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Abstract

The real time knowledge of dairy milk composition can be used as a tool to guarantee
milk quality and safety, offering additional information for dairy producers and
consumers. To carry out thesesitu analyses, methodologies based on Near Infrared
(NIR) portable sensors have a great potential as an advisory tool. The main goals of the
present work have been to develop a methodology using a hand-held portable NIR
spectrophotometer to collect raw milk spectra, including the development of calibration
models for the analysis of protein, fat and solids-non-fat (SNF) of raw milk and further
to transfer the developed models to another portable unit. A total of 542 fresh milk
samples were scanned over the NIR spectral range (1600-2400nm) using a hand-held
MicroPhazif™ (MP) NIR spectrometer and different instrumental configurations. The
best results for repeatability and reproducibility calculated as root mean squared (RMS)
were obtained using a 17 mm cuvette thickness. The displayed predictive ability of
calibration models measured as Standard error of prediction/Standard error of cross
validation were 0.96; 0.72 and 0.83 for fat, protein and SNF contents, respectively. For
cloning purposes an additional MP unit (satellite) has been used. A standardization set
of 10 samples enabled standardization of both instruments. After applying
standardization matrix, Standard error of differences between master and satellite
reached great reduction, 68% for fat, 66 % for protein and 54 % for SNF. Moreover, the
demonstrated ability of sharing calibration models among several units is essential for
implementation of portable instruments for in-situ analysis to provide indicators of milk
composition at farm level.

Keywords. MEMS-NIR, raw milk, in-situ NIRS analysis, standardization, calibration
transfer
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Abbreviations

FNS: Foss NIRSytem 6500 monochromator

FTIR: Fourier Transform Infrared

GH: Global H

INIA: National Institute for Agricultural and Food Research
MBM: Meat and Bone Meal

MEMS: Micro-Electro-Mechanical System

MP: Microphazir™ NIRS Instrument

MPLS: Modified Partial Least Square

MP-SERIDA: Microphazir™ NIRS Instrument- Regional Institute for Research and

Agro-Food Development

MP-UCO: Microphazir™ NIRS Instrument- University of Cordoba
NH: Neighbor Distance

NIRS: Near Infrared Spectroscopy

PDF: Precision Dairy Feeding

PDM: Precision Dairy Management

PLF: Precision Livestock Farming

R?.: Coefficient of Determination in Cross-Validation

RMS(C): Root Mean Square of Differences Corrected for the Bias
SD: Standard Deviation

SECV: Standard Error of Cross-Validation

SED: Standard Error of Difference

SEP: Standard Error of Prediction

SNF: Solids-Non-Fat

SNV: Standard Normal Variate

SNVD: Standard Normal Variate plus Detrend

stl: Cloning set comprising 1 sample (the sample closest to the center of the population)

st10: Cloning set comprising 10 samples
TMR: Total Mixed Ration
UCO: University of Cordoba



100 1. Introduction

18; In the near future more and more dairy farms will uptake sophisticated Precision

103 Livestock Farming (PLF) by sensors systems to support farm management. PLF is a
104 combination of developing animal sensing (sensors) tools and decision-making process
105 at the farm level. These precision systems include an instantaneous knowledge of dairy
106 milk composition; this information can be used as a tool to guarantee milk quality and
107 safety. It also has the potential to support animal feed suppliers, human-food retailers
108 and other players along the supply chain to make better choices. The current challenge
109 for PLF is the integration of the technology in the farm but not only to the pioneering
110 farms (Halachmi, 2015). Banhazi, Babinszky, Halas & Tscharke (2012) outlined the

111 potential role that PLF can play in ensuring that the best possible management processes
112 are implemented on livestock farms increasing farm profitability and quality of milk

113 products for consumers.

114 A new, alternative model for labour-efficient dairy production is emerging. Part of this
115 trend in automation, robotic milking - an example of "precision dairy management"

116 (PDM) - reduces labour requiremeatsd minimize food safety risks (Rodenburg, 2012;
117 Bewley, Russell, Dolecheck, Borchers, Stone & Wadsworth, 2015). However, in order
118 to fully exploit the potential of this changing trend in dairy management, specific

119 technologies should be considered together with the most widespread as, electronic
120 radio frequency identification systems, robotic milking and calf- feeding systems,

