
Noname manuscript No.
(will be inserted by the editor)

A Self-adaptive Resources Selection Model through a

Small-World based Heuristic

Maŕıa Botón-Fernández · Francisco
Prieto-Castrillo · Miguel A.
Vega-Rodŕıguez

Received: date / Accepted: date

Abstract The Small-world phenomenon is a principle in which seemingly dis-
tant nodes are linked by short chains of acquaintances. This property is found
in a wide range of biological, social or natural networks. We proposed a self-
adaptive model for solving the grid computing resources selection problem. A
heuristic based on Small-World concepts is defined within this model. Grid
computing infrastructures are distributed systems with heterogeneous and ge-
ographically distributed resources. The present approach selects the most effi-
cient resources during the application execution for facing the environmental
changes. The model is tested in a real European grid computing infrastructure.
Finally, from the results that have been obtained during the evaluation phase
it is possible to conclude that the model achieves a reduction in applications
execution time as well as an increase in the successfully completed tasks rate.

Keywords Self-adaptivity · Grid Computing · Small-world Phenomenon ·

Optimization · Heuristic

1 Introduction

Grid computing environments [1] [2] are distributed systems consisting of het-
erogeneous resources used in a coordinated way and with a non-centralized
control. This type of infrastructure connects resources with different geograph-
ical location by using different administrative domains (resources belong to

M. Botón-Fernández and F. Prieto-Castrillo
Ceta-Ciemat, Dept. Science and Technology.
Trujillo, Spain
E-mail: {maria.boton, francisco.prieto}@ciemat.es

M.A. Vega-Rodŕıguez
University of Extremadura, Dept. Technologies of Computers and Communications.
Cáceres, Spain
E-mail: mavega@unex.es

Manuscript
Click here to download Manuscript: SUPE2035_Review.tex
Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/supe/download.aspx?id=77760&guid=e75fb978-f07d-4272-8f10-3fff26db6c6c&scheme=1
http://www.editorialmanager.com/supe/viewRCResults.aspx?pdf=1&docID=3343&rev=1&fileID=77760&msid={CD18F79F-B3ED-42E1-A284-864DCBAB8181}

2 Maŕıa Botón-Fernández et al.

different centres). Each resource provider is responsible for managing its own
elements (non-centralized control of resources). This fact leads to a dynamic
and changing grid computing environment that modifies the availability and
performance of its resources.

Grid computing applications face up a double heterogeneity within these
systems. Firstly, there are different groups of resources according to their func-
tionalities. Secondly, there are heterogeneous resources within a particular
group due to the fact that they are provided by different centres (which also
imply local administrative domains and local policies). Moreover, it should be
taken into account the heterogeneity of jobs and the fact that grid computing
applications compete for using different non-dedicated resources.

All these circumstances result in problems of resources discovery, resources
selection, resources monitoring, etc. Then, applications require real-time infor-
mation about grid computing infrastructures for dealing with the environmen-
tal changes. Notice that resources are added and removed in an unpredictable
way and that also their software and hardware characteristics vary over time
(both are environment changes resulting from local administration). For that
reason, it has become a challenge to efficiently solve the resources manage-
ment problems in grid computing environments owing to its dynamic nature
and structure.

In recent years, the adaptation concept has been widely extended as an
alternative for solving these problems. The grid computing community has
proposed several adaptive approaches [14]-[24]. However, none of them has
been globally extended across the different grid computing platforms.

The present contribution is focussed on solving the grid computing re-
sources selection problem by choosing in an efficient way the resources that
best fit the application requirements, without modifying the grid computing
infrastructure. An Efficient Resources Selection (ERS) model is defined from
the user point of view, by guiding applications during their deployment on
grid computing infrastructures. That means, the model does not control or
does not change resources behaviour.

During the evaluation phase two main objectives were fixed: on the one
hand, achieving a reduction of the total execution time of applications. On
the other hand, reaching an improvement of successfully finished tasks rate.
Regarding these objectives, we are interested in identifying the most efficient
resources in the shortest possible time. Furthermore, the selection process
within our approach should be self-organizing and self-adaptive for facing grid
computing infrastructures changes at runtime. That fact has motivated us
to define a heuristic based on the Small-World (SW) phenomenon [3]-[5]. The
available infrastructure resources are represented as nodes of a network (which
is not a SW network) and they are linked when the model chooses them (i.e.
a resource that finishes its execution is connected to the next resource to
use) resulting in the corresponding set of edges. Then, it is expected that the
model finds the most efficient resources considering the six degrees of sepa-

ration idea. Specifically, the heuristic that has been implemented within the
selection process applies the following SW concepts: the network contains hubs

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Applying SW in a ERS Model in Grid Computing 3

(nodes with a high number of edges, that is to say, with a high degree) which
are those resources used repeatedly by the model (the most efficient resources)
and the edges are divided into local and long-range contacts, for applying the
analogous search algorithms (Local Shortcuts Search Algorithm and Random
Long-range Search Algorithm). The network starts with a set RT of z nodes
(please see Section 3.2) and it grows during the application execution.

The present approach is denoted as Efficient Resources Selection Model

Based on Small-World (ERS-SW). It must also be highlighted that the model
is tested in a real European Grid Computing Infrastructure1 belonging to a
National Grid Initiative2. Previous versions of the model [12] [13] are also
included and a comparative study, considering all ERS developed versions, is
presented in the evaluation phase.

In conclusion, the main contributions of this work are:

– We propose a mathematical formulation for obtaining the resources effi-
ciency in a grid infrastructure.

– This mathematical formulation combined with different heuristic tech-
niques provides an efficient model for selecting the grid resources.

– This model is self-adaptive because it can adapt itself to the changing
properties of a grid environment. The model achieves this self-adaptation
without any control on the internal components of the grid infrastructure
(that is to say, by using the user point of view).

– We propose a new version of this model by using a heuristic based on the
Small-World phenomenon (ERS-SW). We also presented three previous
versions of the model: ERS-PA, ERS-VNS, and ERS-CA.

