5), all indexed i sets of available time slots are
prioritised in a way that for highest value of V i the priority of
ith set becomes 1 and for the lowest value of V i the priority of

ith set becomes the last number of the index set. To translate
these indices to the time-slots and return the respective priority,
a mapping function fP

T (T ) is used. These priorities for the i
sets of available time-slots are then transformed to time-slot
utility using time utility function in (6).

Uag
t (T )=

{
ut
min+(1−ut

min)
[
1− fP

T (T )−1

NP
AT−1

]
, FTP ≤T ≤LTP

0, otherwise
(6)

where ut
min is the minimum utility received by the aggregator

for reaching an agreement at its least prioritised time-slot.
NP

AT is the total number of available time-slot sets. The utility
is zero for all the time-slots which are out of i sets of available
time-slots.

C. Total Utility

Both price and time utilities are then adjusted and added up to
receive total utility for reaching an agreement after successful
negotiation. wP and wT are the weights set by the negotiating
agents to adjust their respective preferences for price and time
utilities, such that wP + wT = 1. In general, the total utility
for a specific agent (EV or AG) can be expressed as:

Uag
total(P, T ) =

{
0, either Up(P ) = 0 or Ut(T ) = 0

wP · Up(P ) + wT · Ut(T ), otherwise
(7)

V. NEGOTIATION PROTOCOL PERFORMANCE ANALYSIS

We will present in this section a simple case of study. We
will analyze the different negotiation rounds between an AG
and an EV . The main parameters of the negotiation round are
specified in Table I.

The different negotiation rounds are represented in Table II.
EV starts the negotiation trying to maximize its utility, offers
its initial price. In the case of the time slots, EV offers the one
that provides the maximum utility i.e. T = 8 with a time utility
of 0.7. According to the weights the total utility of the first
offer made by the EV is 0.79. Even when the burst offer mode
is activated, in this case there is only one combination that
maximises the utility. The EV pass this offer (P = 10, T = 8)
to the AG, but this combination produces the minimum utility
to the AG (0.01). Despite with the concession that the AG
is willing to do in the counter offer, it is expecting to get an
utility of 0.98 so the AG decides to make the counter offer

Preferences AG EV

Initial price (IP ) 200 10
Reserve price (RP ) 10 200
First Time slot (FT ) 1 5
Last Time slot (LT ) 30 41
Charging Demand (LJ ) 3 3
Price weight (wP ) 0.3 0.3
Time-slot weight (wT ) 0.7 0.7
Negotiation Strategy (λ) 1 1
Negotiation Deadline(τ) 50 50
Minimum Utility(umin) 0.01 0.01

TABLE I: Preference Settings
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EV Rounds/Proposals AG
Up=1 Up=0.01

Ut=0.70. t=1−−−−−−−→
P=10,T=8

Ut=0.01

Utotal=0.79 Utotal=0.01

Uexp=0.98

Up=0.076 Up=0.93

Ut=0.63 t=2←−−−−−−−−
P=187,T=7

Ut=1

Utotal=0.46 Utotal=0.98

Uexp=0.76

Up=0.8 Up=0.11

Ut=0.70 t=3−−−−−−−→
P=30,T=8

Ut=0.01

Utotal=0.76 Utotal=0.04

Uexp=0.92

Up=0.27 Up=0.73

Ut=0.63 t=4←−−−−−−−−
P=149,T=7

Ut=1

Utotal=0.52 Utotal=0.92

Uexp=0.70

Up=[0.86,0.69] Up=[0.14,0.31]

Ut=[0.63,0.70]
t=5−−−−−−−−−−−−−→

P=[35,69],T=[7,8]

Ut=[1,0.01]

Utotal=0.70 Utotal=[0.74,0.10]

Uexp=0.83

Up=0.57 Up=0.43

Ut=0.63 t=6←−−−−−−−
P=90,T=7

Ut=1

Utotal=0.62 Utotal=0.83

Uexp=0.62

Up=[0.58,0.40] Up=[0.42,0.60]

Ut=[0.63,0.70]
t=7−−−−−−−−−−−−−→

P=[89,123],T=[7,8]

Ut=[1,0.01]

Utotal=0.62 Utotal=[0.82,0.18]

Uexp=0.71

Up=0.58 Up=0.4

Ut=0.63 RESULT←−−−−−−−→
P=89.8,T=7

Ut=1

Utotal=0.62 Utotal=0.82

TABLE II: Different negotiation rounds in the case of study

(P = 187.2, T = 7) that produces the expected utility 0.98.
The process is repeated. In round (t = 5) the EV makes
an offer of 0.7 utility. Evidently, in this case the burst mode
produces two combinations. Finally the agreement is reached
in round 7 with a price of 89.88 and time slot 7 producing
a utility of 0.62 for the EV and 0.82 for the AG. Average
negotiation time is 30ms per round.

VI. CONCLUSIONS

In this paper a multi-issue negotiation protocol is presented,
considering simultaneously price and time-slot during the
different negotiation rounds. As previously mentioned, this
kind of multi-issue bargaining technique is widely accepted in
cloud services reservation environments. However, for the first
time, it has been used in a transactive energy environment. This
research exploited the similarities of the problem of energy
management in a congested distribution network and the use
of the limited capacities of cloud services, in order to employ
highly effective techniques already implemented in the former

case to solve real problems in the latter. A clear limitation of
the present work is the simplification of the scenario which
is used to test the algorithm (that will be extended in the
final paper). However, this does not lessen the generality of
the multi-agent framework presented in this paper. Multi-issue
negotiation, it is intended to be the cornerstone of an integral
terminal distribution network transactive energy-based control
system to be developed in future work.
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Abstract—In this paper, a multi-agent based negotiation al-
gorithm is proposed for EV charging management. The paper
provides the main scheme to develop a realtime framework for EV
charging management. The proposed application permits defining
the preferences for the aggregator and a list of buyers with their
arrival time and preferences. Using the negotiation technique
allows each agent to set his own preferences and making a
bargaining process with the other agent. The same structure can
be applied on managing flexible loads installed in a smart grid.

Index Terms – Multi-Agent Systems, Smart grid, EV charging
management, Simulation Framework.

I. INTRODUCTION

Energy management nowadays is one of the most worrying
topics as a result of the increasing number of Electric Vehicles
(EVs). Sometimes, EV charging results an overload that may
cause a fail in the electric transportation system. To resolve this
problem, a good management and scheduling of these loads
is required to avoid these possible overloads in the grid. One
possible solution is to simulate the roles in this system.

A multi-agent based simulation system is presented in
[1] to study EVs operation. Different roles are integrated
in that work like government, power grid EVs’ owners and
charging stations’ operators. A map agent is introduced to
show and manage the visible agents. A similar multi-agent
based system is presented in [2] where it is simulating the
role of micro grid energy sources like PV panels, wind
turbine and storage systems and micro grid loads. In that
works it is concluded that using a multi agent system boosts
the performance of micro grids in diverse aspects. Another
multi agent based simulation system is presented in [3].
In this system, an algorithm is developed to optimize the
charging scheduling based on non-cooperative game theory.
[4] presents an intelligent energy management controller for
EV integration. In this controller EV’s trip is forecasted to
obtain the optimal charging and discharging schedule. Some
other works like [5] used a combination between multi agent
system and blockchain to eliminates the security gaps by the
integration of decentralized applications technologies. In most
of cases, the proposed applications are non-cooperative where
the preferences of the EV owners are collected and then a
specific algorithm is run to obtain the optimal scheduling.
Another technique to use is the negotiation or bargaining
process as used in [6], where each agent has his own role
in the process. A negotiation based technique is developed in

This work was partially supported by the Government of the Principality of
Asturias - Foundation for Scientific and Technical Research (FICYT) under
grants FC-GRUPIN-IDI/2018/000241.

[7] where a multi-issue bargaining mechanism is presented to
negotiate price and time-slot simultaneously.

In this paper, a multi-agent based negotiation process is
developed where agents can negotiate service’s price, energy
and time’s flexibility. The proposed framework is implemented
using a multi agent based system which can be used in
real situations. The flexibility is added as a parameter in the
negotiation to allow the seller to disconnect the cars if there is
any overload due to buildings consumption an EV charging.

In next section, a simple description about multi-agent sys-
tem is introduced. In section III, Proposed multi-agent system
is described. Section IV explains the proposed negotiation
process. Section V presents a case study simulation using
the proposed system. Section VI explains how the proposed
framework can be implemented in real life. Finally, section VII
highlights the main conclusion of the work and the possible
enhancements that can be added in future works.

NOMENCLATURE

B Seller’s benefit
E EV charging Energy
F Buyer’s flexibility
UB Benefit utility
UE Energy utility
UF Flexibility utility
wB Benefit utility weight
wE Energy utility weight
wF Flexibility utility weight
U Total offer utility
UBmin

Minimum benefit utility
UEmin Minimum energy utility
UFmin Minimum flexibility utility
BI Initial / Desired benefit
EI Initial / Desired energy
FI Initial / Desired flexibility
BR Reserved / Acceptable benefit
ER Reserved / Acceptable energy
FR Reserved / Acceptable flexibility
Pmax Maximum supplied power
Nch Number of chargers
Pch Charger power capacity
Rmax Maximum negotiation rounds
R Current negotiation round
λ Negotiation strategy

II. MULTI AGENT SYSTEM

Multi agent system allows the interaction between agents
within an environment. Each agent is responsible of a specific
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action resulting to break down a composite process into simple
duties represented by agents [1], [8]. Multi agent system can
be implemented in a decentralized way where each agent is
living in his own platform acting with each other using the
infrastructure supported by the multi agent platform.

There many different tools for the implementation of a
multi agent system [9]. In this work, JADE platform is used to
develop the proposed framework. As Jade framework is totally
implemented in java, so it can be used in used in different
machines without the need of sharing the operating system
[10]. It is also supporting FIPA (The Foundation for Intelligent
Physical Agents) specifications to implement the multi-agent
systems [11].

The JADE architecture as shown in figure 1 contains some
main components like agents, containers, platforms and AMS
and DF agents. Agents have their own unique names and
perform a specific task exchanging information between them.
These agents are living in platforms that are serving them to
be able to communicate between each other. Each platform
contains at least one container and the first created container in
the each platform called a main container. The main container
contains two special agents AMS for platform management
and DF for yellow pages service.