121 cameras, microphones, etc. These technologies allow control with precision as feed
122 guality as the final product, milk, which could include under the term of Precision Dairy
123 Feeding, (PDF). Taking into account that feed cost represents the most significant item
124 of the total costs in milk production, and that in recent years, the volatility of the prices
125 of cereals and flour protein, has been recurrent in world markets, it makes necessary to
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use alternative rations, as far as possible, trying to introduce raw materials of low cost,
and the greatest possible use of local resources and by-products, often based on a total
mixed ration (TMR) that combines all ration ingredients into a single feed mix. This
complicates the nutritionist roles, who must formulate rations with many raw materials,
even with nutritional value and composition little known to them, maintaining quality

and assessing milk safety. This situation of fragility of the dairy sector at the global

level is causing, innovative nutritionists to look for alternatives such as NIRS
instruments to be used as a necessary tool in PDF. There are numerous works in the
NIR literature applying NIRS technology to milk analysis (reviewed by Holroyd, 2013).
They have shown that it is possible to obtain high or moderate accuracy and precision in
calibration models to predict the main chemical constituents. Papers dealing with the
application of NIR to liquid milk can be split into several areas that involve; the
determination of milk composition, authentication of cow feeding regimes and
geographic origin of milk, including milk classification, calibration robustness,

industrial applications and the measurement of milk microbiological content.

A high percentage of water content in samples to analyze could interfere with NIRS
analyses. Water content in fresh milk is one of the major contributors to the variation in
the NIR spectra due to the strong absorption bands of O-H groups in the NIR region,
which can create a critical interference in quantitative analysis. Most of the research
milk works are carried out using homogenized and dried samples (DESIR method)
(NuUnez-Sanchez et al., 2016).

The use of NIRS technology on-farm, for the analysis of forage and TMR has been
demonstrated scientifically and there are some commercial solutions developed, such as
a NIR Analyzer installed directly on the self-propelled mixer wagon or in the shovel of

the front loader. It is able to predict dry matter for each ingredient during the loading
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phase recalculating automatically the quantity to load to maintain a consistent ration

(https://www.dinamicagenerale.com/Media/Default/Catalogues/PrecisionFeeding-ENG-

LOW.pdf, 2016). However, research about the employment of portable NIRS sensors,
susceptible to use for the on-site control of milk obtaining information on individual

cow state is very limited or almost non-existent (Kawasaki et al., 2008; dos Santos,
Lopo, Pascoa & Lopes, 2013). Therefore, it is urgent and important, to get scientific
information about the potential of portable NIRS instruments for the analysis of raw

milk, existing currently in the market.

The challenge facing this applied research is that the instruments more consolidated in
the market, are not designed for this specific purpose of analyzing complex liquids such
as milk. In terms of spectral characteristics and physico-chemical properties, it is
necessary to show their adaptation and feasibility for the analysis of quality of raw milk.
The main goals of the present work are to develop a new methodology based on use of
hand-held portable NIR spectrophotometer for the analysis of fat, protein and solids-
non-fat (SNF) in raw milk. Further we will evaluate the transferability of the developed
methodology and calibration models to a second portable NIRS unit. Finally we will
study the alternative of sharing prediction models among several units as essential tool
for implementation of portable NIR instruments for in-situ analysis to provide indicators

of milk composition at farm level.

2. Material and methods
2.1. NIR instruments and analysis methods
- 1) A Foss NIRSystem 6500 monochromator (FNS). This is an at-lab instrument,
working in a wavelength range between 400 and 2500 nm, equipped with

transport module under controlled environmental conditions (temperature 24°C
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* 1°C, relative humidity 50% + 10%). This instrument was used as a qualitative
reference instrument to optimize sampling strategy and to evaluate the loss of
spectra performance using portable instrument with small scanning window and
narrow wavelength range. Spectra were collected using a liquid opaque quartz
cuvette, reusable, with a 17 mm pathlength (C17) and an aluminum backside
(FOSS. Ref US-ISIH-0398) for trans-reflectance measurements, combining
reflectance and transmittance together into a single mode. The spectra data were
recorded in reflectance mode (log 1/R) with ISI scan software (Infrasoft
International Inc., Port Matilda, PA, USA). Each sample was analyzed in
duplicate and each spectrum was the average of 32 scans performed on liquid

milk.

