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RESUMEN (en español) 

La investigación se enmarca en el contexto de la Industria 4.0, donde las industrias están 
digitalizando y optimizando sus procesos productivos para mejorar la calidad, la eficiencia y la 
seguridad de los productos fabricados. Esta revolución industrial impulsa a las empresas a 
adoptar tecnologías avanzadas que integran la automatización, la interconexión de dispositivos 
y la digitalización de datos en toda la cadena de producción. 

En este escenario, la inspección superficial de productos industriales juega un papel crucial. 
Tradicionalmente, las técnicas de medición con contacto eran comunes para obtener medidas 
precisas, pero estas presentaban limitaciones en cuanto a velocidad y adaptabilidad a 
diferentes formas y materiales. La evolución hacia sistemas de inspección sin contacto ha 
permitido superar estas limitaciones al eliminar la necesidad de contacto físico directo entre la 
pieza evaluada y el sistema de medición. Estos sistemas utilizan tecnologías como la visión 
artificial y las técnicas interferométricas para obtener mediciones precisas en 3D y detectar 
defectos superficiales. 

Los avances en métodos de inspección 3D, como la triangulación láser, han mejorado la 
detección de defectos complejos en superficies, capturando variaciones sutiles que son difíciles 
de identificar en 2D. Los sensores de alta resolución, capaces de detectar defectos tan 
pequeños como unas decenas de micras, se utilizan cada vez más para mantener los 
estándares de calidad identificando y corrigiendo defectos microscópicos. 

Sin embargo, la detección precisa de defectos mediante sensores de triangulación láser 
presenta desafíos significativos. El escaneo de una pieza para la inspección sin contacto suele 
depender del movimiento relativo entre el sensor y la pieza. Las pequeñas variaciones pueden 
introducir errores importantes, especialmente cuando se trata de defectos micrométricos. Por lo 
tanto, la integración de la robótica con sensores perfilométricos es crucial, aunque configurar 
estos sistemas de manera eficiente suele ser costoso y lento. Es esencial encontrar soluciones 
que mejoren la precisión de las mediciones y optimicen los procesos de inspección. 

Para enfrentar estos desafíos, esta investigación propone un framework que aborda múltiples 
aspectos críticos de la inspección industrial. Este framework se centra en la simulación precisa 
de escaneos utilizando sensores perfilométricos, la evaluación de la detección de defectos y la 
generación de trayectorias óptimas de inspección. Hasta la fecha, no se ha identificado ninguna 
herramienta en la literatura científica que cumpla con estos requisitos específicos en el ámbito 
de los sensores perfilométricos, lo que resalta una clara oportunidad para avanzar en este 
campo. 

El objetivo principal de esta investigación es mejorar la calidad y precisión en la detección de 
defectos superficiales. Para lograrlo, se desarrolló un simulador de inspección que replica 



                                                                 

 

fielmente las condiciones del mundo real. Se utilizan modelos CAD para simular escaneos 
realistas, considerando los parámetros operativos del sensor y simulando ruidos como el 
speckle. 
 
En este contexto, se exploró la simulación de defectos superficiales en modelos CAD para 
evaluar las capacidades de detección de los sistemas de inspección. Los defectos pueden 
incorporarse con precisión deformando el modelo según un mapa de elevación, y se 
propusieron modelos matemáticos específicos para simular abolladuras, picos y grietas. Este 
método permite la creación de bases de datos de escaneos 3D realistas y variados, esenciales 
para entrenar y validar algoritmos de detección avanzados, optimizar trayectorias de escaneo y 
fomentar la innovación en la inspección industrial. 
 
La investigación también exploró el uso del Aprendizaje por Refuerzo para generar trayectorias 
de escaneo optimizadas. Este método ajusta dinámicamente la posición y orientación del 
sensor durante el escaneo para maximizar la cobertura y minimizar los errores, adaptándose a 
la geometría de cada producto. Este proceso se realiza utilizando el simulador propuesto, lo 
que permite validar y optimizar las trayectorias de escaneo, asegurando una inspección 
efectiva y eficiente en entornos industriales. 
 
En conjunto, esta investigación tiene como objetivo reducir costos y tiempos de desarrollo, 
mejorando significativamente la precisión y eficiencia de los sistemas de inspección industrial, 
contribuyendo a la competitividad de la Industria 4.0 mediante el aprovechamiento de 
tecnologías digitales y automatizadas. 

 
RESUMEN (en Inglés) 

 

The research is set within the context of Industry 4.0, where industries are digitizing and 
optimizing their production processes to enhance the quality, efficiency, and safety of 
manufactured products. This industrial revolution drives companies to adopt advanced 
technologies integrating automation, device interconnection, and data digitization across the 
production chain. 
 
In this scenario, the surface inspection of industrial products plays a crucial role. Traditionally, 
contact measurement techniques were common for obtaining precise measurements. However, 
these methods have limitations regarding speed and adaptability to different shapes and 
materials. Non-contact inspection systems have emerged to overcome these limitations, using 
computer vision and interferometric techniques to provide accurate 3D measurements and 
detect surface defects without physical contact. 
 
Advancements in 3D inspection methods, such as laser triangulation, have enhanced the 
detection of complex surface defects, capturing subtle variations that are difficult to identify in 
2D. High-resolution sensors, capable of detecting defects as small as tens of microns, are 
increasingly used to maintain quality standards by identifying and correcting microscopic 
defects. 
 
However, accurately detecting defects using laser triangulation sensors is challenging. 
Typically, scanning a piece for non-contact inspection relies on the relative movement between 
the sensor and the piece. Small variations can introduce significant errors, especially when 
dealing with micrometric defects. Therefore, integrating robotics with profilometric sensors is 
crucial, but configuring these systems efficiently is often costly and time-consuming. Finding 
solutions that enhance measurement accuracy and optimize inspection processes is vital for 
modern industrial applications. 
 
In response to these challenges, this research proposes a comprehensive framework that 
addresses multiple critical aspects of industrial inspection. This framework focuses on the 
precise simulation of scans using profilometric sensors, evaluating defect detection, and 
generating optimal inspection trajectories. To date, no tool has been found in the scientific 
literature that meets these specific requirements, especially in the realm of profilometric 
sensors, highlighting a clear opportunity to advance in this field. 
 



                                                                 

 

The main goal of this research is to improve the quality and accuracy of surface defect 
detection. To achieve this, an inspection simulator was developed that replicates real-world 
conditions. CAD models are used to simulate realistic scans, considering the sensor's 
operational parameters and simulating noise such as speckle. 
 
In this context, the simulation of surface defects on CAD models was examined to assess the 
detection capabilities of inspection systems. Defects can be accurately incorporated by 
deforming the model based on an elevation map, with specific mathematical models proposed 
for simulating dents, peaks, and cracks. This method enables the creation of realistic and varied 
3D scan databases, which are essential for training and validating advanced detection 
algorithms, optimizing scanning paths, and driving innovation in industrial inspection. 
 
The research also explored the use of Reinforcement Learning to generate optimized scanning 
trajectories. This method dynamically adjusts the sensor’s position and orientation during 
scanning to maximize coverage and minimize errors, adapting to the geometry of each product. 
This process is conducted using the proposed simulator, allowing for validation and optimization 
of scan trajectories, ensuring effective and efficient inspection in industrial settings. 
 
Overall, this research aims to reduce costs and development time while significantly improving 
the precision and efficiency of industrial inspection systems, contributing to the competitiveness 
of Industry 4.0 by leveraging digital and automated technologies. 
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necesario para la realización de la presente tesis.

2



Acknowledgments

I would like to express my gratitude to all the individuals and institutions who made
this doctoral thesis possible. Without their collaboration and support, this work
would not have been achievable. Special thanks to:

• My thesis advisors, Rafael Corsino González de los Reyes and Ignacio Álvarez
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Resumen

La investigación se enmarca en el contexto de la Industria 4.0, donde las industrias
están digitalizando y optimizando sus procesos productivos para mejorar la calidad,
la eficiencia y la seguridad de los productos fabricados. Esta revolución industrial
impulsa a las empresas a adoptar tecnoloǵıas avanzadas que integran la automati-
zación, la interconexión de dispositivos y la digitalización de datos en toda la cadena
de producción.

En este escenario, la inspección superficial de productos industriales juega un
papel crucial. Tradicionalmente, las técnicas de medición con contacto eran co-
munes para obtener medidas precisas, pero estas presentaban limitaciones en cuanto
a velocidad y adaptabilidad a diferentes formas y materiales. La evolución hacia
sistemas de inspección sin contacto ha permitido superar estas limitaciones al elim-
inar la necesidad de contacto f́ısico directo entre la pieza evaluada y el sistema de
medición. Estos sistemas utilizan tecnoloǵıas como la visión artificial y las técnicas
interferométricas para obtener mediciones precisas en 3D y detectar defectos super-
ficiales.

Los avances en métodos de inspección 3D, como la triangulación láser, han mejo-
rado la detección de defectos complejos en superficies, capturando variaciones sutiles
que son dif́ıciles de identificar en 2D. Los sensores de alta resolución, capaces de
detectar defectos tan pequeños como unas decenas de micras, se utilizan cada vez
más para mantener los estándares de calidad identificando y corrigiendo defectos
microscópicos.

Sin embargo, la detección precisa de defectos mediante sensores de triangulación
láser presenta desaf́ıos significativos. El escaneo de una pieza para la inspección
sin contacto suele depender del movimiento relativo entre el sensor y la pieza. Las
pequeñas variaciones pueden introducir errores importantes, especialmente cuando
se trata de defectos micrométricos. Por lo tanto, la integración de la robótica con
sensores perfilométricos es crucial, aunque configurar estos sistemas de manera efi-
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ciente suele ser costoso y lento. Es esencial encontrar soluciones que mejoren la
precisión de las mediciones y optimicen los procesos de inspección.

Para enfrentar estos desaf́ıos, esta investigación propone un framework que aborda
múltiples aspectos cŕıticos de la inspección industrial. Este framework se centra en
la simulación precisa de escaneos utilizando sensores perfilométricos, la evaluación de
la detección de defectos y la generación de trayectorias óptimas de inspección. Hasta
la fecha, no se ha identificado ninguna herramienta en la literatura cient́ıfica que
cumpla con estos requisitos espećıficos en el ámbito de los sensores perfilométricos,
lo que resalta una clara oportunidad para avanzar en este campo.

El objetivo principal de esta investigación es mejorar la calidad y precisión en
la detección de defectos superficiales. Para lograrlo, se desarrolló un simulador de
inspección que replica fielmente las condiciones del mundo real. Se utilizan modelos
CAD para simular escaneos realistas, considerando los parámetros operativos del
sensor y simulando ruidos como el speckle.

En este contexto, se exploró la simulación de defectos superficiales en modelos
CAD para evaluar las capacidades de detección de los sistemas de inspección. Los
defectos pueden incorporarse con precisión deformando el modelo según un mapa
de elevación, y se propusieron modelos matemáticos espećıficos para simular abol-
laduras, picos y grietas. Este método permite la creación de bases de datos de
escaneos 3D realistas y variados, esenciales para entrenar y validar algoritmos de
detección avanzados, optimizar trayectorias de escaneo y fomentar la innovación en
la inspección industrial.

La investigación también exploró el uso del Aprendizaje por Refuerzo para generar
trayectorias de escaneo optimizadas. Este método ajusta dinámicamente la posición
y orientación del sensor durante el escaneo para maximizar la cobertura y minimizar
los errores, adaptándose a la geometŕıa de cada producto. Este proceso se realiza
utilizando el simulador propuesto, lo que permite validar y optimizar las trayectorias
de escaneo, asegurando una inspección efectiva y eficiente en entornos industriales.

En conjunto, esta investigación tiene como objetivo reducir costos y tiempos de
desarrollo, mejorando significativamente la precisión y eficiencia de los sistemas de
inspección industrial, contribuyendo a la competitividad de la Industria 4.0 mediante
el aprovechamiento de tecnoloǵıas digitales y automatizadas.
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Abstract

The research is set within the context of Industry 4.0, where industries are digitizing
and optimizing their production processes to enhance the quality, efficiency, and
safety of manufactured products. This industrial revolution drives companies to
adopt advanced technologies integrating automation, device interconnection, and
data digitization across the production chain.

In this scenario, the surface inspection of industrial products plays a crucial
role. Traditionally, contact measurement techniques were common for obtaining
precise measurements. However, these methods have limitations regarding speed and
adaptability to different shapes and materials. Non-contact inspection systems have
emerged to overcome these limitations, using computer vision and interferometric
techniques to provide accurate 3D measurements and detect surface defects without
physical contact.

Advancements in 3D inspection methods, such as laser triangulation, have en-
hanced the detection of complex surface defects, capturing subtle variations that
are difficult to identify in 2D. High-resolution sensors, capable of detecting defects
as small as tens of microns, are increasingly used to maintain quality standards by
identifying and correcting microscopic defects.

However, accurately detecting defects using laser triangulation sensors is chal-
lenging. Typically, scanning a piece for non-contact inspection relies on the relative
movement between the sensor and the piece. Small variations can introduce signifi-
cant errors, especially when dealing with micrometric defects. Therefore, integrating
robotics with profilometric sensors is crucial, but configuring these systems efficiently
is often costly and time-consuming. Finding solutions that enhance measurement ac-
curacy and optimize inspection processes is vital for modern industrial applications.

In response to these challenges, this research proposes a comprehensive framework
that addresses multiple critical aspects of industrial inspection. This framework
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focuses on the precise simulation of scans using profilometric sensors, evaluating
defect detection, and generating optimal inspection trajectories. To date, no tool
has been found in the scientific literature that meets these specific requirements,
especially in the realm of profilometric sensors, highlighting a clear opportunity to
advance in this field.

The main goal of this research is to improve the quality and accuracy of sur-
face defect detection. To achieve this, an inspection simulator was developed that
replicates real-world conditions. CAD models are used to simulate realistic scans,
considering the sensor’s operational parameters and simulating noise such as speckle.

In this context, the simulation of surface defects on CAD models was examined
to assess the detection capabilities of inspection systems. Defects can be accurately
incorporated by deforming the model based on an elevation map, with specific math-
ematical models proposed for simulating dents, peaks, and cracks. This method en-
ables the creation of realistic and varied 3D scan databases, which are essential for
training and validating advanced detection algorithms, optimizing scanning paths,
and driving innovation in industrial inspection.