Host 1

Main
container

Host 3

Container 2

Host 2

Container 1

Host 4

Main
container

Host 6

Main
container

Host 5

Container 1

Platform 2Platform 1 Platform 3

AMS
DF
A1

A2
A3
A4

A5
A6
A7

AMS
DF
A1

A2
A3
A4

AMS
DF
A1

Network

Fig. 1: JADE architecture

III. PROPOSED SYSTEM AGENTS

In this work, two types of agents are defined, seller and
buyer agents. Based on each type, multiple agents can be
created to act as sellers or buyers. Initially a seller agent is
created to start monitoring the buildings consumption and to
be ready to receive EV charging requests. Then a buyer agent
is created for each EV at its arrival time.
Seller agent is the agent that acts the seller role. The seller
agent started publishing a service in yellow pages to be found
by buyer agents when they are created. Once the service is
published, a CyclicBehaviour is attached to the seller agent
to start listening to incoming buyers requests as shown in the
procedure 1. Based on the type of the received message, seller
agent make some actions. The type of these messages can be
one of these types:

• CFP: is a call for proposal message that will be
received from new buyer agents to start a negotiation
process. In this case, seller answer this request with
ACCEPT message if there is no other negotiation
in process. Otherwise, seller answers with REFUSE
message.

• PROPOSE: is a proposal message from another agent
during negotiation process. The content of this mes-
sage contains the offers proposed from the other agent.

In this case, agent who receives this message evaluates
all proposed offers and makes a decision depending on
the maximum utility of these offers and the round of
the negotiations that represents the time pressure. This
decision can be one of these three decisions:
◦ ACCEPT_PROPOSAL: if the seller is satisfied

with one of proposed offers.
◦ REJECT_PROPOSAL: if the seller is not sat-

isfied with any of proposed offers and there is
no chance to make a counter offer.

◦ PROPOSE: if the seller is not satisfied with
any of proposed offers but there is a chance to
make a counter offer.

• ACCEPT_PROPOSAL: is the acceptance message that
means that the other agent accepted one of the received
offers. The contents of this message contains the
details of the accepted offer.

• REJECT_PROPOSAL: is the rejection message that
means that the other agents rejected all proposed
offers.

EV arrival

Available
charger?

No

Max.
wait?

No

No

Yes

Yes

Yes

EV plugin

Negotiation
process

Successful
negotiation?

Charging
process

EV departure

Fig. 2: EV scenario

Buyer 2 Seller Buyer 1

CFP

AGREE

CFP

REFUSE

PROPOSE(R: 1)

PROPOSE(R: 2)

PROPOSE(R: 3)

PROPOSE(R: 4)

ACCEPT(R: 4)

CFP

AGREE

PROPOSE(R: 1)

PROPOSE(R: 2)

PROPOSE(R: 3)

PROPOSE(R: 4)

PROPOSE(R: 5)

ACCEPT(R: 5)

Fig. 3: Negotiation process

Buyer Agent is the agent that acts the buyer role and
is created for each EV at its arrival. Buyer agent sets a
timeout to be disconnected if there is no negotiation process
established within this timeout. Then the buyer agent starts
searching for the seller service in yellow pages to make the
negotiation process. Once a seller service is localized, the
buyer agent sends a CFP message to the seller asking to start
a negotiation process. Then, a CyclicBehaviour is attached
to the buyer agent to start listening to incoming messages
from the seller as shown in the procedure 2. If ACCEPT
message is received, the buyer agent starts making proposals
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Procedure 1 Seller behaviour
1: Check ACLmessage
2: if ACLmessage received then
3: Find or Add trade with that buyer
4: if CFP then
5: if BUSY then
6: Refuse negotiation process
7: Send REFUSE message
8: else
9: Accept negotiation process

10: Set BUSY to true
11: Send AGREE message
12: end if
13: else if PROPOSE then
14: Evaluate offers using procedure 3
15: else if ACCEPT_PROPOSAL then
16: Update reservation curve
17: Set BUSY to false
18: End negotiation process
19: else if REJECT_PROPOSAL then
20: Set BUSY to false
21: End negotiation process
22: end if
23: end if

Procedure 2 Buyer behaviour

1: Check ACLmessage
2: if ACLmessage received then
3: if REFUSE then
4: Send CFP message
5: else if AGREE then
6: Prepare offers with U = 1
7: Send PROPOSE message
8: else if PROPOSE then
9: Evaluate offers using the procedure 3

10: else if ACCEPT_PROPOSAL then
11: End negotiation process
12: else if REJECT_PROPOSAL then
13: End negotiation process
14: end if
15: end if

to the seller and listening the messages from seller as defined
before. If REFUSE message is received, the buyer agents keeps
trying with CFP message till timeout event occurs or ACCEPT
message is received. The full scenario of EV from its arrival
to departure is shown in figure 2.

IV. NEGOTIATION PROCESS

Negotiation process presents an environment where users
can negotiate the cost and the service they are requesting. In
this work, the service is the energy for EV charging, the cost is
the seller’s benefit B and charging time flexibility F . Seller’s
benefit can be defined as the extra percentage of cost respect
to the normal cost. Charging time flexibility can be defined
as the extra percentage of time respect to required time for
EV charging. This charging time flexibility allows the seller
to make a discontinuous charging to overcome the possible

overload during charging time.

In a negotiation process, each agent specifies his own
preferences to start a negotiation process with the other agent.
These preferences contains some parameters to be used in
negotiation process:

• Initial values XI : are the desired values for the nego-
tiated parameters like a highest benefit for the seller or
a minimum charging time flexibility for the EV owner.

• Reserved values XR: are the accepted values for the
negotiated parameters like a minimum benefit for the
seller or a maximum charging time flexibility for the
EV owner.

• Minimum utility UXmin : is the minimum accepted
utility by an agent that is corresponding to the reserved
value XR of the parameter X .

• Weights wX : is the weight assigned to the utility UX
to calculate the total utility. The summation of weights
should be unity.

• Negotiation strategy λ: is a parameter to determine
the behaviour of an agent during negotiation process
as shown in figure 4.

Fig. 4: Expected utility Uexp with round R applying different
negotiation strategies: λ < 1, λ = 1, λ > 1

Utility functions are those functions with which the prof-
itability of an offered parameter can be calculated. Seller’s
benefit B, required energy E and buyer’s flexibility F can be
evaluated using some custom functions as in equations (1) that
can be defined as agent’s preferences. In this work, these utility
functions are supposed to be linear with unity as the maximum
utility for the initial value of the parameter XI . And UXmin

as a minimum utility for the reserved values of the parameter
XR as shown in equations (2), (3).

UB =f(B), UE = f(E), UF = f(F ) (1)

UX =

{
UXmin

+ (X −XR)mX , X ∈ {XR, . . . XI}
0, otherwise

(2)

mX =
1− UXmin

XI −XR
(3)

U =

{∑
wX · UX ∀UX ≥ UXmin

0, otherwise
(4)

Uexp =Uexp − Uexp ∗ (
R

Rmax
)λ (5)
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Procedure 3 Offers evaluation
1: Calculate utilities for proposed offers using equation (4)
2: Obtain the offer with the maximum utility
3: if R ≥ Rmax then
4: if U > Umin then
5: Accept offer and update reservation curve
6: Send ACCEPT_PROPOSAL message
7: End negotiation process
8: else
9: Reject offer

10: Send REJECT_PROPOSAL message
11: End negotiation process
12: end if
13: else
14: Calculate Uexp using equation (5)
15: if U > Uexp then
16: Accept offer and update reservation curve
17: Send ACCEPT_PROPOSAL message
18: End negotiation process
19: else
20: Prepare offers with U = Uexp
21: Send PROPOSE message
22: end if
23: end if

To calculate the total utility U of a proposed offer, equation
(4) can be used where X ∈ {B,E, F}, UX ∈ {UB , UE , UF },
wx ∈ {wB , wE , wF } and UXmin

∈ {UBmin
, UEmin

, UFmin
}

The diagram shown in figure 3 represents an example of
two negotiation processes with two buyers. In the beginning,
Buyer 2 sends a CFP message to the seller. As the seller
is free in that moment, he replies with AGREE message. In
that moment, the seller rise a BUSY flag. So, any other CFP
messages are answered with a REFUSE message as occurred
with Buyer 1. When Buyer 2 receives the AGREE message, he
starts a negotiation process with the seller. Buyer 2 sends his
first proposal in the first round of the negotiation. The seller
receives the PROPOSE message from Buyer 2 and evaluates
his offers using the procedure 3. The seller decided to make
a counter offer to increase his utility and sent a PROPOSE
message to Buyer 2. After some rounds of counter offers
decreasing the self total utility in each round using the equation
(5), Buyer 2 accepts the offer from the seller and sent ACCEPT
message. When the seller receives the ACCEPT message, he
confirms the reservation of that service for Buyer 2 and sits
the BUSY flag to accept new negotiation requests. As Buyer 1
received a REFUSE message from the seller, he tried again
to send a CFP message to seller. As the seller sits the BUSY
flag, he can accept new negotiation requests and sends AGREE
message to Buyer 1. Buyer 1 starts the negotiation process with
the same procedure as Buyer 2.

V. CASE STUDY

The case under study contains 20 EVs required to be
charged during a period of 3 hours. The seller supplies the
buildings consumption with a maximum power capacity of
270kW. The schedule of the 20 EVs arriving each 5 minutes
is applied over multiple periods of time each 4 hours to study

the effect of the negotiation algorithm and the EV owner’s
flexibility to avoid the overload. The results in table I show
the different periods of time with the result of the simula-
tion for each period of time that has different consumption
percentages. The 1st column represents the period in which
the EVs schedule is applied. The 2nd column represents the
average consumption in that period. The 3rd column represents
the overload reduction achieved by applying the negotiation
process and the flexibility offered by EV owners. The 4th

column represents the number of successful negotiations with
EVs owners. The 5th column represents the maximum number
of EVs that have to be paused during charging to avoid power
overload instants. As a result of negotiation, most of EVs have
successful negotiation with a grade of satisfaction of 66% for
the seller and 48% for most of EV owners.

Period Consumption Overload reduction Charged EVs Paused EVs
04 → 07 36.8% - 20 0
08 → 11 57.7% 92.5% 20 1
12 → 15 63.4% 87.7% 15 5
16 → 19 77.2% 83.0% 15 13
20 → 23 71.9% 88.1% 15 7

TABLE I: Results applying the negotiation process

The figure 5 shows the results of different periods. The
red curve shows the buildings consumption with EV charging
without the discontinuous charging technique having total
overload instants as shown in the 2nd column in the table II re-
spect to the experiment time. While the green curve represents
the overall consumption applying the discontinuous charging
technique reducing the overload instants to values shown in
the 3rd column in the table II. The using of discontinuous
charging technique attempts to flatten the consumption curve
distributing the EV charging taking advantage of the offered
flexibility reducing the percentages of overload instants as
shown in the 4th column in the table II. The total overload
power in experiment time is reduced with a percentage of
more than 80% of reduction as shown in the 3rd column in
the table I. All these results couldn’t be accomplished without
the flexibility offered by the EV owners that allows the seller
to make a discontinuous charging process to avoid overload
instants. They presented about 35% of flexibility and got about
92.84% of the desired charging energy.

