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Abstract 41 

42 

The real time knowledge of dairy milk composition can be used as a tool to guarantee 43 

milk quality and safety, offering additional information for dairy producers and 44 

consumers. To carry out these in situ analyses, methodologies based on Near Infrared 45 

(NIR) portable sensors have a great potential as an advisory tool. The main goals of the 46 

present work have been to develop a methodology using a hand-held portable NIR 47 

spectrophotometer to collect raw milk spectra, including the development of calibration 48 

models for the analysis of protein, fat and solids-non-fat (SNF) of raw milk and further 49 

to transfer the developed models to another portable unit. A total of 542 fresh milk 50 

samples were scanned over the NIR spectral range (1600–2400nm) using a hand-held 51 

MicroPhazirTM (MP) NIR spectrometer and different instrumental configurations. The 52 

best results for repeatability and reproducibility calculated as root mean squared (RMS) 53 

were obtained using a 17 mm cuvette thickness. The displayed predictive ability of 54 

calibration models measured as Standard error of prediction/Standard error of cross 55 

validation were 0.96; 0.72 and 0.83 for fat, protein and SNF contents, respectively. For 56 

cloning purposes an additional MP unit (satellite) has been used. A standardization set 57 

of 10 samples enabled standardization of both instruments. After applying 58 

standardization matrix, Standard error of differences between master and satellite 59 

reached great reduction, 68% for fat, 66 % for protein and 54 % for SNF. Moreover, the 60 

demonstrated ability of sharing calibration models among several units is essential for 61 

implementation of portable instruments for in-situ analysis to provide indicators of milk 62 

composition at farm level.  63 
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Abbreviations 

FNS: Foss NIRSytem 6500 monochromator 

FTIR: Fourier Transform Infrared 

GH: Global H 

INIA: National Institute for Agricultural and Food Research 

MBM: Meat and Bone Meal 

MEMS: Micro-Electro-Mechanical System

MP: Microphazir TM NIRS Instrument 

MPLS: Modified Partial Least Square 

MP-SERIDA: Microphazir TM NIRS Instrument- Regional Institute for Research and 

Agro-Food Development 

MP-UCO: Microphazir TM NIRS Instrument- University of Cordoba 

NH: Neighbor Distance

NIRS: Near Infrared Spectroscopy 

PDF: Precision Dairy Feeding 

PDM: Precision Dairy Management 

PLF: Precision Livestock Farming 

R2
cv: Coefficient of Determination in Cross-Validation 

RMS(C): Root Mean Square of Differences Corrected for the Bias

SD: Standard Deviation 

SECV: Standard Error of Cross-Validation 

SED: Standard Error of Difference 

SEP: Standard Error of Prediction

SNF: Solids-Non-Fat

SNV: Standard Normal Variate 

SNVD: Standard Normal Variate plus Detrend 

st1: Cloning set comprising 1 sample (the sample closest to the center of the population) 

st10: Cloning set comprising 10 samples 

TMR: Total Mixed Ration 

UCO: University of Cordoba 98 

99 
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1. Introduction100 

101 
In the near future more and more dairy farms will uptake sophisticated Precision 102 

Livestock Farming (PLF) by sensors systems to support farm management. PLF is a 103 

combination of developing animal sensing (sensors) tools and decision-making process 104 

at the farm level. These precision systems include an instantaneous knowledge of dairy 105 

milk composition; this information can be used as a tool to guarantee milk quality and 106 

safety. It also has the potential to support animal feed suppliers, human-food retailers 107 

and other players along the supply chain to make better choices. The current challenge 108 

for PLF is the integration of the technology in the farm but not only to the pioneering 109 

farms (Halachmi, 2015). Banhazi, Babinszky, Halas & Tscharke (2012) outlined the 110 

potential role that PLF can play in ensuring that the best possible management processes 111 

are implemented on livestock farms increasing farm profitability and quality of milk 112 

products for consumers.  113 

A new, alternative model for labour-efficient dairy production is emerging. Part of this 114 

trend in automation, robotic milking - an example of "precision dairy management" 115 

(PDM) - reduces labour requirements and minimize food safety risks (Rodenburg, 2012; 116 

Bewley, Russell, Dolecheck, Borchers, Stone & Wadsworth, 2015). However, in order 117 

to fully exploit the potential of this changing trend in dairy management, specific 118 

technologies should be considered together with the most widespread as, electronic 119 

radio frequency identification systems, robotic milking and calf- feeding systems, 120 

cameras, microphones, etc. These technologies allow control with precision as feed 121 

quality as the final product, milk, which could include under the term of Precision Dairy 122 

