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Abstract
The imprecision inherent in human opinions is not properly modeled by crisp numbers. Other more complex structures like
intervals or tuples capture better the imprecision of human assessments. This makes them very useful in decision problems.
However, they cannot be easily compared. Despite they grasp better decision-makers inaccuracy, the lack of a natural total
order for such structures makes the determination of the best alternative a difficult task. In this contribution, we explore how
to obtain new total orders for (ordered) tuples paying special attention to admissible orders (total orders that extend the lattice
order). The resulting orders are applied to four-dimensional ordered tuples that represent risk assessments in an imprecise
environment. In addition, two case studies involving risk matrices in educational transport and the construction of a metro
station are also provided.

Keywords Admissible order · Order between intervals · Risk matrix · Box · Order between boxes · Election methods

1 Introduction

Historically, reliability was defined as the probability for a
system, machine, or device to perform its intended function
adequately under some conditions along a specified period
of time. Survival analysis is often used to study this type
of behaviour (see [1]). Nowadays, this concept is known as
mechanical reliability, when it is necessary to differentiate it
from the concept of human reliability.

Human reliability has a central role in the study of the
causes of errors in many fields. In this way, human failure
has been pointed out as the most common cause of error by
some researches (see [2–4]). Since IEEE published a report
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in this regard in 1972, many contributions have appeared on
the topic (some examples can be found in [5–10]).

One of the central tools to study human reliability is
the risk matrix (see, for instance, [11]). This matrix allows
to assess the risk according to two properties, the sever-
ity of the consequences, and the likelihood of appearance.
More specifically, both severity and likelihood are usually
classified into 3–5 levels. Labels between “negligible” and
“critically severe” are usually considered to assess severity
and labels that go from “remote” to “nearly certain” are used
to assess likelihood. These labels are identifiedwith numbers,
and given a value for the severity and another for the likeli-
hood, the risk matrix returns a real number that is associated
with the importance of the risk. This allows us to order the
risks and to prioritise the prevention of the most important
ones.

A decision-maker (usually an expert in the subject)
assesses a level of severity and likelihood for each event, and
combining that information, the risk matrix helps her to pro-
vide the risk values associated to each error. Let us observe
that the decision-maker is forced to pick a precise level, even
though this decision is subjective and, in general, a difficult
task [12].Here, amore flexible procedurewould be desirable.
Related to this, some alternatives concerning risk attitudes of
the decision-makers have been studied in [13]. The authors
also provide a detailed discussion on the existence of uncer-
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tainty at the three major phases of the risk-matrix-based
assessment, mainly based on the paper of Ruan et al. [14].

The presence of uncertainty or indecision is a very well-
known scenario in Decision-Making problems, even when
the decision-maker that has to provide the assessment is an
expert. Different approaches have been proposed to deal with
this uncertainty as in [15]. When the evaluation is based on
picking a value in a scale, as in the case of assessing severity
and likelihood in risk matrices, intervals are a very common
tool to model uncertainty [16, 17]. For the particular case of
risk matrices, where two criteria (severity and likelihood) are
considered to quantify a certain risk, it can be the case that
two intervals have to be merged to determine the risk. The
result is called a box in this contribution. The flexibility that
this method provides to the decision-maker is very desirable,
since it allows to model human perception in a more accurate
way. As a counterpart, a method for ordering these resulting
intervals and boxes is necessary, which is not an immediate
task.

Other attempts to introduce uncertainly in risk matrices
have been considered in the literature. For instance, in [18],
the authors consider a continuous range for the evaluation
of the severity and likelihood rather than a discrete set of
labels. In [19] and [20], uncertainly is introduced to the labels
using fuzzy linguistic labels. It must be noted that in these
papers, the possible choices for the expert are precise. In
the first case, the number of possible choices is increased to
a continuous interval, while in the second one, the number
of possible choices, regardless of the use of fuzzy linguis-
tic labels, remains equal as in the classical case. In our
approach, uncertainly appears by allowing the expert to hes-
itate between different labels.

Our contribution is twofold, theoretical, and applied. We
start by providing general results on the construction of
orders for tuples, and, in particular, for intervals and boxes.
In a second stage, we apply those results to handle risk matri-
ces with the objective of providing a solution in two different
human reliability problems. The main contributions can be
disclosed as follows:

• Total orders inRn based on the type 1 lexicographic order
are studied.

• The characterization of admissible orders constructed by
a linear transformation and the type 1 lexicographic order
is provided.

• The obtained orders are applied to obtain a method to
order alternatives when using imprecise risk matrices.

• The benefits of the presented method are shown in two
case studies regarding risks in educational transportation
and the construction of metro stations.

We summarize the benefits and drawback of the presented
method in Table 1.

This paper is organised as follows. In Sect. 2, some prelim-
inaries regarding risk matrices and orders between intervals
are presented. Section3 contains a general theoretical study
on ordering tuples. The concept of imprecise risk matrix is
presented in Sect. 4, focusing on how to construct the risk
intervals and boxes. In Sect. 5, two case studies regarding
risks in an educational transportation example and the con-
struction of a metro station are shown. The Borda Count and
Condorcet Rankings are used to fuse the different ordina-
tions obtained from applying different orders and to provide
a final ranking. Section6 contains some closing remarks and
conclusions.

2 Preliminaries

In this section, we introduce some definitions and results
regarding orders between intervals, focusing our study on
admissible orders. We also recall the classical concept of
risk matrix.

This section is essential to fix the notation used in the con-
tribution and understand the proposed method, since orders
between intervals and risk matrices are the main tools of our
proposal.

2.1 Ordering Tuples

Recall that an order� in a universe X is a reflexive, antisym-
metric, and transitive binary relation on X . A total or linear
order is a partial order that is total, i.e., that for every pair of
elements a, b ∈ X , at least a � b or b � a. Otherwise, the
order is said to be partial.

The set of real numbers R is endowed with the classical
total order between numbers. This is not the case for R2

and, in general, for Rn with n ≥ 2. There does not exist a
“classical” total order in these sets.

The most commonly accepted way to compare intervals
in Rn is the lattice order.

