
J
H
E
P
0
8
(
2
0
2
4
)
0
4
4

Published for SISSA by Springer

Received: June 9, 2024
Accepted: July 26, 2024

Published: August 6, 2024

Holographic 1
2-BPS surface defects in ABJM

Yolanda Lozano,a,b Niall T. Macpherson ,a,b Nicolò Petric and Anayeli Ramírezd

aDepartment of Physics, University of Oviedo,
Avda. Federico Garcia Lorca s/n, 33007 Oviedo, Spain

bInstituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA),
Calle de la Independencia 13, 33004 Oviedo, Spain

cDepartment of Physics, Ben-Gurion University of the Negev,
Be’er-Sheva 84105, Israel

dDipartimento di Fisica, Università degli studi di Milano-Bicocca
and INFN, Sezione di Milano-Bicocca,
Piazza della Scienza 3, 20126 Milano, Italy

E-mail: ylozano@uniovi.es, macphersonniall@uniovi.es,
petri@post.bgu.ac.il, Anayeli.Ramirez@mib.infn.it

Abstract: We study the class of AdS3 × CP3 solutions to massive Type IIA supergravity
with osp(6|2) superconformal algebra recently constructed in [1]. These solutions are foliations
over an interval preserving N = (0, 6) supersymmetry in two dimensions, that in the massless
limit can be mapped to the AdS4 ×CP3 solution of ABJM/ABJ. We show that in the massive
case extra NS5-D8 branes, that we interpret as 1

2 -BPS surface defect branes within the ABJ
theory, backreact in the geometry and turn one of the 3d field theory directions onto an
energy scale, generating a flow towards a 2d CFT. We construct explicit quiver field theories
that we propose flow in the IR to the (0, 6) SCFTs dual to the solutions. Finally, we show
that the AdS3 solutions realise geometrically, in terms of large gauge transformations, an
extension to the massive case of Seiberg duality in ABJ theories proposed in the literature.

Keywords: AdS-CFT Correspondence, Extended Supersymmetry, Flux Compactifications

ArXiv ePrint: 2404.17469

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP08(2024)044

https://orcid.org/0000-0002-8298-7077
mailto:ylozano@uniovi.es
mailto:macphersonniall@uniovi.es
mailto:petri@post.bgu.ac.il
mailto:Anayeli.Ramirez@mib.infn.it
https://doi.org/10.48550/arXiv.2404.17469
https://doi.org/10.1007/JHEP08(2024)044


J
H
E
P
0
8
(
2
0
2
4
)
0
4
4

Contents

1 Introduction 1

2 The class of N = (0, 6) AdS3 × CP3 solutions to massive IIA 3
2.1 The massless case: the ABJM/ABJ solution 6
2.2 Analysis of global solutions with D8 branes 9

3 A new class of N = (0, 4) AdS3 solutions to Type IIB 15

4 The dual field theory 18
4.1 Hanany-Witten brane set-up 18
4.2 Building blocks 20
4.3 2d quivers 21
4.4 Connection with Seiberg duality 26
4.5 A comment on the central charge 27

5 Conclusions 29

1 Introduction

The study of the AdS/CFT correspondence in low dimensions has been the subject of intense
research in the last years, particularly regarding the classification of new solutions. This study
is prompted by the key role played by AdS3 and AdS2 spaces as near horizon geometries
of extremal black strings/holes, and the unique possibility the AdS/CFT correspondence
offers for their microscopical description. More recently, low dimensional holography has also
found fruitful applications in the description of conformal defects in higher dimensional CFTs.
These defects are typically realised as operator insertions that reduce the conformality and the
number of supersymmetries of the higher dimensional theory where they are embedded. When
the number of defects is large they backreact in the geometry and if some conformality is
still preserved give rise to lower dimensional AdS geometries. The AdS/CFT correspondence
formulated in these lower dimensional spaces offers a useful framework to study these defects,
especially when they are strongly interacting.

The variety of low dimensional AdS backgrounds is especially rich, given the many
possibilities for the geometry of their internal spaces and the large variety of superconformal
algebras that exist in low dimensions. Many new low dimensional AdS solutions have
been reported in the last years whose construction has profited from the development of
powerful techniques involving bispinors and G-structures. In this paper we will concentrate
on AdS3/CFT2 holography. In these dimensions new results have been reported in [2]–[36],
plus the already mentioned [1], that will be the focus of this paper.

Remarkably, some of these classification efforts have been accompanied by interesting
investigations of the dual CFTs. Notable examples where this has been possible are the
AdS3/CFT2 pairs constructed in [2, 5, 10, 16–19, 23, 25, 26, 29, 32, 36], which provide explicit
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settings for the microscopical description of black strings. This has been addressed in [32, 37,
38]. Notably, most known pairs rely on N = (n, n) or (0, n) with n ≤ 4 supersymmetry.

In this paper we will investigate AdS3/CFT2 holography with (0, 6) supersymmetry,
taking as our starting point the new class of solutions with N = (0, 6) supersymmetries
constructed recently in [1]. Therefore this work opens up the interesting new possibility of
investigating the AdS3/CFT2 correspondence in less standard supersymmetric settings.1 A
second class of solutions with N = (0, 5) supersymmetries was also constructed in [1], and it
would be interesting to further extend the analysis in this paper to that class. The solutions
with N = (0, 6) supersymmetries involve a three-dimensional complex projective space in
their internal geometry, so they share many properties with the ABJM/ABJ geometry [39, 40].
The connection with the ABJM/ABJ theories will indeed play a key role in the identification
of their dual CFTs. As we will see, this class of solutions can be regarded as an extension
of the ABJM/ABJ solution of massless Type IIA supergravity to the massive case. In this
extension one of the external directions becomes an energy scale, generating a flow towards
an AdS3 space. Remarkably, the Seiberg duality proposed in [41], in a particular massive
generalisation of the ABJM/ABJ theory, is explicitly realised in these solutions as a large
gauge transformation, in the spirit of [42, 43].

The paper is organised as follows. In section 2 we summarise the main properties of
the solutions with N = (0, 6) supersymmetry reported in [1], and focus on the construction
of local solutions that can be glued together with D8-branes. In this section we elaborate
on the massless limit, briefly addressed in [1]. In this limit a change of variables allows to
relate the direction interpreted as an energy scale to the radius of AdS4, and the solutions
reduce to the AdS4 × CP3 solution of Type IIA supergravity, dual to the ABJM/ABJ theory.
We study in detail how the free energy of the ABJM/ABJ theory arises and review some
aspects of the theory, such as the realisation of Seiberg duality [40, 43], that will be useful
later on in our study of the massive case.

In section 3 we construct a new class of solutions to Type IIB supergravity by acting with
Abelian T-duality along one of the directions of the CP3, preserving N = (0, 4) supersymmetry.
We show that they reduce in the massless limit to the AdS4 solution to Type IIB supergravity
with N = 4 supersymmetry T-dual to AdS4 × CP3, that constitute the basis for the brane
construction of the ABJM/ABJ theory.

In section 4, in analogy with the AdS4 case, we use the Type IIB solutions to propose the
brane set-up where the 2d dual CFTs should be realised. We argue that this brane intersection
preserves N = (0, 3) supersymmetry in 2d, that, we propose, should be enhanced to N = (0, 6)
in the IR, in analogy with what happens in the ABJM/ABJ theory, albeit with half the
number of supersymmetries. We show that extra NS5-D7 branes render the brane intersection
of the ABJM/ABJ theory two dimensional and half-supersymmetric. These branes find in
this way an interpretation as 1

2 -BPS surface defect branes within the ABJM/ABJ theory.
This connects our findings with those in [44], where D4-D8 (D5-D7 in Type IIB) defect branes
were introduced as probe branes in the ABJM theory, in order to realise edge states in the
Fractional Quantum Hall Effect. Our study shows that similar defects can be introduced in a
way that preserves half of the supersymmetries and a osp(6|2) superconformal subalgebra.

1See also [83] which points the way towards similar constructions in 1 dimension less.
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Specifically, the brane intersection that we propose consists on a brane box model in
which D3-branes are bounded between two types of NS5-branes and bound states of NS5 and
D5 branes, rotated with respect to each other, displayed along two field theory directions.
This brane box model can be viewed as a N = (0, 4) brane box model of the type constructed
in [45], in which some of the NS5 and D5 branes have been rotated with respect to each
other. We argue that the rotation reduces the SO(4)R R-symmetry group of the brane box
construction in [45] to SO(3)R, and thereby the supersymmetry from N = (0, 4) to N = (0, 3),
with the extra SO(3) remaining as a global symmetry. We summarise the field content of
the N = (0, 4) brane box models studied in [45], to which we add the effect of the rotation.
This renders some of the scalars living in the hypermultiplets in the Hanany-Okazaki brane
boxes massive. As a result of our study we are able to associate a 2d quiver field theory
to our brane intersection. Interestingly, we show that these quiver field theories realise a
“massive” extension of Seiberg duality in ABJ proposed in [41]. This is realised in terms of a
brane creation effect when NS5-branes are crossed along the direction that became an energy
scale in the 2d theory. This links Seiberg duality to large gauge transformations, albeit in
one dimension less, in the spirit of [42, 43]. We end the section with the computation of
the holographic central charge, which, as we will see, includes higher derivative corrections.
This represents a fairly non-trivial prediction for the central charge of the dual (0, 6) SCFTs.
Finally, we point out an interesting relation between the holographic central charge and a
product of electric an magnetic charges computed from the solutions, in the spirit of [46–48].
These references generalised the proposal in [49], showing that the central charge in the
algebra of symmetry generators of AdS2 with an electric field is proportional to the square
of the electric field, to fully-fledged AdS2 string theory set-ups. Our result shows that this
proposal extends to AdS backgrounds with other dimensionalities and supersymmetries, and
therefore suggests a more general interpretation of the central charge in terms of products of
electric and magnetic charges. We conclude in section 5 with a summary of our results and a
discussion of the main open problems that will be interesting to further investigate.

2 The class of N = (0, 6) AdS3 × CP3 solutions to massive IIA

In this section we explore the new class of solutions originally found in [1]. Our main aim is
to understand what possible global solutions can be constructed by gluing local solutions
together with D8 branes. We begin by reviewing some results of [1] that we will make
use of later in this section.

