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We demonstrate a compact, spectrally-selective, and tunable delay line for single photons 

emitted by quantum dots. This is achieved by fine-tuning the wavelength of the optical 

transitions of such "artificial atoms" into a spectral window in which a cloud of natural atoms 

behaves as slow-light medium. By employing the ground-state fine-structure-split exciton 

confined in an InGaAs/GaAs quantum dot as a source of single photons at different frequencies 

and the hyperfine-structure-split D1 transition of Cs-vapors as a tunable delay-medium, we 
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achieve a differential delay of up 2.4 ns on a 7.5 cm long path for photons that are only 60 µeV 

(14.5 GHz) apart. To quantitatively explain the experimental data we develop a theoretical model 

that accounts for both the inhomogeneously broadening of the quantum-dot emission lines and 

the Doppler-broadening of the atomic lines. The concept we proposed here may be used to 

implement time-reordering operations aimed at erasing the "which-path" information that 

deteriorates entangled-photon emission from excitons with finite fine-structure-splitting. 
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Optically active epitaxial quantum dots (QDs) have emerged as efficient sources of single 
1
 and 

entangled photons 
2,3

 on demand 
4
 with potential applications in the field of quantum 

communication
5
. By interfacing photons emitted by QDs with clouds of natural atoms, photon 

storage at single photon level
6
 may become possible, thus opening the route to the realization of 

hybrid interconnects for quantum networking
7
. Pioneering experiments in this field 

8
 have shown 

slow-light in Rb clouds using single photons emitted by GaAs QDs. These experiments – based 

on the original concept proposed by Camacho et al.
 9,10

 – were performed by tuning the QD 

emission lines between the hyperfine-split D2 transition of 
87

Rb. Despite the work clearly shows 

the potential of the hybrid natural-artificial interface, the pronounced spectral broadening of the 

QD-photon source employed for the experiments prevented a detailed analysis of the temporal 

delay as a function of the relative spectral position of QD and atomic transitions. This is an 

interesting aspect of the hybrid interface because it could allow introducing temporal delays 

between photons whose frequencies differ only by a few GHz. The resulting spectrally-selective 

delay-line could be exploited not only as a filter in experiments aiming at storing and retrieving 

single photons 
6
, but it could represent a useful tool to “reorder” in time the temporal sequence of 

photons originating from radiative cascades in real 
11

  and artificial atoms 
12,13

. 

In this work, we demonstrate that a cloud of cesium atoms can be used to introduce a significant 

temporal delay (up to 2.4 ns for transitions featuring lifetimes 𝜏𝑄𝐷 ≈ 1𝑛𝑠) between photons 

which are separated in frequency by more than 10 GHz. As source of single photons with 

different colors we use the fine-structure-split emission lines of excitons confined in single self-

assembled InGaAs/GaAs QDs. Their energy can be finely adjusted to the middle of the D1 

transitions of Cs-vapors via external electric or strain fields provided by diode-like 

nanomembranes
14,15

 integrated onto piezoelectric actuators
 16 ,17

. We show that the amount 
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temporal delay
18

 between the photons can be tuned by varying the temperature of the Cs cell and 

that the “antibunched” character of the quantum source is retained after photon-propagation 

though the cell. Finally, we develop a theoretical model that quantitatively explains all the 

experimentally observed features of the spectrally-selective delay line.  

Figure 1a illustrates the idea behind the experiment performed in this work. We use a single QD 

as a source of photons with different frequency (see the blue and the red photons in the Figure 

1a) and we employ external strain or electric field to tune their emission energy across the 

hyperfine-split D1 lines of a Cs clouds contained in a quartz cell. The photon interaction with Cs 

atoms in the cell (i.e., the time delay) depends eventually on their energy. When the photon 

energy matches the center of the D1 lines, the photon group velocity can be drastically decreased 

with respect to the vacuum value. Therefore, the time sequence of photons emitted by QDs with 

slightly different frequencies can be controlled by simply varying the temperature of the cell, 

which increases the optical depth of the absorption line and, due to a change in the real part of 

the refractive index, modifies also the group velocity. 

