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Abstract

The random encounter model (REM) is a camera trapping method to estimate pop-
ulation density (i.e. number of individuals per unit area) without the need for indi-
vidual recognition. The REM can be applied considering camera trap data only by
tracking the passages of animals in front of the camera (i.e. sequences). However,
it has not been assessed how the number of sequences tracked (i.e. trajectory of
the animal reconstructed) influences the REM estimates. In this context, we aimed
to gain further insights into the relationship between the number of sequences
tracked and reliability in REM estimates to optimize its applicability. We monitored
multiple species using camera traps, and we applied REM to estimate population
density. We considered red fox Vulpes vulpes, roe deer Capreolus capreolus, fallow
deer Dama dama, red deer Cervus elaphus and wild boar Sus scrofa as model spe-
cies. We tracked from a minimum of 154 (red fox) to a maximum of 527 (red
deer) sequences per species, and we then sampled the dataset to simulate different
scenarios in which a lower number of sequences were tracked (20, 40, 80 and
160). We also assessed the effect of adjusting the survey period to the minimum
necessary to record the desired number of sequences. Our results suggest that
tracking around 100 sequences returns a precision level equivalent to the one
obtained by tracking a considerably higher number of sequences and reduced and
optimized the human effort necessary to apply REM. Tracking less than 40
sequences could result in low precise density estimates. Our results also highlighted
the relevance of considering study periods of ca. 2 months to increase the number
of sequences recorded and tracking a random sample of them. Our results contrib-
ute to the optimization and harmonization of REM as a reference method to esti-
mate wildlife population density without the need for individual identification. We
make clear recommendations on the cost-effective sample size for estimating REM
parameters, optimizing the human effort when applying REM, and discouraging
REM applications based on low sample sizes.

Introduction

The random encounter model (REM) is currently the most
applied camera trapping method to estimate population density
when monitoring populations in which individual recognition
is not possible (Gilbert et al., 2021; Palencia et al., 2022).
Briefly, the REM is based on modelling the process of random
encounters (sequences) between the individuals in the popula-
tion and the fixed detectors with which the population is been
monitored (typically camera traps). Thus, accounting for the
variables that affect the number of animal encounters (namely
camera trap detection zone and average daily distance travelled

by the individuals in the population, the day range), the REM
scales the number of encounters to population density (i.e. the
number of individuals per unit area) (Rowcliffe et al., 2008):

D=
y

t

π

a � s � r � 2þ θð Þ (1)

where y is the number of encounters, t is the total survey effort,
a is the activity level (proportion of time spent active), s is the
travel speed (average speed of travel while active), r is the
effective detection radius, and θ is the effective detection angle.
Encounter rate is the ratio between the number of encounters
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and survey effort (y/t); day range is the product between activ-
ity level and speed (a�s, Rowcliffe et al., 2016), and the detec-
tion zone is defined by the effective detection radius (r) and
angle (θ).
The REM was initially described by Rowcliffe et al. (2008).

Since then, the REM has been broadly applied to estimate
wildlife population density (Barroso et al., 2023; Kavčić
et al., 2021; Pfeffer et al., 2018; Schaus et al., 2020; Wearn
et al., 2022). Some studies have also focused on the statistical
development of the method (Lucas et al., 2015; Wearn
et al., 2022), the description of R packages and/or R function
to implement REM analysis (Caravaggi, 2017; Palencia, Ferná-
ndez-López, et al., 2021; Rowcliffe et al., 2011) and how to
deal with the animal reaction to camera traps (Delisle
et al., 2023). The reliability of REM was also compared with
density estimates obtained using reference methods such as dis-
tance sampling and spatially explicit capture-recapture (Palen-
cia et al., 2022), and the drivers determining the precision of
the density estimates have been also explored (Henrich
et al., 2022; Palencia et al., 2022; Rowcliffe et al., 2008). In
this respect, it has been described that variability in the
encounter rate (individuals detected per unit of sampling effort)
is the main factor contributing to the final variability in the
density estimate (Henrich et al., 2022; Palencia et al., 2022).
In this respect, a relationship between population aggregation
and precision, and 60 camera trap placements are recom-
mended when monitoring highly aggregated populations to
achieve acceptable precision (i.e. coefficient of variation below
0.20, Palencia et al., 2022; Rowcliffe et al., 2008). For lower
levels of population aggregation, a lower number of place-
ments could also result in coefficient of variation close to 0.20.
Other studies have been focused on assessing and describing

