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Abstract

Job scheduling is a challenging task on grid environments because they must
fulfill user requirements. Scientists often have deadlines and budgets for
their experiments (set of jobs). But these requirements are in conflict with
each other - cheaper resources are slower than the expensive ones -. In this
paper, we have implemented two multi-objective swarm algorithms. One
of them is based on a biological behavior - Multi-Objective Artificial Bee
Colony (MOABC) - and the other on physics - Multi-Objective Gravita-
tional Search Algorithm (MOGSA) -. Multi-objective properties enhance
the optimization of execution time and cost per experiment. These algo-
rithms are evaluated regard to the standard and well-known multi-objective
algorithm - Non-dominated Sorting Genetic Algorithm II (NSGA II) - in or-
der to prove the goodness of our multi-objective proposals. Moreover, they
are compared with real meta-schedulers as the Workload Management Sys-
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tem (WMS) from the most used European grid middleware, gLite, and the
Deadline Budget Constraint (DBC) from Nimrod-G, that takes into account
the same requirements. Results show us that MOABC offers better results
in all the cases using diverse workflows with dependent jobs over different
grid environments.

Keywords: scheduling, grid computing, swarm, multi-objective
optimization

1. Introduction

The paradigm of grid computing is defined as a parallel and distributed
system that allows to share, select and collect autonomous resources geo-
graphically distributed in a dynamic way. All these actions are carried out
in execution time depending on the availability, capacity, cost and quality
of the resources required by the users. This focus emerges from the synergy
between the cooperation among computing resources with a decentralized
control and providing them as services. Therefore, one of the most important
and challenging actors, that participate in this decentralized control, are the
meta-schedulers, also known as resource brokers. This service is implemented
in the middleware which facilitates the grid environment management. The
main function of a meta-scheduler is to assign the jobs to adequate resources
following computational requirements and quality of service demanded by
the users.

Grid computing is widely used in the scientific world solving complex
experiments (set of interdependent jobs) that require a high performance.
Scientists often have to consider deadlines and budgets of their experiments
related to important projects. Because of that, the optimization of execution
time and cost is a key factor to consider in the job scheduling process carried
out by the meta-schedulers. However, these types of objectives are in conflict
each other, because usually cheaper resources are slower than expensive ones,
hence a multi-objective optimization is required.

In this paper, a study of bio-inspired algorithms is presented to solve this
multi-objective problem. The implemented algorithms are based on Swarm
Intelligence (SI). Swarm intelligence is a kind of intelligence that emerges
from the collaboration and competition among individuals. In particular,
two novel swarm algorithms from different fields - biology and physics -
have been adapted and evaluated. Multi-Objective Artificial Bee Colony
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(MOABC) is based on the Artificial Bee Colony [1], [2] from the biological
field and its collaborating agents are represented as bees. Multi-Objective
Gravitational Search Algorithm (MOGSA) is built from the Gravitational
Search Algorithm [3] and the planets are its agents, according to the phys-
ical field. One of the main contributions of this research is the adaption of
these algorithms to deal with multi-objective requirements that are in conflict
each other (execution time and cost). Therefore, to give more reliability to
this multi-objective study, an evaluation with a well-known standard multi-
objective algorithm - Non-Dominated Sorting Genetic Algorithm II (NSGA
II) [4] - has been accomplished. GridSim [5] is the simulator used to imple-
ment all the meta-schedulers.

GridSim 1 is a Java-based toolkit for modelling and simulating distributed
resource management in Grid environment. GridSim is based on SimJava,
a general purpose discrete-event simulation package implemented in Java.
All components in GridSim communicate with each other through message
passing operations defined by SimJava. It allows modelling of heterogeneous
types of resources and the resources can be modeled operating under space
or time shared mode. The resource capability can be defined in the form of
MIPS (Million Instructions Per Second) and they can be located in any time
zone. Moreover, applications with different parallel application models can
be simulated. GridSim toolkit is suitable for application scheduling simula-
tions in Grid Computing environment. GridSim is of great value to test new
algorithms and strategies in a controlled environment. By using GridSim, it is
possible to perform repeatable experiments and studies that are not possible
in a real dynamic Grid environment. The main advantage of GridSim is that
various allocation or scheduling policies can be implemented and integrated
into GridSim easily, by extending them from one of the classes. Research stu-
dents in the GRIDS Laboratory 2 are themselves heavy users of GridSim and
extend it whenever necessary for their own research needs. In the last 5 years,
GridSim has been continuously extended in this manner to include many new
capabilities and has also received contributions from external collaborators.
Therefore, it has been chosen due these advantages and overall to offer the
facilities to configure complex topologies and resource features such as pro-
cessing speed, MIPS (Million Instructions Per Second), or cost of resources

1http://www.buyya.com/gridsim/
2http://www.cloudbus.org/intro.html
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per time unit. Furthermore, thanks to the GridSim flexibility, it has been
modified to support workflows with dependent jobs, due to the importance to
control the execution time in this type of workflows (child jobs have to wait
until their parents are successfully executed). In particular, in this research
six workflows - Gaussian, Gauss-Jordan, LU decomposition, Find-Max, Fast
Fourier Transform and Stencil - have been tested with all the implemented
meta-schedulers to study their behaviour in each situation. In addition, two
different grid environments have been used to reinforce the study of their be-
haviour in different scenarios. Also, the best meta-scheduler, in this case the
proposal MOABC, has been compared with two real meta-schedulers: the
Workload Management System (WMS) and the Deadline Budget Constraint
meta-scheduler (DBC) to show the relevance of our results.

This paper is organized as follows. Section 2 presents the related work.
Section 3 exposes the problem including an introduction of the multi-objective
approach. Section 4 introduces the Multi-Objective Artificial Bee Colony al-
gorithm. In Section 5 Multi-Objective Gravitational Search Algorithm is
explained. Section 6 presents the standard Non-Dominated Sorting Genetic
Algorithm II. Then, several experiments are provided and analyzed in detail
in Section 7. Finally the last section summarizes the main conclusions of this
work.

2. Related Work

Real important meta-schedulers have been considered to evaluate the
goodness of the proposals to fulfill the cost and time requirements demanded
by the users.The first one is the Workload Management System (WMS) 3 due
to it belongs to the most extended middleware in Europe gLite - Lightweight
Middleware for Grid Computing 4 -. The second meta-scheduler selected
for this study is the Deadline Budget Constraint Algorithm (DBC) [6] from
Nimrod-G. This algorithm uses a greedy algorithm to attain the budget and
deadline for an experiment. Moreover, a general model of workflow schedul-
ing on the grid was presented by Wieczorek et al. [7] is applied to classify the
workflow scheduling from different taxonomies taking into account the cur-
rent grid systems. In that classification, only the Nimrod/G system ([8],[6])
optimizes execution time and economic cost at the same time. The study of

3http://web.infn.it/gLiteWMS/
4http://glite.cern.ch/
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Xhafa and Abraham [9] reveals the complexity of the grid scheduling prob-
lem and shows the usefulness of heuristic and meta-heuristic approaches for
design multi-objective grid schedulers.