– The novelty of ERS-SW compared with previous versions are: both the
historical values of compute time µi and the historical value of successfully
finished tasks ǫi are considered for measuring the fitness of a resource (see
Eq. 1). Resources are evaluated in an independent way, not as a set. When
calculating the workload of a resource it is taken into account not only
the load produced by our experiments but also the local load generated by
other applications which are running in the infrastructure.

– All versions of our model have been verified over real grid environments
(not simulations) and compared with the standard scheduling technique
of European grid computing infrastructures (denoted as TRS - Traditional
Resource Selection), obtaining very interesting results: our model executes
the tasks in less time and increases the number of successfully completed
tasks.

– Furthermore, this model can also be used as an information system of
infrastructure efficiency by using the statistics obtained as infrastructure
status reports.

The rest of the paper is structured as follows. Section 2 summarizes related
work using adaptation. Section 3 describes the ERS model, its formulation
and self-adaptive selection. In Section 4 previous versions of our approach are

1 http://www.egi.eu/about/ngis/
2 http://www.es-ngi.es/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Maŕıa Botón-Fernández et al.

briefly discussed. Section 5 includes the evaluation of the model in a real grid
computing infrastructure. Finally, Section 6 concludes the paper and indicates
future work.

2 Related Work

As stated in the previous Section, there are several approaches which apply the
adaptation concept for solving grid computing problems. Some of these works
have developed adaptive frameworks to provide efficient jobs scheduling. There
are other solutions which design autonomous systems, so that these systems
would adapt to the dynamic infrastructure. Finally, other studies are focussed
on applying adaptation within specific grid computing processes.

The work in [14] proposes an alternative for solving the selection process. It
collects communication and processing times information periodically. Then,
by using these metrics, two threshold (lower and upper) are calculated. The
objective is to maintain the application efficiency between both thresholds.
Resources are added or deleted based on this criterion.

In [15] an adaptive ability is provided by enhancing grid computing infras-
tructures. They present different options in order to avoid jobs restrictions: 1)
changing the infrastructure’s design, 2) developing a malleable jobs manage-
ment and 3) fostering the cooperation between users and infrastructure.

The study in [16] presents a methodology for managing grid computing ap-
plications autonomously. The concept of living application emerges from this
work. The application makes decision on which tasks to do and which resources
to use (it needs administrative privileges). These decisions are based on cer-
tain knowledge acquired by the application at runtime. Hence, the application
operates in an autonomous way.

Grid computing systems are increasingly used for performing certain type
of applications: multi-phase parallel applications. This fact has motivated the
works in [17] [18] to develop efficient rescheduling frameworks. They proposed
several strategies for deciding when and where rescheduling this type of appli-
cations.

In [19] it is described a version of the Advance Resource Connector (ARC)
grid middleware which aims to solve several detected problems, such as system
bottlenecks, by using adaptation.

A migration framework is exposed in [20] in which the resources load and
application characteristics are considered. Novel policies are used for varying
dynamically the resources load while maintaining the infrastructure perfor-
mance.

Another intelligent framework is proposed in [21]. This one presents a new
application model as well as it provides mechanisms for adapting dynamically
during application execution. It is based on Gridway3 project. The framework
is also compared with similar approaches.

3 http://www.gridway.org/doku.php

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Applying SW in a ERS Model in Grid Computing 5

The study in [22] is focussed on enhancing the information service com-
ponent denoted as Monitoring and Discovery System (MDS3) which is part
of the OGSA-based (Open Grid Services Architecture) Globus Toolkit GT3.
They present two self-adaptive notification algorithms to prevent the Index

Service from overloading.
The AppLeS (Application Level Scheduling) project [23] aims to investi-

gate adaptive scheduling within grid computing environments. This approach
includes static and dynamic resources information, scheduling techniques and
performance predictions for allowing applications to adapt themselves at run-
time.

Finally, a survey which gathers the existing grid computing self-adaptive
mechanisms is described in [24]. Also, some recommendations for reaching an
autonomous management are suggested in that work.

All these studies are focussed on improving the infrastructure performance
by using different techniques: scheduling, migration, control policies, or notifi-
cation policies (they are defined from the system point of view). However, the
present contribution propose an ERS model which aims to guide applications
during their execution in grid computing systems. This approach is defined
at the user level, which means, it does not apply scheduling technique or mi-
gration policies, and it does not change the infrastructure behaviour (please
see Table 1). Then, our model selects the most efficient resources without
modifying or controlling them (we only use the user command set).

Table 1 Main differences between the related work and the ERS model.

Solution New Policies Control Infrast. Modify Infr. Behaviour. Change IS

Adapt. App [14] - X X -
Adapt. RMS [15] X X X -
Living App [16] - X X -
TPC App [17] X X X -
MPC App [18] X X X -
ARC Syst. [19] - X X -
Adapt. Syst. [20] - X X -
Framework [21] - X X -

MDS3 [22] X X X X
AppLeS [23] - X X -
ERS Model - - - -

3 The Self-adaptive Resources Selection Model

As stated, the present approach is focussed on enhancing the grid computing
selection process by providing a self-adaptive capability to applications. The
ERS-SW strategy is based on a complex network algorithm for discovering and

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Maŕıa Botón-Fernández et al.

selecting the most efficient resources. Next, the main grid computing concepts
are exposed for a better understanding of the proposed model.

Grid computing environments are distributed systems composed of hetero-
geneous resources belonging to several centres, each of them with a different
geographical location. These systems provide computational power and stor-
age capacity for massive computing applications.

A Virtual Organization (VO) is a group of institutions with a common
objective. The VO manages a grid computing infrastructure for accomplishing
this objective. Then, users should register in a VO for using grid computing
resources.

Finally, the main grid components of a typical grid computing infrastruc-
ture are summarized.

