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A B S T R A C T

The present paper presents some results that allow us to perform with High Relative Accu-
racy linear algebra operations with correlation and covariance matrices of Gaussian Markov
Random Fields over graphs of paths. Some numerical experiments are carried out showing the
computational benefits of this approach.

1. Introduction

A (discrete-time) Markov Chain [1] is a stochastic model in which the value observed at a certain period of time depends only on
the value observed at the previous period of time. Markov Randoms Fields [2] arise in the context of spatio-temporal modelling as a
natural generalization of Markov Chains in which the time index is substituted by a graph. In case the joint distribution of a Markov
Random Field is multivariate Gaussian, then we are dealing with a Multivariate Gaussian Markov Random Field (GMRF) [3]. All
these types of models have been used successfully in a wide range of applications. For instance, one can find GMRFs in disease
control [4] and image recognition [5].

From a different perspective, linear algebra operations with covariance matrices are commonplace in statistics. For instance,
Principal Component Analysis (PCA) [6] is a popular multivariate technique that can be used with the purpose of data reduction
and that is based on the identification of the eigenvalues of the (sample) covariance matrix. As another example, it is quite typical in
statistical simulation to generate a random vector in which the components are dependent from another random vector in which the
components are independent. Quite conveniently, this latter random vector can be simulated easily (see, e.g., [7]) if the covariance
matrix of the former random vector is factorized as the product of a positive semi-definite matrix and its transpose.

In this paper, we explore conditions under which some linear algebra operations with covariance matrices can be carried out
with High Relative Accuracy (HRA), meaning that the relative error of the computations is of the order of machine precision.
More specifically, we will follow the direction started by Koev [8] and others authors (see, for instance, [9,10]) in which different
algorithms for performing linear algebra operations with HRA were presented for nonsingular totally positive matrices, assuming
that their bidiagonal factorizations can be obtained with HRA. For this purpose, we bring to the attention the results presented
in [11], where different conditions under which the covariance matrix or the inverse of the covariance matrix of a GMRF are totally
positive, thus allowing us to use the algorithms proposed by Koev.
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The remainder of the paper is structured as follows. Firstly, we introduce some basic notions on GMRFs in Section 2 and some
uxiliary results on totally positive matrices in Section 3. Section 4 provides the bidiagonal decomposition of a correlation matrix
f a GMRF over a graph of paths with natural ordering and provides some results regarding HRA for linear algebra operations
ith such correlation matrix, whereas these results are extended to covariance matrices in Section 5. Some numerical experiments

upporting the use of HRA algorithms over classical ones are shown in Section 6. We end with some conclusions and discussions on
uture work in Section 7.

. Gaussian Markov random fields

In probability theory and statistics [12], the covariance matrix of a random vector plays an important role; for instance, in the
tudy of the scale of a multivariate random vector and in the study of the interactions between the components of a multivariate
andom vector. Formally, given a random vector �⃗� = (𝑋1,… , 𝑋𝑛) of dimension 𝑛, the covariance matrix 𝛴 = (𝛴𝑖,𝑗 )1≤𝑖,𝑗≤𝑛 of �⃗� is
efined as:

𝐸
(

(

�⃗� − 𝐸(�⃗�)
)(

�⃗� − 𝐸(�⃗�)
)𝑇

)

,

here 𝐸(⋅) denotes the expected value vector of a random vector. The entries of the covariance matrix 𝛴 are thus such that, for any
, 𝑗 ∈ {1,… , 𝑛}:

𝛴𝑖,𝑗 = Cov(𝑋𝑖, 𝑋𝑗 ) = 𝐸(𝑋𝑖 𝑋𝑗 ) − 𝐸(𝑋𝑖)𝐸(𝑋𝑗 ).

he covariance matrix is always symmetric and positive semi-definite [13]. Formally, an 𝑛 × 𝑛 matrix 𝑀 = (𝑀𝑖,𝑗 )1≤𝑖,𝑗≤𝑛 is called
ymmetric if 𝑀𝑖,𝑗 = 𝑀𝑗,𝑖, for any 𝑖, 𝑗 ∈ {1,… , 𝑛}. An 𝑛 × 𝑛 symmetric (real) matrix is called positive semi-definite if 𝐱𝑇𝑀𝐱 ≥ 0, for
ny 𝐱 ∈ R𝑛.

In some cases, the scales of the components of the multivariate random distribution are not of interest and we only want to
tudy the interaction between said components. In such case, we are only interested in the so-called correlation matrix, which is the
atrix resulting from rescaling the covariance matrix such that all its diagonal entries are equal to one. Formally, the correlation
atrix 𝑆 = (𝑆𝑖,𝑗 )1≤𝑖,𝑗≤𝑛 of the random vector �⃗� is defined as:

𝑆 = 𝐴−1 𝛴𝐴−1,

here 𝐴 = (𝐴𝑖,𝑗 )1≤𝑖,𝑗≤𝑛 is the diagonal matrix such that 𝐴𝑖,𝑖 =
√

𝛴𝑖,𝑖, for any 𝑖 ∈ {1,… , 𝑛}. As a result, the entries of the correlation
matrix 𝑆 are such that, for any 𝑖, 𝑗 ∈ {1,… , 𝑛}:

𝑆𝑖,𝑗 =
𝛴𝑖,𝑗

√

𝛴𝑖,𝑖 𝛴𝑗,𝑗
.

The value 𝑆𝑖,𝑗 is oftentimes referred to as Pearson’s correlation coefficient between 𝑋𝑖 and 𝑋𝑗 .
Covariance and correlation matrices are very important in a particular type of random vectors: Gaussian random vectors. In

particular, Gaussian random vectors are parameterized by a mean vector 𝜇 and a covariance matrix 𝛴, resulting in the following
probability density function [12]:

𝑓 (�⃗�) = 1
√

(2𝜋)𝑛|𝛴|

exp
(

−
(�⃗� − 𝜇)𝑇𝛴−1(�⃗� − 𝜇)

2

)

,

for any �⃗� ∈ R𝑛.
Linear algebra operations with covariance and correlation matrices are used in many practical applications [14–16]. Therefore,

the development of efficient and accurate numerical methods to deal with the computation of eigenvalues and the inverse matrix is
of key interest to the field of statistics. In this direction, GMRFs are a particular type of multivariate Gaussian distribution in which
the dependence structure is linked to a simple undirected graph and for which such efficient and accurate numerical methods may
be developed under some circumstances that will be discussed later on in the present manuscript.

We recall that a simple undirected graph 𝐺 = (𝑉 ,𝐸) (see [17]) is a couple formed by a finite set 𝑉 , called the set of nodes, and a
set 𝐸 of subsets of 𝑉 , each of these subsets being of cardinality 2, called the set of edges. If {𝑖, 𝑗} ∈ 𝐸, the nodes 𝑖 and 𝑗 are said to
be adjacent. The degree of incidence of a node 𝑖 ∈ 𝑉 is the number of nodes that are adjacent to 𝑖. A graph is said to be connected
if, given any two nodes, there exists a sequence of adjacent nodes that starts in one of the nodes and ends in the other one. A subset
of nodes is said to be a connected component if every two nodes in the subset are connected and the subset is maximal with respect
to this property [17]. A path graph is a graph in which any connected component consists of a unique node or has two nodes with
degree of incidence 1 and the rest have degree of incidence 2.

A GMRF over a graph 𝐺 = (𝑉 ,𝐸) is a Gaussian random vector �⃗� for which each component of the vector is associated with
a node in 𝑉 and such that, if {𝑖, 𝑗} ∉ 𝐸 with 𝑖 ≠ 𝑗, then 𝑋𝑖 and 𝑋𝑗 are conditionally independent given the value of all other
variables [3]. From an algebraic point of view, a GMRF can be characterized by zeros in the inverse of the covariance matrix, as
formalized in the following key theorem [18].

