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Abstract

Over the last few years, the adaptation ability has become an essential char-
acteristic for grid applications due to the fact that it allows applications
to face the dynamic and changing nature of grid systems. This adaptive
capability is applied within different grid processes such as resource moni-
toring, resource discovery, or resource selection. In this regard, the present
approach provides a self-adaptive ability to grid applications, focusing on
enhancing the resources selection process. This contribution proposes an
Efficient Resources Selection model to determine the resources that best fit
the application requirements. Hence, the model guides applications during
their execution without modifying or controlling grid resources. Within the
evaluation phase, the experiments were carried out in a real European grid
infrastructure. Finally, the results show that not only a self-adaptive ability
is provided by the model but also a reduction in the applications’ execu-
tion time and an improvement in the successfully completed tasks rate are
accomplished.
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1. Introduction

Grid computing is an innovative distributed paradigm proposed by I.
Foster and C. Kesselman [1, 2] in 90s. It was introduced as a revolutionary
technique for solving massive computational problems by sharing computa-
tional power and storage capacities. The term emerges from the analogy
with the electric power grids: users connect to a grid computing infrastruc-
ture and get computing power without knowing where it comes from, like
the electrical power they get at home.

Several organizations and research centres are involved within a grid in-
frastructure by sharing their resources. These resources have different geo-
graphical locations and are grouped into Virtual Organizations (VO). Every
VO refers to a set of institutions with a common goal. Furthermore, each
VO has been associated with a particular research project. It should be
highlighted that the number of resources can be increased according to the
project requirements (this kind of infrastructure provides unlimited storage
and computing power).

Despite the advantages of grid computing systems, there are several prob-
lems related to task management, resource discovery, resource monitoring,
and resource selection. As mentioned, different centres with different admin-
istrative domains handle grid resources. This fact leads to a dynamic and
changing environment: the characteristics, availability and performance of
grid resources vary over time. Moreover, applications face a double hetero-
geneity within these infrastructures: on the one hand, grid environments are
composed of heterogeneous resources (with heterogeneous hardware and soft-
ware characteristics). On the other hand, there are heterogeneous resources
with the same grid functionality. In addition, grid applications compete for
using these non-dedicated resources. Regarding the monitoring, discovery
and selection processes, the system ideally needs to know the infrastructure
status in real-time for registering updated information within the Informa-

tion System (IS).
For addressing these problems the adaptation concept is introduced as

a feasible solution in grid community. This idea arises from two main is-
sues: first, applications require real-time information about the environment
for dealing with grid changing conditions. Second, the system continually
requires updated information about resources (their status and availability)
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in order to make decisions autonomously. In recent years, several solutions
based on the adaptation concept have been proposed. However, applying
adaptation at any grid level has become a challenging topic because of the
behaviour and principles of such infrastructure.

The present contribution is focused on enhancing the grid resources se-
lection process by determining the resource set that best fit the application
requirements. For that reason, it provides a self-adaptive capability to grid
applications, selecting at every time the most efficient resources. The model
has been designed from the user point of view without modifying the be-
haviour or the characteristics of grid resources. Concerning tasks, they are
progressively executed (not all at once due to the fact that the model does
not duplicate tasks) for profiling the resources’ efficiency during the applica-
tion’s execution. This way, the model learns about the infrastructure’s status
and a suitable use of grid components is performed (considering an appro-
priate usage of resources without monopolizing them; grid elements can be
exploited by several users at the same time). A mathematical formulation
(Section 3.2) is defined for measuring resources’ efficiency. This formulation
is combined with an Evolutionary Algorithm (EA) for obtaining an efficient
selection process. Specifically, the following algorithms have been combined
with the proposed mathematical formulation, resulting in four versions of
the model: the Variable Neighbourhood Search (VNS) metaheuristic [3, 4],
a Cellular Automata (CA) methodology [5] and the Preferential Attachment
(PA) technique [6, 7] from the Complex Network field. Moreover, in this
contribution we present an enhanced version of the model based on the Scat-
ter Search (SS) [8]-[10]. From now on, we denote our approach as Efficient

Resources SelectionModel (ERS) [11, 12] and the different versions are called
respectively ERS-SS, ERS-VNS, ERS-CA and ERS-PA.

The rest of the paper is structured as follows. In Section 2 a discussion
about related works is presented. Section 3 introduces the problem, by de-
scribing the model assumptions and the proposed mathematical formulation.
The ERS-SS is described in Section 4. Section 5 summarizes the previous
ERS versions. The evaluation of the model, including the resulting experi-
mental data, is discussed in Section 6. This evaluation has been performed in
a real European grid infrastructure. Finally, Section 7 concludes the paper.
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2. Related Work

There are several researches focused on solving grid infrastructure prob-
lems by applying self-adaptation. In some cases, an adaptive system for
dealing with the environmental changes is proposed (an autonomous sys-
tem). In other studies, intelligent frameworks are developed for providing an
efficient jobs scheduling. Finally, there are solutions that apply adaptation

in specific grid processes (discovery, monitoring, selection, etc.).
In [13] an alternative to solve the problem of resources selection is pro-

posed. First, the application execution starts on any resource set. Then,
certain information about communication and processing times is collected
periodically. With these metrics two efficiency thresholds (lower and upper
thresholds) are determined. The objective is to keep the application’s effi-
ciency between these values. Resources are added or deleted based on these
premises. Certain migration techniques are also applied.

Authors in work [14] propose an approach for enhancing grid infrastruc-
tures by avoiding jobs restrictions. This way, they provide an adaptive ca-
pability to applications. For that reason, the contribution describes three
options to overcome those restrictions: first, an approach which implies a
change on the infrastructure’s design. Second, a solution in which a flexible
job management is developed. Finally, a strategy focuses on fostering the
cooperation between users and infrastructure.