– User Interface (UI): The access point to a grid infrastructure for users.
– Computing Element (CE): The scheduler which manages the jobs’ queue

within a resources centre.
– Worker Node (WN): Node in which tasks are finally executed. They are

managed by CEs within a resources centre.
– Storage Element (SE): Element with storage capacity.
– Resource Broker (RB): Meta-scheduler which deals with computing load

balancing and manages the infrastructure storage.
– Information System (IS): The global information system that maintains

resources status and information.

3.1 The ERS Mathematical Formulation

The ERS model is based on the mapping between two work spaces. On the
one hand, a task space J which includes the n independent and parallel tasks
of the current application. Tasks only differ in the values of input parameters
(we focus on parametric sweep applications in which tasks have similar char-
acteristics). On the other hand, an heterogeneous and dynamic resource space
R which consists of the m available resources of the current grid computing
infrastructure.

At the beginning of applications execution, the model creates a subset (in
a random way) of J , denoted as T , and sends it into execution. For every task
of T a resource rα ∈ R is selected in a uniform random way (because at that
moment there are not efficiency metrics). These resources compose the subset
labelled as RT . The mapping between elements from both spaces allows the
model to associate different tasks to the same resource (i.e. it is a many-to-one

relationship). Although initially the model sends a subset of J into execution,
from now on, tasks are handled independently. That is to say, when a task tα
ends its execution, a resource rα will be efficiently selected for the next one. By
sending a subset of J at the beginning of the execution we expect to promote
the model for acquiring the efficiency metrics rapidly (i.e. encouraging a faster
learning). Notice that every task tα ∈ J has associated a lifetime lt, so that
the model does not wait indefinitely for them. This lifetime value depends on

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Applying SW in a ERS Model in Grid Computing 7

the application to be executed and it is fixed by the user in the configuration
file. In particular, it is the sum of the average job queue time in the grid
computing infrastructure (which has been obtained by experimentation) and
the execution time of a job in a local machine (which is set by the user).

For calculating the efficiency of grid computing resources, a linear math-
ematical formulation is defined. Please note that the model works with nor-
malized parameters (and also in the previous versions which are described in
Section 4). In Eq. 1 it is defined the efficiency value Fi of a particular resource
i. It is based on two main parameters: on the one hand, the historical value
ǫi of finished tasks4 and, on the other hand, the historical value µi of process-
ing time used for finishing those tasks. Both parameters have two relevance

weights, a and b respectively, for allowing users to specify the priorities within
their experiments. The value of such parameters (a and b) is specified by users
from the command line when they execute an application. It must be expressed
as a percentage.

Fi = (a · ǫi + b · µi)/(a+ b) . (1)

Parameter ǫi (Eq. 2) is defined as the ratio of the successfully finished tasks
SFti and the total number of assigned tasks Ati for the ith resource.

ǫi = SFti/Ati . (2)

Regarding µi, for each task j the processing time consumed by resource i
is measured. This processing time (Eq. 3) is based on both the communication
time Tcommi,j between resource i and other grid computing services and the
computation time Tcompi,j for task j.

Ti,j = Tcommi,j + Tcompi,j . (3)

Next, all these values of Ti,j are used to calculate the average of processing
time χ̄i (Eq. 4) for the number of successfully finished tasks SFti at that
moment.

χ̄i = (

SFti∑

j=1

Ti,j)/SFti . (4)

Finally, the historical parameter µi is defined as follows (Eq.5), applying
also the tasks lifetime. It must also be highlighted that all these parameters
are normalized.

µi = (lt− χ̄i)/lt . (5)

4 Within the model, every task whose grid status is Done or Aborted is considered a
finished task. Also tasks whose lifetime ends before they had finished are considered as
finished tasks.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Maŕıa Botón-Fernández et al.

3.2 Applying the Small-World based Heuristic

As stated, the heuristic defined in the proposed ERS model is based on several
concepts of the Small-World phenomenon [4] [5] for selecting the most efficient
resources during applications execution. By considering the Small-World in
search processes a new optimal search algorithm is defined. It is known as
Small-World Optimization Algorithm (SWOA) [25]. This algorithm includes
both a Random Long-range process and a Local Shortcuts Search process.

In the previous Section the rules that govern spaces J and R have been de-
scribed. This mathematical formulation is applied within the selection process
for measuring the efficiency of the resources that have been used. Moreover,
the efficiency value of resources is applied in the Local Shorcuts Search Al-
gorithm for creating the neighbourhood of an evaluated resource (from this
neighbourhood the next efficient resource is selected). We have also introduced
the next components within the selection process:

– A workload threshold ̟. This threshold is used to change from a local
search to a global one (from local shortcuts to random long-range) during
the selection process. It is assumed that a resource is overloaded when its
workload5 value exceeds ̟6.

– Evaluated resource set SE . It is a set where all resources that have been
selected by the model during the application execution are registered in.
Resources are ordered from lower to higher efficiency values. This resource
set is used within the Local Shortcuts Search. Notice that as a network
is being generated during the application execution, the resources that
compose this set represent the nodes linked in the network.

– Unevaluated resource set SUE . This set is complementary to the previous
one, so that, the resources that have not been selected (non-linked nodes)
until now are included in it. It is used within the Random Long-range
Search algorithm.

Local Shortcuts Search Algorithm

This algorithm handles the SE set and applies the neighbourhood concept. In
SE we consider that the neighbourhood of a particular resource is composed
by the two nearest resources, which are denoted as neighbours (Figure 1). As
stated, resources within SE are ordered from lower to higher efficiency values,
so that, the neighbours of a particular resource rα are those with an efficiency
value close to it (resources v1 and v2). The neighbour with a higher efficiency
value is on the right (v1 in Figure 1) and the neighbour with a lower efficiency
value is on the left (v2).

Hence, when a task ends its execution, the model tries to select an efficient
neighbour of the corresponding resource rα for performing a new task. First,

5 The workload value of a resource is calculated considering the local load (derived from
other applications running in the infrastructure) and the load produced by our experiments.