Feeding, (PDF). Taking into account that feed cost represents the most significant item 123 

of the total costs in milk production, and that in recent years, the volatility of the prices 124 

of cereals and flour protein, has been recurrent in world markets, it makes necessary to 125 
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use alternative rations, as far as possible, trying to introduce raw materials of low cost, 126 

and the greatest possible use of local resources and by-products, often based on a total 127 

mixed ration (TMR) that combines all ration ingredients into a single feed mix. This 128 

complicates the nutritionist roles, who must formulate rations with many raw materials, 129 

even with nutritional value and composition little known to them, maintaining quality 130 

and assessing milk safety. This situation of fragility of the dairy sector at the global 131 

level is causing, innovative nutritionists to look for alternatives such as NIRS 132 

instruments to be used as a necessary tool in PDF. There are numerous works in the 133 

NIR literature applying NIRS technology to milk analysis (reviewed by Holroyd, 2013). 134 

They have shown that it is possible to obtain high or moderate accuracy and precision in 135 

calibration models to predict the main chemical constituents. Papers dealing with the 136 

application of NIR to liquid milk can be split into several areas that involve; the 137 

determination of milk composition, authentication of cow feeding regimes and 138 

geographic origin of milk, including milk classification, calibration robustness, 139 

industrial applications and the measurement of milk microbiological content.  140 

A high percentage of water content in samples to analyze could interfere with NIRS 141 

analyses. Water content in fresh milk is one of the major contributors to the variation in 142 

the NIR spectra due to the strong absorption bands of O-H groups in the NIR region, 143 

which can create a critical interference in quantitative analysis. Most of the research 144 

milk works are carried out using homogenized and dried samples (DESIR method) 145 

(Núñez-Sánchez et al., 2016).  146 

The use of NIRS technology on-farm, for the analysis of forage and TMR has been 147 

demonstrated scientifically and there are some commercial solutions developed, such as 148 

a NIR Analyzer installed directly on the self-propelled mixer wagon or in the shovel of 149 

the front loader. It is able to predict dry matter for each ingredient during the loading 150 
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phase recalculating automatically the quantity to load to maintain a consistent ration 151 

(https://www.dinamicagenerale.com/Media/Default/Catalogues/PrecisionFeeding-ENG-152 

LOW.pdf, 2016). However, research about the employment of portable NIRS sensors, 153 

susceptible to use for the on-site control of milk obtaining information on individual 154 

cow state is very limited or almost non-existent (Kawasaki et al., 2008; dos Santos, 155 

Lopo, Páscoa & Lopes, 2013). Therefore, it is urgent and important, to get scientific 156 

information about the potential of portable NIRS instruments for the analysis of raw 157 

milk, existing currently in the market.  158 

The challenge facing this applied research is that the instruments more consolidated in 159 

the market, are not designed for this specific purpose of analyzing complex liquids such 160 

as milk. In terms of spectral characteristics and physico-chemical properties, it is 161 

necessary to show their adaptation and feasibility for the analysis of quality of raw milk.  162 

The main goals of the present work are to develop a new methodology based on use of 163 

hand-held portable NIR spectrophotometer for the analysis of fat, protein and solids-164 

non-fat (SNF) in raw milk. Further we will evaluate the transferability of the developed 165 

methodology and calibration models to a second portable NIRS unit. Finally we will 166 

study the alternative of sharing prediction models among several units as essential tool 167 

for implementation of portable NIR instruments for in-situ analysis to provide indicators 168 

of milk composition at farm level. 169 

170 

2. Material and methods171 

172 

2.1. NIR instruments and analysis methods 173 

- 1) A Foss NIRSystem 6500 monochromator (FNS). This is an at-lab instrument,174 

working in a wavelength range between 400 and 2500 nm, equipped with175 

transport module under controlled environmental conditions (temperature 24ºC176 
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± 1ºC, relative humidity 50% ± 10%). This instrument was used as a qualitative 177 

reference instrument to optimize sampling strategy and to evaluate the loss of 178 

spectra performance using portable instrument with small scanning window and 179 

narrow wavelength range. Spectra were collected using a liquid opaque quartz 180 

cuvette, reusable, with a 17 mm pathlength (C17) and an aluminum backside 181 

(FOSS. Ref US-ISIH-0398) for trans-reflectance measurements, combining 182 

reflectance and transmittance together into a single mode. The spectra data were 183 

recorded in reflectance mode (log 1/R) with ISI scan software (Infrasoft 184 

International Inc., Port Matilda, PA, USA). Each sample was analyzed in 185 

duplicate and each spectrum was the average of 32 scans performed on liquid 186 

milk.  187 

- 2) MicroPHAZIR TM (MP) from Thermo Scientific, with a scanning window of 4188 

mm diameter (sampling area of 0.13 cm2). All diffuse reflectance spectra were189 

computed in a wavelength range between 1600 and 2400 nm, with a non-constant190 

interval of around 8 nm (pixel resolution 8 nm, optical resolution 12 nm) using a191 

hand-held micro-electro-mechanical system (MEMS) digital transform as portable192 

