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A B S T R A C T

Rotating machinery plays an essential role in various industrial processes such as manufacturing, power
generation, and transportation. These machines, which include turbines, pumps, motors, compressors, and
many others, are the heartbeats of numerous industries. The seamless operation of these machines is critical
for the efficiency and productivity of these sectors. However, over time, these machines degrade and can
suffer faults. One of the most critical components are bearings, which can suffer different types of faults. This
paper presents a novel approach for bearing fault classification and diagnosis under limited data. A Monotonic
Smoothed Stacked AutoEncoder (MS2AE) is used to infer a smoothed monotonic health index from raw bearing
acceleration data. The MS2AE is trained using only healthy data, so this approach can also be used with
recently comisioned equipment that has not failed yet. Then, using the evolution of the health index, a first
faulty point is computed, so two stages are identified in the lifespan of the rotating machinery: healthy and
faulty. Correlation matrices are computed to show the relationship of the health index with time-domain and
frequency-domain features in order to provide explainability and validate the health index construction process.
When the health index is classified as faulty, Dynamic Time Warping is applied between healthy samples and
faulty samples to extract differences. Finally, based on a 1/3-binary tree 3 level kurtogram, these differences
are filtered using a bandpass filter and converted to the frequency domain, where characteristic harmonics
are used to identify the type of bearing fault. The explainability provided in the health index construction
process makes the system useful in certain industries where black-box AI models cannot be trusted due to strict
regulations. The classification and diagnosis system achieves robustness in fault classification under different
working conditions by utilizing multiple bearing fault datsets. Its ability to be trained using only healthy data
and the interpretability offered, makes it suitable for recently installed rotating machinery in real industrial
facilities, without requiring qualified staff.
1. Introduction

In recent years, the increasing industrialization and digitalization
of many companies have led to the need for more sophisticated, ef-
ficient and safe machinery. Most industrial processes are operated by
mechanical and electro-mechanical systems, of which around 40% are
composed of rotating machinery (RM). These components are key to
ensuring the effectiveness and safety of the industrial processes, as it
is one of the most prone to failure, given its long operating times and
working conditions [1].

In electric motors, various types of faults contribute to its overall
health. Bearing faults are around 50% of the faults. The stator accounts
for around 30%, followed by the rotor with approximately 10%. The
remaining 5% of the faults in RM are caused by gear faults and
looseness. Bearing faults, in turn, can occur at different locations in
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the bearing, the most common being the outer race and the inner race.
Depending on the place where it occurs, the damage can be more or less
severe and can manifest itself in different ways [2,3]. Understanding
and effectively diagnosing bearing faults is crucial for ensuring the
reliable operation of the RM.

Although early fault diagnosis is a challenging task, the implemen-
tation of Internet of Things in the Industry 4.0, along with the constant
evolution of Machine Learning (ML) algorithms, makes it affordable for
most of the companies. Industrial Internet of Things (IIoT) facilitates
the continuous monitoring of RM due to the deployment of sensor
networks in industrial facilities.

Vibration is the most used variable for fault diagnosis in bearings.
Temperature, acoustic emission or even current signature are also used.
Vibrations analysis used to be an expensive procedure requiring the use
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of highly skilled personnel to carry out in-place analysis [4], so it used
to be done on a regular basis and most of the times only in critical
machinery. However, with the development of wireless sensor networks
and micro-electromechanical systems, it is possible to develop cost–
effective condition monitoring systems to continuously monitor bearing
vibrations. This enables early fault detection, so maintenance teams
have enough time to plan shutdowns to replace affected parts, reducing
maintenance costs. Magadán et al. [5] present a low-cost continuous
monitoring system that collects the vibrations and temperatures of low-
power electric motors and pumps using a multisensor module, sending
them to the gateway where they are preprocessed, filtered and finally
sent to the cloud. In the work presented by Dameshghi et al. [6],
three phase current signals are collected and then processed to extract
8 features per current signal, using them for rotor fault diagnosis in
wind turbines. Another example of IIoT system is the one presented
by Nirwan et al. [7], where acoustic emissions and vibrations of a
cylindrical style roller bearing are gathered by a magnetic mount sensor
and a vibration analyzer.

Traditionally, classic signal processing techniques have been used
for fault detection. However, the constant evolution of ML algorithms
and their ability to make early fault diagnosis efficient using deep
learning techniques, has made ML a very popular research field in
recent years [8]. The authors in [9] use a Convolutional Neural Net-
work (CNN) for fault diagnosis. Multilevel features are extracted from
vibration signals and integrated by a module to merge these features
based on their correlations. A smoothing mechanism is also included to
avoid overfitting. Another work that uses CNNs for fault classification is
the one presented by Peng et al. [10], where vibrations are measured
using images. In this work, the phase difference between images ob-
tained from a video of the RM is performed before applying the CNN,
removing the signal-to-image transformation process. Meng et al. [11]
propose a transfer learning method for fault diagnosis in rolling bear-
ings using multi-scale CNNs and local central moment discrepancy. This
method effectively transfers fault knowledge across different conditions
by mapping vibration data to a shared space, using source domain
labels and target domain pseudo-labels to categorize the subspace, and
employing local central moment discrepancy for alignment. A novel
fault diagnosis method of rolling bearings using subdomain adaptation
with an improved vision transformer network is presented by Liang
et al. [12], using the local maximum mean discrepancy as the alignment
method and enhancing the traditional vision transformer network with
deformable convolution modules and recurrent neural networks. In
the work presented by Kaya et al. [13], continuous wavelet transform
is used for extracting time–frequency color scalogram images, using
2D CNNs to conduct fault size prediction. The main drawback of
these proposals is that deep learning algorithms usually require large
amounts of data for fault classification and diagnosis [14].

Autoencoders have taken on a very important role in the area of
fault diagnosis. In the work presented by Zhang et al. [15], a stacked
autoencoder is used to build a health index representing the condition
of the rotating machinery. First, engineering features are manually
extracted from the raw vibration samples and then combined by means
of the stacked autoencoder. The health index obtained is later smoothed
using exponentially weighted moving average. A stacked autoencoder is
also used by Tian et al. [16] to fuse four selected features into the health
index. These features are firstly smoothed, normalized between 0 and
1 and then selected according to their monotonicity. Once the health
index is obtained, the health prognostics of the rotating machinery is
carried out. Fan et al. [17] avoid the smoothing process during feature
extraction by adding a Lowess filter after each hidden layer to perform
denoising operations in the stacked autoencoder. However, all these
works require both healthy and faulty data to train the model and
handcrafted engineering features.