Percentage of Overload instants
Period Continuous charging Discontinuous charging Reduction

04 → 07 0 % 0 % -
08 → 11 0.4 % 0.1 % 75%
12 → 15 4.1 % 1.6 % 61%
16 → 19 9.6 % 5.6 % 42%
20 → 23 10 % 3.7 % 63%

TABLE II: Percentages of overloads instants applying the
continuous and discontinuous charging

VI. FRAMEWORK IMPLEMENTATION

The proposed work is simulated and executed using a Java
environment. As the negotiation time is about 20 ms, it is
applicable to be used in realtime negotiation. The seller agent
should be run on the EV charging stations and the buyer
agent should be run on the EV system. In this simulation the
negotiation process starts using a table with arrival times of
EVs. In real work, the negotiation process should be started
once the EV is plugged into the charger using the configured
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(a) 04:00 to 07:00

(b) 12:00 to 15:00

(c) 20:00 to 23:00

Fig. 5: Power consumption: Buildings consumption,
Overall consumption without real time control, Overall
consumption with real time control

parameters by EV owner. The same framework can also be
applied with some modifications to make a reservation system
for EV charging. In that case the buyer agents will be run on a
web server or mobile phones to make the negotiation process
with the seller agent.

VII. CONCLUSION AND FUTURE WORK

In this work, a multi-agent system for EV charging nego-
tiation and management is designed. It adapts the trade with
the EV owner depending on multiple parameters like seller’s
benefit, supplied energy and buyer’s flexibility. The system can
be used as a simulation process and also can be applied to a
real situation. The results shows better management of the EV
charging with a good satisfaction for both seller and buyers.
The full program is available on [12] to be tested.

Some enhancements can be added to this framework like a
graphical interface to add, edit and delete agents. Analyzing the
the negotiation results to be able to give some suggestions to
EV owners to tune their parameters due to the expected load of
the grid. Supporting multiple negotiation process at the same
time can be better for the seller to adapt his requirements.
Another enhancement that could be useful is to enable EV
discharging to be used in critical situations of overload.
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Abstract—The ever growing energy demand due to population
growth, higher penetration of electric vehicles and smart
appliances, as well as superior living standards, is a demanding
incentive to the better utilization of conventional and renewable
energy systems. Moreover, to facilitate the emerging requirements
of prosumers to participate in the electricity market and monetise
their efforts towards distributed energy deployment, traditional
centralised energy trading architectures are no longer viable.
In this context, blockchain-based ledger technology emerges as
the most feasible solution which offers a peer to peer (P2P)
energy trading platform providing a unique distributed local
energy market model for beneficial energy exchanges among
participants. This will represent a significant evolution for future
smart grids. In this regard, this work provides a ground
understanding as well as all the necessary technical details and
procedures required to implement a pilot-platform P2P energy
trading system based on blockchain technology. All the source
codes have been uploaded and socialized. This may support
academics and entrepreneurs at the initial development stage of
these kind of initiatives.

Index Terms – blockchain, energy trading, peer-to-peer,
transactive energy, ethereum.

I. INTRODUCTION
In the last years, a sustained increasing use of renewable
energy sources (RES) has been witnessed worldwide.
Moreover, by 2022 around 30 percent of the overall electricity
production will come from RES [1]. Nonetheless, the
electricity demand is expected to increase by 20 percent in the
next decade as a consequence of population growth, higher
penetration of electric vehicles (EVs) and smart appliances, as
well as superior living standards [2]. In the pursue to face
this challenging scenario and properly meet the renewable
energy generation with the demand, the microgrid concept was
proposed as a convenient alternative. Nevertheless, microgrids
present some difficulties on its coordination and control
when they are connected to the conventional grid by means
of network operators and utility companies which in most
cases impose high logistics and costs for the electricity use.
To overcome this issue, the latest advancements in digital
communication and measurement systems added to the IoT
technology have contributed to the development of smart
grid infrastructures that permit a safe and reliable energy
exchange between energy players (producers, consumers and
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prosumers) [3]. In this context, the ongoing challenge consists
on decentralizing the energy production and consumption. To
do so, energy blockchain has been exhibited as the required
disrupting technology towards a new paradigm change in
the power industry. Indeed, Blockchain 2.0 will permit the
democratisation of power systems by means of the peer-to-peer
(P2P) energy trading and the smart contract technology [4].
In turn this will promote local electricity trade, the reduction
of electricity transmission losses, optimization of power
flow, grid stability improvements, demand-side management
and cost-effective employment of distributed energy [5].
Furthermore, P2P trade represents a win-win situation for
prosumers but also for typical consumers as energy prices
could be agreed with lower values compared with the ones
defined by conventional electrical markets [3].

In this context, several systematic efforts have been exhibited
regarding the use of blockchain, smart contracts and P2P
in the power energy sector in the last years. The various
applications, advantages and use cases when using blockchain
are exhibited in [6] and [7]. References [8], [9] and [10]
deal with adding privacy and security in energy market
transactions by means of providing smart contract algorithms,
decentralized knowledge graph construction and public-key
cryptosystems respectively. Other security aspects for secure
energy delivery and a credit-based payment schemes are
analyzed in [11] and [12]. In [13], the benefits of using
blockchain when procuring voltage regulation with reactive
power control are mentioned. A further ancillary services
discussion is held in [14] where relevant distributed ledger
platforms for energy transaction in microgrids are also
discussed. A proposal to perform continuous double auction
market to match the distributed generation (DG) offer and
demand is detailed in [15]. There, blockchain is proposed
to cooperate with financial institutions by means of a multi
signature system. Workflows and algorithms for developing
agent coalition and electricity negotiation mechanisms are
presented in [16]. In [17], thousands of smart contracts are
analyzed. The ones having greater transactions are discussed.
An adaptive blockchain-based electric vehicle participation
(AdBEV) scheme is proposed in [18]. A framework based on
a blockchain network able to carry on simulation of market
clearing operations with a payment process is exhibited in [19].
Blockchain application’s frameworks for crowdsourced energy
systems and smart grid data security have been reviewed in
[20] and [6] correspondingly.

The aforementioned references provide different frameworks
and concepts to guide the planning for blockchain-based
projects at the power energy sector. However, they lack on
providing detailed technical explanations to implement a real
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pilot platform blockchain-based system able to perform P2P
energy trading, which is in turn the aim of this work. Specific
technical guidelines to deploy P2P energy projects would
be of high significance for academics and entrepreneurs to
fasten the development process at the initial stage. To achieve
this goal while providing a comprehensive understanding, this
work is organized as follows. Section II specifies the key
foundations to unfold a blockchain-based P2P energy project.
Physical and Virtual network requirements with the related
hardware and software tools are detailed in Section III. A
detailed implementation methodology is exhibited in Section
IV. Finally, some conclusions are inferred in Section V.

II. BLOCKCHAIN AS A KEY-ENABLER FOR
PEER-TO-PEER ENERGY PLATFORMS

A. Transactive Energy Using Blockchain. Core Technologies.
The advent of smartgrids and the participation of more
prosumers in the electricity market have increased the
requirements for enabling energy transactions among all
players [21] and thus promoting a decentralised vision for the
power grid by means of Transactive Energy (TE) platforms.

Indeed, this technology could turn conventional power grids
into modernised systems which expedite the collaboration
of the different participants in the network. This qualitative
improvement could be attained in coming years thanks to the
rapid and constant evolution of the blockchain technology.
Hereof, three blockchain generations have been traced [21].
In the first one, bitcoin was introduced. Then, in the second
generation, the automated smart contract technology was
presented by Ethereum to process and record any logical
operation in a reliable and secured ledger.

In these last years, Blockchain 3.0 has been exposed as
a mature technology which has been already employed in
some P2P TE pilot projects [22]–[24]. The main technological
foundations that support this disrupting energy trading
innovation are:
1) IoT and Energy Digitalisation: Around 20 billion smart
devices will be worldwide connected to the internet by 2020
[25]. To face this challenge and deploy advanced power
metering infrastructure, an increasing number of smart meters
and information-communication technologies (ICTs) are being
installed [25]. Smart meters integrated with blockchain can
ease to record and track the data on temper-proof ledgers at
suitable time intervals. Moreover, some companies are offering
smart devices having ultra high resolution sampling and also
including controllability via mobile applications [26].
2) Cloud and Edge Computing: A reliable transactive control
in local energy markets is being affordably achieved by virtue
of cloud and edge computing as they permit autonomous
contract depletion for network edge users and avoid the need
for trusted third party platforms [27].
3) Big Data and Artificial Intelligence: By means of artificial
intelligence (AI), optimized automated decision-making can
be achieved for energy players according to their needs,
energetic patterns, weather forecast and storage conditions.
Moreover, due to the increasing volumes of information,
advanced computing, data mining and machine learning are
required for handling big data [28].

B. Initiatives, Platforms and Challenges
In the last years, several startups and pilot projects have
been developed under the P2P energy trading umbrella
taking advantage of the blockchain decentralised architecture.
The most renowned initiatives are Power Ledger, LO3,

Grid+ and Verv. However, there are tens of companies,
foundations and consortiums related to blockchain-based
energy projects as references [29] and [30] exhibit. On the
other hand, some collaborative platforms have been established
by some organizations to extend blockchain applications.
Among these, the most popular are the Ethereum-based
Energy Web Chain software and the Linux-based Hyper
Ledger framework. Reference [30] provides further details on
blockchain platforms employed in the energy sector.

Despite the fact that blockchain arises as a revolutionary
application for P2P energy trading, it also presents some
significant challenges. Most of them are related with security
and privacy concerns as public blockchains are accessible
for all the parties. Hence, novel solutions are needed to
preserve anonymity and privacy so that energy usage data
can not be traced by other individual users. In this regard,
permissioned blockchain is emerging as a potential solution.
Another relevant concern is the storage and processing of
ever-increasing data that could not be handled with the current
infrastructure capabilities. Last but not least, the role of
transmission and distribution system operators (TSOs/DSOs)
should be highlighted as key enablers of this revolution since
they hold the physical infrastructure and operation of the
system. They should support P2P trading platforms to permit
a decentralised access to the power grid given the physical
constraints, but they are not required to centrally manage
the energy transactions [30]. Therefore, proper coordination
between TSOs/DSOs and the other energy players is crucial
to permit a reliable and rapid incorporation of this technology.
Once these logistic aspects are overcome, the role of AI will
be again highly relevant to suitably forecast the energy supply
and demand so that early adjustments in the system can take
place even before the trading starts.

