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Abstract

Priority rules combined with schedule generation schemes are a usual approach
to online scheduling. These rules are commonly designed by experts on the
problem domain. However, some automatic method may be better as it could
capture some characteristics of the problem that are not evident to the human
eye. Furthermore, automatic methods could devise priority rules adapted to
particular sets of instances of the problem at hand. In this paper we propose
a Memetic Algorithm, which combines a Genetic Program and a Local Search
algorithm, to evolve priority rules for the problem of scheduling a set of jobs
on a machine with time-varying capacity. We propose a number of neighbour-
hood structures that are specifically designed to this problem. These structures
were analyzed theoretically and also experimentally on the version of the prob-
lem with tardiness minimization, which provided interesting insights on this
problem. The results of the experimental study show that a proper selection
and combination of neighbourhood structures allows the Memetic Algorithm to
outperform previous approaches to the same problem.

Keywords: One Machine Scheduling, Priority Rules, Local Search, Genetic
Programming, Memetic Algorithm

1. Introduction

Priority rules, also called dispatching rules, have been used for decades to
solve combinatorial problems, in particular to solve complex scheduling prob-
lems. In this field, these rules are usually exploited in combination with schedule
builders, or schedule generation schemes [1], which provide a way to enumerate
and build schedules in a given space. A schedule builder is a constructive algo-
rithm that in each step selects non-deterministically the next job or operation
to be scheduled. This selection may be performed by some priority rule, which
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establishes an ordering on the available options, preferably exploiting knowledge
from the problem domain. One of the main features of these kind of solvers is
that they are able to produce solutions very quickly, in comparison with other
exact or even approximate approaches, such as state space search [2, 3, 4] or
metaheuristics [5, 6], at the cost of producing solutions of lower quality. In
spite of that, schedule builders may reach solutions of reasonable quality if the
guiding rule is tailored to the specific characteristics of the problem; in this case
they are suitable when a schedule must be obtained by a time limit, which is
known as online scheduling.

Online scheduling problems arise in many real scenarios. One example is
the Electric Vehicle Charging Scheduling Problem (EVCSP) presented in [7].
In this problem, the charging times of a number of Electric Vehicles (EV) must
be scheduled in a charging station organized into three lines, each one connected
to one of the phases of a three-phase feeder [8]. Due to technological restric-
tions, the number of EVs charging at the same time in each of the three lines
must be similar and so, in general, the power that may be consumed in a line
varies over time. The EVCSP is dynamic and the solving procedure proposed
in [7] decomposes this problem into a large number of instances of the problem
of scheduling a set of jobs on a single machine with time-varying capacity, de-
noted (1, Cap(t)||

∑
Ti), which must be solved over the scheduling horizon. For

the proposed system to be effective, tens or even hundreds of instances of this
problem must be solved in just a few seconds.

As showed in [9, 10], evolutionary algorithms may reach good solutions to
the (1, Cap(t)||

∑
Ti) problem, although taking a prohibitive time for the online

requirements of the EVCSP. So, in [7], a schedule builder guided by the well-
known Apparent Tardiness Cost (ATC) rule was exploited.

Priority rules can be defined manually by experts on the problem domain,
as it is the case of the ATC rule [11], although it is clear that automatic meth-
ods could capture some characteristics of the scheduling problem that are not
clear to human experts, and in this way the priority rules may be adapted to
instances with some particular characteristics. In this regard, it is notable the
recent interest of researchers for these methods, most of whom are adopting
some hyperheuristic strategy, i.e., a method that searches across some space of
heuristics [12] to solve a problem, instead of searching on the space of solutions.
Given the structure of priority rules, Genetic Programming (GP) [13] arises as
the most common and natural choice.

Some examples of scheduling problems for which different authors devel-
oped GP approaches to evolve priority rules are the job shop scheduling prob-
lem [14, 15, 16, 17], some versions of the one machine sequencing problem
[18, 19, 20], unrelated parallel machines scheduling problems [21], bin pack-
ing [22] or resource constrained project scheduling [23, 24, 25], among others.
Burke et al. [12] classify these approaches as heuristic generation, specifically
these algorithms are named genetic programming based hyper-heuristics.

GP was also applied to dynamic scheduling problems. Branke et al. [26]
provide an exhaustive study on the dynamic flexible job shop scheduling prob-
lem, in which they study some representations and algorithms to evolve priority
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rules. They conclude that evolving expression trees with genetic programming
is the best choice. This work was later extended in [27], in which they provide a
nice description of the state of the art, as well as a taxonomy of hyper-heuristics
and some guidelines for designing them. The same problem was recently con-
sidered by Zhang et al. [28], who explored the idea of evolutionary multitask
learning. This paradigm was later extended in [29] by including a surrogate
model to reduce the high time consumed in the training process. Durasević and
Jakobović [30] also provide a survey of dispatching rules, specifically designed
for the dynamic unrelated machines environment. In this work, they collected
a large set of rules that were tested under a number of scheduling criteria to
analyze which rule is the most suitable depending on the situation.

The combination of an evolutionary algorithm with a local search is the most
typical form of a Memetic Algorithm (MA) as defined in [31, 32, 33]. MAs are
among the most outstanding hybrid metaheuristics and have a long track record
of success in solving famous hard combinatorial problems as, for example, the
Traveling Salesman Problem [34, 35], Job Shop Scheduling [36, 37], the classic
One Machine Sequencing Problem [38] or the Tool Switching Problem [39], to
name just a few.

In contrast to other evolutionary algorithms, one of the limitations of the
existing GP approaches is that they usually do not exploit Local Search (LS) to
intensify the search in the neighbourhood of the evolved solutions. This fact is
noticed in [40], where the authors also remark the low capacity of the GP oper-
ators to intensify the search in the most promising areas of the search space. As
far as we know, there are just a few attempts to exploit LS in combination with
GP; one of them is proposed in [41], where the authors exploit two LS operators
in a GP that evolves decision trees for classification. Regarding generation of
dispatching rules, in [42] the authors proposed an iterated local search algo-
rithm, which was applied to the dynamic Job Shop Scheduling problem. They
exploited a single mutation of the expression trees as neighbourhood structure.
This structure was later exploited in [43] in combination with GP. Some of the
inconveniences of this structure are its high cardinality and that it generates
many equivalent expressions.

In this paper, we propose combining an extension of the GP proposed in
[20] with LS to solve the (1, Cap(t)||

∑
Ti) problem; the algorithm is termed

MGP (Memetic Genetic Program) herein. The LS incorporates some neighbour-
hood structures designed specifically for this problem. The main contribution
of the paper is the definition and analysis of these structures, both theoretical
and experimental, as well as their incorporation into MGP. The results of the
conducted experimental study show that the priority rules evolved by MGP
outperform the rules obtained by previous methods.

The remainder of the paper is organized as follows. The next section in-
troduces the (1, Cap(t)||

∑
Ti) problem and how this problem may be solved

online by a schedule builder guided by a priority rule. Section 3 summarizes the
methods proposed so far to build new priority rules for this problem. Section 4
describes the structure of the LS algorithm. The definition and analysis of the
proposed neighbourhood structures are given in Section 5. MGP is described
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in Section 6. Section 7 reports the results of the conducted experimental study.
Finally, Section 8 summarizes the main conclusions of the paper and proposes
some new lines for further study.

2. The (1, Cap(t)||
∑

Ti) problem

In this section, we introduce the formal definition of the problem of sequenc-
ing jobs on a machine with variable capacity over time and how it may be solved
online by means of schedule builders guided by priority rules.

