
For Peer Review

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 0000; 00:1–22
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Intelligent Self-adaptive Resources Selection for Grid
Applications

Marı́a Botón-Fernández1∗ Miguel A. Vega-Rodrı́guez2 and Francisco Prieto Castrillo1

1 Department of Science and Technology, Ceta-Ciemat, Trujillo, Spain.
Home Page: http://www.ceta-ciemat.es/

2Dept. Technologies of Computers and Communications, University of Extremadura, Cáceres, Spain.
Home Page: http://arco.unex.es

SUMMARY

Grid computing is considered a promising trend which enables the sharing of a wide variety of computational
and storage resources geographically distributed. Despite the advantages of such paradigm, several problems
have emerged during the last decade; most of them caused by an inefficient utilization of grid resources.
The present contribution proposes an approach to improve the grid resources selection process. An
optimization model for choosing grid resources in an intelligent way has been designed. A mathematical
formulation to monitor the resources efficiency has also been established. Furthermore, the model provides
a self-adaptive capability to grid applications, enhancing them for dealing with the changing environmental
conditions. The model applies an Artificial Intelligence (AI) algorithm for ensuring an efficient selection. In
particular, three different versions have been implemented. Each of them uses a different AI algorithm.
Finally, during the evaluation phase of the model, the experimental tests were performed in a real grid
infrastructure. The results show that the model improves the infrastructure throughput, by increasing the
finished tasks rate and by reducing the applications execution time.
Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Optimization; Self-adaptive Application; Grid Computing; Evolutionary Computing

1. INTRODUCTION

Around the 50’s emerged the idea of using simulated evolution algorithms to solve engineering

problems [1] (algorithms are based on the principle of survival of the fittest). Then, during the 90’s

this area was so-called Evolutionary Computing (EC). Also in this decade appeared the term Grid

Computing [2]-[4] for denoting a novel distributed system. This type of system enables the sharing

and aggregation of a large amount of heterogeneous and geographically dispersed resources. The

essential idea was to create a global provider network of computing power and storage capacity,

similar to the electrical grid.

In spite of the advantages of this new paradigm, there are several problems related to tasks

scheduling, resources selection, resources discovery, resources monitoring, etc. Grid applications

compete for using different non-dedicated resources; but also these applications face a double

heterogeneity in grid systems: on the one hand, resources are grouped into classes according to

their functions and services. On the other hand, every resource class is composed of heterogeneous

components, because they are provided by different centres. It must be highlighted that most of

∗Correspondence to: Dept. of Science and Technology, Ceta-Ciemat, Trujillo, Spain. E-mail:
maria.boton@externos.ciemat.es

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

Page 3 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

2 M. BOTÓN-FERNÁNDEZ ET AL.

these resources are shared among multiple users and projects (non-dedicated), leading to both

performance and budget estimation pitfalls. What is more, in a grid environment each resource

provider is responsible for managing its own elements (no centralized control). Thus, the availability

and characteristics of resources vary over time, making them dynamic and unpredictable [5].

Today, applications require real-time information about grid infrastructures status during their

execution. This way, they can deal with the environmental changes. The adaptation concept has

become a widely used solution in grid community. In recent years, several solutions based on this

idea have been proposed [5]-[12]. However, considering the grid characteristics discussed above,

the use of adaptation at any grid level has also become a challenge for the scientific community. In

this regard, none of the proposed solutions have been placed as a standard across grid platforms.

The present contribution is focused on solving the resources selection problem by applying

adaptation during the application execution. The proposed approach chooses those resources

which best fit the application requirements during execution, without modifying or controlling

grid elements. For that reason, a mathematical formulation to obtain the resources efficiency in

a grid infrastructure has been proposed. This mathematical formulation combined with an Artificial

Intelligent (AI) technique provides an Efficient Resources Selection (ERS) model. The selection

process included in the proposed model is based on EC methods. Two main objectives have been

established: a reduction in application execution time and an improvement in the successfully

finished tasks rate. Three different versions of this model are presented: first, the Preferential

Attachment (PA) [19] algorithm is adapted to the ERS process resulting in the Efficient Resources

Selection Model based on PA (ERS-PA). PA is a network evolution model introduced by Barabási

and Albert for analysing and understanding random scale-free networks. Second, a metaheuristics

algorithm used for solving optimization problems, the Variable Neighbourhood Search (VNS) [21],

is chosen in the ERS-VNS (Efficient Resources Selection Model based on VNS). Finally, a Cellular

Automata (CA) [22] methodology is applied to achieve an intelligent selection by considering

geographical criteria (named Efficient Resources Selection Model based on CA (ERS-CA)). In

particular, this latter approach is based on the Conway’s Game of Life [23] but also includes ideas

from CA networks [24].

Regarding the evaluation phase, two scenarios have been defined. In both of them, the different

ERS versions are compared with the standard selection used in European grid infrastructures. This

way it is possible to determine if the objectives mentioned before are fulfilled (see Section 4). It

should be noticed that a real grid infrastructure [25], belonging to an European grid platform, is

used to perform the experiments in both scenarios.

The rest of the paper is structured as follows. Section 2 summarizes related work using self-

adaptive strategies. In Section 3 a description of the intelligent resources selection model is

presented; the three developed versions are also detailed. Section 4 contains all the model evaluation

information and the resulting data. Finally, Section 5 concludes the paper addressing future works.

2. RELATED WORK

Nowadays, distributed applications are getting harder to develop, to configure and to maintain. In

grid systems this fact is a consequence of the dynamic availability of resources, the infrastructure’s

heterogeneity, the characteristics of computing nodes, etc. A solution to these problems is to build

self-adaptive applications, which are able to explore the computational resources functionality and

choose an appropriate resource set in order to maintain a favourable performance.

There are several adaptive approaches focussed on solving the discovery, selection and monitoring

processes in grid computing. Some of these works investigate the possibility of providing a

self-adaptive capability to grid applications [5] [6]. The main idea is to collect information

about resources communication and processing times during applications execution. By using this

information, resources are replaced when they reduce the application performance significantly. The

study in [5] also tries to solve bottleneck fails.

AppLeS (Application Level Scheduling Methodology) [7] is a project that aims to provide

an adaptive capability to grid environments. It is considered a novel methodology for adaptive

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 4 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

ADAPTIVE RESOURCES SELECTION FOR GRID APPLICATIONS 3

application scheduling by allowing the deployment of adaptive distributed applications. Two main

objectives were defined: studying adaptive scheduling for grid computing and applying these results

to some applications for verifying their approach. The authors also present various AppLeS enabled

applications.

The work in [8] defines a software system which - based on resources characteristics - adapts

dynamically its tasks scheduling decisions to the parallelism of the application. Two rescheduling

policies, for migration and suspension, are also described in this research. In [9] a new Globus based

framework is proposed, allowing users to handle their jobs more efficiently. Other work which uses

the adaptivity concept in grid systems is presented in [10]; the contribution describes an approach

focused on avoiding the Information System (IS) overload. Moreover, two adaptive notification

algorithms are proposed: a sink-based algorithm and an utilization-based algorithm.