Since blockchain-based P2P energy trading is nowadays not
mature enough to be adapted by the mainstream as it is
still in early development stages, sustained research and
contributions are needed to take progressive benefits of its
fullest potential at a social, commercial and energetic level.
In this respect, next sections detail an entire procedure to
implement a blockchain-based P2P energy trading mainly
intended for regulated markets but still flexible enough to be
adapted in a non-regulated context.

III. PILOT PLATFORM IMPLEMENTATION
A. Physical and Virtual Networks
A P2P transactive energy scheme is comprised of two systems,
the physical and the virtual energy networks. The former is
responsible for the physical transfer of energy between peers.
This could be achieved by a distributed grid network managed
by an independent system operator (ISO) or also by a separate
microgrid tied to a conventional grid. On the other hand,
the virtual network provides the blockchain-based architecture
for energy trading platform capable to handle all kinds of
data transfer related to electricity generation/consumption and
buy/sell offers. The bids have to be matched and accepted
for the payments to then take place. Payments are made by
consumers to prosumers in order to inject their renewable
energy into the grid.

The present work intends to impart technical implementation
details of a simple yet practical demonstration on how the
energy trade occurs between the peers. Moreover, all the source
codes later explained have been uploaded to the IEEEDataPort
repository and are accessible online at [31].
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Fig. 1: Design Model of Blockchain-Based P2P Energy Trading using IoT Devices

To begin explaining the implementation, lets define the roles
of the participants first:
1) Peers: They can be seen as the energy players who are
selling or buying their surplus renewable energy . In turn they
can be classified as:

• Consumer: A participant who merely consumes
electricity.

• Prosumer: A participant owning a renewable energy
system and thus producing and consuming electricity.

2) Local Aggregator: Wide P2P energy trading networks are
usually divided into some communities where each of those
possess its own local aggregator which acts as a broker and
allows the peers within the community to trade electricity.
Indeed, local aggregators buy tokens from public exchange
and sell tokens locally to the participants on request.

B. Case Scenario
Considering the aforesaid, a simple scenario has been built
under a regulated market scheme considering Peer A and Peer
B as registered participants in our energy trade platform. To
provide the participants an easy accessibility to perform the
trading, a mobile application has been developed (the code of
this app is also shared in the repository). The procedure is as
follows:

• Peer A desires to sell his surplus energy. By means
of our energy-trade platform he will make an offer
through the mobile application.

• Peer B is interested in the offer and buys the energy
via the mobile application.

• The local aggregator requests Peer A to begin
exporting the energy while Peer B begins to consume
energy.

• The local aggregator checks for the proof of delivery
(PoD) making use of smart meter data on both ends.

• After PoD is confirmed, the local aggregator pays
Peer A for the exported energy deducting the tokens
available in the account of Peer B.

TABLE I: HARDWARE AND SOFTWARE TOOLS

HARDWARE

Raspberry Pi 3 Model B+ is used as smart meter installed at the user’s dwelling.
Initially, Arduino microcontroller was considered due to its compact size and tailored
development features compared to Raspberry Pi. However, the latter exhibited better
functionalities when dealing with Web3 library which is needed for communicating
with the smart contract.
Leds and Sense HAT 8x8 RGB LED matrix (add-on board of Raspberry Pi) are
used for indicating trading session and the energy transaction status.
Rotary potentiometers are manually handled to emulate the user’s energy
consumption/production.
MCP3008 chip performs the analog to digital conversion of the potentiometer’s
signals to be sent to the smart meter.
Local aggregator services are programmed in a server that stores the user’s
smart meter data. Additionally, the service encompass payment agreements, token
exchanges and PoD operations.

SOFTWARE

Energy Web Foundation (EWF) - Tobalaba Test Network is employed to build and
validate the smart contract. Moreover, EWF provisions the front-end Energy-Web
UI user interface for creating accounts, define smart contracts and test these
functionalities in the Ethereum Tobalaba network.
SQLite engine was used to create the smart meters and users database but also for
performing data queries (insert, update, select) to the database.
Node-RED development interface permitted a flow-based visual programming for
implementing the platform services such as local aggregator functionalities, smart
meter - data server communication and smart contract interplay. Furthermore,
Node-RED acts as back-end for the Ionic application.
Ionic is an open-source web application development environment. It was used to
build the mobile application using Angular framework.
Web3 JavaScript API allows to interact with the Ethereum blockchain network.
This library permits to retrieve user accounts, interact with smart contracts and
send/receive transactions among other features.

C. Hardware and Software
During the state-of-the-art review, a variety of tools were
explored and considered. Ultimately, the alternatives exposed
in Table I were adopted.

IV. PROPOSED METHODOLOGY
A. Ethereum-based smart contract deployment
First of all, the Ethereum-based smart contract structure
has to be deployed. This was achieved by means of the
Energy Web Foundation (EWF) ecosystem. Indeed, EWF is
the largest energy blockchain framework worldwide intended
for regulatory energy sectors as well as for specific business
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Fig. 2: Energy Trade Mobile Application Panels

TABLE II: ENERGY TRADE OFFER.
Structure of an Offer

Size Arguments Details
4 bytes ID offer ID
20 bytes seller seller address
4 bytes energy amount of electricity for sale (Wh)
4 bytes price price of electricity for sale (tokens)
4 bytes timeOffered time when offer is added

and market needs [32]. To begin the implementation, from
the EWF platform, Energy Web Client UI was downloaded
and installed. This referred to a user interface which provides
a desktop environment for connecting the peers in the
blockchain network, creating accounts, sending transactions
and interacting with smart contracts.

B. Accounts Creation
For the registered users and the local aggregator, Parity
Ethereum wallet accounts were created using Energy Web UI.
This environment redirects to Energy Web Tobalaba to issue
fake tokens to developers for testing and deployment purposes
regarding smart contracts.

C. Smart Contract Creation
Energy Web UI provides functionalities to develop smart
contract. To implement the proposed scenario earlier described,
the following functions of the smart contract were programmed
using Solidity:

• addOffer: This function permits peers (prosumers)
to create their offers by defining some details such as
the intended amount of energy to be sold and its price.
The structure of an offer is exhibited in Table II.

• pickOffer: If a peer (consumer) is interested in any
offer, this function allows to confirm his choice and
holds the offer in the system.

• confirmP2L_Tx: Now the status of the transaction
(requested by the consumer to the local aggregator)
is checked. Once the consumer payment is done, the
confirmation is registered.

• PoD: The local aggregator calls this function to
confirm the energy delivery by the prosumer,
provoking the subsequent process.

• confirmL2P_Tx: This function confirms the
payment made by the local aggregator to the prosumer
to successfully finish the P2P energy trade.

TABLE III: MOBILE PANEL VIEWS
Panel Explanation
a© It contains the login access. As part of the back-end, the mobile application

makes a signin http request to the local aggregator server. Once the
credentials are validated, the user us redirected correspondingly to the
menu.

b© It displays the general menu of all services provided.
c© It exhibits the profile page, where the personal user data (name, address,

available tokens) is displayed so that a balance of the account can be
inferred.

d© It provides the user with real time monitoring regarding the energy
consumption/production. The mobile application makes getdata http
request to the local aggregator server to have in turn the corresponding
smart meter data.

e© It permits the user to buy tokens from the local aggregator.
f© In this panel, the user is able to make an energy offer invoking a specific

function (Add Offer) of the smart contract so that details such as
transaction ID, energy, price, time and user data are passed as arguments.

g© It shows the user a list of the different available offers with their details
(as in the previous panel). The back-end demands the smart contract list
offer function that in contrast return all the accessible energy offers.
Once the user selects an offer, the Pick Offer function is recalled so
that the user details are given as arguments. Then the offer is deleted from
the overall list and energy price is transferred from the user account to the
local aggregator account

h© It displays the selected energy offer being now in the transaction process.

D. Design Model
The proposed model was intended to create a practical demo
of a local energy trading community under a regulated market
scheme. To do so, four main components can be distinguished:
(i) blockchain-based smart contract, (ii) the local aggregator,
(iii) smart meters and (iv) the mobile application service. The
correlation between these components is sketched in Figure 1.

E. Advanced Metering
As earlier mentioned, smart meters are modelled with
Raspberry Pi’s (programmed employing Node-Red visual
programming) and the user’s energy generation/consumption
are emulated with potentiometers. Moreover, the user’s smart
meters are registered in the platform with a unique ID. They
send their measured energy information to the local aggregator
server once per second.

F. Mobile Application
The platform front-end interface is provided by the mobile
application and it consists of different panel views for the
different services as Table III and Figure 2 expose.
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G. Local Aggregator Server
Using Node-Red, the local aggregator services were
programmed on a server. For further details, all the different
program flows with their corresponding explanations can be
found in [33].

V. CONCLUSIONS AND FUTURE WORK
In this paper a simple but yet fully functional blockchain based
P2P energy trading platform was presented and explained. All
the code for developing the platform has been shared and the
functionalities of the platform explained in detail. With this
work the authors wanted to demonstrate how the whole trading
framework can be implemented in a simple way using open
source solutions. This work intends to be a stepping stone for
researchers to investigate in this line. In future works we will
add real advanced metering infrastructure with actual energy
consumption/generation and more complex and automatize
trading routines.

APPENDIX: PLATFORM CODE
The whole platform code can be downloaded from:
http://dx.doi.org/10.21227/hc2g-9807
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Abstract—In recent years, there has been a growing trend in re-
search on smart contract applications. Smart contracts potential
in the energy landscape is visible in their major applications such
as peer-to-peer energy trading, electric vehicle charging, energy
market management, and many more. Many studies have been
conducted that produced a lot of literature in this area and many
startups and companies have surfaced that exhibit large scope
of its application in the energy sector. However, in comparison
to other domains, there is still more development required. The
literature available focuses on the different technical aspects and
use cases, but there is no such scientific article providing gathered
details of the smart contracts development process that invites the
attention of researchers in the energy domain for development
or provides basic knowledge of available tools. It is therefore
necessary to contribute with academic articles that summarize
this information, thus opening up paths of development in this
field and strengthening the community. This paper is the first step
towards the implementation of this idea and that is intended to
be extended in the future.

Index Terms—Smart Contracts, Distributed Ledger Technol-
ogy, Decentralised Applications, Blockchain, Energy Systems,
Smart Grids

I. INTRODUCTION

DIGITIZATION technologies are, in some form or another,
causing waves of disruption across several industries.