6 As the model uses normalized values, this threshold is fixed at 1. That means, a resource
is considered as overloaded when its capacity is being used at 100%. Also the workload value
of every resource is normalized to determine if it exceeds the threshold.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Applying SW in a ERS Model in Grid Computing 9

v1v2 rα

CE1 CE5CE8CE16 CE27 CE10

Special Cases
1)

2)
rα

rα

v1

v2

CE16

CE16

CE1

CE1 CE8

CE8 CE27

CE27

CE10

CE10

CE5

CE5

0.21

0.21

0.21

0.3

0.3

0.3

0.46

0.46

0.46

0.51

0.51

0.51

0.54

0.54

0.54

0.7

0.7

0.7

Local Shortcuts Search

Neighbourhood

SE

Fig. 1 Neighbourhood used within the Local Shortcuts Search Algorithm. The SE set
includes the resources that have been selected by the ERS Model.

the model applies the Local Shortcuts Search: the first option within that
search algorithm is v1 because it is more efficient than rα. If v1 is overloaded,
then, the model selects v2 as a new resource. If this resource is also overloaded
the Local Shortcuts ends without result and the Random Long-range Search
is applied. To determine if a resource is overloaded the ̟ threshold is applied.
This threshold is updated whenever a resource is evaluated (due to the fact
that its workload value is updated).

Random Long-range Search Algorithm

This other search algorithm is applied when the local search fails (when the
neighbours of rα are overloaded). In this case, the SUE set is used to find a
suitable resource for a new task. This resource is selected in a random way
(because there are no efficiency metrics of these resources) and must fulfil
a specific requirement: not exceed ̟ (not be overloaded). This algorithm is
repeated until a resource with that characteristic is found.

There are two special cases within this search. On the one hand, during
application execution all resources ∈ R could be selected for performing tasks
of space J ; in this case SUE is empty. On the other hand, resources from SUE

could have a workload value that exceed ̟ because of external applications.
In both cases, the random search is performed over SE .

Finally, it is specified the model execution flow as shown in Figure 2. After
sending T into execution, tasks are monitored in an independent way. For that
reason, when a task tα finishes its execution the efficiency of the corresponding
resource is calculated. Also the ̟ threshold is updated including this new
efficiency value. Next, the model applies the heuristic based on SW and an
efficient resource is selected for executing a new task. These processes are
repeated until the whole space J is computed.

4 Previous Algorithms applied to ERS

In this section the previous versions of ERS are summarized. In each of them
the selection process is based on different heuristic algorithms. Notice that
in these versions the mathematical formulation for measuring the resources
efficiency is very similar to ERS-SW. In this regard, the next three ERS ver-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Maŕıa Botón-Fernández et al.

PSEUDOCODE: ERS-SW ALGORITHM

Input: application tasks, infrastructure

 resources

Output: set of solutions

1. Determine spaces J and R;

2. Prepare set T;

3. Select randomly a set RT for executing T;

4. Launch T into execution;

5. while there are unprocessed tasks do

 5.1. Monitor tasks;

 5.2. If a task ends its execution then

 5.2.1. Update resource efficiency value;

 5.2.2. Update workload threshold;

 5.2.3. Apply SW heuristic algorithm;

 5.2.3.1 Apply Local Shortcuts Search

 Algorithm;

 5.2.3.2 If v1 and v2 are overloaded then

 5.2.3.2.1 Apply Random Long-range

 Search Algorithm;

 5.2.4 Assign new efficient resource to an unprocessed

 task;

 5.2.5 Launch a new task;

6. End while

Fig. 2 ERS-SW execution flow. Every time we measure resources efficiency and use them
for selecting a new CE a self-adaptive capability is applied.

sions apply Eq. 6 for calculating the value of µi. The fitness of a resource i is
calculated by using Eq. 1, the same as in ERS-SW.

µi = (Tmax − Ti)/(Tmax − Tmin) . (6)

In these previous approaches, tasks and resources are handled by the model
in different groups. That means, when all tasks belonging to T finish their
executions, the model measures the efficiency of resources in RT . Therefore,
Tmax and Tmin are the maximum and minimum Ti values achieved by resources
∈ RT . Ti is considered the processing time of a resource and it is calculated
in a similar manner that the Ti of ERS-SW. Now, this time includes the
computation times of every task assigned to that resource (Ati set, see Eq. 7).

Ti =
∑

j∈Ati

(Tcommi,j + Tcompi,j) . (7)

4.1 The ERS Model Based on Preferential Attachment

The Preferential Attachment algorithm (PA) [26] is used to generate random
scale-free networks, which are presented in a wide range of natural and human-
made systems. In this algorithm, a new node i is added to an existing node j

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Applying SW in a ERS Model in Grid Computing 11

in the network with a probability proportional to the node’s degree (i.e. the
probability is proportional to the number of links that j already has).

Nodes with a higher degree value (which are denoted as hubs) tend to
acquire more new links than those other with only a few links. For example,
in a group of friends, the most popular acquires new friends more easily than
the rest.

The PA is the first algorithm applied to the ERS model, resulting in the
ERS-PA version [12]. In this case, the following assumptions were established
for applying PA within the selection process:

– Resources belonging to space R are considered as nodes of a complex net-
work built at runtime (during application execution).

– The degree of a node represents the number of times the corresponding
resource has been selected for performing tasks during application execu-
tion.

– The probability of connecting a new node with an existing one depends on
both the resource’s degree and the resource efficiency value (see Eq.8).

– Hubs in this network are those resources with a higher efficiency value.

As stated, the efficiency value is used to link resources within our particular
complex network. In this case,Kmax is the maximum degree value for resources
∈ RT ; ki and Fi are the degree and fitness values of resource i

Ei = (ki) · Fi/Kmax . (8)

4.2 The ERS Model Based on Variable Neighbourhood Search

The metaheuristic known as Variable Neighbourhood Search (VNS) [27] is ap-
plied in global optimization problems. It is based on avoiding stagnation in a
local search by changing the environment structure. The approach we present
in this section is known as ERS-VNS.

