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1 Introduction and motivation

The study of four-dimensional (4D) supersymmetric black holes (BHs) and their embeddings
in string theory and M-theory provides an exciting road to address fundamental questions
in quantum gravity. Within the context of ten-dimensional (10D) and eleven-dimensional
(11D) supergravities — the low-energy limits of string theory and M-theory, respectively
— a particularly simple example of black hole, the so-called universal black hole [1, 2], has
captured much of attention in recent years. Its simplicity as a 4D solution, together with its
various embeddings in string/M-theory, have made the universal black hole a central object
of study also in light of the AdS/CFT correspondence [3].

Let us first introduce the universal black hole that will play a central role in this work. It
is a black hole of Reissner-Nordström type, extremal (zero temperature) and, importantly, it
asymptotes to an AdS4 geometry with radius LAdS4 at infinity (r → ∞). The 4D spacetime
metric is given by

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2 ds2H2 , (1.1)

with

f(r) =
(

r

LAdS4

− LAdS4

2 r

)2
, (1.2)
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and where ds2H2 is the metric on a Riemann surface Σg of genus g > 1 describing the horizon
at radial distance r2H = 1

2 L
2
AdS4

. The geometry (1.1)–(1.2) is supported by a U(1) Maxwell
field A with field strength

H = dA = p volH2 , (1.3)

endowing the BH with a constant magnetic charge p being set by supersymmetry. In the
near-horizon region r → rH , the geometry becomes AdS2 × H2 with fixed ratios

L2
AdS2 = 1

2 L
2
H2 = 1

4 L
2
AdS4 , (1.4)

between the relevant length scales. Finally, the Bekenstein-Hawking entropy of the universal
AdS4 BH is given by1

s = Area(Σg)
4 = L2

AdS4

(g− 1)π
2 . (1.5)

The universal AdS4 BH we have just introduced can be framed within the context of
minimal N = 2, D = 4 supergravity with the graviphoton A being associated with the
abelian gauge group GN=2 = U(1). In its simplest realisation, it describes a (1/4−BPS)
supersymmetric solution of pure N = 2 supergravity in presence of a cosmological constant
Λ < 0. The bosonic part of the Lagrangian reads

LN=2 =
(
R

2 − Λ
)
∗ 1 − 1

2 H ∧ ∗H , (1.6)

where supersymmetry relates the radius LAdS4 of the asymptotic AdS4 region and the mass µ
of the single (complex) gravitino in the theory as L2

AdS4
= |µ|−2 = −3/Λ. Via the AdS/CFT

correspondence, the universal AdS4 black hole is dual to a universal renormalisation group
(RG) flow across dimensions [4]. This is a supersymmetric flow connecting a three-dimensional
SCFT3 dual to the AdS4 vacuum at r → ∞ (UV) to a one-dimensional superconformal
quantum mechanics dual to the AdS2 factor of the near-horizon geometry at r → rH (IR).
The RG flow is triggered by the action of a topological twist in the N = 2 SCFT3 along its
exact U(1)R superconformal R-symmetry. The precise identification of the SCFT3 depends
on the string/M-theory embedding of the universal AdS4 black hole [5]. Placing the SCFT3
on S1 ×Σg and computing the topologically twisted index of [6] at large N (which counts the
number of supersymmetric ground states), the Bekenstein-Hawking entropy (1.5) is expected
to be recovered in any string/M-theory embedding of the universal AdS4 BH.

The above story actually generalises to a much larger class of quarter-BPS AdS4 black
holes in N = 2 supergravity coupled to matter fieds. This was first established in the
impressive work [7] (and its extension [8]) in the context of M-theory. The chosen N = 2
supergravity model was the so-called STU-model [9]. This model describes a consistent
truncation of the maximal SO(8) gauged supergravity [10] that arises from the dimensional
reduction of 11D supergravity on the seven-sphere S7 [11]. Unlike for the minimal N = 2
setup discussed before, the STU-model couples the N = 2 supergravity multiplet to nv = 3
abelian vector multiplets and nh = 0 hypermultiplets, i.e. (nv, nh) = (3, 0). The three

1Area(Σg) = L2
Σg

4π(g− 1) where LΣg is the radius of a Riemann surface of genus g > 1.
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vector multiplets add three abelian vectors Ai and three complex scalars zi to the (bosonic)
Lagrangian of the minimal model (1.6). Also the cosmological constant Λ in (1.6) gets
replaced by a non-trivial scalar potential V (zi, z̄ ı̄). The STU-model has a larger GN=2 =
U(1)4 ⊂ SO(8) gauge group which allows for a generalisation of the universal AdS4 BH
in (1.1)–(1.3) to include three additional (magnetic [7] and electric [8]) charges associated
with the vectors in the nv = 3 vector multiplets, as well as non-trivial profiles zi(r) for the
scalars [12]. Lastly, the AdS4 vacuum chosen in [7, 8] to describe the asymptotic region
(r → ∞) of the black holes was the maximally supersymmetric2 AdS4 × S7 Freund-Rubin
background of 11D supergravity [13] AdS/CFT dual to the ABJM [14] SCFT3. Then the
explicit computations carried out in [7, 8] using localisation techniques showed a perfect
matching between the topologically twisted index of ABJM on S1 × Σg at large N and the
gravitational entropy of this multi-charge class of AdS4 black holes with running scalars in
the STU-model. Finally, the universal AdS4 BH in (1.1)–(1.3) is recovered as the simplest
solution with (constant) vanishing scalars z1, 2, 3 = i and non-zero magnetic charge along
the exact U(1)R ⊂ U(1)4 superconformal R-symmetry of the ABJM theory.

A holographic counting of black hole microstates has also been performed in the context of
massive type IIA strings [5, 15, 16]. The relevant N = 2 supergravity model is the extended
STU-model of [17]. This model describes a U(1)2-invariant sector of the maximal ISO(7)
supergravity [18] that arises from the dimensional reduction of massive type IIA supergravity
on the six-sphere S6 [19]. The extended STU-model couples the N = 2 supergravity multiplet
to nv = 3 abelian vector multiplets, as in the previous M-theory case, but also to nh = 1
hypermultiplet, i.e. (nv, nh) = (3, 1). The need to include the (universal) hypermultiplet
stems from the fact that, upon dimensional reduction to four dimensions, the ten-dimensional
dilaton lies in such a hypermultiplet. The abelian gauge group of the extended STU-model
in the massive IIA context turns out to be GN=2 = U(1)3 × R featuring a non-compact
generator. The universal AdS4 black hole was presented in [20]. Its asymptotic (r → ∞)
region approaches the N = 2 AdS4 × S6 background of massive IIA supergravity with U(3)
symmetry dual to a super-Chern-Simons-matter theory at level k (given by the Romans mass
parameter [21]) and simple gauge group SU(N) [22]. Constructing explicitly the non-universal
multi-charge black holes with running scalars becomes much more complicated in the presence
of hypermultiplets. However, although such BH solutions have not been constructed yet, a
careful analysis of the horizon data was enough to carry out a holographic counting of BH
microstates in [5, 15, 16] along the lines of the M-theory case.

In this work we continue the above program and present, amongst other solutions, the
universal AdS4 black hole in the context of type IIB strings. The paper is summarised as
follows. In section 2 we construct the extended STU-model of relevance in the type IIB
context. We obtain it as a Z2 × Z2-invariant sector of the maximal [SO(6) × SO(1, 1)] ⋉R12

supergravity that arises from the reduction of type IIB supergravity on S5 × S1 including
an SO(1, 1) duality twist along the S1 [23]. We reformulate the model as an N = 2
supergravity coupled to (nv, nh) = (3, 4) matter multiplets with an abelian gauge group
GN=2 = U(1)2×R2. In section 3 we first carry out an exhaustive classification of AdS2×Σg

solutions suitable to describe the near-horizon geometry of black holes. Then we present the
2N = 2 within the STU-model.
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universal AdS4 black hole that asymptotes any solution in the two-parameter (φ, χ)-family of
N = 2 AdS4 × S1 × S5 S-fold backgrounds of type IIB supergravity dual to the conformal
manifold of N = 2 S-fold CFT3’s [24]. Black hole solutions asymptoting the family of N = 2
AdS4 S-folds have been built within a truncation described by a D = 4 Einstein-Maxwell
theory in [25]. We extend these results by directly constructing the universal BHs as solutions
to the BPS equations within a consistent N = 2 truncation. In section 4, fetching techniques
from the E7(7) Exceptional Field Theory (ExFT) of [26], we present the uplift of the universal
AdS4 black holes that asymptote the N = 2 S-fold with U(2) symmetry at (φ, χ) = (0, 0) [27],
as well as the N = 4 S-fold with SO(4) symmetry at (φ, χ) = (1, 0) [23].3 As a byproduct,
we also discuss some higher-dimensional aspects of an unexpected two-parameter family of
BPS AdS2 ×H2 solutions that uplift to AdS2 × M8 supersymmetric S-fold backgrounds of
type IIB supergravity with M8 = H2 × S5 × S1. The solutions feature an anisotropic type of
parametrically-controlled scale separation that scales different internal directions differently.
In section 5 we conclude and discuss some future directions. Two appendices are included
at the end with technical aspects of the supergravity construction as well as with a set of
first-order BPS equations in matter-coupled N = 2 supergravity.