2.1. Definition of the problem

The (1, Cap(t)||
∑
Ti) problem is defined as follows. We are given a number

of n jobs {1, . . . , n}, all of them available at time t = 0, which have to be
scheduled on a machine whose capacity varies over time, such that Cap(t) ≥
0, t ≥ 0, is the capacity of the machine in the interval [t, t+1). Job j has duration
pj and due date dj . The goal is to allocate starting times stj , 1 ≤ j ≤ n to the
jobs on the machine such that the following constraints are satisfied:

i. At any time t ≥ 0 the number of jobs that are processed in parallel on the
machine, X(t), cannot exceed the capacity of the machine; i.e.,

X(t) ≤ Cap(t). (1)

ii. The processing of jobs on the machine cannot be preempted; i.e.,

Cj = stj + pj , (2)

where Cj is the completion time of job j.

The objective function is the total tardiness, defined as:∑
j=1,...,n

max(0, Cj − dj) (3)

which should be minimized.
As pointed out in [9], one particular case of this problem is when the capacity

of the machine is constant over time. This is the parallel identical machines
problem [11], denoted (P ||

∑
Ti), which is NP-hard. Thus, it follows that the

(1, Cap(t)||
∑
Ti) problem is NP-hard as well.

2.2. Solving the problem online

To solve the (1, Cap(t)||
∑
Ti) problem online, we consider a method with

two main components: the schedule builder and the priority rules. The schedule
builder is depicted in Algorithm 1; US denotes the current unscheduled jobs and
X(t) is the consumed capacity of the machine by the jobs scheduled so far. US
is initialized with all the jobs (line 1). In each iteration, the algorithm builds
the subset US∗ containing the jobs in US that can be scheduled at the earliest
possible starting time (line 4), denoted γ(α), and then selects one of these
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Algorithm 1 Schedule Builder
Data: A (1, Cap(t)||

∑
Ti) problem instance P.

Result: A feasible schedule S for P.
1: US ← {1, 2, ..., n}; /* Initializes unscheduled jobs */
2: X(t)← 0, t ≥ 0; /* and consumed capacity*/
3: while US 6= ∅ do
4: US∗ ← {u ∈ US|X(t) < Cap(t), γ(α) ≤ t < γ(α) + pu}; /* Candidate jobs to be

scheduled next */
5: Non-deterministically pick job u ∈ US∗; /* Job selection */
6: stu ← γ(α); /* Schedule the selected job */
7: X(t)← X(t) + 1, stu ≤ t < stu + pu;/* Update consumed capacity */
8: US ← US − {u}; /* Update unscheduled jobs */
9: return The schedule S = (st1, st2, ..., stn);

jobs (lines 5) non-deterministically. The selected job, u, is scheduled at time
γ(α) (line 6). After that, the consumed capacity and the unscheduled jobs are
updated (lines 7 and 8). The algorithm finishes when all the jobs are scheduled
(line 3) and returns the built schedule (line 9).

The schedule builder may be used in combination with some priority rule to
make the non-deterministic choice in each iteration: the job having the high-
est priority in US∗ is chosen to be scheduled. This paradigm is called priority
scheduling, which is particularly appropriate for online scheduling, where deci-
sions must be made quickly. In the literature there are a number of rules that
could be adapted to the (1, Cap(t)||

∑
Ti) problem. Among them, we may con-

sider the Earliest Due Date (EDD) or Shortest Processing Time (SPT) rules.
These two rules are often used for objective functions that are non decreasing
with the completion time of the jobs, as for example makespan, lateness or even
tardiness. As they are quite simple rules, they often produce rather moderate
results. In contrast, more sophisticated rules are usually able to produce (much)
better results as they take into account more knowledge of the problem. This is
the case of the Apparent Tardiness Cost (ATC) rule, which was used with suc-
cess to solve some scheduling problems with tardiness objectives (e.g. [44, 45]);
with this rule, the priority of each job j ∈ US∗ is given by

πj =
1

pj
exp

[
−max(0, dj − γ(α)− pj)

gp̄

]
(4)

In Equation (4), γ(α) denotes the earliest starting time for a job in US, p̄ is
the average processing time of the jobs in US and g is a look-ahead parameter to
be introduced by the user. As we can see, the ATC rule combines the information
exploited by SPT and EDD as the priority of a job j is in inverse ratio with its
duration pj and it decreases with the slack time to its due date dj − γ(α)− pj .

3. Structure, representation and construction of priority rules

In this section we introduce the set of symbols and the grammar established
to build up new priority rules. These two elements, together with the maximum
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size and depth allowed to the rules, establish the search space in which the
algorithms may search for new rules. Besides, we describe an efficient generation
procedure, which strongly relies on a specific array representation of rules. This
procedure was exploited in [46] in the context of heuristic state space search.

3.1. Set of symbols and generative grammar

Table 1 shows the set of terminal symbols and operators considered herein.
In addition to a set of dimensionless constants, the terminal symbols represent
single attributes of a problem instance as job durations, due dates and earliest
starting time of a job, whose dimension is time, denoted T , in all cases. Besides,
we consider a reduced number of arithmetic operators which are commonly used
in hand made priority rules as ATC, for example.

In this work, we propose to restrict the search to the set of rules represented
by dimensionally compliant expressions. In these expressions, operations as +,
-, max and min can only be applied to operands with the same dimension, being
the dimension of their result the same as that of the operands. The operations *
and / can be applied to any pair of operands with independence of their dimen-
sions, being the dimension of the result of the product or quotient, respectively
for * and /, of the operands’ dimensions. Analogously, operations pow2 and
sqrt can be applied to any operand. Besides, we consider that operations as
exp or ln can only be applied to dimensionless expressions. Some examples of
dimensionally compliant expressions are the classic human-designed SPT, EDD,
and ATC rules, all having dimension T−1. One evident feature of dimensionally
compliant rules is that they are more rational and understandable by humans
than other rules not having this property. Furthermore, the results reported in
[20] from the proposed Genetic Program show that restricting the search to the
space of dimensionally compliant rules makes the Genetic Program to evolve
rules of similar quality and lower size than searching across the whole space of
feasible arithmetic expressions.

3.2. Rule representation

We consider the array representation for priority rules proposed in [20],
whose interpretation, borrowed from binary heaps implementation, is as fol-
lows. Let B denote the array representing a priority rule; for convenience the
indices of their components are denoted 0, . . . ,S. So, S + 1 is the size of the
array, which fulfils S + 1 = 2D − 1, D being the maximum depth of a tree
represented by the array. B0 is the root node, and the remaining positions may

Table 1: Functional and terminal sets used to build expression trees. Symbol “-” is considered
in unitary and binary versions. max0 (min0) return the maximum (minimum) of an expression
and 0.

Binary functions - + / × max min

Unitary functions - pow2 sqrt exp ln max0 min0

Terminals pj dj γ(α) p̄ 0.1 . . . 0.9
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Figure 1: Expression tree and array representation of the tree for the ATC rule.

either be NULL or contain a terminal or function symbol. If Bi is not NULL
its parent is B(i−1)/2 and its children (if they exist) are B2i+1 (left child) and
B2i+2 (right child). If a node only has one child, it is the left one.

Figure 1 shows the representation of the ATC rule. As it has depth 8 it
requires an array with at least 255 positions, even though it only has a size of
17 nodes.

3.3. Building new rules from scratch

The use of arrays to represent priority rules facilitates the process of enu-
merating and building feasible rules having maximum depth D. To build dimen-
sionally compliant expressions, the expression trees may be generated by filling
the array from right to left starting in position S. In this way, one operator
is always inserted after its operands, which facilitates building dimensionally
compliant expressions.

