
The final publication is available at Springer via https://doi.org/10.1007/978-3-031-80889-0_17

Software System Testing Assisted by Large Language
Models: An Exploratory Study

Cristian Augusto [0000-0001-6140-1375] 1, Jesús Morán [0000-0002-7544-3901] 1, Antonia Bertolino
[0000-0001-8749-1356] 2, Claudio de la Riva [0000-0001-5592-9683] 1, Javier Tuya [0000-0002-1091-934X] 1

1 Computer Science Department, University of Oviedo, Gijón,
2 ISTI-CNR, Consiglio Nazionale delle Ricerche, Pisa, Italy

1{augustocristian, moranjesus, claudio, tuya}@uniovi.es

2 antonia.bertolino@isti.cnr.it

Abstract. Large language models (LLMs) based on transformer architecture
have revolutionized natural language processing (NLP), demonstrating excellent
capabilities in understanding and generating human-like text. In Software Engi-
neering, LLMs have been applied in code generation, documentation, and report
writing tasks, to support the developer and reduce the amount of manual work.
In Software Testing, one of the cornerstones of Software Engineering, LLMs have
been explored for generating test code, test inputs, automating the oracle process
or generating test scenarios. However, their application to high-level testing
stages such as system testing, in which a deep knowledge of the business and the
technological stack is needed, remains largely unexplored. This paper presents
an exploratory study about how LLMs can support system test development.
Given that LLM performance depends on input data quality, the study focuses on
how to query general purpose LLMs to first obtain test scenarios and then derive
test cases from them. The study evaluates two popular LLMs (GPT-4o and GPT-
4o-mini), using as a benchmark a European project demonstrator. The study com-
pares two different prompt strategies and employs well-established prompt pat-
terns, showing promising results as well as room for improvement in the appli-
cation of LLMs to support system testing.

Keywords: Large Language Model, Software Testing, System Testing, Test
Cases, Test Scenarios

1 Introduction

Large Language Models (onwards referred to as LLMs) based on transformer architec-
ture have emerged as one of the biggest technological disruptions of recent years in the
field of natural language processing (NLP). In a nutshell, LLMs are deep neural net-
works trained on a huge amount of data, from which they acquire an astonishing capa-
bility to understand and generate human-like text. State-of-the-art LLMs show such

https://urldefense.com/v3/__https:/doi.org/10.1007/978-3-031-80889-0_17__;!!D9dNQwwGXtA!TTa2DcKmdzqoiB2kn1sR0qaoJ-fLgCAjC5CwpozKJ9d9m5t2ZqnjOfZ70xoIKPcAwxeLWTIUJZOMBaAlOQHcJ37pPrnvqHY$

2

“intelligent and rational” capabilities in imitating human performances that in a recent
experiment they have been able to pass the Turing test with a 50% success rate [1].

LLMs are rapidly transforming the technological landscape while also attracting in-
creasing attention from the media and raising society expectations on their potential
benefits. LLMs are already widely employed in industry, especially in healthcare, edu-
cation and financial services [2]. Typical LLM applications include for example the
creation of conversational agents (bots), empowered support to user’s performing tasks
or process automation [3], moving towards the so-called industry 6.0 age [4].

In terms of market expansion, even though the estimated (compound annual) growth
rates differ largely (from the 33.2% by MarketsandMarkets [5] up to the 79.8% by
Pragma Market Research [6]) the analysts concur in predicting steady growing world-
wide impact until 2030.

LLMs have also crashed into Software Engineering (SE) [7], hinting at several po-
tential breakthroughs in addressing SE challenges that can be reformulated in terms of
data, code or text analysis [8]. To date, LLMs have achieved quite promising results in
assisting the developer to generate code, documentation, and reports [9], in improving
the explainability of the code itself or its patches [10], and in other tasks considered
repetitive and less valuable (so-called “toils” [11]).

In Software Testing, one of the cornerstones of the SE field, several works have
explored how to use LLMs to generate test code [12] or also to generate test scenarios
[13]. However, as we discuss in the Related Work section, the focus has been mostly
on the Unit Test level: as noticed by Ozkaya in a recent editorial about the application
of LLMs to SE tasks, “Generating unit tests is one of the tasks where developers
shortcut the most.” [7].

In this work, we aim to investigate the capability of LLMs to support software testing
at system level. System test cases validate the interaction among the different system
components or the user interaction with the application. The system test suite develop-
ment process is usually expensive because it requires a deep knowledge of the business
context of the application and knowledge about the technological stack on which the
application relies. Therefore, if LLMs could be leveraged to help the generation of ef-
fective system test cases, this could bring substantial benefits to the whole testing pro-
cess. To the best of our knowledge, the application of LLMs to support system testing
remains largely unexplored: some works have scraped the surface by evaluating LLM
support to test specific types of applications, or to generate test inputs, e.g., for mobile
applications. However, no previous work has used LLMs to automate the whole path of
deriving system test cases from user requirements.

The approach we experiment here considers two different artifacts related to system
testing, namely test scenarios and test cases. The former are taken as an input for the
latter, in accordance with the ISO 29119 standard, in which test scenarios are defined
as “the situations or settings for a test item used as a basis for generating the test cases”
[14]. Thus, in this work we first evaluate the support of LLMs for deriving test scenar-
ios, which provide a high-level stepwise description of the system tests; afterwards, we
also use the LLMs to generate the test cases, i.e., the test code that corresponds to a
given test scenario.

3

While remarking on the excellence of LLMs for a wide range of tasks, several authors
warn that the LLM performance is directly related to the quality of their input [15]. In
LLMs we differentiate between two types of input data: (1) the training data used during
the creation of the model and (2) the query data used to prompt the model. Currently,
most approaches employ general-purpose pre-trained LLMs, tailored for specific tasks
through appropriate query data to prompt the model [16]. Therefore, to investigate how
LLMs perform in assisting the system test process, we need to explore how these gen-
eral purpose pre-trained LLMs should be prompted. To achieve this objective, this arti-
cle uses both the data of a real-world application and its test suite to evaluate how two
of the most popular state-of-the-art pre-trained models (GPT-4o and GPT-4o-mini),
perform when asked to assist the system testing process in generating test scenarios and
coding the system test cases.