The authors in [18], use one-dimensional local binary pattern (1D-
LBP) method to analyze vibration signals collected at different motor

speeds from bearings with diverse intentionally induced faults. This
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method involves transforming vibration signals into the 1D-LBP plane
and extracting statistical features, which are subsequently classified us-
ing the gray relational analysis model. Local Binary Pattern is also used
in the work of Kaplan et al. [19], where texture features are extracted
from gray-scale images to classify the bearing vibration signals using
various machine learning models. These studies highlight the method’s
potential for precise and early bearing fault detection and its versatility
across different signal types. Despite its high accuracy and applicability
to real-world data, there is still a need of both healthy and faulty data to
train the models, also requiring manually feature extraction to perform
the classification tasks.

In the work proposed by Meng et al. [20], a Generative Adversarial
Network (GAN) is used to generate synthetic data to train the model,
using the Wasserstein distance to alleviate the vanishing gradient prob-
lem. Furthermore, an attention mechanism is applied on the blocks
obtained by the convolutions. However, GANs are highly susceptible
to overfitting, leading to a repetitive generation of similar elements. To
avoid this, Liu et al. [21] present a Variational Information Constrained
GAN, where data synthesis is enhanced by incorporating an encoder
into the discriminator, while stable training and convergence is guar-
anteed through a variational information constraint technique. In the
work presented by Li et al. [22] an event data augmentation method
is used to introduce variations of event patterns. The event records
are transformed into typical data samples by using a vibration event
representation, which is later processed by a deep convolutional neural
network model. Finally, a clustering method is used to improve the
pattern recognition performance. However, these methods are sensitive
to hyperparameter configuration, as an inadequate balance between
the generator and discriminator can either hinder learning or lead to a
persistent generation of similar samples.

Although ML algorithms obtain competitive results, most of them
are black-box algorithms, in some cases difficult to understand the
reasoning behind their decisions, and consequently providing results
that are not useful for practitioners. Interpretable machine learning
aims to create models that have inherent interpretability, while ex-
plainable machine learning seeks to offer retrospective explanations
for black box models [23]. The development of new ML algorithms
where explainability is prioritized is essential, not only to enhance
model interpretability but also to identify errors or biases in the model,
providing the end-user with enough information on how the results
have been obtained, so non-qualified staff can comprehend them in
an easy way. Explainabillity is also key for highly regulated sectors
which are safety critical and require all processes to be transparent
and traceable for certification. The authors in [24] propose an air-
craft engine monitoring based on variational encoding, consisting of
a recurrent encoder and a regression model, where the latent space
generated by the encoder is used as a map for providing insights
about the data and visual interpretability of the decisions taken by the
model. Another work in the context of explainable fault diagnosis is
the one presented by Sinan Li et al. [25]. In this work, a Multilayer
Gradient-weighted Class Activation Map is used, leveraging gradients
from multiple convolutional layers in order to generate activation
maps, which are then combined using layer-weighted summation to
create a main comprehensive activation map. In the work presented
by Yang et al. [26], the understanding of mechanical signal processing
in fault diagnosis using deep learning is explored. By visualizing the
diagnostic knowledge learned by deep neural networks through neuron
activation maximization and saliency map methods, the study provides
an intuitive observation of discriminative features for different machine
health conditions. Experimental investigations on two datasets confirm
the relationship between data-driven methods and conventional fault
diagnosis knowledge, highlighting the effectiveness of deep learning in
capturing and interpreting critical diagnostic features. Another work
where explainability is provided is the one by Xu et al. [27], where a
Copula network deconvolution-based framework for explainable fault

diagnosis in semiconductor wafer fabrication is proposed. It addresses
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the complexity of the manufacturing system by constructing a complex
network correlation diagram with parameters as nodes. The framework
includes a nonlinear correlation metric model based on adaptive Copula
function selection and a network deconvolution-based fault diagnosis
method to identify direct correlations. Physics-informed denoising loss
is incorporated to improve the model’s robustness and interpretability
by the authors in [28]. A novel interpretable waveform segmentation
model for bearing fault diagnosis is presented, using nested U-Net
to enable pixel-level extraction of fault-related information through
signal segmentation technology. Lovász-Softmax loss is employed to
manage imbalanced pixel distribution and enhance spatial recognition.
Although explainability is provided, the previous works have some
limitations as they need healthy and faulty data for training, requiring
balanced datasets.

To cover these gaps, this paper proposes a novel, explainable and
interpretable bearing fault classification and diagnosis system that only
requires healthy data for training and parameter tuning. It consists of
a Monotonic Smoothed Stacked Autoencoder (MS2AE) that receives
the raw vibration data gathered from the monitored RM to compute
a Health Index (HI) value, which determines the stage of degradation.
Once the HI value is filtered, a subsequent processing stage based on
Dynamic Time Warping (DTW) is used to determine the type of fault
and the level of degradation by looking at the differences between a
newly acquired faulty sample and an existing healthy sample baseline.
The performance of this system has been analyzed using two of the most
common bearing fault datasets (IMS [29] and XJTU-SY [30]), prov-
ing the robustness of the proposed system under different operating
conditions.

This work presents significant advancements in the field of fault di-
agnosis for rotating machinery by introducing the Monotonic Smoothed
Stacked Autoencoder model, which addresses several key challenges in
the domain. First, the model demonstrates efficacy in scenarios with
limited data, requiring only healthy data for its training phase, while
other models need healthy and faulty data for training. This reduces
the dependency on extensive fault datasets, making it practical for
real-world applications. Second, the model eliminates the need for
manual feature extraction, as it directly processes raw vibration data
samples and integrates them into a comprehensive HI. This stream-
lines the data processing pipeline and enhances usability. Third, the
explainability of the MS2AE model ensures that the derived HI values
have a strong correlation with common engineering features, thereby
enhancing their reliability and acceptance by practitioners. Four, the
model exhibits robustness across various operating conditions and mo-
tor loads, ensuring consistent performance in diverse environments.
Lastly, the interpretability of the results obviates the need for highly
specialized personnel, as the diagnosed faults are presented in a clear
and understandable manner. These contributions collectively advance
the state of the art in fault diagnosis, offering a more efficient, reliable,
user-friendly solution.

The rest of the paper is organized as follows. Section 2 presents the
bearing faults analyzed in this work. The data and the methods used in
the developed system are presented in Section 3. Section 4 describes in
detail each of the steps of the proposed fault classification and diagnosis
system. A description of the tests carried out and the results obtained
by the proposed fault classification and diagnosis system are shown and
discussed in Section 5. Finally, the concluding remarks and future work
are outlined in Section 6.