Algorithm 2 shows the generation procedure for the grammar briefly de-
scribed in Section 3.1 and the function and terminal symbols given in Table 1.
In the algorithm, C denotes the set of constants. [Bk] denotes the dimension of
the expression tree under position k; in particular [Bk] = 1 if the expression is
dimensionless. The algorithm iterates from the last position of the array (i = S)
to the first one (i = 0), and in each iteration it chooses non-deterministically
the symbol to be inserted in position i. The notation U(X) means that one ele-
ment of the set X is chosen uniformly, and abusing the language P[a, b] means
that a is chosen with probability P and b with probability 1 − P respectively.
The value of P determines the structure of the tree. If P=1, then no symbol
NULL is chosen in any iteration (see line 11) and so we will have a full tree.
For P < 1, the expression tree is expected to be non full. The symbol <lex

expresses a lexicographical ordering between subtrees. It is defined from a total
ordering on the symbols in the alphabet (see Table 1), so that two subtrees Bi
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Algorithm 2 Grammar Derivation Algorithm
Data: Maximum depth D for the tree and a probability P.
Result: A feasible expression tree B.
1: S ← 2D − 1;
2: for all i = 0, ...,S do
3: Bi = NULL;
4: i← S;
5: while B0 = NULL do
6: while i ≥ 0 do
7: if i ≥ S/2 ∨ B2i+1 = NULL then
8: if i%2 6= 0 ∧ Bi+1 6= NULL then
9: Bi ← U({pj , dj , γ(α), p̄, C});

10: else
11: Bi ← P[U({pj , dj , γ(α), p̄, C}), NULL];
12: else
13: if B2i+2 6= NULL then
14: if [B2i+1] = [B2i+2] then
15: if B2i+1 <lex B2i+2 then
16: Bi ← U({+, −, max, min, ×, /});
17: else
18: Bi ← U({−, /});
19: else
20: if B2i+1 <lex B2i+2 then
21: B(i)← U({×, /});
22: else
23: B(i)← U({/});
24: else
25: if [B2i+1] = 1 then
26: B(i)← U({−, pow2, sqrt, max0, min0, exp, ln});
27: else
28: B(i)← U({−, pow2, sqrt, max0, min0});
29: i← i− 1;
30: return The rule B;

and Bj , rooted at the same level within an expression tree, fulfil Bi ≤lex Bj if
the chain of symbols obtained from Bi following a pre-order traversal is lower
than the chain obtained from Bj following the same procedure. The utility of
this operator is to avoid the generation of some equivalent subexpressions rooted
at commutative operators as +, ×, max and min.

Going into more detail

• The condition i ≥ S/2 ∨ B2i+1 = NULL (line 7) expresses that either i
is a position in the second half of the array or i is in the first half and its
left child is NULL and so its right child must be NULL as well. In either
case, the value inserted in i cannot be a functional symbol.

– Furthermore, if i%2 6= 0 ∧ Bi+1 6= NULL (line 8), i is the left child
of node j, with i = 2j + 1, and the right child of j is not null, so the
position i cannot be NULL and must contain any terminal symbol;
otherwise (line 10) i could contain NULL as well.

• However, if i < S/2 ∧ B2i+1 6= NULL (line 12), the position i must
contain a function symbol as at least one of their children is not null. The
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function will be unitary or binary depending on the left child being null
(line 13) or not (line 24) respectively.

– If it is not null (line 13), we have to consider binary operands (lines
14-23). All operands may be applied if both subtrees have the same
dimension (line 14), but the commutative operands, i.e., +, max,
min and ∗ are considered only if the left subtree is lower than the
right one (line 15), to avoid duplicated solutions. If the subtrees have
different dimension (line 19) only the operators ∗ and / can be used,
the first one is considered only if the left subtree is lower than the
right one to avoid duplications as before.

– If it is null (line 24), any of the unitary operators may be put in Bi,
unless the subtree represents an expression having dimension other
than 1, i.e., is not dimensionless, in which case exp and ln cannot be
considered.

4. The Local Search Algorithm

A local search algorithm starts from a candidate solution and then itera-
tively moves to a neighbouring solution selected by some criteria. It commonly
finishes either after a number of iterations or when no improvement is possi-
ble from the current solution. In doing so, the local search algorithm turns
a given solution into a nearby local optimum. In order to devise an effective
local search algorithm, the key point is the neighbourhood structure (also called
neighbourhood rule). Besides, two more decisions must be taken: the accep-
tance criterion to chose one of the neighbouring solutions to move to, and the
termination condition.

Algorithm 3 Local Search Algorithm
Data: Initial rule B. Neighbourhood structure N . Acceptance Criterion: Hill Climbing

(HC) or Gradient Descent (GD).
Result: An (hopefully) improved rule B∗.
1: B∗ ← B; /* Starts the best so far solution */
2: termination condition ← false;
3: while not termination condition do
4: B′ ← B∗; /* Starts the best neighbour of B∗ */
5: for all B′′ ∈ N (B∗) do /* Explore the neighbors of B∗ */
6: if B′′ is better than B′ then
7: B′ ← B′′;/* Updates the best neighbour of B∗ */
8: if Acceptation Criterion is HC then
9: break; /* Some neighbour improved the current best */

10: if B′ is better than B∗ then
11: B∗ ← B′;/* Updates the best so far solution */
12: else
13: termination condition ← true;
14: return The rule B∗;

9



Algorithm 3 shows the main structure of the Local Search Algorithm (LSA)
we consider herein. The algorithm starts from a rule B, a neighbourhood struc-
ture N , and the acceptance criterion, which may be hill climbing or gradient
descent. In each iteration, the algorithm obtains the neighbouring solutions
N (B∗) (line 5) of the current solution B∗ (initially B∗ = B in line 4) and se-
lects B′ (line 6-9) to be the first improving neighbour (if hill climbing) or the
best of all neighbours (gradient descent). Only if B′ is better than B∗ (line
10) then the local search continues from B′ (line 11), otherwise the termination
condition is met, i.e., none of the neighbours is better than the current solution
(line 13), and the local search algorithm finishes and returns the best solution
reached B∗ (line 14).

5. Neighbourhood structures

As mentioned, the neighbourhood structure is the key element of a local
search algorithm. In general, this structure must produce a number of neigh-
bouring solutions from a given solution just doing some small variations on the
given solution. In this way, it is expected that the new solutions are not too
different from the current one. Furthermore, the variation operation should be
designed so that the new solutions have some chance to be better than the cur-
rent one, which is not generally easy. In order to keep the algorithm within a
reasonable time consumption, the number of neighbours must be limited and,
if the evaluation of them is too expensive, some surrogate method is sometimes
used for approximate evaluation, at the risk of discarding a number of improving
solutions.

Another appealing feature of a neighbourhood is the connectivity property.
This property holds if every solution is reachable from any other in the search
space by repeatedly applying the neighbourhood operator. This property is
relevant as it guarantees that the algorithms may eventually reach an optimal
solution. However, it does not always have practical importance and there are
many high performing neighbourhoods not holding this property. If a neigh-
bourhood does not have this property, it can still reach many, if not all, the
solutions, if it is applied repeatedly starting from many different initial solu-
tions. In any case, it may be interesting to analyze the subspace that a given
neighbourhood can reach from a given solution, namely its connectivity, as this
information may help to predict its performance.