In VNS a set of environment structures is denoted as Nk (which is a finite
set with kmax environments) and a set of solutions for the kth environment
is named as Nk(x). Now the main rules that govern the ERS-VNS heuristic
algorithm are specified:

– Initialization:
– Specify the set of environment structures that compose Nk.
– Indicate an initial solution x.
– Determine a stop condition: all T are processed?
– Set k = 1.

– Repeat until all T are processed:
– If k = kmax then k = 1.
– Shaking: generate a random solution x′ from the kth environment of

x.
– Local search: applying a local search technique using x′ as initial

solution. The resulting local optimum is denoted as x′′.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Maŕıa Botón-Fernández et al.

– Use solution (resources) x′′ for the tasks to execute.
– Move or not: if x′′ is better than x do x = x′′ and k = 1. Otherwise

set k = k + 1.

As mentioned, in ERS we aim to find the most efficient resources for a
particular application and, for that reason, we consider every RT as a local
optimum solution. Moreover, we look for maximizing the fitness of the whole
RT set (resources with efficiency values close to 1 are the most efficient ones).
The fitness function for RT is defined as follows:

F (RTα) = (

d∑

i=1

Fi)/d . (9)

It must also be highlighted that the fitness for every resource is obtained
by applying Eq. 1. The parameter d specifies the number of resources within
RT (the cardinality of RT). The next assumptions are also considered:

– Solution x is the initial RT set which has been selected for executing the
first T set.

– Solution x′ is obtained after performing a mutation process over x.
– Solution x′′ is a new efficient set of resources (a new RT) for executing

a new T set. By applying the local search process over x′ this solution is
acquired.

Furthermore, every environment structure handles other two parameters:
pk and qk. On the one hand, parameter pk indicates the difference or variation
between solutions x and x′. This parameter varies in a non-decreasing way
from an structure to another. On the other hand, qk specifies the search range
during the local search process. In the local search the available resources are
ordered from higher to lower efficiency values. Next, the model selects the s
most efficient resources to compose a candidate set. Parameter s is considered
the qk percentage of g (number of available resources). From this candidate
set the new efficient resources to be part of the following RT are randomly
chosen.

For determining the value of qk the number of available resources g is
considered. The value of pk is set considering the cardinality of J and also
g. Notice that both (pk and qk) are expressed as percentage and that it is
possible to modify their values in the configuration file (by specifying their
initial value and the increment to be applied). By using parameter qk solution
x′′ is calculated.

Finally, in order to provide an advanced behaviour to ERS-VNS a threshold
of fitness U is applied during the mutation process. This threshold determines
the resources that should mutate, because they do not exceed this threshold
(they are considered not efficient enough). Several experimentations have been
performed in the corresponding grid computing infrastructure for obtaining the
average efficiency value of resources. This value was stored in the U threshold.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Applying SW in a ERS Model in Grid Computing 13

4.3 The ERS Model Based on Cellular Automata

This third version is based on Cellular Automata methodology, in particular,
the ERS-CA model [13] is based on John Conway Game of Life [28]. Further-
more, the grid computing infrastructure is managed as a cellular automata
network [29] where CEs are represented by cells. In ERS-CA we improve the
previous model versions (ERS-PA and ERS-VNS) by considering the resources
workload. That means, when the model detects an overloaded resource, it iden-
tifies the corresponding site and tries to explore resources from a different one.
A workload threshold wl is specified for detecting these situations (it is calcu-
lated by only considering the load generated by our experiments).

The proposed CA is composed by 8 subnetworks as shown in Figure 3,
by considering geographical criteria. The number of subnetworks depends on
the available resources (space R cardinality) within the infrastructure that
has been used and it is specified by users in a configuration file. The number
of components in each subnetwork also depends on such cardinality. It is es-
tablished a minimal value of 3 elements in every one. Particularly, two cells
which are neighbours in the CA are physical neighbour in the grid computing
infrastructure.

Fig. 3 Subnetworks that compose our CA considering the testbed infrastructure. Every
subnetwork has at least 3 cells.

The cells in ERS-CA have three possible states: alive, dead and inoperative.
An efficient resource is an alive cell while an inefficient resource is a dead cell.
Resources which are overloaded or unavailable are inoperative cells. When the
selection process is applied in each subnetwork, only two cells survive: those
with the lowest workload values. Next, the rules that are applied in every
subnetwork are specified:

– The pair of resources with minimum workload are considered living cells.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 Maŕıa Botón-Fernández et al.

– Every cell that exceeds threshold wl dies.
– Any cell with its neighbourhood dead survives.

Finally, the living cells from all subnetworks compose a candidate set in
which the following rules are performed for obtaining the new RT :

– Selective Pressure: the most efficient 50% of candidates promotes.
– Scout Resource: the model selects in a random way an unexplored resource

(it has not been used until now).

5 Performance Evaluation

5.1 The Grid Computing European Infrastructure

As stated, the model has been evaluated in a real grid computing infrastruc-
ture which belongs to the European Grid Infrastructure (EGI)7. Particularly,
the experiments have been performed in the Spanish National Grid Initiative
(ES-NGI)8. We were affiliated to the generic Ibergrid VO iber.vo.ibergrid.eu

which has about 30 CEs, a reasonable number of elements for evaluating the
model. The Ibergrid infrastructure was officially created in 2007 and since then
both countries (Spain and Portugal) have shared experience and expertise for
providing grid computing services as a single organization along the Iberia
area. Figure 4 represents the information about CPU and storage capacity of
such infrastructure9.

Fig. 4 Classification of sites according to their computing and storage capacities.

The ERS-SW has been tested on a UI belonging to the Ibergrid infrastruc-
ture. This UI is a virtual machine provided by the Ceta-Ciemat 10 Center and

7 http://www.egi.eu
8 http://www.es-ngi.es
9 All this information is collected from http://ibergrid.lip.pt/

10 http://www.ceta-ciemat.es/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://ibergrid.lip.pt/

Applying SW in a ERS Model in Grid Computing 15

it is based on Scientific Linux 5.3 with python 2.4.3 (the ERS model has been
implemented by using this programming language).