Although we cannot generalize our conclusions outside the employed evaluation
subject, our study provides promising results for both tasks, hinting at the opportunity
of leveraging LLMs to assist the entire system testing process, from test scenario deri-
vation until test cases development.

In our exploratory study we have observed that the LLMs can support the tester dur-
ing the E2E system process, facilitating their task. According to our initial evaluation,
the LLM test scenario generation covered the user requirements extensively (up to
100%). However, the generation of E2E test code requires to slightly change a few lines
of the code (up to 29%).

The rest of the paper is structured as follows: Section 2 provides the related work.
The exploratory study design is presented in Section 3. Section 4 presents the evaluation
and results while Section 5 presents the threats to validity. Finally, Section 6 presents
the conclusions and future work.

2 Related Work

In this section we review the literature related to our paper. The related work belongs
primarily to two fields: (1) Large Language Models and Prompt Engineering and (2)
Large Language Models applied to Software Engineering and Software Testing.

2.1 Large Language Models and Prompt Engineering

Large Language Models (LLMs) based on neural networks were introduced in the 80s
[17]–[19] for Natural Language Processing (NLP). Later, the introduction of the trans-
former architecture [20], triggered an explosion in the number of multi-purpose models
with reasoning-like capabilities like PALM [21], Llama [22], or GPT-4 [23]. These
models follow the “Pre-train, Prompt and Predict” [16] paradigm, in which a general
purpose LLM is adapted to a new concrete task through an adequate prompt. Therefore,
the process of designing and refining the prompts for a pre-trained model, also known
as prompt engineering, has attracted the interest of both academia and industry; several
authors have proposed patterns to accomplish different related tasks [24], [25], various
prompt strategies [26]–[28], as well as development tools and repositories [29].

4

Our exploratory study draws upon all these works, employing state-of-the-art trans-
former architecture pretrained models [23], using the pre-train, prompt and predict par-
adigm [16]. As described in Section 3.2, we employ state-of-the-art patterns [24] to
design and create our prompts following the best practices [25], and use the Few-Shot
[28] and Chain of Thought [27] prompt techniques.

2.2 Large Language Models applied to Software Engineering and
Software Testing.

In recent years, the increasing popularity of LLMs has exploded in a wide range of
applications in Software Engineering including code generation, code explainability,
and more in general for reducing the manual effort in repetitive tasks or improving/eas-
ing difficult processes such as Software Testing. LLM-assisted generation of code has
been popularized through the inclusion of programming assistants like Microsoft Copi-
lot [30]. This type of assistants has attracted the interest of academia, who focused on
the impact of its hallucinations and the quality and usefulness of its code [30]–[32].
Code explainability using LLMs has been addressed through the explainability of the
code itself [33], or the explainability of failures, debugging [34], generating documen-
tation [35], and reports [9], [10]. In Software Testing, part of the effort has been put
into unit testing for generating test cases, migrating testing code or generating test sce-
narios [12], [13], [36], [37]. In other testing levels, like System Testing, the literature
has focused on generating test inputs/data for mobile/UI testing, such as the necessary
human interaction or text inputs [38] or test inputs for other types of software (e.g.,
simulators) [39]. In mobile testing LLMs have been applied to generate user UI inter-
actions (testing scripts) with the GUI information, generate the [15] navigation through
the application using natural language test cases [40] or [37] generate mobile test code
from natural language. In GUI testing, some authors [34] have also applied LLMs to
migrate test scripts between different platforms and apps.

 Finally, other works that explore how to generate reports or models [9], [10], [35]
provide us with insights on how to address prompt engineering as well as its evaluation
in Software Engineering.

Some works share similarities with our approach: [40] has the same objective but
the test cases provided as input, and the outputs are direct descriptions of UI interactions
(e.g., press button “A”). In [15] the authors propose using the GUI as input, but the
output is again a natural language description, e.g., “Operation: Scroll, Widget: Menu”.
In contrast, our approach uses as input the user requirements, generates scenarios, and
from these scenarios with test case examples generates the testing scripts that with
slight adjustments can be executed directly against the application.

The closest works to this paper are I) the generation of test scenarios using system
requirements proposed by [13] and II) the test script generation based on natural lan-
guage specifications proposed by [37]. Our work attempts to go a step further by ex-
ploring the whole process: we first generate the test scenarios from the user require-
ments, and then generate the test code from them. In perspective, we aim at a fully
supported system testing approach that can benefit from LLM assistance, and in this
work we take the first steps in this direction.

5

3 Exploratory Study Design

3.1 Overview

The process followed in our exploratory study, depicted in Fig. 1, consists of two sub-
processes: the generation of test scenarios (left side of Fig. 1) and the generation of test
cases (right side of Fig. 1). These two subprocesses are described below:

• The generation of test scenarios starts by giving as input the user requirements of the
application to generate test scenarios [14]. More precisely, the user requirements
(Fig. 1, ①), as well as serving an example of a test scenario, (Fig. 1, ②) are pro-
vided to generate the prompts of two different prompt techniques: Few-Shot-prompt-
ing [41] (Fig. 1, ③) and Few-Shot + Chain of Thought prompting (Fig. 1, ④). We
generate two different prompts that are given to two LLMs: GPT-4o and GPT-4o-
mini to generate the different scenarios (four sets in total) for each prompt technique
(one different prompt for each technique) and LLM model (Fig. 1, ⑤-⑧).

• The generation of test cases uses as input the test scenarios generated in the previous
subprocess (Fig. 1, ⑨) and some examples of system test cases (Fig. 1,⑩). We
generate two different prompts, again one for each technique: Few-Shot and Few
Shot + Chain of Thought. The prompts are provided to the GPT-4o and GPT-4o-
mini models that eventually generate four different sets of test cases (Fig. 1,⑬-⑯).