All of the above issues were successfully tackled, for example, in the design
of local searches for scheduling problems as the classic job shop and many of its
variants [37, 36, 47, 48]. In these cases, the neighbourhood structures consist
in doing small changes on the schedules, so the new schedules are in general
similar to the original ones.

However, dealing with expression trees is rather different as doing small
changes in an expression tree may give rise to quite different schedules produced
by the new priority rules. In spite of that, we can find in the literature some
successful studies on neighbourhood structures for priority rules, some of them
in the field of scheduling. In [49], the authors review a number of local search
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Table 2: Subsets of symbols that may be exchanged by the neighbourhood structure N 1.
Each symbol may be exchanged by any other in the same row.

pj dj γ(α) p̄
0.1 0.2 . . . 0.9
exp ln
max0 min0 −
max min + −

methods that are used in combination with Genetic Programming, and classify
these methods into two categories: tuning of numerical coefficients and subtree
fine-tuning. In [43], the authors deal with the job shop scheduling problem and
use methods of the second category; they exploit a restricted subtree mutation
(RSM) operator that inserts a small subtree, of depth at most 2, in a random
node of the expression tree. They also use another kind of neighbourhood
termed attribute mutation. This method is based on a tree representation that
includes a flag for each node of the tree so that if the flag in a node is set
to 0 the subtree rooted at this node vanishes and it is taken as the constant
1 in the expression. In both cases, the structure of a neighbouring priority
rule may be quite different from the original one. Regarding the category of
coefficients tuning, in [50] the authors exploit Genetic Programming to solve
symbolic regression problems. The evolved expression trees are enhanced with
multiplication factors in the nodes, which are adjusted by means of a local search
whose neighbourhood structure relies on numerical optimization.

In this paper, we consider the space of priority rules defined in Section 2
and propose some neighbourhood structures tailored to the particular features
of these rules. We consider methods of type subtree fine-tuning and leave other
methods as tuning of numerical coefficients for a further study as they will
require some changes in the structure of the rules. The proposed structures
rely on the array representation of expression trees and perform changes on a
given subset I of their components {0, . . . , S}. In this way, the cardinality of a
neighbourhood may be controlled by the value of |I|. For convenience, we will
use the notation N (I, E,B) to denote the set of neighbouring rules obtained
by the structure N from the rule represented by the array B making feasible
changes in all the positions of the array in the set I, using the elements of the
set E.

Definition 1. (N 1). A single move swaps the symbol in position Bi, i ∈ I,
by another one in the set E, which in this case is a set of single symbols. The
change is only permitted if the new symbol maintains the dimension of the
subtree rooted at i. The subsets of symbols that are exchangeable by N 1 are
shown in Table 2, one subset in each row. In the case of constants, only the
previous and posterior values are considered in order to reduce the cardinality of
N 1(I, E,B). Notice that the symbols /, ∗, pow2 and sqrt cannot be exchanged
by any other. One of the properties of this structure is that the size and shape
of the trees in N 1(I, E,B) are the same as those of B.
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Table 3: Number of expressions in the set E3 exploited in the neighbourhood structure N 2,
eliminating (Reduced) or not (Full) equivalent expressions.

Number of expressions

Dimension Reduced Full

T−1 43 44
T 0 78 830
T 0.5 4 4
T 1 124 212
T 2 10 20

Definition 2. (N 2). A move in N 2 changes the subtree rooted at Bi, i ∈ I, by
one of the candidate expressions with maximum size n given in the set E, which
in this case is denoted En. As in N 1, the dimension of the tree rooted at Bi
must be the same as in the original one. Besides, the depth of the neighbouring
tree must not exceed the maximum depth D. In this case, it is clear that the size
and shape of the tree may change. In order to reduce the number of neighbours,
some equivalent expressions are avoided by symmetry breaking considering the
commutativity of operations as +, ∗, min and max, which could give rise to
equivalent expressions as max(pj , dj) and max(dj , pj). For the same reason, the
value of n must be limited. Besides, we do not include in En binary operations
between constant symbols.

In our experimental study we only used the sets E1, E2 and E3 formed by all
the trees of size 1, 2 and 3, respectively. E1 only contains the terminal symbols,
which have dimension T 1 or are dimensionless constants. However, E2 and E3

contain a larger number of expressions with dimensions varying from T−1 to T 2.
The reduction on the number of neighbours produced by symmetry breaking
from these sets may be appreciated in Table 3. Notice that E1 ⊂ E2 ⊂ E3.
N 2 is similar to the structure considered in [42], which is termed restricted

subtree mutation (RSM). The main differences being that N 2 only exchanges
subtrees having the same dimension and that it avoids some neighbours by
symmetry breaking; in turn, RSM may only insert subtrees of maximum depth
2. As a result, the cardinality of RSM is much larger and its neighbours are
generally much more different from the original solution than they are for N 2.

If we analyze the structures N 1 and N 2 we can see that in general
|N 1(I, E,B)| is much lower than |N 2(I, En,B)|, but they may have some el-
ements in common, so it makes sense considering N 1 ∪N 2 as a new structure.

Figure 2 shows the rule max(pj , dj)∗γ(α), its array representation and some
neighbours from the two structures considering I = {1}. The trees in a), b) and
c) are generated by N 1 changing the symbol max by symbols −, + and min,
respectively. While the rules in d), e) and f) are generated by N 2 from the
expressions dj , −pj and max(pj , dj) respectively.

Neither of the structures N 1 and N 2 have the connectivity property. This is
clear as their connectivities are reduced to different subsets of expressions hav-
ing the same dimension as the original solution. This feature could be exploited
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Figure 2: Some neighbors of the expression max(pj , dj) ∗ γ(α), generated using N 1, N 2 and
their extensions N 1∗ and N 2∗.

to restrict the search to a subspace of expressions having the same dimension,
but at the same time it is inconvenient if our purpose is to devise an algorithm
searching for solutions in the whole space. From the above, it would be interest-
ing to devise some neighbourhood that could give rise to expression trees having
different dimensionality. To do that, we have to look at the operators admitting
operands with different dimension so that they may generate expressions having
different dimensions as well. These are the operators *, /, - (unitary), min0,
max0, sqrt and pow2. Bearing this in mind, we can extend, for example, N 1

and N 2 as follows:

Definition 3. (N 1∗). This neighbourhood extends N 1 in the following way: if
each of the nodes from the parent node of Bi to the root of the tree contains
one operator in {∗, /,−,min0,max0, sqrt, pow2}, then the symbol in Bi may
be exchanged by any other symbol in E producing a feasible expression in
the subtree rooted at Bi. This means that a dimensionless constant may be
exchanged by a dimensional attribute, and that a binary operator as + may be
exchanged by *, for example; this way producing a neighbouring expression tree
having different dimension than the original one.

Definition 4. (N 2∗). Analogously, under the same conditions of Bi as in the
previous definition, this neighbourhood extends N 2 so that any subtree in E
may be inserted in a node Bi as long as the resulting subtree under Bi is feasible
and the whole tree does not exceed the allowed depth D.

Clearly, these two extended neighbourhoods allow the algorithms to search
across a space containing expression trees having different dimensions. Regard-
ing their connectivity properties, certainly N 1∗ does not have this property, as
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the neighbouring expression tree has the same shape as the original one. N 2∗

has not this property either but, if the set E is exhaustive enough, N 1∗ ∪ N 2∗

does have this property, as stated in the following result.