The research also explored the use of Reinforcement Learning to generate opti-
mized scanning trajectories. This method dynamically adjusts the sensor’s position
and orientation during scanning to maximize coverage and minimize errors, adapting
to the geometry of each product. This process is conducted using the proposed simu-
lator, allowing for validation and optimization of scan trajectories, ensuring effective
and efficient inspection in industrial settings.

Overall, this research aims to reduce costs and development time while signifi-
cantly improving the precision and efficiency of industrial inspection systems, con-
tributing to the competitiveness of Industry 4.0 by leveraging digital and automated
technologies.
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Chapter 1

Introduction

In this first chapter, the motivation and the main objectives established for this
thesis will be presented. Finally, the chapter will conclude with a detailed outline of
the structure of the rest of the document.

1.1 Motivation of the thesis

In today’s competitive market, industries aim to produce higher-quality products in
less time. This push for rapid innovation leads to the digitization and interconnection
of production systems to improve efficiency, quality, and safety, a change known as
Industry 4.0. A key part of Industry 4.0 is optimizing production processes, where
inspection is crucial [1], [2].

The manufacturing industry faces constant challenges regarding product quality,
operational efficiency, and customer satisfaction. In this context, surface inspection
emerges as a critical activity to ensure the integrity and quality of manufactured
products. Interest in the subject has grown exponentially over the last decade,
with a marked increase in publications since 2016. This trend reflects the constant
advancement of inspection technologies and their growing importance for industrial
applications. [3].

Timely and accurate defect detection is crucial to maintaining product quality.
In competitive environments where speed and efficiency are paramount, inspection
systems must operate without interruption on production lines. Surface defects,
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Chapter 1 Introduction

such as dents, pores, lack of material, scratches, or cracks, not only affect the aes-
thetic appearance of the final product but can also compromise its functionality and
durability. Figure 1.1 shows different types of defects in various parts.

(a)

(b)

Figure 1.1: Examples of surface defects on cast-iron (a) and stamped parts (b).
It can be seen that the inspected parts may present complex geometries and that
defects may also appear on high curvatura areas of the surface.

Until recently, obtaining high accuracy measurements required the use of contact
measurement techniques. These techniques are used off-line in most industries: a
sample is taken from the line, measured on a Coordinate Measuring Machine (CMM)
[4], and the results are extrapolated to the entire production until a new measure-
ment is obtained. However, for the detection of surface defects (stretching, cracks,
bulges, missing material, etc.), this is not a suitable approach, and 100% of the
production should be checked in-line. The involvement of human inspectors is un-
desirable (subjectivity, fatigue, cost), but is now essential in real-world production.
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This is why non-contact inspection systems emerged, avoiding the problems asso-
ciated with impacts between the evaluated part and the measurement system and
increasing inspection speed.

Non-contact measurement systems, including optical techniques such as tradi-
tional computer vision [5], triangulation [6], interferometry [7], and others, have
become increasingly prevalent. While 2D computer vision is commonly used in sce-
narios where defects cause distinct variations in the reflected light, it faces limitations
in capturing subtle surface variations and intricate defects dueto its two-dimensional
nature. These limitations become more evident as industries demand higher precision
in defect detection, driving the need to transition to 3D inspection methodologies.

3D inspection techniques address these limitations by providing a more detailed
view of surface complexities, leading to more accurate defect detection. The research
by Jovančević et al. [8] highlights the importance of 3D data analysis for identify-
ing defects such as dents, protrusions, or scratches, in aviation maintenance. This is
especially important for detecting small defects, often on the order of tens of microm-
eters, that are barely visible or invisible to the naked eye. Similarly, in automotive
manufacturing, Valentin Borsu et al. [9] underscore the crucial role of 3D inspection
techniques, emphasizing the need for effective feature extraction methods to ensure
precise defect detection across various manufacturing scenarios.

Different sensors enable the acquisition of 3D information without contact, and
they are generally classified based on the type of measurements they capture in
each acquisition: Point, profile and volumetric [10], [11]. Point sensors acquire 3D
information of a single point with each measurement, making them ideal for pre-
cise, localized data collection. Profile sensors acquire 3D information of a line or
profile in one go, allowing them to scan along a surface or edge, providing detailed
cross-sectional data. Lastly, volumetric sensors capture the 3D information of an
entire volume with each acquisition, enabling them to create comprehensive spatial
representations of objects or areas in a single scan. Each of these sensor types can
utilize different measurement techniques, depending on the specific requirements of
the inspection or measurement task.

Typically, scanning a part for inspection with a non-contact sensor relies on either
moving the part under the sensor or moving the sensor over the part. This movement
must consider the nature of the sensor. In applications involving large-volume parts,
point sensors (which are more precise) are discarded due to their time-consuming
nature. Volumetric sensors may be unsuitable because of their lack of precision,
making profile sensors the preferable choice in many cases. Profile sensors provide
high-precision linear measurements of each profile, and the 3D reconstruction is

26



Chapter 1 Introduction

achieved through the relative movement between the sensor and the part.

Among the profile sensors, profilometric lasers are widely used in the industry,
particularly in large-scale manufacturing, accounting for 11% of inspection applica-
tions. Their popularity is largely due to their high-speed capabilities, which make
them faster than traditional optical cameras and allow for more efficient inspection
processes. These sensors rank among the leading inspection tools, following machine
vision systems, which dominate at 58%, and methods that utilize existing machine
data without additional equipment, at 13% [3].

Within the field of profilometric sensors, laser triangulation sensors are among
the most widely used due to their precision, robustness, and rapid data acquisition
capabilities. They are crucial for a variety of inspection tasks across different indus-
tries. Their effectiveness is demonstrated in applications such as automotive [12],
aeronautical [13], gear inspection [14, 15], and other types of surface inspections
[16, 17, 18, 19, 20].

These sensors operate by projecting a laser beam onto the surface of an object and
detecting the angle of the reflected beam with a sensor. The distance to the object
is then calculated based on the geometry of the triangle formed by the laser beam,
the reflection point, and the detector. This method provides precise, non-contact
measurements of surface geometry, making it particularly valuable for applications
that demand high accuracy and quick inspection.

One crucial application of this technology involves detecting superficial defects
like dents, bumps, or scratches. However, integrating defect detection into pro-
filometric measurements highlights a critical need for comprehensive datasets. The
literature explores various strategies for detecting defects in laser triangulation scans,
yet they universally face the challenge of inadequate datasets essential for developing
and effectively evaluating these algorithms. Given the complex variations in surface
defects influenced by material properties and part geometries, authentic datasets
that accurately represent real-world conditions are imperative.

The integration of artificial intelligence (AI) in defect detection methodologies has
led to significant advancements, as discussed by Gao et al. [21], who explored the
challenges encountered in AI-driven defect detection, particularly with the adoption
of deep learning techniques. However, the effectiveness of deep learning heavily
depends on the availability of large volumes of labeled training data, as emphasized
by Lv et al. [22]. This exacerbates the existing challenges in sample collection
and labeling, particularly in industrial settings where labeled data is scarce due to
the high costs and time-consuming nature of labeling efforts. Addressing dataset
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challenges, Huo et al.[23] emphasized the limited availability of 3D data samples
in current research. They pointed out two main challenges: laborious and time-
consuming preparation of point cloud training samples, and the lack of diversity in
these datasets, often due to the use of artificially generated computer-aided models
that may lack authenticity.

While AI techniques, particularly deep learning, focus on improving the accu-
racy and reliability of defect detection through data-driven approaches, the physical
aspect of inspection remains crucial. The successful implementation of any defect
detection algorithm for surface inspection also requires precise control over the in-
teraction between the sensor and the part being inspected.

Another critical challenge in surface inspection using profilometric sensors is accu-
rately planning the motion between the part and the sensor. As mentioned earlier,
achieving comprehensive scanning of the part requires precise relative movement
between them. This is where robotics plays a crucial role in industrial settings.
Robotics serves as a versatile platform for automated inspection systems, enabling
precise and controlled movement of sensors across the part’s surface. By facilitat-
ing automated motion, robots ensure consistent and thorough inspection without
the need for direct human involvement. This capability is particularly advantageous
in manufacturing environments where maintaining high levels of repeatability and
precision is paramount to ensuring product quality and operational efficiency.

Within this field, various types of robots have been employed and integrated into a
variety of processes. These include robotic arms [24], [25], unmanned aerial vehicles
(UAVs) [26], unmanned ground vehicles (UGVs) [27], [28], and even autonomous
underwater vehicles (AUVs) [29].

Although the development of robotic systems integrating such sensors has at-
tracted increasing interest, a major gap remains that deserves further exploration.
In many cases, the relative motion between the sensor and the part lacks the neces-
sary accuracy, sometimes being one or two orders of magnitude worse than that of
the sensor itself. This discrepancy can lead to significant errors during the detection
of surface defects, which often occur in the range of a few tens of microns. One of
the main challenges is to optimize the scanning distance and optimal orientation, as
well as to ensure proper profile separation. Various studies, such as those by Li et
al. [30] and Sadaoui et al. [31], have examined the influence of error based on the
angle of incidence and the scanning distance. These factors, also specified by sen-
sor manufacturers, underscore the importance of adapting the scanning path to the
specific geometry of the part, which is essential for mitigating errors and ensuring
accurate and reliable inspection.
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The proper integration of robotics and profilometric sensors is critical for the ac-
curate detection of surface defects in industrial environments. However, this process
involves a considerable challenge: the optimal configuration of these systems can be
costly and time-consuming, especially when dealing with high-precision sensors and
complex geometries. This is where simulators emerge as a valuable solution by al-
lowing the evaluation of different inspection configurations in a virtual environment,
prior to their practical implementation.

1.2 Problem Statement

In this research, several significant challenges have been identified in the field of
surface defect detection using profilometric sensors. One of the main problems is
the lack of comprehensive and realistic datasets that cover a wide variety of defect
types and accurately simulate real-world industrial conditions. The lack of such data
complicates the development and evaluation of defect detection algorithms capable
of addressing diverse materials and industrial settings.

Additionally, the integration of artificial intelligence, particularly deep learning,
into defect detection methods faces significant obstacles. The success of AI-based
approaches relies heavily on access to large, well-labeled datasets. However, ac-
quiring such datasets in industrial environments is challenging due to high costs,
labor-intensive labeling requirements, and limited diversity of available data. All
these problems complicate the advancement and practical application of advanced
AI techniques in defect detection systems.

The variety and complexity of the shapes, together with the nature of the man-
ufacturing process, generate few defective samples for training the algorithms, and
frequently biased: once a defect is present in some region of one part, it usually
repeats in the next ones; in the other hand, defects in some regions or with certain
shapes may never appear in the acquisitions for the training phase. The high qual-
ity standards required nowadays demand the inspection system to be able to detect
defects that did never appear before in the same configuration

In addition to dataset limitations, ensuring precise relative motion between the
inspected part and the sensor is crucial for accurate defect detection. Current meth-
ods often struggle to achieve the necessary level of precision, leading to potential
inaccuracies, especially in detecting fine surface defects that can be as small as a
few micrometers. Addressing these challenges requires advances in motion planning
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algorithms that optimize scan paths, minimize errors and improve the reliability of
defect inspection processes in industrial applications.

CAD tools are indispensable in addressing the significant challenges encountered
in surface defect detection using profilometric sensors. Mohammadikaji et al. [32]
highlighted the role of CAD tools in optimizing designs, reducing costs, and facil-
itating simulation-based inspection planning. These tools simulate the inspection
process pre-production, identifying issues and refining methods to enhance product
quality efficiently. To be useful, the simulator must accurately replicate the behavior
of the inspection system using models that can be easily related to real hardware.
Designers will use that tool to test its performance under different conditions to
obtain an accurate and cost-effective solution while reducing the development time
and costs.

Existing tools often struggle to handle the diverse challenges involved in indus-
trial inspection using profilometric sensors. There is a noticeable lack of a single
tool that can integrate comprehensive dataset simulation, accurate motion planning,
and realistic replication of sensor behaviors. This gap highlights the clear need for
a dedicated tool that can effectively address these various challenges in detecting
surface defects with profilometric sensors.

This thesis aims to fill this gap by developing a CAD tool adapted to the inspec-
tion of industrial parts using laser triangulation profilometric sensors and robotic
systems. The objective is to enhance inspection accuracy and quality, improve the
detection and classification of surface defects on manufactured parts, and address
specific challenges in industrial inspection to ensure the high quality and reliability
of manufactured products. The following section describes the main objectives of
the thesis.

1.3 Objectives

The main goal of this thesis is to create an effective and comprehensive system for
inspecting industrial parts using laser triangulation profilometric sensors and robotic
systems. This project aims to improve the quality and precision of the inspection
process and to enhance the detection and classification of surface defects on parts.
The system is designed to address specific challenges in industrial inspection to ensure
the quality and integrity of manufactured products.

This main goal is divided into more specific objectives, as detailed below:
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• Develop a precise and realistic inspection simulator: The first goal is to
design and create a simulator that accurately reproduces the conditions of the
actual inspection system. This simulator uses the CAD model of the parts to be
inspected to get a precise representation of their geometry. It also incorporates
the operational parameters of the laser triangulation profilometric sensor and
simulates speckle noise along with other artifacts that may occur during the
scanning process. By faithfully recreating the real scanning conditions, the
simulator can generate highly realistic and reproducible data, essential for the
rigorous training and validation of defect detection algorithms.

• Simulate surface defects in CAD models: The objective is to simulate any
type of surface defect in CAD models by directly deforming the model’s surface
using an elevation map. This method allows for the precise incorporation of
a wide range of defects, ensuring highly accurate simulations. Among these,
three of the most common defect types in steel products—dents, peaks, and
cracks—have been parametrized through detailed mathematical models. These
models offer an exact representation of each defect type, enabling more realistic
and detailed simulations.

By generating surface defects in CAD models and using the inspection simula-
tor, the goal is to create a tool to build defects datasets with three-dimensional
information. This defect database will provide realistic and varied data to
train and validate detection algorithms, ensuring the accuracy of automated
inspection systems. It will also be crucial for developing advanced techniques,
optimizing scanning paths, and accelerating innovation in industrial inspection.

• Develop a method for generating optimized scanning paths: A method
based on Reinforcement Learning techniques is designed to generate optimized
scanning paths. This method uses information provided by the simulator and
the CAD model of the part to dynamically adjust the sensor’s position, ori-
entation at each scanning point and the distance between successive captures.
The goal is to ensure comprehensive and efficient coverage of the part’s surface,
maximizing the quality and precision of the inspection. Efforts will focus on
optimizing the relative position error between the sensor and the part, ensur-
ing that scanning occurs at the optimal distance and orientation for accurate
defect detection, as much as possible.