2. Bearing faults

A RM is a device usually composed of a stationary part and a rotat-
ing part. The bearings are the elements enabling the motion between
the rotating and the stationary parts, so they are essential for the correct
performance of the RM. A typical ball bearing comprises an outer race,
inner race, balls, and a cage. The outer race is stationary, while the
inner race rotates. The balls roll between the races, guided by the cage,
3 
Fig. 1. Ball bearing scheme.

reducing friction and facilitating smooth motion. Fig. 1 shows the parts
of a bearing. In this work, the bearing faults considered are outer-race,
inner-race, ball and cage bearing faults. Each of them are explained in
more detail below.

• Outer-race bearing faults: they correspond to faults that occur in
the outer ring of the bearing, which encloses the rolling elements
to support and guide the rotating shaft [31]. These faults are
usually caused by excessive load, improper lubrication or even
misalignment. Noise, excessive vibrations and a reduction in the
productivity and the efficiency of the RM are the most common
consequences. Furthermore, if the fault is not promptly addressed,
the fault can be extended to the housing or the shaft of the
RM, also damaging external elements. This fault can be detected
by analyzing the spectrum of the vibration signal, which will
show harmonic peaks in the Ball Pass Frequency Outer (BPFO)
or sidebands separated by the BPFO from a central frequency
component due to modulation. BPFO is computed as indicated
in Eq. (1), where 𝑁𝐵 corresponds to the number of balls of the
bearing, 𝐵𝐷 is the ball diameter, 𝑃𝐷 is the pitch diameter, 𝛽 is the
contact angle and 𝐹 is the shaft frequency.

𝐵𝑃𝐹𝑂 = 𝐹 ⋅
𝑁𝐵
2

⋅
(

1 −
𝐵𝐷
𝑃𝐷

⋅ cos(𝛽)
)

(1)

• Inner-race bearing faults: in this case, the fault occurs in the inner
ring of the bearing, which is in contact with the rolling elements
for smooth rotation [31]. As in the case of outer-race bearing
faults, excessive load, fatigue, misalignment and improper lubri-
cation are the main causes. These faults cause excessive vibrations
in the RM, increasing the noise, causing damage to other com-
ponents such as the shaft or housing of the RM and reducing
its performance. The spectrum of a signal where an inner-race
bearing fault exists is characterized by several harmonic peaks
in the Ball Pass Frequency Inner (BPFI), which is calculated as
shown in Eq. (2).

𝐵𝑃𝐹𝐼 = 𝐹 ⋅
𝑁𝐵
2

⋅
(

1 +
𝐵𝐷
𝑃𝐷

⋅ cos(𝛽)
)

(2)

• Ball bearing faults: they refer to breakdowns in the metal balls
located between the inner and the outer races [31]. Excessive
vibrations, noise and heat are the main consequences of this fault,
leading to a reduction in the performance of the RM, and in some
cases increasing its energy consumption. The spectrum of a ball
bearing faulty signal is characterized by harmonics in the Ball
Spin Frequency (BSF) or sidebands separated by the BSF from a
central frequency component due to modulation. Eq. (3) shows
how to calculate BSF. This fault is usually accompanied by outer-
or inner-race faults.

𝐵𝑆𝐹 = 𝐹 ⋅
𝑃𝐷 ⋅

[

1 −
(

𝐵𝐷 ⋅ cos(𝛽)
)2

]

(3)

𝐵𝐷 𝑃𝐷
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Fig. 2. Autoencoder diagram.

• Cage bearing faults: these imply malfunctions in the cage of the
bearings. Its function is to maintain the proper spacing and align-
ment of rolling elements between the inner and outer races [31].
Wear of the cage, detachment of some of the cage elements or
friction with other parts of the bearing are some of the reasons
for this kind of fault, leading to excessive vibration, noise and
also reducing the performance of the RM. The spectrum of a cage
bearing faulty signal is characterized by the existence of har-
monics in the Fundamental Train Frequency (FTF), and usually
accompanied by outer- or inner-race faults. FTF can be calculated
as shown in Eq. (4)

𝐹𝑇𝐹 = 𝐹 ⋅
1
2
⋅
(

1 −
𝐵𝐷
𝑃𝐷

⋅ cos(𝛽)
)

(4)

3. Materials and methods

In this section, the main methods used in the proposed fault classifi-
cation and diagnosis system are explained. Descriptions of the datasets
used are also included.

3.1. Stacked autoencoder

An autoencoder (AE) is an unsupervised three-layer neural network
composed of an encoder and a decoder. The former converts the
high-dimensional input into a low-dimensional output, while the latter
reconstructs the original signal from the encoder output [32]. They are
usually used for feature extraction, especially for fault diagnosis and
health prognostics in different domains. Thanks to its ability to reduce
the dimensionality of the input data, they are also useful for denoising
the input signal.

Stacked Autoencoders (SAEs) are composed of multiple AE layers,
where the output of a layer is used as the input of the next layer.
The weights of each of the layers are connected and fine-tuned in
order to get the SAE weights [33]. Unlike other dimensional reduction
techniques such as principal component analysis, SAEs enable modeling
nonlinearities in the projection from the initial dimensional space.
Fig. 2 shows an schematic diagram of an autoencoder network, where
the high-dimensional input (X), encoder, low-dimensional output (H),
decoder and reconstructed signal (Y) can be observed. The encoder and
decoder have symmetric dimensions.

3.2. Dynamic time warping

Dynamic Time Warping (DTW) is an algorithm that is commonly
used to measure the similarity between time-dependent sequences,
computing the warping path between two different signals, which can
be of different length, obtaining as a result the path warping values
and the distance between both signals [34]. Its main objective is to
achieve optimal alignment between two vector sequences by iteratively

adjusting the time axis. This iterative process transforms the time axis b
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to align the two signals, acting in this way as a linear mapping of the
time axis.

Given two signals 𝑋 and 𝑌 with lengths 𝑁 and 𝑀 respectively,
DTW finds the optimal alignment by warping in time 𝑋 to 𝑌 , trying
o minimize the distance between them. For achieving this, a 𝑁 ×

distance matrix 𝐷 is constructed, where 𝐷(𝑖, 𝑗) contains the local
imilarity between 𝑋(𝑖) and 𝑌 (𝑗), usually computed as the euclidean
istance. Once the 𝐷 matrix is computed, the warping path is selected
s the one that minimizes the total distance between signals 𝑋 and 𝑌 .
n example of this is shown in Fig. 3.

.3. Kurtogram

In real environments, raw vibration signals are often complex to
nalyze, as they contain a mixture of frequencies related to normal
achinery operation, possible faults and noise. Filtering these signals

s vital for effective analysis, so it is necessary to know the frequency
ands in which the relevant information related with faults is located.