Fig. 1 Overview of exploration study

In accordance with the two subprocesses above described, our exploratory study aims
to answer two Research Questions:

PROMPT
GENERATION

IN
PU

TS

EXAMPLE
TEST SCENARIO

PROMPT
GENERATION

SCEN
FS 4o

TEST
FS 4o

TEST
SCENARIOS

O
U

TP
U

TS

TEST SCENARIO GENERATION TEST CASES GENERATION

1 9

RQ1

EXAMPLE SYSTEM
TEST CASES

USER
REQUIREMENTS

2

FewShot
PROMPT

FS+CoT
PROMPT

GPT 4o GPT 4o-mini

PROMPT
GENERATION

PROMPT
GENERATION

FewShot
PROMPT

FS+CoT
PROMPT

GPT 4o GPT 4o-mini

SCEN
CoT-4o

SCEN
FS-4min

SCEN
CoT 4min

TEST
CoT 4o

TEST
FS 4min

TEST
CoT 4min

3 4

5 6 7 8

10

13 14 15 16

11 12

O
U

TP
U

TS
IN

PU
TS

RQ2

6

RQ1: How do LLMs perform in generating system test scenarios from user re-
quirements?

RQ2: How do LLMs perform in generating test cases from test scenarios?

In the following subsections, we describe the set-up and the design of our exploratory
study.

3.2 Study subject and evaluation set-up

As an evaluation subject, we use the real-world application FullTeaching [42], a de-
monstrator of the Horizon 2020 European project ElasTest [43]. FullTeaching is a web
application that provides an online teaching platform to impart classes, publish materi-
als, and enable the interaction between teachers and students. Specifically, we employ
from this web application:

• The user requirements (translated from Spanish) [44] used during the development
of the FullTeaching web application and available in the FullTeaching project doc-
umentation [44]. Precisely, they consist of 39 natural language requirements that
cover functionalities such as videocall or course creation.

• The system test suite of this application available in the GIIS repository [45], com-
posed of 21 Java Selenium test cases that cover different test scenarios.

Below is an example of the user requirements, the full list is available in the replication
package [46]: “(16) The teacher can add students to a course in different ways: (16.1)
using their unique email address, (16.2) using multiple email addresses, or (16.3) using
a file (txt, excel, Word, PDF…).”

In Table 1 below, we provide the user requirements covered (shown in the rows using
their original labelling from 1.0 to 16.0) and the different system test cases (shown in
the different rows). This user requirement coverage was derived by reaching consensus
among the authors. We see that the 21 test cases available from FullTeaching cover
almost 80% of the 39 user requirements, leaving only uncovered (8) the registration,
(7.3) the muting of the teacher audio by the students, (7.7) the cancellation of a re-
quested voice turn, (11) the edition of a class attributes at any time, (12) the profile
modification and (14) the captcha test during the registration. This test suite was devel-
oped and then extended-migrated to the ElasTest repository. We do not know why the
author did not test the whole functionality, we can only guess that this was perhaps due
to time constraints.

As a Large Language Model, we have studied the current market and decided to
select two of the latest models offered by the leader industry OpenAI [47], the models
concisely are GPT-4o (v2024-05-13) and GPT-4o-mini (v2024-07-18). We execute the
prompts using the OpenAI API, setting the temperature of the models to 0.2 [48] to
improve the repeatability of the results. This parameter controls the model's random-
ness, a value of 0 selects the highest probability words, while higher temperatures in-
crease creativity and the chance of 'hallucinations'.

As evaluation metrics, concerning RQ1 we consider the test coverage metric:
“number of requirements covered by executed tests” [14]. We adapt this metric to the

7

case of the LLM-generated test scenarios, i.e., we evaluate which and how many user
requirements are covered by the LLM-generated test scenarios instead of by the exe-
cuted test cases. This measure of coverage (in percentage) is compared against the re-
quirement coverage achieved by the baseline, i.e., which and how many user require-
ments are covered by the FullTeaching test suite (shown in Table 1). Requirements 1,
2, 3, and 9 covered by most of the test cases correspond to: the user can see the courses
enrolled in, the user can access a course, teachers can create a course, and the user can
log in to the system, respectively. Concerning RQ2, considering the test cases generated
by LLM, we measure the effort required to make the generated test code pass (unless
we ascertain that they fail because of a bug in the application under test). As a proxy
measure of this effort, we use the average number of code changes needed until the test
code successfully executes, counting the number of lines of code modified.

In the replication package we provide a series of Java scripts using the OpenAI API
to query and obtain the answers of the models, the prompt templates, strategies, and the
findings of our exploratory study. The replication package is available in our GitHub
repository [46].

Table 1 User Requirements FullTeaching traceability matrix

E2E Test Case Requirement Covered
oneToOneChatInSessionChrome 1, 2, 6.1, 6.4, 6.5, 6.8, 7.1, 7.4, 7.5,9
courseRestOperations 1, 2, 3, 9, 10
courseInfoRestOperations 1, 2, 3, 9, 10, 13
sessionRestOperations 1, 2, 3, 4.1, 4.2, 4.3, 9
forumRestOperations 1, 2, 3, 4.6, 5.1, 5.2, 9
filesRestOperations 1, 2, 3, 5.5, 5.3, 9
attendersRestOperations 1, 2, 3, 4.4, 9, 16.1
sessionTest 1, 2, 6.1, 6.4, 7.1, 7.4, 9

oneToOneVideoAudioSessionChrome 1, 2, 4.1, 4.2, 4.3, 6.1, 6.2, 6.3, 6.4, 6.6, 6.7, 6.8, 7.1, 7.2,
7.4, 7.6, 7.8, 9

studentCourseMainTest 1, 2, 9, 15
teacherCourseMainTest 1, 2, 9, 15
teacherCreateAndDeleteCourseTest 1, 2, 3, 5.1,9,10, 13
teacherEditCourseValues 1, 2, 3, 9
teacherDeleteCourseTest 1, 2, 9
forumLoadEntriesTest 1, 2, 5.2, 9
forumNewEntryTest 1, 2, 5.2, 9
forumNewCommentTest 1, 2, 5.2, 9
forumNewReply2CommentTest 1, 2, 9
spiderLoggedTest 1, 2, 9
spiderUnLoggedTest 9
loginTest 9