2 An STU-model from type IIB on S1 × S5

Our starting point is the maximal (N = 8) supergravity in four dimensions (4D) with
gauge group

G = [SO(6) × SO(1, 1)] ⋉R12 ⊂ SL(8) ⊂ E7(7) . (2.1)

Labeling the fundamental representation of SL(8) by an index A = 1, . . . , 8, the bosonic sector
of the theory consists of the metric (spin-2) field gµν , 28 electric Aµ

[AB] and 28 magnetic
Ãµ[AB] vector (spin-1) fields, and 70 spin-0 fields serving as coordinates in the scalar geometry
described by the coset space

Mscal =
E7(7)
SU(8) . (2.2)

As stated in the introduction, this maximal supergravity has been shown to accommodate
a rich structure of AdS4 solutions [27, 29–31] that uplift to non-geometric AdS4 × S1 × S5

S-fold backgrounds of type IIB supergravity [23, 27, 28, 30, 32–34] (see [35] for an overview).
All the couplings in the Lagrangian of a maximal supergravity in 4D are encoded in

an object called the embedding tensor [36]. Such a tensor specifies how the (local) gauge
group G of the supergravity, also known as the gauging, is embedded into the (global) E7(7)
duality group of the ungauged theory. More concretely, the embedding tensor XMN

P carries
fundamental indices M = 1, . . . , 56 of E7(7) and is subject to a set of linear constraints so
that XMN

P lives in the 912 irreducible representation (irrep) of E7(7). In addition, in order
to define a consistent gauged supergravity, the embedding tensor must obey a set of quadratic
constraints (all the details can be found in [36], see also [37, 38] for reviews). We frame

3See [28] for a judicious rewriting of the N = 4 & SO(4) S-fold of [23] closer to the nomenclature used in
this work.
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this work within the G = [SO(6) × SO(1, 1)] ⋉ R12 gauged maximal supergravity with a
gauging of the dyonic type investigated in [23]. Using the group-theoretical branching rule
56 → 28 + 28′ under E7(7) ⊃ SL(8), which translates into an index splitting of the form
TM =

(
T[AB] , T

[AB]
)
, the embedding tensor of the theory has components

X[AB][CD]
[EF] = −X [EF]

[AB] [CD] = −8 δ[E[A ηB][C δ
F]
D] ,

X
[AB] [EF]

[CD] = −X [AB][EF]
[CD] = −8 δ[A[C η̃

B][E δ
F]
D] ,

(2.3)

given in terms of the two symmetric matrices

ηAB = g diag( I5 , 0 , 0 , 1 ) and η̃AB = g c diag( 05 , −1 , 1 , 0 ) . (2.4)

The constants g and c denote the gauge coupling and an electromagnetic parameter in
the maximal supergravity, respectively [23].

2.1 Z2 × Z2 invariant sector: STU model

Until [25], and up to our knowledge, all the known solutions in the [SO(6) × SO(1, 1)] ⋉R12

maximal supergravity (including the flows of [39, 40]) were constructed within an Einstein-
scalar setup, namely, vector fields were always set to zero. In the present work we will construct
universal charged black holes by directly solving BPS equations within a supersymmetric
truncation, with both electric and magnetic vector fields generically turned on. In order to
have a simple supergravity model where to search for charged solutions we will mod-out the
[SO(6) × SO(1, 1)] ⋉ R12 maximal supergravity by a specific Z2 × Z2 group. As we show
in appendix A, this particular Z2 × Z2 gives rise to the most general N = 2 supergravity
model capturing the entire (φ, χ)-family of AdS4 vacua of the maximal theory as N = 2
solutions. In the SL(8) basis, the Z2 × Z2 group is generated by

O1 = diag(1,−1,−1,−1,−1, 1, 1, 1),
O2 = diag(−1, 1,−1, 1,−1, 1,−1, 1),

(2.5)

together with the identity element I and O1O2. Therefore, we will construct the Z2 × Z2
invariant sector of the [SO(6) × SO(1, 1)] ⋉ R12 maximal supergravity by retaining those
fields that are invariant under the action of (2.5).

The vectors Aµ
M = (Aµ

[AB], Ãµ[AB]) in the maximal theory that are invariant under
the action generated by (2.5) are

Aµ
[24] , Aµ

[35] , Aµ
[17] , Aµ

[68] , (2.6)

together with their magnetic duals. They span the gauge group

GN=2 = U(1)1 × U(1)2 × R1 × R2 ⊂ G , (2.7)

where each factor is respectively generated by the SL(8) ⊂ E7(7) generators4

(t24 − t4
2) , (t35 − t5

3) ⊂ so(6) and t7
1 , t6

8 ⊂ R12 . (2.8)
4We use the conventions in the appendix of [41] regarding the generators of E7(7) in the SL(8) basis (see

eqs (60)-(61) therein). These split into the 63 generators of SL(8) ⊂ E7(7), which are of the form tA
B with

tA
A = 0, and the completion to E7(7) given by 70 generators of the form tABCD = t[ABCD].
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The scalar geometry of the Z2 × Z2 invariant sector we are interested in is identified with

Mscal =
[SU(1, 1)

U(1)

]3
× SO(4, 4)

SO(4) × SO(4) ⊂
E7(7)
SU(8) , (2.9)

and is encoded in the following coset representative. The [SU(1, 1)/U(1)]3 factor describes
a special Kähler (SK) geometry, involves the following generators

gφ1 = t2
2 + t4

4 + t6
6 + t8

8 − t1
1 − t3

3 − t5
5 − t7

7, gχ1 = t2468,

gφ2 = t7
7 + t1

1 + t6
6 + t8

8 − t2
2 − t3

3 − t4
4 − t5

5, gχ2 = t7168,

gφ3 = t5
5 + t3

3 + t6
6 + t8

8 − t1
1 − t2

2 − t4
4 − t7

7, gχ3 = t5368,

(2.10)

and has a coset representative

VSK = e12
∑

χi gχi e−
1
4
∑

φi gφi ∈
[SU(1, 1)

U(1)

]3
, (2.11)

with i = 1, 2, 3. The SO(4, 4)/ (SO(4) × SO(4)) factor describes a quaternionic Kähler (QK)
geometry, involves the following generators

gφ̃1 = t5
5 − t3

3, gχ̃1 = t3
5,

gφ̃2 = t8
8 − t6

6, gχ̃2 = t6
8,

gφ̃3 = t2
2 − t4

4, gχ̃3 = t4
2,

(2.12)

together with

gϕ = t1
1 − t7

7, gζ0 = t2578, gζ1 = t2378, gζ2 = t2576, gζ3 = t4578,

gσ = −t71, gζ̃0
= t3467, gζ̃1

= t4567, gζ̃2
= t3478, gζ̃3

= t2367,
(2.13)

and has a coset representative

VQK = e
12
∑(

ζA g
ζA+ζ̃A gζ̃A

)
eσgσ+

∑
χ̃agχ̃a eϕ gϕ+ 1

2
∑

φ̃agφ̃a ∈ SO(4, 4)
SO(4) × SO(4) , (2.14)

with A = 0, 1, 2, 3 and a = 1, 2, 3. Finally, the coset representatives in (2.11) and (2.14) can
be used to introduce a scalar-dependent matrix

MMN =
(
V Vt

)
MN

∈ E7(7) with V = VSK VQK ∈
E7(7)
SU(8) . (2.15)

As we will show in a moment, this Z2 × Z2 invariant sector of the maximal theory
can be reformulated as an N = 2 supergravity coupled to nv = 3 vector multiplets and
nh = 4 hypermultiplets.

2.2 N = 2 reformulation of the STU-model

Let us present the reformulation of the Z2 × Z2 invariant model described above as an
N = 2 supergravity coupled to nv = 3 vector multiplets and nh = 4 hypermultiplets. The
N = 2 Lagrangian is given by

L =
(
R

2 − V

)
∗ 1 −Kiȷ̄ dz

i ∧ ∗ dz̄ ȷ̄ − huvDq
u ∧ ∗Dqv

+ 1
2 IΛΣHΛ ∧ ∗HΣ + 1

2 RΛΣHΛ ∧HΣ + Ltop .

(2.16)
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The scalar fields in the vector multiplets and hypermultiplets — we respectively denote
them zi (i = 1, . . . , nv) and qu (u = 1, . . . , 4nh) — span the factorised scalar geometry
previously identified, namely,

Mscal =
[SU(1, 1)

U(1)

]3
× SO(4, 4)

SO(4) × SO(4) . (2.17)

While the scalars zi in the vector multiplets are not charged under the gauge group (2.7),
the covariant derivatives of the scalars qu in the hypermultiplets are given by

Dqu = ∂qu −AM ΘM
α kα

u , (2.18)

with M = 1, . . . , 2(nv + 1) and α = 1, . . . , 4 . These covariant derivatives depend on the
embedding tensor Θ and the Killing vectors kα

u specifying the gauging of GN=2 in (2.7).
The two-form field strengths HΛ for the (electric) vector fields AΛ entering (2.16),

with Λ = (0, i), read

HΛ = dAΛ − 1
2ΘΛαBα , (2.19)

and generically involve two-form tensor fields Bα as dictated by the embedding tensor Θ.
The two-forms Bα, as well as the magnetic vectors ÃΛ, do not carry independent dynamics
but enter the topological term Ltop in (2.16). We have explicitly verified that the full N = 2
Lagrangian in (2.16) matches the one computed directly in the maximal theory using the
formulation of [36].

2.2.1 Vector multiplets

We will parameterise the three complex scalars zi in the vector multiplets as

zi = −χi + ie−φi with i = 1, 2, 3 . (2.20)

They describe the special Kähler geometry MSK = [SU(1, 1)/U(1)]3 in terms of a set of
holomorphic sections

XM =
(
XΛ(z), FΛ(z)

)
with Λ = (0, i) . (2.21)

The Kähler potential associated with MSK is given by K = − log
(
i
〈
X, X̄

〉)
in terms of

the symplectic product of vectors

⟨U,W ⟩ ≡ UMΩMNV
N = UΛV

Λ − UΛVΛ , (2.22)

defined using the ΩMN antisymmetric invariant matrix of Sp(8) . We take the holomorphic
sections to be(

X0, X1, X2, X3, F0, F1, F2, F3
)

=
(
−z1z2z3,−z1,−z2,−z3, 1, z2z3, z3z1, z1z2

)
, (2.23)

which satisfy FΛ = ∂F/∂XΛ for a prepotential function

F = −2
√
X0X1X2X3 . (2.24)
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The Kähler potential gives rise to a Kähler metric of the form

ds2SK = Kiȷ̄ dz
i dz̄ ȷ̄ = 1

4

3∑
a=1

(
dφ2

a + e2φadχ2
a

)
. (2.25)

The kinetic terms and generalised theta angles for the dynamical vectors in the La-
grangian (2.16) are encoded in the matrix

NΛΣ = F̄ΛΣ + 2 i Im(FΛΓ)XΓ Im(FΣ∆)X∆

Im(FΩΦ)XΩXΦ where FΛΣ = ∂Λ∂ΣF . (2.26)

An explicit computation yields

NΛΣ = 1
n


−ieφ1+φ2+φ3 n1 n2 n3

n1 −ieφ1−φ2−φ3 c2 c3 n12 n13
n2 n12 −ie−φ1+φ2−φ3 c1 c3 n23
n3 n13 n23 −ie−φ1−φ2+φ3 c1 c2

 ,

(2.27)
in terms of ci ≡ (1 + e2φi χ2

i ) and where we have introduced the quantities

n ≡
(
1 +

∑
k

e2φkχ2
k

)
+ 2 i eφ1+φ2+φ3 χ1 χ2 χ3 ,

ni ≡ e2φiχi + i eφ1+φ2+φ3χj χk (i ̸= j ̸= k) ,
nij ≡ e−φk ck (eφk χk + i eφi+φj χiχj) (i ̸= j ̸= k) .