A Kurtogram is the representation of the values of Spectral Kur-
osis (SK) for different frequencies and window lengths [35]. SK is
ommonly used to detect temporary changes in a signal, computing
he kurtosis of the signal at different frequency ranges, in order to
ighlight frequency bands containing hidden non-stationary signals.
K is directly related with the impulsivity of the signal, increasing as
he impulsivity of the signal increases. Highlighting a high kurtosis is
rucial as it indicates a significant presence of non-stationary signals,
ften associated with faults. This is particularly useful for the detection
f bearing faults during early stages of degradation, as the impulse-
ature of the signals produced is very characteristic but tends to get
idden behind other vibration components. Thus, SK may detect the
requency bands where the signal has higher impulsivity. Therefore,
ocusing on the range with the highest kurtosis becomes imperative in
ault diagnosis [36].

Kurtograms are commonly used in bearing fault classification and
iagnosis before applying envelope analysis to the raw signal in order
o determine the frequency range where the kurtosis value is higher.
n example of 1/3-binary tree 3-level kurtogram can be observed in
ig. 4. The level indicates the scale in which the main signal has been
ecomposed using the wavelet transform. In the example presented in
ig. 4, the frequency range where the kurtosis is higher can be observed
t level 2.6, which corresponds to the range

[

2
6𝑓𝑛,

1
2𝑓𝑛

]

, where 𝑓𝑛 is the
yquist frequency.

.4. Datasets

In the context of fault classification in rotating machinery, the qual-
ty of the data used plays an important role. Publicly available datasets
ith run-to-failure bearing fault vibration data facilitate the replication
f the results by the research community. These datasets emulate
earing load and speed conditions in real industrial environments. The
hree most popular bearing datasets are IMS [29], XJTU-SY [30] and
RONOSTIA [37] bearing datasets. However, the latter is not useful in
he context of this work as it does not specify the kind of bearing fault
f each test. For this reason, only IMS and XJTU-SY bearing datasets are
sed. The following subsections include descriptions of these datasets.

.4.1. IMS dataset
Four bearings installed on a shaft powered by an electric motor

ere used in the experiments of this dataset. The rotational frequency
as kept constant at 33.33 Hz while applying a radial load of 26.7 kN.

n each of the bearings two PCB 253B33 accelerometers were in-
talled, measuring the vibrations in G’s at a sampling frequency of
0.48 kHz [29]. The IMS dataset is divided into three datasets, each one
ontaining vibration signals from a single run-to-failure experiment,
ith samples of 1 s duration. A summary of the datasets is provided

elow.
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Fig. 3. Warping path obtained with DTW.
Fig. 4. 1/3-binary tree 3 level kurtogram.

• IMS-1: It consists of a total of 2156 samples separated 10 min,
except for the first 43 samples that were taken every 5 min. A total
of 14 days 20 h of continuous operation is recorded during this
experiment. At the end of the experiment, an inner-race bearing
fault has occurred in the third bearing, while a ball bearing fault
occurs in the fourth bearing.

• IMS-2: It consists of a total of 984 samples separated 10 min. This
experiment corresponds to a total of 6 days 20 h, showing an
outer-race bearing fault at the end of the experiment in the first
bearing.

• IMS-3: 6324 samples have been collected in this experiment
separated 10 min. This corresponds to a total of 43 days 22 h
of continuous operation of the RM. At the end of the experiment
an outer-race bearing fault occurs in the third bearing.

3.4.2. XJTU-SY bearing dataset
The test bench used in this dataset is composed of an electric motor,

a pair of bearings and some elements that allow adjusting the load of
the system or the radial force applied to the bearings. It has a total of
15 experiments, where vibration data is collected from the drive-end
bearing in G’s at different working conditions using two PCB 352C33
accelerometers. Experiments are conducted at 1-minute intervals. Each
experiment includes 1-second vibration samples collected at a sampling
frequency of 25.6 kHz, resulting in a total of 25,600 raw acceleration
values per sample [30]. Three working conditions have been consid-
ered. The first working condition corresponds to an electric motor
where the shaft frequency is 35 Hz and the load supported 12 kN. In
5 
the second working condition the shaft frequency has been increased
to 37.5 Hz and the load reduced to 11 kN. Finally, in the third working
condition the shaft frequency is increased to 40 Hz and the load reduced
to 10 kN. The length of these experiments is quite shorter than the
ones of IMS dataset. For this reason, only the experiments with a
length longer than 8 h have been selected as they are more realistic.
A summary of the selected experiments is presented below.

• XJTU 2-1: 491 samples corresponding to 8 h 11 min of continuous
operation have been recorded. The electric motor is working at
37.5 Hz with a load of 11 kN. At the end of the experiment an
inner-race bearing fault occurs in the bearing.

• XJTU 2-3: It consists of 533 samples corresponding to a total of
8 h 53 min of continuous operation. As in the previous case the
shaft frequency is 37.5 Hz and the load supported 11 kN. In this
case a cage bearing fault occurs at the end of the experiment.

• XJTU 3-1: A total of 2538 samples have been collected. They
correspond to 42 h 18 min of continuous operation. In this
experiment, the shaft frequency is 40 Hz while the load supported
is 10 kN. At the end of the experiment, an outer-race bearing fault
occurs.

• XJTU 3-4: This experiment consists of 1515 samples correspond-
ing to 25 h 15 min of continuous operation. The working con-
ditions are the same as in the XJTU 3-1 experiment: a shaft
frequency of 40 Hz and a load of 10 kN. In this case, an inner-race
bearing fault occurs.

4. Proposed fault classification and diagnosis system

A novel explainable and easily interpretable bearing fault classi-
fication and diagnosis system has been developed. Fig. 5 shows the
three steps in which this fault classification and diagnosis system is
divided: health index construction, health stage division and bearing
fault classification and diagnosis. These steps are described in more
detail in the following subsections.

4.1. Health index construction

The first step consists in constructing the Health Index (HI) value,
which determines the health stage of the monitored RM. The lower the
HI, the better the health condition of the RM. To avoid the hand-crafted
feature extraction process at this stage, a Monotonic Smoothing Stacked
Autoencoder (MS2AE) has been developed. The MS2AE is character-
ized for including two customized layers. The first layer reduces the
dimensionality by obtaining monotonic features (monotonicity layer),
as degradation is monotonic and so must be the HI. The second layer
is used to smooth the features after reducing the dimensionality of the
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Fig. 5. Proposed bearing fault classification and diagnosis system.
input signal (smoothing layer). A dense layer is also included between
the monotonicity and the smoothing layers.