We start out characterizing the properties of the quartz cell containing the cesium cloud. The Cs 

D1 transitions are split into the 6
2
S1/2 and the 6

2
P1/2 levels, which are further split due to the 

hyperfine coupling into levels characterized by total atomic angular momentum F=3 and F=4. 

Therefore, there are 4 possible transitions highlighted in Figure 1d with different colored arrows. 

19
. The optical transmission measurements around the D1 lines through the Cs cell are reported in 

Figure 1b for different vapor temperatures (for details on the measurements see the 

supplementary information). The characteristic four transitions of the hyperfine structure are 

clearly resolved for a cell temperature Tcell=70 °C (black line), but they quickly broaden as Tcell 

is increased due to well-known Doppler broadening 
20

. Most importantly, two absorption dips 
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separated by 10 GHz remain for Tcell>100 °C. This splitting is considerably larger than the one of 

the D2 lines of Rb
8
 ≈ 6.8 𝐺𝐻𝑍  and is therefore more suitable for experiments involving 

spectrally-broadened QD lines (see the following). 

Based on these measurements we are able to simulate the optical response of our Cs cell in the 

proximity of the D1 lines. The numerical simulations make use of the susceptibility 
9,

 
18

 and take 

into account all possible transitions of the Cs D1 line. More specifically, the susceptibility of a 

medium with 4 resonances (ν33,ν34,ν43,ν44) can be modelled as: 

χ(ν)=A (
g33

ν33-ν-i γ
+

g34

ν34-ν-i γ
+

g43

ν43-ν-i γ
+

g44

ν44-ν-i γ
)   

where g33,g34,g43,g44 are the oscillator strengths of each resonance 
19

 and a damping constant γ, 

which determines the linewidth of the resonances. Finally, the complex refractive index n and 

group velocity vg can be derived from the susceptibility giving: 

vg=
1

n(ν)+ν
d n(ν)

d ν

 

The simulated vg is shown in Figure 1c for different temperatures as a function of the detuning 

(Δ) with respect to the Cs D1transition. For small Δ we find that vg is significantly reduced with 

respect to the speed of light (c) while there is practically no absorption of the photons 

propagating through the cell (see Figure 1b). It is also interesting to note that it is not necessary 

to tune the energy of the photons exactly in the middle of the hyperfine doublet to observe slow-

light, as can be clearly seen in Fig. 1b for Δ larger than 5 GHz. Finally, we note that the 

magnitude of the delay can be easily increased by changing temperature of the cell, revealing 
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that vg can become negative at the absorption lines. This interesting effect originates from an 

anomalous dispersion and can either lead to fast light or a backward propagating wave
21

. 

Having characterized our slow-light medium we now address the transmission through the Cs 

cell of streams of photons emitted by semiconductor QDs. We use InGaAs QDs embedded in 

strain-tunable optoelectronic devices, where large strain and electric fields are used to fine tune 

the energy of optical transitions across the spectral region of the D1 line of Cs. Details on sample 

fabrication and device performances can be found elsewhere
22

. 

Figure 2a shows color-coded micro-photoluminescence spectra of a negatively charged exciton 

(trion) that is tuned through the hyperfine structure of Cs D1 by varying the electric field Fp 

across the piezo (i.e. the QD strain status, see Ref 16,17 for details). A strong quenching of the 

transmitted light is observed for 𝐹𝑝 =  7.05 and 7.5 kV/cm as result of optical absorption in the 

Cs vapor. This effect can be better observed in the Figure 2b, where the intensity of the QD light 

transmitted through the Cs cell is reported as a function of Fp and Δ (calculated assuming a linear 

relation between the emission energy shift and Fp, see Ref. 16). Considering that the temperature 

of the Cs cell is 135 °C, the data of Fig. 2b nicely match those of Fig.1b but for the additional 

broadening of the transmission dips. This is due to the broad linewidth of the trion transition, 

which could not be resolved using our spectrometer (featuring a spectral resolution of 25 µeV). 

