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Abstract
We focus on the notion of negative conglomerability. This is far less known than
its counterpart, conglomerability. Both relate to the combination of conditional and
unconditional information, with the latter taking in particular a foundational role in
the special case of infinite partitions of the possibility space. The two notions look
superficially very similar and are even equivalent in the case of precise probabilistic
models. In the present paper, we do a thorough technical study of their relations
with other main concepts in the literature, such as marginal extension and dilation,
both in the precise and imprecise case. Moreover, we discuss why they are somewhat
surprisingly different from the prescriptive point of view, in that conglomerability has
a rationality stance that its negative counterpart has not.

Keywords Desirability · Imprecise probability · Conglomerability · Sets of desirable
gambles · Coherent lower previsions · Credal sets

1 Introduction

Savage’s sure thing principle [17, Section 2.7] is well known to be widely valid; in its
simplest form, it states that if we prefer action a to b both conditionally to an event
and conditional to its complement, then we should unconditionally prefer a to b. For
instance, if Alice goes jogging no matter whether the weather forecast gives rain or
not, we should deduce that she would be going also without knowing the forecast.
Now say that Bob instead jogs neither when the forecast gives rain nor when it does
not. Should we deduce that he would not go jogging in case he does not know the
forecast? The latter situation looks very similar to the first; we could interpret it as a
kind of ‘negative’ sure thing principle.
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The importance of the sure thing principle in probability stems in particular from
its foundational role with regard to conditioning, and hence to statistics—at least
from a Bayesian perspective. In fact, as we have detailed elsewhere [27], the sure
thing principle essentially coincides with a type of ‘conditional’ additivity when we
consider the desirability of lotteries (we call them gambles), which is the focus of
this paper. Saying that a certain real-valued gamble f is desirable, means that one is
willing to accept it. Now, if we denote by B the indicator function of an event, the
product B f , which is equal to f on B and is zero elsewhere, represents the contingent
gamble that is called off if B does not occur; similarly for the complementary event Bc.
Consequently, the sure thing principle in this setting states that if B f and Bc f are both
desirable, then f = B f + Bc f must be desirable too. (Let us remark that the theory of
desirable gambles [2, 9, 15, 24] is a generalisation of de Finetti’s theory of probability
to imprecisely specified probabilities and to non-Archimedeanity. Therefore the results
presented in this paper hold under very broad conditions that encompass, for instance,
the cases of lower and upper expectations, Bayesian robustness, and the special cases
of lower and upper probabilities.)

Note that the desirability of f above can bemade to follow from the bare application
of the finite additivity axiom of probability; and yet the same is no longer true for
infinite partitions of conditioning events. In this case, such a (conditional) additivity
may have to be imposed, and it takes the name of ‘conglomerability’ [4, 5, 18]. As
argued in [24], conglomerability gives solid foundations to the notion of conditional
probability in the general case: it can for instance be formally linked to countable
additivity [24, Section 6.9] [18]; and it maintains its special role in conditioning also
for finite partitions whenever we generalise probability by dropping the axiom of finite
additivity [12, Section 2.2]. It is then particularly interesting that conglomerability can
be justified as a rationality requirement on its ownvia arguments of temporal coherence
(this has been discussed for the first time in [25]; we provide a reworked and simplified
justification in Sect. 7 of the present paper).

From this perspective, it appears very natural to turn our attention to the negative
version of conglomerability, to see whether it has anything equally meaningful to
say. It is the condition that regards f non-desirable in case for all the events B in
a partition B, B f is non-desirable. Some questions of obvious interest are: is this
‘negative conglomerability’ widely applicable as its positive counterpart? Should it
be regarded as a rationality requirement? What are its implications and relations with
other notions in the literature?

Our investigation will eventually lead to both positive and negative answers to
those questions. We shall see for example that there appears to be no ground to give
negative conglomerability a rationality status. And yet, negative conglomerability
will automatically be granted in very many cases of pragmatic interest: in particular,
when we build our models through hierarchical information, in situations where we
traditionally apply the law of total probability. Negative conglomerability will also
play a peculiar role in conditioning in that it will turn out to be sufficient to prevent a
probabilistic model from dilating. ‘Dilation’ [22] is a definite increase of uncertainty
due to conditioning, irrespectively of the specific event one conditions on. Albeit
reasonable in many cases, it may be an undesirable property of a probabilistic model
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in specific situations. In those cases, negative conglomerability can come to the rescue
as a well-defined condition on which to rely to have the problem addressed.

We shall start our investigation by introducing some preliminary concepts of desir-
ability theory in Sect. 2. In Sect. 3 we introduce conglomerability and its negative
counterpart, and we detail their relations with some prominent notions in the litera-
ture, such as that of marginal extension ([8], [24, Section 6.7]). In Sect. 4 we study
possible negatively conglomerable extensions of sets that are not such. In Sect. 5 we
reconsider the previous results for the case where our assessments of desirability lead
to precise probability models. We detail the conflict between negative conglomerabil-
ity and dilation [22] in Sect. 6. The rationality status of negative conglomerability in
studied in Sect. 7. Concluding considerations are reported in Sect. 8.

2 Preliminary Concepts

Let us recall the basic aspects of the theory of coherent lower previsions; we refer to
[23, 24] for more details.

Consider a possibility space Ω . A gamble f : Ω → R is a bounded real-valued
function on Ω . We denote by L(Ω) the set of all the gambles on Ω and by L+(Ω) :=
{ f ∈ L(Ω) : 0 �= f ≥ 0} the subset of the positive gambles. We denote these sets
also by L and L+, respectively, when there is no ambiguity about the space involved.
Negative gambles are defined by L− := −L+, and we shall also use L−

0 := L− ∪ {0}
andL< = { f : sup f < 0}. Events are denoted by capital letters such as A, B,C ⊆ Ω .
We shall identify an event Awith its indicator function IA, whence disjunctions (A∩B)
will be represented by products (AB). As a consequence, the product B f is equal to
f on B and zero elsewhere. It is interpreted as a conditional gamble: one that is called
off if B does not occur. Finally, given a partition B of Ω , a gamble is said to be B-
measurable when it is constant on the elements of B; we shall denote by LB the set
of B-measurable gambles.

2.1 Desirability

The traditional approach to coherence in Williams-Walley’s theory assumes that the
scale in which the rewards, represented by gambles, are measured is linear [24, Sec-
tion 2.2]. This implies that the gambles whose desirability is implied by those from a
given set D are those in its conic hull:

posi(D) :=
⎧
⎨

⎩

r∑

j=1

λ j f j : f j ∈ D, λ j > 0, r ≥ 1

⎫
⎬

⎭
.

Then a set of desirable gambles D ⊆ L is called (Williams-)coherent if and only
if the following conditions hold:

D1. L+ ⊆ D [Accepting Partial Gains];
D2. 0 /∈ D [Avoiding Status Quo];
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D3. f , g ∈ D ⇒ f + g ∈ D [Additivity];
D4. f ∈ D, λ > 0 ⇒ λ f ∈ D [Positive Homogeneity].

This is equivalent to requiring that posi(D ∪ L+) = D and D ∩ L−
0 = ∅. When we

regard the theory of desirability from a logical perspective, posi corresponds to the
deductive closure; D1 to the tautologies and D2 to the status quo—which combined
with the other axioms defines the contradictions, i.e., L−. In particular, we say that
a set of gambles D is a coherent set of strictly desirable gambles when it satisfies
axioms D1–D4 and moreover

(∀ f ∈ D \ L+)(∃ε > 0) f − ε ∈ D.

More generally, for any set of gambles K, if there is a coherent set of desirable
gambles that includes K then there is a smallest such superset, and it is called the
natural extension of K. It is given by

EK := posi(K ∪ L+). (1)

It also follows thatK has a coherent superset iff EK is coherent, and thatK is coherent
iff K = EK and 0 /∈ K. We say that K avoids sure loss when EK is coherent, and that
it incurs a sure loss otherwise.

For a deeper account of desirability, we refer to [2, 9, 15] and [24, Section 3.7].

2.2 Lower Previsions

Any coherent set of desirable gambles D induces a lower prevision and a conditional
lower prevision by means of the formulae

P( f ) := sup{μ : f − μ ∈ D} (2)

and

P( f |B) := sup{μ : B( f − μ) ∈ D} (3)

for any gamble f and any non-empty conditioning event ∅ �= B ⊆ Ω . If we now
consider a partition B, the conditional lower prevision P(·|B) is defined on a gamble
f as the B-measurable gamble

P( f |B) :=
∑

B∈B
BP( f |B).

A consequence of the above formulae is that L+ ∪ { f : P( f ) > 0} ⊆ D ⊆ { f :
P( f ) ≥ 0}.

The coherence ofD implies that the lower prevision P it induces by Eq. (2) is also
coherent, meaning that it satisfies

COH1 P( f ) ≥ inf f ;
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COH2 P(λ f ) = λP( f );
COH3 P( f + g) ≥ P( f ) + P(g)

for any gambles f , g ∈ L and anypositive real numberλ. The correspondence between
coherent sets of desirable gambles and coherent lower previsions in Eq. (2) is many-
to-one: the same coherent lower prevision can be induced by more than one coherent
set of desirable gambles. There is however only one such set that is a coherent set of
strictly desirable gambles, and it is given by

L+ ∪ { f : P( f ) > 0}. (4)

On the other hand, the closure of any coherent set of desirable gambles associated
with P is given by

{ f : P( f ) ≥ 0}. (5)

This is called the set of almost-desirable gambles associated with P , and we shall
denote it by DP . Note that it is not coherent, because it includes for instance the zero
gamble.

Similarly, the conditional lower prevision P(·|B) is separately coherent, meaning
that

SCOH1 P( f |B) ≥ infB f ;
SCOH2 P(λ f |B) = λP( f |B);
SCOH3 P( f + g|B) ≥ P( f |B) + P(g|B)

for any gambles f , g ∈ L, any positive real number λ and any event B ∈ B. A given
conditional lower prevision P(·|B) transforms any gamble f into a gamble G( f |B)

by means of the formula

G( f |B) := f − P( f |B) =
∑

B

B( f − P( f |B)) :=
∑

B

G( f |B).