NIRS sensor. The instrumental conditions to collect raw milk spectra with this193 

portable NIR were optimized modifying the parameters:194 

a) Sample presentation - two cuvettes have been assayed; the first one was C1 quartz195 

cuvette, with a 1 mm pathlength and reusable. A liquid analysis adapter, to avoid 196 

NIR radiation losses through the quartz backside, was coupled to MP for the 197 

analysis of milk samples with this cuvette. The second one was the C17 quartz 198 

cuvette with an aluminum backside, described above (Foss NIRSystem 6500). 199 

b) Number of scans to average for collecting one spectrum - the range evaluated was200 

between 5, 10 and 80 scans/spectra. Five is the minimum value to be recorded using 201 
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Phazir Data Management System software (Polychromix, Inc., Wilmington, MA, 202 

USA) and 80 is the maximum value. 203 

c) Internal reference or external reference for scanning background. 204 

For cloning purposes two different units of MP have been used: SERIDA (MP-205 

SERIDA; master instrument) and UCO (MP-UCO; satellite instrument) hand-held 206 

NIRS. 207 

Nowadays there are other handhelds devices in market, however MP instruments have 208 

been selected to develop this research work because being handhelds NIRS they are 209 

easy to manage, and only these instruments were available in UCO and SERIDA labs 210 

(Modroño, Soldado, Martínez-Fernández & de la Roza-Delgado, 2017).    211 

 212 

2.2. Samples and pretreatment 213 

 214 

A total of 552 fresh milk samples were collected between 2014 and 2016 from 215 

individual Holstein–Friesian dairy cows of the experimental farm located in the 216 

Regional Institute for Research and Agro-Food Development (SERIDA) under different 217 

feeding experiments, and from different farms located in the North of Spain (Asturias, 218 

Spain), as suppliers from commercial milks looking at variability in their composition 219 

through the effect of supplementation, pasture biodiversity, fed different preserved 220 

forages (hay and/or silages) or changeability of TMR. Milk samples from experimental 221 

cows of SERIDA were taken from each individual animal by using the automatic 222 

sampler of Automatic milking system (DeLaval, Spain) and in farms by the farmer.  223 

The first 50 fresh milk samples (Set 1) were employed to optimize instrumental 224 

conditions, and establish a sampling methodology for obtaining high quality milk NIR 225 

spectra using MP-SERIDA spectrophotometer. NIR analyses for this Set 1 were carried 226 

out simultaneously on portable MP-SERIDA and FNS as reference at-line instrument. 227 
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Set 2 comprising 492 milk samples was divided in two different groups selected with a 228 

view to covering the whole range of spectral variability and product absorbance values, 229 

using the SELECT algorithm included in the WinISI II version 1.50 software package 230 

(Infrasoft International, Port Matilda, PA, USA): 231 

Group 1 comprising 444 milk samples analyzed in hand-held MP-SERIDA. It was used 232 

to develop the calibration models. NIR analyses for this Group 1 were carried out with 233 

portable MP-SERIDA. 234 

Group 2 comprising 48 milk samples scanned simultaneously on both hand-held 235 

instruments, the master MP-SERIDA and in a second MP-UCO unit. This group was 236 

divided in two different sub-groups. One sub-group comprising 10 milk samples 237 

selected to obtain standardization matrixes and the other one comprising 38 milk 238 

samples to validate the transference procedure.  239 

As final step for practical performance, 10 milk samples coming from dairy cows of the 240 

experimental farm of SERIDA were analyzed using MP-UCO device, to evaluate 241 

sample by sample the calibration transfer procedure.  242 

All samples were scanned without pretreatment after homogenization by hand mixing 243 

for 20-30 sec. The same portion of the sample used to collect spectra in MP instruments 244 

was used for reference data analysis (fat, protein and SNF). Reference analyses were 245 

carried out using FTIR MilkoScan™ (Foss Electric, Hillerod, Denmark) in the 246 

Professional Milk and Agro-food Laboratory of Asturias. This laboratory is accredited 247 

under UNE-EN ISO/IEC 17025: 2005 (246/LE476). 248 

 249 

2.3. Spectral Data and Cloning Processing 250 

 251 

The first step when starting this research work was to export into *csv format all 252 

spectral data collected from MP instruments. After that, the spectral data were adjusted 253 
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using an interpolation function to get data with a constant step of 2 nm and preserving 254 

the shape by interpolation (Fernández Pierna, Vermeulen, Lecler, Baeten, & Dardenne, 255 

2010). This adjustment is necessary because the MP spectrometer works in the range of 256 

1600 to 2400 nm with a non-constant step. 257 

The WinISI software package v. 1.50 (Infrasoft 165 International, Port Matilda, PA, 258 

USA) was used to compare FNS vs MP spectral data and for chemometric development 259 

of MP calibration models. The equations were developed using Modified Partial Least 260 