- 2) MicroPHAZIR ™ (MP) from Thermo Scientific, with a scanning window of 4
mm diameter (sampling area of 0.13%mAll diffuse reflectance spectra were
computed in a wavelength range between 1600 and 2400 nm, with a non-constant
interval of around 8 nm (pixel resolution 8 nm, optical resolution 12 nm) using a
hand-held micro-electro-mechanical system (MEMS) digital transform as portable
NIRS sensor. The instrumental conditions to collect raw milk spectra with this
portable NIR were optimized modifying the parameters:
a) Sample presentation - two cuvettes have been assayed; the first one was C1 quartz
cuvette, with a 1 mm pathlength and reusable. A liquid analysis adapter, to avoid
NIR radiation losses through the quartz backside, was coupled to MP for the
analysis of milk samples with this cuvette. The second one was the C17 quartz
cuvette with an aluminum backside, described above (Foss NIRSystem 6500).
b) Number of scans to average for collecting one spectrum - the range evaluated was

between 5, 10 and 80 scans/spectra. Five is the minimum value to be recorded using
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Phazir Data Management System software (Polychromx, Wilmington, MA,

USA) and 80 is the maximum value.

c) Internal reference or external reference fonsg® background.
For cloning purposes two different units of MP haveen used: SERIDA (MP-
SERIDA; master instrument) and UCO (MP-UCO; satellinstrument) hand-held
NIRS.
Nowadays there are other handhelds devices in mdr&e/ever MP instruments have
been selected to develop this research work bedaeisg handhelds NIRS they are
easy to manage, and only these instruments weikalaleain UCO and SERIDA labs

(Modrofio, Soldado, Martinez-Fernandez & de la Roefgado, 2017).

2.2. Samples and pretreatment

A total of 552 fresh milk samples were collectedwszn 2014 and 2016 from
individual Holstein—Friesian dairy cows of the ewpeental farm located in the
Regional Institute for Research and Agro-Food Daewelent (SERIDA) under different
feeding experiments, and from different farms ledain the North of Spain (Asturias,
Spain), as suppliers from commercial milks lookatgvariability in their composition
through the effect of supplementation, pasture ibedity, fed different preserved
forages (hay and/or silages) or changeability ofRIMIilk samples from experimental
cows of SERIDA were taken from each individual aalinby using the automatic
sampler of Automatic milking system (DelLaval, Spaind in farms by the farmer.

The first 50 fresh milk samples (Set 1) were em@tbyto optimize instrumental
conditions, and establish a sampling methodologyofiiaining high quality milk NIR
spectra using MP-SERIDA spectrophotometer. NIR yaea for this Set 1 were carried

out simultaneously on portable MP-SERIDA and FN$edsrence at-line instrument.
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Set 2 comprising 492 milk samples was divided in tlifferent groups selected with a
view to covering the whole range of spectral valigband product absorbance values,
using the SELECT algorithm included in the WinlShérsion 1.50 software package
(Infrasoft International, Port Matilda, PA, USA):

Group 1 comprising 444 milk samples analyzed indhaeld MP-SERIDA. It was used
to develop the calibration models. NIR analysesthis Group 1 were carried out with
portable MP-SERIDA.

Group 2 comprising 48 milk samples scanned simatiasly on both hand-held
instruments, the master MP-SERIDA and in a secofdWLCO unit. This group was
divided in two different sub-groups. One sub-grocgmprising 10 milk samples
selected to obtain standardization matrixes and difer one comprising 38 milk
samples to validate the transference procedure.

As final step for practical performance, 10 milkrgdes coming from dairy cows of the
experimental farm of SERIDA were analyzed using WO device, to evaluate
sample by sample the calibration transfer procedure

All samples were scanned without pretreatment dftanogenization by hand mixing
for 20-30 sec. The same portion of the sample tsedllect spectra in MP instruments
was used for reference data analysis (fat, praiash SNF). Reference analyses were
carried out using FTIR MilkoScan™ (Foss Electricjlléiod, Denmark) in the
Professional Milk and Agro-food Laboratory of Asasg. This laboratory is accredited

under UNE-EN ISO/IEC 17025: 2005 (246/LE476).

2.3. Spectral Data and Cloning Processing
The first step when starting this research work wasxport into *csv format all

spectral data collected from MP instruments. Aftext, the spectral data were adjusted
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using an interpolation function to get data withamstant step of 2 nm and preserving
the shape by interpolation (Fernandez Pierna, Velene Lecler, Baeten, & Dardenne,
2010). This adjustment is necessary because thegdétrometer works in the range of
1600 to 2400 nm with a non-constant step.