While some business sectors are making tremendous progress,
others are just in the preliminary phases of the move to digital
technology. The energy industry is one of the most dynamic in-
dustries out there. Innovative solutions that enable dependable
and tamper-proof data and energy exchange are being sought
after in order to improve self-consumption in local energy
communities and assist in the implementation of increasingly
dispersed control systems. This is being done in order to
improve local energy communities. The current tendencies
toward decentralization and digitization are the primary forces
behind this initiative. In a similar vein, the anticipated growth
of new forms of decentralized load (such as the widespread use
of electric vehicles, for example) may provide the grid with the
necessary flexibility, allowing, among other things, load shift-
ing, peak shaving, and demand-side response. The fact that the
system’s existing operating paradigm is unable to handle and
make use of the great majority of these minuscule dispersed

This work was supported by Government of Spain - Economy and Industry
Minister under grant MCI-20-PID2019-111051RB-I00, by Principality of
Asturias - (FICYT) under grant BP19-069 (”Severo Ochoa” Program of Pre-
Doctoral Grants)

assets is the source of the issue. These kinds of issues are
the primary motivators for innovation and development in the
electricity business. In order to improve the efficacy of their
integrated operations and processes, modern power systems
are beginning to use cutting-edge digitization technologies
such as the Internet of Things (IoT), Artificial Intelligence
(AI), and distributed ledger technology (DLT). DLT and its
associated smart contract technology facilitates the creation
of user-defined digital contracts that are capable of running
specific functionality in accordance with predetermined terms
and circumstances. With these characteristics, DLT has a
significant potential to revolutionize the electricity systems and
markets of the future. Additionally, smart contracts, which are
significant components of the DLT ecosystem, are one of the
facilitators of digital energy services and use cases.

There is a lot of ongoing research and development on
smart contract decentralized energy applications, [1] and [2]
contain a systematic review of more than 100 blockchain
research projects and initiatives undertaken by companies and
research organizations. Going through the literature review, it
is observed that most of the works propose smart contract-
based solutions for energy and flexibility trading (peer to peer
[3], [14], peer to grid [4]), market design [5], distributed
control(electric vehicle management [18], battery management
[19]), grid management [20], [21], carbon audits and certifi-
cations [6]. Some research papers address standardization of
smart contracts within the field of energy [7] and its role in
digital green transition of energy industry [8]. However, it
is noticed that there is no specific research publication that
is dedicated to provide technical guide for development of
smart contracts for energy applications. One must go through
multiple platforms, blogs, or tutorials to gather information
in bits and pieces required for developing smart contract
energy applications. As the world is turning to open source
platforms, there is also a need to add value to the academic
literature to guide the use of these platforms in the creation
of various energy applications. There is a need to globalize,
attract and promote more smart contract developments in
the energy sector and strengthen this development culture
and community. This can be done by making an ultimate
guideline for the developers/seekers to track the complete
pathway for the development of smart contracts on different
open-source platforms. This technical guide may provide ease
to the developers or even beginners to decide which essential
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tools are required to start with or how they can contribute.
The proposed research will include gathering and organiz-
ing authentic information to develop content for an ultimate
resource leveraging educational and developers community,
helping them to identify potential growth opportunities, to
gain a specific or broad understanding of the process. In this
regard, the authors already published our research work on
how to simply develop and deploy a smart contract, however
that was specific to the Ethereum platform [9]. This paper
is intended to investigate more on the technical aspects of
the smart contract’s development that would add significant
value in the literature related to blockchain smart contracts
development in the energy landscape.

The rest of this article is organized as follows. Section
II summarizes and discusses the applications of blockchain
technology in the energy sector and identifies a number of
research opportunities. Section III introduces a development
stack for smart contracts energy applications. In section IV,
privacy, security, and scalability concerns pertaining to smart
contracts are discussed. Finally, the authors conclude this
article in the last section along with future outlook.

II. BLOCKCHAIN SMART CONTRACTS IN THE ENERGY
LANDSCAPE

Smart contracts communicate with the system when certain
conditions are fulfilled and can automatically accomplish and
manage energy trading events [10] or various other tasks. A
hardware setup is utilized to handle data, verify conditions,
deal with negotiations, and authenticate contracts. Smart con-
tracts are designed to guarantee that all the energy, storage
units, and network streams are automatically regulated and
certify that the energy will be released/stored according to the
required demand [11]. In addition, smart contracts can facili-
tate transactive energy by adopting some of its characteristic
disputes, such as security and cost.

A. Smart Contract Benefits

In comparison with traditional contracts, smart contracts
have several benefits for the energy sector. Smart contracts
along with blockchain technology build a more reliable,
transparent, and decentralized system, moreover, increase its
security, efficiency, and other competencies as well in the
subsequent aspects [12]:

• Transparency and accessibility: For all the blockchain
members, smart contracts are accessible and transparent.
Consequently, in the event of permissioned ledger a few
users could be restricted, whereas in event of permission-
less ledger, everyone can retrieve smart contract data.

• Security: Due to the prominent cryptography and
blockchain features such as tamper-proof entries, the data
cannot be altered by anybody, and their accomplishment
is automated.

• Speed and Reliability: Smart contracts are small-sized
codes, shared among the blockchain nodes that are exe-
cuted under a specific situation in a well-defined, isolated
environment. This characterizes high speed of response

and verification. Moreover, high reliability is also ensured
as code execution does not depend on a single server
because of the decentralized architecture scheme.

• Accuracy: Built-in rules are defined and followed by the
smart contract, significantly decreasing the possibility for
error, and can be validated by third parties.

• Cost: Streamlined transactions will eliminate the mid-
dleman, thereby reducing the transaction cost. The smart
contract owner contains the operation cost (i.e., smart
contract deployed node).

B. Impact of Blockchain in Energy Sector

With the energy revolution, the blockchain application can
transform the industry catalyzed by inventions comprising
electric vehicles, smart metering, energy storage and heat
pumps. In this context, the blockchain offers itself as the next
evolving technology through its system interoperability and
smart contracts to drive the energy sector growth. Moreover,
distributed ledger technology enhances the efficiency of utility
suppliers by following the chain of charge for grid items
[1]. In addition, blockchain provides distinctive solutions for
renewable energy distribution as well. Legacy energy sec-
tors such as oil and gas companies are pursuing to devote
and execute blockchain to diminish harmful environmental
influences, lower costs, and enhance transparency without
compromising privacy. Moreover, to cope with privacy and
trade concerns, the private blockchain network provides data
permissioning, specific parties access, and temporary solutions
before the public blockchains employ the requisite privacy
access businesses demand [13]. Smart contracts and decentral-
ized software certified by blockchain can be employed to build
a smooth, reliable, and well-distributed energy system capable
of resolving up to 80 percent of these underlined difficulties.

C. Smart contracts Applications Areas in Energy Sector

Besides reviewing key aspects and benefits of smart con-
tracts, and determining certain significant methods and stages
needed in their execution, the authors offer a methodical
evaluation of related applications in the energy field.

1) Peer-to-peer (P2P) Trading: P2P trading execution is
employed by utilizing smart contracts. The smart contracts
need credit from the consumer and get the bids and offers
from distinct investors followed by empirical and complex
methods to unite the consumer with the seller through a
comparison among the amount of energy and received bids
and offers [14]. These methods include double auction and
power flow validation, which also help to reduce the cost of
the Ethereum platform. However, smart contracts enable the
transaction among peers and the grid when P2P trades don’t
deal with all the requirements of consumers or production from
the sellers. Furthermore, at run time the matching of accessible
energy with consumer energy demand is made beyond the
blockchain [15].

2) Demand Side Response: In terms of flexibility, the
stability between the accountable partners and investors can
contract ancillary assistance to accomplish the energy trade
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and necessary balance. In the demand response event, a
smart contract can determine and save the registered requisite
and baseline profiles and utilize them to establish a contract
between concerned consumers and investors [16], [17]. Smart
contracts can use automated billing and payments to compen-
sate or penalize buyers who meet the targeted load profile or
not respectively.

3) Electric Vehicles (EVs) Charging Managament: Smart
contracts can be employed for distinct purposes in the EVs
area. Different optimizing algorithms are utilized by the smart
contracts while accomplishing fair profit allocation between
the owners of EV charging stations to steady the distribution
of EV users [18]. By limiting the flexibility of EV loads, smart
contracts are utilized for peak load shaving and shifting and
allow P2P trading among EVs as well.

4) Battery Managament: Through smart contracts, dis-
tributed resources can be managed securely. Smart contracts
can be used for battery control such as the distributed batteries’
data can be collected including state of charge and health to
prioritize the charging/discharging of distributed cases auto-
matically by sending them recommendations [19]. Besides, a
smart contract enables the management of domestic batteries
to contribute in wholesale markets.

5) Grid Managament: At present, the improvement of
Internet of Things (IoT) devices results in superior control,
knowledge, monitoring of the grid, and the entire power
system. In this aspect, when any fault arises in the grid,
the data can be securely synchronized from the Phasor Mea-
surement Unit (PMU) by employing smart contracts [20].
Furthermore, automatically managing actuators or getting con-
trol evaluations among inconsistent set point demands from
various resources of the grid can easily be done through smart
contracts. Considering the security features of smart contracts,
they can be utilized to allow access to grid data as well [21].

III. TECHNOLOGY STACK OF SMART CONTRACTS
DEVELOPMENT FOR ENERGY APPLICATIONS

As mentioned earlier, this is an initial step towards preparing
an ultimate guide to help researchers and practitioners in the
energy domain look for contribution opportunities in devel-
oping smart contract energy applications. Fig. 1 provides the
stack of developmental stages of smart contract applications
where each stage is explicitly covering essential elements, each
featured with some prominent examples. This facilitates the
developer to get relevant and direct information about each
stage from relevant resources according to their requirements.
This section briefly covers the introduction to some of the
essential elements ranked in Fig. 1 that are required for the
development of smart contract energy applications.

A. Development Essentials

1) Integrated Development Environments (IDEs): Smart
Contract IDEs are designed to provide a source code editor
for smart contracts compilation and migration scripts that
fosters fast development and simplify the deployment of smart
contract applications to the relevant blockchain. Remix IDE,

Truffle and Hardhat are among the most popular choices of
smart contract developers to create, compile, test, and deploy
smart contract applications.

Energy Web (EW) chain is the blockchain built over
Ethereum, which is tailored for energy applications. EW
ecosystem provides a decentralized operating system with an
energy web stack for the development of smart contract energy
applications that is significant for new developers in the energy
field to start with1.