Also the concept of living application emerges in grid community for solv-
ing the problems mentioned above. In this regard, the work in [15] presents
a methodology for managing grid applications in an autonomous way. The
methodology is based on the following principles: the application makes de-
cisions about which tasks to do and which resources to use (these decisions
are based on runtime knowledge). Thus, the application decides in an au-
tonomous way when performing a task migration (the application requires
administrative privileges).

Grid environments are increasingly used for performing long running
multi-phase parallel applications. This fact has motivated the authors in [16]
for developing an efficient rescheduling framework, by allowing applications
to adapt to the dynamic environment. Three strategies have been designed
to decide when and where to reschedule this type of grid parallel application.
A similar approach is presented in [17] for long running multi-physics coupled
parallel applications.

The Advanced Resource Connector (ACR) grid middleware was designed
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and proposed several years ago, resulting in an interesting solution for adapt-
ing this layer to new data management and storage. The version described
in contribution [18] aims to solve certain problems detected in ACR, like
system bottleneck fails. The new approach includes a layered structure (in
particular 3 layers), which efficiently uses the available bandwidth as well as
enables data transfer slots based on a priority system.

The research in [19] describes a migration framework in which new schedul-
ing policies are included. In this framework, both the resources’ load and the
application characteristics are considered. Therefore, the novel policies are
used for varying dynamically the resources’ load and maintaining the in-
frastructure’s performance. The contribution also includes an overview of
self-adaptive software systems.

The work in [20] presents a framework that performs all user steps during
jobs submission. Moreover, it provides mechanisms for a dynamical adapta-
tion at runtime during applications’ execution and it is based on Gridway1.
In particular, a new application model for adapting to grid conditions is pro-
posed. A framework architecture to support the new resulting application
type is also exposed. Finally, the framework is compared with other similar
approaches.

The Monitoring and Discovery System (MDS3) is the information services
component of the OGSA-based (Open Grid Services Architecture) Globus
Toolkit GT32 in which the study [21] is focused. In this research, two dif-
ferent self-adaptive notification algorithms to prevent the grid Index Service
(IS) from overloading are exposed: a sink-based self-adaptive algorithm and
an utilisation-based self-adaptive algorithm. The first one uses the current
number of notification sinks to adjust the IS notification rate. The second
algorithm makes decisions based on both the current number of notification
sinks and the average CPU value. Furthermore, for deducing the optimal
notification rate, previously compiled off-line performance benchmarks are
executed in both algorithms.

AppLeS (Application Level Scheduling) [22] is a project initiated in 1996
with a specific goal: to investigate adaptive scheduling for grid computing
environments. This particular project, with its corresponding results, is de-
scribed along the contribution. The approach includes static and dynamic

1http://www.gridway.org/doku.php
2http://www.globus.org/toolkit/
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resources information, performance predictions and scheduling techniques for
allowing applications adaptation during their execution.

Finally, several existing self-adaptive mechanisms for grid computing are
collected as a survey in [23]. Specifically, seven grid systems applying adap-
tation are presented, analysed and compared. In the end, certain considera-
tions and recommendations for reaching both an autonomous operation and
an autonomous management in grid systems are suggested.

All these works, although are focused on solving different grid problems
considering adaptation, have a common feature: they are designed from the
system’s viewpoint. That is to say, the described solutions modify the be-
haviour of certain grid elements - by applying scheduling or migration tech-
niques, by proposing new notification algorithms, by developing intelligent
frameworks, etc. However, our proposed ERS model is designed from the
user point of view, in other words, taking into account users limitations and
operations. Furthermore, it does not apply scheduling techniques, it does
not control grid components and it does not change their behaviour. It just
guides grid applications during their execution, by determining the most ef-
ficient resources that fit the application requirements.

The following Section includes a detailed description of the ERS model
characteristics, assumptions and formulation.

3. Problem Statement

As said before, a grid computing environment provides unlimited com-
putational and storage power. Namely, the main goal of grid systems is to
use remote resources that enable users to perform very large tasks that could
not be addressed in their machines or work centres. For that reason, one
of the fundamental interests of grid communities lies in the efficient use of
grid resources. However, the dynamic nature of these distributed systems
implies that these resources may appear and disappear unpredictably. Thus,
scalable and efficient mechanisms are necessary for an automated discovery
and efficient selection of resources.

In this sense, we present an Efficient Resources Selection model which
allows applications to self-adapt to grid changing conditions. Moreover, our
model is focussed on improving the infrastructure throughput. Consequently,
both premises (self-adaptation and throughput) are expected to induce, first,
an execution time reduction for grid applications and, second, an increment
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of successfully completed tasks rate, due to the fact that inefficient resources
are avoided.

3.1. The Model Assumptions

The ERS model is designed from the user point of view, which is one
of its main characteristics. For that reason, the model applies users opera-
tions for obtaining information about resources in real-time. By using this
gathered information, the resources efficiency is continually measured during
applications execution. Next, some grid specifications are briefly exposed for
a better understanding (Table 1 summarizes the basic grid elements).

Table 1: Basic elements in a typical grid infrastructure.

Acronym Grid Name Function

UI User Interface User’s access point to a grid
infrastructure.

CE Computing Element Scheduler located in a grid site
which handles the jobs’ queue.

WN Worker Node Component of a grid site with
computational capacity. Jobs are
executed in these elements.

WMS Workload Management Main Scheduler which deals with
System load balancing and selects CEs.

RB Resource Broker Physical machine in which the
WMS is installed.

BDII Berkeley Database The global information system
Information Index of a grid environment.

LFC LHC File Catalog Distributed file catalog including
an unique global name space.