8

3.3 Prompt creation and refinement

To create the prompts to answer the two research questions we first establish a base
prompt for Few-Shot, and then extend it with the necessary statements to also apply the
Chain-of-Thought prompt technique. Few-Shot prompting is a technique that enables
in-context learning by providing the LLM with examples in the prompt (e.g., different
assertions in one language if we are asking for a concrete assertion). Chain of Thought
prompting aims to enable the reasoning capabilities of the model by explicitly requiring
the intermediate steps. Precisely, the prompt creation was carried out as follows:

Few-shot Prompts:
To generate the test scenarios using Few-Shot we create our prompt using the Recipe
prompt pattern [24], as we find that a test scenario has similarities to a recipe: several
ordered tasks, an expected output and also incorrect states. The prompt structure, as
well as the contextual statements to address the test scenario generation, is as follows:

Ⅰ) “I would like to generate test scenarios for system testing
I know that I need to fulfill the user requirements: ‘’’Ⓐ{{UserRequirements}}’’’
Provide a complete sequence of steps for each scenario and the expected outputs.
Fill in any missing steps
Identify any unnecessary steps.
Examples of a test scenario: ‘’’Ⓑ{{ExampleTestScenario}}’’’”

The prompt has available two placeholders: (1) UserRequirements (Ⅰ, Ⓐ) contains the
application user requirements, while (2) ExampleTestScenario (Ⅰ, Ⓑ) contains from one
to several examples of test scenarios.

To generate the system test cases, with the Few-Shot prompt technique we use the
Context Manager prompt pattern [24]. This pattern allows us to delimitate the context
of the LLM, focusing on the system test cases provided as examples and the test sce-
narios. The prompt is the following:

Ⅱ) “When generating system test that covers Ⓐ{{Functionality}}
Please consider the following test scenarios: ‘’’Ⓑ{{TestScenarios}}’’’’
and the following system test examples: ‘’’Ⓒ{{SystemTestExamples}}’’
Don’t generate the whole test suite, only the required test case.”

This prompt presents three different placeholders: (1) Functionality (Ⅱ, Ⓐ) expects the
test functionality to be covered by the generated test case. In the prompt, the Function-
ality placeholder is substituted with a brief, high-level statement that describes what is
going to be tested such as: “User enrolls into a course” or “Teacher login and create a
course”. In most of the cases, we use the title of the test scenario to be covered, or a
summary of it. The (2) TestScenarios (Ⅱ, Ⓑ) placeholder expects all the test scenarios,
and finally (3) SystemTestExamples (Ⅱ, Ⓒ) expects the system test cases given as ex-
amples to the LLM. This prompt has been refined based on our experience generating
system test code: “Don’t generate the whole test suite, only the required test case”

9

delimitates the generation of code, avoiding that in some executions the LLM generates
more cases than required.

Few-shot + Chain of Thought Prompts
To create the prompts for Chain of Thought, we extend the Few-Shot prompts by adding
the phrase “Let’s think step by step”, which has been proved as a robust “reasoning
enabler” for instructive outputs [28].

To generate the test scenarios, we include as the first statement the following line:

Ⅲ) “Let’s think step by step, describe the solution and remark which user require-
ments are covered”

To ensure that the reasoning capabilities of the LLM are focused on the coverage of the
different user requirements, we ask to highlight which user requirements are covered
by each test scenario.

For the system test generation, we include the following statements to the Few-Shot
prompt:

Ⅳ) “Let’s think step by step, describe the solution by breaking it down into a task
list for then generate the code”

We add this suggestion to establish the steps of the test case prior to the code generation,
as, according to several prompt engineering demonstrations and tutorials [46], this im-
proves the expected output.

4 Exploratory Study Execution and Results

The following subsections detail how the exploratory study has been carried out. Sec-
tion 4.1 and Section 4.2 present the evaluation, respectively, for RQ1 and RQ2.

4.1 [RQ1]: Generating test scenarios from user requirements

To answer the first research question, we employ the prompts presented in the previous
section, and fulfill the prompt UserRequirements (Ⅰ, Ⓐ) placeholder with the entire
FullTeaching user requirements and the ExampleTestScenario (Ⅰ, Ⓑ) with a test sce-
nario of another business context (bank transaction management platform).
We evaluate the results achieved by the LLMs using Few-Shot and Chain-of-Thought
for both models (GPT-4o and GPT-4o-mini). Thus, we refer to the right side of Fig. 1
in which we obtain four different sets of test scenarios denoted as ⑤-⑧. Moreover, as
the results provided by the LLM are not deterministic, we execute each thread up to 5
times, thereby obtaining 20 sets of test scenarios in total.
As anticipated, we measure for each set of test scenarios the coverage of user require-
ments (in percentage), and then we also evaluate the reliability of the test scenario gen-
eration approach by comparing for each of the four threads the results of the five exe-
cutions. Our initial findings between the different executions are that for all the

10

prompting techniques and models studied, the test scenarios are quite consistent (even
more than we expected, see Table 2).

Table 2 Requirements coverage the different executions, models, and prompt techniques

Prompt

Technique
Model

Execution
AVG MDN SD

1 2 3 4 5

Few-Shot+ CoT GPT-4o 100 100 100 100 100 100 100 0

Few -Shot GPT-4o 100 100 100 94.9 100 99.0 100 2.3

Few-Shot+ CoT GPT-4o-mini 87.2 97.4 87.2 94.9 92.3 91.8 92.3 4.6

Few-Shot GPT-4o-mini 94.9 97.4 89.7 97.4 92.3 94.4 94.9 3.3

Small differences among the five sets of test scenarios could include, for instance: one
scenario may correspond to the merging between two scenarios of another execution,
or it can have different text styles, or be named in a different way: “User enrollment
courses” vs “Viewing enrolled courses”.

