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ABSTRACT
This study addresses the complex dynamics of alcohol elimination in the human body, very important in forensic and healthcare 
areas. Existing models often oversimplify with the assumption of linear elimination kinetics, limiting practical application. This 
study presents a novel non- linear model for estimating blood alcohol concentration after multiple intakes. Initially developed 
for two different alcohol incorporations, it can be straightforwardly extended to the case of more intakes. Emphasising the sig-
nificance of accurate parameter estimation, the research underscores the importance of precise experimental design, utilising 
optimal experimental design (OED) methodologies. Sensitivity analysis of model coefficients and the determination of D- optimal 
designs, considering correlation structures among observations, reveal a strong linear relationship between support points. This 
relationship can be used to obtain nearly optimal designs that are highly efficient and much easier to compute.

1   |   Introduction and Background

Understanding the dynamics of alcohol elimination in the 
human body has great interest for various fields such as foren-
sics, healthcare and substance abuse management. Although 
there is extensive evidence indicating that ethanol pharmaco-
kinetics exhibit non- linear behaviour, many researchers still 
rely on linear, zero- order kinetics to determine ethanol elimi-
nation in the human body [1], using the classic Widmark equa-
tion, which was first developed in the 1930s [2]. Over time, 
improvements to the Widmark equation have been made, and 
new scientific findings on the pharmacology of alcohol have 
been published. Various models, ranging from one-  to three- 
compartment models, have been proposed, such as the Norberg 
model, with two distribution compartments and elimination by 

Michaelis- Menten kinetics [3] or the Wilkinson model, with one 
distribution compartment and elimination by Michaelis- Menten 
kinetics [4], for example. However, in everyday forensic prac-
tice, these advancements are frequently disregarded due to their 
complexity, making them challenging for non- experts to utilise 
them effectively. This oversight poses significant issues, particu-
larly considering that individuals driving under the influence of 
alcohol often face severe penalties, including substantial fines, 
revoked driving privileges, and in some cases, arrest and impris-
onment, producing legal, economic, and social repercussions. 
Consequently, alternative models should undoubtedly find their 
place in forensic practice and expert witnessing [5].

In Mariñas- Collado et  al. [6], a non- linear model based on 
the Gamma function that adequately captures the different 

This is an open access article under the terms of the Creative Commons Attribution- NonCommercial License, which permits use, distribution and reproduction in any medium, provided the 

original work is properly cited and is not used for commercial purposes.

© 2024 The Author(s). Journal of Chemometrics published by John Wiley & Sons Ltd.

Abbreviations: BAC, blood alcohol concentration; BrAC, breath alcohol concentration; FIM, Fisher Information Matrix  

https://doi.org/10.1002/cem.3599
https://doi.org/10.1002/cem.3599
mailto:
https://orcid.org/0000-0002-9717-7747
mailto:
https://orcid.org/0000-0001-8075-9794
mailto:
https://orcid.org/0000-0001-9292-825X
mailto:marinasirene@uniovi.es
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcem.3599&domain=pdf&date_stamp=2024-08-27


2 of 12 Journal of Chemometrics, 2024

stages of the ethanol pharmacokinetic process in the human 
body, such as absorption, distribution, metabolism and elim-
ination, without any constraints on the density function, was 
proposed. The rationale behind this model stemmed from 
the necessity of a non- linear trend, particularly a hill- shaped 
function, to effectively illustrate both the absorption and 
clearance phases observed in alcohol consumption. The new 
model can be seen as a streamlined adaptation of the Gamma 
model used in previous research [7] or as a modified form of 
the Arrhenius model. A fundamental aspect of the proposed 
model lies in its simplicity, contrasting with the intricacies 
often associated with compartmental models. By prioritising 
simplicity, it offers a more accessible yet comprehensive depic-
tion of ethanol kinetics. On the other hand, one limitation of 
this model is that it assumes that the alcohol is consumed in 
a single instance, which is seldom the case. In fact, alcoholic 
beverages are usually consumed at various time intervals, 
making it necessary to develop a model capable of capturing 
these increments.