Notice that in a typical grid infrastructure (as shown in Figure 1) re-
sources are grouped in two different sites: Resources Operation Centre (ROC)
and Resources Centre (RC)3. The ROCmaintains important information sys-
tems as the BDII (Berkeley Database Information Index ) and the LFC (LHC
File Catalog). The interaction between users and a grid environment occurs

3A grid site, which was referenced in Table 1, is considered as a Resource Centre (RC).
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through the access point known as User Interface (UI). By using the UI

command line, jobs4 are launched into execution; previously a job descrip-
tion file is built for every application task. Then, jobs are handled in the
corresponding ROC by the Workload Management System (WMS), whose
purpose is to accept the submitted jobs, to allocate them in the most suit-
able Computing Element (CE), to record their status and, finally, to return
the generated output. The machine where this service is installed is known
in grid terminology as Resource Broker (RB). Regarding the CEs, they are a
type of scheduler at the RC level that decides in which Worker Node (WN)
tasks will be executed. For selecting a CE a process denoted asmatch-making

is applied, according to which the availability and goodness of resources are
taken into account along with tasks requirements.

Figure 1: Representation of a typical grid architecture. The proposed ERSmodel is located
in the UI. Only user commands are applied for monitoring the resources’ efficiency.

Furthermore, grid philosophy enables users to specify which CE will man-
age their tasks. Considering this circumstance along with previous assump-

4A job is a grid task defined by using a specific description language known as JDL

(Job Description Language) [24]. With this language, users describe the task or tasks
(belonging to a particular application) to be performed in the grid infrastructure. Hence,
a job wraps users’ application tasks, allowing them to run in a WN.
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tions, we have decided to measure and to classify CEs based on their efficiency
value (see the model formulation in the following section).

3.2. The Model Formulation

This Section describes how the model measures the resources’ efficiency.
The model manages two workspaces during the application execution: a
task space J, consisting of n independent and parallel tasks to be processed
(tasks only differ in their input parameters value), and a heterogeneous re-
source space R, which contains the m available CEs from the corresponding
infrastructure. Notice that the model has been defined for supervising the
execution of parametric sweep applications, in which all tasks have similar
characteristics and behaviour (this fact reduces the problem complexity).

Then, the model guides applications selecting an efficient resource rtα ∈ R
for every task tα ∈ J (the model finds the best CE (rtα) to execute the next
task (tα); we do not try to find the best pair (rtα, tα)). For speeding up the
model learning a subset of J is launched at the beginning of the application
execution. This subset is denoted as Pα and has associated a subset of R
denoted as RPα. These resources are selected in a random way because at
that moment there are not efficiency metrics (i.e. all of them are initially
considered as efficient).

Once the Pα set is launched into execution, tasks are monitored indepen-
dently. Every task tα has assigned a lifetime ltj to be executed. The cor-
responding resource rtα should complete the task within that time. Hence,
the efficiency value of a resource is updated when the corresponding tα is
finished or when its ltj ends.

Concerning the efficiency metrics, several parameters are defined within
the model. First, the processing time Ti,j of a particular CE is illustrated
in Eq.(1). This parameter depends on the CE communication time Tcommi

with other grid services5 and on the computation time Tcompj,i of task j,
which is allocated in resource i.

Ti,j = Tcommi + Tcompj,i . (1)

Next, the time consumed θi by resource i with respect to task lifetime ltj
is calculated as shown in Eq.(2). Furthermore, the resource’s processing time

5As the model guides parametric sweep application (all tasks are identical) we consider
that Tcommi mainly depends on the corresponding CE.
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Ti,j is applied. A value closer to 1 implies that the corresponding task was
performed in a faster way.

θi = (ltj − Ti,j)/ltj . (2)

Finally, the fitness Fi of a resource is based on its rate of successfully
completed tasks ǫi and on its θi value. Furthermore, both parameters have
associated a weight or relevance value denoted respectively as a and b (see
Eq.(3)). These relevance values are specified by users to determine the re-
quirements of their experiments. Every resource with a fitness value close to
1 is considered as an efficient one.

Fi = (a · ǫi + b · θi)/(a+ b) . (3)

4. Developing the ERS Model Applying an Evolutionary Algo-

rithm

This Section introduces the combination between the mathematical for-
mulation and the Scatter Search method, resulting in the ERS-SS model
version.

Figure 2 represents the functional diagram which comprises the behaviour
of our proposed model. It is possible to distinguish three phases within that
execution diagram: processes with dashed line (Phase 1), processes with
dotted line (Phase 2) and processes with solid line (Phase 3).

The processes with dashed line compose the first phase, denoted as Prepar-
ing the environment, in which the main objective is to adjust the environmen-
tal conditions of the model. For that reason, spaces J and R are composed
in this stage. Notice that users provide certain generic information about
their scientific applications such as input data, output data, execution time
of a particular task, tasks’ requirements, etc (all this information is gathered
through command line and templates). Furthermore, the model queries the
Information System IS (by applying user commands) for determining the
components of space R (i.e. for discovering the available resources). Con-
cerning the parameters handled by the model, both the real workload value
of available resources and the lifetime ltj of every application task are also
initialized. The resources workload is calculated by querying the IS as it was
done before (this workload value will be continually updated in Phase 3).
The lifetime ltj will be initialized considering the application information.
Finally, the model prepares the Pα subset.
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Figure 2: Scheme of the ERS model in which the self-adaptive capability is represented.
The model guides the application avoiding inefficient, inoperative and overloaded re-
sources.

Next, the application execution is started (processes with dotted line)
within the second phase (named Initialization). Once spaces J and R are
prepared and the corresponding Pα set is ready for execution, the model
selects a set of resources RPα for performing Pα. As stated, this subset
RPα ⊂ R is chosen in a random way because there are not efficiency metrics
yet. That means, as it is unknown how efficiently resources perform, the
model considers that all of them execute tasks in the same way (i.e. initially
it is considered that all of them have the same efficiency value). It should be
highlighted that Pα and RPα follow a many-to-one relationship (several tasks
could be managed by the same CE), so that, it is possible to find repeated
resources in the RPα set. After that, Pα is launched into execution.