By performing a convolution between the measured Cs transmission spectrum at 136 °C (see 

Fig. 1b) and a Gaussian function we find the best agreement to the experimental data via least 

squares minimization and using the linewidth ω as the only simulation parameter (see the 

supplemental material). Using this procedure, we find ω=10.3 ± 0.1 μeV. On the one hand, this 

analysis clearly shows that sweeping the QD lines through the hyperfine structure of atomic 
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clouds is a useful tool for high-resolution spectroscopy. On the other hand, the value of ω we 

measure highlights the improved optical quality of our QDs compared to those used in Ref 23, 

meaning that QD line can be conveniently tuned to the middle of the D1 transitions without 

substantial photon absorption. This allows us to demonstrate that the antibunching character of 

the photon source is retained under insertion of a slow-light medium in the optical path. Fig. 2c 

shows autocorrelation measurements for photons emitted by a different QD. For these 

measurements we used a trion featuring τQD=1.04±0.1 ns and ωQD=26.1 ± 0.5 μeV.  The red 

(black) curve in Figure 2c shows the result of the experiment for Δ > 15 GHz , (Δ = 0). Ideally, 

the autocorrelation histogram for a perfect single photon source should display a series of peaks 

of equal amplitude separated by the inverse of the excitation laser frequency (80 MHz here) and 

a missing peak at zero time-delay. On the one hand, the measurements for detuning Δ > 15 GHz 

shows clearly photon-antibunching and that the source is a single quantum emitter. On the other 

hand, it also shows a multi-photon emission probability of g(2)(0)= 0.17±0.08. This value most 

probably arises from carrier recapture phenomena on a time scale comparable with the trion 

lifetime
24

. The autocorrelation histogram for Δ=0 shows (i) a very similar multiphoton emission 

probability of 0.21±0.12, (ii) a reduced number of coincidence counts and (iii) a broadening of 

the autocorrelation peaks. While (i) clearly indicates that the antibunched-nature of the single 

photon source is unaffected by the insertion of Cesium vapor in the optical path, (ii) and (iii) can 

be explained by the broadening of the trion transition (26.1 μeV), which results in higher photon 

absorption in the Cs vapor and in a different shape in time of the photon wavepacket 
10

, as 

discussed in more details below. 

We now demonstrate the possibility of using a Cs vapor cell as a spectrally-selective delay line. 

For these measurements we use two fine-structure-split emission lines of a neutral exciton from a 
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different QD and we tune them in energy via the quantum-confined Stark resulting from 

changing the electric field Fd across the p-i-n diode structure (see Ref.
 
25

 
 for more details). The 

vertical (V) and horizontal (H) polarized PL spectra of the neutral exciton are shown in Figure 

3a, which reveals a fine structure splitting of 59 μeV, a value larger than the splitting between 

the two absorption lines of Cs D1 (41 μeV, see Figure 1b). The PL intensity for each 

orthogonally-polarized component is shown in Figure 3b as a function of Fd. The two absorption 

maxima related with the Cs D1 hyperfine structure can be clearly resolved for both components 

and – as expected – happen to be at different Fd. This means that, in principle, the temporal 

sequence of the differently-polarized photons escaping from the Cs cell can be varied according 

to their energetic position with respect to the D1 transitions of the Cs vapor. Fig. 3c-f shows 

time-resolved PL measurements at different Cs vapor cell temperatures for 𝐹𝑑 = -58.7 kV/cm 

(H-polarized photons tuned to Cs D1, light blue) and 𝐹𝑑 = -57.6 kV/cm (V-polarized photons 

tuned to Cs D1, light red). There are two main effects: i) both H and V-polarized photons can be 

independently delayed with respect to the detuned case; ii) the time delay strongly depends on 

the cell temperature, being larger at higher Tcell. More specifically, we measure a shift from 3.2 

ns (Tcell=101.5 °C) to 5.1 ns (Tcell=143 °C) in the case of H-polarized tuned photons, and from 

2.9 ns (Tcell=101.5 °C) to 4.9 ns (Tcell=143 °C) in the case of V-polarized tuned photons. 