The WinISI software package v. 1.50 (Infrasoft 16&rnational, Port Matilda, PA,
USA) was used to compare FNSMP spectral data and for chemometric development
of MP calibration models. The equations were dguedbusing Modified Partial Least
Square (MPLS) as regression method and cross-tialid@ select the optimal number
of factors to avoid overfitting (Shenk & Westerhad995). Chemical outliers were
detected using the Student T test, to check diffexe between reference and predicted
values; samples with a T value of over 2.5 weresiiared outliers (Mark & Workman,
1991).

Combined standard normal variate (SNV) plus dettesatments were used for scatter
correction (Barnes & Dhanoa, 1989). First- and edederivative treatments were
tested: 1.4.4.1; 1.8.8.1; 1.10.5.1, and 2.5.5.krw/lthe first digit is the number of the
derivative, the second is the gap over which thévatve is calculated (expressed in
data points), the third is the number of data @ointa running average or smoothing,
and the fourth is the second smoothing (ISI soiéwa000).

The best fitting equations, selected by statisticaéria for each parameter, on base of
the lowest standard error of cross-validation (SECWighest coefficient of
determination in cross-validation?f) (Williams, 2001; Pérez-Marin et al., 2008;
Soldado, Fearn, Martinez-Fernandez & de la Rozaddel, 2013) and lowest relation
value between standard error of prediction (SERtissical parameter for testing
external validation of the calibration model onr@8k samples of group 2) and SECV

(SEP/SECV) (Savenije, Geesink, van der Palen & HerBR06).
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Analytical features of NIR developed methodologysweompared with reference
methods performance on the basis of their laboyagoror and were calculated as
intermediate reproducibility according to 1ISO 57@505725-1, 1994; ISO 5725-2,
1994) definitions: (i) repeatability, indicates theariability observed within a
laboratory, over a short time, using a single djeeratem of equipment etc., and (ii)
intermediate reproducibility (standard deviation)Shtermediate precision relates to
the variation in results observed when one or nfaxctors, such as time, equipment and
operator, are varied within a laboratory) on 1Cfedlént samples of Set 2 and was
calculated attending Eq. [1]:

R=S,2/2 [1]
A key factor in the cloning process is the numidesamples used both when selecting a
procedure for standardizing NIR instruments and rwkelecting a cloning algorithm
(Zamora-Rojas et al., 2012; Pérez-Marin, Garridoe\fa Guerrero-Ginel, 2006). Since
cloning using numerous samples is a more compla&cegure, it is advisable to
minimize the number of samples to be analyzed naljgh on the two instruments to
develop the algorithm. Two strategies using différeumber of samples were tested: (i)
10 samples comprising the cloning set (st10); @hthé sample closest to the center of
the population (stl). The cloning algorithm used $tandardization process was the
patented algorithm by Shenk & Westerhaus (2008).
The statistic root mean square error (RMS) was tgestlect and to compare spectra
between subsamples in order to determine diffeenae repeatability and
reproducibility conditions (ISO5725-1 & 2, 1994).
This statistical parameter as the averaged roonhragaare of differences corrected for

the bias (RMS(c)) between two spectra was caladilaging the CONTRAST algorithm

11
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included in the WINISI software package, versioB0l(Infrasoft International, Port

Matilda, PA, USA), and the formula to calculate RIS(c) is Eq. [2]:

(Zln=1(yim_yik))2

a [2]

T Vim—yi)?-
n—1

RMS(c) = 106 x J

Where;

Yim = log (1/R) value of m subsample at a wavelengih)i (
Y, = log (1/R) value of k subsample at a wavelengi)i (
n = number of wavelengths

Sample scanning modes giving spectra with the mimnvalue of RMS was selected
for further development of calibration to prediciadjity parameters in milk. Besides, to
evaluate the standardization process, spectra aftemand host instrument were
compared using the statistic RMS(c).

To evaluate the transference process of predidtilRS models, were selected the
Mahalanobis H. Values were calculated for the #tiat global H (GH), i.e. the distance
of a given sample from the center of the populataond neighbor (NH), i.e. the distance
of that sample from its nearest neighbors (Zamam®R et al., 2012) for spectral
comparison, and the ratio SEPstandardized / SEBmastd SEDstandardized /

SEDmaster (SED: standard error of difference)yveduate the transferred models.

