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Abstract

There is an increasing number of projects based on Knowledge Graphs and
SPARQL endpoints. These SPARQL endpoints are later queried by �nal users
or used to feed many di�erent kinds of applications. Shape languages, such as
ShEx and SHACL, have emerged to guide the evolution of these graphs and
to validate their expected topology. However, authoring shapes for an exist-
ing knowledge graph is a time-consuming task. The task gets more challenging
when dealing with sources, possibly maintained by heterogeneous agents. In this
paper, we present sheXer, a system that extracts shapes by mining the graph
structure. We o�er sheXer as a free Python library capable of producing both
ShEx and SHACL content. Compared to other automatic shape extractors,
sheXer includes some novel features such as shape inter-linkage and computa-
tion of big real-world datasets. We analyze the features and limitations w.r.t.
performance with di�erent experiments using the English chapter of DBpedia.
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1. Introduction

The interest in Knowledge Graphs (KGs) is rapidly growing, especially in
the last decade. Insightful examples of big and open KGs are DBpedia [1],
Wikidata [2], or YAGO [3]. These projects are published online and allow indi-
viduals and companies to make use of their content. Also, many big companies5

use their own private or semi-private KGs for a wide variety of purposes, in-
cluding Google, Amazon, Facebook, and Microsoft, among others [4]. The most
common way to build and expose those KGs is using W3C standards such as
Resource Description Language (RDF) and SPARQL.

In such a context, mechanisms to validate the structure or assist the main-10

tenance of KGs are needed. Ontologies can be used to de�ne restrictions w.r.t.
property and class usage. However, those restrictions de�ned by ontologies are
frequently not enough to model every schema feature in a given KG. For exam-
ple, a KG may need to combine di�erent ontologies using some restrictions not
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Figure 1: Example of :User shape. (A) SHACL (turtle syntax). (B) ShEx (ShExC syntax).

@prefix : <http://example.org/> .
@prefix schema: <http://schema.org/> .
@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

:User a sh:NodeShape ;
sh:property [ a sh:PropertyShape ;

sh:datatype xsd:string ;
sh:maxCount 1 ;
sh:minCount 1 ;
sh:path schema:name ] ;

sh:property [ a sh:PropertyShape ;
sh:datatype xsd:date ;
sh:maxCount 1 ;
sh:path schema:birthDate ] .

A PREFIX : < http://example.org/>
PREFIX schema: <http://schema.org/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

:User {
schema:name xsd:string ;
schema:birthDate xsd:date ? ;

}

B

de�ned in the actual ontologies. It may also need to de�ne extra restrictions15

over a speci�c ontology element. To overcome this, shape languages such as
ShEx (Shape Expressions) [5] and SHACL (Shapes Constraint Language) [6]
have been proposed. Although these two languages are not fully equivalent [7],
both can provide mechanisms to validate and document the expected topology
of a KG.20

Shape languages are structured around the concept of shape. Shapes describe
how the di�erent types of nodes within a KG are supposed to be connected
with other nodes. In Figure 1, we show a toy example of a shape describing the
expected topology of a User node in SHACL (A) and ShEx (B)1. A node con-
forming with the shape :User should have exactly a schema:name2 of xsd:string25

type and, optionally, it can have a birth:date of xsd:date type. The shape :User
can be used to validate whether the nodes that represent users conform with
their expected topology in the context of a given KG.

Usually, the shapes are handcrafted by domain experts. Those shapes can
guide content modi�cations or be used to check the KG's correctness with au-30

tomatic validators [8]. However, producing and maintaining shapes is time-
consuming. The task becomes more challenging when dealing with big and
heterogeneous KGs, possibly with evolving schemata, and maintained by di�er-
ent agents.

Automatic shape extractors were proposed to overcome this issue. Auto-35

matic extractors can produce shapes by mining KGs or exploring the ontologies
used in those KGs, requiring few or no human intervention. As this is a rel-
atively new problem, few automatic extractors have been proposed. Many of
them are prototypes that are not accurate enough yet, or have scalability is-
sues to deal with big datasets. In many cases, this prevents both users and40

data-maintainers from using automatic extractors.
In this paper, we present sheXer, an automatic shape extractor based on

graph mining. sheXer can produce ShEx and SHACL content, and it allows to

1You can view and modify this example in the following link: http://rdfshape.weso.es/
link/16182267731 Accessed in 2021/10/15

2All the pre�xes used in this paper are commonly used and can be solved using the on-line
tool http://prefix.cc/.
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tune the extraction process with multiple con�guration parameters. sheXer was
suggested as a theoretical idea [9] and proposed as a demo [10]. Nowadays, we45

o�er a public Python library with a mature implementation of sheXer3. This
library has already been used in several scienti�c works [11, 12]. Also, sheXer
is integrated with external tools relevant to the Linked Data community, such
as WikidataIntegrator4. sheXer has some unique features compared to other
existing automatic shape extractors, including:50

� It performs shape inter-linkage, i.e., it can produce constraints that refer
to other shape labels. Most of the alternatives use less speci�c macros
instead, such as IRI5.