The MS2AE network is trained using only healthy data, so no
faulty data is needed, removing the need of balanced datasets, and
consequently making the proposed technique useful to be applied with
machinery where no faulty data is available. To build the MS2AE
network TensorFlow and the Keras framework have been used. The
structure and hyperparameters of the MS2AE network have been se-
lected by grid search optimization and are included in Table 1. The
structure followed is IS-3500-700-200-1-200-700-3500-IS, where IS in-
dicates the size of the input sample, 3500 nodes in the monotonicity
layer, 700 nodes in a dense layer to reduce the monotonicity features
dimensionality, 200 nodes in the smoothing layer and 1 node to output
the health index of the input sample. The size of the first and last layers
of the MS2AE network varies depending on the dataset used, being
20 480 data points in the IMS dataset and 25 600 data points in the
XJTU-SY dataset.

After training the MS2AE model, the HI values of the healthy
samples and also the ones from the samples that are going to be
analyzed (unlabeled) are predicted by the MS2AE network. Fig. 6 shows
an example of the HI values obtained for a synthetic signal, where the
green line corresponds to the known healthy samples and the blue line
to the unlabeled samples.

4.2. Health stage division

Once the HI values are obtained for both healthy and unlabeled
samples, the threshold that determines when a sample is healthy and
6 
Table 1
MS2AE structure and hyperparameters.

MS2AE structure IS-3500-700-200-1-200-700-3500-IS

Optimizer adam
Learning rate 0.001
Epochs 5
Batch size 64

when it is faulty is calculated. The HI values of the healthy samples
are assumed to follow a normal distribution, so the Power Density
Function (PDF) is calculated, and the 95th percentile is selected as
the threshold. To cope with outliers exceeding the threshold, not all
the HI values that exceed the threshold are considered faulty samples.
As degradation is monotonic and non-reversible, five consecutive HI
values must exceed the threshold to be considered as a faulty sample.
In the case of the datasets used in this work, the first sample that is
classified as a faulty sample is known as First Faulty Point (FFP). An
example of health stage division and the FFP identification are shown in
Fig. 7. The green line corresponds to the HI values of healthy samples,
the blue line to HI values of unlabeled samples, the red line to the
threshold and the red circle to the FFP. The green area corresponds
to the sample area that has been determined as healthy, while the red
corresponds to faulty samples.

4.3. Bearing fault classification and diagnosis

The last of the steps consists in diagnosing the bearing faults of the
RM. If the HI value is classified as faulty, a deeper analysis is carried out
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Fig. 6. Health index construction.

Fig. 7. Health stage division.

in order to determine the kind of fault that is causing the degradation
of the RM and its level.

Firstly, DTW is recursively applied to the healthy samples, keeping
the common patterns between them, and consequently generating a
single denoised healthy sample. The obtained denoised healthy sample
is then used as a comparison baseline to isolate the fault. DTW is
applied again between the faulty classified sample and the denoised
healthy sample, but in this case keeping the difference between them
and isolating the faulty component, looking for the differences rather
than similarities between signals.

Secondly, a filtered version of the isolated faulty sample is obtained.
Incipient bearing faults usually manifest at high frequencies [38].
Therefore, a bandpass filter is used to preserve relevant frequencies.
A 1/3-binary tree 3-level kurtogram from the isolated faulty sample
is analyzed to determine the frequency range that will be used as the
bandpass filter. Levels 0, 1 and 1.6 from the kurtogram are not taken
into account as the width of the frequency ranges determined by the
kurtogram is not small enough. From levels 2, 2.6 and 3 the first and
last frequency ranges are discarded as they correspond to too low or too
high frequencies. The frequency range with the highest kurtosis within
the considered levels is selected. A fourth order butterworth bandpass
filter using this frequency range is then applied and the envelope of the
signal obtained.

Thirdly, once the envelope of the filtered isolated faulty sample is
obtained, the FFT is applied to convert it from the time domain to
7 
the frequency domain. The FFTs of the non-filtered and the envelope
of the filtered faulty samples are analyzed checking if the harmonics
corresponding to 1X, 2X, 3X, 4X, 5X and 6X BPFO, BPFI, BSF and FTF
frequencies appear. This FFT analysis is carried out in both non-filtered
and filtered samples because depending on the stage of degradation,
bearing faults manifest themselves in different ways: sidebands due
to modulation at early stages, then bearing fault components and
multiple harmonics appear as the fault progresses. Also, the bearing
geometry or even the operating conditions of the analyzed RM change
the frequencies where these specific harmonics appear. The SK-based
filtering isolates the small impact-like components of the signal that are
causing the modulation, making it sensitive to early stage degradation.
Based on the number of harmonics that appear in the non-filtered
and filtered samples, and the HI value of the faulty sample, the kind
of bearing fault (outer race, inner race, ball or cage) and the level
of degradation (early, medium or last) of the analyzed sample are
diagnosed. In order to classify the stage of degradation the HI value
of the analyzed sample is compared with two empirically obtained
thresholds, one that determines the beginning of a medium degradation
stage (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑀𝐷) and the other for the beginning of a last degra-
dation stage (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐿𝐷), which are computed as shown in Eqs. (5)
and (6) respectively, where 𝑃95 corresponds to the 95th percentile and
𝐻𝐼ℎ𝑒𝑎𝑙𝑡ℎ𝑦 to the health index values of the healthy samples. Those
equations have been determined after observing a common pattern
in the degradation of the datasets used in this study. If the HI value
does not exceed the value of 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑑𝑙𝑑𝑀𝐷 it is classified as an early
degradation stage.

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑀𝐷 =
(

𝑚𝑎𝑥
(

𝐻𝐼ℎ𝑒𝑎𝑙𝑡ℎ𝑦
)

− 𝑃95
(

𝐻𝐼ℎ𝑒𝑎𝑙𝑡ℎ𝑦
))

⋅ 50 (5)

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐿𝐷 =
(

𝑚𝑎𝑥
(

𝐻𝐼ℎ𝑒𝑎𝑙𝑡ℎ𝑦
)

− 𝑃95
(

𝐻𝐼ℎ𝑒𝑎𝑙𝑡ℎ𝑦
))

⋅ 100 (6)

At the end of this procedure, a log where the kind of fault detected,
indicating the harmonics that have appeared in both non-filtered and
filtered samples, together with its level of degradation is generated.
This log also contains correlation matrices obtained during the health
index construction and the health stage division stages. These matrices
provide explainability about the operation of the MS2AE network show-
ing the correlation of the computed HI value with classical time and
frequency features such as root mean square (RMS), Kurtosis, Skewness
or the amplitude of some frequency components as the fault progresses.
The log also includes the kurtograms and FFTs of the non-filtered and
filtered samples, where the harmonics that have been detected can be
easily observed. Interpretability is provided, so non-qualified staff can
understand the outcome of the system. The strength of this method is
that a single HI obtained automatically can encompass features that are
designed to be sensitive at different stages of degradation, while ideally
improving detection time.