Within this phase we were interested in determining if the next two objec-
tives were accomplished: a reduction in the application execution time and an
increase in the number of successfully finished tasks. We consider both goals
as important topics for grid computing users due to the fact that they improve
the quality of the service.

Finally, the ERS model is compared with the standard selection technique
used by European infrastructures, which uses the gLite11 middleware. The pro-
cess for selecting resources in this infrastructures is named as match-making

and consists of choosing available CEs which are close to the corresponding
input files (location criterion) and which satisfy the user requirements (quali-
fication criterion).

5.2 Scenario 1

We designed this first scenario for determining the influence of size of T in the
model learning. We introduced this set to speed up this learning process, so
that, it is important to verify the accuracy of this assumption.

The scenario is composed of 5 tests where 10 real experiments are per-
formed for every version (ERS-SW, TRS, ERS-PA, ERS-VNS, and ERS-CA).
The graphical points in Figure 5 represent the average values of these sets of
experiments. The size of J is fixed at 200 in all tests while the size of T is
varied from a test to another (5, 10, 13, 20, 40). Finally parameters a and
b were fixed at 60% and 40% respectively (we think users prefer executing
successfully as many tasks as possible).

Fig. 5 Results that have been obtained in the first scenario. The ERS-SW totally improve
the other versions.

11 http://glite.cernch/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 Maŕıa Botón-Fernández et al.

The results in Figure 5 show that all ERS versions have improved their
execution times regarding TRS. ERS-SW reached the best execution time,
with a significant average difference of 7 hours with respect to the other three
ERS versions. The average difference with regard to TRS is about 15 hours.
For high values of T size the ERS-SW classifies the efficient resources faster.
All these ERS-SW results have been motivated by the idea of finding the most
efficient resources in a short number of steps. Besides, in this version resources
are selected based on both their efficiency value and their global workload
value (by taking into account the load generated by other applications and
the load produced by our experiments). Also, the independent evaluation of
resources during the application execution leads to a fast knowledge of the
infrastructure’s state.

The ERS-CA version obtains the minimum values for high values of T
size (13, 20, 40) because a larger amount of resources were evaluated at the
same time (for a particular RT). Besides, as the load produced by our experi-
ments has been taken into consideration the overloading of resources has been
avoided. In contrast, ERS-PA performs better for values of low T size and it
achieves the minimum value in size 13. In this version, the efficiency is based
on nodes degree and fitness (the resources’ load is not being considered). For
values of high T size the model takes a long time to correct its decisions when
a hub gets overloaded. For that reason the performance of the model is ad-
versely affected. The ERS-VNS approach maintains a constant execution time
difference with respect to TRS. It reaches its minimum values in the first two
cases, in which there are more environment structure’s changes due to the fact
that more RTα sets are evaluated (this fact implies a better approximation to
the global optimum solution).

We can conclude that the size of T influences the performance of ERS

versions involving a fast learning in several cases. The successfully finished
tasks rate is also improved in every ERS version, as shown in Figure 6.

Fig. 6 Number of tasks finished in a successful way by the different ERS versions with
respect to the TRS version.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Applying SW in a ERS Model in Grid Computing 17

In Table 2 several descriptive statistics concerning the total execution time
for the different proposed versions of the model (ERS-SW, ERS-PA, ERS-VNS,
and ERS-CA) and for the standard gLite selection (TRS) are included. It is
possible to observe that the coefficient of variation never exceeds 50% of the
mean. Please, notice that the values for the standard deviation are motivated
by the dynamic and changing nature of grid computing infrastructures.

Table 2 Statistical values of ERS-SW, ERS-PA, ERS-VNS and ERS-CA in the corre-
sponding tests. The mean is expressed in minutes.

TRS Size 5 Size 10 Size 13 Size 20 Size 40

Mean 781 873 1053 1135 1080
Standard Deviation 252 178 350 133 14
Coefficient Variation 32% 20% 33% 12% 1%

ERS-SW Size 5 Size 10 Size 13 Size 20 Size 40

Mean 151 92 77 63 65
Standard Deviation 24.61 14.91 7.56 7.7 18.3
Coefficient Variation 16% 16% 10% 12% 28%

ERS-PA Size 5 Size 10 Size 13 Size 20 Size 40

Mean 451 449 413 546 540
Standard Deviation 48 63 55 42 48
Coefficient Variation 11% 14% 13% 8% 9%

ERS-VNS Size 5 Size 10 Size 13 Size 20 Size 40

Mean 406 542 672 732 678
Standard Deviation 31.2 34.8 45 34.8 48.6
Coefficient Variation 8% 6% 7% 5% 7%

ERS-CA Size 5 Size 10 Size 13 Size 20 Size 40

Mean 612 583 458 378 485
Standard Deviation 28.8 49.2 48 49.2 48
Coefficient Variation 5% 8% 10% 13% 10%

5.3 Scenario 2

The objective of this second scenario is to determine the range of grid comput-
ing applications in which the proposed model can report significant improve-
ments. We expect to obtain suitable results for large production applications
because this is the typical grid computing application scheme deployed in grid
computing environments.

In this case, the scenario is formed by 6 tests in which the size of T is fixed
at 10 because the ERS versions perform well at that point in the first scenario.
The size of J varies from a test to another (50, 100, 200, 300, 400, 500). The
values of parameters a and b are also fixed at 60% and 40% as in the first

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 Maŕıa Botón-Fernández et al.

scenario. As in the first scenario, 10 real experiments were performed for each
version (ERS-SW, ERS-PA, ERS-VNS, ERS-CA, and TRS) in every test.