Finally, the processes with solid line included in the third phase (the
Adaptive Execution phase) are used to provide a self-adaptive capability to
the corresponding application. Once Pα is launched, the tasks that compose
this set are monitored (as in Phase 1, the IS will be queried to determine
the grid status of each task). When a task tα finishes6 its execution, the

6There are three possibilities: when the task’s lifetime ends, when it is cancelled by the
infrastructure or when it ends its execution successfully.
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resource’s information (workload, Ti,j, etc.) is updated and its efficiency
value Fi is obtained. Moreover, the real workload value of every available
CE is updated (the model takes into account the current infrastructure’s
status in its decisions). After that, by applying an Evolutionary Algorithm
(EA), a resource is efficiently selected for a new task; this task is launched
into execution (its lifetime has been previously initialized). The processes
with solid line are repeated until all tasks tα ∈ J are performed.

The following subsection describes how the Scatter Search method is used
in the selection process, resulting in a self-adaptive process.

4.1. The ERS based on the Scatter Search

The Scatter Search [8]-[10] is an evolutionary algorithm used for solving
a wide range of hard optimization problems. Mainly, it is based on com-
bining solutions for creating new enhanced ones. This combination applies
systematic selections over a Reference Set (small set of solutions). This set
includes the good solutions that have been found during the search process.
The goodness of a particular solution is based on quality and on diversity
criteria.

As far as the ERS model concerned, several components have been in-
cluded for adapting the Scatter Search method to the assumptions established
in previous sections. It should be highlighted that in this ERS version we
are focused on applying the ranking part of the SS algorithm during the
selection strategy. The next three elements are also part of the efficient se-
lection process. Notice that combining the two following sets (SQ and SD)
the Reference Set is constituted.

• A Quality Set SQ consisting of the q most efficient resources.

• A Diversity Set SD including the h most diverse resources with re-
spect to SQ. The diversity value is based on efficiency and geographical
criteria. First, resources from RD (RD = R− SQ) are classified by site
membership (geographical location). Then, every diversity value is cal-
culated considering this geographical classification along with the site
membership of quality resources. Next, all resources fromRD are sorted
from higher to lower diversity value. The first h resources that exceed
the fitness threshold will compose the SD set. If we have less than h
resources that exceed the threshold, we select the remaining ones in a
random way from RD set, without duplicating resources.
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• A Fitness Threshold that is applied during the composition of SD.
It is the average fitness value of all evaluated resources. Every time
a resource rtα processes a task and its efficiency value is updated, the
model updates the threshold.

Concerning the ERS-SS execution pseudocode, the main steps within each
phase (Preparing the environment, Initialization and Adaptive Execution in
Figure 2) are described in Figure 3. Once the model’s environment is pre-
pared, two methods owned to SS are applied for obtaining a Reference Set.
Owing to the fact that there are not efficiency metrics, SQ and SD are formed
in a uniform random way. Next, the Pα set is composed. Tasks belonging
to that set are also selected randomly from space J . Similarly the RPα set
is generated at that moment in a random way. The model initializes tasks
lifetime and launches Pα into execution.

PREPARING THE ENVIRONMENT

INITIALIZATION

* Apply Diversification Generation Method.

* Build  a Reference Set RefSet randomly;

* Generate a P   from Space J.

* Determine a random RP   set for P  .

* Launch P  .

ADAPTIVE EXECUTION

While there are unprocessed tasks  do:

    * Monitor tasks. 

    * If a task t   is processed then:

       * Update resource's metrics (rt   metrics).

       * Update fitness threshold.

       * Apply a Reference Set Updated Method.

       * Select a new resource belonging to rt   set.

       * Launch a new task.

* End.   

            

  

* Compose space R with available CEs.

* Compose space J with the corresponding tasks.

Figure 3: The main instructions of the ERS-SS execution flow are specified in this figure.
It is possible to distinguish the different phases that compose the model.
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Within the Adaptive Execution phase tasks are monitored independently.
When a task tα is processed (it finishes its execution) the efficiency metrics
of the corresponding resource rtα are updated. Next, the model applies a
Reference Set Updated Method. Within this method, SQ and SD are composed
as mentioned above. The elements of both sets will be part of the new
updated Reference Set. A new efficient resource is selected from Reference

Set in case space J is still unprocessed. Overloaded resources as well as
unavailable resources are avoided using this adaptive execution. This efficient
resource should belong to the previous resource set: if the previous resource
rtα belongs to the SQ set, then, the new one belongs to the same set. On the
contrary, if it belongs to SD the new resource is selected from that resource
set. Once a new resource is chosen, the model sends a new task into execution.
This adaptive phase is repeated until the whole space J is processed.

5. Previous ERS Model Versions

5.1. The Preferential Attachment Model Version

The Preferential Attachment (PA) [6, 7] technique is a famous algorithm
within the Complex Networks field. Barabási and Albert introduced it to
explain the power-law degree distribution in complex networks. The main
idea is that nodes in a Complex Network (a graph with non-trivial topological
features in which nodes represent the dynamical units) with a higher degree
acquire new nodes more easily than the remaining nodes. These nodes with
a higher degree are known as hubs. In a group of friends, hubs are the most
popular ones.

A paradigmatic example of a preferential attachment process is the In-
ternet growth, from a webpage point of view. In this regard, a new webpage
will be linked to a highly visited webpage with a higher probability than to
another page with few visits. Then, it is possible to conclude that a new
node i is linked to an existing one j with a probability proportional to the
node degree (it is the total number of links of a node).

In the ERS-PA [11] version the following assumptions are considered for
applying this complex algorithm in the selection process.

• The resources belonging to space R will be represented as nodes in the
corresponding complex network.

• This complex network is built at runtime.
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• The degree of a particular node represents the number of times this
resource has been selected during application execution.

• The probability of connecting a new node with an existing one depends
on resource’s efficiency.

• The efficiency (Ei) of a resource is based on both the resource relative
degree (ki/kmax) and the resource’s fitness value (Fi; Eq.(3)):

Ei = (ki · Fi)/kmax . (4)

5.2. The Variable Neighbourhood Search Model Version

The Variable Neighbourhood Search (VNS) [3, 4] is a metaheuristic used
for solving optimization problems by applying a search process in a specific
space of solutions. The main idea is to change the neighbourhood structure
during the local search. The steps of VNS are represented in Figure 4.