Together, these objectives create a comprehensive and coherent approach to tack-
ling the challenges associated with inspecting industrial parts using laser triangula-
tion profilometric sensors. The proposed system has the potential to significantly
enhance the effectiveness and reliability of inspection processes. This improvement
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can positively impact the quality and safety of manufactured products across various
industrial sectors.

1.4 Structure of the document

The present thesis is divided into different chapters.. The contents of each chapter
are outlined below:

In Chapter 2, the basics of Measurement Techniques for Surface Inspection are
discussed. This chapter explores different methods used to check the quality and
texture of surfaces, explaining the main ideas behind each method.

Chapter 3 reviews the theoretical foundations of Reinforcement Learning (RL)
and presents the most common algorithms in the literature.

In Chapter 4, the development of a simulator for an inspection system using a
laser triangulation profilometric sensor is presented. The main objective is to achieve
a realistic simulation of readings provided by a commercial sensor. The incorporation
of speckle effect, which constitutes the most relevant source of noise affecting the
measurement process, is pursued. Additionally, inherent sensor measuring precision
is also modeled.

Chapter 5 introduces a novel method for simulating surface defects in 3D models
using Free-Form Deformation (FFD) technique. This technique allows generating
defects with known dimensions and shapes, essential for developing defect detec-
tion algorithms in manufactured products. Furthermore, mathematical models for
common defects in sheet metal products, such as dents, peaks, and cracks, are pro-
posed. These models offer flexibility to parameterize defects in terms of depth, size,
and orientation, enabling precise customization of simulated defects. This chapter
extends the work presented in Chapter 4 by providing a simulator capable of creat-
ing databases of labeled defects, crucial for the development of artificial intelligence
algorithms.

Chapter 6 presents a novel method for planning inspection trajectories based on
reinforcement learning. This technique adjusts the sensor’s position and tilt to main-
tain optimal orientation and distance from the surface, ensuring consistent profile
distance for high-quality scanning. A simulated environment based on CAD models
replicates real-world conditions, including sensor noise and surface irregularities, en-
abling effective offline trajectory planning. Key contributions of this chapter include
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modeling the state space, action space, and reward function specifically designed for
inspection applications using profilometric sensors. The goal is to ensure compre-
hensive and efficient coverage of the surface of the workpiece, maximizing inspection
quality and precision to facilitate defect detection.

Finally, chapter 7 summarizes the final conclusions of the research and possible
future lines of work derived from this study. In addition, Appendix A compiles all
the journal publications and conference papers arising from this work.
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Chapter 2

Measurement Techniques for
Surface Inspection

Surface inspection is vital in industries such as manufacturing, aerospace, automo-
tive, and electronics, where the quality and reliability of products are critical. Surface
defects can significantly impact the performance, aesthetic appeal, and durability of
products. Therefore, precise and efficient measurement techniques are essential for
detecting and analyzing these defects.

Over the years, various measurement techniques have been developed and refined
to inspect surfaces for defects. These techniques range from simple visual inspections
to sophisticated methods utilizing advanced imaging and sensor technologies. Each
technique has unique principles, applications, advantages, and limitations, making
them suitable for different types of inspections and materials.

In this chapter, we will explore the diverse measurement techniques used for
surface inspection, which are crucial for ensuring product quality in modern manu-
facturing. These techniques can be broadly categorized into two types: contact and
non-contact methods.

2.1 Contact Measurement Systems

Until recently, obtaining high accuracy measurements required the use of contact
measurement techniques in most industries. Contact measurement systems involve
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direct physical interaction with the surface being inspected. These systems typically
use mechanical or physical devices to trace or measure the surface profile. Despite
their high accuracy, contact methods can be slower and may cause damage to delicate
surfaces.

Many industries use off-line contact measurement techniques, where samples are
removed from the production line for analysis, and results are extrapolated to the
entire run. This method is inadequate for comprehensive inspection as it does not
cover the entire production and can miss defects like stretching or cracks. Addition-
ally, relying on human inspectors introduces issues such as subjectivity, fatigue, and
cost.

Figure 2.1: Coordinate Measuring Machine. Image extracted from [33]

Among contact profilometers, Coordinate Measuring Machines (CMMs) are par-
ticularly noteworthy, see figure 2.1. CMMs are equipped with a mechanical or elec-
tronic probe that interacts directly with the part being measured. The probe is
mounted on a multi-axis robotic system, which enables it to move precisely in three-
dimensional space. This movement is tracked by scales or sensors on each axis,
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allowing the machine to determine the exact position of the probe at all times. The
primary goal of a CMM is to reconstruct the spatial position of different points on the
part, enabling the measurement of various parameters based on this reconstructed
model.

These contact systems are recognized for their high accuracy and resolution,
making them essential for precise dimensional metrology. Their key advantage lies
in their ability to deliver detailed measurements by physically interacting with the
surface through a mechanical stylus or probe.

However, this physical contact introduces several challenges. In dynamic envi-
ronments like production lines, vibrations and changes in surface height can impede
precise control. Additionally, contact profilometers may alter or damage delicate
surfaces, especially in the presence of contaminants or varying conditions.

Maintaining consistent measurement quality demands careful management of the
probe’s contact force and movement, which can be difficult outside of controlled
laboratory settings. Thus, while these devices offer high precision, their application
can be limited by their susceptibility to operational challenges and potential surface
impact. Furthermore, these devices are often very slow, typically requiring several
seconds to measure a single point.

2.2 Non-Contact Measurement Systems

Non-contact measurement systems are advanced tools that capture surface data with-
out physical contact. These systems address many of the issues associated with
contact-based methods, such as potential damage to delicate surfaces and limita-
tions in dynamic environments. However, they introduce their own set of challenges,
which vary depending on the specific technology used.

Non-contact measurement systems are generally classified into two main cate-
gories: optical and non-optical. Optical systems, which include techniques like laser
scanning and interferometry, use light to capture detailed surface and are known for
their high precision and versatility. Non-optical systems, such as capacitive, induc-
tive, and ultrasonic sensors, rely on other physical principles to measure surfaces and
are often used in environments where optical methods may be impractical.

Different sensors enable the acquisition of 3D information without contact, and
they are generally classified based on the type of measurements they capture in each
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acquisition: point, profile, and volumetric.

• Point sensors: acquire 3D data of a single point with each measurement.
This type of sensor is ideal for precise, localized data collection where detailed
information about specific spots or features is needed. Point sensors are often
used in applications requiring high accuracy at individual points, such as in
detailed inspections or quality control where small, precise measurements are
crucial.

• Profile sensors: capture 3D data along a line or profile in a single acquisi-
tion. These sensors are suitable for scanning along surfaces or edges to obtain
detailed cross-sectional data. Profile sensors are valuable for inspecting the
contours or shapes of objects, where it is important to understand the surface
profile or the edge details of a component. They provide a detailed view of
the surface’s shape and are often used in applications like surface profiling and
edge detection.

• Volumetric sensors: capture 3D data of an entire volume with each acqui-
sition. They are designed to create comprehensive spatial representations of
objects or areas in a single scan. Volumetric sensors are ideal for applications
that require full 3D mapping or modeling of objects, capturing the complete
structure of a surface or object. This type of sensor is commonly used in ap-
plications involving large-scale inspections or detailed 3D modeling where a
complete view of the object is necessary. These are, typically, the least pre-
cise, as their measurements cover a broader area with less detail per individual
point.

In this thesis, we will focus primarily on optical non-contact measurement tech-
niques, given their prominence in modern surface inspection and their ability to
provide highly accurate and detailed surface profiles. In the following, the most
commonly employed optical methods in the industry are presented.

2.2.1 Time of flight

Time of Flight (ToF) technology measures the distance between the sensor and the
surface by calculating the time required for a light pulse to travel from the sensor to
the surface and back. This technique is particularly prevalent in laser-based systems,
where a laser pulse is emitted towards the surface, reflected back, and then detected
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by the sensor. The elapsed time between emission and detection of the reflected pulse
is directly proportional to the distance traveled, allowing the system to compute the
distance with high accuracy. Figure 2.3 shows its basic principle.

Figure 2.2: Principle of operation of Time of Flight (ToF) systems

ToF systems are known for their rapid data acquisition and ability to cover large
areas quickly. However, these sensors usually have a resolution that may fall short
when it comes to identifying very fine defects, such as those at the micrometer
scale. These sensors generally provide precision within the range of millimeters to
sub-millimeters, which may not be detailed enough for detecting micro-scale imper-
fections.

2.2.2 Photogrammetry

Photogrammetry is a technique that uses photographs captured from multiple an-
gles to create a three-dimensional model of a surface. By analyzing the geometric
relationships between corresponding points in different images, photogrammetry ac-
curately reconstructs the 3D structure of the surface. Similar to binocular vision,
photogrammetry determines the spatial coordinates of a point by identifying com-
mon features in two or more photographs taken from different perspectives. For
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each camera viewpoint, a line is drawn connecting the point being digitized to the
camera’s location. The intersection of these lines from different perspectives allows
for the precise calculation of the digitized point’s spatial position.

Figure 2.3: Principle of operation of Photogrammetry

This method is particularly useful for large-scale inspections and applications
where manual measurement is impractical. Its advantages include the ability to
capture complex geometries and its non-invasive nature. However, photogrammetry
relies heavily on the quality of the images and the precision of camera calibration.
Photogrammetry provides more realistic textures but with less geometric precision,
so it is best suited for applications where visual realism is prioritized over exact
dimensional accuracy.
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2.2.3 Structured light

In a structured light system, a projector emits a predefined pattern of light—such
as stripes, grids, or other geometric shapes—onto the surface of the object being
measured. This pattern deforms as it interacts with the contours and features of the
surface. Multiple cameras positioned at strategic angles capture the reflected pattern,
documenting how it has been altered by the surface geometry. By analyzing these
distortions and comparing them to the known pattern, the system can accurately
reconstruct the 3D profile of the surface, providing detailed spatial information about
the object’s shape and features.

Figure 2.4: Principle of operation of Structured Light systems

Structured light systems are highly effective for capturing detailed surface fea-
tures with high accuracy and speed, making them widely used in industrial appli-
cations. However, they can be sensitive to surface reflectivity and ambient lighting.
These systems can achieve sub-millimeter accuracy, but their effectiveness may be
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limited when precise measurements of only a few micrometers are required. The
accuracy depends on the precision of the projected light or laser, the quality of cam-
era sensors, and the calibration between the camera and projector, making them
essential for applications that demand fine detail and high precision.

2.2.4 Confocal Microscopy

Confocal microscopy operates on the principles of point illumination and spatial
filtering. In this system, a laser beam is focused on a single point of the sample
using an objective lens. As the laser scans across the target, light emitted or reflected
from this point travels back through the same objective lens and is directed towards
a pinhole aperture located in front of the detector. This pinhole blocks out-of-focus
light, ensuring that only light from the focal plane reaches the detector.

Figure 2.5: Principle of operation of Confocal Microscopy systems

The laser systematically scans the target in a raster pattern, and the detector
records the intensity of light from each point. These measurements are then compiled
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to create a detailed image of the entire focal plane. To generate a 3D representation
of the sample, the focal plane is gradually moved deeper into the sample, repeating
the scanning process to capture a series of images at different depths. These images
are then stacked to form a complete 3D model of the sample.

The precision of these systems is very high, allowing for accurate measurements at
the microscopic level. However, there are some disadvantages. The method involves
a vertical scan for each point, which can be slow, making it less suitable for use on
an industrial production line.

2.2.5 Interferometry

Interferometry relies on the principle of interference, which occurs when two coherent
light waves of the same frequency overlap. This interference can be constructive,
where the waves align perfectly, or destructive, where they are out of phase. When
the waves are neither perfectly in phase nor completely out of phase, a complex
interference pattern of varying intensities is generated. By analyzing this pattern, it
is possible to determine the phase difference between the two waves.

In an interferometric system, two beams of light travel along separate optical
paths. These paths are defined by a system of mirrors and optical plates. Typically,
one beam is directed towards a reference mirror, while the other beam is directed
towards a mirror that is located at or on the surface to be measured. After reflecting
off their respective mirrors, the two beams are recombined, creating an interference
pattern.

The reference mirror is positioned at a known distance, while the mirror on
the surface being measured is subject to the variations in the surface profile. The
interference pattern generated when the two beams recombine is affected by the
differences in the optical paths traveled by each beam. By examining the resulting
interference fringes, the phase shift between the beams can be calculated.

This phase shift is directly related to the differences in distance traveled by the
beams. Thus, the technique enables precise measurement of surface topographies and
variations by converting the phase shift into distance measurements. The accuracy of
these measurements hinges on detecting minute changes in the interference pattern,
which can be influenced by factors such as vibrations, temperature changes, and
other environmental conditions. Interferometric systems are highly sensitive and can
achieve nanometer-level precision, making them suitable for applications requiring
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extreme accuracy.

Figure 2.6: Principle of operation of interferometry systems

Interferometry is highly effective for capturing extremely fine surface details with
exceptional accuracy and precision, making it valuable in high-precision industrial
applications. While it can achieve sub-micrometer accuracy, the technique provides
point measurements rather than line or area measurements. This makes it less prac-
tical for line-based or large-scale inspections, where continuous or extensive coverage
is required.

2.2.6 Conoscopic Holography

Conoscopic holography is an interferometric technique that utilizes polarized light
to measure surfaces with high precision. When a beam of monochromatic polarized
light enters an uniaxial crystal, it splits into two rays with orthogonal polarizations,
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known as the ordinary ray and the extraordinary ray. The ordinary ray travels at a
constant speed, whereas the speed of the extraordinary ray varies depending on the
angle of incidence, which is directly related to the distance from the observed point.

As the rays exit the crystal, they become out of phase due to their different
speeds. By placing a polarizer in the optical path, these two rays can interfere with
each other, producing an interference pattern. Analyzing this pattern allows for
the precise determination of the distance between the point on the surface and the
sensor.

Figure 2.7: Principle of operation of Conoscopic Holography

Conoscopic holography offers exceptional precision and versatility for micron-level
surface inspection applications. However, it faces notable drawbacks. A primary
disadvantage is the limited availability of commercial sensors, as Optimet, a leading
manufacturer in this field, is no longer operational. The technology’s point-based
sensors were highly precise, but the line-scanning models, which used a moving
mirror to capture data, suffered from slower measurement speeds compared to other
profilometric methods.