� It uses an iterative approach that allows for computing big datasets. There
is not a strict relation between the size of the computed KG and the55

memory consumption. There is no need to keep in memory the whole
graph at any point in the process.

� It assigns a trustworthiness score to each one of the inferred constraints.
Although this feature is partially shared with Shape Designer [13], sheXer
uses this score to sort, �lter, or merge some constraints while performing60

the shape extraction.

In this paper, we formalize sheXer's algorithm and work�ow. Also, we per-
form several experiments to analyze the execution time and memory consump-
tion of our proposal. To the best of our knowledge, the only other automatic
shape extractor with a published performance study is SHACLearner [14]. Its65

authors perform experiments against the English chapter of DBpedia, and they
provide details about execution time, but not memory consumption.

In section 2, we o�er an overview of our approach, its architecture, and
its algorithms. In section 3, we detail the conditions of our experiments and
then present and discuss the obtained results. In section 4, we describe other70

existing proposals to perform automatic shape extraction. Finally, in section 5,
we enumerate the conclusions and future lines of our work.

2. System description

sheXer has a modularized architecture that allows it to adapt to many dif-
ferent scenarios. Each module expects an input and produces an output. This75

output may be presented to the �nal user or consumed by some other module.

3The source code, installing instructions and documentation is publicly available: https:
//github.com/DaniFdezAlvarez/shexer/tree/1.3.0 Accessed in 2021/10/15

4WikidataIntegrator is a well-known tool in Wikidata community. It allows to interact
with the KG using Python bots https://github.com/SuLab/WikidataIntegrator Accessed
in 2021/10/15

5In ShEx, the macro IRI stands for any node which is an IRI. In SHACL, sh:IRI has an
equivalent meaning.
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Figure 2: sheXer base architecture.
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sheXer's architecture is shown in Figure 2. Its work-�ow consist of the following
steps:

� The user chooses an input. This includes target RDF source, target shapes
to extract, and possibly some con�guration parameters.80

� The Instance Tracker determines which nodes of the target source will be
used to extract which shapes. It consumes relevant triples from the Graph
Iterator.

� The Feature Tracker within the Shape extractor generates a set of can-
didate constraints associated with each shape. It uses the information85

produced by the Instance Tracker and consumes the graph's content us-
ing the Graph Iterator.

� The Shape Adapter �lters, adapts, merges, and sorts candidate constraints
according to the con�guration settings, so a �nal set of constraints is
produced.90

� The Shape Serializer turns the in-memory shapes produced by the Shape
Adapter into the content chosen by the user.

The current implementation of sheXer includes several versions of most of
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the modules. In the following sections, we will detail the structure and mission
of each module.95

2.1. Graph Iterator

There are two phases of the work�ow in which the target RDF source needs
to be parsed: 1) determining which nodes will be used to build which shapes,
and 2) building the abstract pro�le for each shape. The target RDF content is
served by the Graph Iterator (GI) to perform those actions. Regardless of the100

type of input, the mission of the GI is to retrieve relevant triples for the process
in an iterative way. Whenever it is possible, the GI avoids placing in memory
the entire target content at a time.

The internal details of this software piece may change according to the kind
of input. For example, an RDF input based on local text �les can be trivially105

served by reading small �le chunks and processing triple by triple. The input
could be instead part of the content exposed in some remote SPARQL endpoint.
The sheXer library includes GI implementations to deal with several input cases,
including the ones already mentioned.

2.2. Instance tracker110

The mission of the Instance Tracker (IT) consists of determining which nodes
(aka instances) will be used to build which shapes. The nature of this process
can vary depending on the type of input and the target shapes and instances.

For example, when sheXer receives a shape map6 to link a shape with some
instances, it could be necessary to execute a SPARQL query to �nd those shapes.115

When the target shapes are speci�ed using a list of target classes, the process
consists of �nding the instances of those classes. sheXer also lets the user to
generate a shape for every class in the target graph. Our proposal can combine
some of those strategies too. For example, one can request shapes via shape
maps and for every class in the target KG at a time.120

The IT outputs a dictionary that links instances (keys) with their list of
target shapes (values).