INITIALIZATION

* Select a set of neighbourhood structures Nk;

* Specify an initial solution x;

* Choose a stopping condition;

ITERATIONS

Repeat until the stopping condition is met:

    * k      1; 

    * Repeat until k = kmax:

       * Shaking: generate a random solution x' from the kth neighbourhood of x;

       * Local Search: apply a local search method considering x' as the initial

          solution; Denote with x'' the resulting local optimum;

       * Move or not:

          * if x'' is better than x do 

             * x = x'';

             * k = 1;

          * else: k = k + 1;     

* End.   

            

  

Figure 4: Main rules that govern the VNS algorithm.

According to the information described in Figure 4 the VNS looks for a
global maximum or minimum solution, depending on the problem. In our
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case, as we want to find the most efficient resources, the model tries to maxi-
mize the fitness of grid resources (get fitness values close to 1). Furthermore,
considering the fact that we sent Pα into execution, in ERS-VNS the effi-
ciency of the whole RPα set is measured (see Eq.(5)).

F (RPα) = (
d∑

i=1

Fi)/d . (5)

The fitness is calculated as specified in Eq.(3) for every resource rtα be-
longing to RPα. The cardinality of this resource set is denoted as d. Hence,
an initial solution x in the proposed ERS-VNS version is the RPα set. Then,
the solution x′ is obtained after performing a mutation or shaking process
over x. Finally, x′′ is a new optional solution (a new RPα set).

In this version, we introduce two parameters that are handled by every
neighbourhood structure: pk and qk. In a particular neighbourhood struc-
ture kth, parameter pk quantifies the variation/difference between the initial
solution x and the mutated solution x′. This parameter varies in an increas-
ing way from a structure to another. Moreover, parameter qk indicates the
search range applied during the local search. The value of such parameter
depends on the number of available resources. These resources are ordered
from higher to lower efficiency value.

In order to enhance the behaviour of ERS-VNS a fitness threshold is also
included. This threshold is used during the mutation/shaking process for
determining which resources should mutate (those which are considered as
inefficient resources).

5.3. The Cellular Automata Model Version

A Cellular Automata (CA) [25] is a discrete model composed by a grid
of cells, each of them with a finite set of status. Moreover, each cell has
associated a neighbourhood that is constituted by the closest cells in the
grid.

In this version of the model, ERS-CA [12], the grid infrastructure is mod-
elled as a CA, in particular as a Cellular Automata Network [5]. The CEs

are represented as cells of a CA and they are grouped in subnetworks by
considering geographical criteria. The way to locate resources in the CA

is by establishing that physical neighbours in the infrastructure would be
neighbours in the resulting CA. The number of subnetworks depends on the
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amount of available resources; a minimum cardinality value of 3 resources is
fixed in all the subnetworks.

Each cell in ERS-CA has three possible states: living, dead and inopera-

tive. The model considers that a living cell represents an efficient resource.
In contrast, when a resource is classified as inefficient the corresponding cell
has a dead status. Finally, the unavailable resources are considered as in-

operative cells. In this version, the efficiency of a resource is calculated by
using Eq.(3).

The resources workload is used within the governing rules for detecting
when a resource is overloaded. In every subnetwork, and during the selection
process, a workload threshold is applied to determine the surviving cells. In
this regard, only the two least loaded cells will survive in each subnetwork.
Next, the governing rules of ERS-CA are described:

• The two cells with minimum workload value are considered living cells.

• When a cell exceeds the workload threshold dies.

• A cell with all its neighbours dead survives.

Finally, with all the living cells the model generates a candidate set. The
following rules are applied:

• Selective Pressure: the most efficient 50% of candidate cells promotes
as a solution.

• Scout Resource: an unexplored resource is selected in a random way
by the model to be part of the solution.

6. Experimental Evaluation

The Efficient Resources Selection model has been tested in the European
Grid Infrastructure (EGI7). This platform coordinates different grid projects
like the National Grid Initiative (NGI). Specifically, we perform the real
experiments in the Spanish National Grid Initiative (ES-NGI)8. We were
affiliated to the Ibergrid9 VO, an organization with 30 CEs approximately.

7http://www.egi.eu/
8http://www.es-ngi.es/
9http://www.ibergrid.eu/
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As stated, during the model design two objectives were fixed: a reduction
in the application’s execution time and an increase in the successfully finished
tasks rate. We consider that both goals are interesting topics for grid users.
The ERS model monitors the resources’ efficiency during the whole applica-
tions execution, avoiding those resources that are overloaded, inoperative or
inefficient. We expect that the combination of discarding inefficient resources
and selecting the most efficient ones leads to a reduction in the application
execution time. Furthermore, with this fact (exploiting the throughput) we
aim to improve the successfully finished task rate.

The way to determine if the objectives have been accomplished is by
defining two scenarios in which we also analyse the model behaviour. In this
regard, the first scenario is used for studying the model learning and how it is
influenced by different parameters. The second scenario is designed to deter-
mine if the model performs properly for applications with a large number of
tasks. In both scenarios, we compare our approach with the standard selec-
tion technique in European grid infrastructures, which are based on gLite10

middleware. This technique includes a mechanism known as match-making

[24] based on which the WMS distributes jobs on the grid infrastructure.
This mechanism first chooses those available CE that fulfil the user require-
ments and that are close to the specified input files. Then, it selects a CE

with the highest rank value. Notice that the default ranking mechanism of
WMS takes into account the resource’s response time. The match-making is
a symmetric algorithm in which the CE evaluation goes in both directions
due to the fact that both the requirements specified by users and the require-
ments defined by the WMS are considered. Finally, we refer to this standard
technique as Traditional Resources Selection (TRS).