The research in [11] proposes two models for predicting the completion time of jobs in a Grid.

Both models are used to schedule jobs in two ways: application-level scheduling and system-level

scheduling. In [12] a survey of several adaptive grid systems is exposed. A comparison between the

described systems is also included.

The work in [13] is focused on designing efficient schedulers in grid environments. They

identify different types of scheduling and propose to use heuristic and metaheuristic techniques

for enhancing them. This new scheduling process would be more suitable than the traditional ones.

In [14] several computational models are described for reaching an efficient grid scheduling. These

models use heuristics and metaheuristics. Some of these models use estimation of the computational

load of each task, the computing capacity of each resource and an estimation of the prior load of

the resources. Other models are based on TPCC (Total Processor Cycle Consumption) and also they

take into account that resources could change their computing speed over time. There are more

realistic models in which the schedulers make decisions based on GIS (Grid Information System)

about tasks and resources. Finally, in other models the system performance and certain optimization

criteria are considered.

Several workflows scheduling algorithms are exposed in [15]. All of them have been developed

and deployed in grid environments. In this regard, the study in [16] proposes a taxonomy to

characterize several approaches aimed to create and to execute workflows in grid infrastructures.

The authors also analyse different workflows systems for a better understanding of the taxonomy.

Concerning these contributions, in [17] it is described a taxonomy to classify different software

components and high-level methods that are required for autonomic management of applications in

Grids. The work also presents a survey about several representative Grid computing systems. One

of the most well-known workflows management systems is Pegasus [18], which allows managing

abstract workflows that can be executed in different environments without altering the application

design.

All the studies mentioned above use scheduling or migration techniques, load balancing,

notification policies, etc. That is to say, all these works rely on dynamic resource information.

However, the ERS model presented in this contribution allows applications to adapt themselves

to the changing environmental conditions without modifying or controlling grid resources, without

applying migration operations, and without relying on dynamic resource information. This is one

of the main differences of our model with respect to the referred works (see Table I). Another

difference is that when the model guides applications during their execution, nothing but certain

generic application information is needed. This information typically covers the amount of tasks

that will be performed, the input and output data, the size of the resulting data, etc.

Finally, Figure 1 shows more information about our approach characteristics and design. This

taxonomy is based on the one exposed in [16].

In the following sections the ERS model along with the AI algorithms that have been performed

are described.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 5 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

4 M. BOTÓN-FERNÁNDEZ ET AL.

Table I. Main differences between the related work and the proposed ERS model. Please, observe that ERS
does not use dynamic information of the grid infrastructure.

Solution New Notification Policies Dynamic Resource Information

Wrzesinska et al. [5] - X

Groen et al. [6] - X

Berman et al. [7] - X

Vadhiyar et al. [8] - X

Huedo et al. [9] - X

Keung et al. [10] X X

Gao et al. [11] X X

Xhafa et al. [13] X X

Xhafa et al. [14] X X

Yu et al. [15] X X

Yu et al. [16] X X

Rahman et al. [17] X X

Pegasus WMS [18] X X

ERS - -

ERS MODEL

WORKFLOW

DESIGN

INFORMATION

RETRIEVAL

WORKFLOW

SCHEDULING

FAULT

TOLERANCE

DATA

MOVEMENT

STATIC

INFORMATION

TASK-LEVEL AUTOMATIC
* **

WORKFLOW

DESIGN

WORKFLOW

STRUCTURE

WORKFLOW

MODEL/SPECIFICATION

WORKFLOW

COMPOSITION SYSTEM

WORKFLOW QoS

CONSTRAINTS

QoS ASSIGNMENT

DAG NON-DAG ABSTRACT USER-DIRECTED TIME RELIABILITY TASK-LEVEL

WORKFLOW

SCHEDULING

SCHEDULING

ARCHITECTURE

PERFORMANCE

ESTIMATION

PLANNING

SCHEME

DECISION

MAKING

SCHEDULING

STRATEGY

CENTRALIZED HYBRID DYNAMIC PERFOMANCE

DRIVEN

TRUST

DRIVEN

*

**

GLOBAL

Figure 1. Taxonomy for characterizing and classifying our proposed ERS Model in the context of Grid
Computing (taxonomy based on [16]).

3. MODELLING AN INTELLIGENT RESOURCES SELECTION SOLUTION

Before exposing the model characteristics and its formulation, certain grid concepts and elements

are specified for a better understanding.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 6 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

ADAPTIVE RESOURCES SELECTION FOR GRID APPLICATIONS 5

3.1. Basic Grid Concepts

Grid computing systems are characterized by an heterogeneous nature and a hierarchical

infrastructure. As shown in Figure 2, grid users interact with the infrastructure through the User

Interface (UI), a machine where users have a personal account. Jobs are submitted through the UI.

Then, the metascheduler - denoted as Resource Broker (RB) - manages these tasks and decides the

best site to send them. The RB makes decisions about task-resource matching considering tasks

requirements. Finally, in every site, there is a scheduler called Computing Element (CE) which

selects a Worker Node (WN) for executing tasks.

Figure 2. Hierarchical representation of the grid computing elements that operate in the tasks execution
process.

The proposed model measures the efficiency of the CE schedulers. As stated, for monitoring their

efficiency values neither management operations nor scheduling techniques have been performed.

In the next section, the mathematical formulation aimed to gauge this efficiency, along with other

considerations, is presented.

3.2. Background and Assumptions

As we are intended to guide applications during their execution in grid environments by using the

most efficient resources, two spaces are handled by the ERS model:

• A task space J consisting of n independent and parallel tasks belonging to the current

application (they only differ from input parameter values). The model has been designed for

parametric sweep applications.

• A dynamic and heterogeneous resource space R, which has the m available grid resources.

During the application execution, the model is expected to acquire knowledge about the

infrastructure in a progressive way. For that reason, the n tasks are not launched at the beginning of

the execution but gradually, evaluating and learning at each step. Therefore, the space J is divided

into subsets with the same size denoted as Pα. The way to proceed will be by sending a Pα at

the beginning of the execution; when this Pα ends its execution the corresponding resources are

evaluated. Then, the model efficiently selects resources for a new Pα
† (see Figure 3). These steps

are repeated until all the Pα sets are processed.

The resources selected for a particular Pα compose a RPα set ⊂ R. Notice that several tasks

belonging to Pα could be assigned to the same CE ∈ RPα (a many-to-one relationship). For the

first Pα launched into execution the RPα is chosen in a uniform random way because there are no

†The different Pα sets are not overlapped in the application execution.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 7 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

6 M. BOTÓN-FERNÁNDEZ ET AL.

efficiency metrics available yet. The remaining RPα sets are chosen by applying the corresponding

AI algorithm. The set of processes from sending Pα into execution to the efficient selection of a new

RPα is referred as model iteration (c = 0, c = 1, etc. are different model iterations).

c=0 c=1

c=2
c=3

J R

R
R

RJ

J J

Pα

RPα

Pα

RPα

Pα

RPα

Pα

RPα

Figure 3. Representation of the mapping between the two spaces handled by the ERS model. The processed
tasks are coloured and old RPα sets are batchwise underlined.