2.3. Feature Tracker

The Feature Tracker (FT) �nds a candidate set of features for each target
shape using a voting system. The FT receives the instance dictionary produced125

by the IT. Then, it processes the triples sent by the GI. The triples are used
to generate positive votes for some constraints. sheXer decorates the instance
dictionary to annotate the number of times that a combination of predicate and
object type is found for each instance. These constraints can have di�erent speci-
�city w.r.t. predicate and object. In Figure 37, we show an example of several130

6sheXer supports shape maps, which are the standard ShEx mechanism to link nodes
with the shape that they should conform with. The syntax of shape maps is speci�ed in the
following link: http://shex.io/shape-map/ Accessed in 2021/10/15

7The constraints shown in this Figure are written for shapes in ShExC.
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Figure 3: Example of constraints that could get positive votes from a certain triple.

:John :age “32”^^xsd:integer .

:age xsd:integer {1}
:age xsd:integer +
:age xsd:integer *
:age xsd:integer ?
:age LITERAL +
:age IRI +
:age . +
:age . *
# …

candidate constraints supported by the triple te =(:John :age �32�^^xsd:string).
sheXer limits the positive votes generated to some representative object and car-
dinality combinations using the following criteria:

� Exact cardinality, i.e., exact number of triples where this combination of
property and object type occurs in the dataset for a given subject.135

� The range {1, unbounded}, represented by the positive closure '+'.

sheXer can produce shapes whose range includes 0 occurrences of a given
constraint. However, they are generated in the Shape Adapter module. Regard-
ing the object's speci�city, the following constraints get positive votes:

� When the object is a literal: the exact type of the literal, the macro140

LITERAL (any literal), and the macro '.' (any element).

� When the object is a URI: the macro URI (any URI) and the macro '.'.
In case the URI is linked with a shape s′, also the label of s′.

� When the object is a blank node: the macro BNODE (any blank node)
and the macro '.'.145

The maximum number of votes that a constraint of a shape s can obtain is
the number of instances used to extract s. Once all nodes have been explored,
each constraint cs is associated with a trustworthiness score θcs =

ncs

ns
, where

ncs is the number of positive votes to cs and ns is the number of instances of s.
The user can specify a minimum θU ∈ [0, 1], and the FT uses this value to150

discard any constraint c such as θcs < θU . When the FT �nishes, every shape s
is associated with a candidate set of constraints which is at least supported by
ns · θU of its instances.

2.4. Shape Adapter

The Shape Adapter (SA) analyzes the shapes outputted by the FT to �lter,155

modify, and merge, some constraints. Finally, it sorts them. For such a task,
the SA uses Algorithm 1. To properly understand the algorithm, several symbol
conventions must be clari�ed:
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� Every function or macro used to encapsulate any behavior is denoted as
fa(x), where a is an identi�er.160

� S is the set containing all the target shapes.

� We denote the constraints associated to a shape s with Cs.

� fU (X) receives a set of constraints X and returns a collection of sets U .
Each TU ∈ U is a group of constraints that have the same property and
type of object, but di�erent cardinality.165

� fdU
(X) receives a set of constraints X which are expected to have the

same property and type of object, and it returns the dominant constraint
αU of the set. αU is the constraint with the highest trustworthiness. In
case of tie, the αU is the one with the most restrictive cardinality8.

8The criteria to choose dominant constraints can be con�gured by the user in di�erent
ways. For example, more general cardinalities could be chosen as preferment. See sheXer's
documentation for further details.

Algorithm 1 Shape Adapter: �ltering stage pseudo-code

Input: S = target shapes
1: for each {s | s ∈ S} do

▷ Stage 1:
2: C ′

s ← ∅
3: U ← fU (Cs)
4: for each {TU | TU ∈ U} do
5: αU ← fdU

(TU )
6: IαU

← ∅
7: for each {c | c ∈ TU ∧ c ̸= αU} do
8: Iαu

← Iαu
∪ f#(c)

9: C ′
s ← C ′

s ∪ {αU}
▷ Stage 2:

10: C ′′
s ← ∅

11: V ← fV (C
′
s)

12: for each {TV | TV ∈ V } do
13: αV ← fdV

(TV )
14: if ∄IαV

then
15: IαV

← ∅
16: for each {c | c ∈ TV ∧ c ̸= αV } do
17: Iαv

← Iαv
∪ f#(c)

18: C ′′
s ← C ′′

s ∪ {αV }
▷ Stage 3:

19: Cs ← C ′′
s
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� The constraints can have some text comments associated. We denote the170

comments associated to a constraint c as Ic.

� f#(x) receives a constraint x and returns a textual comment with some
relevant information of x, such as θxs

, cardinality and type of object.

� fV (X) receives a set of constraints X and returns a collections of sets
V . Each set in V contain constraints that have the same property but175

di�erent type of object.

� fdV
(X) receives a set of constraints X and returns a dominant constraint

αV . A constraint c ∈ X is found the dominant constraint αV of X when
two conditions are met. First, for any ci ∈ X : θci < θc, the object
type of c subsumes the object type of ci. Second, there cannot be any180

ci ∈ X : θci > θc such that the object type of ci subsumes the type of c.
Informally, this means that the type object of c is as speci�c as possible
and, at a time, c is supported by as much instances as possible9.