Negligible time delays were instead measured for all cell temperatures when both H-polarized 

and V-polarized photons are detuned by Δ = 14.3 GHz ≈59 μeV. Besides the temporal delay, we 

observe a clear change in the temporal distribution of the transmitted photons, as can be seen by 

comparing the exponential decays of Figure 3c and 3d. This finding can be qualitatively 

explained considering the combined effects of the inhomogeneously broadened QD emission 

( ω=6.5 GHz) and the Doppler broadened absorption of Cs that produce a dispersion of the 
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group velocity and the transmission through the vapor. In order to quantitatively account for the 

experimental data, we model the QD emission in frequency with a Gaussian distribution 

featuring the spectral linewidth extracted from Fig. 3b while, for the time-resolved measurement, 

we use an exponentially modified Gaussian distribution 
26

 (as see supporting information). The 

temporal distribution of the photon wavepacket after propagation through the Cs cell at a specific 

temperature can be then calculated by discretizing the spectrally-broadened QD lines and 

evaluating (for different detuning Δ) the expected delay and relative intensity. Finally, by 

integrating over all Δ, the time-traces as a function of the cell temperature, QD linewidth and 

detuning can be obtained. Figure 4shows the result of the simulations for Δ=0 (Figure 4a) and 59 

µeV (Δ=14.3 GHz) detuning (Figure 4b). In both cases, we are clearly able to reproduce all the 

features of the experimental data, thus confirming that the reshaping in time of the photon 

wavepacket arises from the convolution of the spectrally-broadened QD emission with the 

different group velocities and rate of absorption in Cs vapors. For a better comparison between 

simulated and experimental results, we extracted the values of lifetime and delays see, 

respectively Figure 4d and 4c. The Δ = 0, the delay of the two excitonic lines (green and blue 

lines) follow an exponential function with temperature, a trend which is well reproduced by our 

simulations (see the dashed line).We are also able to reproduce the small and apparently linear 

increase of the delay with temperature for the detuned case (pink and light blue). In addition to 

the shift in time, we investigated the broadening of the photon-wavepacket by considering the 

changes in the decay time, i.e., the lifetime, see Figure. 4d. The data extracted from the 

experiments, presented as symbols connected by solid lines, show that for Δ = 0 (blue, green), 

the lifetime tends to increase with increasing cell temperature, while it is almost unaffected for 
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Δ=14.3 GHz (pink, light blue). Considering the scatter in the experimental data, the observed 

trends are reproduced fairly well by the simulations (dashed lines). 

In summary, we have demonstrated that it is possible to use warm Cs vapors as a spectrally-

selective and tunable delay lines for single photons emitted by semiconductor quantum dots. By 

performing autocorrelation measurements we show for the first time that the anti-bunched 

character of the QD photon source is retained after photon propagation through a slow-light 

medium made out of an atomic vapor. Then, we show that it is possible to introduce a significant 

temporal delay between photons that are spectrally separated by only few GHz. By tuning via 

external strain or electric fields the energy of the two fine-structure-split excitons through the 

hyperfine structure of the D1 line of Cs, we were able to slow down independently photons 

originating from each transition. The measured temporal delay and time-distribution of the 

photon wavepackets are quantitatively explained by a model that accounts for both the 

inhomogeneously broadened QD emission and the Doppler-broadening of the atomic lines. The 

spectrally-selective delay line we present in this work can be used to reorder the arrival time of 

photons emitted during the biexciton-exciton radiative cascade. When used with a QD with 

suppressed biexciton binding energy 
25

 and featuring a large fine structure splitting, it may be 

used to experimentally demonstrate the feasibility of the recently proposed and not yet 

experimentally demonstrated “time-reordering” scheme for entangled photon generation. 
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Figure 1. (a) Sketch of an InGaAs QD emitting single photons whose energy can be tuned by 

external stress or electric fields in the spectral region where a Cs vapor acts as slow-light 

medium. Among the photons that pass through atomic vapor, only those with specific energy 

(the red photons) are delayed in time. The arrival time of photons at different energies can be 

detected using a single photon avalanche photodiode, shown in black in the figure. (b) 

Transmission spectrum of Cs D1 absorption lines as a function of the cell temperature. (c) 