3. Resultsand discussion

3.1. Sample presentation and NIRS analysis opttiaiza

Prior to statistical assessment it was necessaoptimize sampling strategy to remove
those spectra showing low quality. To attempt thisrk, during this optimization
process all spectra were collected with FNS anddé#ces. FNS analyzing with C17

cuvette was selected as reference instrument falitgtive comparison. To optimize

12
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experimental conditions on MP-SERIDA (type of cuest different number of spectra
to average and the use of standard or internatereée material) was carried out the

comparison between FNS and MP-SERIDA spectra shape.

The optimization results of spectra collection sihewn in Fig. 1. As can be seen the
strong absorption of water bands and the smallrsngrwindow of MP analyzer make
it difficult to obtain spectra comparable to thadeained with the reference instrument.
As it is well known, milk is a very complex matrior NIR analysis, consisting of
proteins in colloidal dispersion, fat in emulsiondaminerals in solution (Marinori,
Monti, Barzaghi & de la Roza-Delgado, 2013). Onéhef complexities facing us in the
analysis of raw milk is the heterogeneity of thenple and its high water content
(Schmilovivh, Shmulevich, Notea & Maltz, 2000; Tkema et al., 2000). It is an
opaque liquid with highly light scattering effecused by milk fat globules and casein
micelles in suspension (Holroyd, 2013). Water conte raw milk is one of the major
contributors to the variation in the NIR spectrae do the strong absorption bands of O-
H groups in NIR region, with a basic characteristegion at 1940 nm (Shenk,
Workman & Westerhaus, 1992) that could limit théed&on of analytes.

As can be seen in Fig. 1, the strong NIR absorgiemds attributed to water due to the
hydrogen bonds have led a high value for log (1#R®Rund 1940nm (water band),
representing the O—H second overtone bending @i & Norris, 2001) and a high
spectral noise at the end of scanning range whéh alalyses using MP instrument
were made with 5 scans to average/sample empldgtigcuvettes, being much higher
noise when the analysis are made with the cuveittpl@s liquid adapter.

On the other hand, the recognition of absorptiomdbaattributed to the other

components such as fat or crude protein also wasilge related with 2310 and 2180

13
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nm, respectively, although they were very weakdmparison with the O-H bands and
were more difficult to observe.

The following step was to optimize the number adrscto average for collecting one
spectrum in MP instrument. To minimize spectra aalgferent numbers of scans were
assayed 5, 10 and 80 scans/spectra. Results hawe $iat the spectral noise at the end
of scanning range was reduced averaging 80 scamdésand spectra were collected
with high sensitivity. This value was selectedfimther work.

Afterwards the use of internal or external refeee(roaterial) was optimized. The use of
the reference in NIR analysis is necessary to cblleackground, because all
measurements are referred to the background. Neraliices were observed when
analyzing milk samples using external or interrdérence. For simplicity the internal
reference was selected to collect spectra. Thisyzmamode avoids carry out and
employ an external reference at farm level in otdesimplify the analysis.

Table 1 shows the results of spectra repeatalahty reproducibility for both cuvettes
with the statistic RMS using milk samples from $etb compare portable spectra (80
spectra to average and internal reference) witlsghmecorded on FNS reference
instrument. As can be seen, the best results visaéned using the C17 cuvette with an
aluminum backside. Values for FNS (at-lab) were dowthan MP being the ratio
between at-lab and handheld device 0.5 in repdiyalsind 0.8 in intermediate
reproducibility using C17 cuvette. Selected expental conditions were: sampling
with cuvette C17 and 80 scans/sample to averageg tise internal reference material.
After finishing the optimization procedure to callespectra using the MP NIRS the

samples were scanned using MP instrument to dewealiifpration models.

3.2. Calibration models

14
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Calibration (Group 1) and validation (Sub-groups2ts descriptive statistics (range,
mean and standard deviation) are shown in Tabl®2each parameter, the validation
set comprised samples representative of the tatahmnce, all values lying within the
range established for the calibration set. Botls sitplayed, for range values, ratios
calibration/validation from 0.88 to 1.28 and similaalues for mean, and standard
deviation (SD). As can be seen the average valtiést,oprotein and SNF percentage
are similar to those established for milk qualigyment. However, a high variability is
observed in both populations, samples with higlelewf fat and protein, and others
with very low levels. Related with reference metleocbr, the values were 0.114 % for
fat; 0.063 for protein and 0.128 for SNF.