Theorem 2.1. Let 𝐺 = (𝑉 ,𝐸) be a graph with 𝑉 = {1, 2,… , 𝑛} and �⃗� be a random vector with multivariate Gaussian distribution and
covariance matrix 𝛴. It holds that �⃗� is a GMRF over 𝐺 if and only if:

{𝑖, 𝑗} ∉ 𝐸 ⟹
(

𝛴−1) = 0.
2

𝑖,𝑗
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As discussed in [3], computations concerning GMRFs become simpler when the inverse of the covariance matrix is sparse,
.e., most of its entries are zero. In this direction, throughout this paper we will deal with GMRFs over a graph of paths with
atural ordering [11], which are a type of GMRF with a very sparse inverse covariance matrix.

efinition 2.1. Let 𝐺 = (𝑉 ,𝐸) with 𝑉 = {1,… , 𝑛} be a graph such that any connected component is a path graph. If for any 𝑖, 𝑗 ∈ 𝑉
with 𝑖 < 𝑗 and {𝑖, 𝑗} ∈ 𝐸 it holds that 𝑗 − 𝑖 = 1, then 𝐺 is called a graph of paths with natural ordering.

As discussed in [11], there is a close connection between GMRFs over a graph of paths with natural ordering and a prominent
ype of matrices called totally positive matrices. The following section is dedicated to recalling some auxiliary results on totally
ositive matrices.

. Auxiliary results on totally positive matrices

A minor of a matrix 𝐴 of dimension 𝑛 × 𝑛 is the determinant of a submatrix of 𝐴. In particular, the minor of 𝐴 associated with
he indices {𝑖1,… , 𝑖𝑘} and {𝑗1,… , 𝑗𝑘}, denoted by 𝐴{𝑖1 ,…,𝑖𝑘},{𝑗1 ,…,𝑗𝑘}, is the determinant of the 𝑘 × 𝑘 submatrix of 𝐴 containing the
ows associated with the indices 𝑖1,… , 𝑖𝑘 and the columns associated with the indices 𝑗1,… , 𝑗𝑘. A matrix is called nonsingular if

its determinant is nonzero and is called totally positive [19,20] if every minor is non-negative. In particular, a nonsingular totally
positive matrix is a matrix that is nonsingular and totally positive.

Neville elimination [21] is an alternative procedure to Gaussian elimination that allows us to produce zeros in a column of a
matrix by adding to each row an appropriate multiple of the previous one. When performing Neville elimination, one may need to
permute some of the rows and columns of the matrix. Interestingly, when dealing with nonsingular totally positive matrices, it is not
necessary to permute rows or columns [21], therefore we will simply ignore the permutation of rows and columns when explaining
the Neville elimination procedure right after.

For a nonsingular totally positive matrix, 𝑇 = (𝑇𝑖,𝑗 )1≤𝑖,𝑗≤𝑛, the Neville elimination leads to a sequence of matrices:

𝑇 = 𝑇 (1) → 𝑇 (2) → ⋯ → 𝑇 (𝑛) = 𝑈,

here 𝑈 = (𝑈𝑖,𝑗 )1≤𝑖,𝑗≤𝑛 is an upper triangular matrix. Formally, the matrix 𝑇 (𝑘+1) =
(

𝑇 (𝑘+1)
𝑖,𝑗

)

1≤𝑖,𝑗≤𝑛
can be obtained from 𝑇 (𝑘) =

𝑇 (𝑘)
𝑖,𝑗

)

1≤𝑖,𝑗≤𝑛
as follows [21]:

𝑇 (𝑘+1)
𝑖,𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑇 (𝑘)
𝑖,𝑗 −

𝑇 (𝑘)
𝑖,𝑘

𝑇 (𝑘)
𝑖−1,𝑘

𝑇 (𝑘)
𝑖−1,𝑗 , if 𝑘 + 1 ≤ 𝑖 ≤ 𝑛, 𝑘 ≤ 𝑗 ≤ 𝑛 and 𝑇 (𝑘)

𝑖−1,𝑘 ≠ 0,

𝑇 (𝑘)
𝑖,𝑗 , otherwise.

his procedure can be expressed as a product of matrices 𝐸𝑖(𝛼), with 2 ≤ 𝑖 ≤ 𝑛, which have all the diagonal entries equal to 1, the
𝑖, 𝑖 − 1)-entry equal to 𝛼 and the rest of its entries equal to 0 (see [22]). It is also important to notice that 𝐸𝑖(𝛼)−1 = 𝐸𝑖(−𝛼).

The quantities 𝑝𝑖𝑗 = 𝑇 (𝑗)
𝑖,𝑗 are referred to as the pivots of the Neville elimination [21]. The multipliers 𝑚𝑖𝑗 (1 ≤ 𝑗 < 𝑖 ≤ 𝑛) of the

eville elimination are defined as follows [21]:

𝑚𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑇 (𝑗)
𝑖,𝑗

𝑇 (𝑗)
𝑖−1,𝑗

=
𝑝𝑖,𝑗
𝑝𝑖−1,𝑗

, if 𝑝𝑖−1,𝑗 ≠ 0,

0 , otherwise.

(1)

We finish the section by introducing the notion of complete Neville elimination of an 𝑛×𝑛 matrix 𝑇 (see [21]). This procedure consists
of firstly performing Neville elimination of 𝑇 until one obtains the upper triangular matrix 𝑈 , and, subsequently, performing the
Neville elimination of 𝑈𝑇 (the transpose of 𝑈). This procedure leads to a diagonal matrix 𝐷 = (𝐷𝑖,𝑗 )1≤𝑖,𝑗≤𝑛. The multipliers associated
with the Neville elimination of 𝑈𝑇 will be denoted as �̃�𝑖,𝑗 . As discussed in page 116 of [23], these multipliers �̃�𝑖,𝑗 coincide with
the multipliers obtained when performing the Neville elimination of 𝑇 𝑇 . As a result, if the initial matrix is symmetric, it then holds
that

𝑚𝑖,𝑗 = �̃�𝑖,𝑗 , 1 ≤ 𝑗 < 𝑖 ≤ 𝑛 . (2)

Remark 3.1. Observe that, when the complete Neville elimination is performed, the diagonal entries of 𝑈 coincide with the
diagonal entries of 𝐷, that is, 𝑈𝑖,𝑖 = 𝐷𝑖,𝑖 with 𝑖 ∈ {1,… , 𝑛}.

The following result is a straightforward consequence of Eqs. (1) and (2) and of Theorem 3.1 in [21].

Theorem 3.1. A symmetric matrix 𝑇 is nonsingular totally positive if and only if the complete Neville elimination of 𝑇 can be performed
without rows or columns exchanges, the diagonal pivots of the Neville elimination of 𝑇 are positive and the multipliers of the Neville
elimination of 𝑇 are non-negative.

From Eq. (2) and Theorem 4.2 in [23], the following result holds.
3
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Theorem 3.2. Any symmetric nonsingular totally positive matrix 𝑇 admits a bidiagonal decomposition of the form:

𝑇 = 𝐹𝑛−1 …𝐹1𝐷𝐹 𝑇
1 …𝐹 𝑇

𝑛−1 , (3)

where 𝐷 is a diagonal matrix with positive diagonal entries 𝐷𝑖,𝑖 = 𝑝𝑖,𝑖, with 𝑖 ∈ {1,… , 𝑛}, and each 𝐹𝑖 has the following structure:

𝐹𝑖 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
0 1

⋱ ⋱
0 1

𝑚𝑖+1,1 1
⋱ ⋱

𝑚𝑛,𝑛−𝑖 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

here 𝑝𝑖,𝑖 are the diagonal pivots of the Neville elimination of 𝑇 , and 𝑚𝑖,𝑗 are the multipliers of the Neville elimination of 𝑇 .