2.3 Laser Triangulation

Laser triangulation is a widely used non-contact measurement technique for captur-
ing precise 3D surface data. This method leverages the geometry of light reflection
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to determine the distance from a laser source to a target object, providing high
accuracy in surface profiling and dimensional inspection. Here, we explore the fun-
damental principles, operational mechanism, applications, and advantages of laser
triangulation in the context of surface defect detection and quality control.

This technique is based on the geometric principle of triangulation, which involves
measuring distances by forming a triangle between a laser source, the target object,
and a detector. The basic setup includes (see figure 2.8):

• Illumination Source (Laser): Emits a coherent beam of light onto the surface
of the object. Typically, this is a laser diode that projects a narrow, focused
beam, often shaped into a line to cover a larger area of the surface for faster
scanning.

• Imaging Sensor (Camera): Positioned at a known angle γ relative to the laser
source, it captures the reflected laser spot or line. This camera or photodetector
is calibrated to accurately record the position of the laser reflection.

• Processor: Computes the distance to the target based on the position of the
reflected laser on the detector. This involves analyzing the captured image
of the laser line and applying triangulation algorithms to convert the pixel
coordinates of the reflection into precise 3D coordinates.

Laser triangulation is a precise measurement technique that projects a laser beam
onto the surface of an object from a fixed position. When the laser beam hits the
object, it reflects in various directions depending on the surface’s topography and
material characteristics. An integrated sensor detector captures this reflected light
and pinpoints the exact position of the reflection on its array.

To calculate the distance to the object, the system analyzes the angle between
the incoming laser beam and the reflected beam—this angle is referred to as the
triangulation angle. Additionally, the system considers the position of the reflected
light on the detector. By applying trigonometric principles to these measurements,
the system can accurately determine the distance from the laser source to the object’s
surface.

This method enables precise surface profiling and measurement, making it in-
valuable in applications requiring high accuracy, such as quality control and defect
detection.
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Figure 2.8: Operating principle of laser triangulation.

2.3.1 Sensor Parameters

In laser triangulation systems, understanding the sensor parameters is crucial for
optimizing performance and ensuring accurate measurements. These parameters
influence the sensor’s ability to capture and process data effectively, especially when
dealing with fine surface details or small-scale defects.

Commercial laser triangulation sensors typically integrate the laser emitter and
the camera into a single unit. They operate with resolutions typically in the mi-
crometer range, ensuring precise measurement capabilities. In this section, we will
explore the key parameters that define the capabilities of laser triangulation sensors:

• Working Distance (Wd): Optimal distance between the sensor and the sur-
face of the object being measured. This is the distance from the laser source
to the reference scanning plane, which is situated at the midpoint of the depth
of field.

• Depth of field (DOF): Range of depths or heights within which the sensor
can accurately capture points on the surface of the object. Also known as
Z-Range.
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• X-FOV: The width of the laser beam at the working distance, determining
the horizontal extent of the area that the sensor can measure in a single scan.

• Field of view (FOV): region within which the sensor can collect points on
the digitized surface. It is defined by the Z-Range and the width of the laser
beam.

• Z-Resolution: Precision with which the sensor can measure the depth of
surface features.

• X-Resolution: Precision with which the sensor can measure coordinates along
the horizontal axis.

• Points per profile: Determine the number of points to measure in each
profile. This defines the point density in the point cloud generated by the scan
and directly affects the quality and accuracy of the captured data.

• Triangulation angle (γ): Angle formed between the laser beam and the
camera’s optical axis when focused on the reference surface. This angle depends
on the sensor’s design geometry.

• Sampling frequency: Number of measurements that the sensor can perform
per second, measured in frames per second (FPS).

• Intensity: Measurement of the strength of the reflected laser signal, which
indicates the power of the laser light that is reflected back to the sensor.

• Incidence Angle (α): Angle between the laser beam incident (
−→
l ) on a point

of the digitized surface and the surface normal at that point (−→n ). It depends
on the sensor’s orientation relative to the object.

In Figure 2.9, the typical parameters of laser triangulation systems are presented,
which are crucial for accurately measuring distances and geometries in various in-
dustrial and scientific applications.
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Figure 2.9: Common parameters of a laser triangulation profilometry sensor.

2.3.2 Challenges in Light-Surface Interactions

When evaluating the effectiveness of a triangulation sensor for a specific applica-
tion, the material of the target plays a crucial role. This information is commonly
found in the documentation and specifications provided by manufacturers of laser
triangulation sensors, for example in [34].

The interaction of light with the surface—whether it is reflected, transmitted,
or absorbed—directly impacts the sensor’s ability to obtain accurate measurements.
Triangulation sensors rely on detecting the reflected light to generate a digital profile
of the surface. If the amount of reflected light is insufficient, the sensor’s accuracy
can be compromised.

The ideal target is a consistent white, matte surface, which allows the laser spot
to diffuse and scatter light effectively, providing a strong and stable reflection back
to the sensor. This results in clearer readings and better resolution. Conversely,
transparent materials present challenges since the laser light often passes through
rather than reflecting, making precise measurements difficult. Shiny surfaces can
also be problematic as they reflect light in a narrow beam, which might not provide
enough diffused light for accurate detection. However, with proper adjustments,
such as altering the angle of the laser, accurate measurements can still be achieved
on shiny surfaces.
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Materials that transmit light, such as marble or granite, are particularly chal-
lenging due to a phenomenon called subsurface scattering. In these materials, light
penetrates the surface and reflects from within the object, leading to the capture of
internal rather than surface reflections. This effect introduces errors in digitalizing
translucent surfaces, as the reflected light is not solely from the surface layer.

Glowing or hot surfaces can interfere with measurements due to overlapping wave-
lengths, especially with red lasers; using lasers of different wavelengths, like blue, can
mitigate this issue. Dark materials may reduce the amount of detectable light but
can still be measured with adjustments to exposure time or by using more powerful
lasers.

Overall, if the laser spot is visible on the target material with the naked eye, the
sensor should be able to detect it effectively. Testing sensors with actual materials
is recommended to ensure they perform well in specific applications.

In addition to material properties, the roughness of the surface plays a significant
role in how well a triangulation sensor can perform. Rough or textured surfaces
introduce another challenge known as Speckle, one of the primary sources of noise
in laser triangulation systems [35].

Speckle Noise

When a laser beam illuminates a rough or textured surface, it induces a phenomenon
known as laser speckle. This effect arises because the coherent light waves arriving
at the surface encounter microstructures or irregularities, causing them to scatter
in various directions. Consequently, the reflected rays lose their phase coherence,
resulting in interference patterns. Regions where surface features create construc-
tive interference appear as bright spots on the sensor, while areas with destructive
interference appear dark. This speckled pattern introduces random fluctuations in
the intensity of the reflected light captured by the sensor, which adds noise to the
measured data. The outcome is a pattern of alternating dark and light spots overlaid
on the image, contributing to uncertainty in accurately localizing the laser spot, as
illustrated in Figure 2.10.
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Figure 2.10: Image of a laser spot over a rough surface. The localization of the
center cannot be done without certain uncertainty, due to the speckle effect. Image
obtained from [35]

2.3.3 Surface Inspection Strategies

For a complete surface inspection, a relative movement between the surface and the
triangulation system is necessary. This movement must be precise to accurately
reference the captured points within a global coordinate system. To achieve this, the
triangulation system can be mounted on various devices such as coordinate measuring
machines (CMMs) or robotic arms. These systems enable controlled, repeatable
movements and are equipped with encoders to track the exact position, ensuring the
necessary precision for detailed and accurate surface scanning.

In these systems, three different types of trajectories are usually performed during
the inspection: linear scans, area scans, and volumetric scans. These movements are
always in a straight line, without following curves or more complex trajectories.

In linear scans, an initial point and a final point are indicated, and the system
performs a linear movement between these points, potentially combining simultane-
ous movement in the three axes of the machine, see Figure 2.11 (a).

In area scans, three points are specified: the starting point, a point defining the
length of the scan, and another point specifying the width. Based on this information
and the desired overlap between passes, the system calculates the necessary number
of trajectories to cover the entire area and generates the paths for digitizing the
surface, see Figure 2.11 (b).
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Volumetric scans are similar to area scans, including a third point to indicate the
height of the volume to be digitized. As with area scans, the system calculates the
number of passes needed for the flat section of the volume according to the overlap
value between passes. Additionally, depending on the volume to be digitized, the
system calculates the number of planes that need to be scanned. This type of scan
is used for surfaces with continuous height changes, where the sensor’s depth of field
is exceeded, making it necessary to perform multiple passes over the surface while
varying the distance between the sensor and the piece.

Figure 2.11: Comparison of different scanning techniques: (a) Linear scan, (b) Area
scan.

Although non-contact sensors can measure with micrometer-level accuracy, they
can still be affected by errors or noise, especially if there’s movement in the robot
or misalignment between the sensor and the piece. Because of this, it’s important
to carefully plan and align the scanning path to reduce these issues and ensure
accurate results. The accuracy and reliability of laser triangulation sensors are highly
dependent on proper sensor-surface alignment.

Key considerations include ensuring that the sensor is oriented perpendicular to
the surface of the piece and positioned at the optimal distance for accurate measure-
ment. In general, for optimal results, laser sensors should be mounted so the laser
beam is as close to a perfect 90° angle to the surface as possible. If the laser sensors
are not mounted at or near this angle, or if the measurable target is not perpendic-
ular to the laser beam, the readings may be affected by cosine error. Additionally,
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the sensor should be securely mounted to avoid vibrations, and proper calibration is
essential to maintain precision throughout the scanning process. Further details on
trajectory generation considerations will be discussed in chapter 6.

Also, laser triangulation systems are not well-suited for measuring surfaces with
tight or narrow spaces, such as bore holes, blind holes, or surfaces with significant
edges or contours. In such environments, the risk of occlusion between the laser
beam and the detector is high, which can result in blocked signals and inaccurate
readings. The technique relies on a clear, unobstructed path for the laser light to
reach the surface and return to the detector, making it less effective for profiling
uneven surfaces or moving targets. As a result, alternative measurement methods
may be more appropriate for applications requiring precision in these challenging
conditions.

Figure 2.12: The triangulation angle and occlusion.
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Chapter 3

Reinforcement Learning:
Theoretical Foundations

This chapter provides an overview of the fundamental concepts in Reinforcement
Learning (RL). The chapter begins with an introduction to the basic principles of
RL, including the roles of agents, environments, rewards, and policies. Following
this, the chapter presents a review of commonly used RL algorithms found in the
literature.

The objective of this chapter is to establish a solid understanding of the core
elements of RL and to familiarize readers with key algorithms that are prevalent in
both research and practical applications within the field.

3.1 Basic principles

Reinforcement Learning (RL) is a branch of machine learning inspired by behavioral
psychology, focusing on how agents make decisions in an environment to maximize
some measure of accumulated reward over time [36]. The fundamental concepts of
reinforcement learning include:

• Agent: It is the machine learning algorithm (or autonomous system) that
interacts with the environment.

• Environment: It is the adaptive problem space with attributes such as vari-
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ables, limits, rules, and valid actions.

• Action: Each action is a step that the RL agent takes to navigate the envi-
ronment.

• State: It represents the environment at a given point in time.

• Reward: It is the positive, negative, or zero value that the agent receives as
a consequence of an action, evaluating its quality.

• Accumulated Reward: It is the sum of all rewards obtained over time.

In this context, the agent dynamically interacts with the environment, observing
its current state and selecting actions in response. These actions influence the state
of the environment and generate a reward signal that guides the agent’s behavior.
The primary goal of the agent is to maximize the accumulation of these rewards over
time, thus optimizing its performance in the environment. Figure 3.1 illustrates the
basic interaction cycle between an agent and the environment.

Figure 3.1: Agent-Environment Interaction Cycle

In most cases, the problem to be solved is formally modeled as a Markov Deci-
sion Process (MDP, Markov Decision Process). An MDP can be defined as a tuple
of 5 elements (S,A, r, P, ρ0), representing, respectively, the set of all valid states, the
set of all valid actions, the reward function, the transition probability function for
the action-state set, and the initial state distribution ρ0. Below, these parameters
will be explained in more detail.
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3.1.1 States

The set of all possible states in an environment is denoted as S, and mathematically,
it is defined according to Equation 3.1.

S = {s1, s2, ..., sm} (3.1)

Each element si ∈ S represents a unique configuration of the environment at a
specific point in time. States encapsulate all the necessary information that an agent
needs to make decisions and determine subsequent actions.

3.1.2 Actions

Different environments allow for different types of actions. The set of all valid actions
in a given environment is referred to as the action space A. Mathematically, it is
defined according to Equation 3.2, where ai represents a specific action in the set,
and n is the total number of actions.

A = {a1, a2, ..., an} (3.2)

The actions are divided into two main categories: continuous and discrete actions.
Continuous actions are those where the agent can take an infinite number of possible
values within a continuous range. In contrast, discrete actions are those where the
agent can only choose from a finite set of options.

3.1.3 Reward and Return

The reward determines how good was the action at from state st to reach state st+1.
The reward at each time step can be denoted as Equation 3.3, where R is the reward
function depending on each state-action pair.

rt = R(st, at, st+1) (3.3)
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Frequently, in the literature, equation 3.3 is simplified to just a dependence on
the current state, rt = R(st), or state-action pair rt = R(st, at).

The goal of an agent in reinforcement learning is to maximize a measure of
cumulative reward over a trajectory, denoted as R(τ). A trajectory τ represents a
sequence of states and actions in the environment:

τ = (s0, a0, s1, a1, ...) (3.4)

The return is the total sum of rewards accumulated from the current state to
the goal state. There are two main types of returns: the finite-horizon undiscounted
return and the infinite-horizon discounted return.

Finite-horizon undiscounted return is the sum of reward from the current state
to goal state which has a fixed timestep or a finite number of timesteps:

R(τ) =
T∑
t=0

rt (3.5)

Infinite-horizon discounted return is the sum of all rewards ever obtained by the
RL agent, but discounting factors determines how far future rewards need to be
accounted. This formulation of reward includes a discount factor γ ∈ (0, 1).

R(τ) =
∞∑
t=0

γtrt (3.6)

3.1.4 Policy

An essential part of RL is the policy (π), which is a strategy or rule that guides the
agent in making decisions within the environment. This policy can be deterministic
(equation 3.7) or stochastic (3.8).

A deterministic policy implies that for each state of the environment, the agent
selects a specific action in a predictable manner without randomness. Therefore,
given a state s, the action a is simply the output of the policy function π(s).
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at = π(st) (3.7)

On the other hand, a stochastic policy specifies the probability of selecting each
action given a particular state. This means that instead of making completely de-
terministic decisions, the agent chooses actions with certain probabilities. The prob-
ability of choosing a particular action a in a state s is defined by the probability
function P (at, st). This introduces uncertainty into action selection, allowing the
agent to explore different options and adapt its behavior based on the uncertainty
of the environment.