Proposition 1 (Connectivity property of N 1∗ ∪ N 2∗). Let E be the set of
all feasible subtrees of sizes 1, 2 and 3 that may be built from the given set of
symbols, and let T1 and T2 be two feasible expression trees in the space limited
by S, namely having maximum size S+ 1 and maximum depth D = log2(S+ 2).
Then, T2 is reachable from T1 through a finite sequence of N 1∗ ∪N 2∗ moves.

Proof. We may give a constructive procedure as follows. From any expression
tree as T1 we can take a trivial neighbour T given by a terminal symbol from
E in its root. Then, from this initial tree T , another tree T ′ having the same
structure and the same symbols in the leaf nodes as T2 may be built through
a finite number of N 2∗ moves as follows: in each step, one of the leaves in the
tree having a different symbol than the node in the same array position i in T2
is exchanged by an expression e ∈ E so that:

• If i corresponds to a leaf in T2, then the same terminal symbol in T2 is
inserted in the position i in the tree.

• If i corresponds to a binary subtree in T2 , then any expression e ∈ E rep-
resenting a binary tree rooted in one of the operators in {∗, /} is inserted
in the same position in S.

• If i corresponds to a subtree with only one child (the left one) in T2,
then any expression e ∈ E representing a degenerated subtree of depth 2
rooted in any symbol from {−,min0,max0, sqrt, pow2} is inserted in the
same position i in S.

After the above process, the built tree T ′ has the same number of nodes and
shape as T2, and their leaves are the same. The only differences between these
trees are in the operators in the inner nodes; in T ′ all of them belong to the
set {∗, /,−,min0,max0, sqrt, pow2}. Therefore, the operator in each one of the
inner nodes in T ′ may be exchanged by the operator in the same position in
T2 by a single move of N 1∗, starting from the deepest nodes to the root. The
resulting tree is then T2.

From all the above, in the experimental study we will consider the structures
N 1∗, N 2∗ and the union of both that will be denoted N 12∗.

6. The Memetic Genetic Program

We propose a Memetic Genetic Program (MGP) that combines a Genetic
Program (GP) similar to that proposed in [20] with the Local Search Algorithm
(LSA) described in the previous section. Algorithm 4 shows its main structure.
It is a generational algorithm that starts from an initial population of #popsize
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Algorithm 4 Memetic Genetic Program
Data: A set M of instances of the (1, Cap(t)||

∑
Ti) problem. Parameters: crossover prob-

ability pc, mutation probability pm, number of generations #gen, population size
#popsize, local search probability pLS .

Result: An expression tree representing a priority rule for the (1, Cap(t)||
∑
Ti) problem.

1: Generate the initial population P(0) with #popsize expression trees (Algorithm 2);
2: Evaluate P(0) on the set M;
3: for all t=1 to #gen-1 do
4: Selection: organize the expression trees in P(t− 1) into pairs of parents at random;
5: Recombination: mate each pair of parent expression trees and mutate the two off-

springs in accordance with pc and pm;
6: Evaluation: evaluate the resulting expression trees on the set M;
7: LocalSearch: apply LSA (Algorithm 3) to the offspring in accordance with pLS ;
8: Replacement: make a tournament selection of two expression trees from every two

parents and their offsprings to build the population in the next generation P(t);
9: return The best expression tree reached;

individuals (expressions trees) generated by Algorithm 2 (lines 1-2). Then, it
iterates over a number of generations (#gen). Each iteration (line 3) starts
with a selection procedure (line 4) in which the individuals are organized into
pairs at random. Then, in the recombination step (lines 5-6), in accordance
with the mating and mutation probabilities pc and pm, each pair undergoes
crossover and the resulting offspring are mutated. These operators are adapted
from the classical ones described in [13], so that they always generate feasible
expression trees, i.e., they have maximum depth D and represent dimensional
compliant expressions. After these steps, each individual is improved by local
search (Algorithm 3) with probability pLS (line 7). Finally, the replacement
operator (line 8) passes the best two individuals from each pair of parents and
their offspring to the next generation, which confers the algorithm an implicit
form of elitism.

7. Experimental study

We conducted an experimental study aimed at analyzing the components of
the proposed MGP, i.e., the LSA and the GP working alone, and to compare
MGP to the GP giving both of them the same time. Remember that the GP
considered here is quite similar to that proposed in [51], which represents the
state of the art to evolve priority rules for the (1, Cap(t)||

∑
Ti) problem. To

this end, we implemented a prototype in Java and ran a series of experiments on
a Linux cluster (Intel Xeon 2.26 GHz. 128 GB RAM). This cluster distributes
the workload into 28 processing nodes, so we opted to perform 28 independent
runs for each problem instance.

The experiments were carried out across the set of instances proposed in
[51]. This set includes instances of 60 jobs each and a maximum capacity of
the machine of 10, and were generated with a procedure that tries to mimic
the generation of instances produced in the actual EVCSP when all three lines
of the charging station are working under the highest demand (60 EVs) and a
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contracted power limited for at most 10 EVs charging simultaneously in each
line. The procedure is as follows, MC is the maximum capacity of the machine,
U(a, b) is an integer sampled uniformly in the interval [a, b], and N(µ, σ) is an
integer sampled from a normal distribution with mean µ and standard deviation
σ:

1. For each operation i, its processing time is set as pi = U(20, 100). Based
on these values, we define min pi = min{pi, i = 1, . . . , n} and sum pi =∑n

i=1 pi.

2. The initial capacity of the machine is set as IC = U(1,MC), whereas its
final capacity is FC = 2. Then, the capacity of the machine is defined
by different intervals, first increasing the capacity one by one from IC to
MC, and then decreasing it one by one until FC.

3. The duration of each capacity interval is set as max{min pi/4, N(R, 0.2×
R)}, where R = sum pi/S and S =

∑MC−1
j=IC j +

∑MC
j=FC j. This aims at

enforcing the operations to be distributed over all the capacity intervals.

4. Finally, for each operation i, its due date is set as di = U(pi, B), where
B = R× (2×MC − IC − 1) approximates the completion time of all the
operations.

With this procedure, we generated 50 the purpose of training and 1000 more
instances for the test. These instances are such that both the EDD rule and the
ATC rule with g ∈ {0.25, 0.5, 0.75, 1.0} produce schedules with total tardiness
greater than 0.

We conducted the experimental study across these instances, but we also
generated another set of instances with lower size to assess the performance
of the algorithms depending on the problem size. These instances represent
situations of the charging station working with about half contracted power,
i.e., MC = 5 and half of the maximum demand, i.e., with 30 EVs.

7.1. Evaluation of LSA

To analyze the effectiveness of the LSA, we performed some preliminary
experiments in which LSA was considered alone and applied to various sets
of rules. The goal was to assess the capacity of the neighbourhood structures
to produce improving rules, and which of the control strategies, namely hill
climbing (HC) or gradient descent (GD), may be more appropriate. We have
taken 6 sets of 28 rules each with different characteristics depending on the
maximum depth and quality. Specifically, we considered random rules and rules
evolved by the GP (GP rules), and in each case we considered rules with different
depths Di of 4, 6 and 8. In any case, we fixed the final maximum depth Df

to 8. All rules were tried to be improved by different versions of the LSA
combining the two control strategies, HC and GD, and the three mentioned
neighbourhoods, N 1∗, N 2∗ and N 12∗. Here it is important to remark that to
apply N 12∗ the neighbours from N 1∗ and N 2∗ are shuffled at random to avoid
bias towards one of the structures.
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The results of these experiments are summarized in Tables 4 and 5, which
show the results of the LSA starting from rules generated by the GP and random
rules respectively. Regarding the first ones, we can observe that the LSA is able
to produce moderate improvements in all cases; this is not surprising as the
GP rules are generally good. There are not strong differences between the
control strategies, HC and GD. The main differences observed are due to the
neighbourhood structures; N 1∗ produces the worst results, but it takes much
less time as it performs less iterations (#Ite) and consequently it has to evaluate
fewer different rules (#Dif). In any case, the improvement of the rules comes
at the cost of larger sizes.