Definition 1 The lattice order on Rn is denoted as �Lo and
defined as (a1, . . . , an) �Lo (ā1, . . . , ān) if and only if ai ≤
āi for all i ∈ {1, . . . , n}.
It is an order for any n ≥ 1, and therefore, it has been widely
used to compare tuples. Let us remark that for n = 1, it
becomes the classical total order in R and, therefore, it is
total. Unfortunately, this is the only case. The lattice order
is not total for n ≥ 2. For example, the elements (1, 4) and
(2, 3) in R2 are incomparable according to the lattice order.
The lack of totalness is a handicap for many practical appli-
cations, specially in Decision-Making. Admissible orders try
to overcome this problem. They were originally introduced
to order elements inL([0, 1]), but the definition can be easily
translated to Rn .
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Table 1 Benefits and drawbacks of the presented method

Benefits Drawbacks

1. The expert can hesitate between levels of likelihood and severity 1. It is not possible to consider unbalanced hesitation, i.e., the expert
hesitates between A and B, but is more inclined to A

2. The semantic of the different choices of the expert are very intuitive 2. There is not a unique natural total order to apply to the resulting risks

3. The risk assignments are totally ordered 3. The ranking methods that can be considered to solve the problem of
the choice of the total order may not provide a solution

Definition 2 [21]Anadmissible order�onRn is a total order
that refines the lattice order, i.e., is a total order, such that
if (a1, . . . , an) �Lo (ā1, . . . , ān), then also (a1, . . . , an) �
(ā1, . . . , ān).

Two classical examples of admissible orders inR2 are the
first and second lexicographic orders.

Definition 3 Given two elements (a1, a2) and (ā1, ā2) inR2.

• We say that (a1, a2) is smaller than or equal to (ā1, ā2)
according to the type 1 or first lexicographic order, and
we denote it as (a1, a2) �Lex1 (ā1, ā2), if and only if

a1 < ā1 or a1 = ā1 and a2 ≤ ā2.

• We say that (a1, a2) is smaller than or equal to (ā1, ā2)
according to the type 2 or second lexicographic order,
and we denote it as (a1, a2) �Lex2 (ā1, ā2), if and only
if

a2 < ā2 or a2 = ā2 and a1 ≤ ā1.

These two definitions can be easily generalized to Rn .

Definition 4 Given two elements (a1, . . . , an) and
(ā1, . . . , ān) in Rn , we say that they are ordered accord-
ing to the type 1 lexicographic order, and we denote it
(a1, . . . , an) �Lex1 (ā1, . . . , ān), if and only if they are the
same tuple or (assuming a0 = 0 = ā0), there exists some
k ∈ {1, . . . , n}, such that ai = āi for all 0 ≤ i < k and
ak < āk .

Definition 5 Given two elements (a1, . . . , an) and
(ā1, . . . , ān) in Rn , we say that they are ordered accord-
ing to the type 2 lexicographic order, and we denote it
(a1, . . . , an) �Lex2 (ā1, . . . , ān), if and only if they are the
same tuple or (assuming an+1 = 0 = ān+1), there exists
some k ∈ {1, . . . , n}, such that ai = āi for all n + 1 ≥ i > k
and ak < āk .

Lemma 1 Given two tuples, (a1, . . . , an) and (ā1, . . . , ān),
we have that (a1, . . . , an) �Lex1 (ā1, . . . , ān) if and only if
for every k ∈ {1, . . . , n}, it holds that either (i) ∃i < k, such
that ai < āi or (ii) ai = āi for all i < k and ak ≤ āk , where
we assume a0 = ā0.

Both relations, the type 1 and type 2 lexicographic orders,
are admissible orders in Rn , as we can see at the following
result.

Lemma 2 The type 1 and type 2 lexicographic orders are
admissible orders in Rn for every n ∈ N.

Proof Weprovide the proof of the type 1 lexicographic order,
the other one being analogous. For the case n = 1, it becomes
the classical (order) in R. Consider n ≥ 2.

1. Reflexivity follows from the definition itself.
2. Antisymmetry:Assume (a1, . . . , an) �Lex1 (ā1, . . . , ān)

and (ā1, . . . , ān) �Lex1 (a1, . . . , an). Assume also
(a1, . . . , an) �= (ā1, . . . , ān), we get to a contradiction.
Since (a1, . . . , an) �Lex1 (ā1, . . . , ān), then there exists
k ∈ {1, . . . , n}, such that ai = āi for all i < k and
ak < āk . At the same time, since (ā1, . . . , ān) �Lex1

(a1, . . . , an), there exists j ∈ {1, . . . , n}, such that
ai = āi for all i < j and a j < ā j . A contradiction.

3. Transitivity: Assume (a1, . . . , an) �Lex1 (ā1, . . . , ān)
and (ā1, . . . , ān) �Lex1 (â1, . . . , ân). Assume also
that (a1, . . . , an) �= (ā1, . . . , ān) and (ā1, . . . , ān) �=
(â1, . . . , ân). Otherwise, the proof is trivial.
Then, there exist k, j ∈ 1, . . . , n, such that ai = āi for
all i < k and ak < āk and āi = âi for all i < j and
ā j < â j .
If k < j , then ai = āi = âi for all i < k and ak < āk =
âk , whereas (a1, . . . , an) �Lex1 (â1, . . . , ân).
If k = j , then ai = āi = âi for all i < k and ak < āk <

âk , whereas (a1, . . . , an) �Lex1 (â1, . . . , ân).
If k > j , then ai = āi = âi for all i < j and a j = ā j <

â j , whereas (a1, . . . , an) �Lex1 (â1, . . . , ân).

4. Totalness: Consider two different tuples, (a1, . . . , an)
and (ā1, . . . , ān). Compare the first components. If a1 <

ā1, then (a1, . . . , an) �Lex1 (ā1, . . . , ān). If ā1 <

a1, then (ā1, . . . , ān) �Lex1 (a1, . . . , an). Finally, if
a1 = ā1, compare the second components, a2 and
ā2. If neither (a1, . . . , an) �Lex1 (ā1, . . . , ān) nor
(a1, . . . , an) �Lex1 (ā1, . . . , ān) can be proven yet.
The comparison continues with the third and subse-
quent components until either for some position, we have
an inequality and, therefore, we can order the tuples
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according to the type 1 lexicographic order or all the
components are equal. In this case, they are the same
interval, and therefore, (a1, . . . , an) �Lex1 (ā1, . . . , ān)
and (ā1, . . . , ān) �Lex1 (a1, . . . , an).

5. Admissible: Let us consider
(a1, . . . , an) �Lo (ā1, . . . , ān), we have to prove that
(a1, . . . , an) �Lex1 (ā1, . . . , ān).Observe that (a1, . . . , an) �Lo

(ā1, . . . , ān) means that ai ≤ āi for every i . If ai = āi
for all i , they are the same tuple and (a1, . . . , an) �Lex1

(ā1, . . . , ān). If not, let k ∈ {1, . . . , n} be the first com-
ponent, such that ak �= āk . This implies, since ai ≤ āi
for all i , that ai = āi for all i < k and ak < āk which
implies (a1, . . . , an) �Lex1 (ā1, . . . , ān).