(2.28)

Defining RΛΣ ≡ Re(NΛΣ) and IΛΣ ≡ Im(NΛΣ) , we can introduce a symmetric, real and
negative-definite scalar matrix

M(zi) =
(
I + RI−1R −RI−1

−I−1R I−1

)
, (2.29)

which will be used later on when describing the attractor equations in (3.11). This matrix
satisfies the relations MMNVN = iΩMNVN and MMNDzVN = −iΩMNDzVN , where VM ≡
eK/2XM is a redefined (non-holomorphic) set of sections with Kähler covariant derivatives
given by DzVM = ∂zVM + 1

2(∂zK)VM .

2.2.2 Hypermultiplets

The four hypermultiplets contain sixteen real scalars serving as coordinates in the quaternionic
Kähler geometry MQK = SO(4, 4)/SO(4) × SO(4). The geometry is given by

ds2QK = huv dq
udqv

= K̃ab̄ dz̃
a d¯̃zb̄ + dϕ dϕ− 1

4 e
2ϕ (dζ⃗ )TM̃8 dζ⃗

+ 1
4e

4ϕ
[
dσ + 1

2 (ζ⃗ )T C dζ⃗
] [
dσ + 1

2 (ζ⃗ )T C dζ⃗
]
,

(2.30)

with C = −Ω and where we have introduced the notation ζ⃗ ≡ (ζA, ζ̃A), with A = 0, 1, 2, 3,
to describe the scalars parameterising the Heisenberg fiber of the QK geometry.
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The matrix M̃8 depends on the complex scalars z̃a = χ̃a + ie−φ̃a , with a = 1, 2, 3,
parameterising the special Kähler manifold MS̃K of the c-map. More specifically, it has
the structure given in (2.29), namely,

M̃8 =
(
Ĩ + R̃I−1R̃ −R̃Ĩ−1

−Ĩ−1R̃ Ĩ−1

)
, (2.31)

with the building blocks

Ĩ = −e−
∑

φ̃a


1 +∑

e2φ̃aχ̃2
a −e2φ̃1χ̃1 −e2φ̃2χ̃2 −e2φ̃3χ̃3

−e2φ̃1χ̃1 e2φ̃1 0 0
−e2φ̃2χ̃2 0 e2φ̃2 0
−e2φ̃3χ̃3 0 0 e2φ̃3

 , (2.32)

and

R̃ =


−2χ̃1χ̃2χ̃3 χ̃2χ̃3 χ̃1χ̃3 χ̃1χ̃2
χ̃2χ̃3 0 −χ̃3 −χ̃2
χ̃1χ̃3 −χ̃3 0 −χ̃1
χ̃1χ̃2 −χ̃2 −χ̃1 0

 . (2.33)

As a result, the complex scalars z̃a span a scalar geometry MS̃K = [SU(1, 1)/U(1)]3 ⊂ MQK
with metric

ds2
S̃K

= K̃ab̄ dz̃
a d¯̃zb̄ = 1

4

3∑
a=1

(
dφ̃2

a + e2φ̃adχ̃2
a

)
. (2.34)

The geometry MS̃K can be described in terms of a cubic prepotential F̃ = −Z̃1Z̃2Z̃3/Z̃0 [42],
a set of sections Z̃ = (Z̃A, G̃A) with Z̃A =

(
1, z̃1, z̃2, z̃3

)
and G̃A = ∂F̃ /∂Z̃A, and a Kähler

potential K̃ = − log
(
i
〈
Z̃, ¯̃Z

〉)
from which the metric (2.34) follows.

2.2.3 Embedding tensor, scalar potential and topological term

The STU-model incorporates a gauging of GN=2 = U(1)1 × U(1)2 × R1 × R2 specified by
an embedding tensor Θ of the form

ΘM
α = g



0 −1 0 0
0 0 −1 0
1 0 0 0
0 0 0 1
0 c 0 0
0 0 0 0
c 0 0 0
0 0 0 0


, (2.35)

and involves four Killing vectors kα (α = 1, 2, 3, 4) of the QK geometry (2.30). The non-
compact R1 and R2 factors associated with the k1 and k2 isometries are dyonically gauged
by the combinations of vectors A2 + c Ã2 and −A0 + c Ã0 , respectively. The compact
U(1)1 factor in the gauge group associated with the k3 isometry is electrically gauged by
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−A1 . Lastly, the compact U(1)2 factor in the gauge group associated with the k4 isometry
is electrically gauged by A3 . The dictionary between these vectors and the ones of the
maximal theory in (2.6) reads

A[24] = −A1 , A[35] = A3 , A[17] = A2 , A[68] = −A0 , (2.36)

and similarly for the magnetic ones. From a ten-dimensional perspective, the two compact
isometries descend from the SO(6) isometries of the internal S5 in the type IIB reduction.
Lastly, the electric field-strengths (2.19) entering the Lagrangian (2.16)

H0 = dA0 − gc

2 B2 , H1 = dA1 , H2 = dA2 − gc

2 B1 , H3 = dA3 , (2.37)

where B1 and B2 are two-form potentials whose role will be clarified later on when discussing
the topological term Ltop in (2.16).

Scalar potential. In order to compute the scalar potential V in (2.16) and the covariant
derivatives of the hyperscalars in (2.18), we must identify the four Killing vectors entering
the gauging. The first Killing vector is given by

k1 = ∂σ , (2.38)

and has a prepotential

P1 =

 0
0

1
2e

2ϕ

 , (2.39)

whereas the second, third and fourth Killing vectors are

k2 = ∂χ̃2 + ζ0∂ζ2 − ζ̃2∂ζ̃0
− ζ3∂ζ̃1

− ζ1∂ζ̃3
,

k3 = 2χ̃3∂φ̃3 +
(
e−2φ̃3 − χ̃2

3 − 1
)
∂χ̃3 + ζ3∂ζ0 − ζ̃2∂ζ1 − ζ̃1∂ζ2 − ζ0∂ζ3

+ ζ̃3∂ζ̃0
+ ζ2∂ζ̃1

+ ζ1∂ζ̃2
− ζ̃0∂ζ̃3

,

k4 = −2χ̃1∂φ̃1 −
(
e−2φ̃1 − χ̃2

1 − 1
)
∂χ̃1 − ζ1∂ζ0 + ζ0∂ζ1 + ζ̃3∂ζ2 + ζ̃2∂ζ3

− ζ̃1∂ζ̃0
+ ζ̃0∂ζ̃1

− ζ3∂ζ̃2
− ζ2∂ζ̃3

.

(2.40)

The three Killing vectors in (2.40) can be expressed in a very compact form in terms of the
sections Z̃ in the SK basis of the QK geometry. Following [43] they can be expressed as

k2,3,4 =
[
(U2,3,4 Z̃)A∂Z̃A + c.c.

]
+ (U2,3,4 ζ⃗ )T ∂

ζ⃗
, (2.41)

in terms of the electric section components Z̃A and the three U-matrices

U2 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0


, U3 =



0 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0


, (2.42)
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and

U4 =



0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0
0 0 −1 0 0 0 0 0


. (2.43)

The associated prepotentials are also constructed directly from the U-matrices in (2.42)
and (2.43) as

P2,3,4 =


−
√

2 e K̃
2 +ϕ Re

[
Z̃TCU2,3,4 ζ⃗

]
−
√

2 e K̃
2 +ϕ Im

[
Z̃TCU2,3,4 ζ⃗

]
−1

4e
2ϕ(ζ⃗ )TCU2,3,4 ζ⃗ + eK̃Z̃TCU2,3,4

¯̃Z

 . (2.44)

Equipped with the above data it is straightforward to construct the scalar potential in (2.16)
for the STU-model using the N = 2 symplectically covariant expression [44, 45]

VN=2 = 4VM V̄N KM
u huv KN

v + Px
M Px

N

(
Kiȷ̄DiVM Dȷ̄V̄N − 3VM V̄N

)
, (2.45)

with VM ≡ eK/2XM and DiVM = ∂ziVM + 1
2(∂ziK)VM , and where we have introduced

symplectic Killing vectors KM
u ≡ ΘM

α kα
u and moment maps Px

M ≡ ΘM
α P xα in order

to maintain symplectic covariance [46].

Topological term. The topological term Ltop in (2.16) reads

Ltop = 1
2 ΘΛα Bα ∧ dÃΛ + 1

8 ΘΛα ΘΛ
β Bα ∧ Bβ

= 1
2 g c

[
B1 ∧ dÃ2 + B2 ∧ dÃ0 + g

4 (B1 ∧ B1 − B2 ∧ B2)
]
,

(2.46)

where the two-form potentials B1 and B2 (previously introduced in (2.37)) are associated
with the two non-compact isometries k1 and k2 that are gauged dyonically by the embedding
tensor (2.35). These two-form potentials do not carry an independent dynamics as they are
dual to scalar currents by virtue of the equations of motion of the magnetic vectors. For
example, the equation of motion of Ã2 yields the duality relation

dB1 ∝ e4ϕ ∗
[
Dσ + 1

2 (ζ⃗ )T CDζ⃗
]
. (2.47)

The equation of motion of Ã0 then sets a duality relation between dB2 and a different
scalar current.
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3 Supersymmetric solutions

In this section we present some analytic and supersymmetric solutions of the N = 2 model
without and with vector fields. We will first classify all the possible N = 2 AdS4 vacua in
the model (recovering the results in [24]) and then perform an exhaustive classification of
AdS2 solutions. The latter can potentially serve as near-horizon geometries for 1/4-BPS
black holes asymptoting the N = 2 AdS4 vacua at radial infinity.