The results produced by the LSA from random rules (Table 5) are quite
different. As these are generally bad rules, the LSA was able to produce signif-
icant improvements in all cases. Now, there are strong differences between HC
and GD in favor of the second, especially when they are combined with N 2∗

and N 12∗. Maybe, the most surprising results in these experiments are those
from HC. We can observe that the best results are obtained in combination with
N 1∗, even in this case the results are better than those from GD for the largest
instances. Furthermore, when HC is combined with N 2∗ and N 12∗ the results
are clearly worse than when these neighbourhoods are combined with GD. In
that case, both the small size of the rules and the short time taken by LSA seem
odd. The reason for this is that random rules are often quickly improved by
neighbouring rules of small size produced by N 2∗, as for example −dj that is
in fact equivalent to the EDD rule. Then these rules are not improved by any
neighbour and so LSA terminates too soon.

From these results, the combination LSA+GD+N 12∗ seems to be the most
appropriate. Therefore it is the option chosen to be combined with the GP in
the proposed MGP.

7.2. Evaluation of GP

As pointed out, the GP considered is quite similar to that proposed and
analyzed in [20]. For this reason, we do not perform here an exhaustive analysis,
but only provide some results aimed at assessing its behaviour depending on
the size of the rules (Di) in the initial population and the maximum size (Df )
allowed to the rules evolved. We considered Di and Df values of 4, 6 and 8;
and combinations of them so that Df ≥ Di. Table 6 summarizes the results
of these experiments. For each pair (Di,Df ) the table reports results from 28
independent runs: the best and average results of the 28 rules on the training
and test sets, the value of the best rule in training on the test set (BestT ), the
average size and depth of the rules, the average number of generations reached
by the time limit (300 minutes per run) and the number of different rules actually
evaluated. At this point it is important to remark that the evaluated rules are
stored so that if they appear in subsequent generations they do not have to be
evaluated again.

From Table 6, we may draw the following conclusions: first, the quality,
size and depth of the evolved rules are in direct ratio with Df and they are
almost independent from Di. The number of generations reached is in inverse
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Table 4: Analysis of the performance of LSA on rules evolved by GP considering different
control strategies, GD and HC, different neighbourhood structures, N 1∗, N 2∗ and N 12∗, and
different maximum initial depth, Di. In any case, the maximum depth allowed for the rules
modified by LSA is Dm=8. The average total tardiness produced by the initial rules for Di 4,
6 and 8 are 1722.20, 1648.02 and 1625.31 on the training set and 1745.10, 1682.63 and 1664.41
on the test set respectively. For each combination of parameters, we report, on average, the
total tardiness produced by the improved rules in the Training and Test sets, the Size and
Depth of the improved rules, the number of iterations of LSA(#Ite), the number of generated
(#Gen) and feasible (#Fea) rules, how many of these rules were different (#Dif), and finally
the time in seconds taken to improve a rule.

Di LSA N Training Test Size Depth #Ite #Gen #Fea #Dif Time

4

GD
1* 1722.09 1745.20 12.71 4.00 1.07 48.46 48.46 44.96 4.07
2* 1634.99 1671.27 22.71 6.32 7.21 20570.86 20264.89 13695.79 1179.46
12* 1634.99 1671.27 22.71 6.32 7.21 20987.86 20681.89 13852.00 1200.57

HC
1* 1722.09 1745.20 12.71 4.00 1.07 48.46 46.96 43.93 3.96
2* 1666.14 1701.48 22.93 6.50 16.96 46637.00 29820.04 15113.71 1290.79
12* 1660.91 1696.48 23.32 6.43 18.86 51830.61 33103.61 16503.54 1551.25

6

GD
1* 1647.29 1682.06 30.32 5.96 1.11 103.04 103.04 97.00 12.57
2* 1632.01 1677.85 38.54 7.46 6.79 35519.86 34503.43 26019.82 3292.04
12* 1631.98 1677.83 38.36 7.46 6.75 35932.14 34878.46 26038.79 3303.96

HC
1* 1647.29 1682.06 30.32 5.96 1.11 103.04 97.18 91.57 11.36
2* 1635.83 1677.44 33.61 7.11 12.64 57937.14 35595.71 22097.00 2410.93
12* 1636.14 1678.07 33.71 7.04 11.89 56193.75 34244.11 21048.61 2296.04

8

GD
1* 1625.03 1664.50 48.25 7.71 1.25 165.36 165.36 157.75 24.14
2* 1617.33 1661.26 54.04 7.93 6.61 45040.57 41172.68 32338.64 4751.21
12* 1617.33 1661.26 54.04 7.93 6.61 45978.93 42111.04 32656.71 4794.11

HC
1* 1625.03 1664.50 48.25 7.71 1.25 165.36 148.68 143.00 22.00
2* 1618.13 1662.50 50.04 7.79 10.96 66486.00 40888.39 27977.96 3733.61

Table 5: Analysis of the performance of LSA on random rules. The average total tardiness
produced by the initial rules for Di 4, 6 and 8 are 5577.56, 6088.82 and 5189.72 on the training
set and 5609.42, 6114.84 and 5236.84 on the test set respectively.

Di LSA N Training Test Size Depth #Ite #Gen #Fea #Dif Time

4

GD
1* 1950.06 1970.03 7.89 3.96 3.11 91.75 91.75 71.14 5.25
2* 1730.46 1761.94 16.32 5.61 7.29 17951.79 17536.29 10820.43 883.89
12* 1731.27 1762.59 15.89 5.61 7.14 17592.04 17182.07 10599.86 866.54

HC
1* 2144.88 2158.89 7.89 3.96 4.32 143.46 50.57 42.43 3.39
2* 3507.07 3516.18 2.18 1.86 1.93 2966.86 834.25 286.61 19.21
12* 3507.07 3516.18 2.18 1.86 1.93 3021.61 844.46 290.61 20.36

6

GD
1* 1911.84 1939.03 16.43 5.96 3.43 244.00 244.00 193.39 18.25
2* 1750.04 1776.71 16.21 5.14 7.29 27050.29 26291.07 17178.36 1586.64
12* 1766.29 1795.40 15.82 5.14 6.39 23870.32 23417.93 15480.04 1444.11

HC
1* 1903.22 1927.84 16.43 5.96 7.00 595.57 151.18 132.04 13.14
2* 3671.07 3679.78 2.36 1.89 2.00 5233.29 877.43 303.71 24.50
12* 3671.07 3679.78 2.36 1.89 2.00 5332.71 888.75 308.07 24.36

8

GD
1* 1910.20 1943.99 60.50 8.00 2.93 722.54 722.54 586.50 107.79
2* 1829.55 1859.12 19.00 4.68 4.68 54711.00 47982.68 34080.96 5439.11
12* 1824.27 1854.80 21.21 4.86 5.00 59094.54 51728.64 36607.39 5972.79

HC
1* 1898.72 1932.98 60.50 8.00 13.82 3626.50 667.00 606.07 113.79
2* 3031.90 3042.73 2.43 2.04 2.00 15413.00 885.86 316.71 21.68

ratio with Df showing that the genetic operators (crossover and mutation) and
the evaluation of chromosomes take a longer and longer time with the size
of the encoded rules. There is only one exception for Di = Df = 4, where
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we can see that the number of generations is quite similar to the number of
different chromosomes evaluated, which is an odd behaviour for an evolutionary
algorithm. The reason for this is that restricting the depth of the expression
trees to a very low value, such as 4, makes the search space so low that many
feasible trees appear repeatedly along the search process.