5. Results and discussions

This section is divided into two subsections. Section 5.1 contains an
example of the application of the proposed bearing fault classification
and diagnosis system on the IMS-2 dataset, where an outer-race bearing
fault occurs at the end of the experiment. Section 5.2 summarizes the
results obtained with the rest of datasets.

5.1. IMS-2 dataset analysis

IMS-2 dataset is composed of 984 samples. For training purposes,
the first 300 samples have been selected as healthy samples in order to
train the MS2AE network, while the remaining 684 samples have been
considered as unlabeled samples. No feature extraction is performed, so
the raw healthy samples are used directly without any preprocessing
to train the model. The HI values obtained for both healthy (green
line) and unlabeled (blue line) samples are shown in Fig. 8. Before
further processing, it is necessary to ensure that the HI values of healthy
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Fig. 8. Health index values of IMS-2 dataset.

Fig. 9. Normal Q-Q plot diagram of healthy samples from IMS-2 dataset.

amples that have been used follow a normal distribution. This is done
y computing the normal Q-Q plot of the healthy samples, which is
hown in Fig. 9. According to the figure, it can be assumed that the HI
alues of the healthy samples is normally distributed.

The PDF of the HI values of the healthy samples is computed and the
5th percentile is selected as the threshold. As stated in Section 4, the
FP is determined as the first five consecutive values that are over the
hreshold to cope with outliers. Fig. 10 shows the health stage division
fter applying this procedure. In this case, the threshold is 0.49802 and
he FFP is sample #536.

The last part of the procedure is focused on fault diagnosis, indicat-
ng which harmonics are contributing to the fault and the degradation
tage of the RM. A recursive DTW is applied to all the healthy samples,
emoving the noise from these samples and only keeping relevant
nformation. Next the DTW is applied between each faulty sample and
he denoised healthy sample to isolate the fault signature in the faulty
ample. To provide different examples of this, three faulty samples have
een selected: sample #536, which corresponds to the FFP, sample
871, which corresponds to a sample in a medium degradation stage,
nd sample #979, corresponding to one of the last samples that are in
he last degradation stage. After isolating the fault, the kurtogram is
omputed for each of the samples to obtain the frequency ranges for

he bandpass filters and envelope analysis is applied. b

8 
Fig. 10. Health stage division of IMS-2 dataset.

Fig. 11 shows the isolated faulty samples for sample #536 (a),
ample #871 (b) and sample #979 (c). The kurtograms of the isolated
aulty samples are shown in Fig. 12, highlighting the frequency ranges
hat should be used for filtering. From Fig. 12(a) it can be seen that
he frequency range that should be used for filtering sample #536
s [3413.33 Hz–5120 Hz]. For sample #871, the frequency range that
hould be used as bandpass filter is [2560 Hz–5120 Hz], as seen in
ig. 12(b). Fig. 12(c) shows that the bandpass filter for sample #979
hould be applied in the frequency range [6826.67 Hz–8533.33 Hz].

Finally, the FFT is applied to the non-filtered and filtered isolated
aulty samples, in order to analyze the frequency spectrum and search
or the presence of harmonics which are directly related with the
eveloping fault. In the case of the three samples analyzed, the FFTs of
he non-filtered samples do not clearly show the harmonics related with
he outer-race bearing fault. However, the harmonics corresponding to
he outer-race bearing fault appear in the frequency spectrum of the
iltered samples. Fig. 13(a) shows the frequency spectrum of sample
536, where 1X and 2X BPFO harmonics can be observed. 1X, 2X, 3X,
X and 5X BPFO harmonics can be observed in Fig. 13(b), where the
requency spectrum of sample #871 is shown. 1X, 2X, 3X, 4X and 6X
PFO harmonics are present in the frequency spectrum of sample #979
see Fig. 13(c)).

Based on the HI values and the frequency spectra from the filtered
amples, the proposed fault classification and diagnosis system deter-
ines the level of degradation and the main fault that is causing the
egradation. The level of degradation is determined comparing the HI
alue of the analyzed sample with the thresholds shown in Eqs. (5)
nd (6) . The system determines that sample #536 corresponds to an
arly degradation stage, sample #871 to a medium degradation stage,
hile sample #979 to a last degradation stage, all of them caused by
uter-race bearing faults.

Apart from fault classification and diagnosis, the proposed system
rovides explainability about the health index. The correlation ma-
rix between the HI value and time-domain and frequency-domain
eatures is computed for all the samples in the IMS-2 dataset. The
ime-domain features analyzed are RMS, skewness (Sk), kurtosis (K),
rest factor (CF), shape factor (SF), impact factor (IF) and margin
actor (MF), while the frequency-domain features are amplitudes of the
X fundamental frequency, 1X BPFO, 1X BPFI, 1X BSF and 1X FTF from
he sample (Fund nf, BPFO nf, BPFI nf, BSF nf and FTF nf), and a filtered
ersion of the same sample (Fund f, BPFO f, BPFI f, BSF f and FTF f).
he filtered sample is obtained by applying a fourth order butterworth

andpass filter in the frequency ranges determined by the kurtogram



L. Magadán et al. Advanced Engineering Informatics 62 (2024) 102909 
Fig. 11. Isolated faulty samples of IMS-2 dataset.
Fig. 12. Kurtograms of isolated faulty samples of IMS-2 dataset.
Fig. 13. FFT of the filtered isolated faulty samples of IMS-2 dataset.
analysis of the FFP sample (sample #536) that is [3413.33 Hz–5120 Hz]
and then obtaining its envelope, as early degradation stages bearing
faults are usually manifested in high frequencies. Fig. 14(a) shows the
average correlation of the HI values with the time-domain features. It
can be observed that the HI value obtained by the MS2AE network has
high correlations with RMS (0.95) and kurtosis (0.77). The correlation
matrix between the HI value and the frequency-domain features is
included in Fig. 15(a). High correlations between 0.76 and 0.88 can
be observed with the BPFO and BPFI of the filtered samples (f), and
BPFI, BSF and FTF of the non-filtered samples (nf). As can be seen, the
HI value shows the highest correlation with the BPFO of the filtered
samples, which is directly related with the kind of fault manifested in
this dataset (outer-race bearing fault). Furthermore, the obtained HI
enables earlier detection than other traditional analysis approaches in
literature, being the FFP obtained similar to the one obtained using
other ML algorithms. In addition, the correlation analysis explains
where the HI values obtained by the MS2AE network are coming from,
9 
as the HI is correlated to different traditional features, showing more
sensitivity and flexibility than these features.