Although extensive literature exists regarding the various forms 
of modelling elimination processes and the different factors con-
tributing to variability, such as gender, the effect of food, body 
size, genetic polymorphism and alcohol concentration on eth-
anol [8–10], most of these studies are centred solely on singular 
ethanol intake scenarios [11]. This prompted our investigation 
into multiple ethanol intake scenarios and the subsequent devel-
opment of a corresponding model for blood alcohol concentra-
tion (BAC) within real- life settings.

When looking at literature on models considering multiple 
intakes, the usual assumption is instantaneous inputs (see, 
for instance, Heck et  al. [12]), producing saw- shaped models 
(Figure  1). This results in the intake being modelled as a ver-
tical straight line, which appears to diverge from physiological 

reality. In reality, the absorption of alcohol unfolds gradually. 
Controlled drinking experiments consistently demonstrate that 
the peak concentration usually emerges between 10 and 60 min 
following the conclusion of drinking [13], depicting a more in-
tricate and less abrupt process that deviates from the assumed 
instantaneous incorporation.

In addition to the prevalent assumption of instantaneous 
inputs, another significant challenge arises from the meth-
odology employed in experiments. Usually, experiments are 
conducted in order to find the model/parameters that best de-
scribe BAC. However, a common oversight lies in the lack of 
thorough consideration regarding how the selection of obser-
vational points might significantly influence the final model 
estimation. Consider, for illustrative purposes, the investiga-
tion conducted by Mumenthaler et al. [14], which highlights 
the ramifications of inadequate observation point selection in 
model construction.

The study focused on 27 healthy white women, from 20 to 40 
years old, in good physical conditions, who had four drinks. 
Breath alcohol concentration (BrAC) was measured at dif-
ferent times, as shown in Figure  2. Their reasoning behind 
simplifying the model with instantaneous input was based 
on the requirement for subjects to consume specified quan-
tities of alcohol within a 5- min timeframe. These quantities, 
represented as q, q, q, and 0.6 q (q = 0.186 g/L), were relatively 
small. However, the problem arose not from the assumption 
of instantaneous inputs, but from the observed time inter-
vals. The mean BrAC- time (with ±SD) and the fitted curve are 
shown in Figure 3.

When performing the experiment, one would expect a esti-
mated model similar to that of Figure  1b but having four 
peaks instead of three; however, Figure  3 appears far from 

FIGURE 1    |    Screen shots from Heck et al. [12] depicting BAC for different number of intakes, representing both the modelled BAC (blue) and the 
measured BAC (pink/red).

FIGURE 2    |    Time points for sample collection (above the line) and alcohol intake events (below the line) in the study from Mumenthaler et al. [14].
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this saw- shape. The reason of this difference relies on the de-
sign employed: Figure 4a shows the ideal mean BrAC model 
assuming four drinks and instantaneous inputs and displays 
as well the sampling point design and the intakes (described 
in Figure 2). Figure 4b shows that by measuring only at those 
selected time- points part of the information is left uncollected, 
losing the saw- shape. The interpolated BrAC (dashed red line) 
only shows two peaks, which aligns with the results obtained 
in Mumenthaler et al. [14]. This further highlights the pivotal 
role of optimal designs in obtaining accurate estimations. The 
inadequacy observed in capturing information at specific in-
tervals emphasises the necessity for precise sampling strate-
gies over an abundance of data points.

In this work, an extension of the simplified gamma model is pre-
sented, considering two intakes. Moreover, D- optimal designs 
are calculated. It is important to emphasise that the times shown 
in the optimal designs are those which, under experimental con-
ditions, allow the best estimation of the model parameters. Once 
a reliable model is established through experimental (laboratory) 

testing, it can be employed in practice, where sampling times 
will often be dictated by specific circumstances, making it diffi-
cult to use optimal designs. The case of multiple (more than two) 
intakes will be addressed in the Conclusion section.