Simulation of group velocity in the proximity of Cs D1 for different temperatures assuming 

susceptibility with 4 resonances. (d) Sketch of the allowed transitions of Cs D1 (indicated by 

vertical arrows) including hyperfine splitting in the Cs fine structure between the 6
2
S1/2 and the 

6
2
P1/2 levels. 
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Figure 2. (a) Color-coded photoluminescence (PL) spectra of a negatively charged exciton 

(trion) which is scanned through the Cs D1 absorption by the application of a variable stress 

generated by an electric field Fp applied to piezoelectric actuator. PL transmission is strongly 

suppressed at 7.1 and 7.5 kV/cm. (b) Amplitude of the PL as function of Fp revealing two 

transmission dips. The linewidth of the trion line can be obtained by deconvolving these dips 

with the small Hyperfine splitting of Cs D1, as explained in the text. (c) Auto correlation 

measurement of the trion transition for Δ > 15 𝐺Hz  (red curve) and Δ = 0 GHz (balck curve).  
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Figure 3. (a) Polarization-resolved PL spectra of the neutral exciton featuring a fine-structure-

splitting of ~59 µeV. (b) Amplitude of both exciton polarization components tuned through the 

Cs D1 absorption line via the electric field across the diode. The dips in transmission mark the 

absorption of the hyperfine structure in Cs. (c) – (f) Time-resolved PL measurements on exciton 

emission for polarization components of the exciton in resonance with the Cs D1 absorption ((c) 

and (f)) or out of resonance ((d) and (e)).  
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Figure 4. (a) and (b) Numerical simulation of a Gaussian-broadened QD emission line with a 

detuning of 0 (a) and 14 GHz (b) from Cs D1 at cell temperatures between 90°C and 150°C. (c) 

Temporal delay as extracted from the simulations (dashed lines) and the experimental data (solid 

lines) and as function of cell temperature. The green, blue and black curves correspond to  

 Δ = 0 GHz while the pink, light blue and red curves show the delay for Δ = 14 GHz. (d) 

Lifetime vs. cell temperature as extracted from the experiment (solid lines) and the simulations 

(dashed lines). Please notice the delays obtained from the experiment are shifted to compensate 

for different optical path lengths. As in (c) green, blue, black and pink, light blue and red lines 

correspond to 0 and 58 µeV detuning, respectively. 
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High-resolution spectroscopy  

In order to resolve all 4 D1 transitions of the Cs vapor (see Fig. 1c of the main text) we used 

the ~15-nm broad pulses of a mode-locked Ti:Sa laser. Before entering the Cs cell, the laser light 

was spectrally filtered using a volume Bragg grating (VBG) with a 0.2-nm-wide transmission 

window and a Fabry-Perot interferometer (FPI) with a free-spectral range (FSR) of 41.4 µeV (10 

GHz). This combination allows for spectral filtering with a resolution of 0.28 µeV (67 MHz) . 

The FPI resonance mode (i.e. laser light energy) was then tuned in the spectral range of Cs D1 

with a step resolution of 0.083 µeV. After propagation through the Cs cell the laser light was 

then dispersed with a spectrometer (spectral resolution of ~25 µeV) and detected by a liquid-

nitrogen-cooled charge coupled device (CCD)  

In order to deconvolve the sharp FPI peaks (which are not resolved by the spectrometer) 

lorentzian fits were used and their positions and amplitudes (intensities) were followed while 

scanning the FPI over the whole free spectral range. This procedure leads to a spectral resolution 

that is 250 times larger than what can be achieved using a single spectrometer. The procedure 

described above was repeated for different temperatures of the Cs cell, resulting in the spectra 

reported in Fig. 1c.  

 

Numerical Simulations of the group velocity and temporal distribution of the transmitted 

photons. 

 

In order to simulate the absorption spectrum of Cs we calculate the energy shift of the 

hyperfine splitting in Cs D1 depending on the total atomic angular momentum F and the total 

nuclear angular momentum I. A Gaussian distribution with a Doppler broadened linewidth was 
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used to simulate each of the resonances and collisional broadening due to vapor pressure and 

temperature was taken into account
i,ii

.  