Both P and P(·|B) satisfy what we shall refer to as constant additivity: for any gamble
f and any real number μ

P( f + μ) = P( f ) + μ and P( f + μ|B) = P( f |B) + μ.

2.3 Linear Previsions and Sensitivity Analysis Interpretation

When a coherent lower prevision P with domain L satisfies condition COH3 with
equality, i.e., when P( f + g) = P( f ) + P(g) for any pair of gambles f , g, it is
called a linear prevision. It corresponds to the expectation operator with respect to its
restriction to events,which is a finitely additive probability.Moreover, a coherent lower
prevision is in a one-to-one correspondence with a closed (in the weak* topology) and
convex set of linear previsions, namely
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M(P) := {P linear prevision : (∀ f ∈ L) P( f ) ≥ P( f )}.

A sufficient condition for a coherent set of desirable gambles D to induce a linear
prevision is that it is maximal, meaning that

(∀ f �= 0) f /∈ D ⇒ − f ∈ D.

Maximal sets of gambles allow us to give a strong belief structure to coherent sets of
desirable gambles: any coherent set of desirable gambles is equal to the intersection
of its maximal supersets.

3 Conglomerability and Negative Conglomerability

3.1 Conglomerability

Although our focus in this paper is on the meaning and implications of negative
conglomerability, we shall start our analysis by briefly investigating what entails for
a coherent set of desirable gambles to be conglomerable.

Definition 1 (Conglomerability) Given a partition B of Ω , we say that a coherent set
of desirable gambles D is B-conglomerable if and only if

(B f ∈ D ∪ {0} ∀B ∈ B) ⇒ f ∈ D

for all f �= 0. If D is B-conglomerable for all partitions B of Ω it is called fully
conglomerable.

As we said in Sect. 2, the rationality criteria of coherence for sets of desirable gam-
bles impose that if two gambles f , g represent acceptable transactions for a subject,
they should be disposed to take the two transactions at the same time, that is, they
should also find the gamble f + g desirable. While a similar condition is not imposed
for infinite sums of desirable gambles, conglomerability points out to a particular sce-
nario when such a desirability assessment may be reasonable: when no two of the
gambles to be added are active at the same time, or, in other words, when they are only
non-zero on disjoint events of the possibility space. Conglomerability is one of the
main points of disagreement between Walley’s and de Finetti’s behavioural approach
to probability [24, Section 6.8], and allows to go from finitely additive models in the
direction of countably additive ones. We refer to [10, 11, 13, 18, 19, 21] for some
papers investigating in detail this concept.

Let D be a coherent set of desirable gambles and let B be a partition of Ω . Let us
denote by P, P(·|B) the unconditional and conditional lower previsions it induces by
means of Eqs. (2) and (3). Consider the following conditions:

Co1. (∀ f ∈ L) P( f |B) ∈ D ⇒ f ∈ D.
Co2. D is B-conglomerable.
Co3. (∀ f ∈ L) P(G( f |B)) ≥ 0.
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Co4. (∀ f ∈ L) P( f ) ≥ P(P( f |B)).

The connections between these conditions are summarised in the following propo-
sition:

Proposition 1 (a) Co1, Co2 ⇒ Co3 ⇔ Co4.
(b) If D is a set of strictly desirable gambles, then Co1 ⇒ Co2 ⇔ Co3 ⇔ Co4.
(c) If Ω is finite, then Co2–Co4 always hold.

Proof (a) We begin by establishing the equivalence between Co3 and Co4. To prove
that Co3 implies Co4, note that the super-additivity COH3 of the coherent lower
prevision P implies that for any gamble f ,

P( f ) = P(G( f |B) + P( f |B)) ≥ P(G( f |B)) + P(P( f |B)) ≥ P(P( f |B)),

where the last inequality follows from Co3.
Conversely, if Co4 holds and there is a gamble f such that P(G( f |B)) < 0, then
given g := G( f |B),

P(g|B) =
∑

B

BP(g|B) =
∑

B

BP(G( f |B)|B)

=
∑

B

B(P( f |B) − P( f |B)) = 0,

meaning that P(P(g|B)) > P(g), a contradiction with Co4.
To prove that Co2 implies Co3, note that for any gamble f and any ε > 0 the
gamble G( f |B) + εB belongs to D by Eq. (3); applying Co2 we deduce that
G( f |B)+ ε belongs toD, whence P(G( f |B)+ ε) = P(G( f |B))+ ε ≥ 0. Since
this holds for any ε > 0, we conclude that P(G( f |B)) ≥ 0.
Finally, to establish that Co1 implies Co4, assume ex-absurdo the existence of a
gamble f such that P( f ) < P(P( f |B)). By constant additivity, there exists some
real number μ such that P( f + μ) < 0 < P(P( f + μ|B)), and this means that
P( f + μ|B) belongs to D while f + μ does not, a contradiction.

(b) Let us show that under strict desirability Co4 implies Co2. Consider a gamble
f �= 0 such that B f ∈ D ∪ {0} for any B ∈ B, and define B∗ := {B ∈ B : B f /∈
L+ ∪ {0}}. If B∗ = ∅, then f ∈ L+ ⊆ D. Otherwise, for any B ∈ B∗ there exists
some ε > 0 such that B f − ε ∈ D. This means on the one hand that

0 < P(B f ) ≤ P(B sup f ) = sup f P(B) ⇒ P(B) > 0,

and also that

P( f |B) = sup{μ : B( f − μ) ∈ D} ≥ ε > 0, since B( f − ε) ≥ B f − ε ∈ D.

From this we deduce that, picking any B ∈ B∗,

P(P( f |B)) ≥ P(BP( f |B)) > 0,
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and then Co4 implies that P( f ) > 0 from which we deduce that f ∈ D.
(c) It suffices to note that in the finite case Co2 follows from the coherence of D, and

to apply (a). ��
Figure 1 illustrates the result.
For completeness, we provide counterexamples showing that no further implication

holds:

Example 1 (Co2 � Co1 under strict desirability) Let Ω := N, Bn := {2n − 1, 2n}
and B := {Bn : n ∈ N}. Let P be the σ -additive probability measure given by

P({1}) = P({2}) = 0, (∀n ≥ 2) P({2n − 1}) = P({2n}) = 1

2n
.

LetD be the coherent set of strictly desirable gambles associated with P by means of
Eq. (4). If we consider the gamble f given by

(∀n ∈ N) f (2n − 1) = 1, (∀n ≥ 2) f (2n) = −1, f (2) = 1,

we obtain that P( f |B) = IB1 ∈ L+ ⊆ D, but P( f ) = 0, whence f /∈ D. �

As a consequence, we deduce that also Co3, Co4 � Co1.

Example 2 (Co1 � Co2) Consider Ω := N, Bn := {2n − 1, 2n}, B := {Bn : n ∈ N},
and let P be the σ -additive probability satisfying

(∀n) P({2n − 1}) = P({2n}) = 1

2n+1 .

LetK := { f : P( f ) > 0} ∪ {I{2n:n∈N} − I{2n−1:n∈N}} ∪ {I2n−1 − I2n : n ∈ N}, and let
D be the natural extension of K, given by Eq. (1).

• D is coherent: we only need to show that 0 /∈ D. By definition of the natural
extension, any gamble g of D can be expressed as

g = λ0 f +
n∑

i=1

λi fi + λ(I{2n:n∈N} − I{2n−1:n∈N}), (6)

where λ0, λ1, . . . , λn, λ ≥ 0, with not all of them 0, and P( f ) > 0, fi ∈ {I2n−1 −
I2n : n ∈ N} for all i .
Assume ex-absurdo that 0 ∈ D and consider its expression as in Eq. (6). Since

Fig. 1 Implications between conditions Co1–Co4 for arbitrary coherent sets of gambles (left) and for
coherent sets of strictly desirable gambles (right)
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P( fi ) = 0 = P(I{2n:n∈N} − I{2n−1:n∈N}) for any fi ∈ {I2n−1 − I2n : n ∈ N}, it
follows that it should be λ0 = 0. On the other hand, both when λ > 0 or when
λ = 0 we deduce the existence of some natural number n where the right-hand
side is strictly positive, a contradiction.

• D does not satisfy Co2, since I2n−1 − I2n ∈ D for every n ∈ N but their sum
I{2n−1:n∈N} − I{2n:n∈N} does not.

• By construction, D induces the linear prevision P and the conditional linear pre-
vision P(·|Bn) associated with the uniform distribution for every Bn ∈ N. It holds
that P = P(P(·|B)), whence Co4 holds. To prove that in fact Co1 also holds,
let g be such that P(g|B) ∈ D. Applying Eq. (6), we observe that if λ0 = 0
then the combination

∑n
i=1 λi fi + λ(I{2n:n∈N} − I{2n−1:n∈N}) does not produce a

B-measurable gamble. As a consequence,

P(g) = P(P(g|B)) = λ0P( f ) > 0,

using again Eq. (6). We conclude that g ∈ D. �

As a consequence, we deduce that also Co3, Co4 � Co1.

Example 3 (Co1 may not hold even when Ω is finite) Consider Ω := {1, 2, 3, 4}
and let D be the set of strictly desirable gambles associated with the probability P
with mass function (0, 0, 0.5, 0.5). The gamble f given by f (1) = f (2) = f (3) =
1, f (4) = −1 satisfies that P( f ) = 0 and f /∈ L+, whence f /∈ D.

On the other hand, if we consider B := {1, 2} and the partition B := {B, Bc} we
obtain that P( f |B) = 1 and P( f |Bc) = 0. This implies that P( f |B) = IB ∈ D and
therefore that Co1 does not hold. �

Finally, to establish that condition Co4 is not trivial, in that it does not follow from
the coherence of D, we refer to [13, Example 2].

3.2 Negative Conglomerability

We shift now our attention to the main focus of this paper: negative conglomerability.