2   |   Initial Approaches and Model Definition

Starting from the simplified gamma model proposed to measure 
BAC concentracion at time t : 

we extended our work to incorporate a second alcohol intake at 
time m (where time is measured in hours). The initial intuitive 
approach was to fit a piecewise- defined model:

The challenge of dealing with this piecewise model, arising from 
multiple intakes whose effects accumulate from previous ones, lies 
in the lack of differentiability at the points where new incorpora-
tions occur. This lack of differentiability hampers the application 
of standard tools for computing and validating optimal designs. 
Therefore, it is convenient to approximate this piecewise model 
with an alternative that possesses similar properties but the advan-
tage of being differentiable. Furthermore, this initial proposal still 
yields a relatively abrupt (instantaneous) rise, thus seeking ways 
to smooth the transition both before and after the secure incorpo-
ration aligns more closely with the objective of achieving a model 
that closely approximates the expected reality.

Several solutions were explored (see Figure  5). Initially, em-
ploying an Alpha function (ranging from 0 to 1) to blend the 
two functions around m, utilising a blending interval on each 
side of that point (m ± ), was considered. Although this 
approach improves the model, it falls short of achieving dif-
ferentiability. Subsequently, including a logistic function to 
transition between the two function pieces was attempted. 
Here, adjusting the function to centre the transition near m 
involved the inclusion of a new parameter, the lag. However, 
a challenge arises as the logistic function does not reach 

(1)CSG(t) = stae−bt ,

FIGURE 3    |    Mean BrAC- time curve and curve fit to the mean BrAC 
data of 27 subjects [14].

FIGURE 4    |    Expected and estimated BrAC from the design.
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complete zero for t < m. The final adjustment (SG approx) ad-
dresses this by accounting for the maximum time, ensuring 
the final BAC concentration remains consistent, regardless of 
the employed lag. In addition, this final approximation results 
in a more subtle and less abrupt incorporation, aligning more 
closely with the expected behaviour as previously discussed in 
the introduction.

Then, the final approximated model proposed is 

where 2 represents the total time span over which the tran-
sition from (2a) to (2b) takes place; lag is the parameter incor-
porated to centre the logistic function's transition point near 
m + lag and tmax is the maximum time considered.

3   |   Optimal Designs of Experiments

Let t  denote the time points for observations within the experi-
ment. An exact design, �, consists of a collection of time points, 
t = {t1, t2, … , tn}, t ∈  , where samples are to be taken.   is 
called the design space.

The observations vector Y = (y1, … , yn) reflects a one- 
response linear model y = f (t;�), with � as the p- parameter 
vector, and X = (f(t1), … , f(tn))

T as the design matrix, where 
f(t) = (f1(t), … , fp(t))

T. The Fisher Information Matrix (FIM), 
which quantifies the information that the data provides about 
the unknown parameters, can be expressed as M(�,�) = XTX. 
If accounting for the correlation between samples is desired, 
then it can be computed as M

�
(�,�) = XT

�
−1X, with � = Var(Y). 

The inverse of the FIM is proportionally linked to the asymp-
totic covariance matrix for the maximum likelihood estimate 
of �.

For non- linear models, the conventional approach involves lin-
earising them by computing parameter- related derivatives. The 
information matrix depends on the unknown parameters that 
appear ‘non- linearly’ in the model [15], so the design must be ob-
tained from an initial guess �0. In this case, the designs obtained 
will be locally optimal. When it is not possible to obtain an an-
alytical expression of the model, the procedure developed in 
Rodríguez- Díaz and Sánchez- León [16] may be used. The usual 
procedure is to choose an optimality criterion, represented by 
� and derived from the information matrix, that guides design 
selection. Notably, the D- criterion stands out as the favoured 
approach, aiming to minimise the volume of the confidence 
ellipsoid enclosing the model's parameters [17, 18]. For a given 
�
0, D- optimality maximises the determinant of the FIM. If the 

number of support points of the D- optimal design is the num-
ber of parameters of the model, which happens quite often, the 
D- optimal design has equal weights. The general equivalence 
theorem [19] states that an approximate design, �̃, is D- optimal 
if and only if 

where M̃ denotes the information matrix of the approximate 
design �̃ that can denote any probability measure with finite 
support. An exact design is essentially an approximate design 
with equal weights across all points (each one equal to 1∕n). 
Then, for an exact design's FIM, M, the corresponding approx-
imate design's FIM, M̃, equals M∕n. Thus, (4) can be expressed 
as 

with equality reached at the support points. The function 
�(�,�, t) is known as the sensitivity function.