In [1] the local form of AdS3 solutions in massive IIA preserving the superconformal
algebra osp(6|2) were derived. Their NS sector can be expressed as

ds2

2π = |h|√
2hh′′ − (h′)2ds

2(AdS3) +
√

2hh′′ − (h′)2
[ 1

4|h|dr
2 + 2

|h′′|
ds2(CP3)

]
,

e−Φ = (|h′′|) 3
2

2
√
π(2hh′′ − (h′)2) 1

4
, H3 = dB2, B2 = 4π

(
−(r − l) + h′

h′′

)
J. (2.1)

Where J is the Kahler form on CP3 which has unit radius, l is an integer (whose role is
clarified below) and h is a function of r. A convenient parametrisation of CP3 is as a foliation
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of T 1,1 over an interval, with respect to this we have

ds2(CP3) = dξ2 + 1
4 cos2 ξds2(S2

1) + 1
4 sin2 ξds2(S2

2) + 1
4 sin2 ξ cos2 ξ(dψ + η1 + η2)2,

dηi = −vol(S2
i ),

J = 1
4 sin2 ξvol(S2

2) − 1
4 cos2 ξvol(S2

1) − 1
2 sin ξ cos ξdξ ∧ (dψ + η1 + η2), (2.2)

where (ξ, ψ) have periods (1
2π, 4π) and the 2-spheres have unit radius.

The fluxes making up the RR sector can be compactly expressed in terms of the NS
2-form potential as

F0 = − 1
2πh

′′′, F2 = B2F0 + 2(h′′ − (r − l)h′′′)J,

F4 = πd

(
h′ + hh′h′′

2hh′′ − (h′)2

)
∧ vol(AdS3) +B2 ∧ F2 −

1
2B2 ∧B2F0

− 4π(2h′ + (r − l)(−2h′′ + (r − l)h′′′))J ∧ J. (2.3)

In regular regions of a solution the Bianchi identities imply that F0 is constant, we thus
have the ODE

h′′′ = −2πF0. (2.4)

Formally this is very similar to the class of AdS7 solutions found in [50], as presented in [51]. Of
the remaining Bianchi identities, clearly that of H3 is implied while those of the RR fields are
implied when (2.4) holds. To this it is useful to introduce the following magnetic Page fluxes

f̂ = e−B2 ∧ f (2.5)

for f = f0 + f2 + f4 + f6 where F6 = − ⋆F4 and f means the magnetic part of F = ∑5
n=0 F2n.

We find these take the form

f̂2 = 2
(
h′′ − (r − l)h′′′

)
J,

f̂4 = −4π
(
2h′ + (r − l)((r − l)h′′′ − 2h′′)

)
J ∧ J,

f̂6 = 16π2

3
(
6h− (r − l)(6h′ + (r − l)((r − l)h′′′ − 3h′′))

)
J ∧ J ∧ J. (2.6)

In regular regions of a solution these must be closed for the Bianchi identities of (2.3) to
hold and vice-versa. It is a simple matter to show that

df̂2n = − 1
2π (4π)n(r − l)nh′′′′ 1

n!dr ∧ J
n, (2.7)

so the magnetic Page fluxes are indeed closed in regular parts of a solution by (2.4).
When F0 is constant (2.4) implies h is an order 3 polynomial that depends on 4 parameters

c1,2,3,4. Depending on how these are tuned the domain of the interval r can differ and distinct
physical behaviours can be realised. Assuming F0 ̸= 0 and that r is bounded at one end,
which one can assume to be at r = 0 without loss of generality, in [1] 3 singular yet physical
boundary behaviours were identified: namely that associated to a D8/O8 system of world
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volume AdS3 × CP3, an O2 plane extended in AdS3 and backtracked on a G2 cone of base
CP3 and the singularity associated to the d = 3 KK monopole one gets when reducing the
embedding of the hyper-Kahler 8-manifolds constructed in [52] into d = 11 supergravity to
Type IIA, albeit extended in AdS3 rather than Mink3. These objects are supersymmetric
wherever one places them in the space. To realise them at r = 0 one must tune

D8/O8 : h = c1 + c2r
3, c1,2 ̸= 0 (2.8a)

O2 : h = c1 + c2r + c2
2

4c1
r2 + c3r

3, c1,2,3 ̸= 0 (2.8b)

Monopole : h = (c1 + c2r)r2, c1,2 ̸= 0. (2.8c)

However the domain of r for all of these local solutions is semi-infinite, with r = 0 an infinite
proper distance from r = ∞. When F0 = 0 one can show that one always locally recovers
AdS4 × CP3. We explore this massless case in some detail in section 2.1.

As stressed in [1] globally F0 needs only be piece-wise constant. If one defines r = r0 to
be a locus where F0 is discontinuous, then in the neighbourhood of r0 one has

dF0 = ∆F0δ(r − r0), (2.9)

indicating the presence of a stack of D8-branes of charge 2π∆F0, where ∆F0 is the difference
between the constant values F0 takes for r > r0 and r < r0. Of course for this really to be
true the NS sector should be consistent with this behaviour. A D8 brane gives rise to a
comparatively mild singularity for which all components of the metric and the dilaton neither
blow nor tend to zero. They should however both be continuous as one crosses a D8 brane,
which one can show amounts to imposing the continuity of

(h, (h′)2, h′′) (2.10)

as one crosses its loci. h′′′ should of course be discontinuous or there is no D8. The NS
2-form should also be continuous modulo large gauge transformations, which is something
else one needs to impose.

Another point is that one cannot expect to arbitrarily place branes in some super-
symmetric solution without breaking supersymmetry. However such a D8 brane, with no
world-volume flux turned on, has been shown to preserve the full supersymmetry of this
background when placed at

r0 = l. (2.11)

Like wise the source corrected Bianchi identities of such an object are implied by (2.7) - only
dF0 experiences such a correction, the remaining df̂2n terms vanish as (r− l)nδ(r− l) → 0 for
n = 1, 2, 3. So one is free to make F0 discontinuous at r = l and the result is a supersymmetric
stack of D8 branes. Naively this sounds like one can only place a single D8 brane stack on
the interior of r, but one must appreciate that l does not need to be fixed globally. Indeed
one can view the difference between B2 with l = 0 and the generic B2 as a large gauge
transformation, provided l is an integer. Thus one can place arbitrary numbers of D8 branes
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along the interior of r, provided they are placed at integer points along r and accompanied
by the appropriate number of large gauge transformations of B2.

In [1] the above facts where used to construct a simple globally bounded solution, by
gluing 2 copies of (2.8a) together with a single D8 brane stack. In section 2.2 we shall
perform a more general analysis of possible global solutions, however before doing so it will
be instructive to first consider the massless case in the next section.

Central charge. A closed expression for the calculation of the holographic central charge
applicable to the solutions was given in [53, 54], extending the computation in [55] to more
general backgrounds. In this reference the holographic central charge is computed for a
metric and dilaton

ds2
10 = a(ζ, θ⃗)(dx2

1,d + b(ζ)dζ2) + gij(ζ, θ⃗)dθidθj , Φ = Φ(ζ, θ⃗), (2.12)

from

chol = 3dd
GN

b(ζ)d/2(Ĥ) 2d+1
2

(Ĥ ′)d
, (2.13)

where

Ĥ =
(∫

dθ⃗e−2Φ
√

det[gij ]a(ζ, θ⃗)d
)2
. (2.14)

This gives the simple expression

chol = 1
2

∫
dr (2hh′′ − (h′)2) (2.15)

for the solutions in (2.1).

2.1 The massless case: the ABJM/ABJ solution

As shown in [1] in the massless limit the ABJM/ABJ solution [39, 40] is recovered. To
see this we can parametrise

h(r) = Q2 −Q4r + 1
2Q6r

2, (2.16)

where Q2,4,6 are constants whose significance will become clear shortly. Then one can easily
check that the change of variables

sinhµ = Q6 r −Q4√
2Q2Q6 −Q2

4

(2.17)

gives rise to the ABJM/ABJ metric and dilaton

ds2 =
4π
√

2Q2Q6 −Q2
4

Q6

(1
4ds

2(AdS4) + ds2(CP3)
)
, (2.18)

ds2(AdS4) = dµ2 + cosh2 µds2(AdS3), e−Φ = Q
3
2
6

2
√
π(2Q2Q6 −Q2

4) 1
4
. (2.19)
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branes x0 x1 r x3 x4 x5 ψ x7 x8 x9

N D3 × × × − − − × − − −
NS5′ × × × × × × − − − −

(1, k)5′ × × × cos θ cos θ cos θ − sin θ sin θ sin θ

Table 1. Brane intersection describing the ABJM brane system. (x0, x1, r) span the 3d field theory.
The NS5′ brane and D5′ brane at ψ = π are rotated the same angle on the [3, 7], [4, 8] and [5, 9]
directions. The brane intersection preserves 6 Poincaré supersymmetries (N = 3 in 3d).

The radius of CP3 is thus given by

L =
(32π2

Q2
6

(Q2Q6 −
1
2Q

2
4)
)1/4

. (2.20)

Therefore there is just one local solution when F0 = 0 and it is an AdS4 vacuum preserving
twice the supersymmetries of generic solutions within this class. This is actually the only
regular solution also.

One can now use the Page fluxes in (2.6) to compute the various brane charges, leading to
1

2π

∫
CP1

f̂2 = Q6,
1

(2π)3

∫
CP2

f̂4 = Q4,
1

(2π)5

∫
CP3

f̂6 = Q2. (2.21)

Thus the constants in (2.16), Qp, are identified with the Page charges of Dp branes, for
p = 2, 4, 6. In turn, in this case one finds H3 = 0 and f̂4 = −f2 ∧ B2. The NS5 and the
D4 branes are thus not physical, since they annihilate to nothing and only their fluxes
remain [40]. B2 is given by

B2 = −4πQ4
Q6

J, such that b = −Q4
Q6

, (2.22)

and the discrete holonomy in the construction of [40] arises. As discussed there this fractional
charge is associated to the fact that in the presence of Q6 units of f2 flux a NS5-brane
wrapped on the CP2 must have Q4 D4-branes wrapped on the CP1 ending on it.

Table 1 summarises the brane set-up associated to the ABJM/ABJ solution in its Type
IIB realisation [39].2 The D3-branes stretch on the ψ-circle, intersecting one NS5’-brane and
one (1, k) 5’-brane,3 extended along (x0, x1, r) and the [3, 7]θ, [4, 8]θ, [5, 9]θ directions, with
tan θ = k. On top of this there are M fractional branes stretched just along one segment of
the circle, which as mentioned above are not actual branes since they are unstable. The brane
system preserves N = 3 supersymmetry in 3d, and this is enhanced to N = 6 in the IR [39].