3.1 N = 2 AdS4 solutions (S-folds)

The vanishing of all fermionic supersymmetry variations translates into the conditions [47]

XM KM = 0,[
∂ziXM + (∂ziK)XM

]
Px
M = 0,

SAB ϵ
B = 1

2 µ ϵ
∗
A,

(3.1)

where SAB = 1
2 e

K/2XMPx
M (σx)AB is the gravitino mass matrix expressed in terms of Pauli

matrices (σx)AB and |µ| = L−1
AdS4

. The three conditions in (3.1) follow from the vanishing
of the hyperini, gaugini and gravitini supersymmetry variations, respectively.

The algebraic system (3.1) can be solved in full generality. It gives maximally symmetric
AdS4 solutions with radius

L2
AdS4 = − 3

V0
= c

g2
, (3.2)

preserving N = 2 supersymmetry. The locus in the scalar field space is given by

z1 = z3 = 1 + i√
2
, z2 = ic , z̃1 = z̃3 = i , z̃2 = χ̃2 + i

c√
2 (1 − ρ2)

, (3.3)

together with

e2ϕ =
√

2
c
, ζ0 = ρ sinα, ζ1 = ρ cosα, ζ2 = l sinα, ζ3 = −ρ cosα,

σ = σ, ζ̃0 = l sinα, ζ̃1 = l cosα, ζ̃2 = −ρ sinα, ζ̃3 = −l cosα.
(3.4)

This solution is spanned by five moduli (σ, χ̃2 ; ρ, l, α). The gauge symmetries are spanned
by the vectors

k1 = ∂σ , k2 = ∂χ̃2 + 2 ρ ∂l , k3 − k4 = 0 , k3 + k4 = −4 (l2 + ρ2) ∂α . (3.5)

This allows us to fix (σ, χ̃2, α) = (0, 0, π2 ). With this gauge fixing, and a final redefinition
of the scalar fields of the form

l = ± cχ and ρ2 = φ2

1 + φ2 , (3.6)

one finds a mapping between our moduli fields and the ones in [24]. Within the STU-model,
the spectrum of scalar fluctuations around these AdS4 vacua shows a dependence on the
two moduli fields (χ, φ).5

5When further truncating to the S2T-model, the mass spectrum turns out to be independent of χ .
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The two moduli fields (φ, χ) parameterise flat directions of the scalar potential which,
via the AdS4/CFT3 correspondence, are dual to marginal operators spanning a conformal
manifold of N = 2 S-fold CFT3’s [24]. At generic values of (φ, χ) the corresponding AdS4
vacuum preserves N = 2 supersymmetry and U(1)1 × U(1)2 residual symmetry both within
the STU-model and also in the maximal theory. However there are two special cases:

• Case (φ, χ) = (1, 0): this AdS4 vacuum features N = 4 supersymmetry and an
SO(4) residual symmetry enhancement in the maximal theory. The corresponding
N = 4 & SO(4) S-fold solution of type IIB supergravity was originally presented in [23]
and later on re-written in a simpler form in [28].

• Case (φ, χ) = (0, 0): this AdS4 vacuum features N = 2 supersymmetry and a U(2)
residual symmetry enhancement in the maximal theory. Its uplift to an N = 2 & U(2)
S-fold solution of type IIB supergravity was presented in [27]. Note that all the scalars
(ζA, ζ̃A) in (3.4) spanning the Heisenberg fiber of the QK geometry (2.30) are zero in
this solution.

We will focus on these two special AdS4 S-fold solutions later on when presenting the type
IIB uplift of the universal AdS4 black hole that asymptotes S-fold solutions at infinity [25].

3.2 AdS2 × Σg solutions

Let us now consider non-maximally symmetric solutions. In particular, let us investigate
solutions of the form AdS2 × Σg with a spacetime metric given by

ds2 = − r2

L2
AdS2

dt2 +
L2

AdS2

r2
dr2 + L2

Σg
dΩΣg , (3.7)

where LAdS2 and LΣg are the AdS2 and the Σg radii, respectively. The ansatz for the
vector and tensor fields supporting the geometry is given by

AΛ = At
Λ(r) dt− pΛ

cos
√
κ θ

κ
dϕ,

ÃΛ = ÃtΛ(r) dt− eΛ
cos

√
κ θ

κ
dϕ,

Bα = bα(r) sin
√
κ θ√
κ

dθ ∧ dϕ,

(3.8)

where κ = +1 (κ = −1 ) for a spherical (hyperbolic) geometry Σg. Lastly, the scalars zi

and qu are taken to be constant functions.
It will prove convenient to introduce a vector of charges Q of the form

QM =
(
pΛ, eΛ

)T
, (3.9)

with
pΛ = pΛ − 1

2 ΘΛα bα and eΛ = eΛ + 1
2 ΘΛ

α bα , (3.10)

so that Q depends on the constant vector charges (pΛ, eΛ) as well as on the θ-φ components
bα(r) of the tensor fields in (3.8). As in [46], we can choose the temporal gauge At

M = 0
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which, when combined with the last equation in (B.3), implies that Q′ = 0 in the BPS
equations (B.2). Therefore, bα must also be constant functions and the tensor fields can
be gauged away by virtue of the additional tensor gauge symmetry given by a one-form
gauge parameter [36].

The existence of quarter-BPS solutions with the above ansatz requires a set of algebraic
equations, known as the attractor equations, given by [46]

Q = κL2
Σg

ΩMQx Px − 4 Im(Z̄ V) ,
L2
Σg

LAdS2

= −2Z e−iβ ,

⟨Ku,V⟩ = 0 ,

(3.11)

defined in terms of a central charge Z(zi) = ⟨Q,V⟩ , the scalar matrix M(zi) in (2.29) and
Qx = ⟨Px,Q⟩. The phase β is associated with the complex function

W = eU (Z + i κL2
Σg

L) = |W | eiβ , (3.12)

which depends on the central charge Z(zi) and a superpotential L(zi, qu) = ⟨QxPx,V⟩. The
attractor equations (3.11) must be supplemented with a charge quantisation condition

QxQx = 1 , (3.13)

and a set of compatibility constraints of the form

HΩQ = 0 and HΩAt = 0 , (3.14)

where H = (Ku)T huv Kv . The second equation in (3.14) is automatically satisfied by the
temporal gauge fixing condition At = 0. We refer the reader to [46] for a detailed derivation
of the attractor equations (3.11)–(3.14) and, more generally, for a derivation of the first-order
BPS equations collected in appendix B from which (3.11)–(3.14) follow.

In order to solve the attractor equations we apply the following strategy. We first solve
the third equation in (3.11), namely, ⟨Ku,V⟩ = 0 and then complete the solution by solving
the remaining equations in (3.11)–(3.14). The equation ⟨Ku,V⟩ = 0 implies

z1 z3 = i , z2 = ic , z̃1 = z̃3 = i ,

ζ1 + ζ3 = 0 , ζ̃1 + ζ̃3 = 0 , ζ0 + ζ̃2 = 0 , ζ2 − ζ̃0 = 0 ,
(3.15)

together with

(z1 − z3)
(
(ζA)2 + (ζ̃A)2

)
= 0 for A = 0, 1, 2, 3 . (3.16)

Therefore, there are two different branches of solutions: i) the first one has z1 = z3 = ei
π
4

with (ζA, ζ̃A) being restricted by (3.15). ii) the second one has ζA = ζ̃A = 0 with (z1, z3)
being restricted by (3.15). It is also instructive to look at the first equation in (3.14) together
with the charge quantisation condition in (3.13). When combined with (3.15) they give
the four conditions

p2 + c e2 = 0 , −p0 + c e0 = 0 , g (p1 + p3) = ±1 , (−p1 + p3) |ζ⃗|2 = 0 , (3.17)
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which connect with the discussion below (2.35). Recalling that the non-compact R1 and R2
factors in the gauge group are dyonically gauged by A2 + c Ã2 and −A0 + c Ã0 , respectively,
the first and second conditions in (3.17) set the non-compact (magnetic) charges to zero.
On the other hand, the combinations of U(1)-generators6

u(1)R ≡ u(1)2 − u(1)1 and u(1)⊥ ≡ u(1)2 + u(1)1 , (3.18)

are respectively gauged by

AR ≡ A1 + A3 and A⊥ ≡ −A1 + A3 . (3.19)

Then the third condition in (3.17) sets the U(1)R charge of the solution, whereas the fourth
condition in (3.17) forbids a U(1)⊥ charge whenever |ζ⃗|2 ̸= 0.

A detailed study of the full set of attractor equations in (3.11)–(3.14) gives two classes
of solutions with Σg being (locally) a hyperboloid H2. The first class has the scalars fixed
at their values (3.3)–(3.4) in the AdS4 S-folds, thus generically having |ζ⃗|2 ̸= 0. As we will
show, this class of AdS2 × H2 solutions describes the horizon of the universal AdS4 black
hole that asymptotes to the (φ, χ)-family of N = 2 S-folds in section 3.1. The second class of
AdS2×H2 solutions has |ζ⃗|2 = 0 and comes along with two arbitrary (real) parameters. Upon
tuning of the parameters we will show the existence of a regimen in which scale separation
between the AdS2 and the H2 factors of the geometry occurs.

3.2.1 Universal AdS4 BH that asymptotes to the (φ, χ)-family of N = 2 S-folds

The first class of solutions to the attractor equations (3.11)–(3.14) generically has |ζ⃗|2 ̸= 0.
The scalars are set to their values (3.3)–(3.4) at the (φ, χ)-family of AdS4 S-folds. The charges
as well as the AdS2 and Σg radii get also fixed to the values

p0 = ∓ c

2
√

2 g
, e0 = ∓ 1

2
√

2 g
,

p1 = p3 = ± 1
2 g , e1 = e3 = 0 ,

p2 = ± c

2
√

2 g
, e2 = ∓ 1

2
√

2 g
,

κLAdS2 = − c
1
2

2 g , κL2
Σg

= − c

2 g2 .