After assaying different derivative mathematicabtments to develop NIR calibrations
(see Material and Methods section). The best eswdte obtained applying SNVD for
scatter correction and 1,10,5,1 or 2,6,4,1 as ntathtments. These pretreatments
yielded the lowest SECV and highe%t.rThe external validation results were evaluated
according to the minimum relation value between /SEEYV. In base of these statistics
finally were select 1,10,5,1 as math treatmenpfotein content and 2,6,4,1, for fat and
SNF. Characteristics of the predictive models arergin Table 3.

The cross-validation statistics of calibration misdéisplayed great predictive ability
with SECV of 0.102 and?y of 0.961 for fat milk content. For protein conteghe
model selected may be considered goo={®R758; f ., = 0.676; SECV= 0.124%)
whilst the model obtained for SNF would enable ealtor milk to be classified as high,
medium or low concentration {R= 0.612; SECV= 0.225%), following Williams’

recommendations (2001).
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The ratio SEP/SECV varied between 0.89 and 1.2duéng the SEP is approximately
equal to SECV, this ratio is very acceptable widgard to the accuracy of the
calibration. (Savenije, Geesink, van der Palen &ke, 2006).

Different research works using NIR laboratory iostents have established the
usefulness of NIRS technology to predict milk cosifon and microbiological
parameters (Holroyd, 2013). However, it is necgss$aking into account that these
evaluations were conducted using NIR instrumentth wwide spectral range and
different possibilities of sample preparation anelsgntation.

In this sense, Tsenkova and co-workers (2000) eteduthe potential of NIRS to
measure fat, total protein, and lactose contentsmmbbmogenized milk for use in dairy
management, as a new tool for on-line milk analysithe process of milking, working
in the wavelength range from 400 to 2500 nm witmsle thicknesses of 1 mm, 4 mm,
and 10 mm based on log (1/T) data. Their found thataccuracy of fat and protein
content determination of bovine milk depended gilpron the spectral regions and
path lengths and the best results were obtainethéoregion from 1100 to 2400 nm
with 1-mm sample thickness. The SECV for the mdubded on the first derivative
spectral data transformation was 0.110 and tRg was 0.998 for fat content and
SECV= 0.096 and 7.,= 0.848 for protein. With regard to fat content cesults shown
in Table 3 generally agreed with those reportedh®se authors by using a portable
instrument with a narrow spectral range.

Related with on-line NIR analysis a publication lljasataka and co-workers (2008)
provide NIR spectra of raw milk obtained in an aodédic milking system (milking
robot system) over a wavelength range of 600 nd0&0 nm (transmittance). The SEP
of the validation set for fat was 0.25%, this SE#Rue represent 200% of SEP reported

here (SEP= 0.126). The value of SEP for proteimiokd for these authors was 0.15%,
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again the SEP value obtained in this work for frasameter is slightly lower (SEP =

0.124%).

Related with the results obtained using portabl@lyeer designed and developed for
raw milk quality analysis during the material puask in dairy plants (Feng et al., 2013)
calibration model shows worse SEP values (0.1720a2@il for fat and protein content)

than those obtained in this work.

3.3. Standardization process

Two standardization matrixes were developed using milk sample (stl) or 10
samples (st10). To evaluate the success of thelat@ization procedure the first step
was focused on the reduction of GH and NH valuesalidation set (N=38) (see Table
4). These GH values were 1.497 for MP-SERIDA, 20.G6r MP-UCO before
standardization and 1.550 after applying standatidiz matrix developed with one
sample (MP-UCOstl). Related with NH the valuesawi#d were 0.858 for MP-
SERIDA, and decreasing from 15.309 to 1.043 for WMPO after applying
standardization matrix. The GH and NH values oletirfor MP-UCO before
standardization, confirm the need for this procé&dkl and NH statistics show and
excellent agreement between spectra collectedtim instruments even when applying
only one standardization sample and confirm thedardization successfully reduced
spectral differences between both instrumentshfenvalidation-test set.

Related with the comparison between the spectrarded in both MP evaluated
instruments attending RMS(c) statistic, the bestilts, those with minor RMS(c), were
obtained with the standardization matrix built with samples. The RMS(c) values

between master unit and secondary device spectreeated from 54,590 prior to
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standardization to 16,493 and 11,818 when applstily or st10 standardization
matrixes.