ERS-SW improves again the TRS execution time and also the execution
times of the other ERS versions (Figure 7). Notice that this total execution
time (in every model version) includes the application execution time and the
time spent by the model for monitoring and classifying resources in an efficient
way. In the last tests (300, 400 and 500) the results of ERS-SW are closer to
the other versions. This is probably due to resources overload, because both
SW search processes (Local Shortcuts and Random Long-range) are performed
on SE (probably because the two special cases specified in the Random-long
Range Search - SUE empty or overloaded - have occurred).

Fig. 7 Execution times values obtained within the second scenario.

ERS-PA, ERS-VNS, and ERS-CA have close values in points 50, 100, and
200. The execution times difference of these versions with regard to TRS grows
as the size of J is increased. ERS-VNS and ERS-CA have a rather similar
behaviour in all tests, achieving better results in the last ones. In the ERS-

VNS case, when increasing the size of J more RT are evaluated so the global
optimum fitness value can be reached. Concerning the ERS-CA, values of
high J size lead to a better understanding of the infrastructure’s state. The
execution time difference between ERS-PA and TRS is almost constant from
a size of 300 to 500 tasks. In these cases the same circumstances occur as in
the previous scenario (hubs become overloaded and the ERS-PA takes time to
appreciate it). Moreover, in this scenario the successfully finished tasks rate is
also improved in all ERS versions with respect to TRS (see Figure 8). Also in
this scenario the corresponding statistics are presented (see Table 3).

Finally, we can conclude that the two fixed objectives were accomplished
and that the model is a reliable option for deploying applications in grid com-
puting infrastructures. In this regard, applications with large tasks can take
advantage of the proposed approach.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Applying SW in a ERS Model in Grid Computing 19

Fig. 8 Successfully finished tasks rate. ERS-SS achieves the best rate in most tests.

Table 3 Statistical values of the ERS versions and TRS within the second scenario.

TRS Size 50 Size 100 Size 200 Size 300 Size 400 Size 500

Mean 328 611 1055 1695 2284 3019
Standard Deviation 59.4 120 178.8 271.8 661.8 699
Coefficient Variation 18% 20% 17% 16% 29% 23%

ERS-SW Size 50 Size 100 Size 200 Size 300 Size 400 Size 500

Mean 41 60 92 202 335 545
Standard Deviation 11 12 15 41 18 41
Coefficient Variation 27% 20% 16% 20% 1% 8%

ERS-PA Size 50 Size 100 Size 200 Size 300 Size 400 Size 500

Mean 241 379 615 731 1401 2022
Standard Deviation 42 64.8 45 49.8 43.2 48
Coefficient Variation 17% 17% 7% 7% 3% 2%

ERS-VNS Size 50 Size 100 Size 200 Size 300 Size 400 Size 500

Mean 229 467 741 1008 1105 1189
Standard Deviation 37.8 43.8 28.8 19.2 48 48
Coefficient Variation 16% 9% 4% 2% 4% 4%

ERS-CA Size 50 Size 100 Size 200 Size 300 Size 400 Size 500

Mean 190 294 752 999 1074 1060
Standard Deviation 34.2 46.8 39 28.2 49.2 48
Coefficient Variation 18% 16% 5% 3% 5% 5%

6 Conclusions and Future Work

The present contribution describes an Efficient and Self-adaptive Resource Se-
lection Model for grid computing applications. The Small-world phenomenon
is applied for enhancing the grid computing selection process. By using this
model applications are able to adapt to the environmental changes. The pro-
posed strategy selects the most efficient resources during application execution

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20 Maŕıa Botón-Fernández et al.

without applying scheduling techniques (user point of view). The model does
not control grid computing resources and it does not modify their behaviour.
The article also includes a comparative study between the different ERS ver-
sions developed.

A real European grid computing infrastructure has been used as a testbed
infrastructure for evaluating our model. Two scenarios were defined during
this phase. In every test the ERS-SW is compared to the standard selection in
European grid computing infrastructures TRS. From the obtained results it
is possible to conclude that ERS-SW improves the infrastructure throughput,
reducing the execution time and increasing the successfully finished tasks rate.

Future work will be focussed on improving the ERS model by applying
other algorithms or heuristics within the selection process - making this pro-
cess greedier - and by considering new grid computing services. As the ERS

model is focussed only on parametric sweep applications, it would be interest-
ing to test the model with other types of application that are executed in grid
computing environments (like DAG - Directed Acyclic Graph - applications).
Thus, the model would be general-purpose. Also future work will involve con-
sidering other circumstances during the experimental phase as task replication
or analysing the ERS behaviour when taking into account load balancing.

Acknowledgment

Maŕıa Botón-Fernández is supported by the PhD research grant of the Span-
ish Ministry of Science and Innovation at the Research Centre for Energy,
Environment and Technology (CIEMAT).

References

1. I. Foster, What is the Grid? A Three Point Checklist, GRIDtoday, Vol. 1, No. 6, pp.
22-25, 2002.

2. I. Foster, C. Kesselman, S. Tuecke, The Anatomy of the Grid. Enabling Scalable Virtual

Organizations, in: R. Sakellariou, J.A. Keane, J.R. Gurd, L. Freeman (Eds.), LNCS,
Euro-Par 2001, Vol. 2150/2001, Springer-Verlag Heidelberg, 2001, pp. 1-4.

3. P. Erdos and A. Rény, On the Evolution of Random Graphs, in: Publications of the
Mathematical Institute of the Hungarian Academy of Sciences, Vol. 5, pp. 17-61, 1960.

4. J. Kleinberg, The Small World Phenomenon: an Algorithm Perspective, in: Proceedings
of The Thirty-second Annual ACM Symposium on Theory of Computing, pp. 163-170,
Portland, Or, USA, 2000.

5. M. Newman, A-L. Barabási and D.J. Watts, The Structure and Dynamics of Network,
in: Princeton University Press, 2006.

6. N. Mladenovic and P. Hansen. Variable Neighbourhood Search, Computers & Operations
Research, Vol. 24, Issue 11, 1997, pp. 1097-1100.