(3.20)

Then, provided g, c > 0, it follows that κ = −1 so that the horizon geometry is (locally)
a two-dimensional hyperboloid H2. The phase β in (3.11) gets also fixed to β = π

4 ± π
2

where the ± sign is correlated with the ones in (3.20). Note that the linear combinations
of non-compact vectors A2 + c Ã2 and −A0 + c Ã0 entering the gauge connection have
no magnetic charge, namely,

p2 + c e2 = 0 and − p0 + c e0 = 0 . (3.21)
6We denote by u(1) a generator of U(1).
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On the contrary, the electric dual combinations

p2 − c e2 = ± c√
2g

and p0 + c e0 = ∓ c√
2g
, (3.22)

are fixed to non-zero values but they are associated with linear combinations of vectors not
entering the gauge connection.

The above class of AdS2 × H2 solutions of the attractor equations can be seen as the
near-horizon geometry of the universal AdS4 black hole that asymptotes to the (φ, χ)-family
of N = 2 S-folds. The metric of this universal AdS4 black hole is given by (1.1)–(1.2) with
the hyperbolic horizon being located at r2H = c

2g2 . The vectors supporting the black hole
take the form (3.8) where the charges and the horizon data are given in (3.20). Finally, the
gravitational entropy density computed from the horizon data (3.20) reads

s = Area(Σg)
4 =

L2
Σg

4π(g− 1)
4 = c

g2
(g− 1)π

2 , (3.23)

which agrees with (1.5) provided (3.2) and, consistently, turns out to be independent of the
AdS4 moduli (φ, χ) spanning the conformal manifold of N = 2 S-fold CFT’s. As a check of
the results, we have explicitly verified that the above universal AdS4 black hole with constant
scalars given in (3.3)–(3.4) solves the set of first-order BPS equations presented in appendix B.

3.2.2 A two-parameter family of AdS2 × H2 solutions

The second class of solutions to the attractor equations (3.11)–(3.14) fixes the scalars in the
Heisenberg fiber of the QK geometry to zero, namely,

ζA = ζ̃A = 0 , (3.24)

as well as the Σg radius to

κL2
Σg

= − c

2g2 . (3.25)

Taking again g, c > 0 sets κ = −1 and Σg is locally described by a hyperboloid H2.
However, unlike for the universal AdS4 black hole horizon in (3.20), the charges are not
completely fixed. This time one finds that

p2 + c e2 = 0 , −p0 + c e0 = 0 , p1 = p3 = ± 1
2g , e1 = e3 = 0 , (3.26)

which again implies that the solutions have zero (magnetic) charge under the non-compact
vector fields A2 + c Ã2 and −A0 + c Ã0 entering the gauge connection. Nonetheless, the
electric dual combinations p2 − c e2 and p0 + c e0 remain arbitrary in this class of solutions
in contrast to what happened in (3.22). These two non-zero charges can be used to introduce
a single non-zero complex charge

p ≡ 2g
c

[
(p2 − c e2 ) − i (p0 + c e0)

]
, (3.27)

in terms of which the second class of solutions is specified by the relations

z1 z3 = i , z1 + z3 = p , z2 = i c , z̃1 = z̃3 = i , z̃2 = χ̃2 + i
c

Re [p] , (3.28)
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together with

e2ϕ = Im [p]
c

and κLAdS2 = − c
1
2

√
2 g |p|

(
z1 z̄3̄ + z̄1̄ z3

) 1
2 . (3.29)

Three things are worth noticing. First, the conditions Im[z̃2] > 0 and e2ϕ > 0 require
Arg(p) ∈ (0, π2 ). Second, the relations (3.28) and (3.29) possess an exchange symmetry
z1 ↔ z3. Third, the horizon data in (3.20) for the universal AdS4 black hole that asymptotes
to the N = 2 & U(2) S-fold at (φ, χ) = (0, 0) is recovered at p = 2 eiπ

4 .
Finally, from (3.25) and (3.29), one observes that it is possible to introduce a hierarchy

between the AdS2 and H2 factors in the spacetime geometry upon tuning of the free
(complex) parameter p . More concretely,

L2
AdS2

L2
H2

= 1
|p|2

(
z1 z̄3̄ + z̄1̄ z3

)
. (3.30)

Parameterising the solution of the first relation in (3.28) as z1 = i/z3 ≡ eλ+iγ requires
γ ∈ (0, π2 ) for both Imz1 > 0 and Imz3 > 0 . Then one finds that

L2
AdS2

L2
H2

= 1
1 + x

with x = cosh(2λ)
sin(2γ) , (3.31)

and a hierarchy LAdS2/LH2 → 0 is achieved whenever λ → ±∞ or γ = π
4 ± π

4 . However,
having scale separation between AdS2 and H2 in the four-dimensional solution by no means
implies that scale separation also occurs in the corresponding ten-dimensional background.
We will address this question in the next section when investigating the type IIB uplift of
this second class of solutions.

4 Type IIB uplift

With the advent of Exceptional Field Theory (ExFT) [48] and Generalised Geometry [49, 50],
a systematic procedure has been established to uplift maximal gauged supergravities (with a
higher-dimensional origin) to string/M-theory [51–53]. The procedure, known as generalised
Scherk-Schwarz (SS) reduction, is a generalisation of the ordinary SS twisted reduction of [54]
that uses the exceptional Ed(d) symmetry, with d = 11 − D, of the (ungauged) maximal
supergravity in D dimensions as a guiding principle.

The type IIB uplift of the D = 4 maximal [SO(1, 1) × SO(6)]⋉R12 gauged supergravity
is encoded in an SL(8) generalised twist matrix UM

N (Y ) and an R+ scaling function ρ(Y ) .
They depend on the six coordinates ym of the internal space which are in turn embedded
in a larger 56-dimensional generalised geometry with coordinates YM transforming in the
fundamental representation of the E7(7). The explicit form of UM

N (Y ) and ρ(Y ) was
given in [23]. Using this data, the field content of the maximal D = 4 supergravity (r.h.s.
of (4.1))7 and the one the E7(7)-ExFT [26] (l.h.s. of (4.1)) are related by a generalised SS

7The field content of the STU-model in section 2 is embedded into maximal D = 4 supergravity as follows.
The scalar-dependent matrix MMN (x) is given in (2.15). The vectors Aµ

M(x) are identified in (2.36).
Lastly, we do not need to consider the two-form B1 and B2 as they can be gauge fixed to zero (see discussion
below (3.10)). Consequently, the scalar currents sourcing them, see e.g. (2.47), do vanish for the specific scalar
VEV’s and vector charges in the solutions we will uplift.
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ansatz of the form

gµν(x, Y ) = ρ−2(Y ) gµν(x) ,
MMN (x, Y ) = UM

K(Y )UN
L(Y )MKL(x) ,

Aµ
M(x, Y ) = ρ−1 (U−1)NM(Y )A N

µ (x) ,
Bµν α(x, Y ) = ρ−2(Y )U β

α (Y )Bµν β(x) ,
BµνM(x, Y ) = −2 ρ−2(Y ) (U−1)SP(Y ) ∂MUP

R(Y )Bµν α(x) (tα)RS .

(4.1)

The last step in the uplift procedure requires to use the dictionary between the fields of
E7(7)-ExFT and those of ten-dimensional type IIB supergravity put forward in [55].8

Employing the above procedure, the maximal [SO(1, 1) × SO(6)] ⋉ R12 supergravity
in 4D has been shown to describe the dimensional reduction of type IIB supergravity on
S1 × S5. Importantly, the reduction turns out to be non-geometric: it incorporates a non-
trivial S-duality twist of the type IIB fields when looping along the S1 specified by an
SO(1, 1) ⊂ SL(2,R) twist matrix9

Aαβ(η) =
(
e−η 0
0 eη

)
. (4.2)

As a consequence of the S-duality twist, the entire dependence of the type IIB axion-dilaton
matrix mαβ and two-form potentials Bα on the coordinate η ∈ [0, T ] along the S1 is
through the twist matrix (4.2), namely,

mαβ = (A−t)αγ mγδ(A−1)δβ =
(
e−Φ + eΦC2

0 −eΦC0
−eΦC0 eΦ

)
and Bα = Aαβ b

β , (4.3)

with mγδ and bβ being independent of η. The S-duality twist in (4.2) induces a non-trivial
hyperbolic monodromy

MS1 = A−1(η)A(η + T ) =
(
e−T 0

0 eT

)
, (4.4)

that can be brought into a generic SL(2, Z) hyperbolic monodromy of the form

Jk =
(
k 1
−1 0

)
= −S T k with k ∈ N and k > 2 , (4.5)

provided the period T (k) becomes k-dependent [23]. This renders both the S-folds and the
solutions presented in this work full-fledged solutions in type IIB string theory.

In this section we will present the type IIB uplift of the universal black hole of section 3.2.1
for two particular asymptotics: the N = 2 S-fold with U(2) symmetry at (φ, χ) = (0, 0)
and the N = 4 S-fold with SO(4) symmetry at (φ, χ) = (1, 0). The most general universal
BH asymptoting the (φ, χ)-family of AdS4 solutions can be straightforwardly uplifted using

8In this section we set g = c = 1 without loss of generality. One can verify that the type IIB uplift
following from the generalised SS ansatz in (4.1) is indeed insensitive to these parameters.

9We hope not to create confusion between the S-duality SL(2) fundamental index α = 1, 2 in (4.2), the
coordinate α ∈ [0, π

2 ] along the S5 in (4.9), and the E7(7) adjoint index α = 1, . . . , 133 in (4.1).
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the same procedure. However, in the absence of a simple uplift even for the AdS4 solutions
at generic values of φ, we will refrain from presenting the lengthy output in this work.
Finally, we will also present the type IIB uplift of the AdS2 ×H2 solutions in section 3.2.2
particularised to the case γ = π

4 . We will show that these solutions uplift to AdS2 × M8
supersymmetric S-fold backgrounds with M8 = H2 × S5 × S1 that admit parametrically-
controlled scale separation, and discuss how the supergravity approximation breaks down
in the limit of infinite scale separation.

4.1 Uplift of the universal BH that asymptotes to the N = 4 & SO(4) S-fold

We use the conventions and coordinates of [35] to describe the S1 × S5 internal geometry.
The S1 is parameterised by a periodic coordinate η ∈ [0, T ] of period T whereas the S5

is understood as two 2-spheres S2
1 and S2

2 with polar and azimuthal angles (θi, φi), with
i = 1, 2, fibered over an interval α ∈ [0, π2 ].