Definition 2 (Negative conglomerability) Given a partition B of Ω , we say that a
coherent set of desirable gambles D is negatively B-conglomerable if and only if

(B f /∈ D ∀B ∈ B) ⇒ f /∈ D.

for all f ∈ L. IfD is negatively B-conglomerable for all partitions B of Ω it is called
fully negatively conglomerable.

If we compare this definition with Definition 1, we observe that we need not be
explicit about f or B f being different from 0, since the 0 gamble is not desirable by
assumption.

In analogy with the previous subsection, we shall first of all study its connection
with the dual negative conditions of Co1–Co4. We consider thus:
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Co5 (∀ f ∈ L) P( f |B) /∈ D ⇒ f /∈ D.
Co6 D is negatively B-conglomerable.
Co7 (∀ f ∈ L) P(G( f |B)) ≤ 0.
Co8 (∀ f ∈ L) P( f ) ≤ P(P( f |B)).

The following proposition summarises the implications between them:

Proposition 2 (a) In general, Co5 ⇒ Co8 ⇒ Co7 and Co5 ⇒ Co6 ⇒ Co7.
(b) When D is a set of strictly desirable gambles, Co5 ⇒ Co8 ⇒ Co6 ⇔ Co7.

Proof (a) We begin by establishing that Co5 ⇒ Co8. Ex-absurdo, if there were some
gamble f such that P( f ) > P(P( f |B)) then by constant additivity there would
be a real numberμ such that P( f +μ) > 0 > P(P( f +μ|B)), whence f +μ ∈ D
while P( f + μ|B) does not, a contradiction with Co5.
To prove that Co5 ⇒ Co6, consider a gamble f such that B f /∈ D for any B ∈ B.
This means that P( f |B) ≤ 0, whence the gamble P( f |B) is non-positive and as
a consequence it cannot belong to D. Applying Co5, we conclude that f /∈ D.
Next we prove that Co6 ⇒ Co7. Observe that for any gamble f , any ε > 0 and
any B ∈ B it holds that G( f |B) − εB /∈ D. Applying Co6, we deduce that
G( f |B) − ε /∈ D and as a consequence P(G( f |B) − ε) ≤ 0. Applying constant
additivity, we deduce that P(G( f |B)) ≤ ε and since this holds for every ε > 0
we conclude that P(G( f |B)) ≤ 0.
Finally, we prove that Co8 ⇒ Co7. For this, note that

P(G( f |B)) + P(P( f |B)) ≤ P( f ) ≤ P(P( f |B)) ⇒ P(G( f |B)) ≤ 0

for anygamble f , where the second inequality in the chain above follows fromCo8.
(b) Let us establish that Co7 ⇒ Co6 under strict desirability. Consider a gamble f

such that B f /∈ D for any B ∈ B. This implies in particular that f /∈ L+. Then
P( f |B) ≤ 0 for all B, whence G( f |B) ≥ f . Applying monotonicity and Co7,
we obtain P( f ) ≤ P(G( f |B)) ≤ 0. But then since we have already established
that f /∈ L+, we conclude that f /∈ D. ��
Figure 2 illustrates the result.
Again, let us give examples showing that no additional implication holds between

these conditions.

Example 4 (Co8 � Co6) Let Ω := {1, 2, 3, 4}, B := {1, 2},B := {B, Bc} and

D :=
{

f :
∑

i

f (i) > 0 or
∑

i

f (i) = 0,min{ f (1), f (3)} > 0

}

.

Fig. 2 Implications between
conditions Co5–Co8 for
arbitrary coherent sets of
gambles (left) and for coherent
sets of strictly desirable gambles
(right)
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If we apply Eq. (2) we obtain that D induces the linear prevision P associated with
the uniform distribution, which satisfies P = P(P(·|B)). Thus, condition Co8 holds.
However, the gamble f = (1,−1, 1,−1) belongs toD even if B f , Bc f /∈ D. There-
fore, D does not satisfy Co6. �

Note that this example, together with Proposition 2, allows us to conclude also
that Co8 � Co5 and that Co7 � Co6.

Example 5 (Co6 � Co8) Let Ω := {1, 2, 3, 4}. For any A ⊆ Ω with |A| = 2, we
denote by PA the linear prevision given by PA( f ) := ∑

ω∈A 0.5 f (ω). Let DA :=
{ f : PA( f ) > 0}∪L+ denote the set of strictly desirable gambles associated with PA

by means of Eq. (4), and define D := ∩|A|=2DA. Then D is a coherent set of strictly
desirable gambles.

Consider the gamble f given by f (i) := i for i = 1, 2, 3, 4, and let B :=
{1, 2},B := {B, Bc}. Then P( f ) = 1.5. On the other hand, for any μ > 1 the gamble
B( f −μ) = (1−μ, 2−μ, 0, 0) /∈ D, while ifμ < 1 it is B( f −μ) ∈ L+ ⊆ D; thus,
P( f |B) = 1. Similarly, P( f |Bc) = 3 and therefore P(P( f |B)) = 1. Thus, Co8
does not hold.

To see that on the other hand D is negatively B-conglomerable, consider a gamble
g such that Bg, Bcg /∈ D. Then it cannot be Bg ∈ L+, so either Bg = 0 or there is
some ω ∈ B such that g(ω) < 0. Similarly, since Bcg /∈ L+ then either Bcg = 0 or
there is some ω′ ∈ Bc such that g(ω′) < 0. From this we deduce that either g = 0
(and then g /∈ D) or we can find an event A of cardinality two such that PA(g) < 0,
leading to g /∈ D. �

If we consider this example together with Proposition 2 we deduce that Co6�Co5
and that Co7 � Co8.

With respect to the remaining implications in the right-hand side of Fig. 2, note that
Example 5 already involves strictly desirable gambles. Let us then establish that Co8
� Co5 under strict desirability:

Example 6 Let Ω := {1, 2, 3, 4}, B := {1, 2},B := {B, Bc}. Consider the coherent
lower prevision P given by

P( f ) := 0.5min{ f (1), f (2)} + 0.5min{ f (3), f (4)}

and let D be its associated set of strictly desirable gambles. Note that P( f |B) =
min{ f (1), f (2)} and P( f |Bc) = min{ f (3), f (4)}. It follows that P( f ) =
P(P( f |B)) for any gamble f , and Co8 holds. On the other hand, for the gamble
f := (1, 0, 1, 0) ∈ L+ ⊆ D, we have that P( f |B) = 0 /∈ D. Thus, Co5 does not
hold. �

These examples also tell us that no additional implication holds when Ω is finite.
If we compare Figs. 1 and 2, we find that some of the implications that hold in the

case of conglomerability do not hold for the analogous negative conditions, and vice
versa. We think it is instructive to deepen a bit into this issue, to understand better how
coherence and conglomerability intertwine. Specifically:
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• While the condition P( f |B) ∈ D ⇒ f ∈ D does not imply the B-
conglomerability of D, we observe that the negative condition P( f |B) /∈ D ⇒
f /∈ D implies that D is negatively conglomerable. The reason for this lies in the
geometry of coherent sets of desirable gambles: a non-conglomerable set D may
still satisfy condition Co1 due to the boundary behaviour, and we indeed observe
in Proposition 1 that the implication Co1 ⇒ Co2 holds when D is a coherent set
of strictly desirable gambles.

• It holds that P ≥ P(P(·|B)) is equivalent to P(G(·|B)) ≥ 0, while only the
implication P ≤ P(P(·|B)) ⇒ P(G(·|B)) ≤ 0 holds. This is because a coherent
lower prevision is super-additive COH3 P( f +g) ≥ P( f )+P(g), and this is used
in the proof of Proposition 1 to establish that P(G(·|B)) ≥ 0 ⇒ P ≥ P(P(·|B)).
However, in order to prove the implication P(G(·|B)) ≤ 0 ⇒ P ≤ P(P(·|B))

we would need P to satisfy a subadditivity condition that will not hold in general.
• The same explanation lies underneath another discrepancy: we obtain that if D
is conglomerable then P ≥ P(P(·|B)), but the negative conglomerability of D
does not imply that P ≤ P(P(·|B)). If we examine the proof of Proposition 1, the
implication Co2 ⇒ Co4 makes use of the implication Co3 ⇒ Co4, which in turn
requires the super-additivity of P .

Remark 1 When D is a coherent set of strictly desirable gambles, it is not difficult
to obtain an alternative characterisation of negative conglomerability in terms of the
associated coherent lower prevision P induced by D: it holds that D satisfies Co6 if
and only if for any gamble f ,

(∀B ∈ B) P(B f ) ≤ 0, B f /∈ L+ ⇒ P( f ) ≤ 0. (7)

• To prove that Co6 implies (7), observe that if P(B f ) ≤ 0, B f /∈ L+ for every
B ∈ B then B f /∈ D for every B, whence by Co6 f /∈ D and therefore P( f ) ≤ 0.

• To prove that (7) implies Co6, note that if B f /∈ D for every B then it must be
P(B f ) ≤ 0 and B f /∈ L+. This second condition entails that f /∈ L+, and since
by (7) P( f ) ≤ 0 we deduce that f /∈ D, establishing that Co6 holds.

Observe on the other hand that Co6 does not imply that

(∀B ∈ B) P(B f ) ≤ 0 ⇒ P( f ) ≤ 0.

A counterexample can be built considering the lower prevision P and the gamble f
in Example 5: there, it holds that P(B f ) = P(Bc f ) = 0 while P( f ) = 1.5. This
means that the condition B f /∈ L+ cannot be omitted in Eq. (7). �

3.3 Negative Conglomerability andMarginal Extension

In the above discussion we have seen some connections between positive and negative
conglomerability and lower previsions that can be expressed as marginal extensions.
The intuition here is that the underlying meaning of negative conglomerability may
make sense when our information is either of local (conditional on an event B) or
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global (about the events B that determine the local levels) nature. In this section we
explore the connection in more detail.

