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1 Introduction

Matter going through a first-order phase transition as it cools down is a commonly observed
occurrence in daily life, as when we turn water into ice cubes for our drinks. At much smaller
subatomic scales, extremely hot matter produced in heavy ion collisions may undergo a
transition as a droplet of quark-gluon plasma expands and cools down, turning into hadronic
matter [1, 2]. In the other extreme, at cosmological scales, an electroweak or dark matter
phase transition in the early universe may leave an observable imprint in the gravitational
wave spectrum [3, 4]. If observed, the former would validate phenomenological predictions
for the QCD phase diagram, while the latter would be a clear signal of physics beyond
the Standard Model.

Holographic models have been used to describe and estimate the effects of such phase
transitions, for both heavy ion collisions [5–7] and cosmology [8–15]. Such models use a
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Figure 1. Order parameter as a function of the temperature for the case in the first row of table 1.
The blue and red lines are the (meta)stable low and high temperature phases respectively. The dashed
purple line is the unstable phase. The dashed black vertical line marks the critical temperature, and
the green dots the position of the spinodal points where metastable and unstable phases merge.

classical gravitational theory to compute non-trivial quantities of a dual strongly coupled field
theory. In particular, one can describe the out-of-equilibrium evolution of the field theory
as it goes through a phase transition by solving a few classical differential equations. This
makes the holographic duality a powerful tool to study various aspects of such transitions,
including the nucleation of bubbles and the properties of domain walls [16–26], the formation
and evolution of mixed phases [27–34], and quenches [35–47].

In this paper, we continue this program by using a simple holographic model to study
slow evolution through first-order phase transitions, comparing the results to second-order
transitions and crossovers.

Holographic duality is typically used in the classical gravity limit, which, in the dual
field theory, is a large-N or mean field limit. In the canonical case N is the rank of the gauge
group [48], but more generally we can think of it as a measure of the number of degrees of
freedom. Restricting to a classical gravitational description is therefore akin to completely
removing fluctuations around the mean field theory. Even if N is not strictly infinite, in order
for the holographic approach to be tractable, fluctuations must be strongly suppressed. This
can have a significant effect on the evolution of the system through a phase transition.

Consider the case of a system with a first-order phase transition. The order parameter
as a function of the temperature would typically behave as shown in figure 1. Within some
interval of temperatures around the critical value, the high- and low-temperature phases
coexist; the one with lower free energy is the true stable phase, while the other is metastable.
Precisely at the critical temperature the free energy of the two phases is the same; the phase
which is stable at larger temperatures is metastable at smaller temperatures, and vice versa.
Each of the stable phases ends at a spinodal point, marked as green dots in the figure, where
they merge with an unstable third branch.1

1Note that this is a mean field, or coarse grained, depiction of the phase diagram, since the true free energy
must be a convex function of thermodynamical variables. The true equilibrium states include mixtures of the
two phases.
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We will study the case where the system of interest is put in contact with a large thermal
bath that determines the temperature, which we then change with time. If the change is slow
enough, the system could in principle remain arbitrarily close to equilibrium, undergoing
a quasistatic evolution of equilibrium quantities.

Starting at high temperatures and cooling down, the system will typically undercool,
reaching temperatures below the critical one before fluctuations drive it to the low temperature
phase. Usually, the fluctuations take the form of bubbles of the low temperature phase
nucleating inside the high temperature phase, which expand due to their higher inner pressure
(lower free energy). If the nucleating barrier is very low, the size of the bubble can become
of the same order of the width of the interface and in this case one should also take into
account the formation of ramified domains of the low temperature phase [49]. As argued
in [11, 20], bubble nucleation is exponentially suppressed with N in holographic models, so,
for a large enough value of N , the time evolution can be slow enough as to remain quasistatic,
but fast enough to completely neglect nucleation before reaching the vicinity of the spinodal
point. In other words, the large-N limit can uncover the physics of the spinodal points, which
would otherwise be hidden by the nucleation process.

Although not widely discussed, spinodal points share some features with critical points of
second-order phase transitions, for example the scaling behaviour of thermodynamic variables
and correlators, as well as the critical slowing down of perturbations [50–52]. These features
may be relevant even in the presence of thermal fluctuations and disorder, as long as they
are not too strong [53–56], and they have been observed experimentally in some strongly
correlated materials [57–64]. The critical slowing down means that the time it takes for an
out-of-equilibrium perturbation to decay diverges as one approaches the critical or spinodal
points. Thus, even if the evolution is very slow, eventually the system is driven out of
equilibrium before reaching the critical or spinodal temperature.

In this paper we provide a simple theoretical realization of a strongly correlated system
where the properties of transitions through spinodal and critical points can be studied,
confirming the above picture. By tuning the parameters of our holographic model, we can
realize phase transitions of first and second order, as well as smooth crossovers. In the case
of first-order transitions, we show that the system can never reach the spinodal point; no
matter how slow the time evolution is, the system will fall out of equilibrium before reaching
it, even in the absence of bubble nucleation. We will also show evidence for the scaling
behaviour at the spinodal point in the holographic model and compare with scaling at critical
points and strong crossovers. Although our results are obtained for a particular class of
models, we expect the qualitative features to be valid more generally for phase transitions
in strongly coupled theories with a holographic dual.

The rest of the paper is organized as follows: in section 2 we introduce the holographic
model we work with, and discuss its equilibrium configurations and phase diagram. In
section 3, we introduce small perturbations around equilibrium and extract the relaxation
time and correlation length. We argue analytically, and show numerically, that the model
exhibits critical slowing down at the spinodal points. In section 4, we determine the breakdown
of quasistatic evolution and the scaling close to critical and spinodal points, both through
analytic approximations and numerically. We conclude and discuss possible future directions
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in section 5. Several appendices go into more detail regarding the phase diagram, the
computation of decay rates and correlation lengths, quasinormal modes, and the numerical
methods used.

2 The holographic model and its equilibrium behavior

We will work with a bottom-up gravitational model dual to a 2 + 1-dimensional strongly
coupled CFT with a large number ∼ N2

c of degrees of freedom. Conformal invariance will
be broken in a subsector involving ∼ Nc degrees of freedom, akin to fundamental fields
spanning the flavor sector of a gauge theory with a gauge group of rank Nc. We will work
in the quenched approximation where the effect of this ‘flavor’ subsector over the rest of
the theory is neglected.

The gravity dual to this setup consists of Einstein gravity with a cosmological constant
plus a scalar field. The classical action is

S = 1
2κ24

∫
d4x

√
|g|
[
R+ 6

L2 − 1
Nc

(
gMN∂Mϕ∂Nϕ+ 2P (ϕ)

)]
, (2.1)

where gMN is the metric, R the associated scalar curvature and ϕ the scalar field with a
potential P (ϕ). The metric gMN corresponds to the ‘glue’ sector with ∼ N2

c degrees of
freedom, while the scalar ϕ will capture the physics of the flavor sector. Following the
quenched approximation, we will treat the scalar as a probe, neglecting the backreaction over
the metric. The metric at zero temperature will then be AdS4 with radius L.

When turning on the temperature the glue sector will act as a thermal bath for the
flavor sector. Since there are no phase transitions in the glue sector, for a time evolution slow
enough (compared to the scale set by the temperature), we can assume that the evolution is
quasistatic, i.e. the system is at thermal equilibrium at each instant of time. We will then fix
the metric to be AdS4 black brane with a position of the horizon zh that may depend on time

ds2 = L2

z2

(
f(z)dt2 + dz2

f(z) + dxidxi
)
, f(z) = 1− z3

z3h
. (2.2)

The temperature in the dual field theory equals the Hawking temperature of the black
brane geometry,

T = 3
4πzh

. (2.3)

If zh depends on time this metric is not a solution of Einstein’s equations, but can serve as a
good approximation as long as the time derivatives are small enough.

The flavor sector will be at the temperature set by the bath. Normally it should also
follow a quasistatic evolution as the temperature is changed, but when it comes close to a
phase transition we expect this will no longer be true. In order to elucidate the evolution
through the phase transition we will solve the equations of motion of the dual scalar field
in the background metric with a time-dependent horizon. We will assume homogeneous
configurations in the spatial directions, so there will be dependence only in time and the
holographic radial direction. However, before this can be done, it will be necessary to set
up the model such that it shows a phase transition. This can only happen if conformal
invariance is broken in some way.
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2.1 Breaking of conformal invariance

We will now specify the potential for the scalar field. For small values of the amplitude
it typically starts with a quadratic term

P (ϕ) = m2

2 ϕ2 + · · · . (2.4)

The asymptotic boundary expansion of the scalar field in the AdS4 metric is determined by
the value of the mass in units of the AdS radius. One finds two independent solutions:

ϕ(z) ∼ ϕ−z
3
2−ν + ϕ+z

3
2+ν , ν =

√
m2L2 + 9

4 , (2.5)

with ϕ− and ϕ+ the coefficients of the leading and subleading solutions. For ν ≥ 3/2 the
leading solution maps to a source, or coupling, for the dual operator and the subleading
solution determines the expectation value. However, for 3/2 > ν > 0 one may choose an
‘alternative quantization’ where the roles of the two solutions are reversed [65, 66]. In the
case of ordinary quantization the conformal dimension of the dual operator is ∆+ = 3

2 + ν,
while for alternative quantization it is ∆− = 3

2 − ν.
The simplest way to break conformal invariance is to turn on a source for a relevant

operator, which will amount to solving the equations of motion for the scalar field fixing ϕ− or
ϕ+. It can be shown that this is not enough to induce a phase transition with only a quadratic
potential. A possible solution is to design a more complicated potential P (ϕ), for instance by
adding higher powers of the scalar field with appropriate coefficients as in [67]. We will instead
follow the approach of [20], where the bulk potential P (ϕ) remains quadratic, but a non-trivial
effective potential is obtained by using the alternative quantization for the scalar field and
tuning its boundary conditions. This corresponds to deforming the dual field theory by
various powers of the operator O dual to ϕ: SCFT → SCFT + gnOn [68]. In a large-N theory
such a deformation simply results in the addition of a similar term to the effective potential
depending on the expectation value of the operator, V (⟨O⟩) → V (⟨O⟩) + gn⟨O⟩n [69].