Also in this Section certain circumstances of the model and some applica-
tion’s characteristics have been analysed. They are discussed in Sections 6.3,
6.4 and 6.5. In all these studies the new ERS-SS versions have been assayed
considering the characteristics fixed in scenarios 1 and 2. Different applica-
tions have been considered in our experiments: Runge-Kutta (sections 6.1,
6.2, 6.3 and 6.4), Gaussian, LU Decomposition, and FFT (section 6.5, anal-
ysis of workflows). Finally, parameters a and b are fixed at 60% and 40%
respectively; we give a slight relevance to the number of successfully finished
tasks because we think this is an important issue for grid users. Notice that

10http://glite.cern.ch/
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10 real executions of each version have been performed in every test. Hence,
the results shown in the corresponding figure for each version (the TRS and
the ERS versions) are the average values of this set of executions.

6.1. Scenario 1: Analysing the Model Learning

In this scenario we want to determine how the size of Pα influences the
model learning. Thus, the size of space J is fixed at 200 tasks while in every
test the size of Pα varies from 5 to 40 tasks (as shown in Table 2).

Table 2: Configuration characteristics in scenario 1.

Pα Space J Algorithm

Test 1 5 200 PA, VNS, CA, SS and TRS

Test 2 10 200 PA, VNS, CA, SS and TRS

Test 3 13 200 PA, VNS, CA, SS and TRS

Test 4 20 200 PA, VNS, CA, SS and TRS

Test 5 40 200 PA, VNS, CA, SS and TRS

From the obtained results (Figure 5) it is possible to conclude that all
ERS versions get better execution times with respect to the standard Eu-
ropean grid technique TRS. In particular, the proposed approach described
in this contribution, ERS-SS, reaches the best execution times. In this case,
when the size of Pα is increased the model achieves a higher execution time
difference with respect to TRS. This is due to the fact that the number of
resources evaluated at the beginning of the application execution grows in
each test (this situation motivates a fast learning).

However, the ERS-PA version gets its minimum values in the first tests (5,
10 and 13). In the last tests (20 and 40) probably the hubs in the complex
network become overloaded more quickly because of the quantity of tasks
sent at the same time. When this fact occurs, the model takes a long time
to appreciate this overload because the efficiency (as indicated in Eq.(4))
depends on both the fitness and degree values (the degree of a hub is very
high so it counteracts a low/bad fitness).

Concerning ERS-VNS, it gets a constant execution time difference with
respect to TRS. In the last three tests (13, 20 and 40) the ERS-VNS reaches
higher execution time values than in the first two tests. This is due to the fact
that for large sizes of Pα there are less changes of neighbourhood structures,
so the model is far from obtaining the global optimum resource set.

19



Figure 5: The results obtained by the different versions after performing the first scenario.
The ERS-SS improves the execution time with respect to the previous ERS versions and
TRS.

Regarding the ERS-CA, for high sizes of Pα there is a fast model learning
because more resources are selected/evaluated from the first moment; this
way the model avoids resources overload and achieves a complete efficiency
rating in a shorter time. Finally, the successfully finished tasks rate is also
improved in all ERS versions as shown in Figure 6. Notice that in every test
(i.e., in every size of Pα), results are represented following the order TRS,
ERS-SS, ERS-PA, ERS-VNS and ERS-CA. The ERS-SS obtains the best
tasks rate in average.

Figure 6: Representation of the successfully finished tasks rate for the different versions
in all tests.
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6.2. Scenario 2: Analysing Large Sizes of J

This second scenario has been defined to determine the range of applica-
tions in which it is appropriated to use the ERS model. For that reason, the
size of space J is varied in every test from 50 to 500 tasks (see Table 3). The
size of Pα is fixed at 10 tasks.

Table 3: Configuration characteristics specified for the second scenario.

Pα Space J Algorithm

Test 1 10 50 PA, VNS, CA, SS and TRS

Test 2 10 100 PA, VNS, CA, SS and TRS

Test 3 10 200 PA, VNS, CA, SS and TRS

Test 4 10 300 PA, VNS, CA, SS and TRS

Test 5 10 400 PA, VNS, CA, SS and TRS

Test 6 10 500 PA, VNS, CA, SS and TRS

In Figure 7 the results that have been obtained in the 6 different tests are
represented. TRS gets the highest execution time in all tests. The ERS-PA,
ERS-VNS and ERS-CA versions obtain execution times close to TRS in the
first three tests (50, 100 and 200). ERS-VNS and ERS-CA have a similar
behaviour in the whole scenario, improving the execution time difference with
respect to TRS as the size of space J is increased.

Figure 7: Comparative graphic from Scenario 2 in which we represent the results obtained
for every version. ERS-SS gets the best execution time in all tests.

Concerning the ERS-PA version, it does not improve its execution time
from a size of 300 tasks to the last one (500), although these time values are
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still better than the execution time of TRS. Finally, the ERS-SS version
achieves a great execution time difference with respect to TRS and also
presents a significant time difference with respect to the other ERS versions.
Finally, as shown in Figure 8, the successfully finished tasks rate is also
improved in all the ERS versions with respect to TRS.

Figure 8: Percentage of successfully finished tasks for the five versions in Scenario 2. It is
possible to observe that ERS-SS has the most constant rate in all tests.

From both scenarios we can conclude that the two objectives fixed (reduc-
ing the application’s runtime and improving the rate of successfully finished
tasks) have been accomplished, so that, the ERS model is a feasible solution
for grid applications.

6.3. Scenario 3: Analysing Tasks Replication

In the two previous scenarios, the size of space J has been fixed at a
particular value x, although some tasks have been processed without success
(which is an usual situation in grid infrastructures). However, most of users
need to finish all tasks in a successful way. For that reason, in this scenario
we modify the ERS-SS model for considering tasks replication, ensuring a
successful completion of space J .