The model execution flow (Figure 4) starts when the infrastructure resources are discovered

(space R) and the application tasks are determined (space J). Then, tasks are grouped into the

corresponding Pα sets; each Pα is built in a random way. Next, the first RPα is randomly chosen.

After that, the Pα is launched into execution and monitored by the ERS strategy. It should be noted

that each RPα has associated a lifetime lt to complete the tasks belonging to the current Pα. This

concept of lifetime was introduced to ensure that if a resource collapses, the rest do not wait for it

indefinitely. Therefore, once the Pα execution ends‡, the efficiency values for RPα resources are

measured.

Figure 4. Execution cycle for the proposed ERS model. It is possible to observe the loop that provide a
self-adaptive capability to environmental changes.

By evaluating the resources efficiency in every model iteration an adjustment to the resource set

used is allowed as well as a self-adaptive ability to grid application is provided. As mentioned

before, these iterations imply a model learning, so that, it is expected a better resources

specialization when such learning is increased (more model iterations imply a better learning).

‡The model considers that a Pα ends its execution when either of the following two options occurs: all its tasks are
completed or the lifetime runs out.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 8 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

ADAPTIVE RESOURCES SELECTION FOR GRID APPLICATIONS 7

For measuring the efficiency of grid resources a mathematical formulation is fixed. The fitness

value for the ith CE depends on two parameters (Eq. 1): on the one hand, the percentage of

successfully completed tasks ǫi and, on the other hand, the normalized increment ∆Ti of its

processing time (Eq. 2).

Fi = (a · ǫi + b ·∆Ti)/(a+ b) . (1)

Both parameters are obtained for every CE selected during the application execution. The values

of parameters a and b are introduced by users and indicate the relevance of ǫi and ∆Ti, respectively.

Thus, users can specify the priority conditions of their experiments. The parameter ∆Ti is calculated

considering the maximum and minimum processing time values (denoted as Tmax and Tmin

respectively) within the corresponding RPα. It could be considered as a time ranking within every

RPα subset.

∆Ti = (Tmax − Ti)/(Tmax − Tmin) . (2)

Finally, the processing time Ti is defined in Eq. 3. NTi is the set of assigned tasks to resource ith,

Tcommi is the communication time between resource i and other grid services and Tcompj,i is the

processing time acquired by resource i when executing task j.

Ti = Tcommi +
∑

j∈NTi

Tcompj,i . (3)

As stated, the mathematical formulation is combined with an AI algorithm, resulting in a ERS

model. Figure 5 represents the different steps performed by this combination. Steps 1− 4 form the

initialization phase, in which the spaces are determined and the first Pα is launched into execution.

The model performs step 5 for every Pα, so that, each time this step is repeated a new model

iteration is considered. Furthermore, step 5.3 includes the particular AI rules which are described

in the following subsections (these rules are applied to all resources ∈ RPα). Specifically, we have

developed three ERS versions: the first one is based on Preferential Attachment (ERS-PA) [26], the

second one is based on the Variable Neighbourhood Search (ERS-VNS) and the third one is based

on Cellular Automata (ERS-CA).

Input: application tasks, infrastructure resources

Output: Efficient resources

ERS PSEUDOCODE

1. Set J and R spaces;

2. Divide J in P sets;

3. Compose the first RP randomly;

4. Launch the first P into execution;

5. While there are unprocessed P do

 5.1 Monitor P ;

 5.2 When P finishes: update efficiency metrics for RP

 resources;

 5.3 Apply AI algorithm for efficient selection of new RP ;

 5.4 If there are unprocessed P then

 Launch a new one;

6. End while

Figure 5. The main steps of the resulting ERS model are summarized. Step 5.3 varies according to the
algorithm applied.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 9 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

8 M. BOTÓN-FERNÁNDEZ ET AL.

3.3. The PA Algorithm for the Efficient Resources Selection

The preferential attachment technique [19] is a characteristic algorithm from the complex systems

field in which nodes are continuously added to the network. The probability of linking a new node

j with an existing one i in the complex network is proportional to the node’s degree ki. Therefore,

those nodes with higher degree (hubs) have more probability of getting a new link. For example, in

a social domain the most popular people would be more likely to make new friends. The following

assumptions are fixed in ERS-PA:

• Elements belonging to space R are considered as nodes of a complex network (see Figure 6),

which is generated at runtime.

• Hubs in this network represent the most efficient resources, i.e. those resources which are

most often used to perform tasks from different Pα sets.

• Thus, the degree of a node (resource) indicates the number of times this CE has been selected

during execution (establishing a resource-task connection).

• Network edges represent the constraint ”executing tasks from the same Pα”, which is

equivalent to ”resources belonging to the same RPα”.

• Every RPα composes a complete subgraph within the complex network.

Figure 6. The ERS-PA version builds a complex network using the selected infrastructure resources at
runtime. Hubs represent the most efficient resources

There is a PA extension, denoted as Heterogeneous Preferential Attachment (HPA) [27], in which

additional characteristics are considered during the calculation of the link probability. In ERS-PA,

the link probability is based on both node degree and resource fitness (Eq. 1). Moreover, both

parameters determine the resource efficiency as shown in Eq. 4.

Ei = (ki · Fi)/kmax . (4)

Parameter kmax is the maximum degree value within the evaluated RPα; ki and Fi are the degree

and fitness values of the ith resource. These two parameters are calculated for all RPα resources.

Finally, the scheme with the main selection rules of ERS-PA is presented in Figure 7 (extending

point 5.3 of Figure 5). The efficiency values gathered at that moment are used to determine the link

probability. Whenever a RPα is fixed, the complex network is updated.

3.4. The Efficient Resources Selection from the VNS Perspective

The Variable Neighbourhood Search VNS [21] is a metaheuristic used in global optimization

problems. It is based on changing the environment structure when the local search stagnates (see

Figure 8). The main idea is to maximize a particular function max{f(x)|x ∈ X} where x is a

feasible solution, f is the objective function and X is the space of feasible solutions for the problem.

Furthermore, an structure of environments within the solution space X is considered an

application N : X → 2X , that associates to each solution x ∈ X an environment of solutions

N(x) ⊂ X . Denoting the finite set of environment structures as Nh(h = 1, ..., hmax) and the set

of solutions for the hth environment as Nh(x), the rules of VNS are as follows:

• Initialization: select the set of environment structures Nh; specify an initial solution x and

choose a stopping condition.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 10 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

ADAPTIVE RESOURCES SELECTION FOR GRID APPLICATIONS 9

ERS-PA SELECTION PSEUDOCODE

 5.3 Efficient resources selection for a new RP

 using PA;

 5.3.1 Obtain the maximum efficiency value

 labelled as Emax;

 5.3.2 Within the range (0, Emax) an efficiency

 value Er is randomly chosen;

 5.3.3 A resource is randomly selected from

 R and its efficiency En is compared with Er;

 5.3.4 If En >= Er then the resource is added to

 the new RP set;

 otherwise is neglected;

Figure 7. The ERS-PA pseudocode including the main selection actions. It is possible to observe how the
link probability is calculated.