We want to construct an effective potential which is quartic in ⟨O⟩, as this will let
us realize first- and second-order thermal phase transitions, as well as smooth crossovers.
In order not to have irrelevant deformations of the CFT, this means that the conformal
dimension of the operator should be ∆ ≤ 3/4. We find it convenient to saturate this condition,
meaning that m2L2 = −27/16. Implementing both alternative quantization and the boundary
conditions requires adding additional boundary terms to the gravitational on-shell action,
after it has been properly renormalized, as we now review.

2.2 Holographic renormalization and alternative quantization

Since we are working in the probe approximation, the Einstein and scalar actions are
renormalized independently. For us only the scalar action is relevant. Following the usual
procedure of holographic renormalization, we introduce a cutoff in the holographic radial
coordinate z = zUV , and add a boundary counterterm of the form

Sc.t. = − 3
8Lκ24Nc

∫
d3x

√
|h|ϕ2

∣∣∣
z=zUV

, (2.6)

where hµν = gµν
∣∣∣
z=zUV

is the induced metric on a radial slice.
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The variation of the regularized scalar on-shell action is

δSϕ = δSon-shell + δSc.t. =
1

κ24Nc

∫
d3x

(√
|g| gzz∂zϕ− 3

4L

√
|h|ϕ

)
δϕ
∣∣∣
z=zUV

. (2.7)

Taking the zUV → 0 limit, we obtain the variation of the generating functional of the dual
field theory in ordinary quantization

δW∆+ [ϕ−] =
3L2

2κ24Nc

∫
d3xϕ+δϕ− . (2.8)

In order to move to alternative quantization we add the boundary term [69]

Sa.q. = − 3L2

2κ24Nc

∫
d3xϕ+ϕ− . (2.9)

Combining this with the variation of the renormalized on-shell action gives the variation of
the generating functional of the dual field theory when the operator has dimension ∆− = 3/4:

δW∆− [ϕ+] = δSϕ
∣∣∣
zUV →0

+ δSa.q. = − 3L2

2κ24Nc

∫
d3xϕ−δϕ+ . (2.10)

The generating functional itself (rather than the variation) can also be explicitly computed
in this case. First, the on-shell action for the scalar is

Sϕ = 1
2κ24Nc

∫
d3x

√
|g|gzz∂zϕϕ

∣∣∣z=zh

z=zUV

. (2.11)

For regular solutions the contribution at the horizon vanishes. Then, adding all the boundary
terms, the generating functional is

W∆− [ϕ+] = − 3L2

4κ24Nc

∫
d3xϕ+ϕ− . (2.12)

2.3 Effective potential and multitrace boundary conditions

The effective potential can be obtained from the generating functional via a Legendre
transform that trades the dependence on the source by a dependence on the expectation
value of the operator. First, we split the coefficient of the subleading term ϕ+ into the
coupling breaking conformal invariance, Λ, plus an external source, J , i.e. ϕ+ = −Λ + J .
The generating functional is

W∆− [Λ, J ] = − 3L2

4κ24Nc

∫
d3x (J − Λ)ϕ−[J ] . (2.13)

The expectation value of O is obtained by varying the generating functional with respect
to the source:

⟨O⟩ =
δW∆−

δJ
= − 3L2

2κ24Nc
ϕ− ≡ L2

2κ24Nc
ψ . (2.14)

The Legendre transform of the generating functional results in the effective action

Γ∆− [ψ] = W∆− [Λ, J ]− J ⟨O⟩ = − L2

4κ24Nc

∫
d3x (J [ψ] + Λ)ψ . (2.15)

– 6 –
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Using that J = ϕ+ + Λ, up to an overall factor the effective potential is

V (ψ) = 1
2ϕ+[ψ]ψ + Λψ . (2.16)

For a quadratic scalar action like ours, the equations of motion for the scalar field are linear,
implying that ϕ+ will be linear in ψ. The effective potential cannot have several minima
in this case, so there cannot be a phase transition.

We can modify the effective potential by adding additional boundary terms, that we
write using a function W (ψ) whose meaning will be clear momentarily:

SW = L2

2κ24Nc

∫
d3x (ψ ∂ψW (ψ)−W (ψ)) . (2.17)

With the new terms, the variation of the renormalized on-shell action in alternative quan-
tization becomes

δW∆− [ϕ+] + δSW = L2

2κ24Nc

∫
d3xψ δ (ϕ+ + ∂ψW (ψ)) ≡ L2

2κ24Nc

∫
d3xψ δJ . (2.18)

We see that the new terms modify how the source should be identified, thus implementing
the multitrace boundary conditions [68, 69] where

J = ϕ+ + Λ+ ∂ψW (ψ) . (2.19)

After performing the Legendre transform to get the effective action, one finds that the
effective potential is now modified to

V (ψ) = 1
2ϕ+[ψ]ψ + Λψ +W (ψ) . (2.20)

Note that for a linear relation between the coefficients of leading and subleading terms
ϕ+[ψ] ∝ ψ,2 the source is equal to the first derivative of the potential

J = ∂ψV (ψ) . (2.21)

Thus, configurations with no source coincide with the critical points of the effective potential.
We will have to impose the condition J = 0 in order to stay within a theory with a fixed
coupling Λ.

Having derived the effective potential (2.20), we will pick the multitrace deformation
to be a quartic polynomial

W (ψ) = a

2ψ
2 + b

3ψ
3 + c

4ψ
4 . (2.22)

We can then tune the parameters a, b, c,Λ such that, for example, the effective potential has
several critical points and the theory exhibits a phase transition as the temperature changes.

2This will be true only in the static case, otherwise ϕ+ also depends on time derivatives of ψ.
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2.4 Static solutions and phase diagram

To fully specify the effective potential, we now determine the function ϕ+[ψ]. This is done
by finding the static solutions for the scalar field ϕ = ϕ(z) in the background AdS4 black
brane (2.2). The solutions should satisfy the no-source boundary condition and be regular
at the black brane horizon.

From the scalar action (2.1) with a quadratic potential, the equations of motion are

∂z

(
f(z)
z2

∂zϕ

)
− m2L2

z4
ϕ = 0 . (2.23)

Taking into account that m2L2 = −27/16, there are two independent solutions that we
identify according to the asymptotic expansion at the AdS boundary

ϕ(z) = ϕ−z
3/4
h η3/4

(
z

zh

)
+ ϕ+z

9/4
h η9/4

(
z

zh

)
, (2.24)

where

η3/4(Z) = Z3/4
2F1

(1
4 ,

1
4 ,

1
2 , Z

3
)
, η9/4(Z) = Z9/4

2F1

(3
4 ,

3
4 ,

3
2 , Z

3
)
. (2.25)

Expanding close to the horizon, we find

ϕ(z) ∼ Chz
−9/4
h

(
ϕ+ + γz

−3/2
h ϕ−

)
log(zh − z) + · · · , (2.26)

where

Ch = − 4π3/2

Γ
(
1
4

)2 , γ =
2Γ
(
3
4

)2
Γ
(
1
4

)2 . (2.27)

Regularity of the solution requires the coefficient of the logarithmic term to vanish. The
regular solution is the linear combination

ηR(Z) = η3/4(Z)− γ η9/4(Z) . (2.28)

This fixes the relation between ϕ+ and ϕ− in equilibrium solutions

ϕ+ = −γz−3/2
h ϕ− = γ

3 z
−3/2
h ψ . (2.29)

Combining this result with the expression for the temperature (2.3) and the effective po-
tential (2.20), (2.22) we arrive at

V (ψ) = Λψ + 1
2aTψ

2 + b

3ψ
3 + c

4ψ
4 , (2.30)

where the total coefficient of the quadratic term is

aT = a+ γ

3

(4πT
3

)3/2
. (2.31)

Finally, the value of ψ is fixed by the no-source condition J = ∂ψV (ψ) = 0:

Λ + aTψ + bψ2 + cψ3 = 0 . (2.32)

– 8 –
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Order A ΛM−9/4 aM−3/2 bM−3/4 c TcM
−1 T1/Tc T2/Tc figure 2

1st 0.2014 −1 −1 −5 1 4.934 1.046 0.8135 -
2nd 0 −4.630 0.6765 −5 1 5.162 - - black
∞ −5× 10−3 −4.699 0.7181 −5 1 ∼ 5.16 - - -
∞ −5× 10−4 −4.637 0.6806 −5 1 ∼ 5.16 - - blue
∞ −5× 10−5 −4.630 0.6768 −5 1 ∼ 5.16 - - purple
1st +5× 10−3 −4.557 0.6348 −5 1 5.1609 1 + 2 · 10−4 1− 2 · 10−4 -
1st +5× 10−4 −4.623 0.6723 −5 1 5.1618 1 + 5 · 10−6 1− 6 · 10−6 red
1st +5× 10−5 −4.629 0.6761 −5 1 5.1618 1 + 2 · 10−7 1− 2 · 10−7 orange

Table 1. Parameters of the effective potential and critical and spinodal temperatures for the phase
transitions and crossovers studied in this paper. Some of these entries are also displayed in figure 2.
For the crossovers Tc refers to the approximate temperature where the expectation value of the scalar
operator changes rapidly.

The real solutions of (2.32) determine the stationary points of the effective potential (2.30)
and thus the equilibrium states of the dual field theory. Minima correspond to stable or
metastable equilibrium states, while a maximum corresponds to an unstable equilibrium state
in the dual field theory. The theory features a first-order phase transition if the potential
has a single minimum at high and low temperatures and three stationary points in some
intermediate range T1 > T > T2. In appendix A we analyze in detail the conditions the
parameters in the effective potential need to satisfy in order to have a first-order transition, a
second-order transition, or a strong crossover. In particular, we define a parameter A which
distinguishes between theories with first-order transitions (A > 0), second-order transitions
(A = 0), and crossovers (A < 0). By tuning A we can then study the interplay between the
scaling associated to the second-order transition and to the first-order spinodal point, as well
as their effect on strong crossovers near the second-order critical point.

We will focus on the set of parameters shown in table 1, for which we present numerical
results in section 4.3. In figure 2, we display the order parameter as a function of temperature
for some of these parameters. In table 1 and elsewhere, we write the parameters in units of a
reference mass scale M that can be chosen arbitrarily as part of the definition of the theory.

3 Relaxation time and correlation length

In this section, we fix the temperature and study small perturbations around thermal
equilibrium, in order to show that critical slowing down is a feature of both spinodal points
and second-order critical points in our model. We will also obtain the dynamical exponent
z relating the correlation length ξ with the relaxation time τ , ξ ∼ τ1/z by considering
fluctuations with non-zero spatial momentum.

Starting from the action (2.1) and the background metric (2.2), we first put the metric
in Eddington-Finkelstein form with dimensionless coordinates. In order to do this, we rescale
the coordinates by the horizon position,

z = zhZ , t = zhX
0 , xi = zhX

i . (3.1)

– 9 –



J
H
E
P
0
8
(
2
0
2
4
)
0
9
1

1
0.46

0.47
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T /Tsnd

ψ
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3/4

Figure 2. Equilibrium expectation value of the scalar operator as a function of the temperature.
The curves represent: first-order phase transition with A = 5 · 10−4 (red), A = 5 · 10−5 (orange);
second-order phase transition (black); crossover with A = −5 · 10−4 (blue), and crossover with
A = −5 · 10−5 (purple). Here, Tsnd ≈ 5.162M is the critical temperature of the second-order phase
transition.

After this, we perform the change of variables

X0 = v + r(Z) , r′(Z) = 1
F (Z) , F (Z) = 1− Z3 . (3.2)

The solution for r is

r(Z) = r0 +
1
6

[
log

(
Z2 + Z + 1

)
− 2 log(1− Z) + 2

√
3 tan−1

(2Z + 1√
3

)]
. (3.3)

The resulting metric is

ds2 = L2

Z2

(
−F (Z)dv2 − 2dvdZ + dX idX i

)
. (3.4)

The equation of motion we need to solve becomes

0 = ∂2Zϕ+
(
F ′(Z)
F (Z) − 2

Z

)
∂Zϕ+ 27/16

Z2F (Z)ϕ+ 2
ZF (Z)∂vϕ− 2

F (Z)∂Z∂vϕ+ 1
F (Z)∂

2
i ϕ . (3.5)

According to the discussion in section 2.3, we need to solve (3.5) imposing regularity at the
horizon Z = 1 and the no-source, multitrace, boundary condition J = 0, with J given by (2.19).

Consider the regular static solution for the scalar field ηR(Z) found in (2.28). The
equilibrium solution satisfying regularity is then

ϕ0(Z) = −ψ0
3 ηR(Z), ψ0 =

(4πT
3

)3/4
ψ0 , (3.6)

where ψ0 is a constant that should be chosen to satisfy the no-source condition J=∂ψV (ψ0)=0.
We now introduce a small perturbation around this equilibrium solution:

ϕ(v, Z) = ϕ0(Z) + δϕ(v, Z,X) . (3.7)
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Inserting this in (3.5), the equation of motion for the perturbation can be written as

0 = ∂Z

(
F (Z)
Z2 ∂Zδϕ

)
+ 27/16

Z4 δϕ+ 2
Z3∂vδϕ− 2

Z2∂Z∂vδϕ+ 1
Z2∂

2
i δϕ . (3.8)

We can identify the leading and subleading coefficients in the boundary expansion of the
perturbation,

δϕ(v, Z,X) ∼ δϕ−(v,X)Z3/4 + δϕ+(v,X)Z9/4 + · · · . δϕ− = −1
3δψ . (3.9)

The no-source boundary condition expanded to linear order determines the boundary condition
for the perturbation:

δJ = δϕ+(v,X) + ∂2ψW (ψ0)δψ(v,X) = 0 . (3.10)

3.1 Relaxation time and critical slowing down

We can restrict the analysis to homogeneous perturbations δϕ(v, Z,X) = δϕ(v, Z). The no-
source condition (3.10) and the equation of motion (3.8) are consistent with an exponential
decay of the perturbation:

δϕ(Z, v) = e−Γvδϕ0(Z) , δψ(v) = e−Γvδψ0 . (3.11)

In appendix B, we obtain the following analytical estimate of the dimensionless decay rate
Γ, under the assumption that it is small:

Γ ≈ 9
2(1− 2I1)

(4πT
3

)−3/2
V ′′(ψ0) , (3.12)

where I1 ≈ 0.141115. Restoring units, the relaxation time is the inverse of the decay rate

τ−1 = ΓT = Γ
zh

=
(4πT

3

)
Γ ≈ 9

2(1− 2I1)

(4πT
3

)−1/2
V ′′(ψ0) . (3.13)

If we approach the critical point of a second-order phase transition or the spinodal point of
a first-order phase transition, the curvature of the effective potential vanishes, V ′′(ψ0) → 0.
Then, we have now shown that the decay rate also vanishes ΓT → 0, so that perturbations take
longer and longer times to decay. This corresponds to the anticipated critical slowing down.

The decay rate ΓT also corresponds to the purely imaginary frequency ω = −iΓT of
the lowest quasinormal mode (QNM) in the spectrum of perturbations of the scalar field in
the black brane geometry. We have computed numerically the first few QNM as detailed in
appendix C. In figure 3, we show that the numerical results agree with the analytic formula
in the vicinity of spinodal points.

3.2 Correlation length and dynamical exponent

In order to compute the correlation length and dynamical exponent, we expand the per-
turbation in plane waves,

δϕ(v, Z,X) =
∫
dω̄d3k̄

(2π)3 δϕω,k(Z)e
−iω̄v+ik̄·X , (3.14)

– 11 –
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0. 0.01 0.02 0.03

0.005

0.015

V ′′(ψ0) T3/2

Γ

Figure 3. Comparison between the (dimensionless) decay rate computed from the analytical for-
mula (3.12) (red) and the numerical result obtained as described in appendix C (blue) for temperatures
close to the spinodal temperature T2.

where ω̄ = 3ω/(4πT ) and k̄ = 3k/(4πT ).
The two-point function for the order parameter has a pole corresponding to the lowest

QNM; we find that the associated dispersion relation reads, for small momenta,

ω = −iΓT − iDTk
2 + · · · , (3.15)

where DT depends only on T , and ΓT ≈ τ−1 corresponds to the decay rate previously
introduced and shown in figure 3. At zero frequency, the Fourier transform of the two-point
function has the form

⟨ψ(k)ψ(−k)⟩ ≈ Z

k2 + ξ−2 , (3.16)

where the pole at imaginary momentum k = ±iξ−1 determines the correlation length,
implying that

ξ−2 ≈ ΓT
DT

. (3.17)

Close to the critical and spinodal points the correlation length diverges and, as shown in
appendix B, we obtain the follwing approximate analytic expression:

ξ−2 ≈ 9
2I2

(4πT
3

)1/2
V ′′(ψ0) ∼ Γ ∼ τ−1 , I2 ≈ 1.829 . (3.18)

This shows that the exponent of the momentum in the dispersion relation coincides with the
dynamical exponent z = 2. Thus, it can be obtained by measuring the small momentum
dependence of the lowest QNM frequency. We also obtain the dimensionless ratio

D ≡ 4πT
3 DT = 4πT

3
ξ2

τ
≈ I2

1− 2I1
≈ 2.548 . (3.19)

Our numerical results are shown in figure 4, where we show the momentum dependence of
the frequency of the lightest QNM frequency for the first- and second-order phase transitions
in the first two lines of table 1. We have added a k2 curve (gray line), showing that the
dynamical exponent is z = 2 for both kind of transitions. The numerical calculation also
confirms that the dimensionless coefficient D extracted from (3.15) is very close in both kinds
of phase transitions, and agrees with the analytical estimate (3.19) D ≈ 2.548.
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Figure 4. Momentum dependence of the lightest QNM frequency for (on the left) the first-order
transition in the first row of table 1 near the spinodal temperature, and (on the right) the second-order
transition in the second row of table 1 near the critical temperature.