Algorithm 1 can be separated in di�erent stages to be easily understood. In
stage 1 (lines 2 to 9), the original set of constraints Cs of s is transformed into185

a new set C ′
s , such that every c ∈ C ′

s has a unique combination of property
and object type in C ′

s. If Cs already meets this condition, then Cs = C ′
s. The

constraints of Cs not included in C ′
s are not completely discarded. They are

transformed into textual comments that can appear next to their dominant
constraint in the �nal results.190

For example, picture a group of constraints composed by c1 = (foaf:name
xsd:string +), with θc1 = 1, and c2 = (foaf:name xsd:string {1}), with θc2 = 0.9.
This group is related to a shape s. θc1 > θc2 , so c1 is picked as the dominant
constraint of the group. However, the user may �nd relevant also that 90%
of the target instances associated to s has exactly one foaf:name. sheXer uses195

in-line textual comments to provide some information related to c2.
In stage 2 (lines 10 to 18), constraints with the same property are trans-

formed into a single dominant constraint. Note that the set of constraints
transformed in Stage 2 is C ′

s (see line 11), so every constraint has already a
unique combination of property and object type. The constraints in C ′

s may200

already have some comments associated that should be considered when adding
a new comment in this stage.

Finally, in stage 3 (line 19), C ′′
s becomes the set of constraints of s. At this

point, every constraint associated to s has a unique property in s, and can have
extra information in textual comments.205

9This dominance criteria can be con�gured as well. For example, constraints with oneOf

operators could be generated, Also, some tolerance thresholds to keep precise constraints that
do not cover all the cases can be de�ned.
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2.4.1. Extending cardinalities

The constraints found in Algorithm 1 may not be �nal. The SA still per-
forms an iteration that could modify their cardinality. As already stated, the
FT outputs constrains whose cardinality does not include the possibility of zero
occurrences, such as optional (?) or none-to-many (*). This can lead to sit-210

uations where an instance i used to build a shape s does not conform with s.
Let's suppose that sheXer is con�gured to extract shapes with θU = 0.8, and a
shape s is obtained. s includes a constraint c = (foaf:name xsd:string +) with
θc = 0.9. c has been included in s because θc > θU , but θc = 0.9 means that
10% of the instances does not support c, ergo they do not conform with s.215

sheXer includes a con�guration option that allows modifying con�ictive car-
dinalities, so every instance conforms with its related shapes. When this option
is active, the cardinality of every constraint c whose θc < 1 is modi�ed to include
a range with zero occurrences. Constraints with cardinality + are changed to *.
Cardinalities of {1} are changed to ?. In general, every cardinality is modi�ed220

to include the zero case without losing precision w.r.t. its maximum cardinality.
The original cardinality and its θs are associated with the constraint as a

textual comment. With this, the results include the proportion of instances
that conform with the constraint excluding the zero-case. When the zero-case
is included, the θc of any constraint c raises to 1.225

2.4.2. Sorting triple constraints

The shapes extracted can include a large number of constraints, and the user
may not want to read or consider them all.

The SA sorts a shape's constraints in decreasing order w.r.t. their θc. With
this, the most reliable constraints are shown �rst. Constraints including the230

zero-case are sorted using the θcs computed before the zero-case was included.

2.5. Shape Serializer

The Shape Serializer (SS) transforms the in-memory information into an ac-
tual output for the user. The complexity of this task depends on the divergence
between the target output format and the conceptual information outputted235

by the SE. Our current implementation of sheXer includes two di�erent imple-
mentations of the SS: One for the generation of ShEx (in ShExC format) and
another one for the generation of SHACL (in turtle format).

Both implementations of the SS are trivial. Even if ShEx and SHACL are
not fully compatible [7], the subset of shape features used by sheXer can be240

represented in both languages.

2.6. Computational complexity analysis

The computational complexity of sheXer is the sum of the complexities of
its modules, which are executed sequentially. The base complexity of the SA
and SS modules is O(c2/s) and O(c) respectively, where c is the total number of245

constraints extracted and is s the number of target shapes. The SA's O(c2/s)
complexity is an approximation supposing a balanced number of constraints
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per shape and it comes from algorithm 1. Each constraint is compared with
the rest of its shape's constraints, so unbalanced constraints distributions could
lead to higher complexities. The worst case, where a single shape has all the250

constraints, will be executed in O(c2). The rest of the SA's stages are executed
in O(c).