7. P. Hansen and N. Mladenovic. Variable Neighbourhood Search: Principles and applica-

tions, European Journal of Operational Research Vol. 130, Issue 3, 2001, pp. 449-467.
8. P. Hansen and N. Mladenovic. An introduction to Variable Neighbourhood Search, in:

S. Voss et al. (Eds.), Metaheuristics: Advances and Trends in Local Search Paradigms
for Optimization, Kluwer, 1999, pp. 433-458.

9. W.A. Beyer, P.H. Sellers and M.S. Waterman, Stanislaw M. Ulams Contributions to

Theoretical Theory, Letters in Mathematical Physics, D. Reidel Publishing Company,
Vol. 10, pp. 231-242, 1985.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Applying SW in a ERS Model in Grid Computing 21

10. A-L. Barabási and A. Réka, Emergence of Scaling in Random Networks, Science, AAAS,
Vol. 286, No. 5439, pp. 509-512, 1999.

11. A. Santiago and R.M. Benito, An Extended Formalism for Preferential Attachment in

Heterogeneous Complex Networks, Europhysics Letters, EPLA, Vol. 82, Issue 5, 2008.
12. M. Botón-Fernández, F. Prieto Castrillo and M.A. Vega-Rodŕıguez, Self-adaptive De-

ployment of Parametric Sweep Applications through a Complex Networks Perspective,
in: Computational Science and Its Applications, LNCS, Vol. 6783/2011, Springer-Verlag,
Berlin Heidelberg, Germany, 2011, pag:475-489. ISBN:978-3-642-21886-6.

13. M. Botón-Fernández, F. Prieto Castrillo and M.A. Vega-Rodŕıguez, Nature-Inspired

Algorithms Applied to an Efficient and Self-Adaptive Resources Selection Model for

Grid Applications, in: Theory and Practice of Natural Computing, LNCS, Vol. 7505,
Springer-Verlag, Berlin Heidelberg, Germany, 2012, pag:84-96. ISBN:978-3-642-33859-5.

14. G. Wrzesinska, J. Maasen and H.E. Bal, Self-adaptive Applications on the Grid, 12th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, San
Jose, California, USA, pp. 121-129, 2007.

15. J. Buisson, F. Andre, J-L. Pazat, Supporting Adaptable Applications in Grid Resource

Management Systems, GRID ’07 Proceedings of the 8th IEEE/ACM International Con-
ference on Grid Computing, Pages 58-65, IEEE Computer Society Washington, DC,
USA, ISBN: 978-1-4244-1559-5, 2007

16. D. Groen, S. Harfst and S. Portegies Zwart, On the Origin of Grid Species: The Living

Application, LNCS Vol. 5544, pp 205-212, 2009.
17. H.A. Sanjay and S.S. Vadhiyar, Strategies for Rescheduling Tightly-Coupled Parallel

Applications in Multi-Cluster Grids, Journal of Grid Computing, Vol. 9, Issue 3, pp.
379-403, 2011.

18. S.S. Murugavel, S.S. Vadhiyar and R.S. Nanjundiah, Adaptive Executions of Multi-

Physics Coupled Applications on Batch Grids, Journal of Grid Computing, Vol. 9 Issue
4, pp. 455-478, 2011.

19. D. Cameron, A. Gholam, D. Karpenko and A. Konstantinov, Adaptive Data Manage-

ment in the ARC Grid Middleware, Journal of Physics: Conference Series, vol. 331,
Part 6: Grid and cloud Middleware, 2011.

20. S.S. Vadhiyar and J.J. Dongarra, Self Adaptivity in Grid Computing, Concurrency and
Computation: Practice & Experience, Vol. 17, Issue 2-4, John Wiley and Sons Ltd.,
Chichester, UK, pp. 235-257, 2005.

21. E. Huedo, R.S. Montero and I.M. Llorente, A Framework for Adaptive Execution in

Grids, Software-Practice & Experience, Vol. 34, Issue 7, John Wiley and Sons Inc., New
York, NY, USA, pp. 631-651, 2004.

22. H.N.L.C Keung, J.R.D. Dyson, S.A. Jarvis and G.R. Nudd, Self-adaptive and Self-

optimising Resource Monitoring for Dynamic Grid Environments, DEXA’04 Proceed-
ings of the Database and Expert Systems Applications, 15th International Workshop,
IEEE Computer Society, Zaragoza, Spain, pp. 689-693, 2004.

23. F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J.
Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su and D. Zagorodnov
Adaptive Computing on the Grid Using AppLeS, IEEE Transactions on Parallel and
Distributed Systems, Vol. 14, Issue 4, pp. 369-382, 2003.

24. D.M. Batista and L.S. da Fonseca, A Survey of Self-adaptive Grids, IEEE Commu-
nications Magazine, Vol. 48, Issue 7, IEEE Press Piscataway, NJ, USA, pp. 94-100,
2010.

25. H. Du, X. Wu and J. Zhuang, Small-World Optimization Algorithm for Function Op-

timization, L. Jiao et al. (Eds.): ICNC 2006, Part II, LNCS 4222, pp. 264-273, 2006.
26. A-L. Barabási and A. Réka, Emergence of Scaling in Random Networks, Science, Vol.

286, N. 5439, pp. 509-512, 1999.
27. N. Mladenovic and P. Hansen, Variable Neighbourhood Search, Computer & Operations

Research, Vol. 24, Issue 11, Elsevier, pp. 1097-1100, 1997.
28. M. Gardner, Mathematical Games: The Fantastic Combinations of John Conway’s New

solitaire Game ”Life”, Scientific American, Vol. 223, No. 4, pp. 120-123, 1970.
29. X.S. Yang and Y.Z.L. Yang, Cellular Automata Networks, Proceedings of Unconven-

tional Computing, A. Adamatzky, L. Bull, B. De Lacy Costello, S. Stepney, C. Teuscher
(eds.), Luniver Press, pp. 280-302, 2007.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