In terms of user requirements coverage, the generated test scenarios have a low
standard deviation: 2.3 GPT-4o/Few-Shot, 0.0 GPT-4o/CoT, 3.3 GPT-4o-mini/Few-
Shot and 4.6 GPT-4o-mini/CoT.

Using the GPT-4o model with the Few-Shot prompt technique, the average in user
coverage is 99.0% and the median 100%. With the Few-Shot + CoT prompt technique,
the average in user coverage is higher (100%) and the median is the same.

Using the GPT-4mini model with the Few-Shot prompt technique, the average in
user requirements coverage is 94.4% and the median 94.9%. With the Few-Shot + CoT
prompt technique, decreases both the average of coverage (91.8%) and the median
(92.3%).
Based on the observed results, we can answer RQ1 as:

Overall, our findings indicate that model GPT-4o slightly outperforms model GPT-
4o-mini in generating test scenarios. Furthermore, the use of Few-Shot with the
Chain of Thought prompting improves the user requirements coverage in the GPT-
4o-mini model. Both models achieve better user requirements coverage in all their
executions than the baseline 79.46%, generating scenarios that cover functionalities
not explored by the FullTeaching test suite.

4.2 [RQ2]: Generating system test cases from test scenarios.

To answer RQ2, we employ the above-presented prompts (Ⅱ and Ⅳ), in which we
have to fulfill the placeholders: Functionality, TestScenarios and SystemTestExamples.

• With respect to TestScenarios (Ⅱ, Ⓑ), given that five sets were generated for each
configuration in the earlier phase of our study, it is now crucial to select one single
set from the 20 available test scenarios. To this end, we considered the previously
defined test coverage metric over the user requirements, and we opted for the set of

11

test scenarios that achieves the highest coverage; in case of equal coverage value,
we prioritize the set with fewer scenarios. Based on these criteria, the selected set of
Test Scenarios was one among the 5 sets produced by the GPT-4o model using Few-
Shot + CoT prompt technique.

• Concerning SystemTestExamples (Ⅱ, Ⓒ), in our study we can use some test cases of
those available in the FullTeaching test suite (which of course have not been derived
from the LLM test scenarios). To select which test cases to provide in the prompt,
once again we refer to the coverage of the user requirements. Since we have traced
the coverage of user requirements by both the test scenarios and the test cases, we
can evaluate the relation between a test case and a test scenario comparing their re-
spective coverages. Intuitively, if a test case yields an identical, or very similar, cov-
erage spectrum as a test scenario, we can consider that the test case implements that
test scenario. Thus, for each possible pair of a test scenario and a FullTeaching test
case, we computed their Levenshtein distance comparing their respective coverage
of the user requirements. We did not consider trivial test cases and scenarios (e.g.,
login, covered by most of the suite test case). These test cases and scenarios are not
considered because the exact code-test methods are provided with all test cases pro-
vided by example in the prompt, being less challenging for the model. For example,
the login test is a simple invocation to slowLogin (user,password), present in all test
cases already in the prompt. Finally, we selected 4 different test cases as the ones
yielding the lowest distance measures from the test scenarios; these 4 test cases, and
the 4 test scenarios to which they are close, are referred to as the Levenshtein set.
We limited the selection to four test cases because we aimed to employ a cross-
validation technique, which would have become very costly and time-demanding
with a higher number of test cases. The cross-validation technique is described be-
low.

• Concerning Functionality (Ⅱ, Ⓐ), we refer to the titles of the test scenarios in the
Levenshtein set, and we select one of them according to the cross-validation ap-
proach as described below.

In every execution of the LLMs, all the test scenarios in the selected set were used to
fulfill the TestScenarios (Ⅱ , Ⓑ) placeholder. Instead, the Functionality (Ⅱ, Ⓐ), and
SystemTestExamples (Ⅱ , Ⓒ) take different values according to the cross-validation ap-
proach. The cross-validation was performed as follows for each prompt technique and
model: we remove one test case from the Levenshtein set and provide as input the three
remaining test cases, asking the LLMs to generate a test case that covers the function-
ality corresponding to the title of the test scenario closely covered by the one that has
been removed.

As anticipated, to assess LLM results for the different models and prompt techniques,
we refer to the effort required to make the test code pass, in terms of the number of
lines of code modified. We execute the generated test cases over the FullTeaching ap-
plication, and we manually made the minimal changes to make the test case work/pass.
Table 3 shows the number of changes in the code performed, the average, and the per-
centage in average of lines changed for the different test cases (A-C) with the two mod-
els (4o and 4o-mini) and two prompting techniques (Few-shot and Few-Shot+CoT):

12

Table 3 Total and average code changes in the different test cases

Model Prompt
Technique

(A) View
Courses

(B) View
Classes

(C)
Create
Course

(D) View
Calendar AVG %

AVG

GPT-4o Few Shot
(FS) 2 5 14 3 6 22.64 %

GPT-4o Few Shot +
CoT 6 9 14 4 8.25 31.13 %

GPT-
4omini Few Shot 5 7 18 (14H) 6 (1H) 9 31.30 %

GPT-
4omini

Few Shot +
CoT 8 (6H) 10 15 (8H) 4 9.25 34.9 %

The results show that using the GPT-4o model with the Few-Shot prompt technique,
the generated test case requires a median of 4 modifications and 6 modifications on
average between the different tests generated in the cross validation. Using the Few-
Shot + CoT prompt technique, the test case requires 7.5 modification in median and
8.25 modifications on average.

Using the GPT-4mini model with the Few-Shot prompt technique, the generated test
case requires 6 modifications in median and 9 modifications on average. Using the Few-
Shot + CoT prompt technique, the test case requires 7 modifications in median and 9.25
modifications on average.

We have mostly observed two different modification types: in several executions the
LLM indicates that it is not sure about a certain value-method and asks the tester for its
completion; in other cases, the LLM uses a non-existent method, class, or id (Table 3
(H-Hallucination). The slight modifications required are easy to perform, for instance
adjusting a UI identifier to its correct value, replacing methods that do not exist with
the correct ones, or adding an annotation that was missed by the LLM. Mostly, we
observe that up to 77.5% on average of the generated lines code can be directly used.