The ten-dimensional type IIB metric receives a contribution from the four-dimensional
vector AR ≡ A1 + A3 in (3.19) associated with the R-symmetry u(1)R ≡ u(1)2 − u(1)1
in (3.18). This vector then becomes the Kaluza-Klein (KK) vector in the dimensional
reduction, namely,

AKK
µ ≡ Aµ

n ⊗ ∂n = −1
2 cosh θ dϕ⊗ (∂φ2 − ∂φ1) , (4.6)

where we have substituted the value of p1 + p3 at the universal BH solution (3.20). One then
sees that the R-symmetry U(1)R is geometrically realised as the Killing vector ∂φ2 − ∂φ1

in S5. The ten-dimensional metric then reads

ds210 = ∆−1
(1

2 ds
2
4 + gmnDy

mDyn
)

(4.7)

where the external spacetime metric ds24 is that of the universal BH in (1.1)–(1.2) and where

Dyn = dyn +Aµ
n dxµ . (4.8)

The metric gmn on the internal space S1 × S5 is given by

gmn dy
mdyn = dη2 + dα2 + cos2 α

2 + cos(2α)ds
2
S2

1
+ sin2 α

2 − cos(2α)ds
2
S2

2
, (4.9)

with
ds2S2

i
= dθ2i + sin2 θi dφi

2 , (4.10)

and the non-singular warping factor reads

∆−4 = 4 − cos2(2α) . (4.11)

As for the type IIB S-fold backgrounds, the dependence on the coordinate η of the type
IIB fields transforming under S-duality is encoded in the SL(2) twist matrix in (4.2). The
type IIB axion-dilaton matrix is given by

mαβ = (A−t)αγ mγδ(A−1)δβ , (4.12)
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in terms of the η-independent matrix

mαβ =


√

2+cos(2α)
2−cos(2α) 0

0
√

2−cos(2α)
2+cos(2α)

 . (4.13)

The twisted two-form gauge potentials Bα = Aαβ b
β get contributions from the scalars, as

well as from the KK and non-compact vectors in 4D. They are given by

B1 = 1√
2

1
r
dt∧d(e−η sinα cosθ2)+ coshθ

2
√

2
dϕ∧d(e−η cosα cosθ1)−2

√
2e−η cosα ṽol1 ,

B2 =− 1√
2

1
r
dt∧d(eη cosα cosθ1)−

coshθ
2
√

2
dϕ∧d(eη sinα cosθ2)−2

√
2eη sinα ṽol2 , (4.14)

with

ṽol1 = cos2 α
2 + cos(2α) sin θ1 dθ1 ∧Dφ1 and ṽol2 = sin2 α

2 − cos(2α) sin θ2 dθ2 ∧Dφ2 . (4.15)

The self-dual five-form flux of type IIB is η-independent and only gets contributions
from the KK vector and the scalars. It reads

F̃5 = 6 ṽol5 − 4 sin(2α) dη ∧ ṽol1 ∧ ṽol2

+ r2

4 sinh θ
(
2 d(cos2 α) − 3dη

)
∧ dt ∧ dr ∧ dθ ∧ dϕ

+ 1
r2
dt ∧ dr ∧ (cos θ2ṽol2 − cos θ1ṽol1) ∧

(
d(cos2 α) − dη

)
− 1

2 r2dt ∧ dr ∧
(
sin2 θ1Dφ1 + sin2 θ2Dφ2

)
∧ d(cos2 α) ∧ dη

− sinh θ
2 dθ ∧ dϕ ∧

(
cos θ1ṽol2 − cos θ2ṽol1

)
∧ (dα− sin(2α)dη)

− sinh θ
4 sin(2α) dθ ∧ dϕ ∧

(
sin θ1 dθ1 ∧ ṽol2 + sin θ2 dθ2 ∧ ṽol1

)
,

(4.16)

where ṽol5 = dα ∧ ṽol1 ∧ ṽol2. The first line is the Hodge dual of the second one, and the
third and fourth lines are the Hodge dual of the fifth and sixth ones. The solution preserves a
U(1)φ1 ×U(1)φ2 symmetry associated with shifts of the azimuthal angles on the two 2-spheres.
Lastly, we have verified that the uplift presented here solves the equations of motion of type
IIB supergravity in the Einstein’s frame.

4.2 Uplift of the universal BH that asymptotes to the N = 2 & U(2) S-fold

We use once again the conventions and coordinates of [35]. The S1 continues being parame-
terised by η ∈ [0, T ] whereas the S5 is now understood as a three-sphere S3 fibered over
a two-sphere S2. The coordinates on S3 are the three angles α ∈ [0, 2π], β ∈ [0, π] and
γ ∈ [0, 4π] . On the S2 we use polar and azimuthal angles θ ∈ [0, π] and ϕ ∈ [0, 2π].10

10We use “upper letters” to distinguish the internal angles θ and ϕ from the external spacetime coordinates
θ and ϕ on the hyperboloid H2.
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Lastly, in order to make symmetries more manifest, we also introduce a set of SU(2)
left-invariant forms on S3 defined as

σ1 = 1
2 (− sinαdβ + cosα sin β dγ) ,

σ2 = 1
2 (cosαdβ + sinα sin β dγ) ,

σ3 = 1
2 (dα+ cosβ dγ) .

(4.17)

As in the previous case, the ten-dimensional type IIB metric receives a contribution
from the four-dimensional vector AR ≡ A1 + A3 in (3.19) associated with the R-symmetry
u(1)R ≡ u(1)2 − u(1)1 in (3.18). This vector becomes again the KK vector upon the
identification

AKK
µ dxµ ≡ Aµ

ndxµ ⊗ ∂n = cosh θ dϕ⊗ ∂α , (4.18)
so that the R-symmetry U(1)R is geometrically realised as the vector ∂α on S5. Following (4.8),
this leads us to introduce a “covariantised” version of σ3 in (4.17), namely,

σ̃3 = 1
2(Dα+ cosβ dγ) . (4.19)

With the above definitions, the ten-dimensional metric reads

ds210 = ∆−1
(1

2 ds
2
4 + gmnDy

mDyn
)
, (4.20)

where the external metric ds24 is again the universal BH metric in (1.1)–(1.2). The metric
gmn on the internal S1 × S5 is now given by

gmn dy
mdyn = 1

2
(
dη2 + ds2S2 + cos2 θ

[
8 ∆4

(
σ21 + σ22

)
+ σ23

] )
, (4.21)

with
ds2S2 = dθ2 + sin2 θ dϕ2 . (4.22)

The non-singular warping factor reads

∆−4 = 6 − 2 cos(2θ) . (4.23)

The type IIB axion-dilaton mαβ has the twisted structure in (4.3) and it is specified
by the η-independent (untwisted) matrix

mαβ = 1
2 ∆2

(
5 − cos(2θ) + 2 sin2 θ sin(2ϕ) 2 sin2 θ cos(2ϕ)

2 sin2 θ cos(2ϕ) 5 − cos(2θ) − 2 sin2 θ sin(2ϕ)

)
. (4.24)

The twisted two-form gauge potentials Bα = Aαβ b
β get again contributions from the scalars

and from the KK and non-compact vectors in 4D. They are given by

B1 = 1√
2

1
r
dt ∧ d(e−η sin θ cosϕ) + cosh θ

2
√

2
dϕ ∧ d(e−η sin θ sinϕ)

− e−η√
2

(
8∆4 cos2 θ sin θ sinϕσ1 ∧ σ2 − cos θ(sinϕdθ + cos θ sin θ cosϕdϕ) ∧ σ̃3

)
,

B2 = − 1√
2

1
r
dt ∧ d(eη sin θ sinϕ) − cosh θ

2
√

2
dϕ ∧ d(eη sin θ cosϕ) (4.25)

+ eη√
2

(
8∆4 cos2 θ sin θ cosϕσ1 ∧ σ2 − cos θ(cosϕ dθ− cos θ sin θ sinϕ dϕ) ∧ σ̃3

)
.
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Finally, the self-dual five-form only receives contributions from the scalars and the KK
vector in 4D. It takes the form

F̃5 = −r
2 sinh θ

8 dt ∧ dr ∧ dθ ∧ dϕ ∧
(
d(sin2 θ cos(2ϕ)) + 6 dη

)
(4.26)

+ 4 cos3 θ sin θ∆4 (3dθ ∧ dϕ + sin(2ϕ)dθ ∧ dη
+ cos(2ϕ) cos θ sin θdϕ ∧ dη

)
∧ σ1 ∧ σ2 ∧ σ̃3

+ 1
r2
dt ∧ dr

[
2 cos2 θ∆4 σ1 ∧ σ2 ∧ (d(sin2 θ cos(2ϕ)) + 2dη)

+ sin θ cos θ
4 dθ ∧

(
sin2 θ d(cos 2ϕ) + 2dη

)
∧ σ̃3

]
− sinh θdθ ∧ dϕ

[
2 sin2 θ cos2 θ∆4 (dϕ + sin(2ϕ)dη) ∧ σ1 ∧ σ2

+ cos θ sin θ

8
(

cos(2ϕ) sin(2θ)dϕ ∧ dη

+ 2 sin(2ϕ) dθ ∧ dη + 2dθ ∧ dϕ
)
∧ σ̃3

]
.

As in the previous case, we have arranged the different terms so that the first and second
lines are the Hodge duals of each other. Moreover, the dt ∧ dr contributions of the third
and fourth lines are dual to the dθ ∧ dϕ contributions of the last two lines. The solution
preserves an SU(2) × U(1) symmetry where U(1) is realised as rotations in the (σ1, σ2)-plane.
Lastly, we have also checked explicitly that the above ten-dimensional solution solves the
equations of motion of type IIB supergravity in the Einstein’s frame.

4.3 Uplift of the AdS2 × H2 solutions and scale separation

After having uplifted two examples of the universal BH, we present the type IIB uplift of
the AdS2 ×H2 solutions in section 3.2.2. Our goal is to establish whether or not the scale
separation between AdS2 and H2 pointed out in (3.31) actually extends to a scale-separated
AdS2 vacuum in ten dimensions within the regime of validity of supergravity. To this end it
will be sufficient to determine the 10D metric and the axion-dilaton matrix.