4 Breakdown of quasistatic time evolution and scaling

In this section we depart from equilibrium and allow the temperature to change slowly in
time. The background geometry is approximately (2.2) with a time-dependent position of
the horizon zh, related to the temperature through (2.3). Applying the change of variables
introduced at the beginning of section 3, we arrived at (3.5), where all explicit dependence on
the horizon position has been removed from the equation of motion of the scalar. Thus, the
time evolution is completely encoded in the boundary conditions of the scalar field. In the
following we will restrict to homogeneous configurations and drop the terms with derivatives
along the spatial field theory directions xi.

4.1 Quasistatic evolution

If the change of the temperature is slow enough, the solution for the scalar field will in
principle remain close to the static solution (3.6), with small corrections proportional to the
time derivative of the expectation value and/or temperature. The solution for the scalar
field can be split in “equilibrium” and “out-of-equilibrium” terms,

ϕ(v, Z) = ϕ0(v, Z) + δϕ(v, Z) , (4.1)

where the equilibrium solution is taken to be

ϕ0(v, Z) = −ψ(v)3 ηR(Z) , ψ =
(4πT

3

)−3/4
ψ . (4.2)

The out-of-equilibrium term can be expanded in terms proportional to time derivatives of
the equilibrium solution

δϕ(v, Z) ∼ ∂vψ δϕ
(1)(Z) + ∂2vψ δϕ

(2)(Z) + · · · , (4.3)

that can be solved iteratively order by order in equation (3.5). Then, at the leading order
in this expansion, the equation of motion for the out-of-equilibrium term is

∂Z

(
F (Z)
Z2 ∂Zδϕ

)
+ 27/16

Z4 δϕ = 1
3∂vψ(v)

[ 2
Z3 ηR(Z)−

2
Z2 η

′
R(Z)

]
+O(∂2vψ) . (4.4)
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The solution is of the same form as the one used to estimate the decay rate (B.8), replacing
−δψ0Γ → ∂vψ. This allows for an immediate translation of the results in appendix B to this
case. The leading and subleading terms in the boundary expansion of the solution are

ϕ−(v) = −1
3ψ , ϕ+(v) ≈

γ

3ψ + 4
9

(1
2 − I1

)
∂vψ +O(∂2vψ) . (4.5)

Expanded to lowest order in derivatives, the no source condition J = 0 becomes

2
9 (1− 2I1)

(4πT
3

)9/4
∂v

[(4πT
3

)−3/4
ψ

]
+ ∂ψV (ψ) ≈ 0 . (4.6)

The expectation value is a small perturbation around the equilibrium value ψ(v) = ψ0[T (v)]+
δψ(v), satisfying ∂ψV (ψ0) = 0 and

δψ ≈ ∂vT

Γ[ψ0]

( 3
4T ψ0 − ∂Tψ0

)
, (4.7)

where Γ[ψ0] is given in (3.12). Even if the temperature changes very slowly, ∂vT/T ≪ 1,
when it approaches a critical or spinodal value, the assumption that δψ is small breaks
down, since Γ → 0. This shows that critical slowing down results in the breakdown of
the quasistatic approximation.

4.2 Critical and spinodal scaling

Critical points of second-order phase transitions exhibit characteristic scaling properties that
also affect the equilibrium states close to them. The correlation length and relaxation time
diverge with particular exponents of the temperature difference close to the critical point,
while the deviation from the critical values goes to zero:

ξ ∼ |T − Tc|−ν , τ ∼ |T − Tc|−zν , ∆ψ ∼ |T − Tc|β . (4.8)

Let us characterize the time evolution close to the critical point with a linear function

Tc − T

Tc
= t

τQ

, (4.9)

where τQ determines the rate of change of the temperature. The larger τQ is, the slower the
time evolution. We have selected t = 0 as the point where the critical temperature is reached
when one approaches it from higher temperatures. At some point in the time evolution, the
time remaining before reaching the critical point, ∆t = |t|, will be the same as the relaxation
time, ∆t = τ(t) ≡ t∗, so the system will not have time to equilibrate before undergoing the
phase transition. This is known as the freeze-out time [70]; note that by our definition, t∗
is positive even though the freeze-out occurs at negative times. We can use it, with the
corresponding temperature T∗ = T (−t∗), to define when the quasistatic approximation breaks
down and the system goes out of equilibrium. The relaxation time then satisfies

τ = τc

(
T∗ − Tc
Tc

)−zν
= τc

(
t∗
τQ

)−zν

= t∗ . (4.10)
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From this, we obtain the scalings

t∗ ∼ τ
zν

1+zν
Q , T∗ ∼ τ

− 1
1+zν

Q . (4.11)

In the case of a closed system with a phase transition producing spontaneous symmetry
breaking, this type of scaling determines the size of domains in the broken phase through
the Kibble-Zurek mechanism [70, 71].

Our case differs in several ways from the type of transitions to which the Kibble-Zurek
mechanism applies. In the first place, the two phases have the same symmetry realization,
there is no spontaneous breaking of symmetry. Secondly, our initial state is homogeneous
and fluctuations are completely suppressed, so there cannot be formation of domains. And
lastly, we are describing an open system, since the sector undergoing the phase transition
is coupled to a thermal bath.

Although the freeze-out argument is appealing, we need a more direct characterization
of the departure from equilibrium. A simple choice is to compare the expectation value of
the operator or the effective potential with their equilibrium values. This, however, leads
to a different scaling exponent. Let us declare the quasistatic evolution to be valid as long
as the deviation from the equilibrium value in (4.7) remains bounded and relatively small
compared to the equilibrium value, ∣∣∣∣δψψ0

∣∣∣∣ < ϵ < 1 , (4.12)

for some fixed ϵ.
Consider a first-order transition, and let Ta, a = 1, 2 be the two spinodal temperatures.

We can expand close to the spinodal values, ψ0 = ψa +∆ψa, T = Ta +∆T . The following
conditions are satisfied:

∂ψV (ψ0, T ) = 0 = ∂ψV (ψa, Ta) , ∂2ψV (ψa, Ta) = 0 . (4.13)

From the condition that ψ0 is an equilibrium value at temperature T we obtain

∆ψa ≈ ±(−σa∆T )1/2 , σa =
2∂T∂ψV (ψa, Ta)
∂3ψV (ψa, Ta)

, (4.14)

fixing the value of the “critical” exponent β = 1/2. Note that we can approach a given
spinodal point only from higher or lower temperatures, but not from both. This is reflected in
that ∆ψ is real only if ∆T has the correct sign. The dimensionless rate (3.12) is approximately

Γa ≈
9

2(1− 2I1)

(4πTa
3

)−3/2
∂3ψV (ψa, Ta)∆ψa . (4.15)

In order to approach the point from a (meta)stable branch, we should select the sign such
that ∂3ψV (ψa, Ta)∆ψa > 0. Since Γa is the inverse of the relaxation time, this gives “critical”
exponent zν = 1/2 for the spinodal point.

Considering instead a second-order phase transition, close to the critical temperature
T = Tc +∆T , ψ0 = ψc +∆ψc, the conditions on the derivatives of the effective potential are

∂ψV (ψ0, T ) = 0 = ∂ψV (ψc, Tc) , ∂2ψV (ψc, Tc) = 0 = ∂3ψV (ψc, Tc) . (4.16)
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Order z β ν

1st 2 1/2 1/4
2nd 2 1/3 1/3

Table 2. Scaling exponents as defined in (4.8) for first and second-order phase transitions in the
holographic model.