2) Languages: The programming languages commonly
used for writing smart contracts are Solidity, Rust, and Vyper.
Solidity and Vyper are compatible with Ethereum virtual
machine (EVM) based smart contracts, while Rust is designed
for non-EVM smart contracts. These languages are influenced
by popular languages such as Java and Python, which helps
new developers to adapt.

3) Wallets and Faucets: To identify oneself, and be able
to transact, validate and authorize transactions over the
blockchain network, a cryptocurrency wallet account is re-
quired. These cryptocurrency wallets stores cryptocurrency
that is utilized for developing, testing, and deploying smart
contracts applications over the network. Multi-signature wal-
lets analogous to joint bank accounts are also used for more se-
cure operations. Various platforms provide free cryptocurrency
facility for the testing and development of smart contracts
through their channels called faucets.

4) Libraries: Open-source smart contract libraries are
available for developers that offer ready-to-use building blocks
or reusable functions and implementations of various stan-
dards. For instance, OpenZeppelin is a well known standard
library for Solidity and offers packages for multiple func-
tionalities which assist developers in deploying decentralized
applications by adding new functions to smart contracts.

5) Oracles: Oracles serve as bridging entities to external
systems for the smart contract as they enable external inputs
data ingestion, off-chain computation, and sending outputs to
external systems and inter-operate across blockchains. Chain-
Link is one of the widely used blockchain oracle in the
development market for hybrid smart contracts. These hybrid
smart contracts can enable the connection of existing energy
infrastructure and data such as consumption profiles, IoT
sensor output, and weather information, allowing renewable
credits, ownership certifications, and much more.

6) Testing: Smart contracts are immutable in nature there-
fore prior to deployment, quality assessment is required to
identify any errors or vulnerabilities that may cause compu-
tational complexities and costs. Therefore detailed evaluation
of smart contracts is carried out with functional testing2 that
is categorized into unit testing, integration testing, and system
testing.

7) Security and Auditing: Along with functional testing,
security analysis and audits of smart contracts are crucial
before deployment over the blockchain. Security analysis is

1https://www.energyweb.org/tech/
2https://ethereum.org/en/developers/docs/smart-contracts/
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Fig. 1. Technology Guide Stack for Smart Contracts Development for Decentralised Energy Applications

composed of two automated testing tools named static and dy-
namic analysis. These procedures employ different approaches
to identify any present security vulnerabilities or defects in the
developed smart contract code and help improve quality and
efficiency.

There are two types of manual testing tools3 that can be
used to audit smart contracts. One is a code audit that can
be automated or human-aided analysis of the code to detect
poor development, security flaws, and failure points. The other
type is a bug bounty program that is outsourcing audits to the
wider developer community to get rewarded for catching bugs.
Examples of each type are presented in Fig. 1.

8) Deployment: After compilation, testing, security anal-
ysis, and auditing, the smart contract is deployed on the
blockchain network. The steps involved in deployment differs
based on the platform used for development. For most EVM
smart contracts, a deployment script is prepared using byte-
code and ABI files generated from smart contracts compilation
which is then translated by Web3 to Javascript terms which are
then communicated to an Ethereum node, either by running
its own local node, connecting to a public node or via an API
key using a node service like Infura or Alchemy.

9) Analysis and Monitoring (Block Explorer): After de-
ploying smart contracts over the network, developers can
visualize and confirm transactions on the block explorers
provided by the development platforms. Block explorers may
have many in-built services and distinctive features such as
real-time and historical information, data related to blocks,

3https://ethereum.org/en/developers/docs/smart-contracts/

transactions, addresses, and more. It enables the developer
to monitor and analyze their smart contract performance.
Etherscan is one of the biggest free block explorers of the
Ethereum blockchain. Ethplorer and Etherchain are also in
competition.

10) Maintenance Tools: The developer community has
figured out many maintenance patterns for the deployed smart
contracts. There can be maintenance issues with the smart con-
tract that may charge developers heavily later on. Therefore,
developers need to thoroughly evaluate their smart contracts to
acquire such patterns and devices more so in case of advanced
level. This is an evolving field therefore developers need to be
updated.

11) Front-end Utilities: Developers have the opportunity
to build their user interface and add advanced front-end func-
tionalities to their smart contract applications. However, basic
practice and skills in CSS, HTML, JavaScript, and frameworks
such as Angular or React are mandatory. Truffle suite offers
Drizzle which is a collection of libraries that simplify building
application user interfaces. Moreover, JavaScript libraries such
as web3.js and ethers.js have risen in popularity for defining
front-end functionalities.

IV. PRIVACY, SECURITY AND SCALABILITY CONCERNS

The implementation of smart contracts in the energy domain
leads to several challenges including privacy, security, and
scalability issues. For instance, leakage of private-public keys,
analysis of transaction patterns revealing user information
(such as real identities, activities, assets, and energy profiles),
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reputation, manipulation, and service based attacks highlight
some of the prominent security breaches and privacy vio-
lations. Discrepancies in a smart contract may also attract
malicious attacks. Quantum attacks are another potential risk
to encryption schemes. Some of the solutions that are proposed
to provide immunity to these attacks include private or con-
sortium blockchain with temporary session keys, public-key
encryption with time stamps, use of lattice-based signatures,
and physical layer security [23]. Furthermore, in the last few
years, the US and EU have made several laws and legal
frameworks to govern how data is shared and kept safe. Such
a legislative framework aims to safeguard private persons’
data privacy. The most important data processing activities
which are subject to protection are data collection, processing,
storing, and deletion. With this regard, it is essential to make
sure that processed energy-related data that is transacted via
DLT is processed in compliance with international norms and
regulations.

Moreover, higher adoption of distributed energy resources
in the energy industry results in scalability issues, requiring
increased storage, high computational power and throughput,
low latency and secure communication to execute propor-
tionally increased energy transactions and system operations.
The incorporation of AI, 6G, and big data technologies with
blockchain schemes are considered to be promising solutions
to meet these requirements. Moreover, some typical methods
that are identified to overcome scalability issues related to
DLTs include the utilization of the payment channels, sharding
technique, layer 2+ solutions, sidechains, and directed acyclic
graph-based DLTs. These solutions have still not reached
the level of maturity in the research as well as in practical
implementation, therefore requiring further investigation.

V. CONCLUSION AND OUTLOOK

DLT-based smart contracts could radically simplify energy
system operations and its decentralized capabilities would
enable an entirely new energy system. This is the time to
accelerate developments in this domain and to do so technical
guidelines must be prepared that motivate energy experts to
take interest in developing smart contract energy applications.
This paper presents an illustrative technology stack for smart
contract development that is a step-wise guide to help be-
ginners and developers build energy applications. This is an
initiative to promote the culture of energy smart contract
applications development and to build a strong developers
community working on decentralized energy applications. Fur-
ther advancements are intended to be included in this work in
the future that may involve a more detailed view and granular
knowledge of various aspects of this technology stack.
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Abstract

This article aims to explore the benefits of blockchain technologies in regards to smart power systems. The diverse back-
ground of blockchain applications will be discussed to understand the potential of this technology. The article will address
the driving factors for adoption of blockchain in power sector. The main aspects of blockchain technologies will be briefly
summarized. Moreover, the prominent blockchain use cases and applications in the field of smart power systems will be
explored along with the future challenges pertaining to the adoption of blockchain technologies in the mainstream.

Overview of blockchain applications

Blockchain received its popularity worldwide for its cryptocurrency like bitcoins. However, in reality Blockchain has a wide range of
features and applications far more than bitcoins. There are generations of Blockchain technology, Blockchain 1.0 is the first gener-
ation which enabled digital cryptocurrency transactions like bitcoins, Blockchain 2.0 extending beyond cryptocurrency with the
introduction of smart contract technology enabling automated society with the concepts of Decentralized Applications (Dapps),
Decentralized Autonomous Organizations (DAOs) and Decentralized Autonomous Corporations (DACs) whereas Blockchain
3.0 intends to improve the capabilities of Blockchain 1.0 and 2.0 and the integration of services such as machine learning onto
a blockchain for advanced tasks (Lu, 2019).

In general, Blockchain has a vast array of application fields as it holds potential to disrupt the economic systems, commercial and
industrial sectors, governmental structures, taking them to a whole new levels of efficiency and effectiveness. This promising tech-
nology can bring ease to sustainability, environmental and human development initiatives. Blockchain can introduce transparency
to the corrupt systems and improve the commercial processes with its verifiable and immutable digital ledger technology. It can
protect critical infrastructures providing them resilience and security. Blockchain can ensure individual autonomy while preserving
privacy and promotes cooperation with trust as per requirements. Precisely, blockchain may improve system in which individuals
require to store or access data, send or verify it. This data could be any information such as a person’s identity, record of a product’s
shipment, transaction or any digital asset (U. N. D. Programme (UNDP), 2018).

The amalgam of properties such as decentralization, immutability, transparency, enhanced security and distributed ledger,
makes it a promising technology across a wide range of use cases ranging from financial technology and supply chain management
to digital rights and healthcare. In banking, blockchain can provide secure transaction and immutable record keeping. In supply
chain and logistics, it can add transparency. In energy sector, it can enable decarbonization and issue green energy certificates. In
healthcare system, blockchain can provide secured electronic health records in a distributed way. With advanced smart contracts
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offered in Blockchain 2.0, processes between several parties can be codified or programmed to execute automatically under preset
conditions defined. This feature enabled development of many advanced applications such as crowdfunding, energy trading, e-
Voting and so on. Moreover, there are numerous research institutes that are increasingly collaborating on open source platforms
development to encourage innovation. Open source platforms provide opportunity to design, develop, test and deploy blockchain
applications, with greater flexibility and freedom. This aspect can scale the potential of blockchain applications to a global context.
Government and banking systems are also taking interest to learn and participate in the blockchain environment. Academic, public
and private institutions are collaborating to combine political power, commercial experience, technical capabilities and research
fundings, to create a strong partnership.

In coming years, a series of open source platforms will enable development of wide range of blockchain applications particularly
in the energy sector. The use of blockchain technologies for smart power systems brings autonomy, decentralization, traceability,
asset management, distributed peer to peer energy trading, democratization and cyber security. The trusted distributed consensus
algorithm of this technology eliminates the dependence over intermediaries or third parties. Blockchain can empower the market
participants to make secure and transparent energy transactions directly with each other. Blockchain can complement other
advanced technologies such Internet of things that may potentially improve market operations, grid management and operations,
billing and metering processes. The cutting-edge cryptographic security benefits of blockchain may assist in transforming conven-
tional centralized power systems toward more decentralized and resilient power systems with improved security, trust and privacy.
The power grid of the future will create significant opportunities for blockchain applications with new operational flexibilities to
achieve the efficiency, security and resilience of the power system.