Square (MPLS) as regression method and cross-validation to select the optimal number 261 

of factors to avoid overfitting (Shenk & Westerhaus, 1995). Chemical outliers were 262 

detected using the Student T test, to check differences between reference and predicted 263 

values; samples with a T value of over 2.5 were considered outliers (Mark & Workman, 264 

1991). 265 

Combined standard normal variate (SNV) plus detrend treatments were used for scatter 266 

correction (Barnes & Dhanoa, 1989). First- and second-derivative treatments were 267 

tested: 1.4.4.1; 1.8.8.1; 1.10.5.1, and 2.5.5.1, where the first digit is the number of the 268 

derivative, the second is the gap over which the derivative is calculated (expressed in 269 

data points), the third is the number of data points in a running average or smoothing, 270 

and the fourth is the second smoothing (ISI software, 2000). 271 

The best fitting equations, selected by statistical criteria for each parameter, on base of 272 

the lowest standard error of cross-validation (SECV), highest coefficient of 273 

determination in cross-validation (r2
cv) (Williams, 2001; Pérez-Marín et al., 2008; 274 

Soldado, Fearn, Martínez-Fernández & de la Roza-Delgado, 2013) and lowest relation 275 

value between standard error of prediction (SEP, statistical parameter for testing 276 

external validation of the calibration model on 38 milk samples of group 2) and SECV 277 

(SEP/SECV) (Savenije, Geesink, van der Palen & Hemke, 2006). 278 



 

11 

 

Analytical features of NIR developed methodology was compared with reference 279 

methods performance on the basis of their laboratory error and were calculated as 280 

intermediate reproducibility according to ISO 5725 (ISO5725-1, 1994; ISO 5725-2, 281 

1994) definitions: (i) repeatability, indicates the variability observed within a 282 

laboratory, over a short time, using a single operator, item of equipment etc., and (ii) 283 

intermediate reproducibility (standard deviation SD), intermediate precision relates to 284 

the variation in results observed when one or more factors, such as time, equipment and 285 

operator, are varied within a laboratory) on 10 different samples of Set 2 and was 286 

calculated attending Eq. [1]: 287 

22RSR=    [1] 288 

A key factor in the cloning process is the number of samples used both when selecting a 289 

procedure for standardizing NIR instruments and when selecting a cloning algorithm 290 

(Zamora-Rojas et al., 2012; Pérez-Marín, Garrido-Varo ¬ Guerrero-Ginel, 2006). Since 291 

cloning using numerous samples is a more complex procedure, it is advisable to 292 

minimize the number of samples to be analyzed in parallel on the two instruments to 293 

develop the algorithm. Two strategies using different number of samples were tested: (i) 294 

10 samples comprising the cloning set (st10); and (ii) the sample closest to the center of 295 

the population (st1). The cloning algorithm used for standardization process was the 296 

patented algorithm by Shenk & Westerhaus (2008).  297 

The statistic root mean square error (RMS) was used to select and to compare spectra 298 

between subsamples in order to determine differences in repeatability and 299 

reproducibility conditions (ISO5725-1 & 2, 1994). 300 

This statistical parameter as the averaged root mean square of differences corrected for 301 

the bias (RMS(c)) between two spectra was calculated using the CONTRAST algorithm 302 
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included in the WINISI software package, version 1.50 (Infrasoft International, Port 303 

Matilda, PA, USA), and the formula to calculate the RMS(c) is Eq. [2]: 304 

���(�) = 10
 ×�∑ (�������)���∑ ������������� ������� ��� 	     [2] 305 

Where; 306 

 !" = log (1/R) value of m subsample at a wavelength i (λi). 307 

 #$%%%% = log (1/R) value of k subsample at a wavelength i (λi). 308 

& = number of wavelengths 309 

 310 

Sample scanning modes giving spectra with the minimum value of RMS was selected 311 

for further development of calibration to predict quality parameters in milk. Besides, to 312 

evaluate the standardization process, spectra of master and host instrument were 313 

compared using the statistic RMS(c).  314 

To evaluate the transference process of predictive NIRS models, were selected the 315 

Mahalanobis H. Values were calculated for the statistics global H (GH), i.e. the distance 316 

of a given sample from the center of the population, and neighbor (NH), i.e. the distance 317 

of that sample from its nearest neighbors (Zamora-Rojas et al., 2012) for spectral 318 

comparison, and the ratio SEPstandardized / SEPmaster and SEDstandardized / 319 

SEDmaster (SED: standard error of difference), to evaluate the transferred models. 320 