Now the temperature dependence appears with a modified exponent

∆ψc ≈ (−σc∆T )1/3 , σc =
6∂T∂ψV (ψc, Tc)
∂4ψV (ψc, Tc)

, (4.17)

fixing the critical exponent β = 1/3. In this case we can always find a real root for ∆ψc.
The dimensionless rate (3.12) can be approximated by

Γc ≈
9

4(1− 2I1)

(4πTc
3

)−3/2
∂4ψV (ψc, Tc)(∆ψc)2 . (4.18)

Identifying Γc with the inverse of the relaxation time results in the exponents zν = 2/3 for
the critical point of the second-order phase transition. Although the values for the exponents
might look unusual, they are mean field values for the effective potential (2.30). The results
for the scaling exponents of both types of transitions in our model are summarized in table 2.

From (4.7) and (4.12) we arrive at the following condition for the spinodal points:

ϵ > τ̄a

∣∣∣∣ ∂vT

T − Ta

∣∣∣∣ . (4.19)

For a critical point we have instead

ϵ > τ̄c

∣∣∣∣∣ T
1/3
c ∂vT

(T − Tc)4/3

∣∣∣∣∣ . (4.20)

In the above equations, we have defined

τ̄a =
(4πTa

3

)3/4
∣∣∣∣∣ 1− 2I1
9∂3ψV (ψa, Ta)

∣∣∣∣∣ , τ̄c =
(4πTc

3

)−3/4
∣∣∣∣∣ 4(1− 2I1)
27(Tcσc)1/3∂4ψV (ψc, Tc)

∣∣∣∣∣ . (4.21)

Then, assuming a linear dependence on time close to the spinodal/critical point ∆Ta,c =
Ta,ct/τQ , the time t = −t∗ when the system goes out of equilibrium before reaching the
spinodal/critical point is

(t∗)a ≈ 3
4πTa

τ̄a
ϵ

∼ τ0
Q
, (4.22)

(t∗)c ≈
( 3
4πTc

)3/4
(
τ̄3c
ϵ3
τQ

)1/4

∼ τ1/4
Q

. (4.23)

The temperature when this happens is∣∣∣∣T∗ − Ta
Ta

∣∣∣∣ ≈ ( 3
4πTa

)
τ̄a/ϵ

τQ

∼ τ−1
Q

, (4.24)

∣∣∣∣T∗ − Tc
Tc

∣∣∣∣ ≈ ( 3
4πTc

)3/4
(
τ̄c/ϵ

τQ

)3/4

∼ τ−3/4
Q

. (4.25)
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Although critical slowing down happens for both spinodal and critical points, the critical
scaling found close to each type of point is different. In both cases it is different from (4.11).
The general formulas for the scaling in terms of the critical exponents are

t∗ ∼ τ
zν−β

1+zν−β
Q ,

∣∣∣∣T∗ − Tc
Tc

∣∣∣∣ ∼ τ
− 1

1+zν−β
Q , (β < 1) . (4.26)

4.3 Full time evolution

So far we have used the properties of the effective potential and near-equilibrium solutions
close to the critical/spinodal points to estimate the approximate behaviour of the solutions
as these points are slowly approached. However, this does not give us precise quantitative
information about how slow the evolution should be in order to enter the scaling regime
before going out of equilibrium and how close to the spinodal/critical point this will happen.

In order to answer these questions we will now perform a full-fledged numerical cal-
culation of the time evolution and compare the results against our analytical estimates of
the scalings (4.22)–(4.25).

In order to proceed we need to specify the time dependence of the temperature T (v).
We will pick as initial time of the evolution v = 0, where the scalar solution will be equal
to the equilibrium solution (3.6) at the initial temperature. In order for the equation of
motion of the scalar to be satisfied at the initial time we also impose ∂vT (0) = 0. We also
want a function that changes slowly to remain in the quasistatic regime and has a linear
behaviour close to the time va,c where the spinodal/critical temperature Ta,c is reached,
with a slope that can be tuned.

A possible function satisfying these requirements is

T

Tfirst
= Ta,c
Tfirst

− B tanh
[
σ

B
(v − va,c) +

σ

2va,cB
(v − va,c)2

]
, (4.27)

with the parameter σ determining the slope close to the spinodal/critical point and B
determining the initial temperature

τQ = 3
4πTfirstσ

,
T (0)
Tfirst

= Ta,c
Tfirst

+ B tanh
(
σva,c
2B

)
. (4.28)

In these formulas we use as a reference scale Tfirst ≈ 4.934M , which is the critical temperature
of the first-order transition corresponding to the first row in table 1.

In order to avoid starting the evolution too close to the spinodal/critical point, we will
require that as the evolution becomes slower σ ≪ 1, the time to reach the spinodal/critical
point is larger va,c ≫ 1. In addition, we will also require starting at a higher temperature so
that, if the system wants to move away from equilibrium before reaching the spinodal/critical
time, it has enough time to do so. This last condition requires σva,c/B ≳ 1 and B ≫ 1. These
conditions can be achieved by imposing the following relations among the parameters

σ = 2
va,c

(
4 log10 va,c −

Ta,c
Tfirst

)
,

T (0)
Tfirst

= 2 log10 va,c . (4.29)

This leaves va,c as the only parameter of the time evolution.
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The strategy we followed is, given a theory determined by the parameters in the effective
potential, choose a set of increasing values for va,c, which corresponds to another set of
increasing values of τQ . For each value, we numerically solve the equations as explained in
appendix D and define the time t∗ at which the system falls out-of-equilibrium by (4.12) for
several sufficiently small values of ϵ that let us explore the scaling regime.

4.3.1 Scaling in first and second-order phase transitions

For the case of the first-order phase transition with parameters as in the first row of table 1,
we obtained the results shown in figure 5 for a few choices of ϵ. In gray we added the
line corresponding to the scaling that we estimated analytically for a first-order phase
transition (4.22), (4.24). We observe that all curves show a scaling compatible with the
analytical estimate, being its associated range in τQ larger for smaller values of ϵ. As ϵ
decreases, the scaling regime will start at larger values of τQ while deviations from it will
take place at even larger values. Additionally, the time to fall out-of-equilibrium t∗ increases,
letting the system probe the regime closer to the spinodal point. Furthermore, in figure 6,
we show that the scaling of the temperature and the time is compatible with the prediction
at fixed τQ and as a function of ϵ. The deviations observed at large values of τQ are related
to the finite resolution of the spinodal point determined by ϵ. Namely, we cannot observe
deviations from equilibrium if the evolution is so slow that they happen at separations from
the spinodal point smaller than ϵ.

This is consistent with the scaling region becoming larger at smaller ϵ. As a consequence
of this limitation in resolution, for larger values of ϵ ≳ 10−3 the scaling region ceases to be
observable. Taking this into account, we see that the cooling rate should be rather small in
order for the scaling to be observed 1/τQ ≲ (10−6 − 10−8)T2, depending on ϵ. On the other
hand, the temperature where the scaling regime is entered does not seem to be as sensitive
to the value of ϵ as the cooling rate. Indeed, declaring that the scaling region starts when
the deviation of the temperature scaling from the theoretical value is 10%, for all the cases
studied in figure 5, we find that the scaling regime starts when (T∗ − T2)/T2 ≈ 0.07− 0.08.

In the case of the second-order phase transition, whose parameters are given in the
second row of table 1, we expect to find a different scaling, given in (4.23), (4.25). We show
the results for the same choices of ϵ as earlier in figure 7, in which the gray lines represent
the scaling estimated analytically. We observe that our numerical results exhibit scaling
regimes and agree with the analytical estimate. Once again, as ϵ is decreased, the system
requires greater τQ to enter the scaling region. However, this time there are no clear signs of
deviations for the three smaller choices of ϵ for the largest τQ shown here. Similarly to the
previous case, we find a compatible scaling with ϵ at fixed τQ , as shown in figure 8.

Compared to the first-order phase transition, the necessary cooling rate to observe the
scaling region is still comparably small 1/τQ ≲ (10−7 − 10−9)Tc, although the scaling region
is still relatively large for the larger value of ϵ shown in figure 7. The temperature seems
also to have a weak dependence on ϵ with the onset of the scaling regime closer to the
critical temperature than in the first-order phase transition. Using the same criterion as for
the first-order phase transition, we find that for all the cases shown in figure 7 the scaling
region starts at (T∗ − Tc)/Tc ≈ 0.01.
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Figure 5. Scaling of T∗ and t∗ with the characteristic cooling rate τ
Q

for the first-order phase
transition with parameters displayed in the first row of table 1. The different curves were obtained for
values of epsilon equal to 3 · 10−4 (blue), 4 · 10−5 (orange), 7 · 10−6 (green), and 10−6 (red). The gray
lines correspond to the theoretical expectation for the scaling of both time and temperature for a
first-order phase transition.
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Figure 6. First-order phase transition (first row of table 1). Scaling of T∗ and t∗ with ϵ for time
evolution for τQ ≈ 1.16 · 108T−1

2 . The red dots correspond to the data extracted from the numerical
evolutions. The blue lines correspond to the theoretical curves.
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Figure 7. Scaling of T∗ and t∗ with the characteristic cooling rate τ
Q

for the second-order phase
transition with parameters displayed in the second row of table 1. The different curves were obtained
for values of epsilon equal to 3 · 10−4 (blue), 4 · 10−5 (orange), 7 · 10−6 (green), and 10−6 (red). The
gray lines correspond to the theoretical expectation for the scaling of both time and temperature for a
second-order phase transition.
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Figure 8. Second-order phase transition (second row of table 1). Scaling of T∗ and t∗ with ϵ for time
evolution with τQ = 1.16 · 1011T−1

c . The red dots correspond to the data extracted from the numerical
evolutions. The blue lines correspond to the theoretical curves.