Bearing in mind the results of [24] concerning the bidiagonal decomposition of a matrix, the following notation is introduced.

efinition 3.1. Let 𝑇 be a symmetric nonsingular totally positive matrix expressed as the product 𝑇 = 𝐹𝑛−1 …𝐹1𝐷𝐹 𝑇
1 …𝐹 𝑇

𝑛−1 given
n Theorem 3.2. The bidiagonal decomposition of 𝑇 , denoted as 𝐵𝐷(𝑇 ), is the 𝑛 × 𝑛 matrix defined as:

𝐵𝐷(𝑇 )𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑚𝑖,𝑗 , if 𝑖 > 𝑗 ,
𝑚𝑗,𝑖 , if 𝑖 < 𝑗 ,
𝑝𝑖,𝑖 , if 𝑗 = 𝑖 .

. High relative accuracy and the correlation matrix of a Gaussian Markov random field over a graph of paths with natural
rdering

In this section, we provide the bidiagonal decomposition of the correlation matrix associated with an 𝑛-dimensional GMRF over a
raph of paths with natural ordering. Next, we show that, under certain conditions (namely non-negative/non-positive correlations
etween adjacent variables), several operations related to the correlation matrix may be carried out with HRA. We recall that HRA
eans that the relative errors of the computations are of the order of machine precision, independently of the size of the matrix

ondition number.

.1. Bidiagonal decomposition of the correlation matrix of a Gaussian Markov random field over a graph of paths with natural ordering

The following result (see [25]) describes the entries of a correlation matrix over a graph of paths with natural ordering.

emma 4.1. Let �⃗� be an 𝑛-dimensional GMRF over a graph of paths with natural ordering. Given Pearson’s correlation coefficients between
djacent variables, denoted by 𝜌1,2,. . . , 𝜌𝑛−1,𝑛, the correlation matrix 𝑆 = (𝑆𝑖,𝑗 )1≤𝑖,𝑗≤𝑛 is obtained as follows:

𝑆𝑖,𝑗 = 𝑆𝑗,𝑖 =
𝑖−1
∏

𝑘=𝑗
𝜌𝑘,𝑘+1,

or any 𝑖, 𝑗 ∈ {1… , 𝑛} such that 𝑖 ≥ 𝑗.

emark 4.1. Since 1 is the identity element for multiplication, the product of the elements of an empty set is always 1, thus
𝑘2
𝑘=𝑘1

𝜌𝑘,𝑘+1 = 1 if 𝑘2 < 𝑘1.

The next theorem provides the bidiagonal decomposition of the correlation matrix of a GMRF over a graph of paths with natural
rdering.

heorem 4.1. Let �⃗� be an 𝑛-dimensional GMRF over a graph of paths with natural ordering. Given Pearson’s correlation coefficients
etween adjacent variables, denoted by 𝜌1,2,. . . , 𝜌𝑛−1,𝑛, the bidiagonal decomposition 𝐵𝐷(𝑆)1≤𝑖,𝑗≤𝑛 of the correlation matrix 𝑆 = (𝑆𝑖,𝑗 )1≤𝑖,𝑗≤𝑛
s the following:

𝐵𝐷(𝑆)𝑖,𝑗 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

1 , if 𝑖 = 𝑗 = 1 ,
1 − 𝜌2𝑖−1,𝑖 , if 𝑖 = 𝑗 > 1 ,
𝜌𝑖−1,𝑖 , if 𝑗 = 1 and 𝑖 > 1 ,
𝜌𝑗−1,𝑗 , if 𝑖 = 1 and 𝑗 > 1 ,
0 , else.
4

⎩
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Proof. Let us obtain the bidiagonal decomposition in the form of Eq. (3) by performing Neville elimination. We will make zeros
elow the main diagonal, starting from the last row.

From Lemma 4.1, it follows that 𝑆𝑛,𝑗 , with 𝑗 < 𝑛, is such that:

𝑆𝑛,𝑗 =
𝑛−1
∏

𝑘=𝑗
𝜌𝑘,𝑘+1 = 𝜌𝑛−1,𝑛

𝑛−2
∏

𝑘=𝑗
𝜌𝑘,𝑘+1 = 𝜌𝑛−1,𝑛 𝑆𝑛−1,𝑗 .

herefore, it is clear that the entries below the diagonal that are located in the last row can be vanished by subtracting to the last
ow the (𝑛 − 1)th row multiplied by 𝑚𝑛,1 = 𝜌𝑛−1,𝑛 (see Eq. (1)).

This procedure can be repeated 𝑛 − 1 times, subtracting to the 𝑖th row, the (𝑖 − 1)th row multiplied by 𝑚𝑖,1 = 𝜌𝑖−1,𝑖 in the order
𝑖 = 𝑛,… , 2. Each step corresponds to a matrix 𝐸𝑖(−𝜌𝑖−1,𝑖).

In this way, we have obtained an upper triangular matrix 𝑈 that can be expressed as

𝑈 = 𝑆(𝑛) = 𝑆(2) =

( 𝑛
∏

𝑖=2
𝐸𝑖(−𝜌𝑖−1,1)

)

𝑆(1) =

( 𝑛
∏

𝑖=2
𝐸𝑖(−𝜌𝑖−1,1)

)

𝑆 . (4)

Note that 𝑚𝑖,𝑗 = 0 for any 2 ≤ 𝑗 < 𝑖 < 𝑛.
The matrix 𝑈 satisfies that 𝑈1,𝑗 = 𝑆1,𝑗 , for any 𝑗 ∈ {1,… , 𝑛}. In addition, 𝑈𝑖,𝑗 = 𝑆𝑖,𝑗 − 𝜌𝑖−1,𝑖𝑆𝑖−1,𝑗 if 1 < 𝑖 ≤ 𝑗 ≤ 𝑛.
Next, the Neville elimination of 𝑈𝑇 is carried out, obtaining at the end of the process a diagonal matrix 𝐷 = (𝐷𝑖,𝑗 )1≤𝑖,𝑗≤𝑛.
Note that the diagonal entries of 𝐷 coincide with the diagonal entries of 𝑈 (see Remark 3.1). These values are the following

ones:

𝐷1,1 = 𝑈1,1 = 𝑆1,1 = 1 ,

𝐷𝑖,𝑖 = 𝑈𝑖,𝑖 = 𝑆𝑖,𝑖 − 𝜌𝑖−1,𝑖𝑆𝑖−1,𝑖 = 1 − 𝜌2𝑖−1,𝑖 ,

for any 𝑖 ∈ {2,… , 𝑛}.
Taking into account the previous results and Eq. (4), we obtain:

𝑛
∏

𝑖=2
𝐸𝑖(−𝜌𝑖−1,1)𝑆

𝑛
∏

𝑖=2
𝐸𝑛−𝑖+2(−𝜌𝑖−1,1)𝑇 = 𝐷.

In conclusion, and considering that 𝐸𝑖(−𝜌𝑖−1,1)−1 = 𝐸𝑖(𝜌𝑖−1,1), we have the bidiagonal decomposition of matrix 𝑆 in the form of
Eq. (3), as follows:

𝑆 =
𝑛
∏

𝑖=2
𝐸𝑖(𝜌𝑖−1,1)𝐷

𝑛
∏

𝑖=2
𝐸𝑛−𝑖+2(𝜌𝑖−1,1)𝑇 .