Definition 3 (Marginal extension) We say that a coherent lower prevision P is a
marginal extension when it can be expressed as P = P(P(·|B)) for some separately
coherent conditional lower prevision P(·|B).

When the partition B is finite, any linear prevision P can be expressed as P =
P(P(·|B)), where P(·|B) is derived from P by Bayes’ rule; this is simply a refor-
mulation of the law of total probability in terms of gambles. However, a coherent
lower prevision need not be a marginal extension in general, as shown for instance in
Example 5.

We begin by giving a characterisation of marginal extensions in terms of sets of
almost desirable gambles; observe the similarities with conditions Co1 and Co5.

Proposition 3 Let D be a coherent set of desirable gambles and let P, P(·|B) be the
unconditional and conditional lower previsions induced byD bymeans of Eqs. (2), (3).
LetDP denote the set of almost desirable gambles associated with P by means of (5).

(a) P ≥ P(P(·|B)) ⇔ (∀ f ∈ L)[P( f |B) ∈ DP ⇒ f ∈ DP ].
(b) P ≤ P(P(·|B)) ⇔ (∀ f ∈ L)[P( f |B) /∈ DP ⇒ f /∈ DP ].
As a consequence,

P = P(P(·|B)) ⇔ (∀ f ∈ L)[P( f |B) ∈ DP ⇔ f ∈ DP ].

Proof The proof is based on the following equivalence, valid for any pair of coherent
lower previsions P, Q:

P ≤ Q ⇔ (∀ f ∈ L)[Q( f ) < 0 ⇒ P( f ) < 0]. (8)

The direct implication from P ≤ Q is trivial, while the converse follows from the
constant additivity property that is satisfied by coherent lower previsions. For instance,
if there is ex-absurdo some gamble f such that P( f ) > Q( f ), then given 0 <

ε < P( f ) − Q( f ) and f ′ = f − Q( f ) − ε it holds that Q( f ′) = −ε < 0 <

P( f ) − Q( f ) − ε = P( f ′).
(a) The condition on the right-hand side can be reformulated as P( f ) < 0 ⇒

P(P( f |B)) < 0, which by Eq. (8) (with the lower previsions P(P(·|B)), P)
is equivalent to P ≥ P(P(·|B)).

(b) The condition on the right-hand side can be reformulated as P(P( f |B)) < 0 ⇒
P( f ) < 0, which, again by Eq. (8) is equivalent to P ≤ P(P(·|B)).

The last equivalence is an immediate consequence of items (a) and (b). ��
By putting together Propositions 1 and 2 we may derive necessary or sufficient

conditions for the lower prevision induced by D to be a marginal extension:

Corollary 1 Let D be a coherent set of desirable gambles and let P, P(·|B) be the
unconditional and conditional lower previsions it induces by means of Eqs. (2), (3).
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(a) (∀ f ∈ L)[P( f |B) ∈ D ⇔ f ∈ D] implies that P = P(P(·|B)).
(b) If D is a coherent set of strictly desirable gambles, then P = P(P(·|B)) implies

that D is conglomerable and negatively conglomerable.

Proof (a) This is a consequence of the implications Co1 ⇒ Co4 in Proposition 1(a)
and Co5 ⇒ Co8 in Proposition 2(a).

(b) This follows from the implicationsCo4⇒Co2 in Proposition 1(b) andCo8⇒Co6
in Proposition 2(b). ��

Note that the necessary conditions in Corollary 1(b) are not sufficient in general,
meaning that the lower prevision induced by a conglomerable and negatively con-
glomerable set of desirable gambles need not take the form of the marginal extension;
a counterexample is Example 5.

On the other hand, Example 4 shows that negative conglomerability is not a nec-
essary condition for P to be a marginal extension model if D is not a set of strictly
desirable gambles. Note moreover that that example gives a linear prevision on a
finitary context.

4 (Negative) Conglomerable Combination of Sets of Desirable
Gambles

In this section, we shall explore the suitability of negative conglomerability as a struc-
tural assessment. As we mentioned in Sect. 2, given a set of desirable gambles K, it is
possible to determine the smallest coherent superset, when a coherent superset exists:
it is given by its natural extension. Similarly, in [10, 13] we investigated how conglom-
erability can be incorporated as a structural assessment, in the sense of determining
the smallest coherent and conglomerable set of gambles that includes a given one.

Inspired by our work in the previous section, we recall that one scenario where the
natural and the conglomerable natural extensions are easy to determine is when the
gambles in our initial assessment are either B-measurable or conditional with respect
to one of the elements of B. Specifically, assume that for a given partition B of Ω we
have a set DB of B-measurable gambles that is coherent with respect to LB, and also
that for each B ∈ B we have a set of desirable gambles D(B) that is coherent with
respect to L(B). Then the smallest coherent set of gambles D satisfying1

{
D ∩ LB = DB
D ∩ L(B) = D(B) ∀B ∈ B (9)

is the natural extension

1 We are making a slight abuse of notation throughout this section, in that we are identifying a gamble f
on B with its extension to Ω given by g(ω) = f (ω) if ω ∈ B and g(ω) = 0 otherwise. This is what allows
us to make intersection D ∩ L(B), or consider the inclusion between a subset of L(B) and D.
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D := E(DB∪⋃
B D(B))

= { f ≥ g + h : g ∈ DB ∪ {0}, (∀B) Bh ∈ D(B) ∪ {0}, suppBh finite } \ {0},
(10)

where suppB(h) := {B ∈ B : Bh �= 0} denotes the support of the gamble h with
respect to the partition B.

On the other hand, the smallest coherent set of desirable gambles satisfying (9) and
conglomerability is given by [13, Prop. 29]:

D̃ := { f ≥ g + h : g ∈ DB ∪ {0}, (∀B) Bh ∈ D(B) ∪ {0}} \ {0}. (11)

It is not difficult to establish that the two sets above satisfy negative conglomerabil-
ity.

Proposition 4 The sets D, D̃ defined by Eqs. (10) and (11) satisfy Co6.

Proof Let us establish the result for D, the proof for D̃ being analogous.
Consider a gamble f ∈ D. Then there are gambles g, h such that f ≥ g + h,

where g ∈ DB ∪ {0} and Bh ∈ D(B) ∪ {0} for every B. Assume that B f /∈ D(B) for
any B ∈ B; since f �= 0, this implies that at least one of g, h must be different from
zero. In fact, it must always be g �= 0, since otherwise it would be f ≥ h and as a
consequence B f ∈ D(B) whenever Bh �= 0.

Now, if 0 �= B f /∈ D then given that Bh ∈ D(B) ∪ {0} then it must be g(B) < 0,
or we would arrive at a contradiction; but since g ∈ DB there must also be some
B for which g(B) > 0, and in that case it should be B f = 0 ⇒ Bh < 0, also a
contradiction. ��

More generally, if we consider a coherent set of desirable gambles D and for each
B ∈ B we let

D(B) := D ∩ L(B), (12)

then it can easily be seen that

D is B-conglomerable ⇔
⊕

B

D(B) ⊆ D (13)

while

D is negatively B-conglomerable ⇔
⊕

B

D(B)c ⊆ Dc

⇔ D ⊆
(

⊕

B

D(B)c

)c

, (14)

where for any set of gambles K(B) ⊆ L(B) we denote

⊕

B

K(B) := { f : (∀B) B f ∈ K(B) ∪ {0}} \ {0}. (15)
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From Eqs. (13), (14) we deduce that D is positively and negatively conglomerable if
and only if

⊕

B

D(B) ⊆ D ⊆
(

⊕

B

D(B)c

)c

.

Note that the inclusion
⊕

B D(B) ⊆ (⊕
B D(B)c

)c always holds, since the sets⊕
B D(B) and

⊕
B D(B)c are disjoint. From these considerations we can establish

the following result:

Proposition 5 Consider a partitionB ofΩ and letD(B) be a coherent set of desirable
gambles with respect to L(B).

(a) Any coherent set of gambles D such that
⊕

B D(B) ⊆ D ⊆ (⊕
B D(B)c

)c
deter-

mines the sets of gambles D(B), B ∈ B by means of Eq. (12), and it is therefore
conglomerable and negatively conglomerable.

(b) The smallest such set is
⊕

B D(B).

Proof (a) Let B ∈ B and denote D′(B) := { f ∈ D : f = B f }. Since D(B) ⊆⊕
B D(B) ⊆ D and by definition any f ∈ D(B) satisfies f = B f , it follows that

D(B) ⊆ D′(B). On the other hand, if f ∈ D′(B) \ D(B) then f ∈ D(B)c ⊆⊕
B D(B)c, a contradiction with f ∈ D.

(b) The coherence of
⊕

B D(B) is a consequence of the coherence of the sets D(B)

for every B ∈ B. ��
Ifwewant to have a set of desirable gambles that ismore informative than

⊕
B D(B)

and is at the same time conglomerable and negatively conglomerable, wemay consider
the conglomerable natural extension of DB ∪ ⋃

B D(B), defined by Eq. (11).
On the other hand, the set

(⊕
B D(B)c

)c is not coherent in general and as a conse-
quence there is not a unique largest set of gambles that inducesD(B) and is at the same
time conglomerable and negatively conglomerable. This is illustrated by the following
example:

Example 7 Consider Ω := {1, 2, 3, 4}, B := {1, 2},B := {B, Bc} and the coher-
ent sets of desirable gambles D(B) := L+(B),D(Bc) := L+(Bc). Given f :=
(1, 1,−2,−2) and g := (−2 − 2, 1, 1) it holds that f , g ∈ (

⊕
B D(B)c)c, because

B f ∈ D(B) and Bcg ∈ D(Bc). However, f + g = (−1,−1,−1,−1) ∈ ⊕
B D(B)c,

or, equivalently, f +g does not belong to (
⊕

B D(B)c)c. Thus, this set is not coherent.
Consider now

D1 := { f : B f ∈ L+} ∪ { f : B f = 0, Bc f ∈ L+}.