A properly scale-separated AdS2 vacuum requires it not to be fibered over the rest of
the geometry. In other words, the KK vector should not have components along the AdS2
coordinates (t, r) yielding a ten-dimensional type IIB background of the form AdS2 × M8
with M8 = H2 × S5 × S1. For the solutions in section 3.2.2, this occurs whenever γ = π

4
in (3.31), namely, along the λ-family of solutions parameterised by

z1 = i

z3
= eλ ei

π
4 , (4.27)

with λ ∈ R. We will focus on the uplift of this λ-family of AdS2 × H2 solutions for
which (3.31) simplifies to

L2
AdS2 =

L2
H2

2 cosh2 λ
with L2

H2 = c

2g2 . (4.28)

The AdS2 radius is therefore parametrically smaller than the H2 radius by a factor cosh−1 λ.
As we will see in a moment, the two limiting values λ → ±∞ are equivalent since they
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are related by a discrete symmetry exchanging the roles of z1 and z3 in the solution. Also,
the near-horizon geometry of the universal BH asymptoting the N = 2 & U(2) S-fold in the
previous section is recovered at λ = 0.

Let us investigate the AdS2 × M8 uplift of the λ-family of solutions in section 3.2.2
with γ = π

4 . We start by introducing a set of internal embedding coordinates Ym ∈ R6 ,
with ∑ (Ym)2 = 1, adapted to the three commuting isometries ∂φi describing a maximal
subgroup U(1)3 ⊂ SU(4) inside the isometry group of S5 . These embedding coordinates
Ym are parametrically given by

Y1 = r1 cosφ1, Y3 = r2 cosφ2, Y5 = r3 cosφ3,

Y2 = r1 sinφ1, Y4 = r2 sinφ2, Y6 = r3 sinφ3,
(4.29)

in terms of coordinates ym = (ri, φi), with i = 1, 2, 3 , that have ranges φi ∈ [0, 2π] and
ri ∈ [0, 1] so that r1

2 + r2
2 + r3

2 = 1. The ten-dimensional geometry can be written in
terms of two functions

f1 = cosh λ+ (r21 − r22) sinh λ and f2 = (1 + r23) cosh λ+ (r21 − r22) sinh λ , (4.30)

that only depend on the coordinates ri and the parameter λ . Being independent of the three
angles φi, the functions (4.30) specify an internal geometry that features a U(1)3 symmetry.

The ten-dimensional type IIB metric takes a contribution from the KK vector which
is identified with

AKK
µ dxµ ≡ Aµ

ndxµ ⊗ ∂n = 1
2 cosh θdϕ⊗ (∂φ2 − ∂φ1) . (4.31)

This KK vector is independent of the parameter λ so the R-symmetry U(1)R is geometrically
realised as the Killing vector ∂φ2 −∂φ1 in any member of the λ-family of AdS2×H2 solutions.
The ten-dimensional metric takes the form

ds2 = ∆−1
(
ds2AdS2 + ds2H2 + gmnDy

mDyn
)
, (4.32)

where Dyn = dyn +Aµ
ndxµ and with ds2AdS2

and ds2H2 given in (3.7) with the radii in (4.28).
The warping factor entering (4.32) reads

∆−4(r1, r2, λ) = 4 cosh2 λ f1 f2 , (4.33)

and the metric on S1 × S5 takes the form

gmn dy
m dyn = dη2

2 cosh2 λ
+ e−λdr1

2 + eλdr2
2

f2
+ 1

2 cosh λ

(
dr3

2

f2
+ r3

2

f1
dφ3

2
)

+ 1
2 f1

(
e−λ r21 dφ1

2 + eλ r22 dφ2
2 + r21r

2
2

f2

(
e−λ dφ1 + eλ dφ2

)2)
.

(4.34)

The uplift of the type IIB axion-dilaton yields

mαβ = (Rφ3A)−t


√
f1
f2

0

0
√
f2
f1

 (Rφ3A)−1 , (4.35)
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in terms of the A-twist matrix in (4.2) and the rotation matrix along the X5X6-plane

Rφ3 =
(

cosφ3 sinφ3
− sinφ3 cosφ3

)
. (4.36)

Note the symmetry under the exchange (r1, φ1) ↔ (r2, φ2) followed by λ↔ −λ . This makes
it sufficient to explore the range λ ≥ 0. Finally, from the ten-dimensional metric in (4.32)
and (4.34), we can read off the relevant scales involved in the solution. These are

LAdS2 ∝ 1
cosh λ , LH2 = 1√

2
, LS1

η
∝ T

cosh λ , volS5 ∝ cosh5 λ , (4.37)

where T denotes the period of the coordinate η on the internal S1
η . The period T (k)

is independent of the scaling parameter λ and is determined by the integer k specifying
the Jk ∈ SL(2, Z) monodromy in (4.5). The apparent shrinking of LAdS2 when λ → ∞
can be reinterpreted as a change of units by virtue of the trombone symmetry of type IIB
supergravity. We always assume scales to be larger than

√
α′ (e.g. L2

AdS2
≫ α′) for the

supergravity approximation to be reliable. As a result, we conclude that the parametrically-
controlled scale separation holds in ten dimensions.

SUGRA and EFT approximations in the limit λ → ∞ . In the limit of large scale
separation, i.e. λ→ ∞, one must check whether the supergravity (SUGRA) approximation
is still a valid approximation. Otherwise, various corrections to the solution, e.g., higher-
derivative corrections, should be taken into account. The SUGRA regime corresponds to
the first order expansion in both gs and α′R , where gs is the string coupling and R

corresponds to any tensor built from the curvature. In other words, we must verify that
gs ∼ eΦ ≪ 1 and α′R ≪ 1. From the axion-dilaton matrix (4.35), we observe that the
relevant ratio f2/f1 determining eΦ in the parameterisation of (4.3) remains finite in the
scale-separated limit λ → ∞. More concretely,

f2
f1

∣∣∣∣
λ→∞

= 2(1 − r22)
1 + r21 − r22

+ O(e−2λ) . (4.38)

However the curvature corrections become large in the limit of infinite separation λ→ ∞ .
The ten-dimensional Ricci tensor diverges in this limit signaling a breaking of the SUGRA
approximation. Therefore, we cannot trust our solution in this limit.

On the other hand, any two-dimensional effective field theory (EFT) description of this
AdS2 ×M8 solution should also break down in the limit λ→ ∞. From the internal geometry
in (4.34), we expect a tower of light KK modes to appear in this limit. The reason why
is the following. Since KK masses must be computed in units of the AdS2 radius LAdS2

in (4.37), the order of magnitude of such KK masses is given by

mLAdS2 ∝ 1
ℓ cosh λ , (4.39)

where ℓ denotes a characteristic length in the internal space. For the S1
η circle in the internal

geometry we find a regular behaviour

mLAdS2 ∝ 1
LS1

η
cosh λ ∼ O(T−1) , (4.40)
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when λ → ∞. However, the internal S5 becomes singular when λ → ∞ and we expect
a tower of light modes with masses

mLAdS2 ∝ 1
LS5 cosh λ ∼ 1

cosh2 λ
, (4.41)

coming from the KK modes propagating along the (r2, φ2) directions. This would cause the
breaking of a standard two-dimensional EFT description. As a final comment, and in light
of the above discussion, different internal directions scale differently with respect to LAdS2

in the limit λ → ∞. In this sense, our use of the term “scale separation” differs from the
meaning of an overall parametric decoupling between the external AdS space and the internal
one, that is commonly given in the literature (see e.g. [56, 57]).

5 Summary and final remarks

In this work we have embedded the universal AdS4 black hole solution of [1, 2] into type IIB
supergravity. We have done it by first constructing such a black hole as a solution of the
N = 2 STU-model describing a Z2 × Z2 invariant sector of the [SO(6) × SO(1, 1)] ⋉ R12

maximal supergravity in 4D and then, by employing techniques from exceptional field theory
(in particular from the E7(7)-ExFT), uplifting it to ten-dimensional type IIB supergravity.
From a 4D perspective, the universal BH is quarter-BPS (it preserves two real supercharges)
and can asymptote any of the (φ, χ)-family of AdS4 solutions dual to the N = 2 conformal
manifold of S-fold CFT3’s [24, 25]. However, for the sake of clarity, we have presented the type
IIB ten-dimensional uplift only for two particular asymptotics: the N = 2 S-fold with U(2)
symmetry at (φ, χ) = (0, 0) and the N = 4 S-fold with SO(4) symmetry at (φ, χ) = (1, 0).

In addition to the universal AdS4 black hole, we have also presented a two-parameter
(λ, γ)-family of AdS2 × H2 solutions which are also quarter-BPS within the N = 2 STU-
model. However, these horizon-like solutions cannot be extended to a full-fledged universal
BH, namely, they do not describe the near-horizon geometry of a universal BH. The reason
for this is that the scalars are fixed by the attractor equations (3.11)–(3.14) to constant
values that do not extremise the scalar potential. Upon uplift to ten dimensions, it turns out
that the choice γ = π

4 decouples AdS2 from the rest of the geometry and yields a λ-family
of supersymmetric AdS2 × M8 S-fold backgrounds with M8 = H2 × S5 × S1. These can be
interpreted as AdS2 supersymmetric S-folds in type IIB supergravity. To our knowledge,
these are the first examples of such solutions. We observe that the parameter λ allows for
a parametrically-controlled scale separation between AdS2 and M8 although the limit of
infinite separation λ → ∞ becomes pathological. The opposite limit λ → 0 recovers the
ten-dimensional near-horizon geometry of the universal BH that asymptotes to the N = 2
S-fold with U(2) symmetry.