• Repeat until the stop condition:

– set h = 1
– Repeat until h = hmax:

∗ Shaking: generate a random solution x′ from the hth environment of x.

∗ Local search: apply some local search technique using x′ as initial solution. Denote

as x′′ the local optimum which has been obtained.

∗ Move or not: if this local optimum is better than x, move there (x = x′′ and h = 1);

otherwise set h = h+ 1.

Figure 8. The VNS algorithm avoids stagnations in the search of solutions by changing the environment
during the process.

In the ERS-VNS model, it is assumed that every RPα is a solution within the search space. So that,

we are looking for the optimum RPα set. For that reason, the fitness of the whole RPα is measured

as shown in Eq. 5. It is based on Fi average value. Parameter d is the cardinality of RPα.

F (RPα) = (

d∑

i=1

Fi)/d . (5)

The following considerations were defined for this particular ERS version:

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 11 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

10 M. BOTÓN-FERNÁNDEZ ET AL.

• x is the first RPα set launched into execution. It is also known as initial solution.

• x′: is the RPα set which is obtained by applying a mutation process to x.

• x′′: is the new RPα set acquired after performing the local search process to x′. Moreover, it

could be the set for the following Pα.

Regarding the finite set of environment structures Nh(h = 1...hmax), the value of kmax is fixed

at 5. For determining this value the next factors were taken into account: a significant change of

environment which implies finding the optimum solution faster, the available resources in the real

infrastructure and the size of the experiments. Furthermore, every neighbourhood has associated

two parameters (see Figure 9) :

1. pk specifies the percentage of variation of a solution x′ with respect to the initial solution x
when the mutation process is performed.

2. qk specifies the search range during the candidates selection (the number of possible

candidates to be part of the solution x′′). It is used within the local search process for obtaining

the solution x′′.

Notice that pk varies in a non-decreasing way from an environment to another because it

represents how different is the initial solution x with respect to the solutions of the corresponding

environment. On the other hand, qk is used to specify the size s of the candidate set in every

environment. This size is defined as the qk percentage of g (number of available resources). The

way to do that is by ordering the g resources from higher to lower efficiency values. Then the qk
percentage is applied and the candidate set is composed. Finally, the model selects which resources

will run new Pα tasks from the best s resources. In order to improve the VNS advanced behaviour,

it has been established a threshold of goodness U for the resources fitness (the threshold value is

obtained through experimental tests). This goodness threshold is used during the mutation process

to determine what resources should mutate. So that, those resources whose fitness value does not

exceed this threshold are considered as inefficient.

ERS-VNS SELECTION PSEUDOCODE

 5.3 Efficient selection of RP using VNS;

 5.3.1 Set k=1;

 5.3.2 While k <= kmax do:

 5.3.2.1 Shaking: generate a point x' randomly

 from the kth neighbourhood of x.;

 5.3.2.2 LocalSearch: apply some local search

 method using x' as initial solution. Denote

 with x'' the obtained local minimum.;

 5.3.2.3 Move or not: if x'' is better than x then:

 * x=x'' and k=1

 * Otherwise k=k+1;

Figure 9. Representation of the algorithmic for the selection process within the ERS-VNS version. Solution
x
′′ is equivalent to the new RPα.

3.5. The Efficient Resources Selection based on the Cellular Automata Methodology

Cellular automatas (CA) [22] are computational models composed of a discrete grid of cells; each

cell has a value belonging to a specific set of states. According to some fixed rules, the new state of

each cell is determined (considering the current state of the cell and the states of its neighbours).

From the results that have been obtained in both PA and VNS versions, we consider an important

improvement to include geographical criteria in the efficient selection process. That is to say,

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 12 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

ADAPTIVE RESOURCES SELECTION FOR GRID APPLICATIONS 11

if a resource belonging to a particular site is down or overloaded, other resources at that site

or in a close one may be in a similar situation. In that case, a promising option would be to

evaluate resources belonging to different sites. That is the reason why the CA methodology is

combined with the mathematical formulation, resulting in the ERS-CA version. We represent the

grid infrastructure as a cellular automata network [24] [28], where CEs are the corresponding cells

and the topological aspects are also introduced. The proposed CA is divided into 8 subnetworks

according to geographical proximity criteria, as shown in Figure 10. The number of subnetworks

depends on the number of resources available in the testbed infrastructure. This information is

specified through a configuration file which can be manipulated by users.

Figure 10. Geographical distribution of resources in IBERGRID project and sub-networks clustering for the
ERS-CA case.

As stated, every cell in the ERS-CA represents a resource whose neighbours in the CA correspond

to physical neighbours in the infrastructure. The rules that govern this version (Figure 11) are

described below.

Every cell has three possible states: alive, dead or inactive. An alive cell is a selected resource

which is considered as efficient. On the contrary, any resource that is not considered efficient is

established as dead. Finally, the resources that are inoperative or unavailable have the inactive

state. The 8 subnetworks are composed at least by three resources (considering the real quantity

of resource in every site of the testbed infrastructure). During the selection process just two

cells survive from each subnetwork: the two less loaded resources (avoiding overload). This way,

resources of a given subnetwork compete for survival. The model evaluates the resources workload

to make this decision. The rules for governing every subnetwork are as follows:

• Every alive cell which is overloaded dies.

• Only the two resources with minimum load are considered living cells.

• Any cell with all its neighbours dead survives.

The surviving resources from all subnetworks constitute a candidate set. The next rules are applied

over this candidate set to obtain the new RPα (i.e. the alive cells would be the resources that finally

compose a RPα).

• Selective pressure: only the most efficient 50% promotes to be part of the new RPα.

• Scout resource: a resource is selected in a random way to form the new RPα. This rule is

applied only if there are unexplored resources (that have not been used until now).

4. EXPERIMENTS AND RESULTS

4.1. Test-bed Infrastructure

To evaluate the performance of the ERS model, we executed a set of experiments in the Spanish

National Grid Initiative (ES-NGI) [25], a production distributed computing environment that is part

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 13 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

12 M. BOTÓN-FERNÁNDEZ ET AL.

ERS-CA SELECTION PSEUDOCODE

5.3 Efficient selection of RP using CA;

 5.3.1 Evaluate RP resources workload;

 5.3.2 Candidate set: the two resources less

 loaded promote in every subnetwork;

 5.3.3 Get alive cells

 5.3.3.1 Selective pressure: only the

 most efficient resources from the

 candidate set will be alive cells;

 5.3.3.2 Scout: an unusued resource will be

 chosen randomly to be an alive cell;

 5.3.4 Update cells status in the CA;

 5.3.5 Compose a new RP with the alive cells;

Figure 11. Illustration of rules for the ERS-CA version. These steps determine the behaviour of the
infrastructure as a CA

of the European Grid Initiative (EGI) [29]. The authors are affiliated with the Ibergrid VO [30], a

virtual organization (VO) of ES-NGI that contains about 30 CEs located between Spain and Portugal.