Until now, we have studied orders in Rn . However, in
this paper, we will be specially interested in a particular case
of tuples, the ordered ones. Thus, if we denote as Cn(R)

the set of ordered tuples in Rn : Cn(R) = {(a1, . . . , an) |
ai ∈ R, for 1 ≤ i ≤ n and ai ≤ ai+1 for i ≤ n − 1}, we
can restrict the previous orders to this set. It is immediate to
prove that the lattice order, the type 1 and type 2 lexicographic
orders in Cn(R) keep being a partial order and two admissible
orders, respectively. From now on, we will use the notation
[a1, . . . , an] to refer to the members of Cn(R) to emphasize
that the elements of the tuple are ordered.

2.2 Risk Matrices

Theoretical studies about ordering ordered tuples will be
applied to Human Reliability, where risk matrices are an
essential tool. Here, the main ideas related to these matri-
ces are recalled.

Risk assessment matrices are a tool that given some sub-
jective considerations, allows to quantify the relevance of a
risk. Theywere put forward to classify the possible risks. The
main objective is to identify the most important ones, and to
devote appropriate resources to prevent them. The subjective
considerations are two, the level of severity, that is related to
how big the impact or the consequences of the error could
be, and the likelihood, that is related to how often we expect
this situation to happen. In particular, this type of matrices is
defined as follows.

Definition 6 ([11, 19]) If severity is classified into m levels
and likelihood is classified into n levels, a n ×m matrix R is
said to be a risk matrix if its values are associated with a cer-
tain combination of the levels of severity (identified with the
columns of thematrix) and the levels of likelihood (identified

with the rows)

Let us make some additional remarks about the above
definition:

• The number of levels of severity and likelihood can vary
depending on the particular problem, but they are typi-
cally between 3 and 5.

• The values of a risk matrix are known as risk values and
determined only by the severity and likelihood levels.

• The risk values’ computation can be summarized as a
logic implication: if the likelihood has level a and the
severity has level b, then the risk value is rab.

• Both the levels of severity and likelihood are ordered. The
levels of severity increase from left to right and the levels
of likelihood from bottom to top. Accordingly, the entries
of the matrix, the risk values, are increasing ri j ≥ rkl for
i ≤ k and j ≥ l. Higher risk scores are assigned to higher
levels of severity and/or likelihood.

The dimensions as well as the values of the risk matrix are
very dependent on the field of application. In this paper, we
consider the most typical ones (see [11, 22]) which assign 5
levels for both severity and likelihood. In particular, the like-
lihood axis is divided into the levels: Remote (R), Unlikely
(UL), Likely (L), Highly Likely (HL), and Nearly Certain
(NC). Similarly, the severity is divided into the following
categories: Negligible (N), Minor (MI), Moderate (MO),
Serious (S), and Critical (C).

Then, the risk values are obtained bymultiplying the num-
ber associated with the levels of severity and likelihood.
There are different criteria to do that and so there is not a
unique risk matrix, although the general ideas are common
to all the usual considered matrices. In our case, these val-
ues are numbers between 1 (Negligible and Remote) and 25
(Critical and Nearly Certain). The output risk values are clas-
sified into zones, depending on how important the risk is. In
particular, the risk values from 1 to 3 are considered low
and are coloured in green; risk values between 4 and 6 are
moderate, with a yellow colour; the values between 8 and 12
are considered highly important and coloured in orange and
finally the rest of the values are considered severe and are
represented in red. The final form of the aforementioned risk
matrix is shown in Table 2.
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Table 2 Original risk
assessment matrix

The levels of severity and likelihood are assessed by a
decision maker, usually a person, that can doubt between
two levels. Our proposal to capture this hesitancy is to allow
the decision-maker to provide intervals of values instead of
precise scores when assessing severity and/or likelihood as
we will explain in detail in Sect. 4. When both (severity and
likelihood of a risk) are assigned an interval, the final score
of the risk cannot be a number, but an interval where the
bounds are delimited by intervals, which we call a box. If
we want to know the most important risks, we need an order
to compare these new elements. In the following section, we
study orders for tuples in general, which will be later applied
in the context of Risk Analysis.

3 On NewOrders inRn

In this section, we provide theoretical results that allow to
build new orders from existing ones. In particular, we will
show that the most well-known admissible orders are in fact
transformations of the type 1 lexicographic order. We also
provide a characterization that shows how the transformation
has to be to obtain an admissible order.

Proposition 1 Let F be a injection in a set X endowed with
a total order �T . Then, the binary relation R defined over
X as

xRy if and only if F(x) �T F(y)

for every x, y ∈ X is a total order.

Proof Weprove thatR is reflexive, antisymmetric, transitive,
and total.

Reflexive: since �T is reflexive, F(x) �T F(x) for all
x ∈ X .

Antisymmetric:Assumeboth xRy and yRx , this is equiv-
alent to F(x) �T F(y) and F(y) �T F(x). Since �T is
antisymmetric, then F(x) = F(y), and since F is injective,
this implies x = y.

Transitive: Assume xRy and yRz, then F(x) �T F(y)
and F(y) �T F(z). Since �T is transitive, F(x) �T F(z),
and therefore, xRz.

Total: Since �T is total, for every pair of elements x, y ∈
X , it holds that either F(x) �T F(y) or F(y) �T F(x).
Therefore, at least xRy or yRx .

A particular case that will be very relevant in our practical
application is that one in which the injection is obtained by
multiplying the tuple by a regular matrix. In particular:

Corollary 1 Let A be a n × n matrix. The binary relation R
defined over Rn × Rn as

(a1, . . . , an)R(ā1, . . . , ān)

if and only if A(a1, . . . , an)
′ �Lex1 A(ā1, . . . , ān)

′

is a total order if and only if A is full rank.

Proof If A is full rank, the function F : Rn → Rn defined
as F((a1, . . . , an)) = A(a1, . . . , an)′ is a bijection. On the
other hand, �Lex1 is a total order over Rn . It follows from
Proposition 1 that R is a total order.

On the other hand, if A is not full rank, then there is a
tuple (a1, . . . , an) �= (0, . . . , 0), such that A(a1, . . . , an)′ =
(0, . . . , 0) = A(0, . . . , 0). Then, R is not antisymmetric,
since (a1, . . . , an)R(0, . . . , 0) and (0, . . . , 0)R(a1, . . . , an)
but (a1, . . . , an) �= (0, . . . , 0).