Motivation of applying blockchain to smart power system

The paradigm shift of the power systems from large power plants running on conventional energy resources (fossil fuels, coal,
natural gas) toward meeting decarbonization goals and policies which includes large scale deployment of the distributed energy
resources, energy storage devices, controllable loads, electric vehicles, is pushing forward some challenges to the existing power
systems which mainly includes (Wang et al., 2019):

• Centralized management system: system operators control power supply to manage the fluctuating energy demands but now
there is addition of fluctuating energy supplies i.e., varying RES which makes the management more complex.

• Complex Electricity transmission: Traditional power systems have relied upon unidirectional power flow from centralized
generators to decentralized consumers. The distributed energy production makes the power system vulnerable to bidirectional
variable flow of electricity which challenges the grid capacity.

• Minimal real-time information: Grid operators require real time information about the distributed energy production by
prosumers (DERs owners), to monitor local imbalances between supply and demand at distribution level and harness demand
flexibility. Therefore a bidirectional communication system between operators and prosumers is required.

• Complex Transactions: Transactions among grid operators, markets, utility, consumers and prosumers (DERs owners) becomes
complicated to be managed in a centralized structure.

• Grid and Market Architecture: Prosumers need access to the energy markets to participate in energy transactions and assist in
grid stability which requires a new grid and market architecture.

• Risks and Threats: The stochastic nature of DER production imposes risks on the system equilibrium if not managed properly.
Centralized architecture is vulnerable to physical threats and cyber attacks.

The smart grid concept has been introduced in the last decade as a new vision to the traditional power grids. Smart grids bring
together smart metering, communication technology, advanced control techniques and interconnected power system, to support
bidirectional power and information flow with efficient operational management and integration of DERs. Currently, most of
the smart grid models are built on centralized architecture where grid components are dependent on intermediaries or centralized
platforms for operations such as monitoring, billing, bidding, energy trading and more. In order to facilitate the large scale integra-
tion of continuously growing number of EVs, distributed and scalable energy resources, the grid itself is adapting and shifting from
centralized topology to decentralized and autonomous network thus enabling enhanced interaction among the grid components.
With the help of Energy Internet concept, smart grid market is transforming from centralized governed prosumers network to decen-
tralized autonomous prosumers network (Mollah et al., 2021).

In this regard, blockchain technology finds an opportunity to support this transformation toward decentralized systems due to
its following beneficial properties which makes its application a suitable fit.

• Decentralization: Blockchain is maintained by a network of decentralized nodes through a consensus mechanisms. It has
a distributed peer to peer network structure which doesn’t need to trust or rely on a central authority/intermediaries for
authorization and maintenance, instead trust is distributed among the nodes of the network.

• Immutability and Data Security: All the records, transactions, events, and logs inside the blocks are secured using cryptographic
techniques and public key signatures ensuring data confidentiality. Moreover, the blockchain is copied and synchronized among
the nodes thus making it an immutable ledger where data can not be tampered unless majority of the nodes comes out to be
malicious.
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• Transparency: Blockchain technology keeps the track record of all transactions or logs into immutable and transparent ledgers
which provides easy traceability for different purposes such as auditing, compliance.

• Local Energy Markets: Blockchain may disrupt the current market operations as it enables local customer-oriented markets to
support peer to peer energy trading. This may result into improved economics for local energy producers and consumers who
can make flexibly sell or buy practices under this platform depending on their preferences and needs.

• Scalability and Resiliency: Distributed architecture of blockchain is capable of scaling up the network, allows multiple and
many entities to join the network. Decentralized architecture of blockchain brings resiliency since there’s no point of failure and
the entire chain is copied to all nodes in their premises. Using one of the best consensus mechanism design, blockchain
technology ensures a resilient network where any fault or malicious activities can be determined and recovered.

• Automaticity: Blockchain based smart contracts which are automated executable scripts or codified tasks under predefined
criteria. These contracts are stored on the blockchain which executes independently without intervention of any human, broker
and central authorization.

Main aspects of blockchain technology

Blockchain, firstly introduced in (Satoshi and Nakamoto, 2008), is a decentralized, distributed and digital ledger technology.
Named for its data structure, these are the blocks of stored collection of data or information encrypted and are linked together
in a chain cryptographically as depicted in (Fig. 1) so that data can not be tempered or forged. The collection of data or transactions
are added to the ledger upon verification through a consensus mechanism. Each block is assigned with a unique identity called cryp-
tographical hash just like as finger prints are for human identification. Each block contains cryptographical hash of the previous
block except the first block known as genesis block. The chain starts from genesis block, the hash of this block becomes the
previous hash of the next block, hence the chain continues. A block contains a header and a payload, the header includes timestamp,
previous and current block hash, mining details (nonce) while a payload includes set of data or transactions. The cryptographical
linking of blocks makes it tamper proof because any modification in a block changes the cryptographical hash which does not
match with previous hash saved in the proceeding block and thus the chain becomes invalid. The blockchain is replicated to all
the nodes across the network which is continuously synchronized and updated through consensus mechanism.

Smart contract

It is a computer script which is deployed and stored in a blockchain. Smart contract follows “If this, Then that” functionality which
means when a certain input or event occurs, some action is executed automatically according to the script. In contrast to a legal
contract, smart contract consist of codified terms and conditions of agreement upon which involved parties interact with each other.
Smart contracts once deployed on the blockchain, executes independently and automatically without any centralized control.
Among other blockchain platforms with smart contract functionality, Ethereum is the most actively used platform.

Consensus protocol

In a decentralized blockchain network, nodes making transactions and creating blocks must also participate in validating the
blocks to be added to the chain following a consensus algorithm. Since there is no trusted centralized system to make such
authentication, consensus among nodes is required. In order to reach such an agreement, various consensus mechanisms
have been proposed which holds common purpose but are different with respect to the entity adding blocks, blocks generation
rate, and strategy adopted to implement consensus. Consensus mechanisms involve a difficult problem or puzzle to solve
generally called “mining” for creating blocks, and validation process. Some prominent consensus protocols developed so far
are introduced below.
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• Proof of Work(PoW): This consensus algorithm is used in blockchain 1.0. All nodes (miners) in the network try to solve a very
difficult cryptographical puzzle using their computational power. The node (miner) who finds first the solution receives reward
(financial incentive) and the chance to create block then broadcast it to the network to be verified by the others node. On
validation from all nodes, the block is appended to the chain. Due to significant electricity expenses on computation, majority of
the mining is centralized in the areas where electricity is cheap. However, blockchain needs more energy efficient and less
centralized consensus protocols. Therefore, some other consensus protocols as better alternatives have been explored and being
adopted by several blockchain platforms.

• Proof of Stake(PoS): One of the viable alternative to PoW is PoS in which the nodes rather than investing their computational
power, holds the stake i.e., cryptocurrency in the blockchain network. PoS secures the membership of these stakeholders and
grants them chance to mine a block. Stake amount and the time of membership, are effective factors for winning the chance to
create the block. A new created block then goes through signing process and verification by other member nodes. Based on
majority vote the block is then added to the chain. Peercoin, Tezos, Tendermint and Ethereum’s Casper, are few of the
blockchain platforms which has utilized this consensus mechansim. Some blockchains for example Ethereum and Power Ledger
are shifting from PoW to PoS.

• Proof of Authority(PoA): This consensus protocol can be think of a modified form of PoS. In this protocol, one or more
authorized members of the network have special permissions to validate or sign the block to be added to the chain. These
validators are chosen by voting and their stake is their own identity. Although it seems centralized approach suitable for
governing structures, it is becoming popular in energy sector with utility companies. This method can be useful for the
applications where security and trust can’t be put at stake. Energy Web blockchain has utilized PoA with which they achieved 30
times more network capacity than ethereum and faster execution.

Other than these popular and extensively used consensus mechanisms, there are several other protocols developed so far which
includes Practical Byzantine Fault Tolerance (PBFT), Proof of Burn (PoB), Proof of Elapsed Time (PoET), Proof of Capacity
(PoC), Delegated Proof of Stake (DPOS), Proof of Space (PoSp), Proof of Activity (PoAc), Proof of Ownership (PoO) which exhibits
different strengths for particular configurations.

Types of blockchain

Based on accessibility, permissions and modification capabilities, there are mainly four different types of blockchain.

• Public Blockchain: These are fully decentralized and open to the public. Every node of this network is able to access blockchain,
make transactions and participates in a consensus mechanism. Due to these properties, public blockchains are widely used.
These blockchain commonly implements PoW and PoS as consensus algorithms.

• Private Blockchain: This type of blockchain allows only its owners to access, write and verifies the transactions. Owners could be
a group of individuals or a company. Other network nodes have limited access to private blockchain. With restricted permis-
sions, a great level of privacy can be achieved. Moreover, this type offers cheaper transactions and faster consensus process.
Private blockchains are useful for internal processes of any organization e.g., auditing, database management, intranet. PBFT and
Raft are most commonly used consensus algorithms in private blockchains.

• Permissioned Blockchain: Only authorized nodes maintain this blockchain however it may restrict access to read and send
transactions. Thus, this type of network may allow anyone read access and issue transactions to the blockchain or restrict it to
only authorized nodes. This feature is useful for the organizations which requires to work with business partners but doesn’t
trust them fully. Permissioned blockchain provides transparency and holds accountable misbehaving nodes. Consensus
mechanisms used in these blockchains are computationally faster and less expensive.

• Permission-less Blockchain: These are decentralized ledger open source platforms accessible to all nodes creating blocks, where
they may read and write to the blockchain. There is no permission required from specific authorized nodes. To avoid malicious
attacks, consensus mechanisms such as PoW and PoS are utilized. Moreover, nodes publishing blocks are rewarded with
cryptocurrency to promote non-malicious behaviors.

Other concepts of blockchain type such as hybrid and federated blockchains have also come into view however there is no proof of
concept developed yet.

Use cases and applications of blockchain in smart power systems

When blockchain technology intersects with smart power systems, various potential applications come into existence. Most of the
current blockchain projects are focused on different domains of power systems such as peer to peer trading, grid management and
operations, financing development of renewable energy sources (RES), RES management and certification of origin, wholesale
energy trading for utilities and energy system stakeholders, electric mobility. Blockchain applications in the power system are
extremely diverse. Blockchain mainly provides data storage, trading and energy financing services to the power sector under which
these applications can be classified. Applications that fall under the category of “Data Storage” includes asset registration, billing and
operations and energy certifications. Under the category of “Energy Trading”, there exist blockchain applications such as peer to peer
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energy transactions, operation flexibility, Wholesale energy market. While “Energy Financing” includes applications such as Fund-
raising, Energy tokens.