The susceptibility for Cs D1 is given by the following expression 

 

χ(ν)=A (
g33

ν33-ν-i γ
+

g34

ν34-ν-i γ
+

g43

ν43-ν-i γ
+

g44

ν44-ν-i γ
)   

where g33,g34,g43,g44 are the oscillator strengths for each transition and  ν33, ν34,ν43,ν44 are 

the resonance frequencies 
iii

. The parameters A (amplitude), and 𝛾 (damping parameter) are left  

as fitting parameters (see the following). 

The refractive index can be expressed as follows 

n(ν)=√1+χ(ν)=nr(ν)+iκ(ν) 

The fitting parameters A and 𝛾 at each specific cell temperature are obtained after fitting the 

simulated 
ii
 absorption coefficient κ, which in turn provides the real part of the refractive 

index nr.  

The group velocity of Cs D1 can be then obtained as a function of the frequency using the 

following formula
iv

 

vg(ν)=
1

n(ν)+ν
d n(ν)

d ν

 

Besides the spectral shape of the group velocity, we are also interested in the temporal 

distribution of QD photons before and after propagation trough the Cs cell. The initial temporal 

distribution of the QD PL can be modeled using the following formula
v
 

A(τ)=y0+
B

t0
e

(
1
2

(
𝜔𝑡
t0

)
2

-
x-xc
t0

)
(

1

2
+

1

2
Erf (

x-xc

𝜔𝑡
-

𝜔𝑡

t0
)) 
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where Erf (
x-xc

ωt
-

ωt

t0
) is the Gaussian error function, B is the amplitude, y0 an offset in the 

intensity, t0 is a measure for the temporal decay, ωt is the temporal width and xc its position in 

time. The parameters for this function were found by fitting the experimental data at 101.7 °C 

and for large detuning Δ=14.2 GHz.  

The final temporal distribution of the photons at a specific temperature of the Cs cell is 

calculated in a two-step process. First, the group velocity and the optical transmission are 

calculated for given Δ. Second, the QD PL temporal distribution is obtained by integrating over 

all Δ and by weighting the results using a Gaussian spectral distribution for the QD with 

linewidth ω obtained from the experimental data. 

Absorption properties vs. QD linewidth, cell temperature and detuning.   

The PL intensity transmitted through the Cs cell as a function of time is simulated for given 

QD linewidth, cell temperature and detuning (Fig. S1). Fig. S1 a – d show the simulated time-

resolved decay curves for temperatures ranging from 50°C to 150 °C, and a QD linewidth ω of 2 

GHz (a), 5 GHz (b), 10 GHz (c) and 15 GHz (d). The detuning of the QD emission with respect 

to the Cs vapor was set to 0 GHz for all the simulations except the one shown in the inset of Fig. 

S1a, which corresponds to a detuning of 15 GHz. For Δ = 0, the data clearly shows that the peak 

position of the decay curves, i.e., the average time delay, does not depend on the spectral 

broadening of the QD transitions. However, the temporal broadening as well as the optical 

absorption increases with the spectral linewidth. Finally, it is interesting to note that the 

substantial temporal delay of 0.37 ns with negligible optical absorption can be observed when 

the QD line is tuned out of the center of the D1 lines, as displayed in the inset of Fig S1 (a) for 

Δ=15 GHz. Despite this can be qualitatively explained taking into account the behavior of the 

group velocity shown in the Fig.1 of the main text, it is interesting to investigate how the optical 
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absorption changes as a function of the delay for different spectral linewidth, and cell 

temperatures. This is shown in Fig. S1 (e) for Δ = 0, where we observe that the drop in 

transmission with the delay changes from almost linear for small spectral linewidths to a 

superposition of an exponential and a linear decay for large spectral linewidths. In the ideal case 

of Fourier limited photons featuring a line width 𝜔 ≈ 0.5 𝐺𝐻𝑧 the absorption is less than 1% 

while the maximal temporal delay is still of the order of 2.5 ns. For different Δ (see Fig. S1 (f)-

(g)), a similar behavior is observed although in the case of Δ = 15 GHz significant delay can be 

achieved only for very high temperature of Cs vapor. 