In the massless limit a large gauge transformation b → b + 1 maps the theory onto
itself, and therefore the associated change in the quantised charges, given by equations (2.37)
for Q8 = 0,

Q2 → Q2 −Q4 + 1
2Q6,

Q4 → Q4 −Q6, (2.23)
2After a T-duality along the Hopf fibre of the S3 included in the T 1,1 in the CP3 has been performed (see

the next section).
3As we recall below, the numbers of branes in the field theory do not actually coincide with the Page

charges computed from the solution. This explains our different notation for the charges in this discussion.
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must be a symmetry of the theory. Indeed, as shown in [43], these transformations generate
Seiberg dualities relating the IR behaviour of different 3d N = 3 Chern-Simons matter
theories. In order to see this it is necessary to recall that due to the non-trivial topology
of the CP3 the quantised charges emerging from the solutions do not coincide with the
numbers of branes in the field theory. This happens because the fractional worldvolume field
strength that is needed to cancel the Freed-Witten anomaly [56] associated to the CP2, being
a non-spin manifold, induces charge on the branes wrapped on the CP2. On top of this there
is a non-vanishing contribution of higher curvature terms for these branes [57]. Adding these
contributions the following linear relations between the quantised charges and the numbers
of D2, D4 and D6 branes, that we have denoted by N,M and k, respectively, are found [43]

Q2 = N + k

12 ,

Q4 = M − k

2 ,

Q6 = k. (2.24)

Substituting these relations in (2.22) the shift of B2 by 2πJ required to cancel the Freed-Witten
anomaly naturally arises. Moreover, one can see that the transformations (2.23) translate into

N → N + k −M, M →M − k, (2.25)

for the field theory parameters. These transformations map the 3d Chern-Simons matter
theory with gauge group U(N +M)k×U(N)−k to the one with gauge group U(N)k×U(N −
M + k)−k, and successively. These are the Seiberg duality transformations that relate the IR
behaviour of the different Chern-Simons matter theories found in [40, 43]. One can check that
the central charge computed using the expression (2.15), that resorts in the massless case to

chol = 1
2(2Q2Q6 −Q2

4) = Nk − 1
2M(M − k) − 1

24k
2, (2.26)

per unit r-interval, where we have used the relations (2.24) to write it in terms of the field
theory charges, is indeed invariant under the transformations (2.23) and (2.25). Note that in
order to recover the right scaling of the central charge of the 3d theory we have to multiply
the previous expression by the radius squared of AdS4.4 This yields

c
(3d)
hol = (2Q2Q6 −Q2

4)3/2

Q6
= L6Q2

6
64π3 = 1

k

(
2Nk −M(M − k) − 1

12k
2
)3/2

, (2.27)

using again (2.24). This matches the result obtained for the ABJM solution using equa-
tions (2.12)–(2.14) for d = 2 and the metric and dilaton given by (2.18), (2.19). This
expression is interpreted as the free energy of the 3d CFT in the supergravity approximation.
However, given that we have used the shifted charges given by (2.24) we obtain the planar free
energy (at large ’t Hooft parameter) with higher derivative sub-leading corrections [57, 58].
As in these references we can use the Maxwell charge for the D2-branes, given by,

QM2 = Q2 + bQ4 + 1
2b

2Q6 = N − 1
24k −

1
2
M2

k
+ 1

2M, (2.28)

4Divided by 2π, in order to match the different conventions used for the 2d and 3d metrics.
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to write

c
(3d)
hol = 2

√
2k(QM2 )3/2 = 23/2 k2 λ̂3/2, (2.29)

with λ̂ = QM
2
k the shifted ’t Hooft coupling parameter found in [59]. This expression was

shown to agree with the strong coupling expansion of the free energy computed from the
matrix model calculation of the path integral on S3 [59–62]. Note that in three dimensions the
useful role played by conformal anomaly coefficients in even dimensional CFTs in measuring
the number of degrees of freedom is now played by matrix integral calculations of the path
integral, using supersymmetric localization methods [63].

2.2 Analysis of global solutions with D8 branes

In this section we perform an analysis of the global solutions it is possible to construct
by placing D8-branes along the interior of r. Our aim is not to be completely exhaustive
but rather to shed light on the wide variety of possibilities, and assemble the necessary
building blocks for their construction.

In order to construct broad classes of solutions we shall segment the interval spanned
by r into intervals of unit length with h taking the form

hl(r) = Ql2 −Ql4(r − l) + 1
2Q

l
6(r − l)2 − 1

6Q
l
8(r − l)3, (2.30)

in the interval r ∈ [l, l + 1] for Q2, . . . Q8 constants. We shall assume that in the l’th interval

B2 = 4π
(
−(r − l) + h′l

h′′l

)
J, (2.31)

so that when Ql8 ̸= Ql−1
8 , the resulting stack of D8 branes at r = l is supersymmetric.

Consistency requires that as we cross between the 2 adjacent intervals at r = l we have that

b = 1
4π2

∫
CP1

B2, (2.32)

is such that b→ b+ z for z ∈ Z, so that a large gauge transformation is performed creating z
units of NS5 brane charge. Again the constants appearing in hl, Ql2, Ql4, Ql6 and Ql8 are the
Page charges associated to D2, D4, D6 and D8 branes in each interval, ie using (2.3) one finds

2πF0 = Ql8,
1

2π

∫
CP1

f̂2 = Ql6,

1
(2π)3

∫
CP2

f̂4 = Ql4,
1

(2π)5

∫
CP3

f̂6 = Ql2, (2.33)

in the l’th cell.

Metric reality. The first thing we need to ensure is that the warp factors of the metric are
real in each cell. The metric is real and positive when −(h′)2 + 2h′′h ≥ 0, with equality only
possible at the upper or lower bound of r in a global solution. In a generic unit cell one should
have −(h′)2+2h′′h > 0 which implies hh′′ > 0, in what follows we shall assume this is solved as

h > 0, h′′ > 0, (2.34)
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without loss of generality. It is possible to show that −(h′)2 + 2h′′h > 0 across the l’th
cell if the inequality holds at r = l and r = l + 1. This amounts to imposing one of two
sets of constraints on the charges

Ql2 ≥ 0, Ql6 ≥ 0, Ql8 ≤ 0, 2Ql2Ql6 ≥ (Ql4)2, (2.35a)

Ql2 ≥ 0, Ql6>Q
l
8 ≥ 0, 2(Ql6−Ql8)(Ql2 + 1

2Q
l
6−Ql4−

1
6Q

l
8)≥

(
Ql4−Ql6 +Ql8

2

)2

, (2.35b)

in generic cells, which both leave the sign of Q4 arbitrary.

Metric continuity. Next we need to impose the continuity conditions (2.10) as we cross
each D8 brane at the intersections of the cells. To impose the continuity constraints we
must distinguish between two cases

h′l−1(l) = ±h′l(l). (2.36)

Let us first assume h′l−1(l) = h′l(l); the continuity conditions for hl, h′l, h′′l across intervals
force the conditions

Ql2 = Ql−1
2 −Ql−1

4 + 1
2Q

l−1
6 − 1

6Q
l−1
8 ,

Ql4 = Ql−1
4 −Ql−1

6 + 1
2Q

l−1
8 ,

Ql6 = Ql−1
6 −Ql−1

8 , (2.37)

between the (l − 1)th and lth cells. We note that if (2.35a) holds in the (l − 1)th cell the
continuity conditions impose that it also holds in the lth cell provided that Ql8 < 0. Conversely
if (2.35b) holds in the (l+ 1)th cell it is guaranteed to also hold in the lth if Ql8 > 0. We thus
see if one imposes (2.35a) in a single cell it is guaranteed to also hold in each subsequent cell
to the right of it satisfying Ql8 ≤ 0. An analogous statement also holds for cells satisfying
Ql8 ≥ 0 to the left of a cell satisfying (2.35b).

Using that

Bl
2 = 4π

−Ql4 + 1
2Q

l
8(r − l)2

Ql6 −Ql8(r − l)
J, (2.38)

in the [l, l + 1] interval, one can check that bl(l) = bl−1(l) + 1, meaning that the shift in
B2 is indeed a large gauge transformation as we cross the D8 at r = l, and so 1 unit of
NS5-brane charge is created as we do so. Note that the number of NS5-branes at r = l is
still fixed by the numbers of D4 and D6 branes in such interval. Thus, the D4-branes keep
being fractional branes as in the massless case.
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We can use the relation (2.37) to express the charges in the l’th cell in terms of those in
some other l̃’th cell, with l̃ < l; assuming h′l−1(l) = h′l(l) is satisfied across all D8 branes, we find

Ql2 = Ql̃2 − ∆lQl̃4 + 1
2(∆l)2Ql̃6 −

1
6

∆l∑
i=1

(1 − 3i+ 3i2)Ql−i8 ,

Ql4 = Ql̃4 − ∆lQl̃6 + 1
2

∆l∑
i=1

(2i− 1)Ql−i8 ,

Ql6 = Ql̃6 −
∆l∑
i=1

Ql−i8 , (2.39)

where ∆l = l − l̃.
If we instead assume h′l−1(l) = −h′l(l) things are a bit more complicated. The continuity

conditions impose the same constraints on (Ql2, Ql6) as in (2.37) but that of Ql4 is modified as

Ql4 = −
(
Ql−1

4 −Ql−1
6 + 1

2Q
l−1
8

)
, (2.40)

which now implies that

bl(l) − bl−1(l) = 2Ql−1
4 −Ql−1

6
Ql−1

6 −Ql−1
8

. (2.41)

This is by no means automatically a large gauge transformation, for that we must impose
that the l.h.s. of the above is an integer, which has consequences for the charges in both
the l’th and (l − 1)’th cells, namely

2Ql4 = −(z − 1)Ql6,
2Ql−1

4 = (z + 1)Ql−1
6 − zQl−1

8 , (2.42)

for z ∈ Z - note that these are not independent, they imply each other given (2.40). We
again find that if (2.35a) holds in the (l− 1)’th cell it also holds in the l’th cell when Ql8 ≤ 0
and that if (2.35b) holds in the l’th then it also holds in the (l − 1)’th cell when Ql−1

8 ≥ 0.
We can again sum the recursion relations, this time assuming that h′l−1(l) = h′l(l) is

satisfied across all D8s except the one at r = l. We find

Ql2 = Ql̃2 − ∆lQl̃4 + 1
2(∆l)2Ql̃6 −

1
6

∆l∑
i=1

(1 − 3i+ 3i2)Ql−i8 ,

Ql4 = 1
2(1 − z)

Ql̃6 − ∆l∑
i=1

Ql−i8

 ,
Ql6 = Ql̃6 −

∆l∑
i=1

Ql−i8 , (2.43)

which is subject to the additional constraint

2Ql̃4 − (2∆l + z − 1)Ql̃6 +
∆l∑
i=2

(2(i− 1) + z)Ql−i8 + zQl−1
8 = 0, (2.44)
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which one can take to define, for instance, Ql−1
8 . The most general configuration one can

construct will have h′l−1(l) = −h′l(l) at an arbitrary number of cell intersections, with each
such intersections being separated by an arbitrary number of cells whose intersections obey
h′l−1(l) = +h′l(l) - clearly this leads to infinite possibilities. One can always compute the
charges in a given cell of an arbitrary solution by combining the results of (2.39) and (2.43).