Finally, we just need to use Definition 3.1 to obtain 𝐵𝐷(𝑆) and the proof is complete. □

Remark 4.2. In fact, the bidiagonal decomposition of 𝑆 has the following form:

𝐵𝐷(𝑆) =
(

1 𝑣𝑇

𝑣 𝐷

)

where 𝑣 = (𝜌1,2,. . . , 𝜌𝑛−1,𝑛) and 𝐷 is a diagonal matrix fulfilling 𝐷𝑖,𝑖 = 1 − 𝜌2𝑖,𝑖+1 for any 𝑖 ∈ {1,… , 𝑛 − 1}.

In the following, we provide a simple example of the bidiagonal decomposition of a correlation matrix.

Example 4.1. Consider the case 𝑛 = 3, in which the correlation matrix has the following structure:

𝑆 =
⎛

⎜

⎜

⎝

1 𝜌1,2 𝜌1,2𝜌2,3
𝜌1,2 1 𝜌2,3

𝜌1,2𝜌2,3 𝜌2,3 1

⎞

⎟

⎟

⎠

.

The procedure detailed in the proof of Theorem 4.1 is the following.

⎛

⎜

⎜

⎝

1 0 0
0 1 0
0 −𝜌2,3 1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1 𝜌1,2 𝜌1,2𝜌2,3
𝜌1,2 1 𝜌2,3

𝜌1,2𝜌2,3 𝜌2,3 1

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

1 𝜌1,2 𝜌1,2𝜌2,3
𝜌1,2 1 𝜌2,3
0 0 1 − 𝜌22,3

⎞

⎟

⎟

⎠

,

⎛

⎜

⎜

⎝

1 0 0
−𝜌1,2 1 0
0 0 1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1 0 0
0 1 0
0 −𝜌2,3 1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1 𝜌1,2 𝜌1,2𝜌2,3
𝜌1,2 1 𝜌2,3

𝜌1,2𝜌2,3 𝜌2,3 1

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

1 𝜌1,2 𝜌1,2𝜌2,3
0 1 − 𝜌21,2 𝜌2,3(1 − 𝜌21,2)
0 0 1 − 𝜌22,3

⎞

⎟

⎟

⎟

⎠

=∶ 𝑈 .

Next, we carry out the Neville elimination of 𝑈𝑇 or, equivalently, the Neville elimination of 𝑈 by columns.

𝑈
⎛

⎜

⎜

⎝

1 0 0
0 1 −𝜌2,3
0 0 1

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

1 𝜌1,2 0
0 1 − 𝜌21,2 0
0 0 1 − 𝜌2

⎞

⎟

⎟

⎟

,

5

⎝
2,3

⎠
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𝑈
⎛

⎜

⎜

⎝

1 0 0
0 1 −𝜌2,3
0 0 1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1 −𝜌1,2 0
0 1 0
0 0 1

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

1 0 0
0 1 − 𝜌21,2 0
0 0 1 − 𝜌22,3

⎞

⎟

⎟

⎟

⎠

=∶ 𝐷 .

In summary, we can write:

𝑆 =
⎛

⎜

⎜

⎝

1 0 0
0 1 0
0 𝜌2,3 1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1 0 0
𝜌1,2 1 0
0 0 1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1 0 0
0 1 − 𝜌21,2 0
0 0 1 − 𝜌22,3

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1 𝜌1,2 0
0 1 0
0 0 1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1 0 0
0 1 𝜌2,3
0 0 1

⎞

⎟

⎟

⎠

.

Therefore, the bidiagonal decomposition of 𝑆 is as follows:

𝐵𝐷(𝑆) =

⎛

⎜

⎜

⎜

⎝

1 𝜌1,2 𝜌2,3
𝜌1,2 1 − 𝜌21,2 0
𝜌2,3 0 1 − 𝜌22,3

⎞

⎟

⎟

⎟

⎠

.

4.2. The case of non-negative Pearson’s correlation coefficients between adjacent variables

As a result of Theorem 4.1, a necessary and sufficient condition for the correlation matrix of a GMRF over a graph of paths with
natural ordering to be totally positive is that all Pearson’s correlation coefficients between adjacent variables are non-negative. This
result was already proven in Theorem 3.1 in [11].

Theorem 4.2. Let �⃗� be an 𝑛-dimensional GMRF over a graph of paths with natural ordering. The correlation matrix is totally positive if
and only if all Pearson’s correlation coefficients between adjacent variables are non-negative.

A sufficient condition to guarantee that we can perform an algorithm with HRA is the condition of No Inaccurate Cancellation
(NIC) (see [26]). An algorithm fulfils the NIC condition if it does not subtract non-initial data. Note that operations such as sums
of numbers of the same sign, multiplications, divisions, subtractions of initial data and even square roots may be used (see page 89
of [26]).

The following theorem shows that, under the hypotheses of Theorem 4.2, many linear algebra operations can be performed with
the corresponding correlation matrices with HRA. These linear algebra operations include the calculation of the eigenvalues of a
correlation matrix (which coincide with the singular values because a correlation matrix is symmetric).

Theorem 4.3. Let �⃗� be an 𝑛-dimensional GMRF over a graph of paths with natural ordering. If the correlation matrix 𝑆 is nonsingular,
all Pearson’s correlation coefficients between adjacent variables are non-negative, then 𝐵𝐷(𝑆) can be computed with HRA, as well as the
eigenvalues of 𝑆, the inverse of 𝑆 and the solution of the linear system of equations (𝑆�⃗� = �⃗�), with vector �⃗� with alternate signs (𝑏𝑖𝑏𝑖+1 ≤ 0
for any 𝑖 ∈ {1,… , 𝑛 − 1}).

Proof. If Pearson’s correlation coefficients between adjacent variables 𝜌𝑖,𝑖+1 (1 ≤ 𝑖 ≤ 𝑛 − 1) are non-negative, it follows from
Theorem 4.2 that the correlation matrix 𝑆 is totally positive. Using the equality 1 − 𝑥2 = (1 + 𝑥)(1 − 𝑥), all the elements of the
bidiagonal decomposition given by Theorem 4.1, are given by sums, products and subtractions of initial data, therefore we know
the 𝐵𝐷(𝑆) to HRA. Since 𝑆 is also nonsingular, the algorithms proposed in [8] and the algorithm TNInverseExpand in [10] (to
compute 𝑆−1) obtain with HRA the eigenvalues of 𝑆, the inverse 𝑆−1 of 𝑆 and also the solution of the linear system of equations
(𝑆�⃗� = �⃗�), with vector �⃗� with alternate signs. □

The previous result requires that the correlation matrix 𝑆 is nonsingular. Considering the bidiagonal decomposition of 𝑆 given
in Theorem 4.1, we have that the nonsingularity of 𝑆 depends on the nonsingularity of the diagonal matrix 𝐷, where the diagonal
entries are 1 (if 𝑖 = 1) and 1 − 𝜌2𝑖−1,𝑖 (if 𝑖 ∈ {2,… , 𝑛}). Therefore, 𝑆 (or, equivalently, 𝐷) is nonsingular if and only if |𝜌𝑖−1,𝑖| < 1, for
any 𝑖 ∈ {2,… , 𝑛}.

Remark 4.3. In the proof of Theorem 4.1, when performing an elementary step of Neville elimination to produce a zero entry
in the first column, all entries of its row to the left of the diagonal entry also become null. Therefore, making zeros in the first
column already transforms the matrix into an upper triangular matrix. In consequence, this process of obtaining the bidiagonal
decomposition of an 𝑛 × 𝑛 correlation matrix can be performed in 𝑂(𝑛2) elementary operations.