• D1 is coherent: L+ ⊆ D1 and 0 /∈ D1 by construction; f ∈ D1, λ > 0 ⇒
λ f ∈ D1, by considering the two sets of gambles that build D1 separately; and
f , g ∈ D1 ⇒ f + g ∈ D1, again dealing with the two sections of D1 separately.

• By construction,
⊕

B D(B) ⊆ D1 ⊆ (⊕
B D(B)c

)c.
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• To prove thatD1 does not have a coherent superset included in
(⊕

B D(B)c
)c, we

are going to show that for any gamble f ∈ (⊕
B D(B)c

)c \D1, the set D1 ∪ { f }
incurs a sure loss, i.e., that ED1∪{ f } is not coherent.
Consider indeed such a gamble f . Since f ∈ (⊕

B D(B)c
)c, it means that it

does not belong to
⊕

B D(B)c; as a consequence, either B f does not belong to
D(B)c or Bc f does not belong to D(Bc)c; equivalently, this means that either
B f ∈ D(B) = L+(B) or Bc f ∈ D(Bc) = L+(Bc). The first case cannot be,
because by assumption f /∈ D1, and any gamble satisfying B f ∈ L+(B) belongs
to D1. Also, if it were B f = 0 and Bc f ∈ L+(Bc), then also we would deduce
that f ∈ D1, which has been ruled out by assumption. We conclude then that there
must be some ω ∈ B for which f (ω) < 0 and also that Bc f ∈ L+(Bc).
Let μ := minB B f < 0 and μ′ := max f > 0; assume w.l.o.g that it is μ =
f (1). Then the natural extension ED1∪{ f } should include the gamble g := f +
(−0.5μ,−0.5μ,−2μ′,−2μ′) given that the gamble

(−0.5μ,−0.5μ,−2μ′,−2μ′)

is strictly positive on B and therefore belongs to D1; but g does not belong to(⊕
B D(B)c

)c, because Bg /∈ L+(B) (since g(1) = 0.5μ < 0) and Bcg /∈
L+(Bc) (since g(3), g(4) ≤ −μ′ < 0).

Thus, D1 is a set of gambles that satisfies conglomerability and negative conglomer-
ability, induces D(B),D(Bc) and is undominated with respect to set inclusion. But it
is not the only one: with a completely similar reasoning we can establish that so is

D2 = { f : Bc f ∈ L+} ∪ { f : Bc f = 0, B f ∈ L+}.

As a consequence, there is not a unique set of gambles that is undominated in the
partial order determined by set inclusion. �

4.1 A Negatively Conglomerable Extension?

If we endorsed negative conglomerability as a structural assessment, then we would
want to be able to transform any model into one that satisfies this condition with
a minimal change. This would be an analogous process to that of natural extension
mentioned in Sect. 2.

Thus, assume thatD is a coherent set of desirable gambles that does not satisfy nega-
tive conglomerability. If we consider a supersetD′, it then follows thatD(B) ⊆ D′(B)

for all B, whence
(⊕

B D(B)c
)c ⊆ (⊕

B D′(B)c
)c. Recalling Eq. (14), we conclude

that making D more precise may allow us to satisfy negative conglomerability, but
this need not be the case; and a similar comment can be made if we make D more
imprecise. In this section, we explore these two avenues in more detail. We begin with
that of making the assessments more precise, which corresponds to adding gambles
to our initial set D.

Example 8 Consider the set of desirable gambles K from Example 2 and its natural
extensionD. ThenD does not satisfy negative conglomerability, because I2n− I2n−1 /∈
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D for any n ∈ N but I{2n:n∈N} − I{2n−1:n∈N} does. D has subsets that satisfy negative
conglomerability: one such set is the natural extension ofK\{I{2n:n∈N} − I{2n−1:n∈N}},
which is equal to

E := { f : P( f ) > 0} ∪ posi({I2n−1 − I2n : n ∈ N}).

To see that it satisfies negative conglomerability, consider a gamble f such that Bn f /∈
E for every n. If Bn f �= 0, then either P(Bn f ) < 0 or Bn f = λn(I2n − I2n−1) for
some λn > 0 and P(Bn f ) = 0; if there is some n with P(Bn f ) < 0 we deduce
that P( f ) < 0, whence f /∈ E . If on the contrary Bn f = λn(I2n − I2n−1) for some
λn > 0 whenever Bn f /∈ E , we also deduce that f /∈ posi({I2n−1 − I2n : n ∈ N}),
and therefore again f /∈ E .

On the other hand, no superset of D satisfies negative conglomerability, because
coherence prevents us from adding I2n − I2n−1 toD for any n and so we get a violation
of negative conglomerability with f := I{2n:n∈N} − I{2n−1:n∈N}. �

On the other hand, even if a set of desirable gambles has some superset satisfying
negative conglomerability, it may not have a smallest such superset. This is because
the family of coherent and negatively conglomerable sets of gambles is not closed
under arbitrary intersections (that is, it does not form a belief structure in the sense of
[3]), as our next example shows:

Example 9 Consider the same setting as in the previous example and let now D′ be
the natural extension of

K′ := { f : P( f ) > 0} ∪ {I{2n:n∈N} − I{2n−1:n∈N}}.

Then any gamble g inD′ will satisfy either P(g) > 0 or g = λ(I{2n:n∈N}− I{2n−1:n∈N})
for some λ > 0. As a consequence, given f := I{2n:n∈N} − I{2n−1:n∈N}, it holds that
Bn f = I2n − I2n−1 does not belong to D′ for any n ∈ N, given that P(Bn f ) =
0. Since on the other hand f ∈ D′ by construction, D′ does not satisfy negative
conglomerability. On the other hand, if we let D′

n be the natural extension of K′ ∪
{I2n − I2n−1}, it can be checked thatD′

n is a negatively conglomerable superset ofD′.
However, it holds that D′ = ∩nD′

n , from which we deduce that D′ has no minimal
negatively conglomerable superset. �

If a set of desirable gambles is not negatively conglomerable, one strategy to find
a negatively conglomerable superset would be to add some gamble B f whenever f
entails a violation of negative conglomerability. The crudest approximation would be
then to consider the set

D′ := { f ∈ D : (∀B ∈ B) B f /∈ D} (16)

and take the natural extension E of

D ∪ {B f : f ∈ D′,−B f /∈ D}.
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However, this procedure may not determine a coherent set of desirable gambles, even
if such a set exists:

Example 10 Let Ω := {1, 2, 3, 4, 5, 6}, B1 := {1, 2}, B2 = {3, 4}, B3 := {5, 6} and
B := {B1, B2, B3}. Let P be the uniform distribution and let D be the natural exten-
sion of { f : P( f ) > 0} ∪ {g1, g2, g3, g4}, where g1 := (1,−2, 1, 0, 0, 0), g2 :=
(1, 0, 1,−2, 0, 0), g3 := (0, 0,−2, 1, 0, 1), g4 := (0, 0, 0, 1,−2, 1). It is not diffi-
cult to establish thatD is coherent: indeed, for any gamble g ∈ D such that P(g) = 0,
there are λi ≥ 0, i = 1, . . . , 4, not all of them equal to 0, such that g = ∑4

i=1 λi gi ;
but if λ1 > 0 or λ2 > 0 we obtain g(1) = ∑4

i=1 λi gi (1) > 0, and if λ3 > 0 or λ4 > 0
we obtain g(6) = ∑4

i=1 λi gi (6) > 0. As a consequence, 0 cannot belong to D and
this implies that this set is coherent.

It follows from coherence that both f1 := (1,−1, 1,−1, 0, 0) = 0.5 ·
(1,−2, 1, 0, 0, 0) + 0.5 · (1, 0, 1,−2, 0, 0) and f2 := (0, 0,−1, 1,−1, 1) = 0.5 ·
(0, 0,−2, 1, 0, 1) + 0.5 · (0, 0, 0, 1,−2, 1) belong to D. Moreover, B f1 and B f2 do
not belong to D for any B ∈ B:
• In the case of f1, it follows from our comments above in the case of B2, B3; on the
other hand, B1 f1 = (1,−1, 0, 0, 0, 0) cannot be expressed as a linear combination
of g1, g2, whence it does not belong to D.

• In the case of f2, it follows from our comments above in the case of B1, B2; on the
other hand, B3 f2 = (0, 0, 0, 0,−1, 1) cannot be expressed as a linear combination
of g3, g4, whence it does not belong to D.

As a consequence, f1, f2 ∈ D′. Thus, if we follow the above procedure E should
include both (0, 0, 1,−1, 0, 0) and (0, 0,−1, 1, 0, 0), leading to an incoherence.

NeverthelessD has some negatively conglomerable superset: it suffices to consider
the natural extension E∗ of D ∪ {(1,−1, 0, 0, 0, 0), (0, 0, 0, 0,−1, 1)}:
• 0 /∈ E∗ because, reasoning as before, we can prove that any f ∈ E∗ such that

P( f ) = 0 will satisfy f (1) > 0 or f (6) > 0. As a consequence, E∗ is coherent.
• To see that E∗ is negatively conglomerable, consider f such that B f /∈ E∗ for
all B ∈ B but f ∈ E∗. Then it should be P(B f ) ≤ 0 for all B and P( f ) ≥ 0,
from which it follows that P( f ) = 0, P(B f ) = 0 for all B and that either
f (1) > 0 or f (6) > 0. In the first case, B1 f = (λ,−λ, 0, 0, 0, 0) for λ > 0,
whence B1 f ∈ E∗; in the second, B3 f = (0, 0, 0, 0,−μ,μ) for μ > 0, whence
B3 f ∈ E∗. �

Remark 2 The above example suggests a procedure for establishing a negatively con-
glomerable extension: for any gamble f ∈ D′ we make a selection H( f ) ∈ B
satisfying H( f ) f ,−H( f ) f /∈ D, and then take ED∪D1 , for

D1 := {H( f ) f : f ∈ D′}.