Currently, multi-objective algorithms are emerging in the literature to
optimize conflictive objectives. Conflictive objectives are usually resolved
from different versions of multi-objective evolutionary algorithms (MOEAs)
[10]. Evolutionary algorithms are commonly based on the nature behaviour
as the genetic algorithms. Other bioinspired algorithms, as artificial weed
colonies [11] or particle swarm [12] algorithms; have also demonstrated a
good performance to optimize multiple functions in complex environments.
Job scheduling in grid computing is one of the most challenging tasks due
to its complexity for its dynamic behaviour and its decentralized control.
Currently, this problem is tackled with multi-objective algorithms often based
on genetic algorithms ([13], [14], [15], [16]) to optimize both execution time
and cost for several experiments. The experimental results have proven that
multi-criteria genetic algorithms offers also better solutions than classical
algorithms such as SA, Duplex and min-min for resource control in Large-
Scale Distributed Systems[17]. However, the test environments do not take
into account specific topologies with network configuration (baud rate, delay,
MTU (Maximum Transfer Unit), etc.) and resource location with specific
features (operating system, number of machines, CPUs, speed, cost, etc.)
being them usually homogeneous. Furthermore, most of these researches
neither take into account workflows that follow a DAG (Directed Acyclic
Graph) model (dependent jobs).

New multi-objective algorithms are usually compared with the standard
and well-known multi-objective genetic algorithm called NSGA II [4] (Non-
dominated Sorting Genetic Algorithm II) in order to assess the quality of
multi-objective approaches. The NSGA II becomes a very popular algorithm
mainly for its huge efficiency. For this reason, the swarm algorithms presented
in this paper are evaluated with this popular genetic algorithm.

3. Problem Statement

Grid environments allow to solve computing problems using several het-
erogeneous resources coordinated in a decentralized way. Job scheduling is a
critical problem in these environments. A proper scheduling algorithm can
reduce the response time and the execution cost. Users generally have dead-
lines and budgets associated to their experiments, but these requirements
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are in conflict each other. Faster resources usually are more expensive than
slower ones. To tackle this problem, a multi-objective algorithm is expected
to optimize these objectives (execution time and cost). A multi-objective
optimization problem (MOP) [18] includes a set of n parameters (decision
variables) and a set of k objective functions that can be subjected to de-
terminate restrictions. Then, a MOP without restrictions can be defined
as:

Optimize y = f(x) = (f1(x), f2(x), ..., fk(x)) (1)

where x = (x1, x2, ..., xn) ∈ X is the decision vector and y = (y1, y2, ...,
yk) ∈ Y is the objective vector. X denotes the decision space and Y de
objective space. The optimization, depending on the problem, can minimize
or maximize. The optimization problem consists in founding the x that has
the best value of f(x). In general, it does not exist one only best value, but
a set of optimum solutions. This set of optimum solutions is called Pareto
optimal. The region of points defined by the Pareto optimal set in the value
space of the objective functions is called Pareto front.

Thus, a point x* is said to be Pareto Optimal for the problem if there is
no other vector x ∈ X such that ∀ i = 1, ..., k : fi(x) 6 fi(x∗) and, for at
least one i ∈1, ..., k : fi(x) < fi(x*) (considering minimization problems).
This definition is based on the intuitive conviction that the point x*∈X is
chosen as the optimal if no criterion can be improved without worsening at
least one other criterion.

Our multi-objective approach minimizes two objectives: execution time
and cost. Hence, given a set of resources R = {Rj}, j = 1,..,n and a set of
jobs J = {Ji}, i = 1,..,m, the fitness functions are described as follows:

Minimize F = (F1, F2) (2)

F1 = max time (Ji, fj(Ji)) (3)

F2 =
∑

cost (Ji, fj(Ji)) (4)

where fj(Ji) is a mapping function that assigns Ji onto resource Rj. Func-
tion time (Ji, fj(Ji)) denotes the completion time and cost (Ji, fj(Ji)) is the
data transfer cost and resource cost for processing the solution.

Many workflows of applications follow a DAG (Directed Acyclic Graph)
model, denoting the precedence among the jobs that compound them. This
fact influences the execution time, because the child jobs need to wait to be
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processed until their parents are successfully executed. Thus, these workflows
have been modeled as a graph like this: G = (V, E, l, d) where V denotes the
set of nodes (jobs) and E is the set of edges, which represents the precedence
among jobs. Jobs have assigned a constant length l(j) that indicates its
length in thousands of MI (Million of instructions). The precedence among
jobs is denoted as 〈j, j’ 〉. This means, that job j’ cannot be executed until its
parent, job j, has been completed successfully. Then, j’ receives all necessary
data from j. The label d(j→j’) expresses the data transfer between jobs
(Figure 1). This constraint is taking into account during the calculation of
our fitness functions.

Figure 1: A simple workflow representation

Bioinspired algorithms usually work with agents (bees, planets or individ-
uals) that often represent possible solutions for the problem. The three algo-
rithms studied in this research use the same representation for their agents.
Figure 2 depicts an example of the correspondence of the workflow to be ex-
ecuted in the grid with a possible solution (agent). A job scheduling solution
is represented by two vectors that define an agent. These two vectors are
called: allocation and order vector and are based on the Talukder’s research
([16], [19]).

• Allocation vector indicates the mapping between jobs onto the re-
sources where the jobs are going to be executed. The length of the
allocation vector is denoted as |J|, such that a(i) = j, where 0≤ i < |J|
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and 0≤ j < |R|, i.e. job Ji is assigned to resource Rj . |J| indicates the
total number of jobs to allocate and |R|the total number of available
grid resources.

• Order vector decides the sent order for the jobs according to the prece-
dence denoted by the workflow. The length of order vector is expressed
as |J|, such o(k) = i, where 0≤ i; k < |J|, and each Ji just appears once
in the vector.

Figure 2: Agent representation for the job scheduling problem.

According to these vectors, agents obtain the execution time and cost
providing possible solutions for the problem.

4. Multi-Objective Gravitational Search Algorithm (MOGSA)

Gravitational Search Algorithm [3] (GSA) is a swarm algorithm from
the physical field. Its agents represent planets that have masses with dif-
ferent sizes exerting gravitational attractions among them through different
dimensions. These attractions follow the Newtonian gravity law as a meta-
heuristics. Thus, biggest masses exert more force of attraction than others,
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positioning themselves as best solutions. In this paper, a multi-objective
version, called Multi-Objective Gravitational Search Algorithm (MOGSA),
is presented to deal with the job scheduling problem in grid environments.
In this new algorithm, the dimensions correspond to the combination of the
two vectors: allocation and order vector and this combination is denoted as
UA+O. Hence, the gravitational forces are applied to each element of the
vector UA+O and its size is the sum of the allocation and order vector size.
MOGSA manages their agents considering its multi-objective context. The
main steps of MOGSA are shown in Algorithm 1.