4.3. The case of non-positive Pearson’s correlation coefficients between adjacent variables

In this subsection, we study the case in which Pearson’s correlation coefficients between adjacent variables are non-positive,
in contrast to the case studied in the previous section in which these coefficients were non-negative. As discussed in Theorem
3.1 in [11], the fact that all correlations between adjacent variables of a GMRF over a graph of paths with natural ordering are
non-positive is a necessary and sufficient condition for assuring that the inverse of the correlation matrix is totally positive (rather
6

than the correlation matrix itself, as in the case of non-negative correlations).
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Proposition 4.1. Let �⃗� be an 𝑛-dimensional GMRF over a graph of paths with natural ordering. The inverse of the correlation matrix is
otally positive if and only if all Pearson’s correlation coefficients between adjacent variables are non-positive.

We shall take advantage of the previous result by using 𝐵𝐷((𝑆−1)#) in order to compute with HRA the eigenvalues of 𝑆. For that
purpose, we firstly need to introduce the concept of conversion of a matrix (see page 171 of [19]).

Definition 4.1. Given an 𝑛× 𝑛 matrix 𝐴 = (𝐴𝑖,𝑗 )1≤𝑖,𝑗≤𝑛, the conversion of matrix 𝐴, denoted by 𝐴#, is the matrix whose entries 𝐴#
𝑖,𝑗

re given by 𝐴𝑛−𝑖+1,𝑛−𝑗+1, with 𝑖, 𝑗 ∈ {1,… , 𝑛}.

Interestingly, the conversion of a given matrix can be obtained by using the backward identity matrix. Let 𝑃𝑛 be the 𝑛×𝑛 backward
dentity matrix, whose entry at the 𝑖th row and 𝑗th column, with 𝑖, 𝑗 ∈ {1,… , 𝑛}, is defined as:

{

1 , if 𝑖 + 𝑗 = 𝑛 + 1 ,
0 , otherwise .

t holds that 𝐴# = 𝑃𝑛𝐴𝑃𝑛.
Note that left-multiplication of an 𝑛 × 𝑛 matrix 𝐴 by the backward identity matrix 𝑃𝑛 is equivalent to reordering the rows of 𝐴

such that the 𝑘th row in 𝐴 becomes the (𝑛− 𝑘+ 1)th row in 𝑃𝑛𝐴. An analogous result, but reordering the columns of 𝐴 rather than
he rows, follows when we consider the right-multiplication of 𝐴 by the backward identity matrix 𝑃𝑛, where the 𝑘th column in 𝐴

becomes the (𝑛 − 𝑘 + 1)th column in 𝐴𝑃𝑛.

Theorem 4.4. Let �⃗� be an 𝑛-dimensional GMRF over a graph of paths with natural ordering. If the correlation matrix 𝑆 is nonsingular,
ll Pearson’s correlation coefficients between adjacent variables are non-positive, then 𝐵𝐷(𝑆) can be computed with HRA, as well as the
igenvalues of 𝑆.

roof. Using the equality 1 − 𝑥2 = (1 + 𝑥)(1 − 𝑥), all the elements of the bidiagonal decomposition given by Theorem 4.1, are
iven by sums, products and subtractions of initial data, therefore we know the 𝐵𝐷(𝑆) to HRA. In fact, 𝐵𝐷(𝑆) also gives the 𝐿𝐷𝑈

factorization (with 𝐿 a lower triangular matrix with unit diagonal, 𝐷 a nonsingular diagonal matrix and 𝑈 an upper triangular matrix
with unit diagonal) of the nonsingular matrix 𝑆 because, by the uniqueness of the 𝐿𝐷𝑈 factorization of a nonsingular matrix, if we
know its bidiagonal decomposition in the form of Eq. (3), then we have 𝐿 = 𝐹𝑛−1 …𝐹1 and 𝑈 = 𝐿𝑇 .

Since 𝑆−1 is the inverse of the correlation matrix of a GMRF over a graph of paths with natural ordering, it is tridiagonal (see
Definition 2.7 and Remark 3.1 in [11]). Therefore, the 𝐿𝐷𝑈 factorization of 𝑆−1 satisfies that the lower and upper triangular
matrices of the factorization are bidiagonal and that 𝑈 = 𝐿𝑇 . Clearly, the same property holds for (𝑆−1)#.

Taking into account that (𝑃𝑛)−1 = 𝑃𝑛, (𝐴𝐵)# = 𝐴#𝐵# and since 𝑆 = 𝐿𝐷𝐿𝑇 , we can write

(𝑆−1)# = ((𝐿𝐷𝐿𝑇 )−1)#

= ((𝐿𝑇 )−1)#(𝐷−1)#(𝐿−1)#

= �̃��̃�𝐿𝑇 ,

(5)

where �̃� = (𝑈−1)# is the bidiagonal lower triangular matrix with unit diagonal and �̃� = (𝐷−1)# is the nonsingular diagonal matrix
of the 𝐿𝐷𝑈 factorization of (𝑆−1)#. Observe that �̃��̃�𝐿𝑇 also gives the bidiagonal decomposition of (𝑆−1)# in the form of Eq. (3).

Therefore, we have a bidiagonal decomposition of (𝑆−1)#. By Proposition 4.1, 𝑆−1 is totally positive, and, therefore, (𝑆−1)# is
also totally positive. In fact, the off-diagonal entries of the bidiagonal matrix (𝐿−1)# are the numbers opposite in sign to Pearson’s
correlation coefficients, and, therefore, are non-negative. Therefore, we have 𝐵𝐷((𝑆−1)#) with HRA and so the algorithm proposed
in [8] computes the eigenvalues of (𝑆−1)# to HRA. Note that 𝑆−1 and (𝑆−1)# have the same eigenvalues, because they are similar
matrices. Therefore, we know the eigenvalues of 𝑆−1 to HRA and also the eigenvalues of 𝑆, which are their inverses. □

Remark 4.4. Under the hypotheses of Theorem 4.4 we can also assure HRA for calculating the inverse 𝑆−1 and for solving a linear
system of equations (𝑆�⃗� = �⃗�), with vector �⃗� with constant sign (𝑏𝑖𝑏𝑖+1 ≥ 0 for any 𝑖 ∈ {1,… , 𝑛−1}). In fact, the proof of Theorem 4.4
provides the bidiagonal factorization of (𝑆−1)# in Eq. (5), with all factors non-negative. So we can obtain (𝑆−1)# = �̃��̃��̃� without
subtractions. Thus we can get 𝑆−1 from (𝑆−1)# with HRA. Finally, for the system of linear equations 𝑆�⃗� = �⃗� we obtain 𝑥 = 𝑆−1�⃗�.
Since 𝑆−1 is TP by Proposition 4.1 we can calculate the value �⃗� = 𝑆−1𝑏 without subtractions and so with HRA.

5. High relative accuracy and the covariance matrix of a Gaussian Markov random field over a graph of paths with natural
ordering

Correlation matrices are widely used in some applications in which the scale of the different components should not be taken
into account and only the relations between the components are important. For example, this is the case of Principal Component
Analysis (PCA) [6], which is highly influenced by the scale of the different components and, thus, each of the components should
be standardized before the application of PCA. However, in statistics, one mostly deals with covariance matrices rather than with
correlation matrices. We devote this section to generalize Theorems 4.3 and 4.4 for covariance matrices.

Given a covariance matrix 𝛴, the associated correlation matrix 𝑆 is obtained by scaling its rows and columns by multiplying
from the left and from the right by a diagonal matrix 𝐴 with non-negative entries, i.e., 𝛴 = 𝐴𝑆𝐴. Therefore, a covariance matrix is
totally positive if and only if the associated correlation matrix is totally positive (see [11]).
7
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Theorem 5.1. Let �⃗� be an 𝑛-dimensional GMRF over a graph of paths with natural ordering.