Let �T represent the true values of the parameters and �∗D the 
locally D- optimal design obtained using these initial values. 

(3)CSG2
(t) = stae−bt +

s

1 + e−6(t−m−lag)∕

(
t(1−m)

tmax

)a

e−b(t−m),

(4)�a

(
�̃,�, t

)
= f(t,�)TM̃

−1(
�̃
)
f(t,�) ≤ p ∀ t ∈  ,

(5)�(�̃,�, t) = nf (t,�)TM−1(�)f (t,�) ≤ p ∀ t ∈  ,

FIGURE 5    |    Different approaches for the modification of CSG2
.
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Then the goodness of a design � can be evaluated by its efficiency 
when compared to �∗D. If N experiments can be performed under 
design �, having a D- efficiency of w, this implies that the same 
accuracy (measured by the D criterion) in estimations could be 
achieved by conducting only wN experiments under the optimal 
design �∗D [20]. The D- efficiency can be computed as 

where n1, n2 denote the number of observations for � and �∗D, 
respectively.

3.1   |   Optimal Designs for the SG2 Model

The simplified- Gamma model (SG) for two intakes introduced 
before, CSG2

, is a triparametric model with parameter vector 
� = (s, a, b)T. The model can be linearised as 

The design is considered to be minimally supported or satu-
rated when the number of support points equals the number 
of parameters in the model. Because the criterion becomes 
a function of the p unknown support locations only, hav-
ing a minimally supported design minimises the difficulty 
of computing optimal designs. Then, if the three- point design 
� = {t1, t2, t3}, ti > 0, is written as � = {t, t + d1, t + d1 + d2} 
where t1 = t, t2 = t + d1, t3 = t + d1 + d2 and t, d1, d2 > 0, then 
X = [f(t;�)T , f(t+d1;�)

T , f(t+d1+d2;�)
T ], with f(t;�)T from (7).

Due to the complexity of the information matrices, it is not possi-
ble to obtain analytical expressions for the optimal designs, which 
should be computed through numerical procedures. Using some 
initial values, optimal designs were calculated to test the possi-
ble effects of the choice of lag and , as well as the time of the 
second intake. Let us initially assume � = (s, a, b) = (1,0.39,0.39) 
as in Mariñas- Collado et al. [6]. Assuming that the second con-
sumption was 30 min (m = 0.5 h) after the first one, lag = 0.5 and 
 = 1, the D- optimal design is 

that is, to measure BAC 3.85, 85.87 and 292.18 min after the 
first consumption. The D- optimality of the design is checked 
using (5), which is shown in Figure 6.

The efficiency function  (6) is used to study the dependency of 
the D- optimal designs on the values for lag and , which have 
to be chosen beforehand. Fixing � = (s, a, b), the efficiency of 
the D- optimal design (calculated with lag = 0.5 and  = 1) when 
different values for lag and  are considered as true values are 
shown in Figure 7. It can be seen that the efficiency always sur-
passes 93%, which proves that the optimal designs are robust 
with respect to the choice of both lag and . Thus, from now on, 
lag = 0.5 and  = 1 will be assumed.

On the other hand, it is assumed that the time of the second 
intake is also known, which might not be so clear sometimes. 
Hence, assessing the efficiency of the optimal design when con-
sidering potential deviations in the m parameter becomes im-
perative. In this case, it was set that the second intake occurred 
half an hour after the first one. In Figure 8, it can be seen that, 
within a reasonable error margin or consumption time range 
(± 10 min), the efficiency remains almost at 100%. Even if the 
real m were 20 min earlier or later, the design efficiency still re-
mains above 95%, which proves the robustness of the optimal 
design with respect to m.