Simple global solutions. To construct global solutions we need to decide how the space is
going to start and end: if we choose to bound the space from below we can do so without
loss of generality in the 0’th cell at r = 0, we must choose one of the profiles in (2.8a)–(2.8c)
so one achieves this with a physical singularity. Each of these choices amounts to tuning
the charges in the 0’th cell as

D8/O8 at r = 0 : Q0
4 = Q0

6 = 0, (2.45)
O2 at r = 0 : 2Q0

2Q
0
6 = (Q0

4)2,

Monopole at r = 0 : Q0
2 = Q0

4 = 0,

where in each case Q0
8 < 0 and Q0

6, Q
0
2 ≥ 0 ensures a well defined metric throughout the first

cell, and so also in every subsequent cell for which Ql8 < 0. As fixing F0 = 0 in our class
makes it locally AdS4 × CP3, as explored earlier, clearly we can also choose to begin the
space with an AdS4 boundary at r = −∞ by simply fixing Ql8 = 0 in every cell below some
lower bound l = l0 were we begin placing D8 brane sources. This requires

AdS4 boundary at: r = −∞ : Ql8 = 0, for l < l0, (2.46)

one also needs to arrange for 2Ql2Ql6 > (Ql4)2 below r = l0, but then provided that we keep
Ql8 ≤ 0 for l ≥ l0 we are then guaranteed to have a well defined metric.

Each of the previous options allows us to continue the space arbitrarily towards r = +∞,
placing D8 branes at arbitrary integer values of r as we go as long as Ql

8 ≤ 0 in each cell. At
some point though we need to arrange for the space to terminate physically, one option is to
keep Ql8 < 0 for l = 0, . . . , P − 1 and place a final D8 brane at r = P . In this scenario by
far the easiest physical option to end the space is to have an AdS4 boundary at r = +∞,
as all this requires one to do is fix

AdS4 boundary at: r = +∞, Ql8 = 0, l ≥ P, (2.47)

but this is not the only option at our disposal. We can instead choose to terminate the space
in the P ’th cell at r = P + 1, for which we must again select a profile as in (2.8a)–(2.8c),
but such that the singularity lies in the appropriate place, which amounts to taking h in
the final cell to be of the form

h = QP+1
2 −QP+1

4 (r − P − 1) + 1
2Q

P+1
6 (r − P − 1)2 − 1

3!Q
P
8 (r − P − 1)3, (2.48)

where QP+1
2,4,6 are the Page charges in the would be (P + 1)’th cell, related to those in P ’th

cell by (2.37). The distinct boundary behaviours are given by tuning

D8/O8 at r = P + 1 : QP+1
4 = QP+1

6 = 0, (2.49)
O2 at r = P + 1 : 2QP+1

2 QP+1
6 = (QP+1

4 )2,

Monopole at r = P + 1 : QP+1
2 = QP+1

4 = 0,
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where we still require that QP+1
2 , QP+1

6 > 0 as before, but now QP8 > 0 in each case. Notice
that these imply the conditions (2.35b), so one can equally well work backwards from
r = P + 1, gluing on cells with Ql8 > 0 and have guaranteed metric positivity when the
continuity constraints hold - we shall return to this point shortly. Under the assumption
that h′ does not change sign as we cross the D8 at r = P , it does not take long to establish
that terminating at a D8/O8 is impossible, ie one finds

2QP+1
2 + 1

3(1 + 3P + 6P 2)Q0
6 =

P∑
i=1

(2P − i)iQP−i
8 , (2.50)

which is impossible to solve as the l.h.s. is positive definite while the r.h.s. is negative definite.
Ending with a monopole under these assumptions is possible, but only when Q0

4 > 0, we
find we must tune the charges as

Q0
4 = (P + 1)Q0

6 −
1
2Q

P
8 − 1

2

P∑
i=1

(2i+ 1)QP−i
8 ,

6Q0
2 = 3(P + 1)2Q0

6 − (2 + 3P )
P∑
i=0

Qi8 +
P∑
i=1

i(i− (2P + 1))QP−i
8 ,

Q0
6 >

P∑
i=0

Qi8 = QP8 +
P∑
i=1

Qi−1
8 , (2.51)

where Q0
4 > 0 follows from these and the fact that we must have Q̃P6 > 0. It is also possible to

end the space with a O2 plane in this fashion, but solving 2Q̃P2 Q̃P6 = (Q̃P4 )2 given (2.39) leads
to rather complicated expressions we will omit. We conclude that if Ql8 ≤ 0 for l = 0, . . . , P−1
and QP8 ̸= 0 then when h′ does not change sign at r = P the possible global solutions are

(AdS4, O2) → (AdS4, O2, Monopole), (2.52)

with an arbitrary number of D8 branes on the interior of the r interval.
If h′ does change sign at r = P it becomes possible to terminate the space with a

D8/O8 singularity, this imposes

Q0
6 =

P∑
i=0

Qi8 ≥ 0, Q0
2 ≥ PQ0

4 + 1 − 3P 2

6

P∑
i=1

Qi8 + 3
P∑
i=1

i(i− 1)Qi−1
8 ,

Q0
4 = −QP8 + 1

2(1 + 2P )
P∑
i=1

Qi8 −
P∑
i=1

iQP−1
8 , z = 0 (2.53)

which is compatible with all physical options for the lower bound of the space except the
monopole. It is also impossible to end the space with a monopole when h′ changes sign at
r = P as the necessary positivity constraints on the charges cannot be satisfied. Finally,
although we will again not give the details due to their complexity, it is possible to end the
space with an O2 in this fashion. We thus find that when Ql8 ≤ 0 for l = 0, . . . , P − 1 and
QP8 ̸= 0, then if h′ does change sign at r = P

(D8/O8, AdS4, O2) → (D8/O8, AdS4, O2) (2.54)

are the possible global solutions.
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Symmetric profiles. In the previous examples of global solutions we only allowed for one
cell with Ql8 > 0. To end this section we will consider the more symmetric case of an even
number of positive and negative charges.

One can begin the space at r = 0 with any of the behaviours in (2.45), or arrange Q0
8 to

be the first non zero values of Ql8 such that we have an AdS4 boundary at r = −∞. Either
way, we continue the space in a well defined manor up to r = P so long as Ql8 < 0 for
l = 0, . . . , P −1 and we impose (2.35a) in the 0’th cell. The idea is to then essentially glue the
profile for h to itself in the P ’th cell: to this end it is useful to fix the charges in the P ’th cell as

QP2 = QP−1
2 −QP−1

4 + 1
2Q

P−1
6 − 1

3!Q
P−1
8 , QP8 = −QP−1

8

QP4 = −QP−1
4 +QP−1

6 − 1
2Q

P−1
8 , QP6 = QP−1

6 −QP−1
8 , (2.55)

which satisfies the continuity conditions at r = P with h′ changing sign at this point. This
tuning has the benefit of automatically solving the metric reality constraints: as QP8 ≥ 0 the
appropriate constraints are (2.35b), which under (2.55) become

QP−1
8 ≤ 0, QP−1

6 ≥ 0, QP−1
2 ≥ 0, 2QP−1

2 QP−1
6 ≥ (QP−1

4 )2,

QP−1
2 −QP−1

4 + 1
2Q

P−1
6 − 1

3!Q
P−1
8 ≥ 0, (2.56)

the first line of which is just the (2.35a) version of the metric reality conditions for the
(P − 1)’th cell, while the second line is implied by these. If we now consider the metric
continuity constraints (2.37) (ie without h′ changing sign) at r = P + 1 we find that
under (2.55) they are mapped to

QP+1
2 = QP−1

2 , QP+1
4 = −QP−1

4 , QP+1
6 = QP−1

6 (2.57)

If we further identify QP+1
8 = −QP−2

8 then the metric reality constraints of the (P + 1)’th
cell are implied by those of the (P − 2)’th cell. We can continue in this fashion to construct
a well defined global solution by simply identifying the charges in the (P + n)’th cell as

QP+n
2 = QP−n

2 , QP+n
4 = −QP−n

4 , QP+n
6 = QP−n

6 , QP+n
8 = −QP−n−1

8 , (2.58)

for n = 1, . . . , P − 1. In such symmetric profiles h′ changes sign at the D8 at r = P , and
only at this D8. We thus also need to ensure that the transformation of B2 across r = P

is a large gauge transformation, which amounts to imposing

2Q0
4 − (2(P − 1) + z − 1)Q0

6 +
P−1∑
i=2

(2(i− 1) + z)QP−i
8 + zQP−1

8 = 0, (2.59)

which we can take as the definition of QP−1
8 , which one can always ensure is negative by

suitably choosing the integer z. In the (2P − 1)’th cell we have n = P − 1 and by using (2.37),
the profile in this cell can then be written as

h = Q0
2 − (−Q0

4)(r − 2P ) + 1
2Q

0
6(r − 2P )2 − 1

3!(−Q
0
8)(r − 2P )3 (2.60)
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making clear that if we begin the space at r = 0 with one of the behaviours in (2.45), then
it ends at r = 2P in the same fashion - likewise an AdS4 lower boundary will interpolate
to an upper boundary AdS4. It is thus possible to construct global solutions interpolating
between the following boundary behaviours in this way

D8/O8 → D8/O8, Monopole → Monopole, O2 → O2, AdS4 → AdS4. (2.61)

It is also not hard to further generalise - for instance one can separate the negative and
positive Ql8 by a region with Ql8 = 0 of arbitrary length in a similar fashion, or one could
take a portion of a symmetric profile then glue it to a local AdS4 region. Let us stress that
there is much more that one can do than we have discussed explicitly, however this section
does provide the necessary building blocks to construct all these possibilities.