Algorithm 1 MOGSA pseudocode

INPUT: Population Size, G0, MinKbest, α, ε
OUTPUT: Set of Solutions

1: Initialize population of solutions;
2: Evaluate population (Time and Cost);
3: while not time limit (2 minutes) do
4: Update Gravitational constant;
5: Calculate size of masses;
6: Calculate Force and Acceleration between masses;
7: Update Velocity and Position per each mass;
8: Select Set of Best Solutions (Pareto Front);
9: Generate New Population;

10: end while

MOGSA has the same parameters of GSA [3].

• Population size is the number of agents that participate per iteration.

• G0 is the Initial gravitational force that acts in each dimension of the
agents that compose the population.

• MinKbest indicates the minimum of agents that exert their force over
others. In GSA no all the agents exert their force over the others, only
the best ones, that means, those that have bigger masses. Initially,
Kbest attribute has the same value that population size and it is de-
creasing during the time of the algorithm until it reaches the value of
MinKbest, but always keeping the best masses.

• α and ε are parameters used in the equations 6 and 9 respectively.
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The output returned by MOGSA is the Pareto front found after com-
pleting all the time of the algorithm. This Pareto front contains the best
set of solutions found that minimize the fitness functions and with the same
importance.

4.1. Initialization and Evaluation

The algorithm starts initiating the population by random. Allocation
vector assigns randomly available grid resources to the jobs that compound
the workflow. The initialization of order vector is similar to allocation vector
selecting the sent order for the jobs by random, but also considering the
precedence constraints from the workflow. This initialization process is the
same in the other two algorithms implemented (MOABC and NSGA II).
However, to facilitate the management of the dimensional position for each
agent, MOGSA joins the allocation and order vectors to form UA+O in order
to calculate faster the exerted force per dimension. Once allocation and order
vectors are created per agent, GridSim returns the execution time and cost
according to the vectors.

The evaluation begins using the ranking operator from NSGA II [4]. This
operator is implemented in MOGSA to classify the agents per Pareto fronts.
This ranking operator assigns a rank per agent corresponding with the front
that belongs to. Then, a second operator from NSGA II is also applied,
called Crowding distance, in order to calculate the multi-objective fitness
(MOFitness) per agent. This value is calculated by equation 5.

MOFitness(Xi) = (2(Xi.r) +
1

1 +Xi.cd
)−1 (5)

where Xi denotes the agent i, r indicates the rank of Pareto front and cd rep-
resents the crowding distance. MOFitness is used to sort the agents according
its goodness. Agents with more MOFitness represent better solutions.

4.2. Update Gravitational Constant

Gravitational constant G is initialized at the beginning with the value
of G0 but it is reduced as the time goes by, in order to control the search
accuracy (see equation 6).

G = G0 exp(−α)
t
T (6)

where t is the current time, T is the total time and is a parameter used to
measure the reduction of G.
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4.3. Calculate size of masses

Heavier masses mean more efficient agents, so better agents exert higher
attractions and walk more slowly. The size of masses is calculated considering
their fitness and they are updated following equations 7 and 8.

Xi.q =
Xi.MOFitness−MOFitnessworst
MOFitnessbest −MOFitnessworst

(7)

Xi.m =
Xi.q∑N
1 Xj.q

(8)

where MOFitnessworst and MOFitnessbest are the lowest and highest values
of MOFitness, respectively.

4.4. Calculate Force and Acceleration between masses

Acceleration is caused by the exerted force between masses in all these
dimensions. Therefore, MOGSA calculates the exerted force from the Kbest
agents on the rest of the population for each dimension. That means, only
Kbest agents act to the whole population. At first, Kbest has the same
value of the population size, but Kbest is decreasing as the time goes by
until MinKbest. To calculate the corresponding force (see equation 9) per
each pair of agents an Euclidean distance is calculated following equation 10.
Euclidean distance is carried out from the UA+O vectors of the pair of agents.
Using in the first part of the vector (allocation vector), the distance between
the resource numbers and for the second part (order vector) the distance
between the order positions.

Xi.F
d
j = G× Xi.m×Xj.m

Rij + ε
× (Xj.U

d
A+O −Xi.U

d
A+O) (9)

Ri,j = ‖Xi, Xj‖,∀i, 1 ≤ i ≤ N ;∀j, 1 ≤ j ≤ Kbest (10)

Total force that acts on Xi is the sum of a random weight in all its dimensions
(equation 11). MOGSA applies this stochastic feature to consider the explo-
ration process. In swarm algorithms, exploration and exploitation processes
are required to avoid local optimums and achieve optimal solutions.

Xi.f
d =

N∑
j∈Kbest,j 6=i

rand [0, 1]×Xi.F
d
j (11)
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Agents obtain their acceleration taking into account its total mass and the
forces that are exerted on them in all their dimensions (see equation 12).

Xi.a
d =

Xi.f
d

Xi.m
(12)

4.5. Update Velocity and Position per each mass

The acceleration provokes the update in the velocity and the position of
the agents. However, during the calculation of the velocity not only accel-
eration affects its update, but a random number is applied to improve the
exploration process (see equations 13 and 14).

Xi.v
d = rand [0, 1]×Xi.v

d +Xi.a
d (13)

Xi.U
d
A+O = Xj.U

d
A+O +Xi.v

d (14)

The new agent position is updated increasing the values of the UA+O vector,
the identifier of the resource in case of the allocation vector or the number
of the position in the order vector. In case the last vector, the precedence
constraint is considered.

4.6. Select Set of Best Solutions (Pareto Front)

The current best solutions are calculated from the ranking operator that
classifies the population per Pareto fronts. MOGSA has an improvement
to avoid soon stagnations, so a stagnation evaluation is implemented on the
new population. When stagnation occurs along several iterations, a mutation
process is applied to the agents that are not changed regarding the previous
population. This mutation process is subdivided in two types of mutations
per each vector (allocation and order). These mutations use heuristics of
the job scheduling problem to do a local search. Both, allocation and order
vector are generated previously by random and then heuristics are applied.
The random order is compared with other built from a greedy algorithm.
This greedy algorithm is based on the precedence constraint of the workflow.
The method consists in executing first the parent jobs with more dependent
jobs. The mutation process for the allocation vector is more complex, because
more heuristics are considered: order of resources according to speed/cost,
time per job in its specific resource, overhead time (prediction of execution
for the entire workflow) and wait time produced by the precedence between
jobs.
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Finally, the resulting first Pareto front will be saved as a set of best
solutions and MOGSA restarts a new generation until the time limited is
expired.