• The covariance matrix is totally positive if and only if all Pearson’s correlation coefficients between adjacent variables are non-negative.
• The inverse of the covariance matrix is totally positive if and only if all Pearson’s correlation coefficients between adjacent variables
are non-positive.

Moreover, it is possible to link the bidiagonal decomposition of 𝑆 with the bidiagonal decomposition of 𝛴 quite straightforwardly.
For this purpose, we firstly need to proof the following result.

Lemma 5.1. Let 𝑇 = (𝑇𝑖,𝑗 )1≤𝑖,𝑗≤𝑛 be a matrix that admits the following bidiagonal decomposition 𝑇 = 𝐿𝑛 …𝐿1𝐷𝑈1 …𝑈𝑛 and
𝐴 = (𝐴𝑖,𝑗 )1≤𝑖,𝑗≤𝑛 be a nonsingular diagonal matrix with non-negative entries. The bidiagonal decomposition of 𝐴𝑇𝐴 is the following:

𝐴𝑇𝐴 = �̃�𝑛 … �̃�1�̃��̃�1 … �̃�𝑛.

where �̃� = 𝐴𝐷𝐴 and, for any 𝑖 ∈ {1,… , 𝑛}, �̃�𝑖 = 𝐴𝐿𝑖𝐴−1 and �̃�𝑖 = 𝐴−1𝑈𝑖𝐴.

Proof. Clearly, we have a decomposition of 𝐴𝑇𝐴:

�̃�𝑛 … �̃�1�̃��̃�1 … �̃�𝑛 =
(

𝐴𝐿𝑛𝐴
−1)…

(

𝐴𝐿1𝐴
−1) (𝐴𝐷𝐴)

(

𝐴−1𝑈1𝐴
)

…
(

𝐴−1𝑈𝑛𝐴
)

= 𝐴𝐿𝑛 …𝐿1𝐷𝑈1 …𝑈𝑛𝐴 = 𝐴𝑇𝐴 .

n addition,
(

�̃�𝑖
)

𝑗,𝑘 =
(

𝐿𝑖
)

𝑗,𝑘
𝐴𝑗,𝑗
𝐴𝑘,𝑘

. for any 𝑖, 𝑗, 𝑘 ∈ {1,… , 𝑛}, therefore �̃�𝑖 is a lower bidiagonal matrix having null elements in the
same positions as 𝐿𝑖 and with all diagonal entries equal to 1 for any 𝑖 ∈ {1,… , 𝑛}. Similarly, �̃�𝑖 is an upper bidiagonal matrix
having null elements in the same positions as 𝑈𝑖 and with all diagonal entries equal to 1 for any 𝑖 ∈ {1,… , 𝑛}. Finally, �̃� = 𝐴𝐷𝐴
is a diagonal matrix with non-negative diagonal entries. Thus, it is concluded that �̃�𝑛 … �̃�1�̃��̃�1 … �̃�𝑛 is a bidiagonal decomposition
of 𝐴𝑇𝐴. □

The latter result is of interest to the present paper when we consider 𝑇 = 𝑆 and 𝐴𝑇𝐴 = 𝛴. In such a way, it is possible to extend
the results obtained for correlation matrices to covariance matrices.

Theorem 5.2. Let �⃗� be an 𝑛-dimensional GMRF over a graph of paths with natural ordering. If the covariance matrix 𝛴 is nonsingular,
Pearson’s correlation coefficients between adjacent variables are of the same sign and 𝛴𝑖,𝑖 for all 𝑖 are given, then the eigenvalues of 𝛴 can
be computed with HRA, as well as 𝛴−1, and the solution of the linear system of equations (𝛴�⃗� = �⃗�), with vector �⃗� with alternate (constant)
sign for the case of non-negative (non-positive) Pearson’s correlation coefficients.

Proof. Let 𝑆 be the correlation matrix such that 𝛴 = 𝐴𝑆𝐴, with 𝐴 being a nonsingular diagonal matrix with non-negative entries.
We separate the case of non-negative and non-positive Pearson’s correlation coefficients.

• Non-negative correlations: From Lemma 5.1, the bidiagonal decomposition of 𝛴 can be expressed as:

𝛴 =
(

𝐴𝐿𝑛𝐴
−1)…

(

𝐴𝐿1𝐴
−1) (𝐴𝐷𝐴)

(

𝐴−1𝑈1𝐴
)

…
(

𝐴−1𝑈𝑛𝐴
)

,

where 𝑆 = 𝐿𝑛 …𝐿1𝐷𝑈1 …𝑈𝑛 is the bidiagonal decomposition of 𝑆, which can be computed with HRA due to Theorem 4.3. In
addition, the multiplication by a non-negative diagonal matrix can be performed with HRA, thus the bidiagonal decomposition
of 𝛴 can be computed with HRA. Therefore, the algorithms proposed in [8] and in [10] compute with HRA the eigenvalues
of 𝛴, 𝛴−1 and also the solution of linear system of equations (𝛴𝑥 = 𝑏), with vector 𝑏 with alternate signs.

• Non-positive correlations: The matrix 𝛴−1 is totally positive as a consequence of Lemma 5.1, as well as the matrix (𝛴−1)#. In
particular, we can express (𝛴−1)# as:

(𝛴−1)# = 𝑃𝑛𝛴
−1𝑃𝑛 = 𝑃𝑛𝐴

−1𝑆−1𝐴−1𝑃𝑛 = 𝑃𝑛𝐴
−1𝑃𝑛𝑃𝑛𝑆

−1𝑃𝑛𝑃𝑛𝐴
−1𝑃𝑛

= (𝐴−1)#(𝑆−1)#(𝐴−1)# .

The bidiagonal decomposition of (𝑆−1)# can be computed with HRA, as discussed in the proof of Theorem 4.4. Therefore,
due to Lemma 5.1 and reasoning in the same manner as in the case of non-negative Pearson’s correlation coefficients, the
bidiagonal decomposition of (𝛴−1)# can be performed with HRA. Note that the eigenvalues of (𝛴−1)# and 𝛴−1 coincide and,
therefore, the eigenvalues of 𝛴 can be computed with HRA just by inverting the ones of (𝛴−1)#. For all other computations,
it suffices to consider similar arguments as those in Remark 4.4. □

6. Numerical results

The theoretical results presented in the latter sections state that some linear algebra operations such as the computation of
eigenvalues or the inversion of the covariance matrix of a GMRF over a path graph with natural ordering and Pearson’s correlation
coefficients between adjacent variables of the same sign can be computed with HRA. In this section, we present some numerical
8

experiments that compare the routines included in the package TNTool [8,24,27] with the ones implemented in Matlab [28].
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Table 1
Eigenvalues and relative error of the function eig from Matlab and the TNEigenValues routine for a
covariance matrix of a GMRF over a graph of paths.
𝜆 𝑒𝑀𝑎𝑡𝑙𝑎𝑏 𝑒𝐻𝑅𝐴