As mentioned above, the lattice order is assumed to be the
most natural one. This is why, admissible orders are specially
interesting. They keep the essence of the lattice order, but in
addition, they are total. In the next result, we characterize the
matrices that lead to admissible orders. It can be considered as
a generalization of Proposition 2 in [23], where an analogous
result was proven for the interval [0, 1].
Proposition 2 Let A be a n × n matrix. The binary relation
R defined over Rn as

(a1, . . . , an)R(ā1, . . . , ān)

if and only if A(a1, . . . , an)
′ �Lex1 A(ā1, . . . , ān)

′

is an admissible order in Rn if and only if A is full rank and
for every column of A, the first non-null element is positive.
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Proof Let us start proving that it is a sufficient condition.
Since A is full rank, then it follows from Proposition 1 that
the binary relation R is a total order. Thus, we only have to
prove that it refines the lattice order.

Assume (a1, . . . , an) �Lo (ā1, . . . , ān), this is equivalent
to

a j ≤ ā j , ∀ j . (1)

On the other hand, by hypothesis, it holds that A1 j ≥ 0 for
all j , then

n∑

j=1

A1 j a j =
∑

A1 j=0

A1 j a j +
∑

A1 j>0

A1 j a j =
∑

A1 j>0

A1 j a j

≤
∑

A1 j>0

A1 j ā j =
∑

A1 j=0

A1 j ā j +
∑

A1 j>0

A1 j ā j =
n∑

j=1

A1 j ā j .

Therefore

n∑

j=1

A1 j a j ≤
n∑

j=1

A1 j ā j . (2)

We have to prove that

⎛

⎝
n∑

j=1

A1 j a j , . . . ,

n∑

j=1

Anja j

⎞

⎠

�Lex1

⎛

⎝
n∑

j=1

A1 j ā j , . . . ,

n∑

j=1

Anj ā j

⎞

⎠ .

Using Lemma 1, we will prove that for all k ∈ {1, . . . , n},
either (i)∃i < k, such that

∑n
j=1 Ai j a j <

∑n
j=1 Ai j ā j or (ii)∑n

j=1 Ai j a j = ∑n
j=1 Ai j āi for all i < k and

∑n
j=1 Akja j ≤∑n

j=1 Akj ā j ,whereweassume
∑n

j=1 A0 j a j = ∑n
j=1 A0 j āi .

The case k = 1 follows from Eq. 2. We will prove that for
all k ∈ {2, . . . , n}:

– either ∃i < k such that
∑n

j=1 Ai j a j <
∑n

j=1 Ai j ā j

– or
∑n

j=1 Ai j a j = ∑n
j=1 Ai j ā j for all i ≤ k − 1 and in

this case, a j = ā j for all j such that Ai j �= 0 for some
i ≤ k − 1 and

∑n
j=1 Akja j ≤ ∑n

j=1 Akj ā j .

Case k = 2. If
∑n

j=1 A1 j a j <
∑n

j=1 A1 j ā j , it holds for
k = 2.

Otherwise, by Eq. 2,
∑n

j=1 A1 j a j = ∑n
j=1 A1 j ā j . This

implies that

a j = ā j ∀ j | A1 j > 0. (3)

Moreover

n∑

j=1

A2 j a j =
∑

A2 j<0

A2 j a j +
∑

A2 j=0

A2 j a j +
∑

A2 j>0

A2 j a j

=
∑

A2 j<0

A2 j a j +
∑

A2 j>0

A2 j a j .

If A2 j < 0, by hypothesis on A, it must hold that A1 j > 0,
and therefore, by Eq. 3, also a j = ā j . It then follows that∑

A2 j<0 A2 j a j = ∑
A2 j<0 A2 j ā j . Therefore

n∑

j=1

A2 j a j =
∑

A2 j<0

A2 j a j +
∑

A2 j>0

A2 j a j

≤
∑

A2 j<0

A2 j ā j +
∑

A2 j>0

A2 j ā j =
n∑

j=1

A2 j ā j .

Assume the result holds for k − 1, this is, assume that

– either ∃i < k − 1 such that
∑n

j=1 Ai j a j <
∑n

j=1 Ai j ā j

– or
∑n

j=1 Ai j a j = ∑n
j=1 Ai j ā j for all i < k − 1, and in

this case, a j = ā j for all j , such that Ai j �= 0 for some
i < k − 1 and

∑n
j=1 Ak−1 j a j ≤ ∑n

j=1 Ak−1 j ā j .

Let us prove it for k. If
∑n

j=1 Ai j a j <
∑n

j=1 Ai j ā j for
some i < k, the proof follows. Otherwise,

∑n
j=1 Ai j a j =∑n

j=1 Ai j ā j for all i < k, in particular for i = k − 1. In this
case

∑

Ak−1 j<0

Ak−1 j a j +
∑

Ak−1 j>0

Ak−1 j a j

=
∑

Ak−1 j<0

Ak−1 j ā j +
∑

Ak−1 j>0

Ak−1 j ā j . (4)

If Ak−1 j < 0, by the hypothesis on A, necessarily Ai j > 0
for some i < k − 1. It follows from the hypothesis of induc-
tion that then a j = ā j . Therefore,

∑
Ak−1 j<0 Ak−1 j a j =∑

Ak−1 j<0 Ak−1 j ā j , whereas

∑

Ak−1 j>0

Ak−1 j a j =
∑

Ak−1 j>0

Ak−1 j ā j .

Therefore, a j = ā j for all j , such that Ak−1 j �= 0.
We still need to prove that

∑n
j=1 Akja j ≤ ∑n

j=1 Akj ā j

to close the proof by induction. Observe that if Akj < 0,
necessarily Ai j > 0 for some i < k and a j = ā j . Therefore

n∑

j=1

Akja j =
∑

Akj<0

Akja j +
∑

Akj>0

Akja j
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=
∑

Akj<0

Akj ā j +
∑

Akj>0

Akja j

≤
∑

Akj<0

Akj ā j +
∑

Akj>0

Akj ā j =
n∑

j=1

Akj ā j .

On the other hand, the necessary condition is also fulfilled.
Assume that there exists a column j , such that Akj < 0
for some k ∈ {1, . . . , n} and Ai j = 0 for all i < k. Take
al = āl = 0 for all l < j , a j = 1, ā j = 2 and al = āl = 2
for all l > j . This is

(a1, . . . , an) = (0, . . . , 0, 1, 2, . . . , 2)
(ā1, . . . , ān) = (0, . . . , 0, 2, 2, . . . , 2).

It is clear that (a1, . . . , an) �Lo (ā1, . . . , ān). However,
A(a1, . . . , an)′ ��Lex1 A(ā1, . . . , ān)′. Observe that for i <

k, since Ai j = 0, it holds that

∑n
l=1 Ailal = Ai j + 2

n∑
l= j+1

Ail = 2
n∑

l= j+1
Ail

= 2
n∑

l= j
Ail =

n∑
l=1

Ail āl .