The complexity of the IT and the FT modules is tightly linked to the nature
of the input. For example, the IT can be executed trivially in O(1) when the
instance-shape relation is provided as part of the input. However, if there is a255

need of parsing a local �le, it can take O(t), being t the number of triples. The
complexity can be higher if a SPARQL endpoint is involved in the process. The
FT behaves similarly, as both the IT and the FT depend on the GI's execution.
In the following section, we perform several experiments to extract shapes from
local RDF �les. Under these conditions, these two modules have the following260

base complexity:

� IT: O(tc), where tc is th number of instance-class triples.

� FT O(t + ti), where t is the number of triples and ti is the number of
triples whose subject is a relevant instance.

With this, sheXer would be executed in O(tc)+O(t+ ti)+O(c2/s)+O(c) =265

O(t + tc + ti + c2/s). Note that t >= tc and t >= ti. Note also that the only
non-linear complexity is O(c2/s). However, when computing big datasets where
ti >>> c, this part of the algorithm is not the most expensive. Many instances
usually generate a relatively low number of constraints. Then, it takes more
time to generate constraints from those instances in O(ti) than to process later270

those few constraints in O(c2/s).

3. Experiments

Shape languages are relatively new, and so is the problem of automatic
shape extraction. To the best of our knowledge, there is not yet a published
benchmark to compare the correctness nor performance of existing approaches.275

The experiments of automatic extractors already published range from pure
qualitative analysis to performance or scalability analyses.

In this paper, we have designed experiments to check the performance of
sheXer in two dimensions: memory consumption and execution time. We have
executed sheXer to extract shapes from three well-known LD data sources:280

Wikidata10, YAGO11, and DBpedia12. Details about these computations can be

10Only triples using Wikidata direct properties in the namespace http://www.wikidata.

org/prop/direct/ where used to extract shapes. The source can be downloaded at https:

//archive.org/details/wikidata-json-20150518 Accessed in 2021/10/15
11We computed YAGO3, which can be downloaded at https://yago-knowledge.org/

downloads/yago-3 Accessed in 2021/10/15
12We used a subgraph containing mapping-based literals and objects, as well as class-

instance relations. This collection can be downloaded at https://databus.dbpedia.org/

danifdezalvarez/collections/latest_mapping_shexer_test Accessed in 2021/10/15
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Dataset
Target
shapes

Dataset
size
(GB)

Nº of
triples

(millions)

Nº of
instances
(millions)

Memory
usage
(GB)

Execution
time

(hours)

Wikidata dump
2015-05-18

1000 (top 1000
classes with

more instances)
42.0 991.6 M 13.0 M 25.2 38.3

YAGO3
1000 (top 1000
classes with

more instances)
10.3 138.3 M 5.3 M 12.6 17.2

English chapter
of Dbepedia

422 (every class
in the DBpedia
Ontology with
instances)

6.0 44.0 M 6.6 M 16.1 4.1

Table 1: Basic information about the YAGO, Wikidata and DBpedia computations.

found in Table 1. In our experiments, we always use local RDF parsers of local
�les. Alternative ways of input, such as querying an endpoint, would depend on
the endpoint's performance and availability. This could introduce factors that
may not be related to sheXer's actual performance in the experiments.285

We run our tests in a virtual machine with the following speci�cations: De-
bian 8 Jessie OS, Intel Xeon E5502 processor 1.87 GHz, 32GB RAM, HDD disk
with a read speed of 145 MB/s measured with the hdparm13 command. We set
an arbitrarily low threshold θU = 0.01 to discard noisy marginal features for
every computation. θU = 0.01 discards constraints that comply with less than290

1% of the total instances considered.
As one can see, the time and memory consumption to get a result are di�erent

for each source. These numbers are related to some input features, such as
dataset size, number of triples, and number of target shapes. In the following
subsections, we propose scenarios with di�erent inputs to analyze the impact of295

several parameters on our proposal's performance. All these scenarios are based
on the DBpedia case.

3.1. Limiting the number of instances used

As shown in Table 1, the number of instantiation triples in DBpedia is
higher than 6.6 million. We repeated the process of shape extraction limiting300

the number of instantiation triples to a certain number. We started in 1M triples
and repeated the computation with an arbitrary increment of 1M instances each
time until every instance of every target class is used. The results regarding
execution time and memory consumption are shown in Figure 4.

As one can see, the number of instances has a linear relation with execution305

time and memory consumption. The impact on memory consumption is caused
by the instance dictionary generated by the IT and the FT. The more instances,
the bigger becomes this dictionary and its associated memory usage. The e�ect
on execution time is lower than the impact on memory usage because sheXer is
parsing the whole content in every case. This parsing process sets a minimum310

13https://linux.die.net/man/8/hdparm Accessed in 2021/10/15
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Figure 4: Performance of sheXer with di�erent amounts of instances used.