Fig. 2A and 2B show the mean spectra for the eateraidation set collected with both
handheld NIRS instruments before and after staizidn process as raw log (1/R)
spectra (A) and after applying first derivative é&MVD mathematical treatments to the
spectral data (B). In this Fig. 2 can be seen wdiffees between the spectra before
standardization in the 1880-2100 nm range. ThegbRodifferences are related to the
differences between instruments that are the saoueindevice but they are not cloned
instruments. Both MP units can vary in photometesponse; this is due to detectors,
light sources and changes over in the instrumeesgonse function (ageing of sources,
replacement of some parts, etc.). However, thesetisp differences must disappear
after standardization process showing a successfsililt of the standardization
approach.

The last step in the calibration transference meosas to validate the transferred
equations with the external set of samples (Subjy®, N=38). Results for external
validation on both instruments are shown in Tabl&/Ben the equations were applied
to non- standardized spectra from MP-UCO, there avlss of performance with SEP
values of 0.147; 0.810 and 1.663 % for fat, proteimd SNF content, respectively.
Nevertheless, after applying stl or st10 standatiz matrices SEP from MP-UCO
decreased approximately 80 % for protein and 85¢&fF content. Related with milk
fat content the standardization process has nottach influence over the reduction of
SEP values. Probably, the specific NIRS bandseelatith fat from 2150 to 2300 nm
are not affected by the standardization, becausegtiat differences between the

spectra recorded in MP-SERID¥s MP-UCO before standardization are in the 1880—
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2100 nm range, directly related with protein wawgld ranges (Osborne & Fearn,
1986).

Additionally, to check the performance of transéerrmodels was calculated the SED,
expressed as a difference between NIR analyses BFSBERIDA and MP-UCO
instruments (see Table 5). After applying standatitbon matrices, SED values between
MP-SERIDA and MP-UCO decreased at least eight tifoesSNF and five times for
protein compared to non-standardized results. &bthie reduction was only 1.2 times
lower. These SED values were close to SEP values.

To include a practical performance, after comparihg standardization procedure
between NIR instruments (MP-SERIDA and MP-UCO),mikk samples coming from
dairy cows of the experimental farm of SERIDA wenealyzed with the MP-UCO
device and applying both standardization matri€essults are detailed in Table 6. As
can be seen differences between reference andcfm@divalues decrease after
standardization. However, we must remark that tlaeeenot differences between both
standardization matrices. For protein and SNF theeetwo samples with errors lower
using stl than using st10 standardization matrieesfat, the prediction of 4 samples is
more exact when applying stl. Nevertheless, stiM@dyd has minor sum of residual
values than st1.

To the best of our knowledge this is the first tineat the ability of the
MicroPHAZIR™ to predict the milk composition changes of indiwadicows has been
demonstrated. Furthermore, the ability of sharialgocation data among several units is
a key point with a great importance for implemeotabf portable instruments at farm

level forin situ quality control of milk.

4. Conclusions
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After evaluating different sampling strategies twlgze raw milk samples using the
handheld instrument MicrophaZlt we can conclude that to obtain satisfactory restilt
is necessary to average 80 scans to collect on@lsaspectra using 17mm sample
thickness cuvette with an aluminum backside.

This study has established a promising ability lié thandheld NIR instruments to
estimate the individual dairy milk composition chas. Moreover, the calibration
models developed showed that the accuracy andsmecof the equations obtained
using the handheld instrument were similar, in geohboth calibration and validation,
to those of the equations obtained on lab basédiments.

The promising results for the ability of sharindilmation data (transference procedure)
after applying a simple standardization algorithon $pectral adjustment minimized
spectral differences between hand-held MicroPhanalyzers even developed with
only one sample have great importance for impleatant of portable instruments as a
tool forin situ monitoring indicators of milk composition.
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TABLES
Table 1. Repeatability and reproducibility root mean sguéRMS) for 80 scans by

spectra with C1 and C17 cuvettes types

Intrument Cuvette type Repeatibilty Reproducibility

RMS RMS
C1 (1-mm + adapter) 11190 45270
MP-SERIDA
C17 (aluminum 17 mm) 5309 4799
FNS C17 (aluminum 17 mm) 2568 3823

MP: MicroPHAZIR NIR instrument
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Table 2. Statistic descriptive values for milk samples iliiration and external

validation sets

CALIBRATION (N=444) EXTERNAL VALIDATION (N=38)
Parameter (%) Range Mean SD Range Mean SD
Fat 2.38 — 6.36 3.67 0.5752.71 — 4.97 3.57 0.476
Protein 2.58 — 4.00 3.18 0.2622.47 — 3.37 2.98 0.193
SNF 7.14-9.85 8.73 0.3257.66-9.12 8.62 0.287