 321 

 322 

3. Results and discussion 323 

 324 

3.1. Sample presentation and NIRS analysis optimization 325 

Prior to statistical assessment it was necessary to optimize sampling strategy to remove 326 

those spectra showing low quality. To attempt this work, during this optimization 327 

process all spectra were collected with FNS and MP devices. FNS analyzing with C17 328 

cuvette was selected as reference instrument for qualitative comparison. To optimize 329 
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experimental conditions on MP-SERIDA (type of cuvettes, different number of spectra 330 

to average and the use of standard or internal reference material) was carried out the 331 

comparison between FNS and MP-SERIDA spectra shape. 332 

 333 

The optimization results of spectra collection are shown in Fig. 1. As can be seen the 334 

strong absorption of water bands and the small scanning window of MP analyzer make 335 

it difficult to obtain spectra comparable to those obtained with the reference instrument. 336 

As it is well known, milk is a very complex matrix for NIR analysis, consisting of 337 

proteins in colloidal dispersion, fat in emulsion and minerals in solution (Marinori, 338 

Monti, Barzaghi & de la Roza-Delgado, 2013). One of the complexities facing us in the 339 

analysis of raw milk is the heterogeneity of the sample and its high water content 340 

(Schmilovivh, Shmulevich, Notea & Maltz, 2000; Tsenkova et al., 2000). It is an 341 

opaque liquid with highly light scattering effect caused by milk fat globules and casein 342 

micelles in suspension (Holroyd, 2013). Water content in raw milk is one of the major 343 

contributors to the variation in the NIR spectra, due to the strong absorption bands of O-344 

H groups in NIR region, with a basic characteristic region at 1940 nm (Shenk, 345 

Workman & Westerhaus, 1992) that could limit the detection of analytes. 346 

As can be seen in Fig. 1, the strong NIR absorption bands attributed to water due to the 347 

hydrogen bonds have led a high value for log (1/R) around 1940nm (water band), 348 

representing the O–H second overtone bending (Williams & Norris, 2001) and a high 349 

spectral noise at the end of scanning range when NIR analyses using MP instrument 350 

were made with 5 scans to average/sample employing both cuvettes, being much higher 351 

noise when the analysis are made with the cuvette C1 plus liquid adapter.  352 

On the other hand, the recognition of absorption bands attributed to the other 353 

components such as fat or crude protein also was possible related with 2310 and 2180 354 
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nm, respectively, although they were very weak in comparison with the O-H bands and 355 

were more difficult to observe.  356 

The following step was to optimize the number of scans to average for collecting one 357 

spectrum in MP instrument. To minimize spectra noise different numbers of scans were 358 

assayed 5, 10 and 80 scans/spectra. Results have shown that the spectral noise at the end 359 

of scanning range was reduced averaging 80 scans/sample and spectra were collected 360 

with high sensitivity. This value was selected for further work. 361 

Afterwards the use of internal or external reference (material) was optimized. The use of 362 

the reference in NIR analysis is necessary to collect background, because all 363 

measurements are referred to the background. No differences were observed when 364 

analyzing milk samples using external or internal reference. For simplicity the internal 365 

reference was selected to collect spectra. This analyze mode avoids carry out and 366 

employ an external reference at farm level in order to simplify the analysis. 367 

Table 1 shows the results of spectra repeatability and reproducibility for both cuvettes 368 

with the statistic RMS using milk samples from Set 1 to compare portable spectra (80 369 

spectra to average and internal reference) with those recorded on FNS reference 370 

instrument. As can be seen, the best results were obtained using the C17 cuvette with an 371 

aluminum backside. Values for FNS (at-lab) were lower than MP being the ratio 372 

between at-lab and handheld device 0.5 in repeatability and 0.8 in intermediate 373 

reproducibility using C17 cuvette. Selected experimental conditions were: sampling 374 

with cuvette C17 and 80 scans/sample to average using the internal reference material.  375 

After finishing the optimization procedure to collect spectra using the MP NIRS the 376 

samples were scanned using MP instrument to develop calibration models. 377 

 378 

3.2. Calibration models 379 



 

15 

 

Calibration (Group 1) and validation (Sub-group 2) sets descriptive statistics (range, 380 

mean and standard deviation) are shown in Table 2. For each parameter, the validation 381 

set comprised samples representative of the total variance, all values lying within the 382 

range established for the calibration set. Both sets displayed, for range values, ratios 383 

calibration/validation from 0.88 to 1.28 and similar values for mean, and standard 384 

deviation (SD). As can be seen the average values of fat, protein and SNF percentage 385 

are similar to those established for milk quality payment. However, a high variability is 386 

observed in both populations, samples with high levels of fat and protein, and others 387 

with very low levels. Related with reference method error, the values were 0.114 % for 388 

fat; 0.063 for protein and 0.128 for SNF. 389 

After assaying different derivative mathematical treatments to develop NIR calibrations 390 

(see Material and Methods section). The best results were obtained applying SNVD for 391 

scatter correction and 1,10,5,1 or 2,6,4,1 as math treatments. These pretreatments 392 

yielded the lowest SECV and highest r2
cv. The external validation results were evaluated 393 

according to the minimum relation value between SEP/SECV. In base of these statistics 394 

finally were select 1,10,5,1 as math treatment for protein content and 2,6,4,1, for fat and 395 