All in all, we consider Di = 4 and Df = 8 in the comparison of the GP and
MGP carried out in the next section.

Table 6: Results from GP with different combinations of Di and Df ; for each combination 28
independent runs were done with 300 minutes of time limit in each one.

Training Test

Di Df Best Avg. Best Avg. BestT Size Depth #Gen #Dif

4
4 1653.30 1763.50 1649.93 1790.16 1649.93 13.11 4.00 42618.64 45871.96
6 1609.80 1676.32 1629.40 1707.07 1637.38 28.04 5.93 3809.21 133605.11
8 1590.38 1622.93 1636.29 1659.18 1636.29 47.71 7.71 881.07 97894.71

6
6 1605.58 1667.18 1636.99 1699.41 1650.41 27.64 5.96 4441.75 122488.07
8 1599.54 1652.99 1636.80 1688.92 1639.60 47.71 7.82 1061.82 95362.11

8 8 1592.80 1666.87 1629.34 1709.66 1641.96 50.36 7.93 851.21 99581.96

7.3. Evaluation of MGP

To evaluate MGP, we considered a number of variants of the LSA combining
the neighbourhood structures and establishing reasonable limits to the number
of chromosomes selected to undergo local search in each generation. Moreover,
when N 2∗ is applied, we had to restrict the number of neighbours evaluated
as the cardinality of this structure is huge. The results of these experiments
are summarized in Table 7. The first remarkable result is that the number of
chromosomes evaluated by MGP is about twice the number of chromosomes
evaluated by the GP in the same time limit (300 minutes). The main reason for
this may be the easiness of the neighbourhood structures to generate a variety
of feasible chromosomes in contrast to the fact that the crossover and mutation
operators generate many infeasible chromosomes. Furthermore, the average size
of the chromosomes grow more slowly due to the LSA generating chromosomes
with similar size in opposition to crossover and mutation that may generate
chromosomes of quite different sizes.

We can see that to allow MGP to complete a reasonable number of gener-
ations (50 or more), we have to restrict both the fraction of chromosomes that
undergo local search and the number of neighbours considered. If we look at
the average results, both in test and training, we can see that any version of
MGP is better than the GP regarding both tardiness and the size of the rules,
with only one exception in this case. Anyway, it seems that the options with
N 12∗ produce the best results.

However, if we look at the best values, including BestT , which refers to the
application of the best rule in training to the test set, the results are not so
clear. This may be due to the highly stochastic nature of the GP.

The boxplot in Figure 3(a) summarizes the average tardiness of the consid-
ered algorithms in the training set. To assess their differences we performed a
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Table 7: Summary of results from the GP (first row) and MGP(the remaining rows) with
different LS strategies. The notation NXpY% lZ means that the LSA exploits the neigh-
bourhood NX , which is applied to a fraction Y of the population in each generation and only
a number of at most Z neighbours are selected at random. The symbol e means that the LSA
is only applied to the best chromosome in each generation. In all cases Di = 4 and Df=8.

Training Test

Algorithm Best Avg. Best Avg. BestT Size Depth #Gen #Dif

GP 1590.38 1622.93 1636.29 1659.18 1636.29 47.71 7.71 881.07 97894.71

N 1∗p100% 1605.02 1619.36 1637.17 1646.86 1647.87 27.71 7.18 17.46 179334.14
N 1∗p5% 1590.42 1606.16 1621.12 1644.28 1637.08 44.29 7.93 113.61 157664.79
N 2∗p5% 1595.56 1608.94 1633.07 1641.71 1634.62 25.36 6.96 4.50 175422.32
N 12∗p5% 1599.54 1606.88 1630.71 1643.90 1634.70 30.14 7.25 4.75 175439.36

N 2∗e 1583.92 1613.69 1631.43 1658.58 1631.43 43.11 7.82 471.64 131534.96
N 12∗e 1594.58 1620.23 1639.34 1663.86 1642.95 42.46 7.93 629.21 122856.71

N 1∗p5% N 2∗e 1590.80 1609.17 1634.93 1651.07 1635.21 41.36 7.93 94.29 162865.68

N 12∗p5% l10 1589.34 1602.47 1626.68 1646.57 1635.72 47.89 7.96 385.18 139925.46
N 12∗p5% l50 1589.72 1599.01 1628.17 1639.57 1629.47 44.96 7.86 87.75 166036.29
N 12∗p5% l200 1597.04 1603.10 1633.05 1639.48 1638.93 38.07 7.86 29.82 200745.07
N 12∗p10% l50 1591.86 1602.35 1629.79 1641.39 1638.62 39.64 7.89 60.32 191032.14
N 12∗p20% l10 1589.12 1601.78 1626.74 1643.92 1630.87 46.07 7.93 168.14 158521.11
N 12∗p50% l10 1591.66 1603.58 1632.99 1644.01 1644.55 43.32 7.96 97.82 187401.18

statistical test; as some of the results do not follow a normal distribution, we
performed a Kruskal-Wallis test. The results of these tests show that there are
statistical differences among the methods (p-value=4.14E-23) and that all ver-
sions of MGP that apply LS to a percentage of the population and that limit the
number of neighbours at the same time take the first positions, being N 12∗p5%
l50 the first one. These are the versions of MGP that reach a reasonable num-
ber of generations (50 or more) by the time limit. To analyze the differences
between N 12∗p5% l50 and each one of the remaining methods, we performed a
number of post-hoc procedures using the Dunn test. Table 8 shows significant
differences (3) on the training set between N 12∗p5% l50 and the methods that
do not limit the number of neighbours; while there are not differences with the
methods that apply LS to a percentage of the population and limit the number
of neighbours at the same time. In both cases, these are sharp results as they
are independent on the adjustment.

The boxplot in Figure 3(b) summarizes the average tardiness of the algo-
rithms on the test set. There are also statistical differences between them (p-
value=1.03E-14); even though the best method is N 12∗p5% l200, while the best
in training, N 12∗p5% l50, is third in the test. The results of the Dunn test
also show similar results between N 12∗p5% l50 (the best in training) and the
remaining methods, as we can see in Table 9.

In addition to the best and average results reached by the algorithms, it
is interesting to analyze their convergence patterns and the distribution of the
final solutions in the 28 independent runs. For this purpose, we selected 4 of the
versions analyzed in Table 7, namely the GP and MGP considering N 12∗p5%,
N 12∗e and N 12∗p5% l50. These versions are denoted GP , MGPp, MGPe and
MGPpl in Figure 4. Figures 4 (a) and (c) show the evolution over time (not over
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Figure 3: Boxplots execution.