4.3.2 Scaling in crossovers and weak first-order phase transitions

As the second-order phase transition is transformed into a crossover, we expect to stop
observing a scaling regime. However, as long as the crossover is strong enough, one could
in principle observe some approximate scaling in a limited region of cooling rates. This
is displayed in figure 9, where we show time and temperature in which the system falls
out-of-equilibrium as a function τQ for two different crossovers, given by the parameters in
the third and fourth rows of table 1, and for a single choice of ϵ = 10−3.

We observe that the stronger crossover still exhibits a region at large values of τQ in
which there is an approximate scaling not far from the one expected for a second-order
phase transition. The behaviour of T∗ and t∗ for the weaker crossover closely follows the
stronger one, but noticeable departures from it take place at around τQ ∼ 107T−1

c , not
exhibiting a clear scaling regime.

As τQ increases, a big drop in the values of t∗ and T∗ happens and deviation from
equilibrium are not observed any further. The reason behind it is that, as the second
derivative of the potential does not vanish at Tc, we can always remain closer and closer to
equilibrium in an evolution by increasing more and more τQ . With the specified criterion
of ϵ = 10−3, the system remains always in equilibrium for larger values of τQ than the
ones for which we displayed data in figure 9. We checked that decreasing ϵ increases the
range of cooling rate for which we find data, but this range always remains finite. As it
is expected, we find data for a larger range of τQ for the stronger crossover as it is closer
to a second-order phase transition.

A related interesting case arises when considering weak first-order phase transitions,
meaning those that are close to being a second-order one. In such case one would expect to
find a first-order phase transition scaling regime for slow enough evolution of the temperatures.
However, at intermediate cooling rates, when the system falls out-of-equilibrium not too close
to the spinodal point, one may expect to find a scaling close to that of a second-order phase
transition if the transition is weak enough. The three examples we will consider to explore
this possibility are defined by the parameters given in the last three rows of table 1.

Figure 10 shows the dependence of the time and temperature in which the field falls
out of equilibrium for the choice of ϵ = 10−5 and for the three mentioned theories. We have
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Figure 9. Scaling of T∗ and t∗ with the characteristic cooling rate τ
Q

for the crossovers with
A = 5 · 10−3 (red), A = 5 · 10−4 (orange), and A = 5 · 10−5 (blue). Here, ϵ = 10−3. The gray
line corresponds to the theoretical expectation for the scaling of both time and temperature for a
second-order phase transition.
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Figure 10. Scaling of T∗ and t∗ with the characteristic cooling rate τ
Q

for the weak phase transition
with A = 5 · 10−3 (green), A = 5 · 10−4 (orange), and A = 5 · 10−5 (blue). For all the curves, ϵ = 10−5.
The gray line correspond to the theoretical expectation for the scaling of a first-order (dashed) and
second-order phase (solid) transitions.

added for visual aid a solid and dashed gray lines representing the second and first-order
scalings respectively. These lines were forced to pass through the curve for the weakest
and strongest transitions respectively.

The results show that for fast cooling, all three curves agree and seem to start following
the second-order scaling (solid gray line). The weaker the transition, the closer it gets to
exhibit such scaling, showing deviations for larger values of τQ . These deviations at large
τQ seem to be getting the curves towards the first-order scaling (dashed gray line). For
the strongest transition we studied (green dots), the first-order scaling does clearly exhibit
itself in the studied range of τQ . The mid strength transition results (orange dots) show the
scaling at the very last values of cooling rate, being this a region that is likely prolonged
toward higher values of τQ .

Our results are compatible then with the idea that weak first-order phase transition exhibit
a second-order scaling before showing the first-order one for very slow temperature evolution.
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Figure 11. Comparison of T∗ and t∗ as a function of the cooling rate τQ for the weak first-order
phase transition with A = 5 · 10−4 for different choices of epsilon: 10−4 (blue), 10−5 (orange), 10−6

(green), and 10−7 (red). We have performed a shift in both axes for the curves to overlap.

Finally, figure 11 compares T∗ and t∗ for different values of ϵ for the first-order phase
transition with A = 5 · 10−4 (see table 1). In order for the curves to overlap, we have made
a shift in both axes so that the intermediate region falls in the same range.

We observe that all curves lie on top of each other. This implies that the intermediate
region of the curves, before the first-order phase scaling arises, follows an equivalent behaviour
and changing ϵ does not help finding closer scaling to a second-order phase transition. The
only change that the choice of ϵ produces is the displacement of the region in which the
first-order scaling emerges to larger values of τQ .

In conclusion, our results show that the proximity to a second-order phase transition is the
main factor determining whether an intermediate second-order scaling region manifests itself.

5 Discussion and outlook

Our results highlight similarities in the behaviour of a system when driven slowly through
a first- or a second-order phase transition, if fluctuations are suppressed: in both cases
there is critical slowing down of fluctuations and the departure from equilibrium obeys a
scaling law related to the equilibrium “critical” exponents of critical and spinodal points. In
addition, we have obtained specific approximate values for the relative temperature when
the scaling regimes are entered, and it will be interesting to explore how much these are
model dependent or whether they hold more generally than the cases we have studied. We
expect a similar qualitative behaviour for systems in a different number of dimensions, as
long as the suppression of fluctuations remains valid.

In practice, whether the scaling regime can be reached will depend on the relative
suppression of fluctuations, which depend on the properties of the particular system undergoing
the transition. However, the fact that spinodal scaling has been observed in experiments
shows that understanding this regime is not a purely academic exercise, but that can also
be relevant for real systems.

It should be noted that there can be different behaviours to the one presented here
for a first-order phase transition when it is the volume of a closed system rather than the
temperature of an open system the parameter that is evolving. In the first case the energy
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density can be equivalently used as time-evolving parameter so that, in contrast to the open
system, there is a single homogeneous equilibrium state at each time and in principle the
unstable state lying between the spinodal points could be reached.

There are several interesting directions one can pursue using the simple holographic
model described here:

• Although we have studied only the case of undercooling, one can similarly study the
complementary overheating case, although we expect no qualitative differences.

• We have focused on the approach towards the spinodal/critical points. Evolving further
in time, one could study possible freeze-out behavior, as well as the approach to the
new equilibrium state.

• Our model could easily be adapted to phase transitions involving spontaneous symmetry
breaking. A crucial difference with the transitions we have studied here is that the
symmetric high temperature state is still present as an unstable state at low temper-
atures. The non-trivial evolution to the ground state then happens through (small,
random) perturbations. Adding spatial dependence, one could realize the Kibble-Zurek
mechanism of domain formation.

• Adding spatial dependence to our field, there would be other interesting inhomogeneous
configurations whose time-evolution could be studied, including the expansion of
bubbles [17] and spinodal decomposition [11].

• One could simulate fast, instead of slow, quenches.3 In particular, one could ask if
the system can transition before reaching the spinodal point, if the evolution is fast
enough to give it sufficient energy to jump the potential barrier. That is, could the
phase transition be completed while the false vacuum is still metastable, not by bubble
nucleation but using energy pumped in during the quench?

• The model could also be used to study dynamical phase transitions [72] and Floquet
states [73]4 by turning on an oscillating source. It could be particularly interesting
when the oscillation happens around the critical or spinodal points.

• In previous work, some of us have discussed how to use holography to compute the field
theory’s effective action in a derivative expansion [20]. This could easily be done in the
current model; it would then be interesting to study how well the numerical evolution
reported here could be captured by solving the equation of motion coming from the
effective action (which is an ordinary differential equation instead of a partial one).

• Instead of a black hole background geometry one could consider an AdS soliton geometry
or a global AdS geometry. In this case the time evolution of the confinement scale could
produce quantum phase transitions.

3Quenches that are fast compared to the relaxation rate of the scalar field but that satisfy T ′(t)/T 2 ≪ 1 can
be captured with the formalism presented here. Quenches not far from the spinodal point are good candidates
to work in this regime as ΓT ≪ T . Alternatively, one can realize fast quenches by fixing the temperature and
making the couplings of the theory time-dependent.

4See [74–77] for holographic realizations of Floquet states.
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In addition to the points listed above, there are several possible extensions and gen-
eralizations of the holographic model that could be interesting to consider and for which
similar questions can also be addressed.

Phase transitions involving a single scalar could also be realized by introducing a non-
trivial potential in the gravitational action, rather than by modifying boundary conditions
as done in this work, see e.g. [67].

Treating the background evolution non-adiabatically would allow to consider more general
evolutions than the ones mentioned earlier, with which to probe the far-from-equilibrium
regime. Widely used examples of time-evolving analytic backgrounds are the dual to a boost
invariant plasma [78, 79] and Vaidya geometries used to describe thermalization [80].