SNF. Characteristics of the predictive models are given in Table 3.  396 

The cross-validation statistics of calibration models displayed great predictive ability 397 

with SECV of 0.102 and r2
CV of 0.961 for fat milk content. For protein content the 398 

model selected may be considered good (R2 =0.758; r2 
cv = 0.676; SECV= 0.124%) 399 

whilst the model obtained for SNF would enable values for milk to be classified as high, 400 

medium or low concentration (R2 = 0.612; SECV= 0.225%), following Williams’ 401 

recommendations (2001).  402 

 403 



 

16 

 

The ratio SEP/SECV varied between 0.89 and 1.24. Assuming the SEP is approximately 404 

equal to SECV, this ratio is very acceptable with regard to the accuracy of the 405 

calibration. (Savenije, Geesink, van der Palen & Hemke, 2006). 406 

Different research works using NIR laboratory instruments have established the 407 

usefulness of NIRS technology to predict milk composition and microbiological 408 

parameters (Holroyd, 2013). However, it is necessary taking into account that these 409 

evaluations were conducted using NIR instruments with wide spectral range and 410 

different possibilities of sample preparation and presentation. 411 

In this sense, Tsenkova and co-workers (2000) evaluated the potential of NIRS to 412 

measure fat, total protein, and lactose contents of unhomogenized milk for use in dairy 413 

management, as a new tool for on-line milk analysis in the process of milking, working 414 

in the wavelength range from 400 to 2500 nm with sample thicknesses of 1 mm, 4 mm, 415 

and 10 mm based on log (1/T) data. Their found that the accuracy of fat and protein 416 

content determination of bovine milk depended strongly on the spectral regions and 417 

path lengths and the best results were obtained for the region from 1100 to 2400 nm 418 

with 1-mm sample thickness. The SECV for the model based on the first derivative 419 

spectral data transformation was 0.110 and the r 2
cv was 0.998 for fat content and 420 

SECV= 0.096 and r 2
cv = 0.848 for protein. With regard to fat content our results shown 421 

in Table 3 generally agreed with those reported by these authors by using a portable 422 

instrument with a narrow spectral range.   423 

Related with on-line NIR analysis a publication by Masataka and co-workers (2008) 424 

provide NIR spectra of raw milk obtained in an automatic milking system (milking 425 

robot system) over a wavelength range of 600 nm to 1050 nm (transmittance). The SEP 426 

of the validation set for fat was 0.25%, this SEP value represent 200% of SEP reported 427 

here (SEP= 0.126). The value of SEP for protein obtained for these authors was 0.15%, 428 
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again the SEP value obtained in this work for this parameter is slightly lower (SEP = 429 

0.124%).  430 

Related with the results obtained using portable analyzer designed and developed for 431 

raw milk quality analysis during the material purchase in dairy plants (Feng et al., 2013) 432 

calibration model shows worse SEP values (0.172 and 0.201 for fat and protein content) 433 

than those obtained in this work.  434 

 435 

3.3. Standardization process 436 

Two standardization matrixes were developed using one milk sample (st1) or 10 437 

samples (st10). To evaluate the success of the standardization procedure the first step 438 

was focused on the reduction of GH and NH values, in validation set (N=38) (see Table 439 

4). These GH values were 1.497 for MP-SERIDA, 20.000 for MP-UCO before 440 

standardization and 1.550 after applying standardization matrix developed with one 441 

sample (MP-UCOst1).  Related with NH the values obtained were 0.858 for MP-442 

SERIDA, and decreasing from 15.309 to 1.043 for MP-UCO after applying 443 

standardization matrix. The GH and NH values obtained for MP-UCO before 444 

standardization, confirm the need for this process. GH and NH statistics show and 445 

excellent agreement between spectra collected in both instruments even when applying 446 

only one standardization sample and confirm that standardization successfully reduced 447 

spectral differences between both instruments for the validation-test set. 448 

Related with the comparison between the spectra recorded in both MP evaluated 449 

instruments attending RMS(c) statistic, the best results, those with minor RMS(c), were 450 

obtained with the standardization matrix built with 10 samples. The RMS(c) values 451 

between master unit and secondary device spectra decreased from 54,590 prior to 452 
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standardization to 16,493 and 11,818 when applying st1 or st10 standardization 453 

matrixes.  454 

Fig. 2A and 2B show the mean spectra for the external validation set collected with both 455 

handheld NIRS instruments before and after standardization process as raw log (1/R) 456 

spectra (A) and after applying first derivative and SNVD mathematical treatments to the 457 

spectral data (B). In this Fig. 2 can be seen differences between the spectra before 458 

standardization in the 1880–2100 nm range. These log1/R differences are related to the 459 

differences between instruments that are the same model device but they are not cloned 460 

instruments. Both MP units can vary in photometric response; this is due to detectors, 461 

light sources and changes over in the instrumental response function (ageing of sources, 462 

replacement of some parts, etc.). However, these spectra differences must disappear 463 

after standardization process showing a successful result of the standardization 464 

approach. 465 

The last step in the calibration transference process was to validate the transferred 466 

equations with the external set of samples (Sub-group 2, N=38). Results for external 467 

validation on both instruments are shown in Table 5. When the equations were applied 468 

to non- standardized spectra from MP-UCO, there was a loss of performance with SEP 469 

values of 0.147; 0.810 and 1.663 % for fat, protein and SNF content, respectively. 470 