Thus, the ERS-SSmodel monitors tasks as specified in Section 4 but now,
when a task tα is processed the next rules are applied:

• If the grid status of tα is Done, the model selects an efficient resource
and launch a new task.

• If the grid status is Aborted or the lifetime of tα ends before it is
successfully completed, the model selects two efficient resources: one
for replicating tα and another for executing a new task.
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From now on, we denote this version as ERS-SS-RE (ERS-SS with repli-
cation). Next, for evaluating this new behaviour of the ERS model we per-
form the previous scenarios (1 and 2) with the replication approach. We also
maintain the parameters configuration specified in Tables 2 and 3. First,
the data resulting from performing scenario 1 are discussed. In this case,
Figure 9 shows that there is a slight execution time difference between ERS-

SS and ERS-SS-RE (i.e. an average execution time difference of 25 minutes
between both ERS-SS versions. The replication approach takes 25 minutes
more than the non-replication one). Furthermore, the execution time is much
better than in the TRS version.

Figure 9: Results that have been obtained during the first scenario when applying repli-
cation in the ERS-SS model.

Now, in Figure 10 we compare our replication approach with a TRS

version in which the replication option is also included (denoted as TRS-

RE). Notice that the standard grid selection with replication is even slower
than TRS.

Concerning the second scenario (see Figure 11), notice that the ERS-SS-
RE version gets again close values to ERS-SS. The average execution time
difference between the replication and non-replication ERS versions is about
7 minutes. With a higher size of space J the model classifies better the grid
resources, implying a low replication rate. However, as shown in Figure 10
and Figure 12, the TRS-RE spends more execution time for processing the
whole space J . Then, we can conclude that it is possible to apply replication
in our ERS model without affecting the objectives fixed.
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Figure 10: In this case it is included the TRS considering replication. It is possible to
observe that TRS-RE spends even more execution time than TRS.

Figure 11: Results obtained during the second replication scenario when applying replica-
tion in the ERS-SS model for large productions. There is a slight execution time difference
between the two ERS-SS versions.

6.4. Scenario 4: Analysing Free Slots

In this fourth scenario we intend to simulate load balancing by considering
free slots during the model execution. In that sense, as the model is defined
from a user point of view we do not implement any load balancing method.
In our case, the ERS model measures the actual resources’ workload and uses
this value to dismiss resources within the selection process.

During the initialization phase, the model calculates the workload for
every available CE. The required information for measuring this value is ob-
tained by querying the Information System (IS). This initial workload value
is used during the random selection of RPα (for executing the initial task set
Pα). This way, the overloaded resources are avoided from the beginning of
application’s execution.
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Figure 12: Results obtained in the second scenario with the replication option in the
standard grid selection TRS.

Next, every time a resource rtα processes a task, the workload of each
resource rtα ∈ R is updated. This value is considered within the Reference

Set Updated Method for obtaining the quality and diversity sets (SQ and
SD). An efficient resource will be part of SQ if it is not considered as
overloaded. In the same way, a diversity resource will be part of SD if it
is not overloaded. The model considers that every resource with a workload
value close to 1 (100%) is overloaded.

We perform the corresponding tests of scenarios 1 and 2 to analyse the
behaviour of such ERS approach (ERS-SS-Slots). In this case, we compare
this version with the original ERS-SS version and the standard European grid
technique TRS (applying free slots in TRS would be a way of modifying the
standard grid selection technique used in European grid infrastructures, for
that reason we do not consider it). The resulting data are shown in Figure 13,
in which it is possible to observe that ERS-SS with free slots criterion takes
more time to execute the application than ERS-SS. The average execution
time difference between the two ERS versions is about an hour.

Next, Figure 14 includes the three different versions when using the pa-
rameters configuration fixed in scenario 2 (Table 3 in Section 6.2). The
two ERS versions improve the execution time achieved by TRS. However,
the free slots version spent more execution time, as in the previous graphic.
The average execution time difference is about 2 hours between the ERS

approaches.
From the results that have been obtained in the whole scenario, it is

possible to determine that an efficient resource handles its tasks queue faster
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Figure 13: Comparative graphic for scenario 4 using the parameter configuration estab-
lished in scenario 1.

than another with a lower efficiency value, even when the more efficient
resource is overloaded and the other one has a lesser workload value. As
a conclusion, it is beneficial to exploit the best resources when they are
available.

6.5. Scenario 5: Analysing Data Dependence Workflows

Grid applications can be classified in two main types of workflow struc-
tures [26]: DAG (Directed Acyclic Graph) and non-DAG (Non Directed
Acyclic Graph). In DAG-based workflow, the workflow structure can be
categorized into sequence, parallelism, and choice. Sequence represents an
ordered series of tasks, in which a task starts its execution when a previous
one has been completed. Parallelism is composed by tasks which are per-
formed concurrently. In choice a task is selected to be executed when its
associated conditions are true. non-DAG workflows include not only all the
patterns defined previously but also the iteration structure. In this pattern
some sections of workflow tasks are allowed to be repeated.

Initially, the proposed model was defined for guiding parametric sweep ap-
plications (non-DAG parallelism workflow) constituted by independent and
parallel tasks; these tasks only differ in the input parameters value. However,
we consider an important issue allowing the model to guide applications with
a DAG-based workflow. In Figure 15 we represent the chains of processes that
form the workflow used in this scenario.

Three well-known applications are used in the workflow: Gaussian, LU
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Figure 14: Results obtained when performing scenario 4 with the free slots version and
considering the parameters’ configuration of scenario 2.

(Lower/Upper) Decomposition and FFT (Fast Fourier Transform) algorithms.
The flow consists of nodes connected by directed arcs. Each node (except
Launch and Report) represents a single computational task; this task has a
set of input and output arcs. Nodes connected with the Launch node re-
ceives control directives to initiate the computation. The remaining nodes
receive input data from other nodes through its input arc(s). Finally, nodes
connected with the Report node send their computed solution along the out-
put arc(s). Notice that some FFT nodes are used to initialize the successor
Gaussian nodes. The number of Gaussian nodes launched into execution at
the beginning of execution is equal to Pα size.