5. Multi-Objective Artificial Bee Colony (MOABC)

Artificial Bee Colony (ABC) ([1], [2]) is a mono-objective swarm algo-
rithm from the biological field. This algorithm is based on the collective
behaviour of its agents - bees - to find the best nectar from the flowers.
The main feature of the ABC algorithm is that its agents have different be-
haviours. Some bees move in a multidimensional search space by selecting
nectar source considering their last experience and the experience of their
hive fellows. However, other bees move randomly without experience and
influence. When they find a better nectar source (flower position), they
memorize it and forget it previous flower position. That means, ABC also
combines exploration and exploitation processes trying to equilibrate them.
These processes are collected from the behaviour of tree kind of bees: em-
ployed, onlooker and scout bees.

• Onlookers: are waiting in the work area to select a good flower, previ-
ously chosen by employed bees.

• Employed bees: initially go to the flowers and they dance according to
the goodness of the nectar found. Onlookers choose them according to
the dance of the best ones.

• Scouts: are those that perform random scans to find other flowers,
usually are based on heuristics of the problem.

In this research, a multi-objective version, called Multi-Objective Artificial
Bee Colony (MOABC), is implemented and also is adapted to solve the job
scheduling problem in grid environments. The fundamental steps of the
MOABC are shown in Algorithm 2.

MOABC manages the same parameters than the ABC algorithm ([1], [2]).
In particular, this swarm algorithm stands out for its simplicity with a small
number of parameters.

• Population size indicates the number of agents - bees - per iteration.

• Mutation probability is used in the mutation process during the algo-
rithm execution.
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Algorithm 2 MOABC pseudocode

INPUT: Population Size, Mutation Probability
OUTPUT: Set of Solutions

1: Initialize population of solutions;
2: Evaluate population (Time and Cost);
3: while not time limit (2 minutes) do
4: Multi-Objective Exploitation Process (Employed and Onlooker Bees);
5: Multi-Objective Exploration Process (Scout Bees);
6: Select Set of Best Solutions (Pareto Front);
7: Generate New Population;
8: end while

The output of the MOABC algorithm is composed of a set of solutions -
bees- obtaining by the calculation of the Pareto front after completing the
algorithm execution.

5.1. Initialization and Evaluation of the population

The initialization of the population is similar to the MOGSA. However,
the population begins considering only the half number of the population
size given by parameter. This half is for creating the employed bees. During
the algorithm execution, new bees (onlookers and scouts) are added until
completing the population size. These first employed bees are also composed
by the allocation and order vectors, which are created by random, taking
into account the workflow precedence constraint. Then, GridSim provides
their execution time and cost according to the vectors. Once employed bees
are created, they are classified per Pareto fronts using the ranking operator
from the NSGA II algorithm. And also their Crowding distance is calculated
to evaluate the goodness of the solutions found.

5.2. Multi-Objective Exploitation Process

In the multi-objective exploitation process, employed and onlooker bees
search the best solutions from their last experience and the experience of their
fellows. This process begins generating neighbour bees from the employed
bees. This step uses two types of mutations, one per vector (allocation and
order) to generate a neighbour bee.

• Order mutation is in charge of modifying the order vector considering
the DAG model from the workflow. First of all, each job is selected
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taking into account the mutation probability. The process identifies
the last position of order vector that is occupied by one parent of the
job to mutate. After that, the positions of the child jobs are searched
in the order vector to select the first position of them. And finally the
process chooses randomly a new position for the job to mutate among
the parent last position and the child first position.

• Allocation mutation provides a neighbour allocation vector using the
mutation probability. The selected jobs to mutate choose randomly a
resource identification number from the list of available grid resources.

Once employed and neighbour bees are created, they compete to be selected
for the next generation. This competition uses two operators from the stan-
dard NSGA II. First, the ranking operator is applied to calculate the rank
for each bee. The bee with less rank is the winner. In case of the bees have
the same rank, the Crowding distance operator is used to tie break. The bee
with more crowding distance is the winner. And the winner substitutes the
other bee.

Then, all the winner bees are ordered according to their solution goodness
using the ranking and crowding distance operators. After that, a method of
the roulette selection is used to generate these new bees following the bee
probability equation 15 (that is, using a linear bias [20]).

bee.pb =

1
bee.p∑
i

1
beei.p

(15)

Once onlookers are selected by this process, also neighbours generation is
applied to these bees in the same way as the employed bees. And, winner
bees substitute the looser bees.

5.3. Multi-Objective Exploration Process

The multi-objective exploration process is executed by a new kind of bee:
the scout bee, whose behavior considers heuristics of the job scheduling prob-
lem. In this problem, one scout bee is enough to execute this process. Scout
bee generates randomly its vectors - allocation and order - and then modi-
fies them using information from the problem but without the experience of
their hive fellows. For each vector a different process is performed consider-
ing different heuristics. These processes are similar to the mentioned in the
stagnation mutation in the MOGSA.
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• Heuristic generation for the order vector begins generating a random
order vector according to the precedence constraint as processed in
the population initialization. At the same time, other order vector is
generated using a greedy algorithm that considers that jobs with more
dependent jobs must be executed first. Then, the random order is
modified trying to achieve the greedy order without violating the job
dependencies.

• Heuristic generation for the allocation vector begins generating a ran-
dom allocation vector. Then, the algorithm applies as heuristics per
job the processing time MI

MIPS
, where MI (Millions of Instructions)

denotes the job length and MIPS (Million Instructions per Second) is
the speed of the assigned resource. Also, the total time would take the
execution of the workflow is calculated according to the dependencies
between jobs. This process assumes that jobs with no dependencies
between them can be executed in parallel. After that, each job is as-
signed to a resource that reduces the current total execution time. The
available grid resources are sorted according to the value processing
speed/cost. The overhead time is also considered by the competitive
jobs - jobs without dependencies each other that are allocated in the
same resource -.

5.4. Select Set of Best Solutions

This set of solutions is selected from the set of all types of bees. All the
bees - employed, onlooker and scout bees - are ranked and the bees that
compose the first Pareto front are the best solutions of the current iteration.
Then, this new first Pareto front is saved and it will be compared with the
Pareto front from the next iteration.

Finally, new population is selected by the ranking operator too, saving
the number of employed bees beginning from the first fronts. That means, if
the employed number is 50, the first 50 bees from the first Pareto fronts are
chosen.

6. Non Dominated Sorting Genetic Algorithm (NSGA II)

Non-dominated Sorting Genetic Algorithm II (NSGA II) [4] is the most
popular multi-objective genetic algorithm and it is widely known due to its
efficiency. In this research, this algorithm is applied to the job scheduling
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problem to prove the multi-objective goodness of the two proposed swarm
algorithms. As a genetic algorithm, it has agents as individuals that com-
pose the evolutionary population. The main steps of NSGA II are shown in
Algorithm 3. The NSGA II input has three parameters:

Algorithm 3 NSGA II pseudocode

INPUT: Size of population, Number of Iterations or Maximum time of
execution, Crossover and Mutation Probability
OUTPUT: Set of Solutions

1: Initialize population of solutions;
2: Evaluate population (Time and Cost);
3: while not time limit (2 minutes) do
4: Binary Tournament Selection;
5: Crossover;
6: Mutation;
7: Select Set of Best Solutions (Pareto Front);
8: Select New Generation;
9: end while

• Population size indicates the number of individuals that take part of
the optimization.