3.1.1   |   Nearly Optimal Designs

Apart from observing the efficiency of the design with a differ-
ent m specification, it could also be beneficial to study how the 
D- optimal design depends on the second intake, m. In Figure 9, 

(6)n2
n1

[ |M(�,�T )|
|M(�∗D,�T )|

] 1

p

,

(7)

f(t;�)T =
�CSG2(t;�)

��
=

⎛
⎜⎜⎜⎝
e−bt ta+

e−b(t−m)
��
1− m

tmax

�
t
�a

1+e−
6(t−lag−m)



,

e−btstalog(t)+
e−b(t−m)s

��
1− m

tmax

�
t
�a
log

��
1− m

6

�
t
�

1+e−
6(t−lag−m)



,

−e−btst1+a+
e−b(t−m)s(mt)

��
1− m

tmax

�
t
�a

1+e−
6(t−lag−m)



⎞⎟⎟⎟⎠
.

(8)�D = {0.0641,1.4313,4.8702},

FIGURE 6    |    Sensitivity function for the D- optimal design with � = (s, a, b) = (1,0.39,0.39), lag = 0.5 and  = 1, over the time range (up to 6 h). 
Vertical lines represent the design support points.
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FIGURE 7    |    Efficiency of the D- optimal design with respect to the choice of values for lag and .

FIGURE 8    |    Efficiency of the D- optimal design when the second intake is taken at a time m different from m = 0.5.

FIGURE 9    |    Support points for D- optimal designs with different values of m.
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the support points of the D- optimal designs with different m val-
ues are shown. On the left side, each design is represented by 
a line connecting the three time points designated for sample 
collection. The right side illustrates the connection between sup-
port points across different designs. A noticeable trend emerges 
when linking t1, t2 and t3 for varying m values. This trend demon-
strates a consistent behavior in t1, remaining relatively stable as 
m increases. In contrast, t2 and t3 show a tendency to shift to-
wards later time points (larger values) as m increases. This sug-
gests the possibility of computing t1, t2 and t3 values based on the 
observed slope in these lines, potentially eliminating the need 
for explicit calculation of the D- optimal designs (but the ones for 
the extreme possible values of m).

Based on the preceding outcomes, the following procedure can 
provide nearly optimal designs: 

• Compute the optimal support points for the extreme values of 
m such as, for instance, m = 0.5 and m = 2 for each pair (a, b).

• Generate connecting lines among the respective support 
points {t1, t2, t3}.

• Approximate the optimal support points for any given value 
of m from these established lines.

D- optimal designs and their corresponding nearly optimal de-
sign are displayed in Figure 10, together with a bar representing 
the effectiveness of the nearly optimal designs with respect to 
the D- optimals (note the different scales employed to plot the 
three lines in order to show the differences, differences that 
are really small for the first point of the designs, at the bottom). 
Some instances are also shown in Table 1.

4   |   Case Study

Li et al. [7] conducted an experiment using non- linear regres-
sion models with a non- zero right- skewed bell- shaped assump-
tion. Using their results as initial values for the parameters, 

TABLE 1    |    D- optimal designs, �D, nearly optimal designs, �N, and the efficiency of the nearly optimal designs with respect to the D- optimals.

m 0.7 0.9 1.1 1.5 1.7

�D {0. 069,1.601,5.008} {0. 074,1.783,5.159} {0. 079,1.970,5.317} {0. 088,2.357,5.653} {0.092,2.554,5.825}

�N {0.069,1.621,5.033} {0.073,1.809,5.196} {0.077,1.999,5.358} {0.086,2.378,5.684} {0.090,2.568,5.847}

Eff. 0.9998 0.9995 0.9993 0.9996 0.9998

Note: The designs are expressed as {t1, t2, t3}.

FIGURE 10    |    Comparison of D- optimal designs (D, solid shapes) and nearly optimal designs (N, hollow shapes). Different scales have been used 
for the three points, in order to show the differences between the designs.
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this case study aims to explore various optimal designs based 
on the timing of the second alcohol intake. These initial data 
serve as a foundation for assessing different scenarios, allow-
ing an examination of how optimal designs vary concerning 
the temporal structure of intake. Additionally, the consider-
ation of correlation among observations is introduced, a piv-
otal aspect in accurately estimating the model parameters. 
The covariance between observations of the same subject 
taken at different points is assumed to depend on the distance 
between points, that is, Cov[y(ti), y(tj)] = �(|ti − tj|), which is a 
reasonable and widely accepted assumption. For the station-
ary covariance kernel, � (assumed known), the widely used 
exponential kernel is chosen: �(d) = e−�d, where � is character-
istic of the subject. Then, the covariance matrix for the design 
{t, t + d1, t + d1 + d2} is: 