accurate procedures to estimate REM parameters from camera
trapping data (Hofmeester et al., 2017; Palencia, Fernández-L-
ópez, et al., 2021; Rowcliffe et al., 2011, 2016). Briefly, to
estimate travel speed (s) and the detection zone (r and θ) from
camera trap data, it is necessary to reconstruct the trajectory of
the individuals when crossing the field of view of the camera
(hereafter track the sequence). From the tracked data, the loca-
tion of the individual when the animal entered field of view is
used to estimate the detection zone (Rowcliffe et al., 2011),
and the length of the trajectory divided by the duration of the
sequence is used to estimate the travel speed (Palencia, Ferná-
ndez-López, et al., 2021; Rowcliffe et al., 2016). Despite the
possibility of estimating the REM parameters from camera trap
data increases the applicability of the method (Palencia
et al., 2022; Rowcliffe et al., 2016), this also involves a great
human effort in fieldwork (because it is necessary to calibrate
the field of view of the cameras), and in the office (because it
is necessary to track the location of the individuals recorded in
each picture). However, it has not been assessed how the num-
ber of sequences tracked to estimate REM parameters influ-
ences the accuracy (how close the densities estimated are to
their true value) and precision (how close the densities are to
each other). Here and throughout the paper, we considered a
sequence as a passage of an individual in front of the camera.
Considering all the above, the REM has been well received

by the scientific community. The efforts focused on

harmonizing the method as well as improving the estimation
of REM parameters using exclusively camera trap data have
contributed to its acceptance and growing number of applica-
tions. The REM is considered the reference method in a Euro-
pean initiative to monitor terrestrial mammal population
density (Guerrasio et al., 2023). In this respect, two main prac-
tical limitations emerge when applying the REM: (1) the image
processing; and (2) the human effort necessary to track the
sequences to lastly estimate REM parameters. Regarding the
former, it is a habitual limitation in any camera trapping study,
but artificial intelligence has considerably reduced the human
effort needed to process the pictures, and some models already
classify pictures by species with accuracies higher than 0.95
(Beery et al., 2019; Rigoudy et al., 2023). Regarding the latter,
further work is needed to better understand the relationship
between the number of sequences tracked and precision or
accuracy. The number of sequences tracked in published REM
studies ranges from 6 to more than 400 (e.g. Barroso
et al., 2023; Rovero & Marshall, 2009; Schaus et al., 2020).
Tracking too few sequences could compromise precision and
accuracy in density estimates, while tracking too many could
reduce cost-effectiveness.
In this context, we aimed to provide further insights into the

relationship between the number of sequences tracked and reli-
ability in REM estimates to optimize its applicability. Our spe-
cific objectives were (1) to identify the most efficient number
of sequences to be tracked in terms of human effort and preci-
sion; and (2) to evaluate if it is more appropriate to adjust the
survey period to the minimum necessary to achieve the desired
number of sequences, or to consider a longer survey period
and track a random selection of the sequences recorded.

Materials and methods

Study area

The study was conducted in the Pyrenees, northern Spain (Lat:
42°360 N, Long: 1°160 W), where we monitored an area of 1000
hectares from 27 March to 26 June 2023. The area was charac-
terized by a homogeneous forest of Pinus uncinata and Pinus
sylvestris, with some Quercus forest at the lowest altitudes. We
covered an altitudinal range from 940 to 2292 m.a.s.l.

Camera trap survey and image processing

Twenty-eight camera traps (Tetrao Spromise S308) were ran-
domly deployed, placed heading towards the north, 50 cm
above ground, and with the sensor angled parallel to the slope.
Cameras were set to be operative 24 h per day, to record a
burst of 10 consecutive pictures at each activation, with the
minimum time gap between consecutive activations. Nocturnal
pictures were illuminated with infrared flash (low glow). Cam-
eras were checked once to check the status of the batteries and
memory cards.
The pictures were filtered to discard false activations using