π(at, st) = P (at, st) (3.8)

The parameters of such a policy are frequently denoted by θ, and sometimes is
indicated as a subscript on the policy symbol to emphasize the relationship (πθ).

3.1.5 The RL Problem

The primary objective of any reinforcement learning algorithm is to develop a policy
that maximizes the expected cumulative reward when the agent interacts with the
environment.

The expected return J(π) is represented by Equation 3.9. The expected reward
Eπ[R(τ)] is the average of the rewards the agent expects to receive by following policy
π in each state s. The objective is to adjust the policy parameters to maximize this
reward, using optimization methods to continuously improve the policy and the
agent’s performance in the specified task.

J(π) = Eπ[R(τ)] (3.9)

Therefore, the final optimization problem in an RL algorithm can be expressed
as shown in equation 3.10, where π∗ is the optimal policy:

π∗ = argmaxπJ(π) (3.10)
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3.1.6 Value Functions

In reinforcement learning, the value function is a fundamental tool that evaluates
the quality of states or actions based on expected future rewards. This function can
be of two main types: the state value function V (s), which estimates the quality of
being in a particular state s, and the action value function Q(s, a), which estimates
the quality of taking an action a in a state s.

The State-Value Vπ(s) is the expected total reward, starting from state s and
acts according to policy π. If the agent uses a given policy pi to select actions, the
corresponding value function is given by:

Vπ(s) = Eπ [R(τ)|s0 = s] (3.11)

The Action-Value Function is the expected return for an agent starting from state
s and taking arbitrary action a then forever after act according to policy π:

Qπ(s, a) = Eπ [R(τ)|s0 = s, a0 = a] (3.12)

From these equations, the optimal versions can be derived. The Optimal State-
Value function V ∗(s) provides the expected return when starting in state s and
always following the optimal policy thereafter. Similarly, the Optimal Action-Value
Function, Q∗(s, a), represents the expected return when starting in state s, taking
an arbitrary action a, and then following the optimal policy for the remainder of the
process.

3.1.7 Bellman Equations

The Bellman equation establishes that the value of a state is equal to the expected
immediate reward plus the discounted value of the next state. This relationship can
be formulated for the State-Value function Vπ(s) as follows:

Vπ(s) = Eπ[r(s, a) + γVπ(st+1)] (3.13)

Here, r(s, a) is the reward obtained by taking action a in state s, γ is the discount
factor that determines the importance of future rewards, Vπ(st+1) is the value of the
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next state st+1 that the agent transitions to, and E represents the expectation over
possible next states and rewards.

Similarly, the Bellman equation for the action value function Qπ(s, a) is defined
as follows:

Qπ(s, a) = Eπ[r(s, a) + γQπ(st+1, at+1)] (3.14)

3.1.8 Advantage Functions

In RL, it is often more insightful to evaluate how much better a particular action is
compared to others rather than assessing its absolute value. This concept is captured
by the Advantage Function, which provides a measure of the relative quality of an
action.

The advantage function, denoted as Aπ(s, a), associated with a policy π, quan-
tifies the relative benefit of choosing a specific action a in a given state s compared
to selecting an action randomly based on the policy π(·|s). It assumes that the
agent will continue to act according to the policy π thereafter. Mathematically, the
advantage function is expressed as:

Aπ(s, a) = Qπ(s, a)− Vπ(s). (3.15)

With the fundamental concepts of reinforcement learning established, the next
section introduces and analyzes the different types of algorithms developed in this
field.

3.2 RL Algorithms

It’s complex to make a definitive classification of the various existing RL algorithms.
Classifications can be made based on different parameters. If we consider the funda-
mental strategy that algorithms use to learn and improve the environment’s perfor-
mance, three main categories can be identified: Value-based algorithms, Policy-based
algorithms, and Actor-Critic algorithms.
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Value-based algorithms focus on estimating the value function of a policy or
the optimal policy directly. The value function assigns a numerical value to each
state or state-action pair, representing the expected reward of following a particular
policy. These algorithms use methods like value iteration or temporal difference
methods to update and enhance value function estimates over time. Once the value
function is estimated, the agent can select actions that maximize the estimated value,
thereby improving its performance in the environment. Common algorithms within
this classification include Q-learning [37], DQN (Deep Q-Networks) [38], Double
DQN [39], or SARSA (State–action–reward–state–action) [40].

On the other hand, Policy-based algorithms learn the policy directly without
the need for a value function. These algorithms aim to optimize the policy directly
to maximize accumulated rewards over time. They employ methods such as policy
gradient or proximal policy optimization to gradually improve the policy through
experience. Examples of policy-based algorithms include PPO (Proximal Policy
Optimization) [41] and TRPO (Trust Region Policy Optimization) [42].

Actor-Critic algorithms are a type of reinforcement learning algorithm that
combines elements of both value-based and policy-based approaches. These algo-
rithms use two main components: an actor and a critic.

The actor is a neural network or function that represents the agent’s policy,
mapping each state directly to a specific action. Its primary objective is to learn an
optimal policy that maximizes the expected long-term rewards.

The critic is a neural network or function that evaluates the action taken by the
actor, estimating the expected reward from a specific state-action pair. Its goal is to
improve the accuracy of these estimations, assisting the actor in refining its policy.

During the learning process, the actor and critic are updated jointly and collabo-
ratively. The critic provides feedback on the quality of actions selected by the actor,
while the actor uses this feedback to improve its policy. This feedback is used to
compute the policy gradient, indicating how the actor’s policy parameters should
adjust to maximize expected rewards.

Some prominent examples of actor-critic algorithms include A2C/A3C (Advan-
tage Actor-Critic) [43], SAC (Soft Actor-Critic) [44], DDPG (Deep Deterministic
Policy Gradient) [45], or TD3 (Twin Delayed Deep Deterministic Policy Gradient)
[46].

Another significant distinction is based on the nature of the agent’s action space,
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which is categorized into two main types: discrete action spaces and continuous
action spaces.

In discrete action spaces, the agent can choose from a finite and defined set of
actions in each state of the environment. This characteristic simplifies the decision-
making process since the agent only needs to evaluate a limited number of options.
Algorithms designed to work with discrete action spaces often employ tables or func-
tions to estimate the quality of each action based on the current state. Examples of
such algorithms include Q-Learning, DQN, or SARSA.

On the other hand, in continuous action spaces, the agent has the ability to
take actions in an infinite or continuous range of values. This occurs in situations
where actions cannot be enumerated or discretely quantified. Algorithms designed to
handle continuous action spaces often require more complex approaches, such as the
use of deep neural networks in the case of deep reinforcement learning algorithms.
These algorithms use techniques like policy gradient methods, which directly map
from states to actions, or actor-critic methods that combine value function and policy
learning for environments with continuous actions. Examples of such algorithms
include PPO, TRPO, A2C/A3C, SAC, DDPG, or TD3.

Next, the most commonly used RL algorithms in the literature will be presented.

3.2.1 Q-Learning

Q-Learning [37] is a reinforcement learning algorithm designed to find the optimal
policy for decision-making problems by learning a Q-function, Q(s, a), which repre-
sents the expected future rewards for taking action a in state s and subsequently
following the optimal policy. The Q-function is stored in a Q-table, a matrix where
each entry corresponds to a state-action pair, allowing the agent to keep track of the
learned values.

The Q-function is updated using the following formula:

Q(st, at)← Q(st, at) + α
[
rt + γmax

a
Q(st+1, a)−Q(st, at)

]
(3.16)

In this equation, α represents the learning rate, and γ is the discount factor that
determines the importance of future rewards. The term maxaQ(st+1, a) estimates
the maximum future reward achievable from the next state st+1, guiding the agent
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towards actions that lead to higher long-term rewards.

The Q-table is initially filled with arbitrary values and is iteratively updated as
the agent interacts with the environment, receiving rewards and experiencing state
transitions. This process involves balancing exploration (trying new actions) and
exploitation (selecting known actions that yield high rewards). A common strategy
for this is the ϵ-greedy policy, which chooses actions randomly with probability ϵ and
selects the best-known action with probability 1− ϵ.

Over time, the algorithm converges to the optimal Q-values, Q∗(s, a), provided
that every state-action pair is visited sufficiently often and the learning rate decreases
over time. The optimal policy π∗(s) is derived by selecting actions that maximize
the Q-value for each state:

π∗(s) = argmax
a
Q∗(s, a) (3.17)

By following this policy, the agent can achieve the highest expected cumulative
reward in the environment. The Q-table thus serves as a crucial component, guiding
the agent’s decisions and enabling the learning of the optimal strategy.

3.2.2 SARSA

SARSA (State-Action-Reward-State-Action) [47] is a reinforcement learning algo-
rithm that aims to learn a Q-function, Q(s, a), which estimates the expected future
rewards of taking action a in state s and then following a specific policy.

The Q-function is updated using the following formula:

Q(st, at)← Q(st, at) + α [rt + γQ(st+1, at+1)−Q(st, at)] (3.18)

In this equation, st and at represent the current state and action, rt is the reward
received, st+1 is the next state, and at+1 is the action selected by the policy in
the next state. The parameters α and γ are the learning rate and discount factor,
respectively. The update uses the action at+1 that is actually taken in the next state,
aligning with the current policy.

SARSA employs a Q-table to store and iteratively update the estimated Q-
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values for each state-action pair. This table starts with arbitrary values and is refined
through interactions with the environment. To balance exploration and exploitation,
the agent typically uses an ϵ-greedy policy, which selects actions randomly with
probability ϵ and follows the current policy with probability 1− ϵ.

As learning progresses, SARSA converges to the optimal Q-values, Q∗(s, a), pro-
vided that all state-action pairs are sufficiently explored and the learning rate decays
appropriately. The optimal policy π∗(s) is derived by selecting the action that max-
imizes the Q-value for each state. By following this policy, the agent can achieve the
highest expected cumulative reward:

π∗(s) = argmax
a
Q∗(s, a) (3.19)

The main distinction between Q-Learning and SARSA lies in their Q-value up-
date mechanisms. Q-Learning updates Q-values using the maximum future rewards,
which generally accelerates convergence to the optimal policy. In contrast, SARSA
updates Q-values based on the actual actions taken, which makes it more responsive
to the exploration strategy of the current policy.

3.2.3 Deep Q-Network

Deep Q-Network (DQN) [48] is an advancement of Q-learning that uses deep neural
networks to approximate the Q-value function, which represents expected future
rewards for actions in specific states. Traditional Q-learning uses a table to store
Q-values, but this approach becomes impractical for large or continuous state spaces.
DQN overcomes this by employing a neural network to estimate Q-values, where the
input is the state and the output is the Q-values for all possible actions.

DQN incorporates experience replay and a target network. Experience replay
involves storing past experiences (state, action, reward, next state) in a replay buffer
and sampling random batches from this buffer during training. This technique helps
break correlations between consecutive experiences and improves training efficiency.
The target network, which is a periodically updated copy of the main Q-network,
helps stabilize the learning process by providing consistent target Q-values.

The Q-values are updated using the Bellman equation:
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y = r + γmax
a′

Q′(s′, a′) (3.20)

where r is the reward received, γ is the discount factor, Q′ represents the target
network, s′ is the next state, and a′ denotes possible actions in s′.

The loss function used to train the neural network is:

L =
1

N

∑
i

[yi −Q(si, ai)]2 (3.21)

where N is the number of samples in the batch, (si, ai) is the state-action pair
at step i, and yi is the target value for that pair. The network weights are updated
using gradient descent to minimize this loss function.

3.2.4 Policy Gradient Methods

Policy gradient methods focus on directly modeling and optimizing the policy. Typ-
ically, the policy is represented by a parameterized function in relation to θ. The
value of the reward (objective) function is dependent on this policy, and various
algorithms can be used to optimize it for the highest reward.

The gradient of the objective function J(θ) is given by the equation 3.22, where
π(at|st) denotes the probability of taking action at given state st, parameterized by θ.
Aπ is an estimator of the advantage function for the current policy, and Eπ represents
the empirical expectation over a batch of samples.

∇θJ(θ) = Eπ [∇ log π(at|st)Aπ] (3.22)

The policy gradient algorithm works by updating policy parameters via stochastic
gradient ascent on policy performance:

θt+1 = θt + α∇θJ(πθt) (3.23)

In this update rule, θt represents the policy parameters at iteration k, and α is
the learning rate controlling the step size. The new parameters θt+1 are computed by
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adding a fraction α of the gradient of the objective function ∇θJ(θ) to the current
parameters θt. This iterative process aims to increase the expected return by adjust-
ing the policy parameters in the direction that improves the performance according
to the policy gradient estimate.

3.2.5 Trust Region Policy Optimization (TRPO)

Trust Region Policy Optimization (TRPO), introduced by Schulman et al. in [42],
is an advanced policy gradient method that improves the stability of policy updates.
To ensure stable training, TRPO avoids making large policy changes in a single
update by applying a Kullback-Leibler (KL) divergence constraint [49], which limits
how much the policy can change at each step.

TRPO seeks to maximize a surrogate objective function, which is given by the
equation 3.24, where πθ represents the new policy, πθold is the old policy, and Aπ
is the estimator of the advantage function. This objective function is designed to
improve policy performance while controlling the magnitude of policy changes.

J(π) = Eπ
[
πθ(at|st)
πθold(at|st)

Aπ

]
(3.24)

To ensure stability, TRPO includes a constraint on how much the new policy
can differ from the old policy. This constraint is expressed using KL-Divergence and
ensures that the change between the old and new policies is within a predefined limit
δ:

Eπ[KL(πθold(at|st)|πθ(at|st))] ≤ δ (3.25)

This constraint helps prevent large, destabilizing updates by keeping the new
policy close to the old one, within a ”trust region”.

3.2.6 Proximal Policy Optimization (PPO)

The Proximal Policy Optimization (PPO) algorithm, introduced by Schulman et al.
in [41], is a policy gradient technique designed as an improvement over Trust Region
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Policy Optimization (TRPO). It simplifies and accelerates the training process by
using first-order gradients and a clipped surrogate objective function that stabilizes
policy updates.