The universal BH that asymptotes to the N = 2 S-fold with U(2) symmetry plays a
central role in the above story as it sits at the intersection between the two classes of solutions
we have presented. On the one hand, it is the universal BH that asymptotes to the AdS4
vacuum located at (φ, χ) = (0, 0) in the conformal manifold of S-fold CFT3’s. On the other
hand, its near-horizon region describes the AdS2×H2 solution at (λ, γ) = (0, π4 ). This raises
the issue of whether non-universal black holes with running scalars exist that connect an
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AdS2×H2 solution with λ ̸= 0 at the horizon (IR) with an AdS4 vacuum with (φ, χ) ̸= (0, 0)
at infinity (UV). Such non-universal black holes must have running hyperscalars (ζA, ζ̃A ),
thus making their analytic study more difficult. Still, a numerical exploration following the
strategy in [20] could be performed. The BPS equations in the appendix B can be solved
numerically starting from the desired AdS2×H2 horizon solution with λ ̸= 0 and perturbing
it with irrelevant deformations describing how the solutions arrive at the AdS2×H2 geometry
in the IR. Upon tuning of the deformation parameters, an AdS4 black hole (if it exists at all)
could be numerically reconstructed. However, we expect the generic AdS2 flow constructed
in this way to approach the four-dimensional incarnation of the D3-brane solution at r → ∞
(UV), in analogy with the AdS3 flows constructed in [40] or the Mkw3 flows (dual to RG-flows)
constructed in [39]. From a holographic perspective, one such generic flows would describe
a supersymmetric flow across dimensions which is triggered by the action of a topological
twist and that connects (an anisotropic deformation of) SYM4 placed on Σg × S1 in the UV
(with an SL(2,Z)-monodromy acting along S1) to a supersymmetric quantum mechanics in
the IR. We leave this dual field theory analysis for future investigation.

On the other hand, the λ-family of AdS2 × M8 solutions we have presented turned
out to accommodate a parametrically-controlled (anisotropic) scale separation. It would be
interesting to understand in more general terms which gauged N = 2 supergravities admit
scale-separated AdS2 solutions as solutions of the attractor equations (3.11). For example,
do they require the gauging of non-compact groups or some specific matter content? It
would also be interesting to investigate under what circumstances these scale-separated AdS2
solutions are compatible with the supergravity approximation and, if so, if they admit a
two-dimensional effective field theory description. If still applicable in two dimensions, the
distance conjecture of [58] may provide some obstruction to the existence of a SUGRA/2d
EFT description of such solutions. In its original formulation, this conjecture predicts a
breaking of any EFT description when a scalar field VEV is sent to infinite distance in moduli
space. This breaking would be reflected in the appearance of a light tower of KK or winding
modes whose mass goes as m ∼ exp(−α∆ϕ). Several generalisations involving parameters
which are not scalar VEV’s (like black hole charges [59] or cosmological constants [56]) require
to extend the notion of distance beyond the geodesic distance on the scalar moduli space. Our
λ-family of solutions places us in a similar situation, namely, that of a space of solutions of an
EFT, the type IIB supergravity. Since λ is not a modulus of a scalar potential, this analysis
calls for an appropriate notion of distance along the lines of [60, 61]. If such a generalised
notion of distance admits points at infinity, it would be interesting to investigate whether
and how the EFT/SUGRA approximations break down when approaching those points.
One possibility could be to explicitly compute the spectrum of KK excitations from a two-
dimensional perspective using KK spectrometry techniques [62] suitably extended/adapted
to the E9-ExFT [63, 64]. We leave this and related issues for (your?) future investigation.
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A Systematics of N = 2 truncations

Here we discuss consistent truncations to N = 2 models which capture the N = 4 & SO(4)
AdS4 vacuum. The couplings of the maximal theory expanded about this solution are encoded
in the T -tensor evaluated on the corresponding point ϕ0 in the moduli space. If H0 ⊂ SU(8)
is an invariance of this T -tensor, it is a symmetry of the effective theory at ϕ0 and therefore,
restricting to the singlet sector of H0 defines a consistent truncation featuring ϕ0 as a vacuum.
Clearly, H0 contains the compact symmetry SO(4) of the vacuum. In fact, it also contains
a discrete extension thereof.

The T -tensor at ϕ0 is described by the complex fermion-shift A1 ij , A2 i
jkl and their

complex conjugates, computed in the same point. We shall consider the SU(8) basis in
which A1 ij is diagonal. We split correspondingly the R-symmetry indices i, j, . . . into
a1, b1, · · · = 1, . . . , 4, labelling the broken supersymmetries and a2, b2, · · · = 5, . . . , 8, labelling
the four preserved ones. In this basis, the non-vanishing entries of the two tensors read [65]:11

A1 a1b1 LAdS4 =
√

2 δa1b1 , A1 a2b2 LAdS4 = 1√
2
δa2b2 ,

A2 a1
b1c1d2 LAdS4 = i ϵabcd , A2 a1

b1c2d2 LAdS4 = −
√

2 δcdab , (A.1)

From inspection of the explicit forms of the two complex tensors, one finds that the most
general element h of SU(8) leaving them invariant has the form:

h =
(
M1 0
0 M2

)
, (A.2)

where
M1 = (M1 a1

b1) ∈ SO(4) , (A.3)

and
M2 = (M2 a2

b2) = 1
det(M1)

M1 ∈ O(4) .

Therefore, if M1 ∈ SO(4), M2 = M1, while if M1 ∈ O(4), det(M1) = −1 and M2 = −M1.
The group H0 can therefore be a subgroup of O(4) and not just of the residual SO(4) gauge
symmetry. When det(M1) = −1, we can write h in the form:(

SO(4)O 0
0 −SO(4)O

)
, (A.4)

where O is any O(4) with determinant −1. We can fix, with no loss of generality, O =
diag(−1, 1, 1, 1).

11In eqs. (A.1), we use the convention that the indices a, b, . . . , with no subscript, on the right-hand sides
run from 1 to 4 and coincide with a1, b1, . . . , or with a2 − 4, b2 − 4, . . . , if the same letter on the left-hand side
occurs with subscript 1 or 2, respectively.
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We look for consistent truncations to N = 2 supergravities which are singlet sectors of
a suitable H0, highlighting the relevant choices for H0. We start considering H0 ⊂ SO(4).
The eight gravitinos transform, with respect to SO(4) in the

8 =
(1

2 ,
1
2

)
⊕
(1

2 ,
1
2

)
. (A.5)

If H0 = SO(4) or H0 = U(2) ⊂ SO(4), the decomposition of the supercharges under H0
features no H0-singlet and the truncation is N = 0. If H0 ⊂ SO(3)d diagonal of the two
SO(3) subgroups of SO(4), then we have at least two H0-singlets among the gravitinos and
the truncation is at least N = 2, since, under SO(3)d we have the following branching:

8 → 2 × 1 ⊕ 2 × 3 . (A.6)

If H0 = SO(3)d the resulting N = 2 truncation has 1 vector and two quaternionic multiplets.
The scalar manifold is:

Mscal = SL(2,R)
SO(2) ×

G2(2)
SU(2) × SU(2) . (A.7)

The complex scalar in the vector multiplet is described by a t3-model. Within this truncation
the N = 4 vacuum is N = 1, since there is just one singlet among the preserved supersymme-
tries. Choosing H0 to be a non-abelian (discrete) subgroup of SO(3)d may enlarge the N = 2
truncation to one with two vector multiplets defining a st2 model and a quaternionic Kähler
manifold which is still the c-map of the special Kähler one, namely SO(4, 3)/SO(4) × SO(3).
The N = 4 vacuum is still N = 1. We can instead consider H0 to be a dihedral group
Dk, of order 2k, in O(3)d ⊂ O(4), generated by a rotation by 2π/k about the 3rd axis
within the 3 and a reflection in a plane containing the 3rd axis. The resulting truncation
is still the above (nv, nh) = (2, 3) model, where now the N = 4 vacuum is N = 2. The two
preserved supersymmetries are one of the singlets in (A.6) and one of the directions in one
of the two 3 (3rd axis). If k = 2, the Dihedral group is isomorphic to Z2 × Z2, generated
by the matrices O1, O2 in (2.5), and the truncation enlarges to the (nv, nh) = (3, 4) model
considered in this paper, with scalar manifold:

Mscal =
(SL(2,R)

SO(2)

)3
× SO(4, 4)

SO(4) × SO(4) . (A.8)

The matrix forms of O1, O2 in the 8 of SU(8), in the basis in which A1 ij is diagonal, are:

O1 = diag(−1,−1, 1, 1,−1,−1, 1, 1) ,
O2 = diag(1,−1,−1,−1,−1, 1, 1, 1) , (A.9)

From the above expressions, it is apparent that the resulting Z2 × Z2 leaves only the two
gravitinos along directions 7,8, invariant. These also belong to the massless supergravity
multiplet at the N = 4 vacuum. Therefore, in this model, the N = 4 vacuum is N = 2.
Note that inverting the sign of O2 ∈ O(4) does not alter the N = 2 truncation, whose
supersymmetries are, however, embedded in the N = 8 ones differently (along directions
3,4). Within this truncation the N = 4 vacuum appears as N = 0.
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B First-order BPS equations

Within the context of N = 2 supergravity coupled to vector multiplets and hypermultiplets,
a set of first-order BPS equations was derived in [46] using an ansatz for the spacetime
metric of the form

ds2 = −e2U(r)dt2 + e−2U(r)dr2 + e2(ψ(r)−U(r))dΩΣg , (B.1)

and a vector/tensor ansatz of the form (3.8). The set of BPS equations reads

U ′ = −e−2(ψ−U) e−U Re(e−iβ Z) − κ e−U Im(e−iβ L) ,
ψ′ = −2κ e−U Im(e−iβ L) ,

V ′ = eiβ e−2(ψ−U) e−U
(
−1

2 ΩMQ− i

2 Q + Z V̄
)

− i κ eiβ e−U
(
−1

2 ΩMPxQx − i

2 PxQx + L V̄
)
− i Ar V ,

qu′ = κ e−U huv Im(e−iβ ∂vL) ,
Q′ = −4 e2(ψ−U)e−UHΩ Re(e−iβ V) ,
β′ = 2κ e−U Re(e−iβ L) −Ar ,

(B.2)

where the prime denotes a radial derivative and Ar = Im
[
(zi)′∂ziK

]
is the U(1) Kähler

connection in MSK . The system (B.2) must be supplemented with the charge quantisation
condition in (3.13) and a set of additional constraints

HΩQ = 0 , huv KM
u qv ′ = 0 , HΩAt = 2 eU HΩ Re(e−iβV) . (B.3)

We refer to [46] for more details about the derivation of the BPS equations and the additional
constraints.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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