0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6

Ex
e

cu
�

o
n

 �
m

e
 (

h
o

u
rs

)

M
em

o
ry

 u
sa

ge
 (

G
B

)

Millions of instances used

Memory (GB) Time (hours)

execution time, which is more signi�cant in environments where the I/O disk
speed is relatively low. Each triple is evaluated as relevant or not for the process,
and the relevant triples trigger extra calculations in the TF and SA modules.
The more instances are considered, the more triples become relevant. This
causes the linear relation between the number of instances and execution time.315

3.2. Limiting the number of target shapes

As stated in section 2.6, sheXer's complexity depends, among other parame-
ters, on the number of constraints produced. However, the number of constraints
cannot be known a priori. In opposition, in case there is a balanced distribution
of the number of constraints per shape, the number of shapes, which can be320

known a priori, can be used to estimate execution times and memory usage.
In this subsection, we study the impact on the performance of the number of
target shapes.

In our experiment, we start with just 20 target shapes and then perform
arbitrary increases of 20 shapes for each iteration until every class with at least325

one instance is used. As already checked, the number of instances has a crucial
impact on the performance. Then, the more instances a class has, the greater is
its impact. To avoid erratic numbers due to classes with an unbalanced number
of instances, we used an arbitrarily low number of instances to be considered
(as most) per each class. We picked this limit so 90% (380 out of 422) of the330

classes has at least this number of instances. In our dataset, dbo:Chancellor
ranks 380th w.r.t. to number of instances, with a total of 57. Then, the limit
picked was 57 instances. The results obtained are shown in Figure 5. Note that
the memory scale in the y-axis is di�erent from the rest of the �gures. It ranges
from 0 to 200 MB instead of 0 to 16 GB.335

As one can see, using a relatively low number of instances drastically de-
creases memory usage. However, there is a linear relationship between the
number of shapes used and memory consumption. This relation is explained
by two factors: on the one hand, the FT generates an abstract pro�le in main
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Figure 5: sheXer's with di�erent number of target shapes.
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memory for each shape. On the other hand, each shape causes a growth in the340

instance dictionary proportional to its number of instances.
There is also a linear relation with execution time, with a similar tendency to

the one observed in Figure 4. However, there is a notable di�erence in execution
time between Figures 5 and 4 at the maximum values of the x-axis, explained by
the limit of 57 instances per class used in Figure 5. The di�erence of 1.39 hours345

is the time used to compute the instances discarded in Figure 5's experiment.

3.3. Limit the amount of triples

In this subsection, we study the performance e�ect of the number of triples
processed. Since the impact of the number of instances has already been studied,
in this experiment, we keep the same number of instantiation triples across all350

iterations. Every instance is used in every case. We do change the number
of entity-to-entity and entity-to-literal triples. Our DBpedia dataset contains
37.328M of these two kinds of triples.

We performed iterations starting at the arbitrary amount of 5M triples (with-
out counting the instantiation triples). Then, we made an arbitrary increment355

of 5M triples for each iteration until reaching the total 37.328M triples. The
number of triples of each kind added at each iteration is proportional to the
total number of triples available. In the �rst iteration, we used 2.698M object
triples and 2.302M literal triples, which make together 5M elements. We add
the very same number of triples of each type at each iteration. The results are360

shown in Figure 6.
As one can see, memory usage stays stable and independent of the number of

triples used. There is not a determinant linear relation between memory usage
and triples which are not expressing a class-instance relationship.

However, there is a linear relation with execution time caused by the di�erent365

number of triples relevant for the process in each iteration. Those triples are
potentially spread across the whole dataset. Then, the bigger is the slice of the
dataset used, the higher are the chances to �nd this kind of triples.
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Figure 6: Performance of sheXer with di�erent dataset sizes.
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3.4. Convergence w.r.t. number of instances used

As already shown, sheXer's performance scales linearly w.r.t. some features370

of the input dataset. Too ambitious goals can lead to high rates of memory
usage or execution time.

Execution times can be tackled by producing a parallel implementation of
sheXer. MapReduce[15] could be used for such a goal. Every module described
in section 2 processes an input composed of independent elements, which can375

be computed in parallel to produce later merged results.
The structure with more impact on memory usage is the instance dictionary

generated by the IT. The instance dictionary is a key element to produce shape
inter-linkage in reasonable execution time, as the operation to check the class
of a given instance is frequent, and it allows to perform it in O(1) complexity.380

It is also used to produce precise cardinalities.
To cope with this limitation, we explore whether using a relatively low num-

ber of instances per shape can be enough to extract accurate shapes. We have
extracted shapes for every DBpedia class in di�erent iterations, using an in-
creasing maximum number of instances per shape at each iteration. We start385

using two random instances per class. Then, we perform successive iterations
doubling the maximum number of instances. In �gure 7, we show the changes
detected between consecutive iterations. Note that the scale of the x-axis is
logarithmic. At the end of each iteration, we check two factors:

1. The number of total changes w.r.t. the previous iteration. We count as a390

change in a shape one of the following events:

� Gaining a triple constraint.