Asset registration

Ownership and related transactions can be documented with blockchain distributed ledger technology which offers secure storage
of ownership records in a tamper-proof and decentralized way. It can regulate the ownership andmanagement of energy assets such
as smart meters, renewable energy generation units, batteries, electric vehicles charging stations, thermostat. Energy assets can auto-
matically be registered with a blockchain ledger of identities, which enables operational flexibility of these assets for grid services in
particular frequency regulations, reactive power support. Moreover, owing to the transparency and traceability properties, block-
chain supports audit trail from the registration of the energy asset and ownership record to the sale or transfer and credit claim.

In the pilot, existing rooftop solar customers would be able to automatically record their generated energy credit data to the
Energy Web Chain. recorDER (formerly DER Asset Register) is a blockchain based shared register developed jointly by UK power
networks and Electron, for transmission and distribution system energy resources (assets) standardized for system operators.

Billing and operations

Blockchain technology integration with smart metering infrastructure, provides opportunity of automated billing and gives
autonomy to the consumers as well as prosumers over their meter data and electricity supply contracts. This brings a significant
disruption in traditional metering and billing processes, adding transparency and traceability. Removing the service charges of
intermediaries or central authorities (energy metering and billing companies) and data security concerns, the blockchain enables
anonymous P2P transaction on decentralized platforms. Smart meter data can be secured with distributed ledger technology
and shared with DSOs, TSOs or other stakeholders for better management and planning of power system network.

Moreover, blockchain technology enables the automatic billing at EV charging stations. EV drivers can park their car which can
autonomously connects to EV charging station and recharged automatically, later the charging station automatically bill them for
the used electricity. LO3, USA based company, introduced transactive grid smart meters which transmits data directly to users
accounts in blockchain.

Energy certificates

Due to the fragmented and complex market structure and highly expensive procedures small scale prosumers are unable to claim
renewable energy certificates or carbon credits. In this respect, blockchain technology has been focused on automatic issuance of
energy certificates demonstrating the provenance of renewable energy and creating supportive markets. Blockchain offers immu-
table, transparent and reliable record of generation and transaction of certificates. Moreover, blockchain enables tracking the energy
production fast, deep and more accurate than traditional methods could. Advanced incentive schemes could be codified in smart
contracts which automatically executes on the blockchain.

Energy Web Foundation is developing Energy Web Origin which is a state of art toolkit for energy markets around the world that
facilitates in recording provenance of renewable energy generation and automatic tracking its ownership. This toolkit is open source
that supports any green energy attribution systems.

P2P energy transactions

One of the prominent blockchain applications in the energy sector is the peer to peer energy trading covering one-third part of all
blockchain initiatives in the power system. Blockchain provides a decentralized energy trading market infrastructure which enables
consumers and prosumers to trade energy directly and take control over their consumption and generation. This platform can also
be functional for existing distribution grids, where it can be administered by a utility or a retailer, or it can be centrally managed by
grid operators DSO or TSO that matches buyers and sellers to provide technical support to the grid. However, decentralized plat-
form provides more identity privacy and secured transactions as compared to the traditional centralized approach. Other advan-
tages include low cost transactions, reduced volumes, intermediary omission, increasing transparency for all participants while
maintaining required data privacy and integrity would encourage more participation and faster adoption of DERs.

Power ledger, Australia blockchain startup presented two energy trading models, a retail model for existing regulated market
structure as well as direct peer to peer model for the deregulated markets. Large group of companies, startups and organizations
are focused in this field, the prominent ones such as Verv, LO3, Gridþ, Powerpeers have shown great achievement toward devel-
opment of peer to peer energy trading platforms.

Wholesale energy market and operation flexibility

Blockchain technology holds the potential to revolutionize wholesale energy markets including regulated or deregulated bilateral
markets by reducing counter party associated risk and bringing transparency while preserving the privacy aspect. Blockchain
provides solution to trade confirmation and reconciliation issues pertaining to wholesale energy trading. Since, these issues are
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currently managed by counterparties (trading offices) via emails and fax. Blockchain technology introduces decentralized ledgers
which holds the log of trade, shared among trading offices therefore, traders no more required to store data individually. Counter-
parties can reconcile and verify the transactions in real-time on blockchain. With this system, workflows become efficient and
human error significantly reduces. Moreover, it allows convergence of market mechanisms and system operations enabling better
resource management to provide operational flexibility and incentivizing renewable energy generation, storage and demand
response.

Multi energy trading firms are jointly developing EnerChain, blockchain based P2P trading platform to complement the whole
sale energy market which can also be fully replaced with this platform.

Fundraising and energy tokens

The second largest category of blockchain initiatives in the power system is the use of blockchain cryptocurrencies to raise funds for
the energy projects. Energy tokens are created using blockchain cryptocurrency facilitating secured investments and assets co-
ownership for the ventures in green energy projects. Many startups e.g., WePower, Sun Exchange conducted cryptocurrency token
sales to crowdfund for renewable energy projects. These sales are recorded in their respective blockchain platforms and once the
project begins operation, the token owners are able to use the services at discounted rates or sell the tokens with profit. Their block-
chain platforms keep the track of ownership and generated revenues are automatically transferred to investors through smart
contracts. Similarly, SolarCoin a blockchain cryptocurrency introduced to incentivize the renewable energy production, the
company aims to monetize the global solar energy production in future. Moreover, these cryptocurrencies can be exchanged for
fiat currencies or other cryptocurrencies.

These are just few prominent projects mentioned (as in Fig. 2) infact there is an extensive research and development in progress
under the collaborations of various companies, foundations, industries and academics. The latest statistics of all the blockchain
projects development in power sector are documented in IRENA report 2019 (Sean Ratka and Anisie, 2019). Moreover, a survey
(Andoni et al., 2019) has tabulated the details of around 140 blockchain based energy projects including their field area, platform
used, consensus mechanism applied and locations of deployment.

Development tools for blockchain-based energy applications

Different organizations are focusing on building several collaborative open source platforms in order to explore more potential
blockchain applications in power sector. One of the largest blockchain platforms, Ethereum provides framework that enables devel-
opers to build decentralized blockchain applications (Dapps). One of the prominent organization, Energy Web Foundation (EWF)
built Energy Web Chain on top of ethereum core technology that aims to accelerate the blockchain technology adoption across the
energy space to achieve a resilient, decentralized, decarbonized and democratized energy system. EW chain is an open source,
publicly available blockchain based software infrastructure, on which decentralized blockchain energy applications are built and
run. This blockchain platform is specially designed for energy sector’s regulatory, operational, and market needs. Based on ether-
eum, with some adjustments it achieved high scalability, low transaction costs, and energy consumption, using permissioned
Proof-of-Authority consensus mechanism. EWF launched “Volta” a public test network of the EW chain. This test network is useful
for the developers to develop, test and deploy applications before production. There are some useful tools for the beginners for
developing Dapps (Fig. 3).
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Fig. 2 Use cases of blockchain.
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Metamask

Metamask provides user a crypto wallet account and a gateway to blockchain. Using remote RPC(remote procedure call) protocol
given by EWF, metamask connects the user to the volta test network without need of setting up a local node.

Volta faucet

Test tokens “Volta Ethers” are facilitated for the users or developers to make transactions on Volta in order test their applications.
These are not real cryptocurrency but specifically design for testing purposes on Volta test network.

Remix IDE

Open source tool for writing smart contracts directly from the browser. It provides a solidity compiler as smart contracts are written
using solidity which is a Javascript like general purpose programming language, designed by Ethereum core contributors. Remix IDE
has modules for debugging, testing and deploying smart contracts.

Web3.js

A JavaScript API(application programming interface) is a library which is a collection of modules that enables interaction with the
blockchain i.e., send transactions, get account balance, address, and interact with smart contract.

Volta testnet explorer

To examine smart contract deployment, blockchain transactions and activity. EWF provides Volta testnet block explorer which is
derived from an open source block explorer for Ethereum based networks. It provides user-friendly interface to search, view and
confirm transactions, accounts, balances, verify smart contracts.

For further understanding (El-Sayed et al., 2020), can be reviewed which provides useful details to implement a simple pilot-
platform for energy trading based on blockchain technology.

Challenges of applying blockchain to smart power system

The large number of blockchain based energy projects and research initiatives, as well as investors interest in this area reflects poten-
tial value of blockchain technology for power systems. However, most of the projects are still proof-of-concept, some are in the
development phase while some of them have trialled the technology on a small scale. Tangible benefits of blockchain in power
systems are yet to be seen. These facts gave rise to many challenges in the way of mainstream adoption of blockchain technology
in the power systems.

• Lack of acceptance could be a possible concern because blockchain technology doesn’t posses its long term value i.e., long term
usage and experience. Therefore, it may take time to be adopted at a large extent.

• Legal rules and regulations are still required to be standardized for blockchain in the energy sector e.g., contract laws, energy
laws, data protection, to resolve any conflicts and disputes. Regulatory frameworks need to be revisited to allow adoption of
blockchain technology at large e.g., in several P2P energy trading projects, generally the current regulatory frameworks restricts
trading between consumers. Moreover, blockchain API needs standards for interoperability with other technologies. Data
protection regulations are yet to be clarified.

• Distributed energy markets will result in high number of energy transactions that may complicate the scheduling mechanism,
impose requirements of storage and transmission capacities inducing high computation and communication costs. Blockchain

Web3.js

Metamask.js

Remix IDE Volta  Faucet

Ganache

Truffle EWF

Fig. 3 Development tools of blockchain.
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scalability and performance issues may arise with the increased number of nodes in the network that may cause delay in the
verification process due to difficulty in reaching consensus and also put additional (hardware and energy) costs of increased data
storage. However, transition to improved consensus algorithms such as PoS, PoA in future may reduce these costs.

• Various cryptographic algorithms that are used for encryption, essentially makes the blockchain secured technology. However, if
powerful quantum computers cracking these highly developed encryption become reality then blockchain technology will likely
adopt quantum-safe encryption. However, old data will be affected.

• Some security concerns still exist e.g., programming errors in smart contracts may expose blockchain to the possibility of cyber
attacks. Moreover 51% attacks may happen, if attackers form 51% nodes of the network, they can create malicious blocks.
Therefore, blockchain developers are working for smart contract security and efficient consensus mechanisms that are resistant to
these attacks.

• Immutable ledger technology makes it difficult to make changes to the code once deployed and require great effort. Therefore
a middle way must be allowed to remove any discrepancies where vote of majority of nodes with standard regulations must
approve new version.
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