• Crossover probability is the probability for interchanging the gens (al-
location or order vector elements) to crossover with other individuals.

• Mutation probability is the probability to mutate the gens of an indi-
vidual.

The output is the same as the previous algorithms; it is the set of best
solutions found during the execution of the algorithm composing a Pareto
front.

6.1. Initialization and evaluation of the population

The initialization of the population follows the same process as the two
other algorithms. Population size indicates the number of individuals and
these individuals create randomly their allocation and order vectors respect-
ing the precedence constraint from the workflow to execute. Moreover, Grid-
Sim provides the execution time and cost for each individual taking into
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account its vectors. After that, the evaluation is done by the NSGA II oper-
ators: Ranking of Pareto fronts and Crowding distance. The next processes
- tournament selection, crossover and mutation - are in charge of creating
the offspring population of the same size of the initial population.

6.2. Global optimum search

In NSGA-II the descendent population Q (size N) is created from the par-
ent population P (size N). After that, these two populations are combined
forming a new population R with size 2N. Then, the population R is classified
by a non-dominated sorting in different Pareto fronts. This allows a global
verification of dominance between the parent and descendent populations.
When the process of non-dominated sorting is finalized, the new population
is generated from the non-dominated Pareto fronts. This new population
starts its building from the best non-dominated front (F1) followed from the
second Pareto front (F2) and so on. As the size of population R is 2N and
the size of the origin population is N, not all the solutions from R will be
conform the new population. Those fronts that cannot be added to the new
population will be discarded. When the last front is being considered, the
solutions that belong to it can exceed the size of the population, and then
the crowding distance is applied to these solutions. The crowding distance
permits the solutions selection located in a few crowded area (far away from
other solutions) to complete the new population instead of choosing the so-
lutions randomly. This process is not relevant for the first iterations of this
algorithm, because many fronts survive to the next iteration. However, when
the process advances many solutions are located in the first front and second
front and they could have more than N solutions. This fact makes important
the selection of quality solutions and also that these solutions ensure the
diversity. The idea is to promote always those solutions that ensure more
diversity from the same Pareto front. When the population converges to the
optimum Pareto front (the first one), the algorithm ensures that the solu-
tions are not closed one each other and achieves the global optimum search
objective.

6.3. Binary tournament selection

Binary tournament selection takes care of choosing the parent individuals
to cross. This method sorts the individuals based on non-domination and
with crowding distance assigned, then, the selection in carried out using a
crowded-comparison-operator (≺ n).
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• non-domination rank for individual p indicates that individual is in
front Fi, so if p is in Fi its rank will be prank = i.

• crowding distance Fi(dj): In this case, p ≺ n q if

– prank < qrank

– or if p and q belong to the same front Fi then Fi(dp) > Fi(dq) i.e.
the crowing distance should be greater for p.

The individuals are selected by using a binary tournament selection with
croweded-comparison-operator.

6.4. Crossover

The crossover process is divided in two crossover one per vector - allo-
cation and order vector -. These two crossover processes are based on the
Talukder’s work [19]:

• Allocation crossover selects randomly a position from the allocation
vector, which indicates the identifier of the job. Then, the parent vec-
tors swap their vectors from the random position, creating two new
individuals.

• Order crossover is similar to the allocation vector crossover but consid-
ering the precedence constraint. Therefore, after the swapping process,
this method checks the dependencies and possible repeated order po-
sitions. To avoid this during the crossover, before doing the swapping,
this method checks if there is not any position in the order vector. If
it occurs, this position is stored and when there is a repeated position,
one position of the stored ones is randomly selected.

These new individuals are evaluated obtaining their execution time and cost
and they are added to the population set. Population size is set to 2N .

6.5. Mutation

Mutation process is also divided in two mutation processes for the two
vectors. These mutations are the same as the ones described in the MOABC
algorithm in Section 5.2 and also execution time and cost are calculated for
the new individuals.
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6.6. Select set of best solutions

The set of best solutions are calculated by the ranking operator from the
total of individuals. The first Pareto front from the current iteration will be
compared with the previous iteration set following the same process as the
previous algorithms.

Finally, the new population is formed by choosing the individuals that
compose the first Pareto fronts until completing the new population indicated
by the population size parameter.

7. Experiments and Results

In this section, results from several experiments are described. The in-
tention of this analysis is the comparison of two swarm algorithms, MOGSA
and MOABC, from different fields - physical and biological- with the stan-
dard and well-known multi-objective algorithm NSGA II to prove the multi-
objective efficiency of these new proposed multi-objective algorithms. These
evaluations use six different workflows over two complete and real topologies.
Moreover, MOABC, our best algorithm, is compared with two real schedulers
as Workload Management System (WMS) and Deadline Budget Constraint
(DBC) to stands out the necessity to improve the current meta-schedulers.

7.1. Grid topologies and workflows

Test environment - topologies, workflows and algorithms - are imple-
mented in the simulator GridSim with a complete configuration.

On the one hand, a variety of workflows based on specific numerical com-
putational problems such as Parallel Gaussian Algorithm, Parallel Gauss-
Jordan Algorithm, Parallel LU decomposition [21], Find-Max Algorithm [22],
Fast Fourier Transform (FFT) and Stencil [23], are tested. All of them fol-
lows a DAG model (Figure 3) and their complex structure allows a good
study of the behaviour of our algorithms.

On the other hand, two specific topologies are described based on real
grid environments. The first topology is a combination between two testbeds.
The topology information is based on the EU DataGrid testbed [24] and it
is completed with grid resource characteristics from the WWG testbed [5].
The combination of these testbeds is shown in Figure 4 and in Table 1.
Moreover, we have simulated 3 working nodes (WNs) per resource to add
more complexity to this environment.
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Figure 3: Workflows: Gaussian, Gauss-Jordan, LU Decomposition , Find-Max, Fast
Fourier Transform (FFT) and Stencil.

21



Figure 4: Testbed EU DataGrid.