Central charge. Finally, let us comment on the central charge of generic solutions: the
holographic central charge (2.15) clearly depends on how we start and end the space, but
we can make some general comments: the expression (2.15) can be compartmented into
its contribution in each cell, with hl given by equation (2.30) one finds the contribution
between r = l and r = l + 1 to be

clhol =
1
2

∫ l+1

l
dr
(
2hlh′′l −(h′l)2

)
= 2Ql2Ql6−(Ql4)2−Ql8

(
Ql2−

1
3Q

l
4 + 1

12Q
l
6−

1
60Q

l
8

)
. (2.62)

If the space is bounded at finite proper distance then computing the central charge just
amounts to summing the clhol contributions from each cell which represents a non-trivial
prediction for the central charge of the 2d CFTs dual to the solutions (2.1). If one or both of
the boundaries are AdS4 then in principle the same is true, albeit now there are an infinite
number of cells. We note that for the symmetric profiles discussed earlier we have

cP+n = cP−n−1, n = 0, . . . , P − 1 ⇒
2P−1∑
l=0

cl = 2
P−1∑
l=0

cl. (2.63)

We will come back to the analysis of the central charge for a concrete choice of solution
in section 4.

3 A new class of N = (0, 4) AdS3 solutions to Type IIB

In this section we present a new class of Type IIB solutions consisting on AdS3×S2×S2×S1

geometries foliated over two intervals. These solutions preserve the osp(4|2) superconformal
algebra and are generated by acting with Abelian T-duality on the class of AdS3 × CP3

solutions in (2.1).
The CP3 space has a natural U(1) isometry on which one can act by T-duality - in

terms of the parametrisation of (2.2) this is ∂ψ. Following the standard Buscher’s procedure
leads to a dual metric of the form

ds2

2π = h√
2hh′′ − (h′)2 ds

2(AdS3) + 2h′′√
2hh′′ − (h′)2

[(
h′

h′′
− r

)
dξ − dψ

2π sin ξ cos ξ

]2
(3.1)

+
√

2hh′′ − (h′)2

4h dr2 + 2
√

2hh′′ − (h′)2

h′′

(
dξ2 + 1

4 cos2 ξds2(S2
1) + 1

4 sin2 ξds2(S2
2)
)
.
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The dualisation of the rest of the NS-NS sector5 leads to the following expressions for the
dilaton, the B2 field and its field-strength, H3 = dB2,

eΦ = 2
sin ξ cos ξ h′′ ,

B2 = π

(
h′

h′′
− r

) [
− cos2 ξ vol(S2

1) + sin2 ξ vol(S2
2)
]

+ (η1 + η2) ∧ dψ ,

H3 = 2π sin ξ cos ξ
[(

h′

h′′
− r

)
dξ − dψ

2π sin ξ cos ξ

]
∧
[
vol(S2

1) + vol(S2
2)
]

+ πh′h′′′

(h′′)2 dr ∧
[
cos2 ξ vol(S2

1) − sin2 ξ vol(S2
2)
]
.

(3.2)

Finally, the R-R fluxes are given by

F1 = sin ξ cos ξ
(
h′′ − rh′′′

)
dξ − h′′′

2π dψ ,

F3 = π sin ξ cos ξ F3,ξψ ∧
[
cos2 ξ vol(S2

1) − sin2 ξ vol(S2
2)
]
,

F5 = 2π2 sin ξ cos ξF e5,ξψ ∧ vol(AdS3) ∧ dr + π2 sin3 ξ cos3 ξ Fm5,ξψ ∧ vol(S2
1) ∧ vol(S2

2) ,

(3.3)

where we introduced the quantities F3,ξψ, F e5,ξψ and Fm5,ξψ given by

F3,ξψ = h′(h′′ + rh′′′) − r(h′′)2

h′′
dξ − (h′′)2 − h′h′′′

h′′
dψ

2π sin ξ cos ξ ,

F e5,ξψ =
(
rh′ − 2h− hh′(h′ − rh′′)

2hh′′ − (h′)2

)′
dξ + 1

2

(
3h′ + (h′)3

2hh′′ − (h′)2

)′
dψ

2π sin ξ cos ξ ,

Fm5,ξψ = −6h(h′′)2 + 3(h′)2h′′ + r(h′)2h′′′

(h′′)2 dξ + (h′)2h′′′

(h′′)2
dψ

2π sin ξ cos ξ .

(3.4)

The function h satisfies the same master equation as the AdS3 × CP3 Type IIA solutions
given by (2.1), namely

h′′′ = −2πF0 , (3.5)

where in Type IIB F0 is now associated to the charge of D7 branes, with a discontinuous
F0 leading to sources smeared along the ψ direction.

As for its dual partner (2.1), finding a brane intersection reproducing the background (3.1)
as a near-horizon geometry is particularly challenging. To this end one can try, at least,
to differentiate the defect branes, associated to the back-reacted AdS3 geometry, and the
“mother branes”, associated to the ambient theory, including the defect. As we already
argued in the previous section the mother theory is ABJM. On the supergravity side, this
is realised when one fixes F0 = 0 in (2.1). An analogous AdS4 limit can also be obtained
in Type IIB, which is actually the context in which the ABJM brane intersection was first
discussed: this consists of a stack of D3 branes stretched between NS5’ and (1, k)5′ branes,
as depicted in table 1. These constitute the mother branes. In the next section we will
propose a concrete brane intersection consisting on NS5-D7 defect branes intersecting the

5For simplicity of notation we set l = 0 in (2.1) and (2.3).

– 16 –



J
H
E
P
0
8
(
2
0
2
4
)
0
4
4

ABJM bound state breaking the isometries of the AdS4 × CP3 vacuum. Our concrete brane
picture will be obtained by studying the Page charges.

The main elements that make the construction of the exact brane solution associated to
our backgrounds particularly intricate is that it is not possible to extract the AdS4 vacuum
as a local, asymptotic limit of the AdS3 × I solutions. Rather, as explained in the previous
section, it arises through a global gluing procedure. This is the manifestation of the fact
that the back-reaction of the defect branes irredeemably breaks the AdS4 vacuum geometry.
This implies that we cannot study the equations of motion of defect and mother branes
independently, as it can be done for other simpler AdS3 solutions. Another difficulty is the
presence of fractional branes. These are produced by dualising H3 and the magnetic 4-flux
in (2.1), which were defined along 2- and 4-cycles within the CP3 space. From the Type IIA
perspective these fluxes were associated to fractional D4 branes.

In the remainder of this section we identify the sub-class of Type IIB solutions associated
to the ABJM theory. Fixing

h′′′ = 0 ⇒ h = c2 + c4r + c6
2 r2 (3.6)

again implies that the (AdS3, r) directions become AdS4, as explained in section 2.1. This
is equivalent to taking the T-dual of the AdS4 × CP3 solution. In this limit supersymmetry
is enhanced and the background (3.1) takes the form of an N = 4 solution with topology
AdS4 × S2 × S2 × Σ2, which were classified in [64]. Specifically, we find the metric

ds2

2π =

√
2c2c6 − c2

4

2c6

(
ds2(AdS4) + 4dξ2 + cos2 ξds2(S2

1) + sin2 ξds2(S2
2)
)

+ 2c2
4

c6
√

2c2c6 − c2
4

(
dξ − c6

2πc4 sin ξ cos ξ dψ
)2
.

(3.7)

From this expression we can extract the 2d metric over the Riemann surface Σ2, parametrised
by the coordinates (ξ, ψ). We observe that this surface is an annulus.
The rest of the NS-NS sector boils down to

eΦ = 2
c6 sin ξ cos ξ ,

B2 = πc4
c6

[
− cos2 ξ vol(S2

1) + sin2 ξ vol(S2
2)
]

+ (η1 + η2) ∧ dψ ,

H3 =
(2πc4

c6
sin ξ cos ξ dξ − dψ

)
∧
(
vol(S2

1) + vol(S2
2)
)
,

(3.8)

while the RR fluxes read

F1 = c6 sin ξ cos ξ dξ ,

F3 = c6
2

(2πc4
c6

sin ξ cos ξ dξ − dψ

)
∧
[
cos2 ξ vol(S2

1) − sin2 ξ vol(S2
2)
]
,

F5 = −3π
2

√
2c2c6 − c2

4 vol(AdS4) ∧
(2πc4

c6
sin ξ cos ξdξ − dψ

)
+ 3π2

c6

√
2c2c6 − c2

4 sin3 ξ cos3 ξ dξ ∧ vol(S2
1) ∧ vol(S2

2).

(3.9)
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We conclude by pointing out that in order to reproduce the ABJM vacuum in the
form discussed in [39], we have to perform the following coordinate transformation within
the Riemann surface,

ψ → ψ + 2πc4
c6

sin ξ cos ξ dξ . (3.10)

The effect of this transformation is to turn off the components of H3, F3 and F5 in (3.8)
and (3.9) orthogonal to ψ. These flux terms are pure gauge and they are typically produced
when one T-dualises a solution with an exact B2 field, like our Type IIA solution (2.1).

4 The dual field theory

In this section we take the first steps towards identifying the field theory dual to the solutions
in the general massive case. As in [39, 40] we propose a brane set-up in Type IIB string theory.
We argue that this brane set-up preserves N = (0, 3) supersymmetry, that should be enhanced
to (0, 6) in the IR. The mechanism at work should be a 2d realisation of the supersymmetry
enhancement that occurs in the ABJM/ABJ theory, albeit with half the supersymmetries. In
this case the enhancement is to manifest (0, 4) supersymmetry in Type IIB, consistently with
the number of supersymmetries preserved by the Type IIB AdS3 solutions just discussed.
This becomes (0, 6) when the T-duality is undone to recover the Type IIA description, again
in agreement with the number of supersymmetries preserved by the Type IIA solutions.

4.1 Hanany-Witten brane set-up

Let us first propose the brane set-up. On top of the D2, KK and D6 branes (or D3, NS5′ and
D5′-branes in the Type IIB description) of the massless case, depicted in table 1, there are
now additional D8 and NS5 branes (or D7 and NS5 branes in the Type IIB description), as
well as D4 (or D5) fractional branes. A natural interpretation of the AdS3 ×CP3 solutions is
then as the backreacted geometries that arise when a large number of D8-NS5 defect branes
are introduced in the ABJ theory, in a way that preserves N = (0, 6) supersymmetry, that is,
half of the supersymmetries, and a OSp(6|2) superconformal group. The NS5-branes have the
effect of bounding the D2 and D6 branes along the domain wall direction of the D8 branes.