The results of the ERS experiments are evaluated with respect to both a reduction of the execution

time and an improvement of the number of successfully completed tasks for grid applications.

Related to the testing application, a fourth-order approximation of the Runge-Kutta method [31]

has been considered; this is a well-known procedure used to solve systems of ordinary differential

equations. As we focus on analysing the ERS model behaviour, the application plays the role of a

testing component in the evaluation process. Hence, no further considerations about the scientific

production are taken into account in the defined scenarios.

Finally, it should be highlighted that we have compared the implemented versions with the

standard selection technique used by the infrastructure concerned. In particular, our proposal is

compared with gLite [32], which is the middleware used in the European grid infrastructures (see

projects EGEE [33] and EGI [29]). In conclusion, it is compared with the scheduling techniques

and policies of the current European grid infrastructures. This selection, that we denoted as TRS

(Traditional Resource Selection), is performed by the WMS (Workload Management System) in a

process called match-making, which selects those available CEs that fulfil the user requirements

and that are close to input Grid files. Moreover, the resulting data that compose this baseline are the

average of several experiments data.

4.2. Scenario 1: Evaluating the Model Learning

As stated, every time step 5 is performed (Figure 5), a new model iteration is considered. Moreover,

during this step the model learning occurs. The number of times this process is repeated depends

on how many Pα are established, namely, it depends on Pα size (all Pα have the same size). Then,

we assume that the size of Pα affects the model learning, delaying or advancing it. For that reason,

several tests are performed using different values for Pα size. Particularly, the scenario is composed

of 5 tests where 10 real experiments are performed for every version (ERS versions and TRS). So

that, every graphical point is the average value of these 10 experiments. The size of the space J is

fixed at 200 tasks for all tests. As shown in Table II, the iterations are gradually increased affecting

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 14 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

ADAPTIVE RESOURCES SELECTION FOR GRID APPLICATIONS 13

directly the Pα size. The values for parameters a and b are 60% and 40% respectively. This way,

we give a slightly higher importance to the number of successfully completed tasks with respect

to execution time (it is considered more important to finish as many tasks as possible during the

application execution).

Table II. Values of Pα for each test of this scenario along with the number of iterations to be performed.

Test Space J Pα size Iterations

1 200 40 5

2 200 20 10

3 200 13 15

4 200 10 20

5 200 5 40

Observing the results that have been obtained (Figure 12) we can conclude that the intelligent

resources selection model improves the execution times with respect to the TRS. This improvement

is appreciated in the 3 evaluated versions. We discuss below the performance of each implemented

version taking as reference the behaviour of TRS. The time difference between ERS-CA and TRS is

improved from the first point until the last one. It can be observed that for the last points (13− 40)

the ERS-CA achieves its maximum execution time difference with respect to TRS. In these tests

the size of Pα is larger, which implies that in every model iteration a larger amount of resources

is evaluated. This is due to both the survival and selective pressure rules along with the effect of

the Pα size. When a Pα is processed, there are fewer resources to evaluate (small Pα size). Hence,

the automata has fewer resources able to survive from one model iteration to another (slow training

model).

Figure 12. Execution time functions which have been obtained from the tests performed in scenario 1 when
evaluating the ERS model. Every point is the average value of the simulations performed.

Concerning ERS-VNS, as shown in Figure 12, the size of Pα does not affect negatively its

performance; the execution time difference with respect to TRS is almost constant for all tests. In

this case, for lower sizes of Pα ERS-VNS gets the minimum execution time values (there are more

model iterations). This is due to the fact that every model iteration implies a change of environment,

i.e., an approach to the optimal solution (the most efficient resources).

The ERS-PA version gets its minimum value at the third test (size of 13), but in the last two tests

that difference is reduced. As stated in Section III.C, in this version the efficiency is based on the

resources fitness and degree. When an efficient resource gets overloaded, its fitness function gets

worse but its degree remains constant and even grows (it represents the number of times a resource

is used by the model), so that, its resulting efficiency value decreases slightly. This fact causes that

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 15 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

14 M. BOTÓN-FERNÁNDEZ ET AL.

the model undergoes into several iterations to detect that the resource is overloaded. This leads to a

decrease in the ERS-PA performance as it can be appreciated in Figure 12.

In Table III§ some descriptive statistics concerning the total execution time for the three proposed

versions of the model (ERS-PA, ERS-VNS, and ERS-CA) are included. It must also be highlighted

that the coefficient of variation never exceeds 50% of the mean. Please, notice that the values for the

standard deviation are motivated by the dynamic and changing nature of grid infrastructures.

Table III. Statistical values of ERS-PA, ERS-VNS and ERS-CA in the corresponding tests.

TRS Size 5 Size 10 Size 13 Size 20 Size 40

Mean 13 14 16 18 17

Standard Deviation 4.2 2.97 5.84 2.22 0.23

Coefficient Variation 32% 21% 37% 12% 1%

ERS-PA Size 5 Size 10 Size 13 Size 20 Size 40

Mean 8 7 7 9 9

Standard Deviation 0.8 1.05 0.92 0.7 0.8

Coefficient Variation 10% 15% 13% 8% 9%

ERS-VNS Size 5 Size 10 Size 13 Size 20 Size 40

Mean 7 9 11 12 11

Standard Deviation 0.52 0.58 0.75 0.58 0.81

Coefficient Variation 7% 6% 7% 5% 7%

ERS-CA Size 5 Size 10 Size 13 Size 20 Size 40

Mean 10 10 8 6 8

Standard Deviation 0.48 0.82 0.8 0.82 0.8

Coefficient Variation 5% 8% 10% 13% 10%

Finally, according to the second goal, an increase in the number of successfully completed tasks

is achieved: from a 73% of success rate for TRS to a 95.6%, 92.7% and 87, 2% in ERS-VNS, ERS-PA

and ERS-CA respectively.

4.3. Scenario 2: Evaluating the Effects of J Space Size

In this second scenario we evaluate the model behaviour for large productions. This way we

determine the range of applications in which the ERS strategy can be applied. As shown in Table IV,

in this case 6 tests were performed, in which the size of the J space varies from 50 to 500 tasks.

As far as Pα size is concerned, from the first scenario it is concluded that reaching a good training

model and evaluating a suitable amount of resources in every model iteration are equally important.

Thus, Pα has been set at 10, resulting in the next range of model iterations: 5, 10, 20, 30, 40 and 50.

As in the preceding scenario, the values assigned to the relevant parameters a and b are 60% and

40% respectively. Finally, it should be noted that a better reduction of execution times for all the

productions is expected.

From the results we have obtained (Figure 13) it is possible to conclude that the intelligent model

improves the execution times in its three versions with regard to the Traditional Selection (TRS) of

grid infrastructures. For the first three sizes of space J (50− 200), the results in the ERS versions

are very closed and also do not show a large difference with respect to TRS. However, from the

space of 300 tasks this difference starts growing significantly.

Similarly to the first scenario, from a size of 300 tasks the ERS-PA increases the execution time.