Table 2 shows optimal designs ({t1, t2, t3}, in minutes) for var-
ious � values when the second consumption is taken at differ-
ent times, m, expressed in minutes as well. This designs are 
also shown in Figure  11, where it can be more clearly seen 

that the designs are consistent with the patterns observed 
before. It can be highlighted that in the optimal designs the 
first observation (t1) should be made as soon as possible, while 
the final one (t3 ) should be done between 228 and 347 min (4 
and 6 h approximately) after intake, which is when alcohol is 
thought to have nearly completely left the body. The middle 
point (t2) should be taken about 45–50 min after the second 
intake m. Note that as �→∞, Σ→ I, and consequently the de-
signs incorporating a correlation structure converge to those 
obtained when the correlation is not accounted for. In this 
case this can be observed from � = 2. It can be noted as well 
that correlation has little influence in the designs, and almost 
exclusively in the third observation, while the first two only 
change slightly for different values of � . Additional tables for 

� =

⎛
⎜⎜⎜⎝

1 e−�d1 e−�(d1+d2)

e−�d1 1 e−�d2

e−�(d1+d2) e−�d2 1

⎞
⎟⎟⎟⎠
.

TABLE 2    |    D- Optimal designs (in minutes) for 38- year- old men: 45 kg, 40 g alcohol consumption per intake, � = (48,0.36,0.42) .

D- opt � = 0.25 � = 0.50 � = 1 � = 2, � =∞

m = 30 {3, 76, 228} {3, 78, 254} {3, 81, 268} {3, 82, 270}

m = 45 {3, 92, 240} {3, 93, 267} {3, 95, 280} {3, 96, 282}

m = 60 {4, 107, 253} {4, 108, 279} {4, 110, 292} {4, 110, 294}

m = 75 {4, 123, 266} {4, 124, 292} {4, 125, 305} {4, 125, 307}

m = 90 {4, 138, 279} {4, 139, 305} {4, 140, 319} {4, 141, 320}

m = 105 {3, 154, 292} {4, 154, 318} {4, 155, 332} {4, 156, 333}

m = 120 {5, 169, 305} {5, 170, 332} {5, 170, 346} {5, 170, 347}

FIGURE 11    |    Support points t1, t2 and t3 for different values of m (in minutes) and different values of �.

TABLE 3    |    Parameter estimations from the 27- subject simulations 
assuming � = (48,0.36,0.42), for the designs with � = ∞ shown in 
Table 2.

m = 60 m = 90

Max (51.07,0.2322,0.2999) (55.57,0.1966,0.3361)

Mean (48.02,0.3887,0.4232) (49.47,0.3608,0.4326)

Min (42.15,0.7434,0.6056) (47.76,0.6053,0.6328)
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different cases (weight, alcohol consumption) and their corre-
sponding figures are shown in Appendix A.

In order to demonstrate the effectiveness of the computed de-
signs, simulations were performed assuming the CSG2

 model 
with actual parameter values set to � = (48,0.36,0.42), as used 
in Table 2. To emulate the approach in [14], samples of 27 peo-
ple were simulated, with a normally distributed random error 
with 0 mean and a standard deviation of 0.05, added to the 
BAC values of the model at the design points. Then, the min-
imum, maximum and mean values of the 27 simulated obser-
vations in each design point were used to estimate the model 
parameters. The parameter estimations, using the designs ob-
tained for two different values of m and assuming � = ∞, are 
shown in Table 3, and the simulated observations and the CSG2

- type models using these estimates are plotted in Figure 12. It 
can be seen that, when using the mean of the simulations, the 
parameter estimates are very close to the assumed true values, 
and thus, the model generated with those estimates fits the 
assumed actual model. Note that, differently than in Figure 3, 
only three samples have been taken for each subject.