Nevertheless, after applying st1 or st10 standardization matrices SEP from MP-UCO 471 

decreased approximately 80 % for protein and 85% for SNF content. Related with milk 472 

fat content the standardization process has not too much influence over the reduction of 473 

SEP values. Probably, the specific NIRS bands related with fat from 2150 to 2300 nm 474 

are not affected by the standardization, because the great differences between the 475 

spectra recorded in MP-SERIDA vs MP-UCO before standardization are in the 1880–476 
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2100 nm range, directly related with protein wavelength ranges (Osborne & Fearn, 477 

1986). 478 

Additionally, to check the performance of transferred models was calculated the SED, 479 

expressed as a difference between NIR analyses on MP-SERIDA and MP-UCO 480 

instruments (see Table 5). After applying standardization matrices, SED values between 481 

MP-SERIDA and MP-UCO decreased at least eight times for SNF and five times for 482 

protein compared to non-standardized results. For fat the reduction was only 1.2 times 483 

lower. These SED values were close to SEP values.  484 

To include a practical performance, after comparing the standardization procedure 485 

between NIR instruments (MP-SERIDA and MP-UCO), 10 milk samples coming from 486 

dairy cows of the experimental farm of SERIDA were analyzed with the MP-UCO 487 

device and applying both standardization matrices. Results are detailed in Table 6. As 488 

can be seen differences between reference and predicted values decrease after 489 

standardization. However, we must remark that there are not differences between both 490 

standardization matrices. For protein and SNF there are two samples with errors lower 491 

using st1 than using st10 standardization matrices. For fat, the prediction of 4 samples is 492 

more exact when applying st1. Nevertheless, st10 always has minor sum of residual 493 

values than st1.   494 

To the best of our knowledge this is the first time that the ability of the 495 

MicroPHAZIRTM to predict the milk composition changes of individual cows has been 496 

demonstrated. Furthermore, the ability of sharing calibration data among several units is 497 

a key point with a great importance for implementation of portable instruments at farm 498 

level for in situ quality control of milk.  499 

 
500 

4. Conclusions 501 

 502 
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After evaluating different sampling strategies to analyze raw milk samples using the 503 

handheld instrument MicrophazirTM we can conclude that to obtain satisfactory results it 504 

is necessary to average 80 scans to collect one sample spectra using 17mm sample 505 

thickness cuvette with an aluminum backside.  506 

This study has established a promising ability of this handheld NIR instruments to 507 

estimate the individual dairy milk composition changes. Moreover, the calibration 508 

models developed showed that the accuracy and precision of the equations obtained 509 

using the handheld instrument were similar, in terms of both calibration and validation, 510 

to those of the equations obtained on lab based instruments. 511 

The promising results for the ability of sharing calibration data (transference procedure) 512 

after applying a simple standardization algorithm for spectral adjustment minimized 513 

spectral differences between hand-held MicroPhazir analyzers even developed with 514 

only one sample have great importance for implementation of portable instruments as a 515 

tool for in situ monitoring indicators of milk composition. 516 
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TABLES 635 

Table 1.  Repeatability and reproducibility root mean square (RMS) for 80 scans by 636 

spectra with C1 and C17 cuvettes types 637 

 638 

 639 

Intrument Cuvette type Repeatibilty 
RMS 

Reproducibility 
RMS 

MP-SERIDA 
C1 (1-mm + adapter) 11190 45270 

C17 (aluminum 17 mm) 5309 4799 

FNS C17 (aluminum 17 mm) 2568 3823 

 640 

MP: MicroPHAZIR NIR instrument 641 

642 
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Table 2.  Statistic descriptive values for milk samples in calibration and external 643 

validation sets 644 

 645 

 CALIBRATION (N=444) EXTERNAL VALIDATION (N=38) 

Parameter (%) Range Mean SD Range Mean SD 

Fat  2.38 – 6.36 3.67 0.575 2.71 – 4.97 3.57 0.476 

Protein  2.58 – 4.00 3.18 0.262 2.47 – 3.37 2.98 0.193 

SNF 7.14-9.85 8.73 0.325 7.66-9.12 8.62 0.287 
 646 

SD: standard deviation variation, SNF: solids-non-fat 647 

  648 
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Table 3. Statistics for calibrations models developed in MP-SERIDA Master Unit  649 