That means that the efficient resources overload and the model has to adjust their efficiency values

§In the tables the average is expressed in hours and the other statistics have been calculated based on this measure.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 16 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

ADAPTIVE RESOURCES SELECTION FOR GRID APPLICATIONS 15

Table IV. Set of values for each test performing in scenario 2. In all tests experiments of the developed
versions along with TRS are executed.

Test Space J size Pα size Iterations

1 50 10 5

2 100 10 10

3 200 10 20

4 300 10 30

5 400 10 40

6 500 10 50

Efficient Resources Selection VS Traditional

Selection

0

10

20

30

40

50

60

50 100 200 300 400 500

Space J Size

E
x

e
c

u
ti

o
n

 T
im

e
 (

h
)

TRS

ERS-PA

ERS-CA

ERS-VNS

Figure 13. Execution time values obtained during the tests of this second scenario. The efficient versions
attain better time reductions against TRS.

(this adjustment takes time resulting in a performance detriment). On the other hand, both ERS-VNS

and ERS-CA have a similar behaviour for all tests, progressively improving their execution times

(increasing the difference with respect to TRS).

Also the corresponding statistical values for the model versions within this second scenario have

been included (see Table V).

Finally, it can be concluded that the ERS model achieves the proposed goals established during

the definition phase; the assumptions related to its behaviour have also been demonstrated. Hence,

making use of the intelligent model would result in significant improvements for grid users.

4.4. Scenario 3: Considering DAG (Directed Acyclic Graph) applications

Applications deployed in grid environments can be grouped in two main sub-taxonomies of

workflows structures as described in [16]: DAG-based workflows and Non-DAG-based workflows.

These two types of workflows structure are also categorized into several kinds of patterns. In DAG-

based workflows the sequence, parallelism and choice patterns are included. An ordered series of

tasks, in which a particular task starts its execution after a previous one has completed, is defined as

sequence. When tasks are executed concurrently their interactions are represented as a parallelism

pattern. Finally, choice it is used when a task is chosen to be executed if its associated conditions

have been accomplished. In Non-DAG-based workflows are considered the previous patterns along

with the iteration structure (it represents tasks which are allowed being repeated in an iteration

block).

The previous scenarios have been carried out by applying a parametric sweep application (Non-

DAG-based workflow with a parallelism pattern) characterized by independent and parallel tasks

(they only vary in the value of input parameters). However, in this scenario an application with a

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 17 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

16 M. BOTÓN-FERNÁNDEZ ET AL.

Table V. Statistical values of the ERS versions within the second scenario.

TRS Size 50 Size 100 Size 200 Size 300 Size 400 Size 500

Mean 6 10 17 28 39 50

Standard Deviation 0.99 2 2.98 4.53 11.03 11.65

Coefficient Variation 17% 20% 18% 16% 18% 23%

ERS-PA Size 50 Size 100 Size 200 Size 300 Size 400 Size 500

Mean 4 6 10 12 23 34

Standard Deviation 0.7 1.08 0.75 0.83 0.72 0.8

Coefficient Variation 17% 18% 8% 7% 3% 2%

ERS-VNS Size 50 Size 100 Size 200 Size 300 Size 400 Size 500

Mean 4 7 12 17 18 20

Standard Deviation 0.63 0.73 0.48 0.32 0.8 0.8

Coefficient Variation 16% 10% 4% 2% 5% 5%

ERS-CA Size 50 Size 100 Size 200 Size 300 Size 400 Size 500

Mean 4 7 12 17 18 20

Standard Deviation 0.57 0.78 0.65 0.47 0.82 0.8

Coefficient Variation 19% 16% 8% 3% 5% 4%

DAG-based workflow is considered (also with a parallelism pattern). The workflow (see Figure 14)

is comprised of three well-known algorithms: Gaussian, LU (Lower/Upper) Decomposition, and

FFT (Fast Fourier Transform). Then, the different tasks that composed our particular DAG workflow

are connected by directed arcs and are represented as nodes. There are also other two nodes that do

not represent a computational task: Launch and Report.

Launch

Gaussian Gaussian Gaussian

LU LU LU

FFT FFT FFT

Gaussian Gaussian Gaussian

LU LU LU

FFT FFT FFT

Report

Figure 14. DAG-based workflow applied during the third scenario.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 18 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

ADAPTIVE RESOURCES SELECTION FOR GRID APPLICATIONS 17

The Launch node sends control directives to nodes with which it is connected (dashed gray arcs)

for starting their execution. The remaining nodes receive their input data from other nodes through

their input arc(s) according to the established dependencies. Finally, the Report node is connected

with the last nodes; these nodes are responsible of sending their computed solutions along to their

output arc(s). The dependencies between tasks are established in the following manner: Gaussian-

LU-FFT. Thus, it is possible to observe that FFT nodes have two feasible behaviour: 1) while there

are non-executed tasks these nodes initialize the next Gaussian nodes. 2) When all tasks have been

performed the FFT nodes transfer their solutions to the Report node.

In this third scenario the ERS model has a similar behaviour as when performing Non-DAG-based

workflows. In this regard, at the beginning of the application execution several Gaussian tasks are

launched (the number of tasks is the same as Pα cardinality). In contrast to Non-DAG execution

flow, when a task tj ∈ J ends its execution the efficiency of the corresponding resource is measured.

Then, a new efficient resource is selected for executing a new task. The next rules are considered

for determining the type of task to be executed:

• A Gaussian task transmits its solution to a LU task.

• Every LU task transfers its computed solution to a FFT task.

• As stated, a FFT task initializes a Gaussian task or reports its solution to the Report node as

necessary.

Notice that in DAG-based workflows the lifetime is assigned to every task due to the fact that the

model evaluates resources in an independent way (without considering a RPα set). Now, these new

versions of the model are tested and compared to the standard selection (TRS) which also executes

a DAG-based workflow. Table VI shows the characteristics of this scenario.

Table VI. Set of values for each test performing in scenario 3. These values are similar to the scenario 2
configuration.

Test Space J size Initial tasks sent

1 50 10

2 100 10

3 200 10

4 300 10

5 400 10

6 500 10

Figure 15 represents the results of the ERS model considering DAG-based workflows and

applying the three algorithms (the different versions are denoted as ERS-PA-DAG, ERS-VNS-DAG

and ERS-CA-DAG, respectively). The three versions reach better execution times with respect the

standard selection in European grid infrastructures (TRS-DAG). The ERS-PA-DAG achieves a higher

execution time difference with respect to TRS-DAG from the beginning of tests. However, in last test

(size of 500) it is possible to observe that its execution time increases, which is probably motivated

by a hubs overload (as specified in Scenario 1, this model version requires several iterations before

detecting that a resource is overloaded). ERS-VNS-DAG and ERS-CA-DAG attain close values for

a size of 50 tasks but then, ERS-CA-DAG improves its execution time difference with respect to

TRS-DAG (from 100 to 500 tasks) and also in regard to ERS-VNS for the sizes of 100 and 200 tasks.