The GPT-4o model is more prone to use those incorrect object identifiers or methods
that do not exist (Hallucination). On the other hand, the GPT-4o-mini requires more
modifications, but some of them are required by the model itself (e.g., “adjust this ID
with the submit button id”, “Set password and user to the correct values”)
Based on the observed results, we can answer RQ2 as:

In general, our findings indicate that model GPT-4o outperforms the GPT-4o-mini
in generating system test cases from the test scenarios. With reference to the prompt
technique, Few-Shot outperforms the inclusion of Chain of Thought, requiring less
modifications. In general, the code that needs to be adjusted is around 29% of the
total generated code with a standard deviation of 5%.

5 Threats to validity

Notwithstanding our diligent endeavors, the validity of the findings for the exploratory
study described above remains susceptible to various threats. We acknowledge the ex-
istence of the following types [49]:

13

Internal validity: threats to internal validity lie in possible biases of our exploratory
study such that the properties measured over the observed outcomes are not produced
by the LLMs but are due to other confounding factors. To mitigate potential internal
threats, we employed a test suite and the user requirements of a real system used as a
demonstrator in a European project as subject of evaluation. Another possible source
of subjectivity is the manual calculation of the test scenarios coverage matrix in the
baseline and the RQ1; to mitigate this, two authors originally calculated the traceability
of the scenarios over the user requirements and then the coverage table was revised and
discussed by all authors until a general consensus was reached.

Construct validity: the threats to construct validity are concerned with the validity
of the settings of our study procedure. The main external threat to validity is the non-
determinism of the LLM itself, by which the output of the selected model can differ
between executions. In the test generation, we tried to mitigate it by repeating the ex-
periments five times and comparing the outputs across the five test scenarios to mini-
mize the impact of the randomness. In the test generation exploratory study, we per-
formed a cross validation and calculated the average of the number of modifications to
deal with this not determinism. Another construct threat relies on the data that the
OpenAI models use for training. It is impossible to know if those models were already
pretrained with the FullTeaching code or test suite, meaning that the solution could be
overfitted or biased.

External validity: this type of threats refers to the generalizability of the observa-
tions. As we only conducted one exploratory study on one subject, we cannot of course
make conclusions about the validity of LLM-assisted system testing for other differing
contexts and applications. While the results are promising, we warn that more experi-
ments are needed to draw more general conclusions. As is well known, the performance
of LLMs strictly depends on the prompts given to them. Thus, even for the FullTeaching
application, we cannot exclude that different prompts provided by different testers
could obtain quite different performances. We tried to mitigate this threat by selecting
state-of-the-art prompting patterns and strategies for the prompting creation process,
reducing the model temperature to minimize hallucinations, and fix the OpenAI model
versions.

Reliability: to tackle this issue and ensure reproducibility by fellow researchers, we
provide access to the user execution data, various configurations applied, and the data
used as input into a replication package [46]. The replication package also includes the
different formatted LLMs outputs and the changes performed into them (RQ2) to make
the test cases pass-work.

6 Conclusions and future work

LLMs arise as a promising support tool to complement the system test process. This
exploratory study has remarked that during the test scenario generation, LLMs can pro-
vide an initial set of test scenarios that cover most of the user requirements. The gener-
ated test scenarios show room for improvement, for instance by reducing the number

14

of test scenarios by merging several into one (e.g., one test scenario can check the en-
rolled courses as well as the classes of this course).

Deriving system test cases from the test scenarios poses more challenges. In general,
we have observed that the LLMs output provides correct test skeleton following the test
steps of the scenarios but tend to invent (hallucinate) with the identifiers of the web
elements or the methods created to support the test cases (e.g., navigate to main menu
method). In some cases (mostly the least powerful model) the output explicitly indicates
that the tester should tune these parameters, but in other cases the LLM generates
method calls or identifiers that do not exist.

Overall, our findings, in line with the community opinion, show that LLMs are a
great tool to reduce the amount of manual work, but must be supervised by a human
tester to reduce the impact of hallucinations.

This is a preliminary work, and several lines of future work have been opened due
to the promising results. The most prominent research line entails comparing our ap-
proach with the state-of-the-art tools not employing generative AI, as well as evaluating
our approach with more models (different to the GPT-based family) with different tun-
ings (e.g., different temperature values or introducing embeddings). We also plan to
extend and evaluate the performance of LLMs in assisting system testing by improving
the preliminary approach employed in this first study. We intend to explore how the
prompting techniques could be improved to achieve better results in terms of test effec-
tiveness, which has not been covered here. We also need to introduce some approach
to assess the efficiency of the LLM-assisted process. Finally, we also intend to explore
if and how LLMs could support the generation of negative (robustness) test cases.

Acknowledgments:
We would like to thank Alessio Ferrari for his help and guidance throughout our first
work on this topic. We also want to extend our gratitude to the URJC
ElasTest/FullTeaching team for their continuous support, especially Oscar, Pablo, and
Patxi. This work was supported in part by the project PID2022-137646OB-C32 under
Grant MCIN/ AEI/10.13039/501100011033/FEDER, UE, and in part by the project
MASE RDS-PTR_22_24_P2.1 Cybersecurity (Italy).

References

[1] C. Jones and B. Bergen, “Does GPT-4 Pass the Turing Test?,” 2023, [Online].
Available: http://arxiv.org/abs/2310.20216

[2] S. Raman, “The Rise of AI-Powered Applications: Large Language Models in Modern
Business,” 2023. https://www.computer.org/publications/tech-news/trends/large-
language-models-in-modern-business (accessed Aug. 01, 2024).

[3] S. Minaee et al., “Large Language Models: A Survey,” 2024, [Online]. Available:
http://arxiv.org/abs/2402.06196

[4] A. S. Duggal et al., “A sequential roadmap to Industry 6.0: Exploring future
manufacturing trends,” IET Commun., vol. 16, no. 5, pp. 521–531, Mar. 2022, doi:
10.1049/CMU2.12284.