The probability ratio r(θ) is the probability of selecting an action under the new
policy divided by the probability of selecting the same action under the old policy,
specifically:

r(θ) =
πθ(at|st)
πθold(at|st)

(3.26)

With this definition, the objective function for TRPO simplifies to:

JTRPO(θ) = Eπ
[
r(θ)Âθ

]
(3.27)

Proximal Policy Optimization (PPO) improves stability in policy optimization by
employing a clipped surrogate loss function, which penalizes excessive policy changes.
This approach prevents significant divergence between new and old policies, thereby
stabilizing the training process. Without such constraints, maximizing JTRPO could
lead to instability due to excessively large parameter updates and significant policy
ratios. To address this, PPO introduces a constraint that ensures r(θ) remains within
a narrow interval around 1, specifically [1 − ϵ, 1 + ϵ], where ϵ is a hyperparameter.
The clipped objective function of PPO is defined in Equation 3.28.

JCLIP (π) = Eπ [min (r(θ)Aπ, clip (r(θ), 1− ϵ, 1 + ϵ)Aπ)] (3.28)

Where π represents the policy, E denotes the expectation over time, r is the
probability ratio under the new and old policies, respectively, Aπ is the estimated
advantage, and ϵ is a hyperparameter controlling how much the new policies are
allowed to differ from the old policies during the optimization process. It is used
to compute a penalty function that limits the policy change in each optimization
iteration. Here, clip(x, a, b) restricts the value of x to be between a and b, as defined
in Equation 3.29.

clip(x, a, b) =


a if x ≤ a
b if x ≥ b
x else

(3.29)
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When applying PPO to a network architecture where both the policy (actor) and
value (critic) functions share parameters, the objective function is extended beyond
the clipped reward. It includes an additional value estimation error term JV F and
an entropy bonus JENT to promote adequate exploration.

Specifically, the value estimation error term JV F quantifies the discrepancy be-
tween the predicted value function and the target value, typically computed using
a squared error loss according equation 3.30, where Vπ(st) is the predicted value of
state st under the current policy, and Vt is the target value, which is usually derived
from rewards or the advantage function.

JV F (π) = Eπ
[(
Vπ(st)− V target

)2]
(3.30)

The entropy bonus JENT is designed to promote exploration by penalizing low-
entropy policies, thus helping to avoid premature convergence to suboptimal policies.

The complete objective function is given by Equation 3.31, where c1 and c2 are
hyperparameter constants that weight the importance of the value error and entropy
terms, respectively.

JPPO(π) = E[JCLIP (θ) + c1J
V F + c2J

ENT ] (3.31)

3.2.7 Deep Deterministic Policy Gradient (DDPG)

Deep Deterministic Policy Gradient (DDPG), introduced by Lillicrap et al. [45],
is an actor-critic reinforcement learning technique designed for environments with
continuous action spaces.

As an actor-critic algorithm, DDPG concurrently learns both a Q-function and a
policy. It employs two primary neural networks: Actor Network, that determines the
optimal policy by generating a deterministic action a = π(s) based on the current
state, and Critic Network, that assesses the action-value function Q(s, a) for specific
state-action pairs.

DDPG also incorporates target networks, which are delayed replicas of the actor
and critic networks. These target networks enhance stability in learning by reducing
the risk of errors that can occur when the networks rely too heavily on their own
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outputs.

The value network is updated using the Bellman equation to compute the updated
Q-value. The Q-values for the next state are obtained through the target networks,
and the mean squared loss between the updated Q-value and the original Q-value is
minimized:

Loss =
1

N

∑
i

(
Q(st, at)−

(
r(s, a) + γmax

a
Qtarget(st+1, at+1)

))2

(3.32)

For the policy function, the goal is to maximize the expected return:

J(π) = Eπ
[
Q(s, a) |s=st,at=π(st)

]
(3.33)

DDPG is based on a deterministic policy gradient, where the policy is modeled
as a deterministic function that maps states directly to actions. To address the
challenge of limited exploration inherent in deterministic approaches, DDPG incor-
porates additive noise to the deterministic actions. This exploration mechanism is
implemented through an Ornstein-Uhlenbeck process [50], which adds temporally
correlated noise to the actions, creating more varied and effective training trajecto-
ries. The final action executed by the agent is expressed as:

µ′(s) = µθ(s) +N (3.34)

where N represents the noise process, characterized by its mean, variance, and
correlation factor parameters.

To update the parameters of the actor and critic networks, DDPG utilizes a tech-
nique known as a replay buffer. During training, all experience tuples (st, at, rt, st+1)
are stored in a finite-sized memory. Random batches of experiences are then sam-
pled from this memory to update the networks, enhancing the learning efficiency and
stability of the algorithm. This combination of techniques makes DDPG particularly
effective for reinforcement learning environments with continuous action spaces.
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3.2.8 TD3

Twin Delayed Deep Deterministic Policy Gradient (TD3), introduced by Fujimoto et
al. in [46], improves upon the Deep Deterministic Policy Gradient (DDPG) algorithm
by addressing its tendency to overestimate Q-values.

A common issue with DDPG is its tendency to overestimate Q-values, leading to
policies that exploit these inaccuracies and ultimately break. To overcome these chal-
lenges, TD3 introduces three key techniques that effectively reduce overestimations
and improve the stability and reliability of the learning process: Clipped Double-Q
Learning, Target Policy Smoothing and Delayed Policy Updates.

TD3 used a total of six neural networks, namely, two critics Q1 and Q2 with
parameters ϕ1 and ϕ2, two critic targets Q′

1 and Q′
2 with parameters ϕ′

1 and ϕ′
2 and

an actor π and corresponding target π′ with parameters θ and θ′ respectively.

In addressing overestimation bias, TD3 refines the way the TD-target is computed
compared to DDPG. In DDPG, the target actor network predicts the action a′ for
the next state s′, and this action is used to compute the Q-value with the target
critic network:

y = r + γQ′(s′, π′(s′)) (3.35)

In contrast, TD3 builds on concepts introduced in Double Q-learning. Double Q-
learning uses two separate value estimates, such that each Q-value is updated using
the estimate of the other one, as shown below:

y1 = r + γQ2(s
′, Q1(s

′, a)))
y2 = r + γQ1(s

′, Q2(s
′, a)))

(3.36)

The formulation of Double Q-Learning relies on the assumption that Q1 and
Q2 are completely independent and are updated using separate sets of experiences,
which leads to an unbiased estimate. However, in the actor-critic setting of DDPG,
a replay buffer is used to sample experiences for learning, and this condition of
complete independence cannot be guaranteed. To address this issue, the authors
propose a ”clipped” version of Double Q-Learning which takes the minimum of the
two Q-values to compute the target.

Additionally, to reduce computational cost, the use of two critics Q1 and Q2 with
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their respective target networks Q′
1 and Q′

2 is suggested. However, there is only
a single actor π that is optimized against Q1. This results in generating a single
TD-Target y, which is then used to update both Q1 and Q2.

Thus, the final formulation of the learning step for TD3 can be expressed as
follows:

y = r + γmin(Q′
1(s

′, π′(s′)), Q′
2(s

′, π′(s′))) (3.37)

In TD3, the learning step for both critics involves regressing to the TD-target.
Each critic network aims to minimize a loss function that measures the difference
between its predicted Q-value and the TD-target:

Lϕ1 = E [(y −Q1)
2]

Lϕ2 = E [(y −Q2)
2]

(3.38)

Here, Lϕ1 and Lϕ2 represent the loss for the first and second critic, respectively.
The expectation E[·] denotes that the average is taken over a batch of experiences
sampled from the replay buffer. The learning process involves adjusting the parame-
ters of the critic networks (ϕ1 and ϕ2) to minimize the Mean Squared Error between
the predicted Q-values and the TD-target y. By minimizing this loss, the critic net-
works learn to provide more accurate and less biased estimates of expected returns,
thereby enhancing the actor’s policy.

Lastly, the policy is learned just by maximizing Q1:

max
θ

E [Q1(s, πθ(s))] , (3.39)

TD3 addresses the issue of deterministic policies over-fitting to narrow peaks in
the value function by incorporating target policy smoothing. This method involves
computing the target action using the target policy πθtarget with added clipped noise,
ensuring the action stays within the valid range.

a′(s′) = clip(π′(s′) + ϵ))
ϵ = clip(N (0, σ),−c,+c) (3.40)

In TD3, the actor network is updated less frequently compared to the critic
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networks. This is known as Delayed Policy Updates. The rationale behind this
approach is to allow the critic networks to converge more accurately to their optimal
values before updating the actor network, ensuring more reliable policy improvement
steps. Typically, the actor is updated once every two critic updates, enhancing
stability and performance.

3.2.9 SAC

Soft Actor-Critic (SAC) [44] is an advanced actor-critic algorithm designed for contin-
uous action spaces. It operates within the maximum entropy reinforcement learning
framework, aiming to find the optimal policy that maximizes both the expected long-
term reward and the entropy of the policy. This balance between exploitation and
exploration is controlled by the parameter α, which adjusts the relative importance
of these two objectives.

J(π) =
∑
t

Eπ [r(st, at) + αH(π(·|st))] (3.41)

Here, H(·) denotes the entropy measure, and α regulates how much emphasis is
placed on entropy. A higher α promotes more exploration by increasing the diversity
of actions, while α = 0 reverts to the conventional goal of maximizing expected
rewards alone.

To optimize this objective, SAC uses three distinct neural networks that collabo-
ratively enhance the agent’s decision-making: State Value Function, Soft Q-Function
and Policy Function.

The state-value function Vψ, parameterized by ψ, estimates the expected return
of a state. The objective is to minimize the mean squared error between this value
function’s prediction and the expected return from the Q-function, adjusted for the
policy entropy. This is formalized as:

JV (ψ) = Est∼D

[
1

2
(Vψ(st)− Eat∼πθ [Qw(st, at)− log πθ(at|st)])2

]
(3.42)

This formula signifies that for all states sampled from the experience replay buffer
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D, the goal is to minimize the squared difference between the predicted state-value
and the adjusted Q-function value, which includes the policy entropy term.

The soft Q-function Qw, parameterized by w, predicts the expected return of
taking a specific action in a given state. It is trained by minimizing the squared
difference between the predicted Q-value and the target value Q̂(st, at):

JQ(w) = E(st,at)∼D

[
1

2

(
Qw(st, at)− Q̂(st, at)

)2
]

(3.43)

where the target value is defined as:

Q̂(st, at) = r(st, at) + γE [Vψ(st+1)] (3.44)

This means that for each (state, action) pair in the experience replay buffer, the
Q-function is adjusted so that its predictions align with the immediate reward plus
the discounted expected value of the next state.

The policy function πθ, parameterized by θ, determines the probability distribu-
tion over actions in a given state. The policy network is trained by minimizing the
following objective:

Jπ(θ) = Est∼D

[
DKL

(
πθ(·|st) ||

exp(Qw(st, ·))
Zw(st)

)]
(3.45)

Here, DKL represents the Kullback-Leibler divergence, which measures the dif-
ference between the policy distribution πθ and the distribution derived from the Q-
function normalized by a function Zw(st). This objective function aims to align the
policy distribution with the optimal action distribution suggested by the Q-function,
thereby improving policy performance.

3.2.10 A2C

The Advantage Actor-Critic (A2C) algorithm [51] is an actor-critic method that
combines value-based and policy-based strategies. It employs two main components:
an actor, which defines the policy π(a|s), and a critic, which evaluates this policy by

72



Chapter 3 RL: Theoretical Foundations

estimating the value function V (s). The actor adjusts the policy based on feedback
from the critic.

The advantage function, A(s, a), is used to measure how much better or worse
an action a is compared to the average action in state s. It is defined as:

A(s, a) = Q(s, a)− V (s) (3.46)

where Q(s, a) is the action-value function and V (s) is the state-value function.
The advantage function guides the actor in learning which actions are preferable
relative to the average.

The updates for the actor and critic are performed simultaneously. The critic’s
loss function, see equation 3.47, measures the error between the estimated value
function V (s) and the actual return R. Minimizing this loss helps the critic provide
a more accurate estimate of the value function, improving feedback to the actor.

Lcritic =
1

2
(R− V (s))2 (3.47)

The actor’s loss function is designed to adjust the policy to maximize the advan-
tage function A(s, a), see equation 3.48. By minimizing this loss, the actor improves
the probability of taking actions with higher advantages, thus refining the policy
based on the critic’s evaluations.

Lactor = − log π(a|s) · A(s, a) (3.48)
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Chapter 4

Simulation of a Laser
Triangulation Profilometric Sensor

For a simulation tool to be truly effective, it must accurately replicate the behavior of
the laser triangulation sensor, including its interactions with the inspected surfaces
and the influence of environmental factors. This involves creating detailed models of
the sensor’s geometry, the properties of the surfaces being measured, and the noise
effects that can impact the measurements.

In this chapter, we introduce a comprehensive simulation tool designed specif-
ically for laser profilometry using triangulation methods. The primary goal is to
achieve a realistic simulation of readings provided by any commercial sensor. The
simulation aims to incorporate the speckle effect [52], which is the most relevant
source of noise affecting the measurement process.

To achieve realistic simulation, a geometric model is proposed that defines sensor
parameters based on characteristics typically found in the datasheet of any com-
mercial sensor. This model allows estimation of distance measurements between
the sensor and the inspected object. Furthermore, a noise model is developed that
combines speckle noise with sensor uncertainty noise. Speckle noise is simulated
using Perlin noise, mimicking its characteristic granular pattern. Conversely, uncer-
tainty noise is modeled as Gaussian noise, considering the sensor’s resolution and
repeatability.

Additionally, the chapter presents obtained results, including simulations of scans
on steel products with various geometries and surface characteristics. A comparative
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analysis is conducted between simulated and real scans to assess simulation similar-
ity and accuracy. Quantitative measures and visual comparisons are employed to
evaluate the algorithms presented.

The content of this chapter has been published in the journal Sensors under the
title ”Simulation of Laser Profilometer Measurements in the Presence of Speckle
Using Perlin Noise” [53].

4.1 Related work

Simulators have evolved into indispensable tools for designing and evaluating indus-
trial inspection systems by providing virtual environments to model sensor interac-
tions with inspected objects. These simulations offer insights into sensor behavior
crucial for optimizing performance and validating designs tailored to specific indus-
trial demands. Early efforts in this field concentrated on creating digital models
to visualize and analyze how sensors, like laser triangulation systems, interact with
complex geometries.

For instance, Cajal et al. [54] explored the use of CAD models to simulate
laser triangulation sensors. Their work allowed for virtual recreation of the sensor’s
interaction with complex geometries, facilitating the detection of potential collisions
and occlusions in a controlled, simulated environment.