It can be checked that ifED∪D1 is coherent, then it is negatively conglomerable: any ele-
ment g of ED∪D1 will be of the form g = λ1g1+∑n

i=2 λi gi , for g1 ∈ D, g2, . . . , gn ∈
D1, λ1, . . . , λn ≥ 0. If g entails a violation of negative conglomerability then for any B
with Bg �= 0 it should be Bg = B(λ1g1+∑n

i=2 λi gi ); noting that Bgi ∈ ED∪D1 ∪{0}
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for i = 2, . . . , n, we deduce that Bg1 /∈ ED∪D1 for any B ∈ B. But then this implies
in particular that Bg1 /∈ D for every B ∈ B, whence g1 ∈ D′; by construction we
should have Bg1 ∈ ED∪D1 for B = H(g), so we obtain a contradiction.

Nevertheless, a word of caution should be given: the procedure above may not
always be practical, in that the evaluation of all the possible selections H for the gam-
bles f where negative conglomerability is violated may not be computable depending
on the size of the partition B and of the class D′. �

It is somewhat instructive to compare the situation with the condition of conglom-
erability. Although the conglomerable natural extension may not exist [13, Remark 1],
when a coherent set of desirable gambles has a coherent and conglomerable superset
then it has a smallest such superset, in contradistinction with what we have seen for
negative conglomerability.

Since the procedure of considering a negatively conglomerable superset may not
always be applicable, next we go in the opposite direction: we look for a subset of D
that satisfies negative conglomerability. Note that, unlike what happened before, such
a set always exists: we can for instance take the set L+ of non-negative gambles. Our
goal is then to look for the greatest such subset, which would correspond to the idea of
making theminimal correction fromour setD that achieves negative conglomerability.
In this sense, it is not difficult to establish an upper bound of this set:

Proposition 6 Let D be a set of gambles that is coherent and conglomerable, and let
D′ be given by Eq. (16).

(a) For every f ∈ D′ there is some B ∈ B such that B(− f ) /∈ D.
(b) Let E be the natural extension of D \ D′. If it is negatively conglomerable, then it

is the largest subset of D to be so.

Proof We begin with the first statement. Ex-absurdo, if for a given f ∈ D′ it held that
B(− f ) ∈ D for every B ∈ B then by conglomerability it would be − f ∈ D, and this,
together with coherence, contradicts that f ∈ D′ ⊆ D.

For the second statement, note that the coherence of D implies the coherence of
E . On the other hand, for any D∗ ⊆ D that is negatively conglomerable it must be
D∗∩D′ = ∅, since otherwise there would be some gamble f ∈ D∗ such that B f /∈ D∗
for every B, entailing a violation of negative conglomerability. Therefore, D∗ ⊆ E .
Thus, if E is negatively conglomerable then it is the largest such subset of D. ��

Nevertheless, the set E in the above construction need not satisfy negative con-
glomerability:

Example 11 Let Ω := {1, 2, 3, 4}, B := {1, 2},B := {B, Bc} and P the linear pre-
vision associated with the uniform distribution. Let D be the natural extension of
{ f : P( f ) > 0} ∪ {(1,−2, 1, 0), (1, 0, 1,−2)}. Then D is coherent, observing that
we cannot obtain the zero gamble as a positive linear combination of the gambles
(1,−2, 1, 0), (1, 0, 1,−2). To illustrate that it violates negative conglomerability, let
f := (1,−1, 1,−1). Then

f = 0.5 · (1,−2, 1, 0) + 0.5 · (1, 0, 1,−2) ⇒ f ∈ D;
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however, B f = (1,−1, 0, 0) /∈ D because P(B f ) = 0 and the only gambles in D
with zero prevision are the linear combinations of (1,−2, 1, 0), (1, 0, 1,−2), which
are always strictly positive in 1 and on 3. Similarly, Bc f = (0, 0, 1,−1) /∈ D and as
a consequence negative conglomerability is violated.

Let us establish that

D′ = {(λ1 + λ2,−2λ1, λ1 + λ2,−2λ2) : λ1, λ2 > 0}.

First of all,D′ ⊆ { f ∈ D : P( f ) = 0}, since P( f ) > 0 implies that either P(B f ) > 0
or P(Bc f ) > 0 and in any of the two cases we conclude that B f or Bc f belongs to
D. Secondly,

{ f ∈ D : P( f ) = 0} = {(λ1 + λ2, −2λ1, λ1 + λ2, −2λ2) : λ1, λ2 ≥ 0,max{λ1, λ2} > 0}.

However, when λ1 = 0 in the equation above we obtain that B f ∈ D andwhen λ2 = 0
we get Bc f ∈ D. Thus, it must be λ1, λ2 > 0 for f to belong to D′.

From thiswe deduce that the natural extension ofD\D′ shall still include the natural
extension of { f : P( f ) > 0} ∪ {(1,−2, 1, 0), (1, 0, 1,−2)}, and as a consequence
we obtain that E = D.

This also tells us that there may not be a largest subset of D that is negatively con-
glomerable: for instance, the natural extensionD1 of { f : P( f ) > 0}∪{(1,−2, 1, 0)}
is negatively conglomerable, because the only gambles it includes with zero prevision
are of the type (λ,−2λ, λ, 0) for some λ > 0, and these cannot be used to vio-
late negative conglomerability; similarly, the natural extension D2 of { f : P( f ) >

0} ∪ {(1, 0, 1,−2)} also satisfies negative conglomerability. But the only coherent
superset of D1 ∪ D2 that is included in D is D itself, which does not satisfy negative
conglomerability. �

5 The Precise Case

In the previous section we have studied the basic properties of negative conglomer-
ability in contraposition with those related to the conglomerability of a coherent set
of desirable gambles. Next we shall analyse in more detail the case where the set of
desirable gambles is associated with a linear prevision.

We begin by investigating if in that case we can establish additional implications
to those already present in Proposition 2. In this respect, it is quite immediate to prove
the following:

Proposition 7 If D induces a linear prevision P and a linear conditional prevision
P(·|B), then:

(a) Co7 ⇒ Co8;
(b) Co4 ⇔ Co8;
(c) Co3 ⇔ Co7.
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Proof (a) To prove that Co7 ⇒ Co8, simply observe that for any gamble f , it holds
that 0 ≥ P(G( f |B)) = P( f − P( f |B)) = P( f ) − P(P( f |B)), whence P ≤
P(P(·|B)).

(b) For Co4 ⇔ Co8, note that P(P(·|B)) ≤ P ⇔ P(P(·|B)) = P ⇔ P(P(·|B)) ≥
P , since if there was some gamble f such that P(P( f |B)) < P( f ) then by
conjugacy it would be P(P(− f |B)) > P(− f ).

(c) With a similar reasoning we obtain that Co3 ⇔ Co7: we only need to establish
that P(G(·|B)) ≤ 0 ⇔ P(G(·|B)) = 0 ⇔ P(G(·|B)) ≥ 0, using again that by
conjugacy P(G( f |B) < 0 implies that P(G(− f |B)) > 0.

��
It is also immediate to establish that conglomerability and negative conglomer-

ability are equivalent in the particular case where D is a maximal set of desirable
gambles:

Proposition 8 Let D be a maximal set of desirable gambles.

(a) D is B-conglomerable ⇔ D is negatively B-conglomerable.
(b) Co5 ⇒ Co1.

Proof (a)(⇒) Consider a gamble f �= 0 such that B f /∈ D for every B ∈ B. By
maximality, it follows that B(− f ) = −B f ∈ D ∪ {0} for every B. Applying
conglomerability, it follows that − f ∈ D, since − f �= 0, and by coherence
f /∈ D.

(⇐) Conversely, consider a gamble f �= 0 such that B f ∈ D ∪ {0} for every
B ∈ B. Then−B f /∈ D for every B ∈ B, whence by negative conglomerability
− f /∈ D and by maximality of D we deduce that f ∈ D.

(b) Consider a gamble f such that P( f |B) ∈ D. If it was f /∈ D then, since it must
be f �= 0 (or by coherence it would be P( f |B) = 0 /∈ D), maximality would
imply that − f ∈ D, whence by Co5 P(− f |B) ∈ D, a contradiction. ��
Figure 3 summarises the implications between the conditions under maximality.
Let us show that no additional implication holds:

Example 12 (Co6 � Co5; Co2 � Co1; Co3 � Co1). Let Ω := {1, 2, 3, 4}, B :=
{1, 2},B := {B, Bc}, P the uniform probability distribution and D the maximal set
of gambles given by D = { f : P( f ) > 0} ∪ D′, where

D′ = { f : P( f ) = 0 and ( f (1) > 0 or 0 = f (1) < f (2) or 0 = f (1) = f (2) < f (3))}.

Fig. 3 Implications between
conditions Co1–Co8 for
maximal coherent sets of
desirable gambles
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This set is coherent: it holds that L+ ⊆ { f : P( f ) > 0} ⊆ D; 0 /∈ D by construction;
and given f1, . . . , fn ∈ D and λ1, . . . , λn > 0, if P( fi ) > 0 for some i we deduce
that P(

∑n
i=1 λi fi ) > 0, whence

∑n
i=1 λi fi ∈ D; and if P( fi ) = 0 for every i then it

must be fi ∈ D′ for all i , whence
∑n

i=1 λi fi ∈ D′ ⊆ D.
Now, given g := (−1, 2,−1, 0) /∈ D we obtain that P(g|B) = (0.5, 0.5,−0.5,

−0.5) ∈ D, whence Co1 does not hold. SinceD is coherent and B is finite we deduce
that it is conglomerable, and applying Proposition 8, also negatively conglomerable.
The same proposition tells us that Co5 does not hold, given that we have established
that Co1 does not. Finally, since from Proposition 1, Co2 implies Co3, we deduce
that Co3 does not imply Co1 either. �

Example 13 (Co1 � Co2; Co4 � Co2; Co1 � Co5). Let D be the coherent set
of desirable gambles from Example 2; for any maximal superset D′ it holds that the
gamble f := I{2n−1:n∈N} − I{2n:n∈N} /∈ D′ because − f ∈ D ⊆ D′ but B f ∈ D′ for
every B ∈ B, whence Co2 is not satisfied.