15

[5] MarketsandMarkets, “Large Language Model Market Size And Share Report, 2030,”
2024. Accessed: Aug. 01, 2024. [Online]. Available:
https://www.grandviewresearch.com/industry-analysis/large-language-model-llm-
market-report

[6] P. M. Research, “Global Large Language Model (LLM) Market Size, Share, Growth
Drivers, Competitive Analysis, Recent Trends & Developments, and Demand Forecast
To 2030,” 2024. Accessed: Aug. 01, 2024. [Online]. Available:
https://www.pragmamarketresearch.com/reports/121032/large-language-model-llm-
market-size

[7] I. Ozkaya, “Application of Large Language Models to Software Engineering Tasks:
Opportunities, Risks, and Implications,” IEEE Softw., vol. 40, no. 3, pp. 4–8, 2023, doi:
10.1109/MS.2023.3248401.

[8] X. Hou et al., “Large Language Models for Software Engineering: A Systematic
Literature Review,” vol. X, no. December, pp. 1–79, 2023, [Online]. Available:
http://arxiv.org/abs/2308.10620

[9] P. Jin et al., “Assess and Summarize: Improve Outage Understanding with Large
Language Models,” ESEC/FSE 2023 - Proc. 31st ACM Jt. Meet. Eur. Softw. Eng. Conf.
Symp. Found. Softw. Eng., pp. 1657–1668, 2023, doi: 10.1145/3611643.3613891.

[10] D. Sobania et al., “Evaluating Explanations for Software Patches Generated by Large
Language Models,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics), vol. 14415 LNCS, pp. 147–152, 2024, doi: 10.1007/978-3-
031-48796-5_12.

[11] B. Betsy, J. Chris, P. Jennifer, and M. Niall Richard, Site Reliability Engineering: How
Google Runs Production Systems. O’Reilly Media, Inc., 2016.

[12] M. Schafer, S. Nadi, A. Eghbali, and F. Tip, “An Empirical Evaluation of Using Large
Language Models for Automated Unit Test Generation,” IEEE Trans. Softw. Eng., vol.
50, no. 1, pp. 85–105, 2024, doi: 10.1109/TSE.2023.3334955.

[13] C. Arora, T. Herda, and V. Homm, “Generating Test Scenarios from NL Requirements
using Retrieval-Augmented LLMs: An Industrial Study,” 2024, [Online]. Available:
http://arxiv.org/abs/2404.12772

[14] “ISO/IEC/IEEE International Standard - Software and systems engineering --Software
testing --Part 1:General concepts,” ISO/IEC/IEEE 29119-1:2022(E), pp. 1–60, 2022,
doi: 10.1109/IEEESTD.2022.9698145.

[15] Z. Liu et al., “Make LLM a Testing Expert: Bringing Human-like Interaction to Mobile
GUI Testing via Functionality-aware Decisions,” pp. 1–13, 2024, doi:
10.1145/3597503.3639180.

[16] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train, Prompt, and
Predict: A Systematic Survey of Prompting Methods in Natural Language Processing,”
ACM Comput. Surv., vol. 55, no. 9, pp. 1–46, 2023, doi: 10.1145/3560815.

[17] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal Representations
by Error Propagation,” in Readings in Cognitive Science: A Perspective from
Psychology and Artificial Intelligence, 1985, pp. 399–421. doi: 10.1016/B978-1-4832-
1446-7.50035-2.

[18] J. L. Elman, “Finding structure in time,” Cogn. Sci., vol. 14, no. 2, pp. 179–211, Apr.
1990, doi: 10.1016/0364-0213(90)90002-E.

16

[19] M. V. M. Mahoney, “Fast text compression with neural networks,” Proc. AAAI FLAIRS,
pp. 0–4, 2000, [Online]. Available:
https://www.aaai.org/Papers/FLAIRS/2000/FLAIRS00-044.pdf

[20] A. Vaswani et al., “Attention is all you need,” Adv. Neural Inf. Process. Syst., vol. 2017-
Decem, pp. 5999–6009, Jun. 2017, Accessed: Jul. 22, 2024. [Online]. Available:
https://arxiv.org/abs/1706.03762v7

[21] A. Chowdhery et al., “PaLM: Scaling Language Modeling with Pathways,” Apr. 2022,
Accessed: Jul. 22, 2024. [Online]. Available: http://arxiv.org/abs/2204.02311

[22] H. Touvron et al., “LLaMA: Open and Efficient Foundation Language Models,” Feb.
2023, Accessed: Jul. 22, 2024. [Online]. Available: http://arxiv.org/abs/2302.13971

[23] OpenAI et al., “GPT-4 Technical Report.” 2023. [Online]. Available:
http://arxiv.org/abs/2303.08774

[24] J. White et al., “A Prompt Pattern Catalog to Enhance Prompt Engineering with
ChatGPT,” 2023, [Online]. Available: http://arxiv.org/abs/2302.11382

[25] J. D. Zamfirescu-Pereira, R. Y. Wong, B. Hartmann, and Q. Yang, “Why Johnny Can’t
Prompt: How Non-AI Experts Try (and Fail) to Design LLM Prompts,” Conf. Hum.
Factors Comput. Syst. - Proc., 2023, doi: 10.1145/3544548.3581388.

[26] H. Dang, L. Mecke, F. Lehmann, S. Goller, and D. Buschek, How to Prompt?
Opportunities and Challenges of Zero- and Few-Shot Learning for Human-AI
Interaction in Creative Applications of Generative Models, vol. 1, no. 1. Association for
Computing Machinery, 2022. [Online]. Available: http://arxiv.org/abs/2209.01390

[27] J. Wei et al., “Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models,” Adv. Neural Inf. Process. Syst., vol. 35, no. NeurIPS, pp. 1–14, 2022.