Table 1: Resource Characteristics (G$ means Grid dollars)

Resource Name Features (Vendor, Type, OS, Resource Manager MIPS Price
CPUs/WN) Type per CPU (G$/

CPU time)
LYON Compaq, AlphaServer, OSF1, 4 Time-shared 515 8
CERN Sun, Ultra, Solaris, 4 Time-shared 377 4
RAL Sun, Ultra, Solaris, 4 Time-shared 377 3

IMPERIAL Sun, Ultra, Solaris, 2 Time-shared 377 3
NORDUGRID Intel, Pentium/VC820, Linux, 2 Time-shared 380 2

NIKHEF SGI, Origin 3200, IRIX, 6 Time-shared 410 5
PADOVA SGI, Origin 3200, IRIX, 16 Time-shared 410 5

BOLOGNA SGI, Origin 3200, IRIX, 6 Space-shared 410 4
ROME Intel, Pentium/VC820, Linux, 2 Time-shared 380 1

TORINO SGI, Origin 3200, IRIX, 4 (accesible) Time-shared 410 6
MILANO Sun, Ultra, Solaris, 8 Time-shared 377 3
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Figure 5: Site View from the IBERGRID infrastructure

The second topology is based on the Spanish Grid Initiative (NGI) 5

including the Portuguese Grid infrastructure to represent the Iberian Grid
Infrastructure (IBERGRID) 6. This testbed was carried out in the CETA-
Ciemat 7 during the month of June’11. The information of the grid sites is
shown in Figure 5 and Table 2. The network communication is based on
the RedIris-NOVA8 using the combination of the RedIris9 and the RCTS10

(Figure 6), where the fiber ring communication network allows 10Gbps. The
costs of the resources are adapted following the EU Data Grid testbed. In
order to take advantage from this complex topology, we have considered that

5http://www.e-ciencia.es/ngi/
6http://www.ibergrid.eu
7http://www.ceta-ciemat.es/
8http://www.redirisnova.es/caracteristicas/mapa-red.html
9http://www.rediris.es/lared/mapa.html

10http://www.umic.pt/
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the size of jobs sent per each workflow is measured by Million of MI (Million
of Instructions).

Table 2: Resource Characteristics (¢G$ means cent of Grid dollars). Note: Some sites
have more than one resource or computing element.

Resource Features (Vendor, CPU Type, OS, WNs, Resource Manager MIPS Price

Name CPUs/WN) Type per ¢G$ (¢G$/

CPU time)

CESGA AMD, Opteron 6174, Linux (Carbon), 21, 24 Space-shared 4400 56

USC Intel, Xeon E5335, Linux (Boron), 22, 8 Space-shared 3990 18

UNICAN Intel, Pentium D, CentOS, 241, 2 Space-shared 7505 91

CETA-Ciemat Intel, Xeon , Linux (Beryllium), 29, 4 Space-shared 6405 19

Ciemat-TIC AMD, Opteron 270, Linux (Boron), 74, 4 Space-shared 3608 27

Ciemat-LCG Intel, Xeon E5450, Linux (Boron), 118, 8 Space-shared 5985 142

SGAI-CSIC AMD, Opteron 246, Red Hat (Tikanga), 9, 2 Space-shared 3983 2

BIFI Intel, Xeon E5650, Linux (Boron), 31, 12 Space-shared 5334 50

IFIC1 Intel, Xeon E5420, Linux (Boron), 47, 8 Space-shared 5004 47

IFIC2 Intel, Xeon E5420, Linux (Boron), 106, 8 Space-shared 4988 106

IFISC Intel, Xeon L5520, Linux (Boron), 60, 8 Space-shared 4534 55

IAA-CSIC Intel, Xeon X7350, Red Hat (Tikanga), 32, 16 Space-shared 5863 75

Uporto1 AMD, Opteron 250, Linux (Boron), 23, 2 Space-shared 4786 6

Uporto2 AMD, Opteron 250, Linux (Boron), 11, 2 Space-shared 4779 3

Uminho1 Intel, Xeon E5420, Linux (Beryllium), 12, 1 Space-shared 4991 2

Uminho2 Intel, Xeon E5420, Linux (Boron), 8, 1 Space-shared 4988 1

LIP-Coimbra1 Intel, Xeon E5472, Linux (Boron), 22, 8 Space-shared 5985 26

LIP-Coimbra2 Intel, Xeon E5472, Linux (Boron), 22, 8 Space-shared 5985 26

NCG-INGRID Quad-Core AMD, Opteron 2356, Linux (Boron), 128, 8 Space-shared 4600 118

CFP-IST Intel, Core i7 980, Linux (Boron), 4, 12 Space-shared 6747 8

LIP-LISBON Intel, Xeon E5472, Linux (Boron), 2, 8 Space-shared 5985 2

IFCA1 Intel, Xeon E5420, Linux (Boron), 182, 8 Space-shared 6254 228

IFCA2 Intel, Xeon E5420, Linux (Boron), 182, 8 Space-shared 6254 228

IFCA3 Intel, Xeon E5420, Linux (Boron), 182, 8 Space-shared 6254 228

IEETA Intel, Xeon E5130, Linux (Boron), 4, 2 Space-shared 4989 1

7.2. Parameterization
This section summarizes the parameter settings for each of the multi-

objective algorithms - MOGSA, MOABC and NSGA II -. We have previously
performed a study (each single experiment was repeated 30 times indepen-
dently) to find the best parameter configuration for each algorithm in order
to solve our problem:

• MOGSA: Population size = 25, G0 = 10000, MinKbest = 5, α = 2, ε
= 1.

24



Figure 6: Communication Network: RedIris and RCTS maps

• MOABC: Population size = 101 (50 employed bees, 50 onlooker bees
and 1 scout bee), mutation probability = 0.25.

• NSGA II: Population size = 100, crossover probability = 0.9, mutation
probability = 0.1.

For all the algorithms the Maximum Time of Execution is 2 minutes.

7.3. Analysis

This section is divided in two main analysis. The first one studies the
multi-objective properties for MOGSA and MOABC and also they are com-
pared with the standard NSGA II. Moreover, MOABC, as a better algorithm
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for our studies, is compared with two current meta-schedulers in the second
analysis of this research. Due to the stochastic nature of multi-objective al-
gorithms, each experiment performed in our study includes 30 independent
executions, showing the corresponding statistical data in each case.

7.3.1. Multi-Objective comparison

In this analysis, we compare three multi-objective algorithms, two novel
swarm algorithms MOGSA and MOABC from different fields (physical and
biological) and the standard and well-known NSGA II, that is a very used
algorithm in multi-objective optimization. This study uses two grid environ-
ments. The first part of this section evaluates the algorithms on the WWG
and EU DataGrid combination testbed and the second part uses the IBER-
GRID testbed as a grid environment.

First, we compare the three algorithms using the hypervolume metrics.
Tables 3, 4 and 5 show the average results and also the standard devia-
tion. We observe that the reliability of the two swarm algorithms, MOABC
and MOGSA, is greater than the standard NSGA II. MOABC and MOGSA
have lower standard deviation in all the cases. However, the reliability be-
tween MOABC and MOGSA is similar. Moreover, the average hypervolume
of MOABC is around a 57 percent being better than the 55 percent from
MOGSA, and also MOGSA and MOABC are better than the 45 percent
from NSGA II algorithm. This means that the solutions from MOABC and
MOGSA are better than the solutions achieved by NSGA II.

To reinforce and visualize this research the Pareto fronts for each workflow
are shown in Figure 7. All the algorithms follow the same behaviour with
all the workflows. The resulting Pareto fronts of MOABC always dominate
the solutions obtained by MOGSA and NSGA II. And the solutions found
by MOGSA always dominate the results obtained by NSGA II. Moreover, a
numerical comparison of these three algorithms regard to set coverage metrics
is given in Table 6. Each cell gives the fraction of non-dominated solutions
evolved by algorithm B, which are covered by the non-dominated points
achieved by algorithm A [25]. Again, MOABC covers almost all the results
obtained by MOGSA and NSGA II, and MOGSA dominates the results of
NSGA II.