And for k

n∑
l=1

Aklal = Akj + 2
n∑

l= j+1
Akl > 2Akj + 2

n∑
l= j+1

Akl

=
n∑

l=1
Akl āl ,

where the inequality comes from Akj < 0 and, therefore,
Akj > 2Akj . With this, we prove that A(a1, . . . , an)′ ��Lex1

A(ā1, . . . , ān)′.

As a direct consequence, we can build new lexicographic
orders just by changing the order of comparison of the com-
ponents of the tuples.

Definition 7 Let (i1, . . . , in)be thepermutationof {1, . . . , n}
that takes element ik to position k, then the ordering in Rn

generated from permutation (i1, . . . , in) is denoted �i1...in
and defined as

(a1, . . . , an) �i1...in (ā1, . . . , ān)

if and only if they are the same tuple or (assuming ai0 = 0 =
āi0 ), there exists some k ∈ {1, . . . , n}, such that ai j = āi j for
all j < k and aik < āik .

Example 1 In R4, the permutation (2, 1, 4, 3) produces the
order �2143 that is based on first comparing the second com-
ponents; if there is a tie, then comparing the first components;
if there is again a tie, it compares the forth components and if
they are still equal, finally comparing the third components.

Observe that �1,...,n is the type 1 lexicographic order.
As mentioned above, Proposition 2 allows to prove easily

that the ordering of Definition 7 is an admissible order for
any permutation (i1, . . . , in).

Corollary 2 For any permutation (i1, . . . , in), the lexico-
graphic order �i1...in is a total order.

Proof First, notice that the order�i1...in can be obtained from
permuting the components of the tuples according to permu-
tation (i1, . . . , in) and then applying the type 1 lexicographic
order:

(a1, . . . , an) �i1...in (ā1, . . . , ān) ⇔ (ai1 , . . . , ain )

�Lex1 (āi1 , . . . , āin ).

With this in mind, call Ii1...in the matrix obtained from
applying permutation (i1, . . . , in) to the rows of the identity
matrix of dimension n. It is easy to see that (ai1 , . . . , ain ) =
Ii1...in (a1, . . . , an)

′. The result follows from Proposition 2.
Notice that Ii1...in is a full rank matrix, such that the first (and
only) non-null element of every column is positive.

The characterization of Proposition 2 still holds if we
restrict to Cn(R), this is, to ordered tuples:

Corollary 3 Let A be a full rank n × n matrix. The binary
relationR defined over Cn(R) as

[a1, . . . , an]R[ā1, . . . , ān] if and only if A(a1, . . . , an)
′

�Lex1 A(a1, . . . , an)
′

is an admissible order in Cn(R) if and only if the first non-null
element of all the columns of A are positive.

Proof It follows from Proposition 2. Just observe that the
elements used in the proof of necessity, (a1, . . . , an) =
(0, . . . , 0, 1, 2, . . . , 2) and (ā1, . . . , ān) = (0, . . . , 0, 2, 2,
. . . , 2) are in fact elements of Cn(R).

As an immediate corollary, we can in particular construct
more linear orders over C4(R) just by considering the 24
possible permutations of the rows of I4. All these matrices
satisfy that they have a non-null element (equal to 1) per
column.

Corollary 4 Let (i1, i2, i3, i4) be a permutation of the set
{1, 2, 3, 4} and let Ii1...i4 be the matrix obtained from apply-
ing the permutation (i1, i2, i3, i4) to the rows of the identity
matrix I4. The relation �i1...i4 defined as

[a1, a2, a3, a4] �i1...i4 [ā1, ā2, ā3, ā4]
�

Ii1...i4(a1, a2, a3, a4)
′ �1234 Ii1...i4(ā1, ā2, ā3, ā4)

′
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for any [a1, a2, a3, a4], [ā1, ā2, ā3, ā4] ∈ C4(R), is an
admissible order in C4(R).

The orders constructed in the previous corollary are the
lexicographic orders in C4(R) and they will be essential in
this study.

Finally, we will relate the set of ordered tuples to the set of
real intervals. Let us recall that givena, b ∈ Rwitha ≤ b, the
closed interval [a, b] is the set [a, b] = {r ∈ R | a ≤ r ≤ b}.
If we denote the set of all intervals in the real line as L(R) =
{[a, b] | a, b ∈ R and a ≤ b} and the set of subintervals
of [0, 1] as L([0, 1]), that is, L([0, 1]) = {[a, b] | a, b ∈
R and 0 ≤ a ≤ b ≤ 1}, it is immediate that the sets L(R)

andL([0, 1]) are isomorphic to the particular cases of ordered
tuples C2(R) and C2([0, 1]), respectively.

Thus, if we restrict us to L(R), the only possible lexico-
graphic orders are Lex1 and Lex2. If we restrict the order to
real numbers, we recover the usual order in R.

In addition to the other lexicographic orders, Corollary 2
allows to connect another well-known admissible order with
the type 1 lexicographic order: theXu andYager order. Recall
that this order is defined over L([0, 1]) and denoted �XY . It
states that [a1, a2] �XY [ā1, ā2] if and only if a1 + a2 <

ā1 + ā2 or (a1 + a2 = ā1 + ā2 and a2 − a1 ≤ ā2 − ā1).
This definition can be extended to C4(R) as follows.

Definition 8 The Xu-Yager order over C4(R) is denoted as
�XY and defined as: [a, b, c, d] �XY [ā, b̄, c̄, d̄] if and only
if one of the following conditions are fulfilled:

• a + b + c + d < ā + b̄ + c̄ + d̄
• a + b+ c+ d = ā + b̄+ c̄+ d̄ and (c− a) + (d − b) <

(c̄ − ā) + (d̄ − b̄)
• a + b + c + d = ā + b̄ + c̄ + d̄ , (c − a) + (d − b) =

(c̄ − ā) + (d̄ − b̄) and a < ā
• a + b + c + d = ā + b̄ + c̄ + d̄ , (c − a) + (d − b) =

(c̄ − ā) + (d̄ − b̄), a = ā and c ≤ c̄.

Corollary 5 The binary relation �XY is an admissible order
in C4(R).

Proof The proof is immediate from Proposition 2, since we
only have to consider the matrix

A =

⎛

⎜⎜⎝

1 1 1 1
−1 −1 1 1
1 0 0 0
0 0 1 0

⎞

⎟⎟⎠ ,

which is a full rank matrix and the first element of each
column is positive.

When restricted to intervals, the latter order behaves as the
Xu–Yager classical order. Alternative definitions of exten-
sions of the Xu–Yager order can be considered. In particular,

we can change the third and fourth conditions for any pair
that makes it an admissible order.

4 Risk Matrices Under Uncertainty

Our main proposal is to apply the previous studies about
ordering tuples to manage risk matrices when uncertainty
appears.