The system modeling process involves comprehensive parameterization of various
components essential for laser triangulation sensors simulation. This includes defin-
ing specific camera operational parameters such as focal length, principal point coor-
dinates, and distortion coefficients, alongside sensor noise characteristics and spatial
positioning. Optical components such as aperture settings are also integrated, and
laser parameters like positioning and focus specifications are meticulously defined to
ensure accurate digitalization of part surfaces.

They also consider various sources of uncertainty, such as laser stripe image
misidentification, optical distortion uncertainty, sensor electronic noise, lack of re-
peatability in part positioning, and unsynchronized position tracking during image
triggering. Each source of uncertainty is modeled as Gaussian noise with parameters
µ and σ, independently affecting the accuracy of laser-scanned data.

Other work is presented by Abu-Nabah et al. in [55]. They employed commercial
animation software to develop virtual models of laser triangulation systems. This
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method provided a platform to generate synthetic images, which could be analyzed
to extract depth profiles. The ability to simulate sensor behavior and assess its
performance in virtual environments proved invaluable, particularly for validating
new sensor designs or evaluating existing commercial sensors under industry-specific
conditions, such as those found in the oil and gas sector. However, these simulations
often lacked detailed noise modeling, focusing primarily on the geometric aspects.

For this tools to be truly effective, the simulator must accurately replicate the be-
havior of the inspection system using models that closely relate to real hardware. In
this way, designers can assess system performance under various conditions, achiev-
ing precise and cost-effective solutions while reducing both development time and
costs.

In the context of laser triangulation, an important challenge is the speckle effect
[52], which constitutes one of the main sources of noise in the measurement process.
Speckle is an interference effect caused by the microtopology of the inspected surface,
due to the spatial coherence of the illumination source [52]. In [35], the influence
of speckle on measurements is analyzed. When lasers are used as light sources
on optically rough surfaces, speckle can occur due to diffraction. Optically rough
surfaces exhibit spatial variations that cause reflected light rays to travel different
distances, resulting in phase shifts. These rays with phase shifts can either reinforce
or cancel each other out, generating a pattern of bright and dark areas in the reflected
laser light.

Previous research on the simulation of laser triangulation sensors for part scan-
ning has focused primarily on the geometrical aspects of the sensor, often neglecting
the impact of material surface roughness on the measurements. Although simula-
tions using CAD models can produce very accurate geometric representations, they
typically neglect the speckle effect, a critical source of noise arising from the mi-
crostructural properties of the surface being scanned. This can result in significant
discrepancies between simulated and actual sensor readings. Focusing solely on the
ideal geometric configuration may result in accurate measurements in a theoreti-
cal sense, but it misses the main uncertainties encountered in real-world conditions,
thereby reducing the practical effectiveness of these simulations. This issue becomes
particularly important in applications like surface inspection and defect detection,
where it is crucial to determine if variations in surface measurements are significant
and suggest defects such as impact marks or surface cracks.

In modern defect detection, many algorithms now use machine learning or artifi-
cial intelligence techniques to identify and classify defects accurately [21]. Effective
training of these algorithms requires simulating sensor data realistically, including
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accounting for major noise sources like the speckle effect. Overlooking this effect in
simulations can introduce biases and inaccuracies, which can compromise the per-
formance of this algorithms in real-world scenarios. Therefore, integrating a com-
prehensive noise model into simulation frameworks not only improves data realism
but also supports the development of robust and reliable defect detection systems.

The simulation of speckle has been addressed in some previous works. For in-
stance, Mohammadikaji et al. [56] analyzed various sources of uncertainty associated
with 3D measurement processes using laser triangulation profilometers. They high-
lighted the impact of speckle combined with quantization effects, sensor noise, sam-
pling, and interpolation methods on measurement accuracy. Their approach involved
modeling these effects as independent Gaussian random variables with zero mean,
affecting the x and y coordinates of the laser line position. Their study proposed a
practical approach to estimate the statistics, particularly the covariance matrix of
these Gaussian variables. They illuminated a flat target surface with a laser to ensure
a straight line formation and conducted image acquisitions from various distances
and viewing angles. Within each image column, they interpolated peak intensities
and analyzed deviations between detected peak locations and the fitted line to es-
timate measurement uncertainties. Initially, they used a conservative estimation
method based on maximum observed deviations but suggested potential refinements
in future research, focusing on sensor distance and orientation parameters.

The same research group proposed in [32] a method to obtain realistic simulated
images produced by a laser triangulation profilometer. Their primary objective was
to develop a comprehensive tool for evaluating and planning measurement systems
during the development phase. This model included detailed simulation of optical
components and the effects of wave optics. Specifically, they modeled speckle as
a diffraction phenomenon induced by rough surfaces, which can induce significant
variations in light phase. To calculate the resulting intensity from coherent light
sources in the Fourier domain, they used the product of the estimated amplitude
transfer function and the phase of the wave field. They employed precise CADmodels
of the object under inspection, including its bidirectional reflectance distribution
function and corresponding roughness profile.

However, they faced a significant computational challenge due to the detailed
modeling of physical phenomena. Simulating all the intricate interactions of light
with the object’s surface, including diffraction, interference, and scattering, is highly
complex and computationally intensive. The accurate representation of speckle pat-
terns and the precise calculation of light phase variations require extensive compu-
tational resources. As a result, rendering a single image required approximately 10
hours using eight cores at 3.7 GHz speed. This long processing time is a significant
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drawback, limiting the practicality of the simulation tool for real-time or near-real-
time applications. The heavy computational load highlights the balance between
accurate physical modeling and the feasibility of the simulation process. Therefore,
while the method provides highly realistic simulations, its application is limited by
the long time needed to produce results, posing challenges for iterative design and
testing processes in industrial settings.

Csencsics et al. [57] proposed a different approach to simulate speckle. In their
simulation, they define all elements comprising the measurement system, includ-
ing the geometry, characteristics of the laser source, the measured surface, and the
imaging system. The proposed method integrates stochastic laser speckles with de-
terministic ray tracing for designing optical sensors. It defines system geometry
including laser source characteristics, target surface, detector parameters, and imag-
ing optics. Laser spots are approximated by N1 point sources distributed within the
spot diameter and varying in height according to surface roughness, with intensity
profiles following a Gaussian distribution. N2 rays are uniformly emitted over a solid
angle matching the size of the imaging lens and traced through the optical path to
compute phase at the detector. Out-of-plane target movements and lens parameters
adjust the spot area and point sources accordingly.

Other authors have used complex ray-tracing methods to model laser triangu-
lation profilometers. In their study, Beermann et al. [58] introduced a simulation
model for laser triangulation measurement under inhomogeneous refractive index
fields (RIF). Employing a virtual camera and a complex multi-step ray tracing opti-
mization, they simulated the complete triangulation process. The research focused
on analyzing the impact of RIF on measurement accuracy by numerically calculat-
ing RIF through heat transfer simulations and modeling the virtual sensor using a
camera pinhole model. They found that object geometry significantly affects laser
point displacement and RIF-induced light deflection effects, emphasizing the chal-
lenges and benefits of optical inspection in multistage forming of hot workpieces. The
study concluded by proposing strategies such as adjusting sensor pose and explor-
ing lateral measurement methods to mitigate RIF effects and enhance measurement
precision, providing valuable insights for designing compensation routines aimed at
improving measurement accuracy under complex optical conditions.

Physically based simulation methods can be very useful when the objective is to
design and validate new sensors. As more steps are physically modeled, it is possible
to gain more insight into how the sensor performs and the bottlenecks to achieve the
desired performance. It may be possible to measure the impact of each component in
the final result. Nevertheless, such insight information is useless when the designers
want to use an off-the-shelf sensor. In this case, the sensor is a black box that
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provides depth information. The designer will receive from the camera an array of
depth values, where each row corresponds to a single line scan. This information
must be processed to extract higher-level information, such as a geometric model or
a decision about the presence of defects in the inspected part.

In this thesis, a proposal to directly simulate the depth measures produced by
an off-the-self laser triangulation profilometric sensor is presented. Using informa-
tion provided by the sensor’s manufacturer, a geometrical model is constructed to
accurately represent the surface geometry of the part being inspected using an STL
(Standard Tessellation Language) CAD model—a widely adopted format in manu-
facturing for digital object representation. This model facilitates the simulation of
the scanning process, incorporating the trajectory of the sensor relative to the part’s
surface. Once the simulation is completed, a set of simulated profiles, organized as a
bi-dimensional array, is generated to mimic the output format typical of commercial
sensors.

A Gaussian noise model is added to the geometrical depth value to take into
account the sensor’s depth resolution and precision. The main contribution of this
work is to propose the use of Perlin noise [59, 60] to model the effect of all the differ-
ent physical noise sources present in the scanning process, especially the uncertainty
due to speckle. This enables the development of a realistic simulation of the sensor
that captures its characteristics and the effect of noise sources. This enhances the ef-
fectiveness of the simulation for developing, assessing, and optimizing the algorithms
that must analyze this information.

Perlin noise is a type of procedural lattice gradient noise initially developed for
creating procedural textures in computer graphics. It has been widely employed in
film for enhancing the realism of computer-generated images and in video games
to generate terrains procedurally. In computer graphics, ”noise” denotes a type of
random number generator, and ”procedural” indicates that the random value at any
given point is computed algorithmically. Instead of directly simulating the physical
process responsible for speckle effects in images captured by sensor cameras, Perlin
noise is utilized to add randomized values to the depth image produced by an ideal
sensor. The method also includes techniques for adjusting the parameters of the
Perlin noise algorithm. For a comprehensive overview of procedural noise functions
commonly used in computer graphics, refer to surveys like [61, 62].

While specific studies on the application of Perlin Noise to simulate certain as-
pects of sensor noise were not found in the literature, Perlin Noise has been ex-
tensively utilized across various domains. Li et al. [63] introduced a method for
simulating water surfaces’ reflection and refraction using multi-octave Perlin noise
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combined with ray tracing to generate random height fields.

Acosta et al. [64] use Perlin Noise to simulate oxide textures for developing a
rust detection model. They generate a variety of 2D color images with realistic rust
patterns by adjusting Perlin Noise parameters. This method allows them to create
synthetic rusted surfaces that closely resemble real-world corrosion conditions. By
combining a rust base texture with a metallic map, they produce diverse rust textures
using Perlin Noise, optimizing parameters for computational efficiency and texture
fidelity.

In the paper [65],Conde-Rodŕıguez et al. use Perlin Noise to model material
microstructures. This method enables precise definition of how primary material
phases are distributed within heterogeneous solids. It employs a material distribution
function to compute the volume occupied by each primary material and a modified
Perlin noise function to specify the shape and size of these material phases.

Additionally, Koutsoudis et al. [66] proposed enhancing photogrammetric 3D
reconstruction on featureless surfaces using noise function-based patterns, including
Perlin noise as one of their methods.

These studies highlight the versatility of Perlin Noise in simulating and enhanc-
ing visual and structural characteristics across various applications, demonstrating
its potential for realistically modeling physical noise effects in scanning processes,
thereby improving sensor simulations for effective algorithm development and opti-
mization.

4.2 Proposed Method

Our goal is to create a realistic simulation of readings from an off-the-shelf laser
profilometric sensor, specifically addressing the influence of speckle noise, which is a
significant source of interference in measurement processes. Speckle noise arises due
to light scattering interference on rough surfaces, particularly affecting laser trian-
gulation profilometric sensors. These sensors detect fluctuations in the phase and
amplitude of reflected light caused by surface irregularities, resulting in a distinctive
granular pattern known as speckle in the laser line image. This pattern introduces
errors in determining the center point of the laser line, thereby affecting the accuracy
of distance estimation to the object.

This study introduces a simulation model comprising three key components: a
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geometric model of the scene and two noise models. One model simulates the impact
of speckle, while the other accounts for the sensor’s inherent accuracy limitations.

r̂(x, y) = d(x, y) + PN(x, y) + PG(0, σ) (4.1)

Equation 4.1 present the proposed model. Here, r̂(x, y) represents the simulated
global reading, where d(x, y) denotes the distance computed from the geometric
scan model, PN(x, y) models the effect of speckle noise on the reading, and PG(0, σ)
represents the error due to the sensor’s accuracy constraints. The variables x and y
correspond to the position along the laser line and the scan line, respectively.

4.2.1 Geometrical Model

In this section, we describe the proposed geometrical model. The objective is to
provide the distance profile between the sensor and the surface of the object. By
modeling the interaction between the laser triangulation sensor and the target sur-
face, we aim to simulate realistic scanning conditions.

The 3D model of the inspected piece is loaded as a triangular mesh, describing
a surface using unit normals and triangle vertices. The profile acquired in each
measurement corresponds to the intersections between the projected rays of the
laser and the triangulated 3D model.

First, the parameters of the laser triangulation sensor, including the working
distance (Wd), Z-range, Field of View (FOV), and points per profile (ppp), are set
up. These parameters define the geometry and resolution of the scanning process.
This was discussed in detail in Chapter 2. In figure 4.1, a scheme with these key
parameters is shown.

The working distance denotes the distance from the camera to the center of the
depth measurement range and is considered the optimal operating point where the
laser achieves its sharpest focal point. The Z-range defines the difference between the
sensor’s maximum and minimum measurement distances. Consequently, to obtain
valid measurements, the scanned surface must lie within the range Wd ± Zrange

2
.

The Field of View of the camera represents the laser beam’s aperture angle and
the maximum opening of the sensor, defining the angular limits of the projected
beam. It is calculated from the X-FOV and the working distance. X-FOV represents
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the total length of the measurement line at the working distance. Therefore, a simple
trigonometric calculation leads to:

FOV = 2arctan

(
X-FOV

2Wd

)
(4.2)

Figure 4.1: Laser triangulation sensor: Key parameters scheme.

The laser beam is divided into multiple rays, each corresponding to a point in
the profile and uniformly distributed across the Field of View (FOV). To ensure
comprehensive coverage of the scanning area, the angle of projection for each ray is
calculated based on the FOV and the total number of points per profile, using the
equation 4.3, where ∆θ = FOV

ppp−1
is the angular step between each ray. Consequently,

each ray is constructed with a specific origin and direction: the origin is determined
by the laser source’s position, while the direction is precisely calculated based on the
Θi angle.

θi = −
FOV

2
+ i ·∆θ ∀i ∈ [0, ppp) (4.3)

For each projected ray, we use the Möller-Trumbore algorithm [67] to calculate
the intersection between the ray and the triangular mesh of the 3D model. This
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algorithm is a technique used in computer graphics to determine if a ray intersects
a triangle in 3D. It calculates the barycentric coordinates of the intersection point,
based on the parametric representation of the ray and the plane equation of the
triangle. It solves a system of linear equations using Cramer’s rule to obtain these
coordinates, which are then used to determine if the intersection point lies inside the
triangle.