Megadetector (Beery et al., 2019) and subsequently processed
in the open software TrapTagger (https://wildeyeconservation.
org/trap-tagger-about/) to classify the pictures by species. To
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estimate the locations of the animals in the field of detection,
we applied a photogrammetry approach (Palencia et al., 2023;
Wearn et al., 2022). The photogrammetry approach describes
the relationship between the size of the calibration object in
the image (in pixels) and its actual size and distance from the
camera; and the relationship between X-Y pixel position in the
image and the angular distance from the camera’s principal
axis. To use photogrammetry, it is necessary to calibrate each
camera deployment and the camera model. The camera model
(here Tetrao by Spromise S308) was calibrated once by taking
15 images of the calibration pole (here a one-meter-length pole
with marks at 20 cm intervals) at known distances from the
camera (maximum 15 m) and from the centre to the laterals of
the field of view. In the field, each camera deployment was
calibrated by recording 15 pictures of the calibration pole
across the field of view and spaces 1–2 m apart. We finally
digitized the images to extract the pixel position of the animals
in the open-source tool AnimalTracker (https://github.com/
lauraVzarco/animaltracker). To apply REM, we recorded the
pixel position of all the individuals when entering the detection
zone, and we also reconstructed the trajectory of those individ-
uals that did not react to the presence of the camera. Pixel
positions were later transformed to animal-to-camera distances
and angles using the CTtracking package in R (https://github.
com/MarcusRowcliffe/CTtracking).

Random encounter model parameter
estimation

From the REM parameters described in equation 1, three of
them (y, number of encounters; t, survey effort; and a, activity
level) do not need to track the sequences for its estimation.
The number of encounters (y) was measured by counting each
time an individual entered the detection zone. Survey effort (t)
was measured as the summation of all the days in which each
camera was operating in the field. To estimate activity level
(a), it is only necessary to capture the time of detection in
which each individual was recorded by the camera. We esti-
mated activity level using the ‘activity’ package in R and fit-
ting circular distribution to the time in which animals were
detected (Rowcliffe et al., 2014).
Tracking the animals recorded is necessary to estimate the

effective detection zone (r and θ) and the travel speed (s). To
estimate the effective detection zone, we used ‘Distance’ pack-
age in R and we fitted distance sampling models to the radius
and angle in which each individual was first detected (Buck-
land et al., 2001; Rowcliffe et al., 2011). To estimate travel
speed, we estimated the average speed by using ‘trappingmo-
tion’ package in R (Palencia, 2020). Sequences in which the
animals reacted to the camera (e.g. inspecting the camera and
fleeing in response to being detected) were not considered in
the speed estimation. Day range was estimated by multiplying
activity level and average speed (Palencia, Fernández-López,
et al., 2021; Rowcliffe et al., 2016). The R code to replicate
the REM analysis can be found here: https://github.
com/PabloPalencia/CameraTrappingAnalysis/tree/main/REM.
The variance of the density was estimated incorporating the

variance of all the parameters. Standard error of density was
estimated by multiplying the mean density value by the square
root of the squared coefficients of variation of each of the
REM parameters. The coefficient of variation of density (stan-
dard error divided by the mean) and the 95% log-normal con-
fidence interval of the density were also estimated.

Relationship between the number of
sequences tracked and precision

Here and in the next section, we considered as gold reference
the population density value estimated considering all the
sequences tracked and the entire survey period (‘gold-
density’), a habitual procedure when optimizing camera trap-
ping protocols (Kays et al., 2020). We considered as model
species those with more than 150 sequences tracked, namely
red fox -Vulpes vulpes-, roe deer -Capreolus capreolus-, fallow
deer -Dama dama-, red deer -Cervus elaphus- and wild boar
-Sus scrofa-. To evaluate the effect of the number of
sequences tracked into the density precision, we sampled with
replacement the data for each species. Specifically, we ran-
domly selected 20, 40, 80 and 160 tracked sequences from
the full dataset of each species, and we replicated each ran-
dom sampling six, four, two and one times, respectively. The
number of replicates decreases as the number of sequences
increases to ensure independence among replicates. For
instance, for a given scenario in which 200 sequences were
tracked, two replicates of 20 sequences were independent, but
two replicates of 160 sequences will not be independent. From
these subsampled data sets, we estimated the speed (s) and
detection zone (radius -r- and angle -θ-), and we then applied
REM considering the entire data set of each species to esti-
mate the encounter rate (y/t) and activity level (a), for which
density (‘subsample density’) was estimated.
To assess the effect of the number of sequences tracked in

precision, we fitted a linear model with Gaussian distribution
and identity link function including the coefficient of variation
of the density (CV) as response. The interaction between the
number of sequences tracked and the species (as a factor) was
included. We fitted four models in which the CV and/or the
number of sequences tracked were log-transformed (i.e. Model
1: CV� log(n seq tracked)*species; Model 2: CV� n seq
tracked*species; Model 3: log(CV)� log(n seq tracked)*spe-
cies; and Model 4: log(CV)� n seq tracked*species). The best
model was selected based on R-squared value. The assump-
tions of normality, homogeneity and independence in the resid-
uals were assessed following Zuur et al. (2010).