When a decision-maker uses the risk matrix in Table 2,
a level of likelihood and severity must be chosen. How-
ever, there are some cases where the boundaries between, for
example, a remote and an unlikely likelihood are not very
clear. Thus, it may be quite natural for the expert to assign
a likelihood level between remote and unlikely instead of
choosing one of them. The same happens with severity, the
expert may prefer to pick an intermediate level rather than to
be forced to decide between two of them. The here-proposed
method adds the possibility to the decision-maker to make
this type of decisions. Thus, we have to introduce a defini-
tion of imprecise risk matrix. We also have to propose how
to order the resulting risk assignments.

Continuing with the previous example, if the expert is
allowed to assign an intermediate level of likelihood between
remote and unlikely and severity is, for instance, Moderate,
then the associated risk value must be in the interval [3, 6],
since, looking at Table 2, Remote-Moderate has a risk value
of 3 and Unlikely-Moderate is assigned a risk value of 6. We
can follow the same procedure for all the pairs that involve
an intermediate level and a non-intermediate level, being the
risk assignments intervals instead of real numbers. A first
step on the construction of the imprecise risk matrix in this
context is presented in Table 3.

Notice that now the rows and the columns include the
intermediate levels. For example, the label NC-HL refers to
a level of intermediate likelihood between Nearly Certain
and Highly Likely and the label MI-MO refers to the sever-
ity intermediate level between Minor and Moderate. We also
notice that we have filled in the cells in the intersection of
an intermediate level and a non-intermediate level. The asso-
ciated risk is represented with an interval that covers all the
possible risk values.

However, there are still some empty cells in the imprecise
risk matrix that we are constructing. They are those asso-
ciated with the cases when both severity and likelihood are
imprecise. To ease the representation, Table 4 only represents
the submatrix containing the “Remote” and “Unlikely” lev-
els of likelihood and the “Minor” and “Moderate” levels of
severity.

An intuitive way to solve the cases of empty cells is to
consider an intersection of two intervals of intervals, simi-
larly to what we have done when only one of the labels was
imprecise. Thus, in the example of Table 4, we must con-
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Table 3 First step for the construction of an imprecise risk matrix

Likel Sev.
N N-MI MI MI-MO MO MO-S S S-C C

NC 5 [5, 10] 10 [10, 15] 15 [15, 20] 20 [20, 25] 25

NC-HL [4, 5] [8, 10] [12, 15] [16, 20] [20, 25]

HL 4 [4, 8] 8 [8, 12] 12 [12, 16] 16 [16, 20] 20

HL-L [3, 4] [6, 8] [9, 12] [12, 16] [15, 20]

L 3 [3, 6] 6 [6, 9] 9 [9, 12] 12 [12, 15] 15

L-UL [2, 3] [4, 6] [6, 9] [8, 12] [10, 15]

UL 2 [2, 4] 4 [4, 6] 6 [6, 8] 8 [8, 10] 10

UL-R [1, 2] [2, 4] [3, 6] [4, 8] [5, 10]

R 1 [1, 2] 2 [2, 3] 3 [3, 4] 4 [4, 5] 5

sider all the possible intervals between [2, 4] and [3, 6] that
are also between [2, 3] and [4, 6]. This leads to the concept
of box, formally defined as follows.

Definition 9 Let a, b, c, d ∈ R be four real numbers, such
that a ≤ b ≤ c ≤ d. The set {[x, y] ∈ L(R) : [a, c] �Lo

[x, y] �Lo [b, d] and [a, b] �Lo [x, y] �Lo [c, d]} is said
to be a box with extremes a, b, c and d.

A box is determined by the four (ordered) bounds a, b, c, and
d, equivalently, by the ordered tuple [a, b, c, d] ∈ C4(R).
The converse also holds. Any ordered tuple in C4(R) allows
to build a box. Therefore, by abuse of notation, we use C4(R)

to refer to the set of all boxes.
We can obtain an equivalent but easier definition for a box.

Proposition 3 Let [a, b, c, d] ∈ C4(R). We have that

[a, b, c, d] = {[x, y] ∈ L(R)) : a ≤ x ≤ b and c ≤ y ≤ d}.

Proof The definition of a box implies that [a, c] �Lo

[x, y] �Lo [b, d] and [a, b] �Lo [x, y] �Lo [c, d], which

is equivalent to a ≤ x ≤ b, c ≤ y ≤ d, a ≤ x ≤ c and b ≤
y ≤ d. Since we have that b ≤ c, the latter conditions can be
reduced only to a ≤ x ≤ b and c ≤ y ≤ d.

Observe that we can express any interval and any real
number as a box. In particular, any interval [a, b] ∈ L(R)

can be expressed as a box with the form [a, a, b, b] and any
real number a ∈ R as [a, a, a, a], so this concept generalizes
the concept of interval, and the concept of real number too.

From this equivalent definition, we can also deduce that
a box is a particular type of bidimensional hyper rectangle
or 2-orthotrope (see [24]). On the other hand, if we con-
sider the identification of a box [a, b, c, d] and the 4-tuple
(a, b, c, d), the box concept coincides with the one of 4-
dimensional interval proposed in [25].

Now, with the concept of box and the previous ideas about
risk matrices, we can fill in the empty cells in Table 3. In
general, an imprecise risk matrix has boxes as entries.

Definition 10 An imprecise risk matrix based on m levels of
severity and n levels of likelihood is a n ×m matrix with the
following entries:
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Table 4 Risk value for a level of
likelihood between remote and
unlikely and a level of severity
between serious and critical

Severity
MI MI-MO MO

UL 4 [4, 6] 6

Likelihood UL-R [2, 4] ? [3, 6]
R 2 [2, 3] 3

for 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ m − 1 where ∗ is the box

[i j, min{i( j + 1), (i + 1) j},
max{i( j + 1), (i + 1) j}) , (i + 1)( j + 1)].

Observe that, when possible, we have simplified the notation
and written some entries as numbers or intervals, but all the
elements of the matrix are boxes actually.

Thus, we obtain the imprecise risk matrix, where the risk
assignment to the intersection of two labels is a real num-
ber, the risk assignment to the intersection of a label and an
intermediate label is an interval and the intersection of two
intermediate labels is assigned a box.The complete imprecise
risk matrix considered in our study can be found in Table 5.

Since the risk assessments of this matrix are boxes, an
order that allows to determine the most important risks is
necessary in C4(R).