Table 8: N×1 comparisons of training control algorithm (N 12∗p5% l50) with the different
algorithms for the Dunn‘s post-hoc test on training executions.

hhhhhhhhhhAlgorithm
Adjustement

Bonferroni Holm Hochberg Hommel
Hochberg

& Benjamini
Hochberg
& Yekutieli

GP 3 3 3 3 3 3

N 1∗p100% 3 3 3 3 3 3

N 1∗p5% 3 3 3 3 3 3

N 1∗p5% N 2∗e 3 3 3 3 3 3

N 12∗p100% l5
N 12∗p10% l50
N 12∗p20% l10
N 12∗p50% l10
N 12∗p5% 3 3 3 3 3 3

N 12∗p5% l10
N 12∗p5% l100 3

N 12∗p5% l200 3

N 12∗e 3 3 3 3 3 3

N 2∗p5% 3 3 3 3 3 3

N 2∗e 3 3 3 3 3 3

generations) of the average value of the 28 rules on the training and test sets
respectively. The GP is the worst algorithm in both cases, and N 12∗e, which
applies LS to only the best chromosome in each generation, converges prema-
turely. It is MGP with N 12∗p5% l50 the one that shows the best convergence
pattern. In this case, the average tardiness in the test set seems to be stabilized
after about 100 minutes, while it continues improving in the training set, what
suggests overffiting on the training set, but without the rules getting worse on
the test set.

Figure 4 (e) shows the evolution of the average size of the rules over time;
again the GP produces the largest rate, but it is N 12∗p5% the one that produces
the lowest rate.
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Table 9: N×1 comparisons of training control algorithm (N 12∗p5% l50) with different algo-
rithms for the Dunn’s test on test executions.

hhhhhhhhhhAlgorithm
Adjustment

Bonferroni Holm Hochberg Hommel
Hochberg

& Benjamini
Hochberg
& Yekutieli

GP 3 3 3 3 3 3

N 1∗p100% 3 3 3 3 3 3

N 1∗p5% 3

N 1∗p5% N 2∗e 3 3 3 3 3

N 12∗p100% l5
N 12∗p10% l50
N 12∗p20% l10
N 12∗p50% l10
N 12∗p5%
N 12∗p5% l10
N 12∗p5% l100
N 12∗p5% l200
N 12∗e 3 3 3 3 3 3

N 2∗p5%
N 2∗e 3 3 3 3 3 3

Regarding the distribution of tardiness and sizes from the 28 independent
runs, Figures 4 (b) and (d) show the values for the training and test sets re-
spectively sorted in increasing order on the training set. The GP shows the
largest dispersion, while N 12∗p5% and N 12∗p5% l50 are the most stable, being
the last one better in average as showed in Table 7. Finally, Figure 4 (f) shows
the size of the 28 rules evolved following the same order; in this case N 12∗p5%
stands out as the most stable and the one that produces the smallest rules, in
accordance with the values reported in Table 7.

To evaluate MGP in searching for priority rules to solve instances with dif-
ferent size, we performed some experiments on the second set of instances, those
with 30 jobs and a maximum capacity of the machine for 5 jobs at a time. We
executed the GP alone and with the neighbourhood structures N 12∗p5% and
N 12∗p5% l50. The results are reported in Table 10, where we can see that MGP
withN 12∗p5% produces quite similar results to the GP, but MGP withN 12∗p5%
l50 performs better. In the last case, the evolved rules are much better on the
training set and also they are clearly better on the test set in average. However,
the best rule in training is quite similar in test to the best rules evolved by the
two other methods. In any case, the expected performance for a rule evolved
by MGP with N 12∗p5% l50 is much better than the expected rules evolved by
both the GP and MGP with N 12∗p5%. Furthermore, the results are better than
those produced by the best version of the ATC rule, in this case with g = 0.3,
which produced average tardiness of 444.28 and 445.87 on the training and test
sets respectively.

8. Conclusions and future work

In this paper, we consider a Genetic Program (GP) that evolves priority
rules for a scheduling problem and propose some neighbourhood structures that
allow the GP to make local improvements on the evolved rules.
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(a) Training. Tardiness Evolution.
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(b) Training. Tardiness Execution.
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(c) Test. Tardiness Evolution.
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(d) Test. Tardiness Execution.
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(e) Size Evolution.
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(f) Size Execution.

Figure 4: Left: evolution of the best rule over time (0 - 300 minutes); (a) and (c) show the
average tardiness of the 28 rules on training and test instances, (e) shows the average size of
the evolved rules over time. Right: final rules; (b) and (d) show the tardiness values of the
best rules reached in the 28 independent runs, (f) shows the size of the rules evolved by each
algorithm in each run. The symbols MGPp, MGPe and MGPpl denote N 12∗p5%, N 12∗e and
N 12∗p5% l50 respectively.

Taking as case of study the one machine scheduling problem with variable
capacity over time and tardiness minimization, denoted (1, Cap(t)||

∑
Ti), the

goal was to evolve new priority rules adapted to the features of a given bench-
mark set. Combining the proposed neighbourhood structures with the GP, we
developed a Memetic Genetic Program (MGP) whose expected solutions, i.e.,
priority rules, are better and smaller than the rules expected from the original
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Table 10: Summary of results from GP and MGP with two LSA strategies on the small
instances. The running conditions are the same as in the results reported in Table 7.

Training Test

Best Avg. Best Avg. BestT Size Depth

GP 428.08 467.87 440.25 475.27 441.83 43.21 7.75

N 12∗p5% 430.04 466.68 441.33 474.51 441.46 42.61 7.86
N 12∗p5% l50 420.60 427.37 439.85 443.58 442.60 46.68 7.96

GP.
Therefore, the major conclusion we can draw from this work is that it is

possible to design local search operators, adapted to the problem domain, to
improve the performance of a GP for evolving scheduling rules. We have seen
that establishing neighbourhood structures well adapted to the problem is the
hardest task, and that the evaluation of the neighbouring solutions may be very
time consuming due to the huge cardinality of these structures.

This work leaves open some lines for future research. Undoubtedly, the
development of simplified or surrogate models to evaluate the huge amount of
neighbours is one of them. Besides, the combination of symbolic and numerical
local search strategies, as suggested in [40], could help to make a fine tuning of
the rules and to decrease their size. And, finally, considering other scheduling
problems would be necessary to assess the performance of the proposed rule-
generation paradigm.
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machine scheduling in the context of electric vehicles charging, Integrated
Computer-Aided Engineering 26 (1) (2019) 1–15.

[11] C. Koulamas, The total tardiness problem: Review and extensions, Oper-
ations Research 42 1025–1041 (1994).

[12] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, J. R. Woodward,
A Classification of Hyper-Heuristic Approaches: Revisited, vol. 272 of In-
ternational Series in Operations Research & Management Science, Springer
International Publishing, 453–477, 2019.

[13] J. R. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection, MIT Press, 1992.

[14] J. C. Tay, N. B. Ho, Evolving dispatching rules using genetic program-
ming for solving multi-objective flexible job-shop problems, Computers &
Industrial Engineering 54 (3) (2008) 453–473.

[15] S. Nguyen, M. Zhang, M. Johnston, K. Tan, Dynamic Multi-objective Job
Shop Scheduling: A Genetic Programming Approach, vol. 505 of Automated
Scheduling and Planning. Studies in Computational Intelligence, 251–282,
2013.

25



[16] R. Hunt, M. Johnston, M. Zhang, Evolving ”Less-myopic” Scheduling
Rules for Dynamic Job Shop Scheduling with Genetic Programming, in:
GECCO’14: Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation, 927–934, 2014.

[17] H. Ingimundardottir, T. P. Runarsson, Discovering dispatching rules from
data using imitation learning: A case study for the job-shop problem, Jour-
nal of Scheduling 21 (4) (2018) 413–428.

[18] C. Dimopoulos, A. Zalzala, Investigating the use of genetic programming
for a classic one-machine scheduling problem, Advances in Engineering
Software 32 (6) (2001) 489–498.
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heuristics to evolve ensembles of priority rules for on-line scheduling, Nat-
ural Computing, doi:10.1007/s11047-020-09793-4.

28