Meanwhile, ERS-VNS-DAG maintains an execution time difference of 20 minutes in the first three

tests (sizes of 50, 100, and 200) with respect to TRS-DAG. After that, it extends its execution time

difference with respect to TRS-DAG due to the fact that for higher task sizes the model reaches a

better specialization (i.e. values close to the global optimum are accomplished).

Also the corresponding statistical values for the DAG versions have been included (see Table VII).

As well as in previous sections, the coefficient of variation never surpasses 50% of the mean. In

ERS-VNS-DAG as the size of J is increased, the coefficient of variation value is reduced.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 19 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

18 M. BOTÓN-FERNÁNDEZ ET AL.

Figure 15. Results obtained for the different ERS versions when executing DAG-based workflows.

Table VII. Statistical values of the ERS-DAG-based versions within the third scenario.

TRS-DAG Size 50 Size 100 Size 200 Size 300 Size 400 Size 500

Mean 155 176 278 400 528 827

Standard Deviation 53.21 55.13 52.3 56.31 76.13 80.64

Coefficient Variation 34% 31% 19% 14% 18% 10%

ERS-PA-DAG Size 50 Size 100 Size 200 Size 300 Size 400 Size 500

Mean 49 91 151 178 242 416

Standard Deviation 8.38 23.31 35.33 11.78 56.02 46.20

Coefficient Variation 17% 26% 23% 7% 23% 11%

ERS-VNS-DAG Size 50 Size 100 Size 200 Size 300 Size 400 Size 500

Mean 131 160 249 232 287 333

Standard Deviation 52.88 45.16 54.87 28.89 12.56 38

Coefficient Variation 40% 28% 22% 12% 4% 11%

ERS-CA-DAG Size 50 Size 100 Size 200 Size 300 Size 400 Size 500

Mean 132 81 139 245 337 384

Standard Deviation 61.13 7.66 23.86 26.11 60 34.89

Coefficient Variation 46% 9% 17% 11% 18% 9%

4.5. Analysing Compute Time and Scalability

Scalability is a desirable ability of systems, networks and/or applications. Concerning algorithms

or programs, this ability shows if they are suitably efficient and practical when they are applied to

large situations (by varying some parameters). In this Section we analyse how the proposed versions

of ERS scale for real-world workloads, by changing the problem size. For that reason, the compute

time of our model has been measured considering the sizes of J in the second scenario and some

other values (see Table VIII). Thus, it is possible to determine how the model will perform massive

computing applications and also to stablish how it penalizes the application execution time in a grid

infrastructure. Notice that the value of Pα is fixed at 10, in the same manner as in scenarios 2 and 3.

Figure 16 shows how the three versions scale for the different cases taken into account. Although

the three algorithms scale in a similar way in the first tests (from 50 to 500 tasks), ERS-VNS has a

worse scaling behaviour in the last ones with respect to ERS-PA and ERS-CA.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 20 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

ADAPTIVE RESOURCES SELECTION FOR GRID APPLICATIONS 19

Table VIII. Compute time obtained for the different ERS algorithms considering several sizes of space J .
The resulting time is expressed in minutes.

Size of J Compute Time ERS-PA Compute Time ERS-VNS Compute Time ERS-CA

50 0.08 0.07 0.12

100 0.13 0.15 0.2

200 0.33 0.38 0.35

300 0.4 0.75 0.53

400 0.43 1.23 0.67

500 0.65 1.9 0.82

1000 1.33 7.22 1.58

1500 1.85 17.78 3.15

2000 2.47 32 3.52

Figure 16. The resulting compute time for the three proposed ERS versions. ERS-VNS scale in a worse way.

It must also be highlighted that none of them consumed more than 0.5% of the application

execution time (taking as reference the data results of the second experiment for the three

algorithms). Finally, the best way to decide which algorithm to use would be by considering not

only these data but also the results discussed in Sections 4.2, 4.3 and 4.4.

4.6. Analysis of Parameters a and b

Finally, the effect of relevance parameters a and b has been analysed. Furthermore, several pairs

of values are fixed for studying how the model behaves in these cases. It is expected a better

understanding of the proposed model and also a justification for the pair of value (60, 40) used

in the previous scenarios. Table IX includes the different instances which have been considered

(they are the most significant pairs of values).

Table IX. Set of values used for parameters a and b.

Test Parameter a value Parameter b value Size of J

1 20 80 200

2 40 60 200

3 60 40 200

4 80 20 200

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 21 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

20 M. BOTÓN-FERNÁNDEZ ET AL.

From the results shown in Figure 17 it is possible to observe that when the execution time is

prioritized (pairs (20, 80) and (40, 60)) the ERS-VNS and ERS-CA reach their minimum execution

time values. In the same way, when the successfully finished task rate gets the higher priority the

execution time is penalized. The ERS-PA has a similar trend that the other ones with the exception

of pair (60, 40), in which it achieves its minimum execution time value. Considering the execution

time, the best pair of value to use is (60, 40) but we also analyse the successfully finished task rate

to determine which one is the best option.

Figure 17. Analysis of parameters a and b in the different ERS versions.

Figure 18 includes the successfully finished task rates that the three ERS versions have obtained

during the analysis of relevance parameters. All the proposed approaches reach the best successfully

finished task rate at the point of (60, 40). Finally, we conclude that by using this pair the algorithms

acquire a suitable balance between execution time and finished tasks.

Figure 18. The resulting successfully finished task rate during the analysis of relevance parameters.

5. CONCLUSION

In the present research we focused on solving the resources selection problem, looking for an

adaptation deployment of applications in grid environments. This way, applications would be able

to deal with the environmental changes. For this purpose, we propose an intelligent selection

model which provides a self-adaptive capability to grid applications, increasing system throughput.

Furthermore, the model (denoted as Efficient Resources Selection - ERS - model) does not need

depth knowledge of the application neither the environment; it is defined from the user point of

view. In this regard, this study aims to guide the daily work of researchers to optimize the execution

of their experiments in grid infrastructures.

Several ERS versions were implemented based on different AI algorithms. Two scenarios have

been developed to evaluate the benefits of using the proposed model. Both scenarios are composed

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 22 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

ADAPTIVE RESOURCES SELECTION FOR GRID APPLICATIONS 21

by a test set in which different model parameters are varied. In every test, the proposed model is

compared with the Traditional Resources Selection (TRS) in grid environments. From the obtained

results it can be concluded that both a reduction of execution time and an improvement of the

successfully completed task rate are achieved using our efficient strategy. This is a feasible and

beneficial solution versus the TRS. Finally, from the first algorithm (ERS-PA) until the last one

(ERS-CA) the model has evolved favourably and it has reached very satisfactory results.

Future work will avoid the use of Pα concept and will manage tasks directly, considering other

grid services. Also new methodologies for improving the functionalities of the ERS modules will be

considered.

ACKNOWLEDGMENT

Marı́a Botón-Fernández is supported by the PhD research grant of the Spanish Ministry of Economy

and Competitiveness at the Research Centre for Energy, Environment and Technology (CIEMAT).

The authors would also like to acknowledge the support of the European Funds for Regional

Development.