On the one hand, the detailed analysis reported here can be used to explain all the features 

observed in the experiment, as for example the appearance of un-delayed peaks, pronounced 

absorption, and temporal broadening clearly visible for large spectral linewidth (see Fig. 1(e) and 

vi
). One the other hand, this analysis also suggests that for broad linewidth it is possible to 

observe a small temporal delay with negligible absorption and broadening by tuning the QD far 

for the hyperfine doublet. 

 

Extracting QD linewidth through QD-Cs transmission 

The linewidth of the QD optical transitions was extracted from the data reported in Fig. 2b, 

that result from scanning a QD with a given spectral linewidth 𝜔 through the hyperfine structure 

of Cs. To extract the QD linewidth, we perform the following steps: (i) the reference 

transmission spectrum of Cs was measured by high-resolution spectroscopy (as discussed above) 

at the temperature of 136 °C (temperature used for the measurements reported in Fig. 2b). (ii) 

We convolved the result obtained in (i) with a QD transition featuring a Gaussian lineshape and a 
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linewidth 𝜔. (iii) We fit the experimental data by changing 𝜔 and by performing the least 

squares minimization.  

 

Sample and device fabrication 

The sample was grown by Molecular Beam Epitaxy (MBE) using a commercial Omicron 4-

inch MBE machine. A 200 nm-thick undoped GaAs buffer layer was grown at a substrate 

temperature Tsub=590 °C on semi-insulating GaAs (001) followed by a 100 nm-thick 

Al0.75Ga0.25As sacrificial layer. Afterwards, a tri-layer diode structure [180 nm-thick n-doped 

GaAs layer/150 nm-thick GaAs intrinsic layer containing InAs QDs/100 nm-thick p-doped GaAs 

layer] was grown. The InGaAs QDs were grown at 500°C and capped by an indium flush 

technique
vii

. Selected areas on the wafer with a QDs density as low as 10
7
 cm

-2
 were used for 

further processing. The GaAs nanomembranes containing QDs were obtained by optical 

lithography and selective chemical etching and integrated onto a 300-µm-thick 

[Pb(Mg1/3Nb2/3)O3]0.72 – [PbTiO3]0.28 (PMN-PT) piezoelectric substrate by gold 

thermocompression bonding. The electric field across the diode structure (across the piezo 

actuator) was applied to control the QD energy levels via the quantum confined stark effect 

(strain). Further details of the processing and device fabrication can be found elsewhere 
viii

. 

 

Measurement setup 

The optical experiments were performed using a micro luminescence setup equipped with a 50x 

objective (NA=0.42) for optical excitation and PL collection. For excitation we used a pulsed 

TiSa-Laser with a repetition rate of 80MHz and a typical pulse width of the order of 100fs. The 

Laser is tunable in the range between 690 and 1080 nm, which allows for optical excitation in the 
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QDs either above band-gap or in the wetting-layer. For low temperature measurements (8K), the 

sample was mounted in a He flow cryostat. The Cs vapor cell was inserted in the PL optical path 

and consists of a 7.5 cm long glass cell filled with Cs vapor and wounded with heating foils to 

set precisely the temperature (temperature accuracy ~ 0.1 °C). The PL spectra are measured by a 

liquid-nitrogen-cooled Si CCD detector. Single photon avalanche photodiodes were used for 

time-resolved PL measurements. The polarization properties of the emitted light are analyzed 

using a rotatable lambda half wave plate combined with a fixed linear polarizer. 
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Figure S1. (a) - (e ) Simulated time-resolved PL decay curves as a function of the temporal 

delay, for temperatures ranging from 50 °C to 150 °C, and photon linewidth ω values of 2 GHz 

(a), 5 GHz (b), 10 GHz (c) and 14 GHz (d). (a,b,c,d) and (a inset) present the decay curves for 

Δ=0 GHz and 15 GHz, respectively. (e), (f) and (g) display the optical transmission as a function 

of the temporal delay for different 𝜔(ranging from 0.5 𝐺𝐻𝑧 to 14 GHz) and Δ=0, 2, 15 GHz. 
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