� Loosing a triple constraint.

� Having a modi�cation in any element of a triple constraint.

2. The number of shapes changed w.r.t. the previous iteration. We consider395

that a shape has changed when there is at least one change among its
triple constraints.
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Figure 7: Shape convergence using di�erent amounts of instances per shape.
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The numbers shown in the y-axis are relative. For shapes, we show the
proportion of elements that changed w.r.t. the total number of shapes, which
is 422 in every case. For triple constraints, we show the proportion of changes400

detected w.r.t. to the total number of triple constraints.
As one can see, with very few exceptions, every iteration causes fewer changes

than its previous iterations. With a high enough instance limit, the shapes tend
to converge. With 8192 instances, just 1,5% of the constraints are changed.
These changes a�ect 11% of the shapes. For any other iteration with a higher405

instance limit, the proportion of shapes getting any change is always lower than
10% and a�ects 1% or less of the constraints.

The ratios of shape and constraint changes detected for every iteration are
also available in Table 2, as well as some other information related to the shapes'
evolution. Let C be the set of all target shapes to extract. An increment of410

x units in the instance limit for a given iteration would introduce |C| · x new
instances on the computations just in case every c ∈ C has at least x instances
still not considered. Since this is not always the case, the actual number of new
instances introduced in the experiments in successive iterations is shown in the
sixth column of Table 2.415

The number of new instances for each iteration allows us to calculate what we
called Shape-Instance Performance (SIP) and Constraint-Instance Performance
(CIP). SIP is shown in the seventh column of Table 2, and it is de�ned as
the relation between the number of instances used and the number of shapes
changed. SIP can also be interpreted as the number of instances required to420

cause a single shape change. As one can see, the more instances are processed,
the smaller is the e�ect of a single instance over the results, and the SIP grows
rapidly with each iteration. For example, at the already mentioned limit of 8192
instances per shape, 9267 new instances are worth a single shape change.
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0 2 2842 1,000 1,000 840 2,0 0,30
2 4 3409 0,742 0,319 827 2,6 0,76
4 8 3992 0,711 0,261 1637 5,5 1,57
8 16 4550 0,701 0,208 3227 10,9 3,41
16 32 4303 0,758 0,232 6342 19,8 6,36
32 64 4214 0,661 0,163 12239 43,9 17,84
64 128 4292 0,566 0,127 23547 98,5 43,36
128 256 4378 0,538 0,115 44335 195,3 88,14
256 512 4392 0,441 0,081 78907 424,2 221,65
512 1024 4409 0,329 0,060 131876 948,7 495,77
1024 2048 4414 0,280 0,044 217935 1846,9 1117,62
2048 4096 4424 0,204 0,028 325744 3787,7 2626,97
4096 8192 4445 0,114 0,015 444817 9267,0 6541,43
8192 16384 4436 0,083 0,010 567820 16223,4 12343,91
16384 32768 4443 0,050 0,005 640852 30516,8 26702,17
32768 65536 4444 0,019 0,002 668062 83507,8 66806,20
65536 131072 4447 0,019 0,002 807333 100916,6 73393,91
131072 262144 4448 0,036 0,003 801842 53456,1 53456,13

Table 2: Shape convergence with di�erent instance limits per class.

CIP is shown in the eighth column of Table 2 and it is de�ned as the relation425

between the number of instances used and the number of constraints changed.
As one can see, the CIP is slightly better than SIP for almost every iteration.
However, both numbers tend to stay in the same magnitude order.

Table 2 and Figure 7 indicate that a representative sample of instances can
be enough to extract highly accurate shapes. Using 8192 as instance limit, the430

total instances computed are close to 1.3M. As shown in Figure 4, this leads
to a memory usage close to 3.2GB, which is �ve times smaller than the 16GB
needed to compute the dataset using every available instance.

4. Related Work

Several approaches to automatically extract shapes have been proposed. The435

closest work to sheXer is Shape Designer [13]. Shape Designer consists of a tool
to perform automatic extraction of shapes with KG mining. Both sheXer and
Shape Designer support ShEx and SHACL, and both keep an internal score of
how trustworthy a given constraint can be w.r.t. how frequently is it supported
by the nodes used to extract it. However, there are fundamental di�erences440

between these two approaches. Shape Designer is integrated with a graphic
tool and aims to produce shapes that are not intended to be de�nitive. The
tool extracts candidate shapes that the user can customize later. In opposition,
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sheXer aims to produce shapes as accurately as possible and does not necessarily
include human intervention in its work�ow. Also, sheXer and Shape Designer445

o�er di�erent approaches to solve constraints including IRIs. Shape Designer
uses either the macro IRI or value sets that can restrict the possible IRIs to
a string pattern. sheXer can produce actual shape inter-linkage, i.d., triple
constraints whose object is another shape label.