Finally, going beyond the probe approximation and taking into account the backreaction
of the scalar over the metric will in general modify the effective potential and even could result
in the introduction of non-analytic terms, allowing for a generalization to higher dimensions
as in e.g. [20]. Adding other types of fields, such as charged scalars and gauge fields will
extend the phase diagram and allow for transitions produced by changes in the chemical
potential rather than the temperature.
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A Stationary points of the effective potential

Here we study in greater detail the equilibrium states of our system; these can be extracted
from the effective potential (2.30), which we reproduce here for convenience:

V (ψ) = Λψ + 1
2aTψ

2 + b

3ψ
3 + c

4ψ
4 with aT = a+ γ

3

(4πT
3

)3/2
. (A.1)

Firstly, we take all coefficients {Λ, a, b, c} real, and c > 0 in order to avoid a runaway behaviour
of the potential. The no-source boundary condition (2.32) has at least one and at most three
solutions for ψ real. If there is only one solution, the effective potential has one minimum,
while if there are three real solutions the potential has two minima and a maximum. Two
solutions correspond to limiting cases where the maximum coincides with a minimum and
the potential has an inflection point.

It will be convenient to write all dimensionful quantities in units of a reference mass
scale M :

aT = āTM
3/2 , b = b̄M3/4 , Λ = Λ̄M9/4 , ψ = ψ̄M3/4 . (A.2)
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The cubic equation (2.32) has three real roots when the discriminant is positive. In terms
of the dimensionless parameters the discriminant becomes

Discr = 1
27c3

[
4(b̄2 − 3āT c)3 − (2b̄3 − 9āT b̄c+ 27c2Λ̄)2

]
. (A.3)

We see that for T/M → ∞, āT ∼ (T/M)3/2 → ∞ and Discr ∼ −ā3T , so at high temperatures
the discriminant is always negative, meaning that there is a single equilibrium state. When
we lower the temperature there is a possibility that the discriminant becomes positive.
This requires

b̄2 − 3āT c > 0 , (b̄2 − 3āT c)3 ≥
1
4(2b̄

3 − 9āT b̄c+ 27c2Λ̄)2 . (A.4)

Let us identify T1 as the temperature where a second real root first appears. We introduce
the parametrization

a = −γ3

(4πT1
3

)3/2
+ b2

3c(1−A) , Λ = b3

27c2 [1−A(B + 2)] . (A.5)

Then, at T = T1,

āT1 = b̄2

3c(1−A) , (A.6)

which gives the condition

A2
[
4A− (B − 1)2

]
= 0 . (A.7)

So we should impose A = (B − 1)2/4. Let us now identify T = T2 < T1 as the temperature
where two of the real roots coincide before moving to the complex plane and leaving a
single real root. In this case

āT2 = b̄2

3c(1−A−∆A) , (A.8)

where we have introduced a parametrization

γ

3

(4π
3

)3/2 T
3/2
1 − T

3/2
2

M3/2 = b̄2

3c∆A > 0 . (A.9)

The second condition in (A.4) is saturated when ∆A = 0, and for

∆A± = 3
4 + 3

8B(2−B)± B + 2
8

[
3(4−B2)

]1/2
. (A.10)

The range where there are two positive solutions ∆A± > 0 is 1 < B < 2. The temperature
T2 corresponds to ∆A−, and we must demand that

b̄2

3c∆A+ >
γ

3

(4π
3

)3/2 T
3/2
1

M3/2 , ⇒ b̄2

3c(∆A+ −∆A−) >
γ

3

(4π
3

)3/2 T
3/2
2

M3/2 , (A.11)

so that there is a single real root in the interval T2 > T ≥ 0.
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In the case where there is a second-order phase transition the potential develops an
inflection point but there is always a single minimum. This corresponds to the discriminant
having a double root, which happens at the extreme of the allowed interval for B: B = 1,
A = ∆A− = 0. The critical temperature can be identified as Tc = T1, and should satisfy
the constraint

9
4
b̄2

3c >
γ

3

(4π
3

)3/2 T
3/2
c

M3/2 . (A.12)

A crossover can be obtained by taking B = 1 and A < 0 but small, such that the discriminant
remains negative at the would-be double root. The smaller A, the more pronounced the
crossover would be. In this case Tcross = T1 would serve as a crossover temperature, with
a constraint similar to (A.12) save for a small correction proportional to A.

B Analytic estimate of the decay rate and correlation length

In this appendix we estimate the decay rate in amplitude of the perturbation and the
correlation length. Let us introduce the differential operator acting on static solutions

DZ ϕ ≡ ∂Z

(
F (Z)
Z2 ∂Z ϕ

)
+ 27/16

Z4 ϕ . (B.1)

The associated Green’s function is

DZG(Z,Z ′) = δ(Z − Z ′), G(Z,Z ′) = −2
3

{
ηR(Z)η9/4(Z ′), Z ′ < Z

η9/4(Z)ηR(Z ′), Z < Z ′ (B.2)

Where the solutions η9/4(Z), ηR(Z) were defined in (2.25) and (2.28).

B.1 Decay rate

Using the Green’s function the equation for a homogeneous perturbation can be recast as
the integral equation

δϕ = −1
3δψ(v)ηR(Z)− 2

∫ 1

z
UV

dZ ′G(Z,Z ′)
( 1
Z ′3∂vδϕ− 1

Z ′2∂Z
′∂vδϕ

)
. (B.3)

We have introduced a cutoff 0 < zUV ≪ 1 in the integration for convenience; we will take
zUV → 0 at the end of the calculation.

We can assume an exponential decay of the perturbation

δϕ(Z, v) = e−Γvδϕ0(Z) , δψ(v) = e−Γvδψ0 . (B.4)

In this case, the integral equation simplifies to

δϕ0(Z) = −1
3δψ0ηR(Z) + 2Γ

∫ 1

z
UV

dZ ′G(Z,Z ′)
( 1
Z ′3 δϕ0 −

1
Z ′2∂Z

′δϕ0

)
. (B.5)

In principle a solution could be found using Neumann’s series

δϕ0(Z) =
∞∑
n=0

Γnχn(Z) . (B.6)
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The first two orders in the expansion give

χ0(Z) = −1
3δψ0ηR(Z) , (B.7)

and
χ1(Z) = −2

3δψ0Γ
∫ 1

z
UV

dZ ′G(Z,Z ′)
[ 1
Z ′3 ηR(Z

′)− 1
Z ′2 η

′
R(Z ′)

]
. (B.8)

We will need the zUV → 0 expansion of the integral,∫ 1

z
UV

dZ ′ηR(Z ′)
[ 1
Z ′3 ηR(Z

′)− 1
Z ′2 η

′
R(Z ′)

]
≃ −1

2(1− z−1/2
UV

) + I1 +O(zUV ) , (B.9)

where I1 ≈ 0.141115.
We now expand the solution for Z = zUV → 0 and identify the coefficients of the leading

and subleading solutions

χ0(zUV ) ≃ −1
3δψ0

(
z3/4

UV
− γz9/4

UV

)
+ · · · ,

χ1(zUV ) ≃
4
9δψ0Γ

[
z7/4

UV

2 −
(1
2 − I1

)
z9/4

UV

]
+ · · · .

(B.10)

From this we can read the coefficient of the subleading solution

δϕ+(v) ≃
[
]γ3 − 4Γ

9

(1
2 − I1

)]
δψ(v) . (B.11)

Then, imposing δJ = 0 in (3.10), we arrive at[
]γ3 − 4Γ

9

(1
2 − I1

)](4πT
3

)3/2
+W ′′(ψ0) = 0 . (B.12)

Let us note now that, at equilibrium,

0 = J0 = V ′(ψ0) = Λ +W ′(ψ0) +
γ

3

(4πT
3

)3/2
ψ0 . (B.13)

Then, we can arrange terms in (B.12) such that the condition boils down to

−4Γ
9

(1
2 − I1

)(4πT
3

)3/2
+ V ′′(ψ0) = 0 . (B.14)

Hence, the decay rate is determined by

Γ = 9
2(1− 2I1)

(4πT
3

)−3/2
V ′′(ψ0) . (B.15)

B.2 Correlation length

We can restrict to time-independent solutions. For small spatial momentum the zero frequency
plane wave perturbation (3.14) can be expanded as

δϕk(Z) = δϕ
(0)
k (Z) + k̄2δϕ

(1)
k (Z) +O(k4) . (B.16)
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The equations for the first two terms in the expansion are

DZδϕ
(0)
k = 0 , (B.17)

DZδϕ
(1)
k = 1

Z2 δϕ
(0)
k , (B.18)

with the solutions

δϕ
(0)
k (Z) = −δψ̄k3 ηR(Z) , (B.19)

δϕ
(1)
k (Z) =

∫ 1

0

dZ ′

Z ′2G(Z,Z
′)δϕ(0)k (Z ′) . (B.20)

In this case a radial cutoff is not necessary since the integral with the Green’s function
remains finite. The near-boundary expansion of the solution to this order is

δϕk(Z) ∼ −δψ̄k3

[
Z3/4 −

(
γ + 2I2

3

)
Z9/4

]
, (B.21)

where

I2 =
∫ 1

0
dZ ′

(
ηR(Z ′)
Z ′

)2
≈ 1.829 . (B.22)

Reading the asymptotic coefficients from the expression above, the no source condition (3.10)
becomes (

V ′′(ψ0) +
2I2
9

( 3
4πT

)1/2
k2
)
δψk = 0 . (B.23)

This is only satisfied for a purely imaginary value of the momentum that determines the
correlation length

−k2 = ξ−2 = 9
2I2

(4πT
3

)1/2
V ′′(ψ0) . (B.24)

C Quasinormal modes

In this appendix, we provide some details on the computation of the quasinormal modes
of our model. These modes describe the decay of the scalar field fluctuations close to the
spinodal points studied in section 3.1.