In what follows we will consider the brane intersection in Type IIB, after a T-duality is
performed along the Hopf fibre of the S3 contained in the CP3, in the parametrisation (2.2). As
discussed in section 3, the T-duality breaks the supersymmetry from N = (0, 6) to N = (0, 4).
In the brane intersection the 8 (Poincaré) supersymmetries preserved by the D3-NS5′-D5′
branes of the ABJM set-up prior to the rotation of the D5′-branes are broken by a half by the
NS5-branes, giving rise to (0, 4) supersymmetry in 2d.6 The D7-branes are added without
breaking any further supersymmetries. As in ABJM, once the rotation of the D5′-branes is
taken into account supersymmetry should be further broken to (0, 3), if the branes are rotated
the same angle along the [3, 7], [4, 8] and [4, 9] directions with respect to the NS5′-branes.7

The Type IIB brane configuration is depicted in table 2. In this brane set-up the D7-NS5
defect branes create a domain wall in the 3d theory living in the D3-NS5′-(1, k)5′ branes. This
is similar to the D4-D8 defect branes introduced in [44] as probe defect branes in ABJM, in

6This was shown explicitly in [65].
7Otherwise the supersymmetries would be reduced to (0, 2).
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branes x0 x1 r x3 x4 x5 ψ x7 x8 x9

D3 × × × − − − × − − −
NS5′ × × × × × × − − − −

(1, k)5′ × × × cos θ cos θ cos θ − sin θ sin θ sin θ
D7 × × − × × × − × × ×
NS5 × × − − − − × × × ×

Table 2. Brane intersection describing the ABJ brane system in Type IIB with D7-NS5 “edge” states.
The intersection describes a brane box with D3 colour branes extended along the r and ψ directions.
The brane intersection should preserve N = (0, 3) supersymmetry in 2d.

r

NS5 NS5 NS5 NS5′

NS5′
(1, k1)5

′ (1, k2)5
′ (1, k3)5

′

ψ = 0

ψ = π

N2D3N1D3

(N1 +M1)D3 (N2 +M2)D3

Figure 1. Brane configuration associated to the AdS3 ×CP3 solutions. Nl D3-branes stretch between
ψ = 0 and π and Nl +Ml between ψ = π and 2π.

order to realise edge states in the Fractional Quantum Hall Effect. The effect of these branes
in the probe brane approximation was to modify the ranks and levels of the gauge groups of
the Chern-Simons theory living in the D3-branes. Instead, our study shows that for a large
number of NS5-D8 defect branes the resulting field theory becomes two dimensional, while
still preserving one half of the supersymmetries and a subgroup of the superconformal group.

In more detail, the brane set-up depicted in table 2 describes a brane box model in
which Nl D3-branes are bounded between NS5-branes along the r direction, and between
the NS5′ brane located at ψ = 0 and the (1, kl) 5′ branes (a bound state of 1 NS5′ and
kl D5′ branes) located at ψ = π along the ψ-direction. This number becomes Nl + Ml

between the (1, kl) 5′-branes and the NS5′-brane at ψ = 2π, due to extra fractional D5-branes
created between these branes. We have depicted the brane picture in figure 1. In this
configuration the number of D5′-branes bounded with the NS5′ brane at ψ = π, kl, changes
as one moves along the r-direction and therefore also the rotation angle θl between both
types of branes,8 whose tangent is given by tan θl = ∆kl. This happens due to a brane
creation effect when the D7 flavour branes are crossed. We have depicted this part of the
brane set-up in figure 2. This subsystem describes a D5′-D7-NS5 brane intersection with five
common worldvolume directions, kl D5′-branes stretched between NS5-branes and ∆ql D7
flavour branes located at each r ∈ [l, l + 1] interval. As we will see in the next subsection
the number of D5′-branes created across intervals is the one that corresponds to balanced
5d quivers, as described in [66].

8Even if we have not indicated this explicitly in the drawing for the sake of clarity.
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∆q1D7 ∆q2D7

k1D5′

k2D5′

NS5 NS5 NS5

r

Figure 2. Brane creation effect for the D5′-NS5-D7 subsystem of the brane set-up.

The whole configuration is thus a brane-box model in which D3 colour branes are
stretched between NS5-branes along the r-direction and between NS5′ and (1, kl) 5’-branes
along the ψ-direction, with the number of D5′-branes changing across intervals due to the
presence of the D7-branes. On top of this, D5 fractional branes are created in the ψ ∈ [π, 2π]
interval when the kl D5′-branes are crossed.

In the next subsection we analyse the field content associated to this configuration and
propose a concrete quiver field theory that describes it.

4.2 Building blocks

As in 3d, the N = (0, 3) gauge theory living in the D3-branes is expected to have the same
field content as that of an N = (0, 4) gauge theory, except for the deformations introduced
by the rotations of the 5-branes, responsible for the breaking of the supersymmetry to
N = (0, 3). Specifically, the (0, 4) theory has SO(4) R-symmetry, that should reduce to
SU(2)R = diag(SU(2) × SU(2)) for the (0, 3) theory. In 3d the N = 4 Coulomb branch
combines with the N = 4 Higgs branch such that N = 3 supersymmetry remains. In 2d
(0, 4) theories there is no Coulomb branch, because the scalars live now in (twisted) adjoint
hypermultiplets. The mixing between the Coulomb and Higgs branches should then be
replaced by a combination between the twisted and untwisted (0, 4) hypermultiplets, resulting
in (0, 3) supersymmetry. Unfortunately, since not much is known about 2d (0, 3) theories,
in this subsection we will take a “phenomenological” approach, hoping that our discussion
will stimulate more detailed investigations.

We start recalling the field content of the (0, 4) brane box models studied in [45], to
which we will add the rotation of the D5′-branes relative to the NS5′-branes.

The brane box model studied in [45] consists on a D3-NS5-NS5′-D5-D5′ brane intersection
in which the branes are oriented as depicted in table 3, with the whole brane system preserving
large N = (0, 4) supersymmetry. In this set-up the SO(3)345×SO(3)789 rotation group is
identified with the SO(4)R R-symmetry. In our case the NS5′ and the D5′ branes are located
at the same position in ψ and are rotated the same angle on the [3, 7], [4, 8] and [5, 9]
directions. These rotations render some of the scalars of the brane box massive [67, 68],
as we discuss below.

Prior to the rotation of the D5′-branes the quantisation of the open strings with ends on
the D3-branes in the brane box model gives rise to four types of N = (0, 4) multiplets [45]:
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branes x0 x1 r x3 x4 x5 ψ x7 x8 x9

D3 × × × − − − × − − −
NS5′ × × × × × × − − − −
D5′ × × × − − − − × × ×
NS5 × × − − − − × × × ×
D5 × × − × × × × − − −

Table 3. Brane intersection describing the D3-brane box model studied in [45], where we have
denoted r and ψ the field theory directions, as in the brane set-up depicted in table 2.

• When the end-points of the string lie on the same stack of D3-branes the projections
induced by both the NS5 and NS5′ branes leave behind a (0, 4) vector multiplet.

• When the end-points of the string lie on two different stacks of D3-branes separated by
an NS5-brane the degrees of freedom along the (x7, x8, x9) directions are fixed, leaving
behind the scalars associated to the (x3, x4, x5) directions, which together with the
Ar component of the gauge field give rise to a (0, 4) twisted hypermultiplet in the
bifundamental representation. The hypermultiplets are twisted because the scalars are
charged with respect to the SO(3)345 subgroup of the R-symmetry group.

• When the end-points of the string lie on two different stacks of D3-branes separated by
an NS5′-brane the degrees of freedom along the (x3, x4, x5) directions are fixed, leaving
behind the scalars associated to the (x7, x8, x9) directions, which together with the Aψ
component of the gauge field give rise to a (0, 4) hypermultiplet in the bifundamental
representation. The hypermultiplets are untwisted because the scalars are charged with
respect to the SO(3)789 subgroup of the R-symmetry group.

• When the end-points of the string lie on two different stacks of D3-branes separated by
both an NS5 and an NS5′ brane all the scalars are fixed, leaving behind the fermionic
mode associated to a bifundamental (0, 2) Fermi multiplet.

We have depicted the building blocks of the (0, 4) quivers just described in figure 3. In this
quiver circles denote (0, 4) vector multiplets, black lines (0, 4) twisted hypermultiplets, grey
lines (0, 4) hypermultiplets and grey dashed lines (0, 2) Fermi multiplets. To the previous
matter content we have to add the multiplets that come from the D5′ flavour branes.9
These branes contribute with (0, 4) fundamental hypermultiplets to the D3-branes lying
in the same r-interval, and with (0, 2) fundamental Fermi multiplets to the D3-branes in
adjacent r-intervals. On top of this we need to add the contribution of the D7-branes, which
being completely orthogonal to the D3-branes just contribute with (0, 2) fundamental Fermi
multiplets to the D3-branes lying in the same r-interval.

4.3 2d quivers

Taking into account the field content arising from the different branes in the brane box
configuration just reviewed we can now build up the quiver associated to our particular brane

9Since the D5-branes are fractional branes.
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ψ

r

Figure 3. General quiver associated to D3-branes stretched between NS5 and NS5’ branes in two
perpendicular directions. Circles denote (0, 4) vector multiplets, black lines (0, 4) twisted hypermulti-
plets, grey lines (0, 4) hypermultiplets and grey dashed lines (0, 2) Fermi multiplets.

N3N1

k1

N2

N1 +M1 N2 +M2 N3 +M3

∆q1 k2∆q2 k3∆q3

Figure 4. Quiver diagram associated to our brane set-up. Black dashed lines denote (0, 4) Fermi
multiplets.

N3N1

k1 k2 k3

N2

N1 +M1 N2 +M2 N3 +M3

Figure 5. Quiver diagram showing the matter fields coming from the open strings stretched between
D3-branes in the same ψ-interval and D3-branes and D5’-branes.

set-up. We have depicted it in figure 4. For the sake of clarity we have decomposed the
matter content of this quiver in the two quivers depicted in figures 5 and 6. Since now ψ

is a compact direction, there are two (0, 4) hypermultiplets connecting the Nl and Nl +Ml

gauge groups at each r-interval, that originate from the open strings that connect the Nl D3
and Nl +Ml D3 branes across either one of the NS5′ branes. Similarly, there are two (0, 2)
Fermi multiplets connecting Nl D3-branes with Nl′ +Ml′ D3 branes in adjacent r-intervals,
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N3N1 N2

N1 +M1 N2 +M2 N3 +M3

∆q1 ∆q2 ∆q3

Figure 6. Quiver diagram showing the matter fields coming from the open strings stretched between
D3-branes in the same and different ψ-intervals and D3-branes and D7-branes.

Multiplet Contribution
(0,4) hyper 1
(0,4) vector -2N
(0,2) Fermi −1

2

Table 4. Contribution to the gauge anomaly of the different multiplets that couple in the quiver
depicted in figure 4.

depending on the NS5′-brane crossed by the open strings. We have denoted these (0, 4)
Fermi-multiplets with black dashed lines. In each r-interval the two (0, 4) bifundamental
hypermultiplets connecting the gauge nodes with ranks Nl and Nl +Ml combine onto a (0, 6)
bifundamental hypermultiplet. On top of this we have the (0, 4) fundamental hypermultiplets
and (0, 2) fundamental Fermi multiplets associated to the open strings that connect the
D3-branes with the D5′-branes and the D7-branes. In all, our quiver field theory consists
on a sequence of U(Nl) and U(Nl +Ml) gauge groups with the field content of (0, 4) vector
multiplets connected to each other by (0, 6) bifundamental hypermultiplets, with extra kl
fundamental or antifundamental (0, 4) hypermultiplets.10 Note that at this point we have
not yet taken into account the rotation between the D5′ and the NS5′-branes. We will do
this after we discuss gauge anomaly cancellation.