5   |   Conclusions

A novel model, CSG2
, is proposed to characterise BAC following 

multiple alcohol intakes, a scenario of practical relevance often 
overlooked in forensic literature. The proposed model, initially 
designed for the case of two intakes but easily generalised, 
demonstrates simplicity, practicality, and affordability, making 
it accessible for the wider scientific community. Expanding on 
this, it is important to emphasise the model's flexibility, espe-
cially when dealing with many small alcohol intakes. In these 
situations, it can be seen (see Figure 1a) that the model can be 
approximated by a single intake curve. Addressing challenges 

identified in existing literature related to the inadequate treat-
ment of multiple alcohol intakes, the study highlights the signif-
icance of proper experimental design for parameter estimation.

Out of the various optimality criteria aimed at achieving precise 
estimations, the D- criterion stands out as the most popular, em-
phasising the minimisation of the confidence ellipsoid volume 
surrounding the estimators of model parameters. Consequently, 
D- optimal designs have been computed for the proposed model, 
guiding the selection of observation times for BAC measure-
ments in order to attain the most accurate estimations of the 
model parameters. These parameters, including the correla-
tion parameter �, rely on factors such as the quantity and type 
of alcohol consumed, sex, age, weight, height and so forth and 
must be established through clinical trials. In the future, after 
conducting the necessary experimental studies, lambda could 
be selected to characterise the “standard” individual, meaning 
a value that captures the characteristics of the average subject. 
Furthermore, upon obtaining the model and its parameters 
through a clinical trial (which is currently beyond the authors' 
scope), the proposed model could be compared with alternative 
models to validate its ability to adequately fit true ethanol ki-
netics. The simulations of 27 observations at the design points 
(for different values of m) resulted in parameter estimates that 
closely match the assumed actual model, demonstrating the ef-
fectiveness of the computed designs.

After computing optimal designs for different values of the second 
intake m and the choice of lag and , a sensitivity analysis has been 
performed, proving that the designs computed are quite robust re-
spect to the choice of the initial values of these parameters.

In examining three- point optimal designs, the analysis focused 
on the varying behavior of each specified point (initial, medium, 
final) for data collection as m changed. Different slopes were 

FIGURE 12    |    The 27 simulated observations (dots) at the three design points, the assumed actual model (solid line) and the CSG2
- type models based 

on parameter estimates from the minimum, maximum and mean values of the simulated observations (dashed lines). The vertical line marks the 
time of the second intake.
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identified, indicating distinct linear trends for each point based on 
m. The precision of the fitted lines for each point was noteworthy, 
allowing the proposal of ‘nearly optimal designs’. These designs 
involve computing optimal configurations solely for the extreme 
values of m. It has been checked that the proposed nearly optimal 
designs are almost as efficient as the D- optimal ones, thus this 
procedure can be employed for each case study as a very easy way 
to obtain tables of optimal designs for different values of m.

In some cases, it may be interesting to treat the second intake, 
m, as an unknown parameter that needs to be estimated as well. 
This would result in a more complex treatment and computa-
tions, constituting an objective for future research.

Another consideration is the practical feasibility of optimal de-
signs beyond laboratory settings, such as when conducting rou-
tine alcohol control tests for drivers on the road. In such cases, 
time constraints often conflict with the proposed designs, par-
ticularly the final observation. Exploring ‘restricted optimal de-
signs’ could be a promising avenue for future research. When 
the model parameters are known, the interest may rest in the 
estimation of the initial intake, and thus c- optimal designs could 
be computed [21]. In addition, when different types of measures 
are to be taken (exhaled air, blood samples), multiresponse mod-
els should be consider, [22–24]. A user- friendly web application 
is being developed to assist non- specialised users in obtaining 
optimal (or near- optimal) designs for specific experiments. This 
tool will be applicable to both the single intake model proposed 
in [6] and the multiple intake model presented in this study, 
which may provide significant benefits.
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Appendix A

D- Optimal Design in Minutes for Different Weights in 38- Year- Old Men

The following tables (Tables A1, A2, A3 and A4) show D- optimal designs in minutes, using initial values from Li et al. [7], for differ-
ent weights in 38- year- old Chinese men consuming different quantities of alcohol. These designs are also shown in Figure A1. An 
intermediary value, such as � = 1, could be used in the absence of prior knowledge about the value of � .