The ERS-SS model measures the efficiency of grid resources in a similar
way for non-DAG and DAG-based workflows. However, in DAG-based work-
flows every time a new task is sent into execution the following rules should
be considered to determine its type (Gaussian, LU and FFT).

• Every Gaussian task transfers its solution to a LU task.

• A LU task sends its output data to a FFT task.

• FFT tasks initialize the computation of Gaussian tasks as necessary.

Once the new behaviour of ERS-SS is described, the evaluation of this
approach is exposed (ERS-SS-DAG). As well as in previous studies (Sections
6.3 and 6.4), we evaluate the model by considering the same parameters’
configuration established in scenarios 1 and 2 (Tables 2 and 3). Also the
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LU LU LU
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Report

Figure 15: Data flow graph applied in the ERS model. Solid arrows imply data and control
flow. Dashed arrows imply control flow.

standard European grid technique for selecting resources (TRS) executes
applications with a DAG-based workflow (denoted as TRS-DAG).

Figure 16 represents the results for ERS-SS-DAG and TRS-DAG with
Table 2 configuration. Notice that in most of the tests the ERS-SS-DAG

obtains better execution times with respect to the standard grid selection in
European infrastructures TRS-DAG. Only with a Pα size of 40 both versions
gets similar values.

Next, the data obtained during the second scenario are exposed (Fig-
ure 17). The results show that in the early tests (size of J of 50, 100 and
200) each version gets similar execution time values. That is to say, ERS-SS-
DAG gets values within the range (100, 120) minutes in that three tests while
TRS-DAG obtains execution time values within the range (155, 180) minutes
in the same tests. However, from the size of 300 until the last test (size of
500 tasks) this difference between versions grows continually. In conclusion,
the larger the number of tasks to be executed, the greater the benefits of
ERS-SS-DAG.

Finally, we can say that the proposed model is a feasible solution for
non-DAG and DAG-based workflows in grid environments.
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Figure 16: Results obtained with the DAG versions with scenario 1 characteristics. ERS-
SS-DAG gets better execution time values.

Figure 17: Results obtained with the DAG versions with scenario 2 characteristics. ERS-
SS-DAG gets better execution time values.

6.6. Concluding Remarks from the Experimental Evaluation

Next, the main conclusions of previous sections (from Section 6.1 to Sec-
tion 6.5) are summarized:

• In Section 6.1 we have verified that the model learning gets better
results when large sizes of initial Pα are applied. More resources are
initially evaluated in these cases.

• In Section 6.2 it is possible to observe that the model is a beneficial
approach for performing massive computing applications (which are
typical samples of grid applications).
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• Results in both scenarios confirm that the objectives fixed were ac-
complished: a reduction in the application’s execution time and an
increment in the successfully finished tasks rate.

• It is possible to apply task replication in the ERS model as shown in
Section 6.3 because this option does not affect in a negative way the
objectives established.

• When considering free slots in the resources selection, during Sec-
tion 6.4, we have concluded that efficient resources with a reduced
number of free slots (i.e. they have few idle CPUs) handle their tasks
queue faster than resources with a lower efficiency value and a higher
number of free slots. Therefore, the conclusion is that we should exploit
the efficient resources as much as possible.

• Results in Section 6.5 demonstrate that the model manages DAG-based

workflows as efficiently as non-DAG workflows.

• As shown in the experiments along the scenarios discussed, the TRS

does not outperform the ERS in any case. We consider that these facts
indicate that we will obtain similar results in other possible experi-
ments.

• Concerning the sensitivity of TRS, when using large sizes of Pα more
CEs are needed at first. In the TRS case, that means a higher probabil-
ity of selecting inefficient resources, leading to a worsening application’s
execution time. Presumably, in some of those cases TRS waits for tasks
timeout due to overloaded resources.

• Finally, as said, the ERS-SS gets good results for different types of ap-
plications as exposed in the diverse scenarios of the present manuscript.
Also in these cases different kinds of tasks were taken into account:
Runge-Kutta, Gaussian, LU decomposition, and FFT algorithm. In
addition, we have evaluated the ERS-SS approach in other grids, also
obtaining good results.

7. Conclusions and Future Work

The present study investigates the problem of resources selection and
the application’s adaptation in grid environments. This paper proposes an

30



approach that provides this self-adaptive capability to applications increasing
their throughput. The model is based only on the operations that users can
perform, without modifying of any grid component (hardware or software).

We evaluated our approach in an European grid infrastructure; our effi-
cient selection model has been compared with the standard selection process
of European grid environments, which use the gLite middleware. We have
also analysed certain characteristics of our model and we have also considered
some grid circumstances; all of these issues have been discussed in Sections
6.3, 6.4 and 6.5 within the evaluation phase.

From the results that have been obtained it is possible to deduce that
using this model for computing the scientific applications provides, even, a
reduction of execution times while improves the number of completed tasks.
Another conclusion is that the model can be used as a status indicator of a
particular grid infrastructure. That is to say, files with the statistics that the
model built after each application’s execution can be used as status reports.

Future work will involve improving the model by searching other algo-
rithms that could be better adapted to the grid infrastructure behaviour due
to its algorithmic design. Further research is also needed to consider other
circumstances or elements that could affect the applications performance.
We also aim to use new grid services and facilities to lead in a more powerful
and complete self-adaptive capability.
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Manual Series, CERN-LCG-GDEIS-722398, 2012.

[25] H. Zenil, Compression-based Investigation of the Dynamical Properties

of Cellular Automata and Other Systems, Journal of Complex Systems,
Vol. 19, Issue 1, pp. 1-28, 2010.

[26] J. Yu and R. Buyya, A Taxonomy of Workflow Management Systems

for Grid Computing, Newsletter ACM SIGMOD Record, Vol. 34, Issue
3, pp. 44-49, 2005.

34