The same multi-objective study is carried out for the IBERGRID testbed.
The hypervolume metrics is calculated per algorithm and workflow. Tables
7, 8 and 9 show the average of hypervolumes and the standard deviations.
Hypervolume metrics demonstrates that MOABC obtains better set of solu-
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tions than MOGSA an NSGA II, and also the set of solutions obtained by
MOGSA is better than the NSGA II set of solutions. Moreover, MOABC
and MOGSA have better reliability than NSGA II with a minimum standard
deviation. These results are similar to the results obtained in the other study
with the WWG and EU DataGrid testbed except the increase of the standard
deviation from the NSGA II algorithm using the IBERGRID environment.

Furthermore, graphs of the resulting Pareto fronts are displayed in Figure
8 and also the direct comparison with the set coverage metrics is calculated
in Table 10. These tests prove that MOABC usually covers all the solutions
from the other algorithms as well as MOGSA covers the solutions from the
NSGA II. This second test environment demonstrates a similar behaviour
than the first one, highlighting MOABC as a better meta-scheduler than
the other two. Moreover, it also proves that swarm algorithms have better
behaviour than NSGA II in dealing with the job scheduling problem in grid
environments.

7.3.2. Real schedulers comparison

This second kind of analysis compares the best multi-objective algorithm
(MOABC), studied in the previous analysis, respect to two current and pop-
ular meta-schedulers - WMS and DBC - with all the workflows and the two
topologies. Also, each experiment performed in our study includes 30 inde-
pendent executions per algorithm and workflow. First, the WWG and EU
DataGrid testbed is studied.

On the one hand, the WMS has been deployed with two requirements
options. WMS needs requirements option to sort the resources by a rank
of preference. The first option (Option 1) considers the resource response
time. This is calculated sending a job per each available resource. The
second option (Option 2) takes into account the free CPUs of every resource
to calculate the rank of preferences. In these tests, the meta-scheduler is
located in CERN. Table 11 shows the execution time varying the deadline
for the experiments. Results demonstrate that the WMS in the two options
needs more time to achieve the execution of all the jobs. Furthermore, when
the deadline is more restrictive WMS is not able to complete the execution
of the workflow while MOABC always offers a good solution to fulfill the
deadline of an experiment.

On the other hand, the DBC is implemented and compared with the
MOABC in Table 12. Results show that in spite of DBC tries to keep the
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deadline of an experiment, when this deadline is more restrictive it is not able
to complete the execution of the workflows. However, MOABC optimizes the
solutions and always completes the execution of the workflows.

Using the IBERGRID topology, results show a similar behaviour re-
garding to the previous topology studied. The meta-scheduler is located
in Ciemat-TIC in all these tests. Both WMS options are not able to execute
all the jobs that compose the workflows when the deadline is more restric-
tive (Table 13). However, MOABC has not problems in carrying out the
experiments. Remember that the jobs are interdependent, and therefore, the
execution of all the jobs could be a must. Also, DBC has the same behaviour
for this new topology obtaining worse results than the MOABC when the
deadline is more restrictive (Table 14).

8. Conclusions and Future Work

This paper studies and compares three meta-scheduler algorithms based
on multi-objective approaches. Two algorithms are inspired from the biology
and physics fields - MOABC and MOGSA - that work according to swarm
behaviour. Also a popular multi-objective genetic algorithm - NSGA II - is
compared with the mentioned algorithms to evaluate the goodness of them.
MOABC highlights because of its set coverage and hypervolume, being su-
perior in all the cases than the other multi-objective algorithms. Because of
that, MOABC is also compared with current schedulers as WMS and DBC
to prove the relevance of this study. One more time, MOABC obtains better
results than the two options of WMS and DBC with different deadlines of
the workflows, which follow a DAG model with dependent jobs.

An extension of our proposed algorithm to support dynamic environments
will be the next step of this research in order to offer fault tolerance when
a resource falls down. A penalization of those bees or agents that allocate
their jobs in invalid resources will be applied in order to discard them from
the population for the following iterations.

As future work, we will apply other multi-objective metaheuristics to the
job scheduling on grid environments, in order to make comparisons between
the approaches presented in this work and the new ones. In particular, we
will implement, adjust and study the MOEA/D [26], since it is one of the
most prominent multi-objective optimizer used by the evolutionary comput-
ing community.
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Table 3: MOGSA Hypervolume properties per each workflow. Testbed WWG and EU
DataGrid.

Workflows Average (%) Standard Deviation Reference Point

(Time (s), Cost (G$))

Gaussian 55.06 0.28 (1000, 10000)

Gauss-Jordan 55.53 0.22 (1200, 22000)

LU 54.48 0.47 (1200, 22000)

Find-Max 54.23 0.14 (2000, 10000)

FFT 55.94 0.32 (1200,22000)

Stencil 57.39 0.31 (1000, 15000)

Table 4: MOABC Hypervolume properties per each workflow. Testbed WWG and EU
DataGrid.

Workflows Average (%) Standard Deviation Reference Point

(Time (s), Cost (G$))

Gaussian 57.44 0.14 (1000, 10000)

Gauss-Jordan 57.29 0.50 (1200, 22000)

LU 57.74 0.38 (1200, 22000)

Find-Max 56.57 0.12 (2000, 10000)

FFT 57.41 0.43 (1200, 22000)

Stencil 59.61 0.87 (1000, 15000)
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Table 5: NSGA II Hypervolume properties per each workflow. Testbed WWG and EU
DataGrid.

Workflows Average (%) Standard Deviation Reference Point

(Time (s), Cost (G$))

Gaussian 45.89 1.08 (1000, 10000)

Gauss-Jordan 47.13 0.66 (1200, 22000)

LU 48.02 0.70 (1200, 22000)

Find-Max 36.23 1.51 (2000, 10000)

FFT 48.92 0.62 (1200, 22000)

Stencil 46.92 1.12 (1000, 15000)

Table 6: Set Coverage comparison of MOABC, MOGSA and NSGA II per each workflow.
Testbed WWG and EU DataGrid.

Coverage A ≥ B (%)

Algorithm Workflows Average

A B Gaussian Gauss-Jordan LU Find-Max FFT Stencil

MOABC MOGSA 92.30 94.44 94.44 95.93 95.93 90 93.84

MOGSA MOABC 0 0 0 0 0 0 0

MOABC NSGA II 100 100 100 100 100 100 100

NSGA II MOABC 0 0 0 0 0 0 0

MOGSA NSGA II 100 100 100 100 100 100 100

NSGAII MOGSA 0 0 0 0 0 0 0
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Figure 7: Pareto fronts per workflow and algorithm. Testbed WWG and EU DataGrid.
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Table 7: MOGSA Hypervolume properties per each workflow. Testbed IBERGRID.