REFERENCES

1. D.B. Fogel Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 2nd edition, IEEE Press,
Piscataway, NJ, 2000.

2. I. Foster, C. Kesselman, The Grid: Blueprint for a new Computing Infrastructure, in: Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1999.

3. I. Foster, C. Kesselman, S. Tuecke The anatomy of the GRID. Enabling Scalable Virtual Organizations, in: R.
Sakellariou, J.A. Keane, J.R. Gurd, L. Freeman (eds), Euro-Par 2001, LNCS, vol. 2150, pp. 1-4. Springer-Verlag
Berlin, Heidelberg, 2001.

4. I. Foster, What is the Grid? A three Point Checklist, in: GRIDtoday, Vol. 1, No. 6, pp. 22-25, 2002.
5. G. Wrzesinska, J. Maasen and H.E. Bal, Self-adaptive applications on the grid, in: 12th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, San Jose, California, USA, pp. 121-129, 2007.
6. D. Groen, S. Harftst and S.P. Zwart, On the Origin of Grid Species: The Living Application, in: Proceedings of

the 9th International Conference on Computational Science: Part I, LNCS, VOL. 5544, Springer-Verlag Berlin,
Heidelberg. pp. 205-212, 2009.

7. F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J. Hayes, G. Obertelli, J. Schopf,
G. Shao, S. Smallen, N. Spring, A. Su and D. Zagorodnov, Adaptive Computing on the Grid Using AppLeS, in:
IEEE Transactions on Parallel and Distributed Systems, Volume 14, Issue 4, pp. 369-382, April 2003.

8. S.S. Vadhiyar and J.J. Dongarra, Self adaptivity in Grid computing, in: Concurrency and Computation: Practice and
Experience, vol. 17, issue 2-4, John Wiley and Sons Ltd. Chichester, UK, pp. 235-257, 2005.

9. E. Huedo, R.S. Montero and I.M Llorente, A framework for adaptive execution in grids, in: Software-Practice &
Experience, vol. 34, issue 7, John Wiley and Sons, Inc. New York, NY, USA, pp. 631-651, 2004.

10. H.N.L.C. Keung, J.R.D. Dyson, S.A. Jarvis and G.R. Nudd, Self-adaptive and Self-Optimising Resource Monitoring
for Dynamic Grid Environments, in: DEXA’04 Proceedings of the Database and Expert Systems Applications, 15th
International Workshop, IEEE Computer Society, Zaragoza, Spain, pp. 689-693, 2004.

11. Y. Gao, H. rong and J.Z. Huang, Adaptive Grid Job Scheduling with Genetic Algorithms, in: Future Generation
Computer Systems, Vol. 21, Issue 1, Elsevier Science Publishers B. V. Amsterdam, The Netherlands, pp. 151-161,
2005.

12. D.M. Batista and L.S. da Fonseca, a survey of self-adaptive grids, in: IEEE Communications Magazine, vol. 48,
issue 7, IEEE Press Piscataway, NJ, USA, pp. 94-100, 2010.

13. F. Xhafa and A. Abraham, Metaheuristics for Scheduling in Distributed Computing Environments, in:
Metaheuristics for Scheduling in Distributed Computing Environments, Studies in Computational Intelligence, vol.
146, pp. 1-37, 2008.

14. F. Xhafa and A. Abraham, Computational Models and Heuristic Methods for Grid Scheduling Problems, in: Future
Generation Computer Systems, vol. 26, issue 4, pp. 608-621, 2010.

15. J. Yu , R. Buyya , K. Ramamohanarao, Workflow Scheduling Algorithms for Grid Computing, in: Metaheuristics
for Scheduling in Distributed Computing Environments, vol. 146, pp. 173-214, 2008.

16. J. Yu and R. Buyya, A Taxonomy of Workflow Management Systems for Grid Computing, in: Journal of Grid
Computing, vol. 3, issue 3-4, pp. 171-200, 2006.

17. M. Rahman, R. Ranjan, R. Buyya and B. Benatallah, A Taxonomy and Survey on Autonomic Management of
Applications in Grid Computing Environments, in: Concurrency and Computation, Practice and Experience, vol.
23, issue 16, pp. 1990-2019, 2011.

18. Pegasus AI Based Scheduling: http://pegasus.isi.edu/
19. A-L. Barabási and A. Réka, Emergence of Scaling in Random Networks, in: Science, vol. 286, No. 5439, pp. 509-

512, 1999.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 23 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

http://pegasus.isi.edu/

For Peer Review

22 M. BOTÓN-FERNÁNDEZ ET AL.

20. S. Boccaleti, V. Latora, Y. Moreno, M. Chavez, D. Hwang, Complex Networks: Structure and Dynamics, : in:
Physics Reports, vol. 424, n 4-5, Elsevier, pp. 175-308, 2006.

21. N. Mladenovic and P. Hansen, Variable Neighbourhood Search, in: Computers & Operations Research, vol. 24,
Issue 11, Elsevier, pp. 1097-1100, 1997.

22. J.V. Neumann, The Theory of Self-Reproducing Automata, in: A.W. Burks (ed), University of Illinois Press
Champaign, IL, USA, 1966.

23. M. Gardner, Mathematical Games: The fantastic combinations of John Conway’s new solitaire game ”life”, in:
Scientific American, Vol. 223, no. 4, pp. 120-123, 1970.

24. X. S. Yang and Y. Z. L. Yang. Cellular automata networks, in: Proceedings of Unconventional Computing, A.
Adamatzky, L. Bull, B. De Lacy Costello, S. Stepney, C. Teuscher (eds.), Luniver Press, pp. 280-302, 2007.

25. The National Grid Initiative for Spain: http://www.es-ngi.es/
26. M. Botón-Fernández, F. Prieto Castrillo, M. A. Vega-Rodrı́guez, Self-adaptive deployment of parametric sweep

applications through a complex networks perspective, in: ICCSA’11 Proceedings of the 2001 International
Conference on Computational Science and Its Applications: Part II, LNCS, vol. 6783/2011, Springer-Verlag
Berlin/Heidelberg, pp. 475-489, 2011.

27. A. Santiago and R.M. Benito, An extended formalism for preferential attachment in heterogeneous complex
networks, in: Europhysics Letters, vol. 82, issue: 5, 2008.

28. M. Tomassini, Generalized Automata Networks, in: S. El Yacoubi, B. Chopard, and S. Bandini (eds.):ACRI 2006,
LNCS, vol. 4173, Springer-Verlag Berlin, Heidelberg, pp. 14-28, 2006.

29. EGI. European Grid Infrastructure: http://www.egi.eu/
30. Ibergrid Project Web Page: http://www.ibergrid.eu/
31. W.H Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipies in C, In: Press Syndicate of the

University of Cambridge, New York, 1992.
32. gLite Middleware Web Page: http://glite.cern.ch/
33. EGEE Portal. Enabling grids for E-sciencE: http://www.eu-egee.org/

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

Page 24 of 24

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

 http://www.es-ngi.es/
http://www.egi.eu/
http://www.ibergrid.eu/
http://glite.cern.ch/
http://www.eu-egee.org/