Relationship between survey length and REM
estimates

Working on the results obtained in the previous section, we
now explored if there were some differences between (1)
reducing the survey period to the minimum necessary to record
the desired number of sequences, and then tracking all the
sequences recorded to estimate REM parameters; and (2) con-
sidering the entire survey period (83 days) for encounter rate
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estimation and activity level, and a random sample of the total
number of sequences to estimate speed and detection zone.
Due to the low sample size, no linear model was fitted, and
these results were discussed considering point estimates and
log-normal 95% confidence intervals overlapping.

Results

From the entire study period and all the sequences tracked, we
estimated the population density of wild boar (6.58 ind�km�2,
0.17 coefficient of variation -CV-), roe deer (7.85 ind�km�2,
0.17 CV), red deer (6.48 ind�km�2, 0.23), fallow deer (6.07
ind�km�2, 0.32) and red fox (3.01 ind�km�2, 0.33), with an
average of 309 sequences tracked per species (min: 154 -red
fox-, max: 527 -red deer-). A table including all REM parame-
ters can be found in Appendix S1.

Relationship between the number of
sequences tracked and precision

The best model was that included log-transformed CV and
number of sequences tracked (R2= 0.74). The rest of the
models have R2 values lower than 0.65 (Appendix S1). We
observed a strong negative relationship between the number of
sequences tracked and the coefficient of variation (Fig. 1,
Table 1). As the number of sequences tracked increased, the
coefficient of variation decreased (i.e. precision increased). This
pattern was especially noticeable when less than 100 sequences
were tracked and was observed in all the species (Fig. 1,
Table 1).
Considering all the above, 100 sequences could be the num-

ber of sequences to be tracked that did not compromise preci-
sion, but optimized the applicability of REM by reducing the
analysis effort.

Relationship between survey length and REM
estimates

Based on the above results, we sampled our database to obtain
independent periods in which ca. 100 sequences were tracked
(hereafter periods). The number of periods and survey length
depend on the species. While it was only possible to consider
one period for red fox, five independent periods (about 15 days
long) were considered for red deer. On average, we considered
103 sequences in each period considering all the species
(Appendix S1). Alternatively, we also estimated densities con-
sidering the entire survey period but randomly selecting 100
tracked sequences to estimate speed and detection zone.
Regarding precision, the results showed similar precision

Figure 1 Predicted values for the coefficient of variation in relation to the number of sequences tracked from the linear models fitted including

the number of sequences tracked and the species as predictors. Shaded bands represent 95% confidence intervals.

Table 1 Results of the linear model used to evaluate the relationship

between the number of sequences tracked (n_seq_ tracked, log-

transformed) and the species with the precision (measured as

coefficient of variation, log-transformed) in random encounter model

densities

Estimate SE t-value P-value

Intercept �0.511 0.205 �2.491 0.0156

log(n_seq_tracked) �0.121 0.054 �2.245 0.029

Red fox �0.140 0.318 �0.441 0.661

Red deer 0.050 0.269 0.185 0.854

Roe deer �0.117 0.276 �0.423 0.674

Wild boar 0.346 0.281 1.231 0.223

log(n_seq_tracked) x red fox 0.030 0.086 0.347 0.730

log(n_seq_tracked) x red deer �0.043 0.070 �0.615 0.541

log(n_seq_tracked) x roe deer �0.088 0.072 �1.212 0.231

log(n_seq_tracked) x wild boar �0.181 0.074 �2.460 0.017

The fallow deer was considered as the reference category. Bold high-

light significant values.
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between the gold reference (i.e. using all the sequences tracked
and the entire survey period to estimate density) and the
approach in which only 100 sequences were used to estimate
speed and detection zone, and the entire survey period to esti-
mate encounter rate and activity level (Fig. 2, Appendix S1).
The difference in CV between both approaches was lower than
0.05 in all the species (Appendix S1). However, when defining
the survey period to the minimum necessary to record 100
sequences, CVs were higher (i.e. lower precision) in compari-
son with the gold reference (Appendix S1). For instance, for
red deer, the gold reference CV was 0.23, while the average
CV for the subsampled periods was 0.35 (min: 0.29, max:
0.39). Similar patterns were observed in the other species.
Regarding the consistency in the point estimate among
approaches (proxy of accuracy), considering the entire survey
period resulted in more similar density estimates in comparison
with considering short periods (Fig. 2).