TABLE A1    |    38- year- old men: 55 kg, 40 g alcohol consumption per intake, � = (39.75,0.33,0.36).

� = 0.25 � = 0.50 � = 1 � = 2, � =∞

m = 30 {2, 78, 257} {3, 79, 287} {2, 83, 298} {2, 85, 300}

m = 45 {3, 93, 269} {3, 95, 299} {3, 96, 310} {3, 98, 312}

m = 60 {3, 108, 282} {3, 110, 311} {3, 112, 323} {3, 112, 324}

m = 75 {3, 124, 295} {3, 125, 325} {3, 126, 336} {3, 127, 337}

m = 90 {4, 139, 308} {4, 140, 338} {3, 141, 349} {3, 141, 350}

m = 105 {4, 155, 321} {4, 156, 351} {4, 156, 362} {4, 156, 363}

m = 120 {4, 170, 334} {4, 171, 364} {4, 171, 375} {4, 171, 376}

TABLE A2    |    38- year- old men: 65 kg, 40 g alcohol consumption per intake, � = (34.29,0.29,0.31).

� = 0.25 � = 0.50 � = 1 � = 2, � =∞

m = 30 {2, 78, 288} {2, 80, 319} {2, 84, 329} {2, 86, 331}

m = 45 {2, 93, 300} {2, 96, 332} {2, 98, 341} {2, 100, 343}

m = 1 {2, 109, 313} {2, 111, 344} {2, 113, 354} {2, 114, 355}

m = 75 {2, 125, 326} {2, 126, 358} {2, 128, 367} {2, 128, 368}

m = 90 {2, 140, 339} {2, 141, 370} {2, 142, 380} {2, 143, 381}

m = 105 {3, 156, 352} {3, 157, 384} {3, 157, 393} {3, 158, 394}

m = 2 {3, 171, 365} {3, 172, 398} {3, 172, 407} {3, 172, 407}

TABLE A3    |    38- year- old men: 75 kg, 40 g alcohol consumption per intake, � = (30.33,0.26,0.28).

� = 0.25 � = 0.50 � = 1 � = 2, � =∞

m = 30 {1, 78, 310} {1, 81, 342} {1, 84, 351} {1, 87, 353}

m = 45 {1, 94, 323} {1, 96, 355} {1, 99, 363} {1, 100, 365}

m = 60 {1, 110, 336} {1, 111, 368} {1, 114, 376} {1, 114, 377}

m = 75 {2, 124, 349} {2, 126, 381} {2, 128, 389} {2, 129, 390}

m = 90 {2, 141, 362} {2, 142, 395} {2, 143, 402} {2, 143, 403}

m = 105 {2, 156, 375} {2, 157, 408} {2, 158, 416} {2, 158, 416}

m = 2 {2, 171, 389} {2, 172, 422} {2, 173, 429} {2, 173, 430}
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TABLE A4    |    38- year- old men: 66.7 kg, 60 g alcohol consumption, � = (62.22,0.39,0.39).

� = 0.25 � = 0.50 � = 1 � = 2, � =∞

m = 30 {4, 78, 250} {4, 80, 277} {4, 83, 290} {4, 86, 292}

m = 45 {4, 93, 261} {4, 95, 289} {4, 97, 301} {4, 99, 303}

m = 1 {5, 109, 273} {5, 110, 301} {5, 112, 313} {5, 113, 314}

m = 75 {5, 124, 286} {5, 125, 314} {5, 126, 325} {5, 127, 326}

m = 90 {5, 139, 298} {5, 140, 326} {5, 141, 338} {5, 142, 339}

m = 105 {6, 155, 311} {6, 155, 339} {6, 156, 351} {6, 156, 352}

m = 2 {6, 170, 324} {6, 171, 352} {6, 171, 365} {6, 171, 365}

FIGURE A1    |    Support points t1, t2, t3 for different values of m (in minutes) and different values of � for different weights in a 38- year- old Chinese 
men consuming different quantities of alcohol.
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