In the previous section, we have proven how to obtain
new admissible orders from other ones and the final outcome
obviously depends on the chosen order. For instance, if we
consider the first lexicographical order, we can colour the
imprecise riskmatrix using the same legend as in the classical
risk matrix, the green colour for the boxes with value lower
or equal to 3; yellow if the value is greater than 3 but lower
or equal to 7; orange for the boxes greater than 7 and lower
or equal to 12 and red for the greatest values. The coloured
imprecise risk matrix can be found in Table 6.

Additionally, we can build the Hasse diagram (see [26])
over the risk assignment of the imprecise risk matrix, as we
can see in Fig. 1. Notice that a change on the choice of the
admissible order for boxes may change the order of the dif-
ferent boxes at the imprecise risk matrix and, therefore, the
Hasse diagram too. For instance, [4, 6, 6, 9], associated with
(L-Ul)-(MI-MO), and 5 = [5, 5, 5, 5], associated with NC-
N, fulfils that [4, 6, 6, 9] �1234 5, but 5 �4321 [4, 6, 6, 9].

5 Illustrative Examples

In this section, we use the imprecise risk matrix in two dif-
ferent examples. In particular, we first present a toy example
based on educational transportation and later a real example
regarding the construction of a metro station.

5.1 An example regarding educational
transportation

Consider the following seven different mistakes or errors a
local bus driver can make given in [27]:

E1 Going through a yellow light,
E2 Going through a red light,
E3 Driving under the influence of drugs,
E4 Do not use the turn signal,
E5 Waving at another bus driver,
E6 Failing to give the correct change by more than 50 cents,
E7 Failing to give the correct change by 50 cents or less.

Some errors are likely but not very dangerous and others
are extremely dangerous but highly unlikely. Since the avail-
able resources are limited, the objective is to compare the
associated risks and identify the top ones (considering both
likelihood and severity) so as to focus the effort on preventing
them.

Based on previous studies, the likelihood and severity of
the errors, as well as the risk assignment applying the impre-
cise risk matrix, can be determined as shown in Table 7.

As we have said before, the choice of the admissible order
maychange theorder among the errors. In general, this choice
is arbitrary. In the following, we will use ranking methods to
fuse the information from some admissible orders to achieve
a consensus order. Thus, we can combine the information
given by the different orders with their different criteria.

In this example, we use the 24 lexicographic orders intro-
duced in Corollary 4. Although we have used 24 different
orders, only 3 different ordinations of the errors appear

• E1 ≥ E2 ≥ E4 ≥ E3 ≥ E5 ≥ E7 ≥ E6
• E1 ≥ E2 ≥ E4 ≥ E3 ≥ E5 ≥ E6 ≥ E7
• E2 ≥ E1 ≥ E4 ≥ E3 ≥ E5 ≥ E7 ≥ E6

all of them eight times.
The combination of this information can be done bymeans

of the Borda Count Method ([28]). It is a family of positional
voting rules that regards in the frequency of the possible
ordinations. Then, a votation matrix is build, that is, a n × n
matrix O, for n elements, such that Oi, j is the number of
times that the i th element is ordered after the j-th element.
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Table 5 Complete imprecise risk matrix

Likel Sev.
N N-MI MI MI-MO MO MO-S S S-C C

NC 5 [5, 10] 10 [10, 15] 15 [15, 20] 20 [20, 25] 25

NC-HL [4, 5] [4, 5, 8, 10] [8, 10] [8, 10, 12, 15] [12, 15] [12, 15, 16, 20] [16, 20] [16, 20, 20, 25] [20, 25]

HL 4 [4, 8] 8 [8, 12] 12 [12, 16] 16 [16, 20] 20

HL-L [3, 4] [3, 4, 6, 8] [6, 8] [6, 8, 9, 12] [9, 12] [9, 12, 12, 16] [12, 16] [12, 15, 16, 20] [15, 20]

L 3 [3, 6] 6 [6, 9] 9 [9, 12] 12 [12, 15] 15

L-UL [2, 3] [2, 3, 4, 6] [4, 6] [4, 6, 6, 9] [6, 9] [6, 8, 9, 12] [8, 12] [8, 10, 12, 15] [10, 15]

UL 2 [2, 4] 4 [4, 6] 6 [6, 8] 8 [8, 10] 10

UL-R [1, 2] [1, 2, 2, 4] [2, 4] [2, 3, 4, 6] [3, 6] [3, 4, 6, 8] [4, 8] [4, 5, 8, 10] [5, 10]

R 1 [1, 2] 2 [2, 3] 3 [3, 4] 4 [4, 5] 5

Table 6 Imprecise risk matrix

Fig. 1 Hasse diagram for all the
risk assignments of the
imprecise risk matrix using he
admissible order �1234

The votation matrix associated to our example can be found
in Table 8.

As can be seen in the votationmatrix, its elements aremul-
tiples of 8, since all the possible ordinations have frequency
8. To obtain the Borda Count Ranking, we just need to add
the values of the votation matrix row by row, obtaining the
Borda Counts αi with i ∈ {E1, . . . , E7}. In our case, we

have that αE1 = 136, αE2 = 128, αE3 = 72, αE4 = 96,
αE5 = 48, αE6 = 8 and αE7 = 16. Then, ordering the Borda
Counts using the usual order for real numbers, we obtain the
final ranking

E1 ≥ E2 ≥ E4 ≥ E3 ≥ E5 ≥ E7 ≥ E6.

Table 7 Likelihood, severity,
and risk assignment assigned to
the mistakes

Error Likelihood Severity Risk assignment

E1 HL-L M-S [12, 15, 16, 20]
E2 L C 15

E3 UL-R C [5, 10]
E4 L-UL S-C [8, 10, 12, 15]
E5 NC N 5

E6 UL-R N-MI [1, 2, 2, 4]
E7 L-UL N [2, 3]
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Table 8 Votation matrix associated with the educational transport
example when using the 24 lexicographical orders

O E1 E2 E3 E4 E5 E6 E7

E1 0 16 24 24 24 24 24

E2 8 0 24 24 24 24 24

E3 0 0 0 0 24 24 24

E4 0 0 24 0 24 24 24

E5 0 0 0 0 0 24 24

E6 0 0 0 0 0 0 8

E7 0 0 0 0 0 16 0

Therefore, the most important risks are related, respec-
tively, with going through a yellow light and a red light,
while the less important are related to failing to give the cor-
rect change.

The Condorcet Ranking (see, for instance, [29, 30]) is
based on themost frequent dominance of an element over the
others. Using this ranking method, we have that A ≥ B is the
frequency of A ≥ B over the possible ordinations is greater
or equal than the frequency of B ≥ A. Focusing on our
example, the error E1 is the greatest in 16 of the 24 orders, so
it is the greatest error with respect to the Condorcet Ranking.
Computing the rest of the cases, we obtain the following
ranking:

E1 ≥ E2 ≥ E4 ≥ E3 ≥ E5 ≥ E7 ≥ E6,

which is, in this example, the same as with the Borda Count
Ranking. Having the same ranking when using the Borda
Count Ranking and the Condorcet Ranking is quite usual,
although there are some examples in which the resulting rak-
ing is different (see [29]).