The system proposed in [16] uses a machine learning approach to gen-450

erate SHACL shapes associated with classes. The authors choose combina-
tions of class-property and associate them to two types of constraints: car-
dinality and range. Cardinality refers to the minimum and maximum occur-
rences. Range refers to the type of object, which is one of sh:IRI, sh:BlankNode,
sh:BlankNodeOrIRI, sh:Literal, or speci�c literal types. Both types of con-455

straints have a �nite set of possible �nal values, so the approach is formulated
in terms of a classi�cation problem. Once all pairs have been associated with
their constraints, the constraints of a given class c are all merged to produce a
SHACL shape associated to c.

The approach presented in [17] transforms abstract semantic pro�les gen-460

erated by ABSTAT [18] into SHACL shapes. This proposal does not perform
shape inter-linkage, but it includes constraints with inverse paths, i.e., it can
describe the topology of a node when it is used as the object in a triple. The
system excludes part of the information generated by ABSTAT related to fre-
quencies when it generates the shapes, as there is not a formal way to represent465

it in SHACL. In opposition, sheXer uses it to compute trustworthiness scores or
�lter infrequent features and provides this information with textual comments.

Regarding automatic mappings between ontologies and shapes, the authors
in [19] propose using Ontology Design Patterns (ODP) to obtain SHACL shapes.
However, no actual mappings between SHACL and ODP are proposed. In [20],470

SHACL and OWL are thoroughly compared in terms of meaning and expres-
siveness. The authors also provide mappings between OWL and SHACL. These
mappings can be used by proposals that aim to extract shapes from pure onto-
logical content.

Astrea [21] is a tool to perform automatic extraction of shapes from ontolo-475

gies. The authors produce SHACL content by mapping ontology patterns into
SHACL constructions. Astrea is a publicly available tool based on the mappings
of Astrea-KG14. Astrea-KG's content allows generating SHACL shapes with an
expressiveness that includes 60% of the total constraints available in SHACL.

SHACLerarner, a method to learn SHACL constraints based on Inverse Open480

Path rules (IOP), is presented in [14]. SHACLerarner adapts Open Path Rule
Learner (OPRL) [22] to extract IOP rules, which can be translated to SHACL.
SHACLearner works with rules between entities in a KG, which causes that the
shapes obtained do not contain constraints related to literals.

In [23], a method to generate SHACL and ShEx shapes from R2RML doc-485

14Endpoint to query Astrea KG: https://astrea.helio.linkeddata.es/sparql Accessed
in 2021/10/15
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uments is presented. R2RML is a W3C standard language to enable automatic
translation from Relational databases to RDF documents. Since the genera-
tion of shapes is based on R2RML, this approach can be applied only in KGs
whose genesis is a mapped relational database. However, it achieves excellent
conformance with the target data model.490

Some other previous works extract di�erent schema notions from RDF graphs.
In [24], the authors present an approach to extract frequent graph patterns con-
ceptually similar to shapes, whose aim is to characterize the content of RDF
triple-stores. The patterns are represented using an adaptation of Deep-First
Search code. The authors in [25] extract Knowledge Patterns from KGs. These495

patterns are expressed in OWL and characterize classes by detecting their fre-
quent properties and providing an adequate range for them.

5. Conclusion

In this paper, we have presented sheXer, a system to perform automatic
shape extraction based on KG mining. Our proposal extract shapes by exploring500

the neighborhood of custom groups of target nodes. Each extracted constraint
is quali�ed with a score that allows �ltering infrequent elements, sorting results,
and providing extra information with textual comments. sheXer can produce
ShEx and SHACL content and compute big real-world datasets.

Our system is based on an iterative mining strategy that avoids loading in505

main memory the entire KG. The execution time and peak of sheXer's memory
usage have a linear relation with the number of triples relevant for the extrac-
tion process. However, we have shown that the shapes obtained using large
amounts of instances tend to converge with shapes obtained using a relatively
low number of instances. This instance limit has a signi�cantly positive e�ect510

both on memory consumption and execution time.
We contemplate several lines for future work regarding our proposal:

� To produce and evaluate an implementation of sheXer using parallel com-
puting and alternative mechanisms to handle memory.

� To perform a thorough comparison of sheXer with other automatic shape515

extraction systems, once an adequate public benchmark for such a purpose
is available.

� To include ontological information in sheXer's work�ow, so the system can
discard constraints that contradict ontology information.

� To provide mechanisms for including shape inheritance in the results, once520

this feature becomes stable in ShEx or SHACL speci�cations.
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