 650 

Parameter (%) SEC R2 SECV r 2cv SEP 

Fat 0.089 0.971 0.102 0.961 0.126 

Protein 0.120 0.758 0.139 0.676 0.124 

SNF 0.185 0.612 0.225 0.476 0.221 

 651 

SNF: solids-non-fat; SEC: Standard Error of Calibration; R2: Determination Coefficient of 652 

Calibration; SECV: Standard Error of Cross-validation; r 2
cv: Determination Coefficient of 653 

Cross-Validation; SEP: Standard Error of Prediction 654 

  655 



 

29 

 

Table 4.  GH, NH and RMS(c) values for the “cloning set” (N=38) analyzed on the 656 

MP-SERIDA and MP-UCO before and after standardization using two matrixes (st1 657 

and st10). 658 

 659 

Parameter MP-SERIDA MP-UCO 
before 

MP-UCOst1 
after 

MP-UCOst10 
after 

Mean GH 1.497 20.000 1.550 1.839 

Mean NH 0.858 15.309 1.043 1.218 

RMS(C) 
(µlog (1/R) ) 

12,965 54,590 16,493 11,818 

st1= Sample closest to center of population; st10= 10 samples. 660 
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Table 5.  Standard errors of prediction and standard errors of difference in the validation set (N = 38) for the calibrations 

obtained in the MP-SERIDA and MP-UCO for predicting fat, protein and SNF content in raw milk. 

 

 SEP SED 

Parameter 
MP-SERIDA 

MP-UCO 
before 

MP-UCOst1 
after 

MP-UCOst10 
after 

MP-SERIDA vs 
MP-UCO 

MP-SERIDA vs 
MP-UCOst1 

MP-SERIDA vs 
MP-UCOst10 

Fat 0.126 0.147 0.167 0.145 0.179 0.193 0.146 

Protein 0.124 0.810 0.190 0.178 0.762 0.133 0.179 

SNF 0.221 1.663 0.460 0.274 1.573 0.361 0.214 

 

SNF: solids-non-fat 
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Table 6.  Practical performance using calibration models before and after transference procedure, for predicting fat, protein 

and SNF content in raw milk (N=10). 

Fat Protein SNF 

Sample Ref. 

MP-
UCO 

before 

MP-
UCOst1 

after 

MP-
UCOst10 

after   Ref. 

MP-
UCO 

before 

MP-
UCOst1 

after 

MP-
UCOst10 

after   Ref. 

MP-
UCO 
before 

MP-
UCOst1 

after 

MP-
UCOst10 

after 
1 3.39 3.30 3.32 3.43 

 
2.94 1.69 2.81 2.85 

 
8.52 7.16 8.39 8.45 

2 3.40 3.32 3.34 3.48 2.77 1.98 3.10 3.15 8.54 7.15 8.41 8.55 
3 3.21 3.35 3.36 3.18 2.81 0.85 2.30 2.76 8.24 6.52 8.06 8.52 
4 3.33 3.29 3.31 3.36 2.47 1.48 2.72 3.05 7.66 6.82 8.19 8.55 
5 3.84 3.72 3.68 3.84 3.20 2.06 3.09 3.12 8.86 7.30 8.46 8.55 
6 3.93 3.71 3.67 3.84 2.97 1.68 2.78 2.83 8.45 7.16 8.35 8.44 
7 3.86 3.68 3.65 3.80 

 
2.92 1.43 2.62 2.73 

 
8.45 7.06 8.32 8.48 

8 3.52 3.39 3.40 3.50 
 

3.06 1.79 2.92 2.98 
 

8.69 7.16 8.40 8.47 
9 3.54 3.78 3.72 3.63 

 
3.12 1.86 3.06 3.31 

 
9.03 7.11 8.46 8.72 

10 4.38 4.24 4.13 4.34   2.86 1.93 2.96 2.98   8.57 7.50 8.61 8.65 

               Ref. : Reference data, SNF: solids-non-fat 
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Figure captions 1 

Fig. 1. Mean spectra of milk (N=25 of Set 1) analyzed averaging 5 scans/sample in MP-2 

SERIDA and FNS instruments and different cuvettes. 3 

A) MP-SERIDA: C1 cuvette + adapter module; B) MP-SERIDA: C17 cuvette; C) FNS: 4 

C17 cuvette  5 

 6 

Fig.2. Mean spectra for the external validate transfer set (Set 2 (Group 2), N=38 7 

samples and 80 scans/spectra) with both instruments. (A) Raw log (1/R) spectra with no 8 

pretreatment and (B) First derivative spectra with SNVD treatment. In both plots the 9 

line with circles (a) is the MP-SERIDA, (b) the grey solid line is the MP-UCO before 10 

standardization and (c) the thick solid black line is the MP-UCO after standardization. 11 



 



 



 