A deeper correlation matrix analysis is carried out, in this case,
grouping the original samples into clusters, so the correlation between
HI value and time-domain and frequency-domain features over time
can be easily observed. This analysis has been made only in the
samples predicted as faulty, which have been grouped into 16 clusters.
Fig. 14(b) shows the correlation over time between the HI value and
time-domain features. It can be observed how the correlation of the
HI value and the RMS is almost 1 after the eleventh cluster. Kurtosis
and shape factor have also high correlations between the thirteenth
and sixteenth cluster. A similar analysis is carried out between the HI
value and frequency-domain features. The obtained correlation matrix
is shown in Fig. 15(b), where it can be observed how the correlation of
1X BPFO of the filtered samples is the highest between the eighth and
sixteenth cluster. In addition, 1X BPFI of the filtered samples and 1X
BPFI, BSF and FTF of the non-filtered samples show high correlations
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Fig. 14. Correlation matrices between HI value and time-domain features in IMS-2 dataset.
Fig. 15. Correlation matrices between HI value and frequency-domain features in IMS-2 dataset.
in the last cluster as expected, as the RM at this cluster is severely
damaged, causing an increase in all the frequencies.

5.2. Results with other datasets

The proposed fault classification and diagnosis system has been used
with other datasets apart from the IMS-2 dataset. The results obtained
with these datasets are presented in Table 2, including relevant infor-
mation such as the three features with the highest correlation with the
HI value, first faulty point (FFP), threshold that separates healthy and
faulty stages, the samples selected for being analyzed, frequency range
used as bandpass filter in each of the samples and also the diagnosis
provided by the system. In all of them, the first 300 samples (5 h
of continuous operation) have been considered as healthy, while the
remaining samples are considered as unlabeled. It is feasible to assume
that the samples gathered during the first 5 h of operation of a RM
would correspond to a healthy state.

From the results of Table 2 it can be seen that the diagnosis
performed is correctly, classifying the stage of degradation and deter-
mining the harmonics that are associated with the kind of fault that is
causing the bearing degradation. In the case of sample #451 of XJTU
10 
2-1, which corresponds with the FFP, the proposed fault classification
and diagnosis system classifies it as medium stage degradation. This is
because the degradation in this experiment is sudden and rapid, causing
this sample to be classified as medium degradation.

The HI values of the samples have an average correlation over
0.9 with the RMS in all the datasets. The HI values of the datasets
where an inner-race bearing fault is causing the degradation (IMS-1,
XJTU 2-1 and XJTU 3-4) have average correlations of 0.82, 0.72 and
0.93 respectively with the shape factor. Besides, in the case of IMS-1
and XJTU 3-4 the amplitudes of the BPFI of the filtered samples have
0.8 and 0.92 of correlation with the HI values respectively, while in
XJTU 2-1 the amplitudes of BPFI from the non-filtered samples have
an average correlation of 0.88 with the HI values. In the case of the
datasets where an outer-race bearing fault is occurring (IMS-2, IMS-3
and XJTU 3-1) the amplitudes of the BPFO from the filtered samples
have high correlation with the HI value, being of 0.88, 0.85 and 0.55
respectively.

In addition, the proposed MS2AE network determines in some cases
the FFP earlier than other works in the literature. A comparison be-
tween the FFPs predicted in this work using 300 samples as healthy
samples for training and those predicted in other works is included in
Table 3.
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Table 2
Summary of fault classification and diagnosis system results.

Dataset Top 3 correlated features FFP Threshold Sample Bandpass filter range Diagnosis

RMS (0.97) 1857 2560 Hz–5120 Hz Early stage - 1X BPFI - 1X FTF
IMS-1 Shape factor (0.82) 1857 0.50036 2138 2560 Hz–5120 Hz Medium stage - 1X BPFI - 3X BPFO - 1X, 2X, 3X FTF

BPFI filtered (0.80) 2155 6826.67 Hz–8533.33 Hz Last stage - 1X BPFI - 6X FTF

RMS (0.95) 536 3413.33 Hz–5120 Hz Early stage - 1X, 2X BPFO - 1X, 5X, 6X FTF
IMS-2 BPFO filtered (0.88) 536 0.49802 871 2560 Hz–5120 Hz Medium stage - 1X, 2X, 3X, 4X, 5X BPFO

FTF non-filtered (0.83) 979 6826.67 Hz–8533.33 Hz Last stage - 1X, 2X, 3X, 4X, 6X BPFO

RMS (0.97) 5967 2560 Hz–5120 Hz Early stage - 1X BPFO - 2X, 4X FTF
IMS-3 BPFO filtered (0.85) 5967 0.49799 6178 3413.33 Hz–5120 Hz Medium stage - 1X, 2X, 3X, 4X BPFO

Fundamental filtered (0.84) 6319 1280 Hz–2560 Hz Last stage - 1X, 2X, 3X, 4X BPFO - 4X, 6X FTF

RMS (0.95) 451 2133.33 Hz–4266.67 Hz Medium stage - 1X, 2X BPFI - 1X BSF - 5X FTF
XJTU 2-1 BPFI non-filtered (0.88) 451 0.50449 460 1600 Hz–3200 Hz Medium stage - 1X BPFI - 1X BSF - 5X FTF

Shape factor (0.72) 486 1600 Hz–3200 Hz Last stage - 4X BPFI - 2X, 5X FTF

RMS (0.98) 301 8533.33 Hz–10666.67 Hz Early stage - 1X BSF - 1X, 2X, 3X, 4X, 5X, 6X FTF
XJTU 2-3 BPFI filtered (0.76) 301 0.50158 419 2133.33 Hz–4266.67 Hz Medium stage - 1X, 3X BPFO - 1X FTF

Fundamental filtered (0.76) 532 3200 Hz–4800 Hz Medium stage - 2X BPFO - 3X BPFI - 3X BSF - 1X FTF

RMS (0.92) 2347 9600 Hz–11200 Hz Early stage - 1X, 2X BPFO - 1X, 3X BSF - 3X FTF
XJTU 3-1 BPFO filtered (0.55) 2347 0.51112 2445 9600 Hz–11200 Hz Medium stage - 1X, 3X BPFO - 4X, 6X FTF

Skewness (0.53) 2533 1600 Hz–3200 Hz Last stage - 1X, 2X, 3X, 4X, 5X BPFO - 5X BPFI - 3X BSF

RMS (0.98) 1416 3200 Hz–4800 Hz Early stage - 1X BPFI - 1X BSF - 5X FTF
XJTU 3-4 Shape factor (0.93) 1416 0.50718 1453 3200 Hz–4800 Hz Medium stage - 1X, 2X BPFI - 1X BSF - 5X FTF

BPFI filtered (0.92) 1505 3200 Hz–4800 Hz Last stage - 1X BPFI - 1X BSF - 2X, 5X FTF
Table 3
First Faulty Point comparison.