Let us give a maximal superset of D satisfying Co1. For this, consider

D1 := {
f : P(P( f |B)) = 0, P( f |Bn f ) > 0, where n f := min{n : P( f |Bn) �= 0}}

and D′ a maximal superset of D ∪ D1. To ensure that such a set exists, we need
to show that D ∪ D1 avoids sure loss, that is, that ED∪D1 is coherent. Looking at
the definitions in Example 2, we deduce that the elements in D ∪ D1 satisfy either
P( f ) > 0, P( f |Bn f ) > 0 or are a positive linear combination of gambles in

{I{2n:n∈N} − I{2n−1:n∈N}} ∪ {I2n−1 − I2n : n ∈ N}.

But then it is not possible to obtain 0 in posi(D∪D1), from which we deduce that this
set is coherent, and as a consequence it has some maximal superset.

Next, if P( f |B) ∈ D′ then either P(P( f |B)) = P( f ) > 0 or P(P( f |B)) = 0 and
the smallest non-zero value of P( f |B) is positive, in which case also f ∈ D1 ⊆ D′.
Thus, Co1 holds.

This shows that Co1 � Co2 and therefore also Co4 � Co2 and Co1 � Co5. �

On the other hand, Figure 4 summarises the implications between the conditions
in the precise case (when D is not necessarily maximal).

Indeed, the equivalence in Proposition 8(a) does not hold in this scenario, as shown
by Example 4 (whereD is conglomerable but not negatively conglomerable) and [13,
Example 2] (where D is not conglomerable but it is negatively conglomerable).

In this case Co5 implies neither Co2 nor Co1:

Fig. 4 Implications between
conditions Co1–Co8 when D
induces precise P, P(·|B)
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Example 14 Consider Ω := N, Bn := {2n−1, 2n},B := {Bn : n ∈ N}, and let PB be
a linear prevision on LB satisfying PB(Bn) = 0 for all n. Consider on the other hand
P(·|Bn) the uniform linear prevision, and letDB,D(B), B ∈ B be the associated sets
of strictly desirable gambles. LetD be the natural extension ofDB ∪⋃

n D(Bn), given
by Eq. (10). Then D induces the linear prevision P := PB(P(·|B)).

D does not satisfy Co2, since the gamble f given by f (2n− 1) = 1+ 1
n , f (2n) =

−1 for every n does not belong to D, but Bn f ∈ D(Bn) ⊆ D for every n because
P( f |Bn) > 0.

On the other hand, it satisfies Co5: if f ∈ D then it is f ≥ g + h for some
g ∈ DB, h ∈ E∪nD(Bn). From this it follows that P( f |Bn) ≥ P(g|Bn) + P(h|Bn) ≥
P(g|Bn) = g(Bn) and as a consequence P( f |B) belongs to DB ⊆ D. Thus,

f ∈ D ⇒ P( f |B) ∈ D,

which is an equivalent formulation of Co5.
Finally, to show that Co1 does not hold either, we are going to use that, in the

precise case,

Co5 + Co1 ⇒ Co2.

Indeed, if B f ∈ D ∪ {0} for every B then it must be P( f |B) > 0 whenever B f �= 0
(or the gamble g = B f would entail a violation of Co5), whence P( f |B) ∈ L+ ⊆ D
and then by Co1 it follows that f ∈ D.

Since we know that in this case D satisfies Co5 and not Co2, we deduce that it
cannot satisfy Co1 either. �

5.1 Full Negative Conglomerability

Should we endorse negative conglomerability as a structural assessment, we may do it
irrespective of the partition B on which the partial preferences are dependent on. This
procedure leads to what we called in Definition 2 full negative conglomerability, in
analogy to the notion of full conglomerability discussed byWalley in [24, Section 6.9]
and by Schervisch, Seidenfeld and Kadane in [18]; full conglomerability is close, but
not equivalent to, countable additivity [11]. Let us investigate next what would be
the implications of full negative conglomerability, and in particular if it also has a
connection with countable additivity.

In the case of full conglomerability, we proved in [13] that P is fully conglomerable
if and only if we have the equality P = supB P(P(·|B)). On the other hand, the
set of desirable gambles D in Example 5 satisfies full conglomerability (trivially,
because we have a finite referential space) and also full negative conglomerability,
and the unconditional and conditional lower previsions it induces satisfies P( f ) >

P(P( f |B)) for certain gamble f and a certain partition B. The example also shows
that full negative conglomerability does not imply linearity of the associated lower
prevision; a simpler example can be built by considering the vacuous coherent set of
desirable gambles L+.

On the other hand, we can derive the following from Proposition 2:
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Proposition 9 Let D be a coherent set of desirable gambles and let P, P(·|B) be the
unconditional and conditional lower previsions it induces by means of Eqs. (2), (3).

(a) If D is a set of strictly desirable gambles, then P ≤ infB P(P(·|B)) ⇒ D fully
negatively conglomerable, which in turn holds iff P(G( f |B)) ≤ 0 for every f and
every B.

(b) If D is a maximal set of gambles, then it is fully negatively conglomerable iff it is
fully conglomerable.

Proof (a) This follows from Co8⇒Co6⇔Co7 in Proposition 2(b).
(b) This is a consequence of Proposition 8(a). ��

6 Negative Conglomerability and Dilation

There is an interesting connection between the notion of negative conglomerability and
the phenomenon of dilation for sets of probabilities, discussed in [6, 7, 20, 22]. Dilation
occurs when our beliefs become more imprecise no matter which is the conditioning
event we observe, and it is something that can take place even when the exhaustive
family of pairwise disjoint events is finite.

Definition 4 (Dilation) LetD be a coherent set of desirable gambles and let P, P(·|B)

be the unconditional and conditional coherent lower prevision it induces by means of
Eqs. (2), (3). Let P, P(·|B) be their conjugate upper previsions, given by P( f ) =
−P(− f ) and P( f |B) = −P(− f |B) for every f ∈ L. We say that P weakly dilates
at a gamble f when

(∀B ∈ B) P( f |B) ≤ P( f ) ≤ P( f ) ≤ P( f |B),

and that it strictly dilates at f when

(∀B ∈ B) P( f |B) < P( f ) ≤ P( f ) < P( f |B).

As we shall show next, when our model suffers from dilation at a gamble f , it will
also violate the condition of negative conglomerability under some mild conditions:

Proposition 10 Let D be a coherent set of desirable gambles and let P, P(·|B) be
the unconditional and conditional coherent lower prevision it induces by means of
Eqs. (2), (3). Let f be a gamble where P strictly dilates and such that
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sup
B

P( f |B) < P( f ) ≤ P( f ) < inf
B

P( f |B), (17)

Then there is some μ ∈ R such that D violates negative conglomerability on f − μ.

Proof By constant additivity, there exists some μ ∈ R such that P( f + μ|B) < 0 <

P( f + μ) for every B ∈ B. This means that f + μ belongs to the set of desirable
gambles D, while from Eq. (3) it follows that B( f + μ) /∈ D for any B ∈ B. Thus,
f + μ entails a violation of negative conglomerability. ��
We should remark that condition (17) is equivalent to strict dilation when the par-

tition B is finite, while it is slightly more restrictive in the case of infinite partitions
B.

On the other hand, it may be that a set of desirable gambles D does not satisfy
negative conglomerability with a gamble f but there is no dilation on f + μ for any
real number μ, as our next example illustrates:

Example 15 Consider Ω := {1, 2, 3, 4}, B := {1, 2},B := {B, Bc}. Take the linear
previsions associated with P1 := (0.1, 0.1, 0.3, 0.5), P2 := (0.1, 0.7, 0.1, 0.1), and
let P := min{P1, P2}. Give the gamble f := (−5, 5,−5, 5), we obtain:

• P1(B f ) = 0, P1(Bc f ) = 1 ⇒ P1( f ) = 1;
• P2(B f ) = 3, P2(Bc f ) = 0 ⇒ P2( f ) = 3.

Thus, P( f ) = 1, P( f ) = 3. On the other hand,

• P1( f |B) = 0, P1( f |Bc) = 1.25;
• P2( f |B) = 3.75, P2( f |Bc) = 0.

Thus, [P( f |B), P( f |B)] = [0, 3.75] and [P( f |Bc), P( f |Bc)] = [0, 1.25], meaning
that the model does not dilate in f . It also follows that there is no dilation on f + μ

for any real number μ either, given that the lengths of the intervals determined by the
lower and upper previsions will not change, due to constant additivity.

On the other hand, since P(B f ) = 0 = P(Bc f ) it follows that B f , Bc f are
not strictly desirable and therefore they do not belong to D, while f does because
P( f ) > 0. Thus, the set of strictly desirable gambles associated with P does not
satisfy negative conglomerability. �

As an illustration of Proposition 10, next we analyse [24, Example 6.4.3] from the
point of view of negative conglomerability:

Example 16 A fair coin is tossed twice, so that the second toss may be dependent on
the first one but we ignore the degree of dependence. This means that the probability of
Heads is known tobe equal to 0.5 both for thefirst and for the second toss, but the second
toss may always give the same outcome as the first, always the opposite, or something
in between. We may model this scenario by considering the possibility space Ω :=
{(H1, H2), (H1, T2), (T1, H2), (T1, T2)} and by letting P be the lower envelope of the
linear previsions associated with the mass functions (0.5, 0, 0, 0.5), (0, 0.5, 0.5, 0). If
we consider the partition B := {B, Bc}, where

B := {(H1, H2), (H1, T2)},
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it is P(B) = P(B) = 0.5.Now let f be the indicator function of {(H1, H2), (T1, H2)}.
It holds that P( f ) = P( f ) = 0.5 while

P( f |B) = 0 < P( f |B) = 1 and P( f |Bc) = 0 < P( f |Bc) = 1.

In other words, before we observe the outcome of the first toss we have a precise
probability of 0.5 forHeads in the second toss,while after having observed the outcome
of the first toss we are completely ignorant, giving the [0, 1] interval, and this nomatter
which is the outcome we have observed. Thus, there is dilation.