Thus, using rankingmethods,wehavebeen able to fuse the
information given by the lexicographical orders and, there-
fore, the most critical error can be identify.

5.2 A Real Example Regarding the Construction of a
Metro Station

In [18], the problem of risk assignment in the construction
of the station C12 Nowy Świat-Uniwersytet in the metro sys-
tem of Warsaw is studied. In particular, 19 different errors
regarding political, economic, social, and technological fac-
tors were considered. For more detailed description of the
problem and the considered sources of risk, we refer the
reader to [18].

E1 Obtaining administrative decisions and opinions from
the owners of uninventoried infrastructure networks.

Table 9 Assignation of likelihood and severity imprecise labels given
a numeric value

Range of values Likelihood label Severity label

[1, 1.25) R N

[1.25, 1.75] UL-R N-MI

(1.75, 2.25) UL MI

[2.25, 2.75] L-UL MI-MO

(2.75, 3.25) L MO

[3.25, 3.75] HL-L MO-S

(3.75, 4.25) HL S

[4.25, 4.75] HL-NC S-C

(4.75, 5] NC C

E2 Financial consequences of acquiring opinions and posi-
tions from the owners of uninventoried infrastructure
networks.

E3 Long tendering procedures.
E4 Gaining access to the land.
E5 Acquiring administrative decisions in the pre-tender

stage.
E6 Adverse geotechnical conditions.
E7 Actual technical condition of neighbouring buildings.
E8 Damage to infrastructural networks not marked on

maps.
E9 Quality of the execution works.
E10 Withdrawing the project from the list of indicative

projects.
E11 Protests against localization of the station.
E12 A collapse.
E13 Substantial increase in project costs as a result of overall

increase in the cost of building materials and salaries.
E14 Lack of coordination between parties of the investment

process.
E15 Unexplored ordnance and misfires.
E16 Parameters of existing infrastructure in reference to the

possibility of connecting new facilities during the con-
struction.

E17 High financial expectations of the land owners.
E18 Quality of the project.
E19 Changes in law.

The likelihood and severity of each of the errors were
ranked with a number in the interval [1, 5]. To obtain our
imprecise labels,wehaveperformed the assignationprovided
in Table 9.

Admittedly, the definition of the boundaries of the values
assigned to each imprecise label is quite arbitrary. Intuitively,
considering that the values 1, 2, 3, 4, 5 represent the labels
R, UL, L, HL, and NC for the likelihood and N, MI, MO, S,
and C for the severity, values that are closer to them should be
assigned with non-imprecise labels, while values in the mid-
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Table 10 Likelihood, severity, risk assignment, and position assigned
to the different errors

Error Likelihood Severity Risk assignment Position

E1 5 5 25 1st

E2 [4, 5] [4, 5] [16, 20, 20, 25] 3rd

E3 4 5 20 2nd

E4 [4, 5] 3 [12, 15] 5th

E5 [4, 5] [3, 4] [12, 15, 16, 20] 4th

E6 5 [1,2] [5, 10] 10th

E7 3 [2, 3] [6, 9] 7 − 8th

E8 4 2 8 6th

E9 [3, 4] 2 [6, 8] 9th

E10 [2, 3] 2 [4, 6] 13th

E11 [2, 3] 3 [6, 9] 7 − 8th

E12 [4, 5] [1, 2] [4, 5, 8, 10] 11th

E13 4 1 4 14 − 15th

E14 4 1 4 14 − 15th

E15 [1, 2] [4, 8] [4, 8, 8, 16] 12th

E16 [3, 4] 1 [3, 4] 17th

E17 3 1 3 18th

E18 [3, 4] [1, 2] [3, 4, 6, 8] 16th

E19 [2, 3] [1, 2] [2, 3, 4, 6] 19th

dle range between them should be associated with imprecise
labels.

After the determination of the labels is done, each of the
19 errors has its likelihood, severity, and risk (see the first
four columns of Table 10). Then, we can use the admissible
order �1234 to order the different cases (see last column of
Table 10). If different orders wanted to be considered, then
a similar procedure as in the latter example, using ranking
methods, can be applied.

Therefore, the main risks are the ones related to owners of
uninventoried infrastructure networks and tendering proce-
dures, due their both big likelihood and consequences. On the
other hand, changes in law and high financial expectations
of the land owners are seen as the less important risks.

6 Conclusions

In this contribution, we have studied how to order tuples
of dimension greater than two and, in particular, ordered
tuples. We have provided general results on how to obtain
newadmissible orders for tuples fromknownones. For exam-
ple, we have proven that the generalization of the Xu-Yager
order for four-dimensional tuples can be obtained from the
type 1 lexicographic order.

The previous theoretical study has been applied to the con-
text of Human Reliability, in particular, to Risk Assessment.
The concept of imprecise risk matrix has been introduced.
In this matrix, the expert or decision-maker is allowed to
choose intermediate levels of severity and likelihood for each
evaluated error. The combination of those two assessments
provides a level of risk. The use of our definition of impre-
cise risk matrix allows flexibility in the risk assignments.
They are not necessarily real number any longer, but can be
represented by more general mathematical concepts such as
intervals or boxes. The concept of box has also been intro-
duced in this paper as a generalization of intervals to capture
risk assessments. The theoretical study developed in the first
part of the manuscript allows us to order the new structures.
Therefore, it allows to determine the most important errors.

A case study regarding educational transportation has
been presented. In this example, different errors were com-
pared using the imprecise riskmatrix and the 24 lexicograph-
ical orders for boxes. To obtain a consensus ranking for all the
orders, election methods such as the Borda Count Ranking
and the Condorcet Ranking have been used.

The main limitation of the presented method is the huge
amount of possible admissible orders that can be chosen
to order the tuples in practical applications. Even with the
use of the Borda Count Ranking or the Condorcet Ranking
when considering more than one order, these ranking meth-
ods could fail to obtain a unique winner.

An open problem concerning the construction of linear
orders is to determine what kind of admissible orders can
be obtained as a non-linear transformation of the type 1 lex-
icographic order. Concerning the application, it would be
interesting to be able to consider a third criteria, in addition
to likelihood and severity, to evaluate errors. This would lead
to work with three-dimensional matrices, and the imprecise
risk assignment could be represented by three (or higher)-
dimensional boxes. The use of more election methods, such
as the Kemeny ranking, to get a consensus order on the risk
assignments could also be explored.
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