Discussion

Our results suggest that tracking ca. 100 sequences and
increasing the survey period to consider a higher sample size
for the estimation of encounter rate and activity level was the
most cost-effective and reliable approach when applying the
REM to estimate population density. On the contrary, monitor-
ing periods shorter than 1 month could not be recommended
(even when 100 sequences are recorded).
Previous studies have assessed the effect of sample size in

the estimation of REM parameters, but the effect on density
precision had not been assessed before. For instance, a mini-
mum of 60–80 observations are recommended to fit distance
sampling models (Buckland et al., 2001). Here, we have
shown that tracking around 100 sequences returns a precision
level equivalent to the one obtained by tracking a considerably

higher number of sequences (Fig. 1, Table 1) and reduced the
human effort necessary to apply REM. Regarding precision,
we found that the coefficient of variation (CV) have an inflex-
ion point when ca. 100 sequences were tracked, after which
increasing the number of sequences tracked makes little differ-
ence (Fig. 1). This result could be explained considering the
intrinsic variation in encounter rate. It is well established that
most of the variance in REM is attributable to the variation in
encounter rate between camera trap placements (Palencia
et al., 2022; Palencia, Rowcliffe, et al., 2021; Rowcliffe
et al., 2008). Thus, while tracking ca. 100 sequences optimized
the precision in the detection zone and speed, any further
improvement could be masked by the variability in the number
of encounters among camera trap placements. The random
designs necessary to apply REM imply an inhomogeneous
number of detections on each placement, and the encounter
rate is usually very aggregated (Palencia et al., 2022). Recent
studies suggest that rotating the cameras to new placements
during the survey period contributes to obtaining more precise
encounter rates (Palencia et al., 2024). It is worth noting that
we achieved CV ca. to 0.20 (min: 0.17, max: 0.33) sampling
28 placements. While a higher number of placements is usu-
ally recommended for this level of precision, the small size of
our study area (10 km2) together with the low variability of
habitats (continuous pine forest) could explain this result.
Regarding the survey period, reducing the survey length to

the minimum necessary to record ca. 100 independent sequences
could compromise REM reliability, resulting in low precision
and potentially biased density estimates (Fig. 2). When monitor-
ing abundant populations, 100 sequences could be recorded in
relatively short survey periods (e.g. 2 weeks). The variability in
density estimates when considering short survey periods can be
explained by considering the minimum period necessary to
obtain a reliable encounter rate. Kays et al., 2020 found that

Figure 2 Density estimates obtained (1) considering all the sequences tracked during the entire survey period (gold), (2) subsampling the survey

period until the minimum necessary to record 100 sequences (green); and (3) considering the entire survey period but tracking 100 random

sequences (blue). Error bars represent 95% log-normal confidence intervals.
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encounter rates were highly variable for the first 2 weeks of
camera deployments, and from about 1 month onwards, esti-
mates were within 10% of the estimate from the 60-day samples.
Thus, when applying REM, the recommended protocol could be
to increase the survey period to ca. 2 months, consider all the
sequences for the estimation of encounter rate and activity level,
and randomly select and track 100 sequences to estimate detec-
tion zone and travel speed (Fig. 2). The selection of the 100
sequences must be done randomly. On the contrary, selecting all
the sequences from a single (or few) camera placement and/or a
specific period (e.g. beginning of the survey period) could lead
to biased REM parameters, and in consequence, biased densities.
For instance, tracking 100 sequences in a camera placed in a
grassland could lead to an over-sampling of the slow movements
of herbivores while feeding (Palencia, Fernández-López,
et al., 2021; Rowcliffe et al., 2016), and an over-sampling of
long detection distances in comparison with those expected in a
denser vegetation habitat (Hofmeester et al., 2017). We also do
not recommend considering survey periods longer than 2–
3 months because the variability in natural resources (e.g. pri-
mary production) and/or management or conservation actions
(e.g. hunting season) could contribute to a variation in the true
population density and/or spatial aggregation of the individuals.
Our results came from four ungulates species and one carni-

vore. Replicating the study by including species with different
behavioural and ecological traits, such as rodents, could be
appreciated. Similarly, independent and reliable density esti-
mates could be useful to assess the effect of the number of
sequences tracked in accuracy.
In conclusion, our results support the recommendation of

tracking ca. 100 sequences when applying REM to estimate
wildlife population density from camera trapping data. Ideally,
the survey period could be ca. 2 months, and survey periods
shorter than 1 month are not recommended. Similarly, applying
REM when less than 40 sequences were tracked could not be
recommended because low precise estimates are expected. Our
results contribute to the optimization and harmonization of
REM as a reference method to estimate wildlife population
density without the need for individual identification.
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