SD: standard deviation variation, SNF: solids-na-f
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Table 3. Statistics for calibrations models developed in BIEPRIDA Master Unit

Parameter (%) SEC R* SECV r?%, SEP
Fat 0.089 0.971 0.102 0.961 0.126
Protein 0.120 0.758 0.139 0.676 0.124
SNF 0.185 0.612 0.225 0.476 0.221

SNF: solids-non-fat; SEC: Standard Error of Caliicm; R: Determination Coefficient of
Calibration; SECV: Standard Error of Cross-validai; r ZC\,: Determination Coefficient of
Cross-Validation; SEP: Standard Error of Prediction
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Table 4. GH, NH and RMS(c) values for the “cloning sell=38) analyzed on the

MP-SERIDA and MP-UCO before and after standardiratising two matrixes (stl

and st10).

Parameter MP-SERIDA MP-UCO MP-UCOstl1 MP-UCOst10
before after after

Mean GH 1.497 20.000 1.550 1.839

Mean NH 0.858 15.309 1.043 1.218

RMS(C) 12,965 54,590 16,493 11,818

(nlog (VR))

stl= Sample closest to center of population; st10=samples.
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Table 5. Standard errors of prediction and standard ewbdifference in the validation set (N = 38) ftwetcalibrations

obtained in the MP-SERIDA and MP-UCO for predictiagj protein and SNF content in raw milk.

SEP SED

Parameter MP.SERIDA  MP-UCO  MP-UCOstl  MP-UCOst10 | MP-SERIDA s MP-SERIDAvs ~ MP-SERIDA vs
before after after MP-UCO MP-UCOst1 MP-UCOst10

Fat 0.126 0.147 0.167 0.145 0.179 0.193 0.146

Protein  0.124 0.810 0.190 0.178 0.762 0.133 0.179

SNF 0.221 1.663 0.460 0.274 1.573 0.361 0.214

SNF: solids-non-fat
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Table 6. Practical performance using calibration modefefgeand after transference procedure, for pradidtat, protein

and SNF content in raw milk (N=10).

Fat Protein SNF
M P- M P- M P- M P- M P- M P- M P- M P- M P-
UCO UCOstl UCOst10 UCO UCOstl UCOst10 UCO UCOstl1 UCOst10
Sample Ref. before after after Ref. before after after Ref. before after after
1 3.39 3.30 3.32 3.43 294 1.69 2.81 2.85 8.52 7.16 8.39 8.45
2 3.40 3.32 3.34 3.48 2.77 1.98 3.10 3.15 8.547.15 8.41 8.55
3 3.21 3.35 3.36 3.18 2.810.85 2.30 2.76 8.246.52 8.06 8.52
4 3.33 3.29 3.31 3.36 2.471.48 2.72 3.05 7.66 6.82 8.19 8.55
5 3.84 372 3.68 3.84 3.202.06 3.09 3.12 8.86 7.30 8.46 8.55
6 3.93 3.71 3.67 3.84 2.97 1.68 2.78 2.83 8.457.16 8.35 8.44
7 3.86 3.68 3.65 3.80 292 1.43 2.62 2.73 8.45 7.06 8.32 8.48
8 3.52 3.39 3.40 3.50 3.06 1.79 2.92 2.98 8.69 7.16 8.40 8.47
9 3.54 3.78 3.72 3.63 3.12 1.86 3.06 3.31 9.03 7.11 8.46 8.72
10 4.38 4.24 4.13 4.34 2.861.93 2.96 2.98 8.577.50 8.61 8.65

Ref. : Reference data, SNF: solids-non-fat
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Figure captions

Fig. 1. Mean spectra of milk (N=25 of Set 1) analyaveraging 5 scans/sample in MP-
SERIDA and FNS instruments and different cuvettes.

A) MP-SERIDA: C1 cuvette + adapter module; B) MPRBBA: C17 cuvette; C) FNS:
C17 cuvette

Fig.2. Mean spectra for the external validate fiemset (Set 2 (Group 2), N=38
samples and 80 scans/spectra) with both instrumgit®Raw log (1/R) spectra with no
pretreatment and (B) First derivative spectra v8tiVD treatment. In both plots the
line with circles (a) is the MP-SERIDA, (b) the greolid line is the MP-UCO before
standardization and (c) the thick solid black lisiéhe MP-UCO after standardization.
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