Taking into account the contribution of the different multiplets to the gauge anomaly,
summarised in table 4, we find that the following condition must be satisfied for each node
in the quiver

2Ml −Ml−1 −Ml+1 + kl −
1
2kl−1 −

1
2kl+1 −

1
2∆ql = 0. (4.1)

We proceed now with checking whether this is satisfied by the concrete quivers associated
to our solutions.

10Taking into account that due to the different relative positions of the NS5′-branes at ψ = 0, 2π compared
to the (1, kl) 5-branes at ψ = π, the flavour groups contribute with fundamentals to the Nl gauge nodes and
with antifundamentals to the Nl +Ml gauge nodes.
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In doing this we first need to recall that due to the effects of the Freed-Witten anomaly
and the higher curvature terms the numbers of branes in the brane set-up are not the same
as the quantised charges built from the solutions, as discussed already for the massless case in
section 2.1. In the massive case the introduction of D8(D7)-branes in the different intervals
produces further changes to the ones already summarised in the massless case, given by (2.24).
As shown in [41], the introduction of D8(D7)-branes produces a jump on the field theory
parameters due to the brane creation effect, but in non-trivial topologies introduces as well
extra D4(D5)-brane charge coming from the half-integer component of the B2 flux needed
to cancel the Freed-Witten anomaly and the higher curvature contributions. Through an
analogous calculation to the one that shows that a D6-brane wrapped on CP3 carries 1/12
units of D2-brane charge, as a result of the sum of a contribution from a Chern-Simons term
and a higher curvature term, one finds that a D8-brane domain wall carries 1/12 units of
D4-brane charge dissolved in its worldvolume. Putting all this together one finds that the field
theory D2, D4, D6 and D8 brane charges in the different r-intervals, denoted by (Nl,Ml, kl, ql),
are related to the (Ql2, Ql4, Ql6, Ql8) quantised charges computed in equations (2.33) through

Q2 = N + k

12 ,

Q4 = M − k

2 + q

12 ,
Q6 = k,

Q8 = −q, (4.2)

where we have used Type IIA notation to make the comparison with the corresponding
expressions in the massless case easier. These relations were already found in [41] in a non-
supersymmetric massive extension of the ABJ theory considered therein. Using these relations
one can then see that the transformations (2.37) give rise to the following transformations
for the numbers of D3 (D2), D5 (D4) and D5′ (D6) branes across intervals

Nl = Nl−1 −Ml−1 + kl−1, (4.3)
Ml + ql

12 = Ml−1 + ql−1
12 − kl−1, (4.4)

kl = kl−1 + ql−1, (4.5)

where we recall that even if in our configuration the D5-branes are fractional branes, their
numbers are still changing across intervals. Consistently with this, one can check that the
condition (4.4) is the same needed to ensure that an NS5-brane is created across intervals,
following the same reasoning around equation (2.38), now in terms of the numbers of D4(D5),
NS5 and D8(D7)-branes. Note that the change in the D4(D5)-brane charge is due, on the
one hand, to the jump produced by the D8(D7)-brane domain wall, and, on the other,
to the D4(D5)-brane charge dissolved in its worldvolume, due to the topological CS and
higher curvature terms. The change in the D4(D5)-brane charge due to the brane creation
effect is the shift by −kl−1.

As we already mentioned, we can understand the change of the D5′-brane charge across
intervals by looking at the 5d field theory living in the D5′-D7-NS5 brane subsystem of the
brane set-up. The D7-branes introduced between consecutive NS5-branes at r = l, l + 1
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create kl D5′-branes stretched between the NS5-branes, satisfying the condition of balanced
5d quivers [66]

2kl = kl−1 + kl+1 + ∆ql, (4.6)

with ∆ql = ql−1 − ql the number of D7-branes in the [l, l + 1] interval, responsible for the
jump in the charge from ql−1 to ql. This is precisely as implied by equation (4.5). As we
mentioned, the D5′-branes become however flavour in the complete brane intersection, being
orthogonal to the D3-branes along the ψ-direction.

In turn, the D5-brane charge generated by brane creation, that is, excluding the charge
dissolved in the D7-branes, satisfies

2Ml = Ml−1 +Ml+1 − ∆kl, (4.7)

with ∆kl = kl−1 − kl. This condition shows that the number of D5 fractional branes changes
across intervals due to the D5′-branes that are being created at each r interval because
of the D7-branes.

At this point we can now proceed with checking equation (4.1). Substituting (4.6) this
condition becomes

2Ml −Ml−1 +Ml+1 = 0, (4.8)

which clearly is only satisfied by our quantised charges when ∆kl = 0, due to equation (4.7).
Therefore, as expected, we find that only in the massless case, when the quivers are truly (0, 4)
supersymmetric,11 the condition for gauge anomaly cancellation for (0, 4) quivers is satisfied.
Instead, for our solutions the D5′-branes are rotated with respect to the NS5′-branes, and
this renders the scalar fields transverse to the D5′-branes massive [67, 68]. The mass of
these fields is proportional to the tangent of the rotation angle between the branes, given
at each interval by tan θl = ∆kl, which is precisely the extra term in equation (4.7). This
shows that in the (0, 3) theory, when the massive scalar fields are not taken into account in
the calculation, gauge anomaly cancellation is indeed satisfied. This provides a non-trivial
consistency check for our proposed quivers and their preserved supersymmetries.

Having checked the consistency of our proposal we construct in the next subsection a
concrete completion of the quivers depicted in figure 4.

4.3.1 Completion of the quivers

In order for our proposed quivers to describe well-defined 2d field theories we have to properly
account for how they start and terminate along the r non-compact direction. We will do
this by embedding them onto the 3d ABJ theory, that is, by ending the space with two
massless regions that are locally AdS4 × CP3, as described in subsection 2.1. As discussed in
the previous section, the simplest way to do this geometrically is to only have non trivial
Q8
l < 0 for 1 ≤ r < P assuming continuity conditions of the type (2.39) throughout. The

result is depicted in figure 7. This shows a quiver like the one depicted in figure 4 terminating
with a massless regions without D8-branes. In the massless regions at both ends r becomes

11They are actually N = 3 in 3d, as discussed in section 2.1.
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N1+M1

NP−1

kP−1

NP

NP−1 + MP−1

NP+MP

N0

k0

N0+M0

∆qP−1

N2

N2+M2

NP+1

kP+1

NP+1 + MP+1

k2∆q2k1∆q1 kP∆qP

Figure 7. Quiver completed by two AdS4 regions for r < 1 and r ≥ P .

part of the external space and a 3d theory is deconstructed, their behaviour is analogous so
we will only describe the first region explicitly: here k0 turns on a Chern-Simons level for
the 3d gauge groups with ranks N0 and N0 ±M0, with opposite signs due to the relative
positions of the NS5′ at ψ = 0, 2π compared to the (1, k0) 5-branes at ψ = π. Additionally
the two (0, 4) Fermi multiplets that were connecting gauge nodes across intervals combine
with the (0, 6) hypermultiplet connecting the N0 and N0 ±M0 gauge nodes, to form a (6, 6)
hypermultiplet. In turn, the (0, 4) twisted hypermultiplets connecting the N0 and N1 nodes
and the N0 ±M0 and N1 ±M1 nodes turn onto adjoint twisted hypermultiplets for each
of the N0 and N0 ±M0 gauge nodes. They then combine with the respective (0, 4) vector
multiplets to form (4, 4) vector multiplets. This is completed by the two gauge nodes being
connected wit the k0 flavour group with (4, 4) fundamental multiplets. Therefore, we find
that in the massless regions supersymmetry is enhanced to 8 Poincaré supercharges. The
rotations between the D5′ and NS5′-branes, not taken into account in this analysis, finally
render the number of supersymmetries equal to 6 Poincaré supercharges, equivalent to N = 3
in 3d, as in the ABJM/ABJ theory.

We show in the next subsection that the mappings across intervals given by equations (4.3)–
(4.5) find an interesting interpretation in relation with Seiberg duality in 3d Chern-Simons
matter theories.

4.4 Connection with Seiberg duality

The transformations of the field theory charges given by (4.3)–(4.5)

N → N −M + k, M →M − k, k → k + q (4.9)

due to brane creation across intervals (which in the case of the D4-branes requires subtracting
the charge dissolved in the D8-branes) are precisely the extension of the Seiberg dualities
in ABJM/ABJ discussed in [40, 43] to the non-supersymmetric U(N + M)k×U(N)−k+q
Chern-Simons matter theories proposed in [41]. The particular set up in [41] is a non-
supersymmetric one obtained by a D8-brane deformation of the ABJM/ABJ theory, in which
the D8-brane is a non-supersymmetric domain wall embedded into AdS4 × CP3 spanning
AdS4 and a five dimensional subspace of CP3. Treating the D8-branes as probes it was shown
that the deformation leaves the metric unchanged and interpolates between the ABJM/ABJ
background and the non-supersymmetric AdS4×CP3 background of massive IIA found in [69].
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A generalisation of the brane creation effects discussed in [43] to include the D8-branes
led them to propose precisely the transformations above as the generalisation of Seiberg
duality to the massive case. These transformations map non-supersymmetric Chern-Simons
matter theories with gauge groups U(N +M)k×U(N)−k+q and U(N)k+q×U(N −M + k)−k
onto each other.12

Our results suggest that when the D8-branes are embedded in the 3d theory in a
supersymmetric way, which implies adding as well NS5 branes and fractional D4-branes, one
of the 3d field theory directions (the r direction in the parametrisation (2.17)–(2.18)) turns
into an energy scale, and generates a flow towards a 2d CFT. Geometrically the backreaction
of the D4-D8-NS5 defect branes gives rise to a (0, 6) supersymmetric AdS3 × CP3 geometry
where r becomes part of the internal space. In this geometric setting it is now possible
to perform large gauge transformations along the r direction that create new branes, that
precisely realise the extension of Seiberg duality to the massive case proposed in [41].