829.3977282 6.85358 ⋅ 10−16 1.37072 ⋅ 10−16

2.305512952 3.85241 ⋅ 10−16 0
0.475753414 4.24717 ⋅ 10−15 2.33361 ⋅ 10−16

0.272038611 4.08112 ⋅ 10−16 8.16225 ⋅ 10−16

0.128908647 2.77752 ⋅ 10−14 0
0.081036698 3.69907 ⋅ 10−14 3.42506 ⋅ 10−16

0.05315597 1.56646 ⋅ 10−14 3.91615 ⋅ 10−16

0.04047131 1.11101 ⋅ 10−13 8.57261 ⋅ 10−16

0.02337366 2.11222 ⋅ 10−13 7.4217 ⋅ 10−16

0.021173508 1.39115 ⋅ 10−13 3.27716 ⋅ 10−16

0.018288115 6.20353 ⋅ 10−14 5.69131 ⋅ 10−16

0.010478701 1.00156 ⋅ 10−13 1.65548 ⋅ 10−16

0.007793824 1.15528 ⋅ 10−12 2.22577 ⋅ 10−16

0.006356334 6.95927 ⋅ 10−15 1.22811 ⋅ 10−15

0.005521986 2.29957 ⋅ 10−13 3.14148 ⋅ 10−16

0.005269281 8.88879 ⋅ 10−15 4.93822 ⋅ 10−16

0.002673709 3.50356 ⋅ 10−14 3.24404 ⋅ 10−16

0.002287389 6.56004 ⋅ 10−14 3.79193 ⋅ 10−16

0.001335167 4.32003 ⋅ 10−14 0
0.000902647 1.22156 ⋅ 10−13 0

6.1. Computation of eigenvalues

We compare the accuracy in the computation of the eigenvalues made by the TNEigenValues routine [27], which computes the
eigenvalues starting from the bidiagonal decomposition of a totally positive matrix, and by the conventional eigenvalue algorithm
of LAPACK [29] (as implemented by eig in Matlab). In particular, both methods are compared with the eigenvalues obtained
by MATHEMATICA [30] with 60 significant digits. In all the experiments, Pearson’s correlation coefficients close to either 1 or
−1 have been considered, since the condition number of the correlation/covariance matrix increases with the absolute value of
the coefficients. This behaviour is due to the fact that, if the correlation is strong, the random vector tends to distribute over
a one-dimensional axis, implying that all but one eigenvalue of its correlation/covariance matrix are close to 0. It is expected
that the behaviour of the usual method of Matlab has a bad relative accuracy when the condition number increases, whereas the
TNEigenValues routine stills maintain a good relative accuracy.

Firstly, a 20 × 20 covariance matrix of a GMRF over a graph of paths was generated randomly. The correlation coefficients were
selected randomly with uniform distribution over the interval [0.999, 1) and the variances were selected randomly with uniform
distribution over the interval [1, 10]. The eigenvalues of the generated covariance matrix as well as the relative errors for both
Matlab and TNEigenValues given are presented in Table 1. As can be seen, the relative errors for the Matlab routine increase
for smaller eigenvalues.

We have also compared both procedures for other correlation and covariance matrices of different sizes, considering both non-
negative and non-positive correlations between adjacent variables. In Fig. 1, the maximum relative error among all the eigenvalues
when 𝜌 = ±0.999 and 𝑛 ranges from 10 to 50 is represented. For the cases of covariance matrices, the covariance has been chosen
such that 𝛴𝑖,𝑖 = 𝑖2 with 𝑖 ∈ {1,… , 𝑛}. It is shown that the HRA procedure with the routine TNEigenValues has a relative error
two orders of magnitude smaller than the usual procedure considering the function eig from Matlab for all the considered cases.
Additional experiments with matrices of dimension 100 led to similar experimental results, without a significant increase of the
relative error for the function eig. This is mainly because the condition number of the correlation/covariance matrix does not
increase greatly as the dimension of the matrix increases. For instance, if 𝜌 = 0.999 and the variance is constant, the condition
number of the associated matrix is 3.97 × 104 if 𝑛 = 20 and 1.99 × 105 if 𝑛 = 100.

In addition, the maximum relative error among all eigenvalues has been represented with respect to the condition number of
the associated matrix. The dimension of the matrix was fixed to 20, and the absolute value of the Pearson’s correlation coefficient
was chosen among 𝜌 = 1 − 10𝑝 with 𝑝 = {1,… , 9}, causing the condition number to increase as 𝑝 increases. As it can be seen in
Fig. 2, increasing the condition number of the matrix makes the relative accuracy of the usual method from Matlab to decrease. On
the contrary, computations with HRA always exhibit a small relative error, independently of the condition number of the associated
matrix. For instance, in the case of correlation matrices with non-negative correlation coefficients, the relative error of the Matlab
function is 3.56 × 10−15 for a condition number of 3.97 × 105, which increases to 1.29 × 10−6 for a condition number of 3.99 × 1010.
The HRA method has, for all the cases, a relative error below 2 × 10−15.

6.2. Computation of the inverse matrix

We compare the accuracy in the computation of the inverse matrix made by the TNInverseExpand routine [27], which
computes the inverse matrix given the bidiagonal decomposition of the matrix to invert, and the usual inversion algorithm (as
9

implemented by inv in Matlab).
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Fig. 1. Maximum relative error in the computation of the eigenvalues by the function eig from Matlab and the TNEigenValues routine for matrices of
different dimension.

Fig. 2. Maximum relative error in the computation of the eigenvalues by the function eig from Matlab and the TNEigenValues routine for matrices of
different condition number.
10
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Fig. 3. Relative error in the computation of the inverse matrix by the function inv from Matlab and the TNInverseExpand routine for matrices of different
ondition number.

In case all Pearson’s correlation coefficients between adjacent nodes are constant, the expression of the exact solution is known,
ince the correlation matrix coincides with a Kac–Murdock–Szegö matrix [31].

roposition 6.1 ([31]). Let 𝑆 be a matrix defined by 𝑆𝑖,𝑗 = 𝜌|𝑖−𝑗| for any 𝑖, 𝑗 ∈ {1,… , 𝑛}, with 𝜌 ∈ [−1, 1]∖{0}. It follows that 𝑆−1 is
characterized by the following expression.

• (

𝑆−1)
1,1 =

(

𝑆−1)
𝑛,𝑛 =

1
1−𝜌2 ,

• (

𝑆−1)
𝑖,𝑖 =

1+𝜌2

1−𝜌2 , if 𝑖 ∈ {2,… , 𝑛 − 1},
• (

𝑆−1)
𝑖,𝑗 =

(

𝑆−1)
𝑗,𝑖 =

−𝜌
1−𝜌2 , if 𝑖, 𝑗 ∈ {1,… , 𝑛}, if 𝑖 + 1 = 𝑗,

• (

𝑆−1)
𝑖,𝑗 = 0, otherwise.

By considering the latter expression, the inverse matrix of the correlation/covariance matrix of a GMRF over a graph of
paths may be obtained with 60 significant digits by using MATHEMATICA. Therefore, the accuracy of both functions inv and
TNInverseExpand may be measured by means of the 1-norm for matrices, defined as ‖𝐴‖1 = max1≤𝑗≤𝑛

∑𝑛
𝑖=1 |𝐴𝑖𝑗 |. More

specifically, the difference of the matrix obtained by using MATHEMATICA and those obtained by using, respectively, the functions
inv and TNInverseExpand needs to be computed.

Setting the dimension of the correlation/covariance matrix to 20 and varying Pearson’s correlation coefficient as 𝜌 = 1−10𝑝 with
𝑝 = {1,… , 9}, causing the condition number to increase as 𝑝 increases, we obtain the relative errors shown in Fig. 3. It can be seen
that, as the condition number of the matrix to be inverted increases, the accuracy of the results given by the function inv decreases.
On the contrary, the results given by the HRA procedure have a smaller relative error, regardless of the condition number of the
matrix to be inverted.

7. Conclusions and future work

In this paper, we have presented techniques for performing with HRA some linear algebra operations with correlation/covariance
matrices of GMRF over graphs of paths with natural ordering in which the correlations between adjacent variables in the graph were
either non-positive or non-negative. It should be borne in mind that all results are immediately extended to GMRF over graphs of
paths (not necessarily with natural ordering) by simply reindexing the random vector with respect to a natural ordering.

Future work will aim at generalizing the present results to GMRF over different graphs that admit a totally positive co-
variance matrix. Unfortunately, in this more general case, a closed-form expression for the bidiagonal decomposition of the
correlation/covariance matrix is not yet known.