[28] T. Kojima, M. Reid, and S. S. Gu, “Large Language Models are Zero-Shot Reasoners,”
in Advances in Neural Information Processing Systems 35 (NeurIPS 2022), 2022, no.
NeurIPS.

[29] S. H. Bach et al., “PromptSource: An Integrated Development Environment and
Repository for Natural Language Prompts,” Proc. Annu. Meet. Assoc. Comput.
Linguist., pp. 93–104, 2022, doi: 10.18653/v1/2022.acl-demo.9.

[30] Microsoft, “GitHub Copilot · Your AI pair programmer,” 2022.
https://github.com/features/copilot (accessed Jul. 22, 2024).

[31] C. Spiess et al., “Calibration and Correctness of Language Models for Code,” Feb. 2024,
Accessed: Jul. 22, 2024. [Online]. Available: http://arxiv.org/abs/2402.02047

[32] F. Liu et al., “Exploring and Evaluating Hallucinations in LLM-Powered Code
Generation,” Apr. 2024, Accessed: Jul. 22, 2024. [Online]. Available:
http://arxiv.org/abs/2404.00971

[33] D. Nam, A. Macvean, V. Hellendoorn, B. Vasilescu, and B. Myers, “Using an LLM to
Help With Code Understanding,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, 2024, pp. 1–13. doi: 10.1145/3597503.3639187.

[34] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang, “Software Testing With
Large Language Models: Survey, Landscape, and Vision,” IEEE Trans. Softw. Eng.,
vol. 50, no. 4, pp. 911–936, 2024, doi: 10.1109/TSE.2024.3368208.

[35] A. Ferrari, S. Abualhaija, and C. Arora, “Model Generation from Requirements with
LLMs: an Exploratory Study,” in 2024 IEEE 32st International Requirements
Engineering Conference Workshops (REW), 2024, pp. 291--300. [Online]. Available:

17

http://arxiv.org/abs/2404.06371
[36] C. Yang, J. Chen, B. Lin, J. Zhou, and Z. Wang, “Enhancing LLM-based Test

Generation for Hard-to-Cover Branches via Program Analysis,” 2024, [Online].
Available: http://arxiv.org/abs/2404.04966

[37] S. Yu, C. Fang, Y. Ling, C. Wu, and Z. Chen, “LLM for Test Script Generation and
Migration: Challenges, Capabilities, and Opportunities,” IEEE Int. Conf. Softw. Qual.
Reliab. Secur. QRS, pp. 206–217, 2023, doi: 10.1109/QRS60937.2023.00029.

[38] Z. Liu et al., “Fill in the Blank: Context-aware Automated Text Input Generation for
Mobile GUI Testing,” Proc. - Int. Conf. Softw. Eng., pp. 1355–1367, 2023, doi:
10.1109/ICSE48619.2023.00119.

[39] S. L. Shrestha and C. Csallner, “SLGPT: Using Transfer Learning to Directly Generate
Simulink Model Files and Find Bugs in the Simulink Toolchain,” ACM Int. Conf.
Proceeding Ser., pp. 260–265, May 2021, doi: 10.1145/3463274.3463806.

[40] D. Zimmermann and A. Koziolek, “Automating GUI-based Software Testing with GPT-
3,” Proc. - 2023 IEEE 16th Int. Conf. Softw. Testing, Verif. Valid. Work. ICSTW 2023,
pp. 62–65, 2023, doi: 10.1109/ICSTW58534.2023.00022.

[41] X. Ye and G. Durrett, “The Unreliability of Explanations in Few-shot Prompting for
Textual Reasoning,” Adv. Neural Inf. Process. Syst., vol. 35, no. NeurIPS, pp. 1–15,
2022.

[42] ElasTest EU Project, “Fullteaching: A web application to make teaching online easy.”
Universidad Rey Juan Carlos, 2017. Accessed: Aug. 10, 2023. [Online]. Available:
https://github.com/elastest/full-teaching

[43] B. Garcia et al., “A proposal to orchestrate test cases,” in Proceedings - 2018
International Conference on the Quality of Information and Communications
Technology, QUATIC 2018, 2018, pp. 38–46. doi: 10.1109/QUATIC.2018.00016.

[44] P. Fuente Pérez, “FullTeaching : Aplicación Web de docencia con videoconferencia,”
2017.

[45] C. Augusto, J. Morán, C. de la Riva, and J. Tuya, “FullTeaching E2E Test Suite.” 2023.
[Online]. Available: https://github.com/giis-uniovi/retorch-st-fullteaching

[46] C. Augusto, J. Moran, A. Bertolino, C. De La Riva, and J. Tuya, “Replication package
for ‘Software System Testing assisted by Large Language Models: An Exploratory
Study,’” https://github.com/giis-uniovi/retorch-llm-rp, 2024. https://github.com/giis-
uniovi/retorch-llm-rp (accessed Jul. 22, 2024).

[47] Peter Krensky et al., “Magic Quadrant for Data Science and Machine Learning
Platforms,” 2020. [Online]. Available: https://qads.com.br/data-
analytics/pdfs/Gartner%0A2018.pdf

[48] OpenAI, “Cheat Sheet: Mastering Temperature and Top_p in ChatGPT API - API -
OpenAI Developer Forum,” OpenAI Documentation, 2023.
https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-
chatgpt-api/172683 (accessed Jul. 23, 2024).

[49] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in software engineering, vol. 9783642290. 2012. doi: 10.1007/978-3-
642-29044-2.

	1 Introduction
	2 Related Work
	2.1 Large Language Models and Prompt Engineering
	2.2 Large Language Models applied to Software Engineering and Software Testing.

	3 Exploratory Study Design
	3.1 Overview
	3.2 Study subject and evaluation set-up
	3.3 Prompt creation and refinement
	Few-shot Prompts:

	4 Exploratory Study Execution and Results
	4.1 [RQ1]: Generating test scenarios from user requirements
	4.2 [RQ2]: Generating system test cases from test scenarios.

	5 Threats to validity
	6 Conclusions and future work
	Acknowledgments:

	References