We did this for both homogeneous, and non-homogeneous fluctuations satisfying the
scalar equation (3.8) and use the plane wave expansion (3.14). We impose ingoing conditions
at the horizon Z = 1 and the no-source boundary condition δJ = 0 at Z = 0. In the following,
it will be convenient to adopt the coordinate u = Z1/2 and to introduce the rescaled scalar
field Φ(u) = u−3/2δϕω,k(u). The equation of motion to be solved then reads

4u
(
u6 − 1

)
Φ′′(u) + 8

(
2u6 − 2iu2ω̄ + 1

)
Φ′(u) +

(
9u5 + 8iuω̄ + 16u3k̄2

)
Φ(u) = 0 . (C.1)

Given the boundary conditions, only a discrete set of ω̄ give non-trivial solutions for each k̄.
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To numerically determine these values, we adopt two paths. For the case of vanishing
momenta, k̄ = 0, we adopt a standard shooting method. We take the expansion of the
field at the boundary and at the horizon,

Φb(u) =
∞∑
n=0

jnu
n , Φh(u) =

∞∑
n=0

hn(1− u)n . (C.2)

Notice that by expanding Φh in this manner, we are selecting the ingoing solution, as the
outgoing one is not regular at the horizon if one uses Eddington-Finklestein coordinates.
Furthermore, the no-source boundary condition δJ = 0 establishes a relationship between
j3 and j0 according to

j3 = 3
(4π

3

)−3/2
[

a

T 3/2 + 2b
T 3/4

(
ψ0
T 3/4

)
+ 3c

(
ψ0
T 3/4

)2]
j0 , (C.3)

where ψ0 is the expectation value of the equilibrium solution as defined in (2.14). Solving
the equations close to the boundary and the horizon, we find the coefficients jn and hn.
The first ones read

j1 = 0 , j2 = −iω̄j0 , (C.4)

and

h1 = − 8ω̄ − 9i
8(2ω̄ + 3i)h0 , h2 = −64ω̄2 + 1152iω̄ − 135

256 (2ω̄2 + 9iω̄ − 9) h0 . (C.5)

We then solve equation (C.1) numerically twice, utilizing the Taylor expansions described
above as boundary conditions. This yields two numerical solutions, Φh(u) depending on
the free coefficient h0, and Φb(u) depending on the free coefficient j0. These two solutions
smoothly match at an arbitrary location u = u0 along the radial direction only for a discrete
set of values of ω̄ that render the Wronskian of the solutions zero. Therefore, by imposing

Φh(u0)Φ′
b(u0)− Φb(u0)Φ′

h(u0) = 0 , (C.6)

we numerically find the quasinormal mode values of

ω̄ = ω̄R − iΓ . (C.7)

For the case of finite momenta, k̄ ̸= 0, we found the quasinormal mode frequencies
by solving (C.1) as a generalized eigenvalue problem (see e.g. [81]). In this procedure, we
discretize (C.1) by using a Chebyshev grid, leading to the matrix problem

(M0 + ω̄M1)Φ = 0 , (C.8)

with the matrices being

M0 = 4u(u6 − 1)D2
u + 8(2u6 + 1)Du + (9u5 + 16u3k̄2)1, M1 = −16iu2Du + 8iu1 . (C.9)

Here, Du and 1 refer to the derivative matrix on the Chebyshev grid and the identity one
respectively.
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Figure 12. Lowest quasinormal mode frequencies for (top-left) k̄ = 0, (top-right) k̄ = 0.174, (bottom-
left) k̄ = 0.199 and (bottom-right) k̄ = 0.25 and first-order phase transition in the first line of table 1.
The chosen temperature is T = T2 + 10−8Tc.

Once the problem has been written in this way, we solved the system (C.8) using the
LinearSolve routine in Mathematica. We did this for two different number of grid points,
what allows one to distinguish those modes that are physical from those that are spurious.
In all our cases we used Nu = 40 and 60 grid points, with 30 digits of precision, keeping
those eigenmodes whose relative difference was below 10−10.

An example of the result of the QNM computation is shown in figure 12, for four different
values of momenta, k̄ = {0, 0.174, 0.199, 0.25}, and first-order phase transition in the first row
of table 1. The computation was done for a temperature very close to the spinodal point,
T = T2 + 10−8Tc, so that the relaxation time of the scalar field is practically infinite.

The bottom panel of figure 12 shows that the two lightest modes, purely imaginary,
collide and acquire a finite real part for k̄ ≃ 0.2. Perturbations of smaller wavelength would
then decay as e−Γ(k)t cos(ω(k)t), which can be interpreted as plasmons of dispersion relation
given by ω(k) and width Γ(k).

D Numerical methods for the time evolution

In this appendix, we provide some details on the numerical approach that we have taken in
order to study the time evolution of the scalar field in our holographic model.
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Assuming only time and radial dependence for the scalar field, ϕ = ϕ(v, Z), the equation
of motion we need to solve (3.5) becomes

0 = ∂2Zϕ+
(
F ′(Z)
F (Z) − 2

Z

)
∂Zϕ+ 27/16

Z2F (Z)ϕ+ 2
ZF (Z)∂vϕ− 2

F (Z)∂Z∂vϕ . (D.1)

We introduce φ− and φ+ as the dimensionless leading and subleading terms in the boundary
expansion of the scalar field,5

ϕ(v, Z) = Z3/4
[
φ−(v) + ∂vφ−(v)Z + φ+(v)Z3/2 + · · ·

]
. (D.3)

Following the discussion in section 2.3, we need to solve (3.5) imposing regularity at the
horizon Z = 1 and the no-source, multitrace, boundary condition J = 0, with J given
by (2.19). This can be written in terms of dimensionless quantities as follows

φ+ + Λ̃
(

T

Tfirst

)−9/4
− 3ã

(
T

Tfirst

)−3/2
φ− + 9b̃

(
T

Tfirst

)−3/4
φ2
− − 27cφ3

− = 0 . (D.4)

Here we have introduced the dimensionless coefficients

Λ̃ =
(4πTfirst

3

)−9/4
Λ, ã =

(4πTfirst
3

)−3/2
a, b̃ =

(4πTfirst
3

)−3/4
b, (D.5)

with the parameters {a, b, c,Λ} chosen as in table 1 depending on the case at hand. T is
the temperature evolving in time according to (4.27) and Tfirst ≈ 4.934M is the critical
temperature of the first-order phase transition in the first row of the table.

From the numerical point of view, it is more convenient to work with expansions displaying
integer powers, so we change the holographic variable according to Z = u2. Moreover, since
we need to impose the multitrace boundary condition (D.4) that relates the subleading and
the leading terms in the field expansion, it turns out to be useful to formulate the problem
introducing the field χ(v, u) through

ϕ(v, u) = u3/2
[
φ−(v) + u2∂vφ−(v) + u3χ(v, u)

]
. (D.6)

The final equation of motion is,

81u5χ− 4(4− 10u6)∂uχ+ 4u
[
4u∂u∂vχ− (1− u6)∂2uχ+ 10∂vχ

]
+

+ 49u4∂vφ− + 9u2φ− + 24∂2vφ− = 0 . (D.7)

whereas the boundary condition to be imposed is χ(0, v) = φ+(v) with φ+(v) given by (D.4).
We decided to numerically solve the problem by using the “method of lines”. That is, we

discretized the holographic direction u, including the horizon u = 1 and the boundary u = 0 as
points of the discretization grid, transforming (D.7) into a set of coupled ordinary differential
equations for the function values at each grid point, χi(v) = χ(ui, v), with i = 1, 2 . . . N ,

5The relation between φ± and ϕ± used in section 2 is

ϕ± = z
−∆±
h φ± =

(4πT
3

)∆±
φ± . (D.2)
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where N is the number of grid points. By replacing ∂u with the numerical derivative matrix
in (D.7), we obtained the aforementioned system of equations.

We solved this system of ordinary differential equations for the variables φ−(v) and χi(v)
utilizing the NDSolve routine of Mathematica, choosing two different differentiation matrices:
finite-differences and Chebyshev. We found that the results coming from the two choices agree.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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