In addition, another interesting problem is to apply these methods to covariance matrices derived from data. In this direction,
it is necessary to construct statistical estimators of distributions that fulfil the conditions given by Theorem 5.2, since they do not
exist in the current literature.

Data availability

No data was used for the research described in the article.
11



Journal of Computational and Applied Mathematics 453 (2025) 116142J. Baz et al.

1
1

R

Acknowledgements

This research was partially supported through the Spanish research grants PID2022-138569NB-I00 (MCIU/AEI), PID2022-
39886NB-I00 (MCIU/AEI), PID2022-140585NB-I00 (MICIU/AEI/10.13039/501100011033 and ‘‘FEDER/UE’’) and RED2022-
34176-T (MCI/AEI), Gobierno de Aragón (E41_23R), and Principado de Asturias (Programa Severo Ochoa, BP21042).

eferences

[1] J.R. Norris, Markov Chains, Cambridge University Press, Cambridge, 1998.
[2] R. Kindermann, J.L. Snell, Markov Random Fields and their Applications, American Mathematical Society, Providence, 1980.
[3] H. Rue, L. Held, Gaussian Markov Random Fields: Theory and Applications, CRC Press, Boca Ratón, 2005.
[4] K.A. Alene, C.A. Gordon, A.C.A. Clements, G.M. Williams, D.J. Gray, X. Zhou, Y. Li, J. Utzinger, J. Kurscheid, S. Forsyth, J. Zhou, Z. Li, G. Li, D. Lin, Z.

Lou, S. Li, J. Ge, J. Xu, X. Yu, F. Hu, S. Xie, D.P. Mcmanus, Spatial analysis of schistosomiasis in hunan and jiangxi provinces in the People’s Republic
of China, Diseases 10 (4) (2020) 93.

[5] S. Huadong, Z. Pengfei, Z. Yingjing, Multi-angle face recognition based on GMRF, in: International Conference on Business Intelligence and Information
Technology, 2021, pp. 366–378.

[6] R. Bro, A.K. Smilde, Principal component analysis, Anal. Methods 6 (9) (2014) 2812–2831.
[7] R. Fernández Casal, R. Cao, J. Costa, Técnicas de Simulación y Remuestreo. https://rubenfcasal.github.io/simbook/.
[8] P. Koev, Accurate computations with totally non-negative matrices, SIAM J. Matrix Anal. Appl. 29 (3) (2007) 731–751.
[9] J. Delgado, H. Orera, J.M. Peña, Accurate bidiagonal decomposition and computations with generalized Pascal matrices, J. Comput. Appl. Math. 391

(2021) 113443.
[10] A. Marco, J.J. Martínez, Accurate computation of the Moore–Penrose inverse of strictly totally positive matrices, J. Comput. Appl. Math. 350 (2019)

299–308.
[11] J. Baz, P. Alonso, J.M. Peña, R. Pérez-Fernández, Gaussian Markov random field and totally positive matrices, J. Comput. Appl. Math. 430 (2023) 115098.
[12] V.K. Rohatgi, An Introduction to Probability Theory and Mathematical Statistics, John Wiley and Sons, New York, 1976.
[13] R. Bhatia, Positive Definite Matrices, Princeton University Press, Princeton, 2007.
[14] S. Cheng, J.P. Argaud, B. Iooss, D. Lucor, A. Ponçot, Error covariance tuning in variational data assimilation: application to an operating hydrological

model, Stoch. Environ. Res. Risk Assess. 35 (2021) 1019–1038.
[15] X. Du, A. Aubry, A. De Maio, G. Cui, Toeplitz structured covariance matrix estimation for radar applications, IEEE Signal Process. Lett. 27 (2020) 595–599.
[16] Y. Le Cun, I. Kanter, S.A. Solla, Eigenvalues of covariance matrices: Application to neural-network learning, Phys. Rev. Lett. 66 (18) (1991) 2396.
[17] W. Kocay, D.L. Kreher, Graphs, Algorithms, and Optimization, CRC Press, Boca Ratón, 2016.
[18] T.P. Speed, H.T. Kiiveri, Gaussian Markov distributions over finite graphs, Ann. Statist. 14 (1986) 138–150.
[19] T. Ando, Totally positive matrices, Linear Algebra Appl. 90 (1987) 165–219.
[20] S.M. Fallat, C.R. Johnson, Totally Nonnegative Matrices, Princeton University Press, Princeton, 2011.
[21] M. Gasca, J.M. Peña, Total positivity and Neville elimination, Linear Algebra Appl. 165 (1992) 25–44.
[22] P. Alonso, M. Gasca, J.M. Peña, Backward error analysis of neville elimination, Appl. Numer. Math. 23 (1997) 193–204.
[23] M. Gasca, J.M. Peña, On factorizations of totally positive matrices, in: M. Gasca, C.A. Michelli (Eds.), Total Positivity and its Applications, Kluwer Academic

Publishers, 1996, pp. 109–130.
[24] P. Koev, Accurate eigenvalues and SVDs of totally non-negative matrices, SIAM J. Matrix Anal. Appl. 27 (1) (2005) 1–23.
[25] J. Baz, I. Díaz, S. Montes, R. Pérez-Fernández, Some results on the Gaussian Markov random field construction problem based on the use of invariant

subgraphs, TEST 31 (2022) 1–19.
[26] J. Demmel, I. Dumitriu, O. Holtz, P. Koev, Accurate and efficient expression evaluation and linear algebra, Acta Numer. 17 (2008) 87–145.
[27] P. Koev, 2023, https://math.mit.edu/~plamen/software/TNTool.html. (Retrieved 5 May 2023).
[28] MATLAB Reference Guide, The MathWorks, Inc., Natick, MA, 1992.
[29] E. Anderson, Z. Bai, C. Bischof, L.S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, D. Sorensen, LAPACK Users’ Guide, in: Software

Environ. Tools, vol. 9, SIAM, Philadelphia, 1999.
[30] S. Wolfram, The MATHEMATICA Book, Version 4, Cambridge University Press, Cambridge, 1999.
[31] M. Dow, Explicit inverses of Toeplitz and associated matrices, ANZIAM J. 44 (2002) E185–E215.
12

http://refhub.elsevier.com/S0377-0427(24)00391-1/sb1
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb2
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb3
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb4
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb4
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb4
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb4
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb4
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb5
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb5
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb5
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb6
https://rubenfcasal.github.io/simbook/
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb8
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb9
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb9
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb9
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb10
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb10
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb10
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb11
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb12
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb13
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb14
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb14
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb14
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb15
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb16
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb17
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb18
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb19
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb20
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb21
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb22
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb23
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb23
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb23
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb24
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb25
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb25
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb25
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb26
https://math.mit.edu/~plamen/software/TNTool.html
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb28
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb29
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb29
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb29
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb30
http://refhub.elsevier.com/S0377-0427(24)00391-1/sb31

	Gaussian Markov Random Fields over graphs of paths and high relative accuracy
	Introduction
	Gaussian Markov Random Fields
	Auxiliary results on totally positive matrices
	High Relative Accuracy and the correlation matrix of a Gaussian Markov Random Field over a graph of paths with natural ordering
	Bidiagonal decomposition of the correlation matrix of a Gaussian Markov Random Field over a graph of paths with natural ordering
	The case of non-negative Pearson's correlation coefficients between adjacent variables
	The case of non-positive Pearson's correlation coefficients between adjacent variables

	High Relative Accuracy and the covariance matrix of a Gaussian Markov Random Field over a graph of paths with natural ordering
	Numerical results
	Computation of eigenvalues
	Computation of the inverse matrix

	Conclusions and future work
	Data availability
	Acknowledgements
	References