4.5 A comment on the central charge

The holographic central charge of the 2d (0, 6) SCFTs dual to the solutions with h-functions
given by (2.30) can be obtained substituting in the general expression (2.15). For the
completed quivers depicted in figure 7 we obtain

chol = 1
2

P∑
l=0

(
2Nlkl −M2

l +Mlkl −
1
12k

2
l + ql(Nl −

1
2Ml + 5

12kl −
13
720ql)

)
. (4.10)

This constitutes a very non-trivial prediction on the field theory side. One can check that in
the massless limit (4.10) reduces to equation (2.26), later “reconverted” onto a 3d expression
in (2.27) (and shown to agree with the field theory results using localization [59–62]). Note
that since we have used the shifted values of the charges this expression includes higher
derivative corrections. This implies that the predictions on the field theory side should go
beyond the planar approximation.

On the field theory side the central charge can be computed as the central extension
of the osp(6|2) superconformal algebra, given by [70]

cR = k(3k + 13)
k + 3 , (4.11)

where k is the level of the algebra. For superconformal algebras with (0, 2) supersymmetry,
the level of the algebra can be computed from the U(1)R R-symmetry anomaly, using that
(see for instance [2])

k = Tr[γ3Q
2
R], (4.12)

where QR is the R-charge under the U(1)R R-symmetry group, and the trace is over all
Weyl fermions in the theory. Given that the R-symmetry anomaly is a ’t Hooft anomaly, the
calculation can be performed in the weakly coupled UV description of the field theory. We
have argued that in our case we have (0, 3) supersymmetry, so this expression, in principle,

12Still, in the absence of supersymmetry it is not possible to conclude that these theories should be equivalent
in the IR.
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Multiplet chirality R-charge
(0,4) hyper R.H. -1

(0,4) twisted hyper R.H. 0
(0,4) vector L.H. 1
(0,2) Fermi L.H. 0

Table 5. R-charges and chiralities of fermions in (0, 4) multiplets.

does not apply. Still, we can check that it is possible to recover the leading terms in
equation (4.10) when q = 0, that is, when the field theory is (0, 4) supersymmetric, and
therefore expression (4.12) can be used. Indeed, recalling the R-charges of the fermions in
the different multiplets, summarised in table 5, we find

k =
P∑
l=0

(
2Nlkl +Mlkl −M2

l

)
, (4.13)

which matches the first three terms in (4.10) upon suitable normalisation. In turn, the terms
in (4.10) proportional to the mass should originate field theoretically from genuine (0, 3)
multiplets, whose contribution to the central charge has not, to our knowledge, been worked
out in the literature. This remains as an interesting open problem that deserves further
investigation. On more general grounds, one could expect that a mixing between the SU(2)R
R-symmetry and the SU(2) global symmetry occurs in the determination of the infrared
R-current, which should then be computed via c-extremisation [71, 72]. Expression (4.10)
constitutes in this sense a very useful result that can be used as a lead for the field theory
investigations.

Finally, in the remainder of this subsection we show that the holographic central charge
can be obtained as a product of electric and magnetic charges associated to the solutions.
This generalises the results in [46–48] for AdS2 backgrounds with N = 4 supersymmetries to
AdS3, with different number of supersymmetries. This suggests that the findings in [46–48]
should hold more broadly.

4.5.1 The central charge as a product of electric and magnetic charges

Following [46–48] we define a density of electric and magnetic charges from the electric and
magnetic components of the Page fluxes of a given background, as

Qe
p =

f̂ ep+2
(2π)p , Qm

p =
f̂m8−p

(2π)7−p , (4.14)

where, as in these references, the electric density will require a regularisation, as it involves
an integration over the AdS3 subspace.

The product of electric and magnetic densities computed as

Q =
∫ 4∑

k=0
(−1)k+1Qe

(2k)Q
m
(2k) = 1

(2π)7

∫ 4∑
k=1

(−1)k+1f̂ e2k+2f̂
m
8−2k, (4.15)
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gives,

Q =
∫ vol(AdS3)

6π ∧ vol(CP3)
π3/6 ∧ dr

(
2hh′′ − (h′)2 + ∂r

(
hh′ − h′′′h3

2hh′′ − (h′)2

))
, (4.16)

upon substitution of the magnetic Page fluxes given by (2.6) and the corresponding electric
components, given by13

f̂ e4 = −hπ
2hh′′−(h′)2

(
(h′)3h′′′

2hh′′−(h′)2 −3(h′′)2
)

vol(AdS3)∧dr, (4.17)

f̂ e6 = 4hπ2

2hh′′−(h′)2

(
2h(h′)2h′′′

2hh′′−(h′)2 −3h′h′′
)

vol(AdS3)∧J∧dr,

f̂ e8 = −8hπ3

2hh′′−(h′)2

(
4h′h′′′h2

2hh′′−(h′)2 −2(hh′′+(h′)2)
)

vol(AdS3)∧J∧J∧dr,

f̂ e10 = 32hπ4

2hh′′−(h′)2

(
8h3h′′′

3(2hh′′−(h′)2)−2hh′
)

vol(AdS3)∧J ∧J ∧J∧dr.

As one can see, this expression is proportional up to a boundary term,14 to our expression (2.15)
for the holographic central charge. In [46–48] an analogous result was obtained for various
AdS2 backgrounds with N = 4 supersymmetries, and it was interpreted as a generalisation of
the proposal in [49], showing that the central charge in the algebra of symmetry generators
of AdS2 with an electric field is proportional to the square of the electric field. In these
references it was shown that the proposal in [49] could be extended to fully-fledged AdS2
string theory set-ups, where it holds for the different branes involved in terms of their
electric and magnetic charges. Our result in this section shows that the proposal in [49]
is not exclusive to AdS2, but holds in more general settings involving AdS backgrounds
with different dimensionalities. This points at a possible relation to the calculation of the
holographic central charge in terms of the regularised on-shell supergravity action. Work
is in progress to try to shed more light on this issue.

5 Conclusions

In this paper we have made progress towards the understanding of AdS3/CFT2 holography
with N = (0, 6) supersymmetry. Taking as our starting point the recent local solutions
constructed in [1], for which the internal space is a foliation of a CP3 over an interval, and
thus bear a close resemblance with the ABJM/ABJ solution, we have proposed a brane set-up
and, associated to it, a quiver field theory emerging from the quantisation of the open strings.
According to our proposal this field theory should flow in the IR to the 2d CFT dual to the
AdS3 ×CP3 solutions. We have argued that, in full similarly with the 3d case, supersymmetry
should be enhanced from N = (0, 3) for the brane intersection to N = (0, 6) for the SCFT
that emerges in the IR. A difference with the 3d case is that both our solutions and associated

13For simplicity of notation we set r = l.
14Note that using (2.30) and the boundary conditions h(0) = h(P ) = 0 the boundary term does not

contribute to the final result for the holographic central charge. As already mentioned, in order to find a finite
result the volume of AdS3 has to be conveniently regularised.
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field theories preserve half of the supersymmetries of the 3d case. This is consistent with an
interpretation of the solutions as describing 1

2 -BPS backreacted surface defects within the
ABJM/ABJ theory. These defects consist on D8-NS5 branes that reduce the supersymmetries
of the ABJ brane set-up by a half and the superconformal algebra to osp(6|2). This could
represent a conformal embedding of the D4-D8 defects in ABJM proposed in [44], in order to
realise edge states in the Fractional Quantum Hall Effect.15 In the absence of D8-branes our
proposed brane configuration can also be seen as the intersection of the ABJM brane set-up,
preserving N = 3 in 3d, with the D2-NS5-D4 brane intersection studied in [67, 68], also
N = 3 supersymmetric in 3d.16 The resulting D2-KK-D6-D4-NS5 intersection would preserve
N = (0, 3) supersymmetry in 2d, and these supersymmetries would be left unbroken when
the D8-branes are introduced. An alternative interpretation of the AdS3 × CP3 solutions
would thus be as holographic duals to the 2d CFTs to which the field theories living in these
brane intersections flow in the IR. Our proposed 2d quivers manifestly realise the embedding
of the defect branes within the quiver field theory associated to the ABJM/ABJ theory. It
would be interesting to compute observables such as one point correlation functions and the
displacement operator [8], that further confirm our defect interpretation.

Interestingly, we have shown that large gauge transformations in the brane set-up induce
the generalisation to the massive case of Seiberg duality in ABJM/ABJ theories [40, 43]
proposed in [41]. This shows that, as in other theories [42, 43], Seiberg duality can be
understood geometrically in terms of large gauge transformations. Remarkably, we have
obtained the same transformations as the ones proposed in [41] for non-supersymmetric 3d
Chern-Simons matter theories. This suggests, on the one hand, that the extension of Seiberg
duality in ABJM/ABJ to the massive case proposed in [41] could hold more generally, and,
on the other, that Seiberg duality in the Gaiotto-Tomasiello theories [69] (N = 3 in 3d)
could be realised as a large gauge transformation at the expense of turning one of the field
theory directions onto an energy scale, inducing a flow across dimensions to a 2d CFT with
N = (0, 6) supersymmetry and an AdS3 × CP3 dual.

The latter might suggest that AdS4 solutions to massive Type IIA supergravity with
N = 3 supersymmetry might not exist beyond the perturbative small mass limit taken in [75].
We would like to stress that in our solutions the mass parameter can be of the same order as
the rest of quantised charges, so the solutions are in this sense fully non-perturbative, and so
are their proposed 2d dual CFTs, as opposed to the small deformations of the ABJM/ABJ
theory studied in [69]. Note as well that the 3d CFTs studied in [69] were constructed under
the assumption that the (small) massive deformations should give rise to different fixed
point theories in the same number of dimensions, namely three. It would be interesting to
investigate the small mass limit of our solutions and see whether they bear any connection
with the perturbative solutions found in [75].

With respect to the central charge we have made a concrete prediction for the (0, 6)
SCFTs dual to the AdS3 × CP3 solutions that include sub-leading corrections. However, we
have not been able to check this result against a field theory calculation once the rotation of

15Albeit with fractional D4-branes.
16See also the closely related brane intersections studied in [73, 74], realising Chern-Simons matter theories

of quiver type.
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the branes is taken into account and the supersymmetry is reduced to (0, 3). As mentioned
in the main text, we are unaware of a general result in the literature that relates the level
of the superconformal algebra with the R-symmetry anomaly for (0, 3) supersymmetry. We
hope that our, in this sense, phenomenological, results, stimulate further investigations
in this direction. It is likely that the studies in [76, 77] of 2d (0, 1) field theories can be
successfully used for this purpose.

More generally, it would be interesting to relate the (holographic) central charge computed
in this paper to the exact results for the free energy of the small deformations of the
ABJM/ABJ theory with N = 3 supersymmetry studied in [78–81], along the lines of our
discussion for the massless case.
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