Dataset Number of
healthy samples

Training
dataset

Proposed
solution

[39] [40] [41] [42] [43] [44] [45]

IMS-1 300 13.66% 1857 1917 1833 1971
IMS-2 300 30.48% 536 934 632 533 530
IMS-3 300 4.74% 5967 5952
XJTU 2-1 300 61.09% 451 458 455 452 450
XJTU 2-3 300 56.28% 301 327 302 313
XJTU 3-1 300 11.82% 2347 2348 2407 2344 2346 2376
XJTU 3-4 300 19.80% 1416 1418 1446 1418 1417 1430
Table 4
Best FFP varying healthy samples size.

Dataset Number of healthy samples Training dataset Best FFP

IMS-1 300 13.66% 1857
IMS-2 300 30.48% 536
IMS-3 300 4.74% 5967
XJTU 2-1 50 10.18% 451
XJTU 2-3 50 9.38% 131
XJTU 3-1 50 1.97% 2347
XJTU 3-4 150 9.90% 1416

On one hand, the FFPs in XJTU 2-3 and XJTU 3-4 are slightly
mproved compared with the rest of works. On the other hand, the FFPs
n IMS-1, IMS-2 and IMS-3 do not improve all the works but they are
lose to the best ones. The same happens with the FFPs in XJTU 2-1 and
JTU 3-1. However, most of the works determine the FFP only focusing
n one dataset while this works focuses on two different datasets. This
ork also improves the FFPs in Guo et al. [40], where both IMS and
JTU datasets are analyzed at the same time, while providing accurate

ault diagnosis.
The number of healthy samples used for training (300 samples) was

hosen empirically to be robust to different datasets and working con-
itions. The performance of the model was studied while determining
he first faulty point by varying the number of healthy samples used
or training between 50 and 400. Table 4 shows the smallest number
f healthy samples used for training that obtains the best result for each
ataset.

Comparing the results in Tables 3 and 4, it can be seen that using
00 training samples allows determining the best FFP in all datasets
xcept for the XJTU 2-3 dataset. In this case, when using 50 training
amples, the faulty point is determined in sample #131. This would
11 
mean that when using 300 samples for training, samples that already
show signs of fault would be considered as healthy. Given that the
datasets were obtained from experiments with faults induced under
accelerated degradation conditions, in real-world scenarios with noisy
environments, additional samples could be collected for training to
enhance robustness.

6. Conclusions

A novel explainable and interpretable bearing fault classification
and diagnosis system has been proposed. The system has been tested
using two of the most commonly used bearing fault datasets. The use
of a Monotonic Smoothed Stacked Autoencoder overcomes two of the
main problems in the fault classification and diagnosis field. On one
hand, the system can be applied with limited data and imbalanced
datasets, as only non-faulty data from the monitored machinery is
needed to train the model. On the other hand, no feature extraction is
required as the MS2AE model receives the raw vibration data without
any preprocessing. The MS2AE model fuses all features into an HI value
that is used to identify the first faulty point. The FFPs obtained in all the
datasets are comparable with other state-of-the-art methods, making
the proposed HI value accurate for being used for fault classification
and diagnosis.

Furthermore, the correlation matrices between the HI value and the
time-domain and frequency-domain features show that the HI value
is highly correlated with some engineering features such as RMS or
the amplitudes of some of the harmonics directly related with the
developing fault. It has also been observed that in the case of inner-
race bearing faults, the HI value obtained is highly correlated with the
shape factor and the 1X BPFI amplitudes of the filtered and non-filtered

samples. Something similar happens with outer-race bearing faults,
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where the HI value is highly correlated with 1X BPFO amplitudes. All
this provide explainability of the operation of the MS2AE model and
makes it reliable for being used by practitioners.

The results obtained with relevant bearing fault datasets show that
the proposed fault classification and diagnosis system works correctly
under different operating conditions and motor loads. The system
is autonomous and only requires human intervention to provide the
healthy samples, the unlabeled samples and some relevant information
of the RM analyzed, such as the shaft frequency, bearing related fre-
quencies and sample frequency. For this reason, the system is suitable
for being used in real environments with limited data of the monitored
machinery. No qualified staff is necessary, as the diagnosed faults are
clearly explained with no ML knowledge needed. Moreover, this fault
classification and diagnosis system is extremely flexible, what makes it
easily applicable to any RM. The system can also be easily adapted to
support other well-known faults such as imbalance, misalignment and
gear mesh.

To sum up, the main contributions of the developed fault classifica-
tion and diagnosis system are:

• It correctly works with limited data as it only requires healthy
data for training the MS2AE model.

• It does not require manually feature extraction, as the MS2AE
model receives the raw vibration data and fuses them into an HI
value.

• Explainability of the MS2AE model ensures that the generated
HI is highly correlated with some engineering features, making
it reliable for being used by practitioners.

• It is robust under different operating conditions and motor loads.
• Interpretability of the results avoids the need of qualified-staff, as

diagnosed faults are clearly explained.

Human intervation is still required for parameter tuning, model
tructure selection, separation threshold calculation and providing in-
ormation from the geometry and operating conditions of the RM.
he selection of traditional features with which to perform correlation
nalysis oriented to explainability and interpretability is also done
anually.

Future work will focus on developing an API for bearing fault
lassification and diagnosis, along with a corresponding web tool to
nhance accessibility, integration, and practical application. An API
llows seamless integration with various industrial systems and applica-
ions, facilitating real-time monitoring and diagnostics across different
latforms, significantly improving maintenance strategies and opera-
ional efficiency by enabling automated fault detection and predictive
aintenance. The web tool will serve as a user-friendly interface that

howcases the API’s functionality, offering practitioners a practical
emonstration and allowing them to test the application with their own
eal datasets. Additionally, the deployment of the fault classification
nd diagnosis system in real industrial facilities will be prioritized,
nabling non-qualified staff to include samples for analysis and auto-
atically generating a comprehensive diagnostics log. Finally, the ap-
licability of the system to other scenarios, such as gears or combustion
otors, will also be explored.
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