We also get that P(B f ) = P(Bc f ) = 0, meaning that the gamble f − 0.4 is
strictly desirable while B( f − 0.4) and Bc( f − 0.4) are not. In other words, f − 0.4
entails a violation of negative conglomerability.

In this example, the marginal extension P(P(·|B)) produces

P( f ) = 0.5min{ f (H1, H2), f (H1, T2)} + 0.5min{ f (T1, H2), f (T1, T2)},

that gives P(H2) = P(T2) = 0; this means that with the marginal extension we obtain
the vacuous model on the second toss. �

7 On the Rationality Status of Negative Conglomerability

Section 6 has laid the ground for a possible conflict between negative conglomerability
and dilation. The latter is a relatively well-known concept, and one that is more and
more regarded as a logical, if puzzling, consequence of imprecision in probability.
Therefore if rationality would endorse negative conglomerability in a temporal set-
ting, as it happens with conglomerability, one should conclude that dilation violates
rationality in such a context, which would be quite a surprising outcome. It would also
mean that negative conglomerability should have a very wide scope. In the following
we proceed to clarify the matter.

Let us first recapitulate the state of affairs with regard to conglomerability. We
can make things very simple by regarding D as our set of beliefs at present time
and letting DB—for all B in a given partition B—be our future beliefs, which we
will hold in case B occurs. As we have argued in past work [25], our future beliefs
are automatically conglomerable, in the sense that their implications go beyond their
separate specifications, and must be represented by their so-called ‘conglomerable
natural extension’:

⊕B(DB) :=
{

f ∈ L(Ω) : f =
∑

B∈B
BgB, gB ∈ DB ∪ {0}

}

\ {0}.

This is a coherent and conglomerable set of desirable gambles obtained by piece-wise
composing the gambles across the future sets DB , B ∈ B.
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To see how all this implies the conglomerability of set D, we need three assump-
tions:2

• The first is that we are in a setting of ‘perfect information’, which means that all
the information we have about Ω is available at present time; in turn this implies
that our assessments of desirability may change in time only as a result of further
reflection (namely, computation) that is allowed by the extra time.

• The second assumption is one of ‘reliability’, which requires that future beliefs
are no less precise than present beliefs. If we let D|B := { f ∈ D : f = B f } be
the set of our beliefs conditional on B, reliability corresponds to the following:

(∀B ∈ B) D|B ⊆ DB .

This assumption appears to have been first made by Walley [24, Section 6.1.2].
Its rationale is that in defining present beliefs, we should never make stronger
assessments than the evidence allows. In practice, this means that we make our
present assessment themore imprecise the less informationwe have to define them.
Note that reliability implies

⊕BD|B ⊆ ⊕B(DB),

where ⊕BD|B denotes the conglomerable natural extension of sets D|B, B ∈ B,
and is defined via Eq. (15).

• The third and last assumption, which perhaps was somewhat implicit in Walley’s
reliability proposal, is one of belief ‘refinement’: namely, that our future beliefs
DB are better than present ones D|B (for all B ∈ B). The idea is that the extra
time to reflect on the problem allows us to improve on our original assessments
by possibly assessing that some additional (cf. reliability) gambles are actually
desirable too.

The latter assumption implies that if a gamble f is known to belong to ⊕B(DB), then
it should belong to D too. Taking into account reliability, this implies that

⊕BD|B ⊆ D,

which is precisely the definition of conglomerability for sets of desirable gambles.
Note that we would not be able to apply the same reasoning in a setting of imper-
fect information: there would be no reason to assume reliability, for instance, as our
future beliefs might as well be more imprecise than present ones in the light of new
information.

In summary, in a temporal setting, and under the three assumptions above, conglom-
erability turns out to be a rationality requirement. Since a setting of this type roughly,
if implicitly, coincides with that of automatically ‘updating’ probabilistic beliefs in
time, we deduce that conglomerability has a wide scope in practice.

Let us now turn our attention to negative conglomerability in the same setting as
above. Reasoning as before, the reliability assumption can equivalently be formulated

2 This argument essentially goes back to [26, Section 6.1].
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as (DB)c ⊆ (D|B)c for any B ∈ B. This leads us to conclude that for the ‘negatively
conglomerable natural extension’ ⊕B(DB)c := { f ∈ L(Ω) : (∀B ∈ B) B f /∈ DB} it
should hold:

⊕B(DB)c ⊆ ⊕B(D|B)c.

And finally, belief ‘refinement’ tells us that

⊕B(DB)c ⊆ Dc,

which we could rephrase as the requirement that a gamble that is not considered
desirable in the future should not be considered desirable at present time.

However, the two previous inclusions do not imply that we should also have the
inclusion

⊕B(D|B)c ⊆ Dc,

as it may still happen that f ∈ ⊕B(D|B)c while f ∈ D. As a consequence, negative
conglomerability cannot be given a rationality status that allows us to require it, at
least in a temporal setting. And in turn it follows that there is no reason we can devise
as to why negative conglomerability should be widely applied, other than being an
innate feature of models constructed via marginal extension.

Note that we could reach similar conclusions from a sensitivity analysis point
of view, just because of the asymmetry between the notions of conglomerability and
negative conglomerability: in fact, if a gamble f is desirablewith respect toD, it means
that it is also desirable for any precise model that is compatible with D; however, if
a gamble is not desirable, it ensues that it is not desirable for at least one precise
compatible model, but it might be desirable for others. As a consequence, we may
reject negative conglomerability on the grounds that the non-desirability of B f (for
all B ∈ B) for some compatible precise model does not imply the existence of a model
for which f is not desirable.

In the same sensitivity analysis vein, one may be tempted to consider an alternative
definition of negative conglomerability, such as:

(∀B ∈ B) P(B f ) ≤ 0 ⇒ P( f ) ≤ 0, (18)

where we are equating the non-desirability of f with the fact that we are not disposed
to pay any positive amount for it for any compatible precise model. Nevertheless, if
we use conjugacy, we obtain that Eq. (18) is equivalent to

(∀B ∈ B) P(B f ) ≥ 0 ⇒ P( f ) ≥ 0,

or, equivalently,

(∀B ∈ B) B f ∈ D ⇒ f ∈ D,
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meaning that we are back to conglomerability (formulated using sets of gambles).
That negative conglomerability has no actual support as a rationality condition,

in the light of the discussion above, somewhat solves the conflict between dilation
and negative conglomerability, in that one cannot argue against dilation based on its
incompatibility with negative conglomerability. It rather seems to be the case that
dilation represents a broad range of problems for which negative conglomerability is
just an inappropriate concept.

Let us make all this more concrete going back to the jogging example in the Intro-
duction, by giving it a new twist: the weather forecast is accessible only through a
friend, Joe, who unpredictably sometimes, just for fun, reports the reversed forecast
(from good to bad and vice versa); we assume moreover that the actual forecast is
good 50% of the times. In other words, this is the coin-tossing problem of Example 16
in disguise. We obtain that Alice, who desires jogging whether or not the reported
forecast is good, desires going also when Joe fails to report the forecast. However
nothing prevents Bob, who desires jogging neither when the report is good nor when
it is bad, from desiring it when the report does not reach him.

In order to make this clearer, let us consider the events B := ‘the forecast is of
good weather’ and A := ‘Joe reports good weather’. By considering the assessments
P(B) = 0.5 and p := P(‘Joe reports the truth’) ∈ [0, 1], we obtain that the set of
possible probabilities is given by the following table.

Event AB AcB ABc AcBc

Probability p
2 0.5 − p

2 0.5 − p
2

p
2

Now, assume for Bob that we consider a positive utility of, say, 2 if the report is
positive and a negative utility of −1 is the report is negative. This produces a gamble
f for which f (AB) = f (ABc) = 2, f (AcB) = f (AcBc) = −1. If we compute its
associated lower prevision, we obtain that P(B f ) = −0.5 = P(Bc f ), so the gamble
is desirable neither if the report is good nor if it is bad. However, P( f ) = 1, meaning
that the gamble is desirable before Joe provides his report. In other words, in this
context a violation of negative conglomerability is reasonable.

Note that if for Alice we consider another gamble g satisfying that both Bg and Bcg
are desirable, this means that P(Bg) > 0, P(Bcg) > 0, and from this and coherence
we deduce that P(g) > 0, whence g is desirable. Thus, conglomerability follows here
from the rationality criteria of coherence, as it should in this finitary context.

8 Conclusions

At the beginning of this journey, we were uncertain as to the respective roles of
conglomerability and its negative counterpart, in particular because intuition may
mistakenly lead to regard them as similar, and with a similar scope. In hindsight we
see that these two notions are very different. This may look surprising at first also
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because both conglomerability and negative conglomerability collapse to the same
notion of so-called disintegrability in the case of precise probability [1]. Probably
the most important difference between them is that conglomerability has a rationality
status that negative conglomerability has not.

Despite this, negative conglomerability is still going to be a frequent feature of our
models, given the relation that we described it holds with marginal extension: it will
be the case, for instance, when we construct our assessments in a modular fashion
through hierarchical representations such as that of trees. On the opposite side, we
shall never meet such a feature whenever our model dilates, as discussed in this paper.
In fact, a large part of this paper has been spent on investigating the relations of
conglomerability and negative conglomerability with a number of other notions in
the literature. We have eventually given quite a complete picture of these relations in
the imprecise and precise case that may provide future work with a solid technical
reference.

And indeed with respect to future work, we envisage a few possibilities: given
that negative conglomerability is about not desiring gambles, it seems natural to try
to work out its relation with the accept-reject desirability framework by [16], where
indeed one can reject a gamble other than accept it. Another interesting avenue would
be studying whether negative conglomerability may take a stronger role in the case
of non-linear desirability theory [12]; in such a case desirable sets are more general
than convex cones and one might imagine special types of sets that imply negative
conglomerability. Finally, since there is a significant relation between dilation and
independence, as detailed by [14, 22], it would be interesting to study how negative
conglomerability is affected by independence considerations.
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