Workflows Average (%) Standard Deviation Reference Point

(Time (s), Cost (¢G$))

Gaussian 56.39 0.50 (65000, 6500000)

Gauss-Jordan 53.03 0.56 (80000, 8000000)

LU 52.98 0.57 (80000, 8000000)

Find-Max 52.91 0.49 (105000, 10500000)

FFT 53.72 0.47 (80000, 8000000)

Stencil 53.62 0.92 (60000, 6000000)

Table 8: MOABC Hypervolume properties per each workflow. Testbed IBERGRID.

Workflows Average (%) Standard Deviation Reference Point

(Time (s), Cost (¢G$))

Gaussian 60.69 0.35 (65000, 6500000)

Gauss-Jordan 58.16 1.02 (80000, 8000000)

LU 58.54 0.47 (80000, 8000000)

Find-Max 57.76 0.48 (105000, 10500000)

FFT 58.26 0.47 (80000, 8000000)

Stencil 60.23 0.67 (60000, 6000000)
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Table 9: NSGA II Hypervolume properties per each workflow. Testbed IBERGRID.

Workflows Average (%) Standard Deviation Reference Point

(Time (s), Cost (¢G$))

Gaussian 44.80 2.40 (65000, 6500000)

Gauss-Jordan 34.39 3.20 (80000, 8000000)

LU 40.27 1.89 (80000, 8000000)

Find-Max 38.42 2.35 (105000, 10500000)

FFT 38.04 2.89 (80000, 8000000)

Stencil 33.88 4.18 (60000, 6000000)

Table 10: Set Coverage comparison of MOABC, MOGSA and NSGA II per each workflow.
Testbed IBERGRID.

Coverage A ≥ B (%)

Algorithm Workflows Average

A B Gaussian Gauss-Jordan LU Find-Max FFT Stencil

MOABC MOGSA 93.75 87.5 75 81.8 88.88 88.88 85.97

MOGSA MOABC 0 0 0 3.57 0 0 0.59

MOABC NSGA II 100 100 100 100 100 100 100

NSGA II MOABC 0 0 0 0 0 0 0

MOGSA NSGA II 100 100 100 85.71 100 87.5 95.53

NSGAII MOGSA 0 0 0 9.09 0 11.11 3.36
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Figure 8: Pareto fronts per workflow and algorithm. Testbed IBERGRID.
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Table 11: WMS vs MOABC: Successful executed jobs regard to deadline variation.
Testbed WWG and EU DataGrid.

Workflows Constraint WMS (Option 1) WMS (Option 2) MOABC

Deadline Time Jobs Time Jobs Time Jobs
500 482.68 12 442.46 12 478.11 12

Gaussian 450 455.11 10 442.46 12 449.53 12
400 401.01 7 368.15 9 394.32 12
550 534.70 15 492.18 15 531.71 15

Gauss-Jordan 500 428.57 14 492.18 15 496.24 15
450 428.57 14 394.55 14 448.71 15
600 585.78 13 561.46 14 594.96 14

LU 550 504.12 10 537.14 13 547.91 14
500 424.56 9 463.76 10 499.81 14
750 721.42 15 736.29 18 749.87 18

Find-Max 700 667.32 12 661.98 15 698.48 18
650 561.18 11 612.12 12 639.30 18
550 507.13 11 515.58 15 542.62 15

FFT 500 426.51 7 465.76 11 499.82 15
450 426.51 7 391.51 7 443.91 15
390 373.48 10 368.15 12 377.18 12

Stencil 360 319.42 8 343.69 10 350.59 12
330 319.42 8 293.91 8 321.94 12
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Table 12: DBC vs MOABC: Successful executed jobs regard to deadline variation. Testbed
WWG and EU DataGrid.

Workflows Constraint DBC MOABC

Deadline Time Jobs Time Jobs
500 480.82 12 478.11 12

Gaussian 450 450.58 10 449.53 12
400 400.77 9 394.32 12
550 533.41 15 531.71 15

Gauss-Jordan 500 500.08 14 496.24 15
450 450.08 14 448.71 15
600 596.66 14 594.96 14

LU 550 550.00 12 547.91 14
500 500.28 10 499.81 14
750 750.68 15 749.87 18

Find-Max 700 700.01 12 698.48 18
650 650.386 12 639.30 18
550 544.96 15 542.62 15

FFT 500 500.25 11 499.82 15
450 450.04 7 443.91 15
390 378.98 12 377.18 12

Stencil 360 360.60 10 350.59 12
330 330.70 8 321.94 12
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Table 13: WMS vs MOABC: Successful executed jobs regard to deadline variation.Testbed
IBERGRID.

Workflows Constraint WMS (Option 1) WMS (Option 2) MOABC

Deadline Time Jobs Time Jobs Time Jobs
35000 32641.82 6 28788.02 12 34751.61 12

Gaussian 30000 22598.13 5 28788.02 12 29862.43 12
25000 22598.13 5 23989.00 9 24818.09 12
40000 33262.57 12 31984.93 15 38759.33 15

Gauss-Jordan 37500 33262.57 12 31984.93 15 37007.08 15
35000 33262.57 12 31984.93 15 34894.49 15
46000 40174.88 9 36784.05 14 45442.98 14

LU 38500 32641.82 6 36784.05 14 38488.01 14
32000 22598.13 5 30385.92 10 31560.51 14
61000 58208.17 11 47977.90 18 60140.90 18

Find-Max 51500 49892.24 7 47977.98 18 47014.72 18
42000 33261.53 6 39979.79 12 41376.77 18
43500 35092.94 15 33584.06 15 42098.00 15

FFT 37750 35092.94 15 33584.06 15 36925.65 15
32000 31750.25 11 30384.92 11 32030.00 15
29500 27619.46 6 23987.93 12 28735.14 12

Stencil 26250 20086.46 4 23987.93 12 25894.05 12
23000 20086.46 4 22388.92 10 22868.49 12
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Table 14: DBC vs MOABC: Successful executed jobs regard to deadline variation. Testbed
IBERGRID.

Workflows Constraint DBC MOABC

Deadline Time Jobs Time Jobs
35000 35000.68 10 34751.61 12

Gaussian 30000 30000.92 9 29862.43 12
25000 25000.27 6 24818.09 12
40000 38764.00 15 38759.33 15

Gauss-Jordan 37500 37410.48 15 37007.08 15
35000 35000.23 14 34894.49 15
46000 45445.66 14 45442.98 14

LU 38500 38500.38 10 38488.01 14
32000 32000.05 9 31560.51 14
61000 60145.21 18 60140.90 18

Find-Max 51500 51500.85 12 47014.72 18
42000 42000.41 11 41376.77 18
43500 42102.02 15 42098.00 15

FFT 37750 37750.71 11 36925.65 15
32000 32000.23 7 32030.00 15
29500 29072.86 12 28735.14 12

Stencil 26250 26250.86 8 25894.05 12
23000 23000.50 8 22868.49 12
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