From this intersection, we derive the distance d from the origin of the projected
ray to the point where the ray intersects the surface. This distance provides the
basis for simulating the laser triangulation sensor’s measurement. In the scanner’s
coordinate system, a point (xs, 0, zs) corresponds to the laser line’s position xs and
the distance zs along the projected ray. The validity of zs is crucial as it must satisfy
Equation 4.4, ensuring it falls within the acceptable range defined by the sensor’s
working distanceWd and Z-range. If zs does not meet this criterion, the measurement
is considered invalid, and a default value indicating no measurement is assigned to
that point.

Wd −
Zrange

2
≤ zs ≤ Wd +

Zrange
2

(4.4)

However, a single profile is insufficient for comprehensive surface quality analysis
using profilometric sensors. Therefore, relative movement between the sensor and
the object is typically employed during inspections. This movement results in the
generation of a 2D image where each row corresponds to a profile acquired by the
sensor. The dimensions of this image depend on the number of points per profile
and the total number of profiles scanned during the acquisition. Each pixel in the
image represents a distance measurement captured by the profilometric sensor.

To replicate this process in simulation, we use the relative trajectory followed by
the sensor with respect to the object. The trajectory is defined by a sequence of
sensor position values and sensor velocity between two consecutive poses. We use
the maximum profile acquisition rate in Hz to calculate the intermediate position
for each individual profile simulation. This parameter is also available in the sensor
datasheet and represents the number of complete 3D profiles per second provided by
the sensor. Its inverse is the time between two consecutive acquisitions. Using this
time and the sensor’s traversal speed, we compute each intermediate pose through
linear interpolation.

From these simulated sensor positions, the 2D image of distances d(x, y) is gen-
erated by computing distance measurements for each profile. Here, x represents the
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points per profile, and y corresponds to each profile scanned during the inspection
process. Thus, the size of the image is determined by the number of points per profile
and the total number of profiles scanned during acquisition. Each pixel in the image
corresponds to the distance measured by the profilometric sensor.

4.2.2 Speckle Noise Model: Perlin Noise

The inspected surface will always present a certain degree of optical roughness that
will cause speckle when is illuminated with a coherent light source. This effect is the
main source of error in the measurement. We model this effect by adding a Perlin
Noise term to the value produced by the geometric model.

To realistically simulate speckle noise in the scanning process, we start by ex-
ploring the foundational theory of Perlin Noise, a gradient noise function known for
generating smooth, pseudo-random variations. Following this theoretical overview,
we adapt Perlin Noise to simulate speckle effects in our sensor model by adjusting its
parameters based on the surface roughness of the object being scanned. This enables
us to replicate the optical disturbances due to surface irregularities and accurately
reflect the noise dynamics encountered in real-world laser scanning scenarios.

Perlin Noise

Perlin noise [59] is a type of gradient noise originally used in computer graphics to
create procedural textures with a pseudo-random appearance. It is defined by the
composition of multiple scaled versions of the same noise function, with different
frequencies (fm) and amplitudes (Am), known as octaves. It is described according
to equation 4.5, where m is the mth noise function being added and noctaves is the
number of octaves.
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Figure 4.2: Perlin noise image.

PN(x, y) =
noctaves∑
m=1

AmNm(fmx, fmy) (4.5)

The level of detail and complexity in the generated texture or pattern is de-
termined by the frequency and amplitude of each octave. Frequency refers to the
number of cycles of the noise function within a given unit of space, and higher fre-
quency values result in more rapid variations, producing a more intricate pattern.
The frequency of each octave is typically set by multiplying the base frequency (f0)
by a factor of 2 for each successive octave, expressed as fm = f0 · 2m−1.

On the other hand, amplitude determines the range of values that the noise
function can output. Higher amplitude values produce more pronounced peaks and
valleys, resulting in a more dynamic pattern. The amplitude of each octave is usually
determined by a persistence factor p, expressed as Am = A0 · pm−1.
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Figure 4.3: 2D Perlin noise generation process. Left image shows the 2D grid with
the pseudo-random gradient vectors for each control point. Right image represents
the process in one input coordinate P (x, y). C(xi, yj) are the corners of the grid, blue

arrows represent the displacement vectors d⃗(xi, yj) and orange arrows the gradient
vectors.

To implement a 2D Perlin noise function, the initial step involves defining a 2D
grid of control points. For each control point, a fixed pseudo-random gradient vector
of unit length is generated. To compute the value at a point P (x, y), it is necessary
to determine the control points lying on the corners of the cell where the point falls
C(xi, yj). Where indices (i, j) denote the 4 corners of the cell, and i and j are
either the floor or the ceil of x and y respectively, as shown in Figure 4.3. Then,
the position vector of the point P (x, y) with respect to each corner, (d⃗(xi, yj)), is
computed. Equation 4.6 shows this calculation.

d⃗(xi, yj) = C(xi, yj)− P (x, y)
i ∈ {⌊x⌋, ⌈x⌉}
j ∈ {⌊y⌋, ⌈y⌉}

(4.6)

For each corner, the dot product between its gradient and displacement vectors
is calculated to get the influence values n(xi, yj) for point P (x, y).

nij = g⃗(xi, yj) · d⃗(xi, yi) (4.7)

The calculation of the 2D Perlin Noise function at point P (x, y) is done according
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to equation 4.9. An interpolation between the 4 dot products is performed to estimate
the blending of the noise contribution from the four corners, where n0 and n1 are
the interpolations between n00, n10 and n01, n11, respectively, see equation 4.8.

Interpolation is performed using the improved version of the general form of
the smoothstep function [60], shown in equation 4.10. This function has zero first
and second derivatives in the edges, and this ensures a smooth transition between
neighbouring cells, giving Perlin noise its characteristic look.

n0 = n00 + smoothstep(Px − Cx0) · (n10 − n00)

n1 = n01 + smoothstep(Px − Cx0) · (n11 − n01)
(4.8)

N(x, y) = n0 + smoothstep(Py − Cy0) · (n1 − n0) (4.9)

smoothstep(x) =


0 x ≤ 0

6x5 − 15x4 + 10x3 0 ≤ x ≤ 1

1 x ≥ 1

(4.10)

Perlin noise modeling with roughness parameters

Based on the properties of Perlin noise, it can be modeled in a way that, by adjusting
its parameters appropriately, allows for the simulation of the Speckle noise found in
real measurements These parameters are: The size and the number of control points
of the 2D grid, the signal amplitude, the number of octaves, and the persistence
factor. In this subsection, we will describe how to select an appropriate set of values
to achieve a realistic simulation. Through this approach, a 2D Perlin noise function
is estimated and subsequently incorporated into the full scan originating from the
geometric model.

Given the variability of noise in each real measurement, the aim is not to re-
produce point-by-point the exact noise patterns, but to capture the fundamental
characteristics of the noise to allow its simulation. In the presence of speckle, the
real readings provided by the laser profilometric sensor look like a rough surface.
Although they do not necessarily reflect the true surface roughness of the object,
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these readings can be adequately characterised using the same parameters that are
commonly used to assess the roughness of materials.

Obtaining roughness parameter values can be achieved through analysis of actual
measurements or through pre-existing knowledge of the type of material being scan.
Using these parameters enables the generation of Perlin noise that replicates the
noise introduced by Speckle.

Surface roughness is a feature of the surface texture. It measures the variation
between the actual surface and its ideal form in the direction of the normal vector.
Roughness values can either be calculated on a profile (line) or on a surface (area).
We consider the parameters profile by profile and generalize them to the surface
by taking the average of the values of all the profiles. There are many different
parameters to characterize roughness [68]. The most important parameters are the
amplitude ones, which characterize the surface based on the vertical deviations of
the roughness profile from the mean line. Figure 4.4 shows the most important
parameters.

Figure 4.4: Common roughness parameters in a profile. Pi are all the peaks in the
profile.

The most common parameter to define roughness is the Arithmetic Average
Height (Ra). It is defined as the arithmetic average of profile height deviation from
the mean line. It provides a numerical value that quantifies the overall roughness
of a surface according equation 4.11, where L is the evaluation length, and y(x)
represents the height deviation from the mean line at position x.

Ra =
1

L

∫ L

0

|y(x)|dx (4.11)

Another important parameter is the Root Mean Square (RMS) Roughness, de-
noted as Rq. This parameter measures the standard deviation of the surface height
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distribution. It provides insight into the overall variance of the surface height profile
and is more sensitive to peaks and valleys than Ra. The Rq is calculated as:

Ra =

√
1

L

∫ L

0

y(x)2dx (4.12)

Beyond these average measures, surface roughness is also characterized by pa-
rameters that focus on the extremities of the profile. The Maximum Height of Peaks
Rp represents the height of the tallest peak within the measured profile, while the
Maximum Depth of Valleys Rv indicates the depth of the deepest valley. These pa-
rameters are critical in applications where extreme values, such as peaks or valleys,
could influence the functionality or aesthetic quality of the surface.

To gain a more statistically robust understanding of surface irregularities, the
Mean of the Highest Peaks (Rpm) and the Mean of the Deepest Valleys (Rvm) are
used. These parameters compute the average height of the 10 highest peaks and the
average depth of the 10 lowest valleys, respectively. By averaging multiple extremi-
ties, they provide a more comprehensive picture of the surface roughness, smoothing
out the effects of isolated irregularities and offering insights into the general contour
of the surface.

Another essential parameter in surface roughness characterization is the Peak
Count (Pc). This parameter calculates the number of peaks of the profile per unit
length, given in peaks per millimeter. Peaks are only counted when the distance
between the current peak and the previous one is greater than 10% of the maximum
height of the profile. This parameter helps in assessing the density of surface features
and it is calculated accordin equation 4.13.

Pc =
Npeaks

L
(4.13)

After analyzing the most common roughness parameters, those that align most
effectively with the Perlin Noise model can be determined. Equation 4.5, which
illustrates the Perlin noise generation algorithm involving multiple scaled versions
of a single noise function, reveals the critical parameters that require adjustment
to correspond with the roughness parameters from the actual measurements. Sub-
sequently, the chosen roughness parameters for modeling Perlin noise are outlined,
along with the reason behind these decision.
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First, to generate the 2D Perlin noise function (Nm), as explained in the previous
section, we need to adjust the size of the grid and the number of control points. The
grid size is set to match the size of the resulting scan in pixels. This corresponds to the
number of points per profile (ppf) and the number of scanned profiles (nprofiles). The
number of control points per dimension is then determined based on Pc, which allows
us to characterize different surface types. We consider that Pc provides a reliable
approximation of the number of intersections with 0 that the first octave of Perlin
Noise will have, which corresponds to the number of control points. This parameter
is selected because it is more robust than calculating the number of intersections
with the mean line of the signal. The number of peaks per mm are estimated by
knowing the pixel/mm ratio of a real scan in each direction.

In Perlin noise generation, the frequency represents the number of cycles between
two adjacent control points. By aligning the number of control points in the grid
with the number of peaks in the desired surface roughness, we can set the frequency
to 1. This configuration ensures that there is precisely one complete cycle of the
noise pattern between adjacent control points, simulating the spacing between two
peaks of the roughness in the resulting noise.

The amplitude is set as the maximum value between Rpm and Rvm. So, the
maximum Perlin amplitude corresponds to the highest value of the 10 sharpest peaks
or valleys. In this way, the influence of possible outliers is minimized. The other
parameters mentioned above will be used to give an estimate of the similarity between
the real and simulated samples.

Experimentally, we have found that a number of octaves equal to 4 and a per-
sistence of 0.5 provides satisfactory results, allowing us to add levels of detail to the
noise. Increasing the number of octaves does not produce significant changes in the
result. For octave five and above, their amplitude is no longer in the measurement
range of the sensor and therefore it is no longer detectable.

Recovering the equation of the generation of Perlin noise algorithm, defined by
the composition of multiple scaled versions of the same noise function

PN(x, y) =
noctaves∑
m=1

AmNm(fmx, fmy) (4.14)

Substituting the parameters of the equation 4.14 as explained in this section,
equation 4.15 is obtained. This equation presents our proposed model to simulate the
speckle of the real measurements from Perlin noise. Remember that the amplitude of
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each octave is determined by the persistence factor as Am = A ·pm and the frequency
is typically set by multiplying the base frequency by a factor of 2 for each successive
octave. Nm is the 2D Perlin noise function for each octave, with a grid size to match
the size of the resulting scan, in pixels and with a number of control points per
dimension determined based on Pc and the dimensions of the scan.

PN(x, y) =
4∑

m=1

(0.5m−1 ·max(Rpm, Rvm) ·Nm(2
m−1x, 2m−1y)),

∀x ∈ [0, ppf ],∀y ∈ [0, nprofiles]

(4.15)

In this final equation, PN(x, y) represents the Perlin Noise value for the given
coordinates (x, y). The terms x and y span the pixel dimensions from 0 to points
per profile and 0 to the number of profiles, respectively.

4.2.3 Sensor Uncertainty Model: Gaussian Noise

In the real world, the precision and reliability of any measurement taken by a sensor
are influenced by inherent uncertainties and limitations in its performance. For
laser profilometric sensors, these uncertainties can significantly impact the accuracy
of depth measurements. To create a realistic simulation model, it is essential to
account for two critical parameters: Z Resolution (∆Z) and Repeatability (σrep).

Z Resolution defines the smallest incremental change in depth that the sensor
can detect with reliability. It essentially captures the sensor’s quantization error.
In our model, Z Resolution is represented as a uniform distribution spanning the

range

[
−∆Z

2
,
∆Z

2

]
. This approach reflects the fact that each depth measurement

can deviate by up to half of the sensor’s resolution step, thereby providing a realistic
portrayal of the sensor’s depth measurement granularity.

The repeatability, on the other hand, quantifies the consistency of the sensor’s
readings when the same measurement is repeated under identical conditions. It is
modeled as the standard deviation of these repeated measurements. This parameter
captures the random fluctuations inherent in the sensor’s performance, effectively
reflecting its ability to reproduce the same measurement reliably each time.

To incorporate these parameters into our simulation, we need to model the com-
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bined effect of Z Resolution and Repeatability. Since they are independent variables,
their combined impact on the measurement can be represented as a Gaussian distri-
bution centered at zero.

Gaussian noise, also known as normal noise or random noise, is one of the most
common types of noise encountered in various scientific and technical applications.
It is characterized by following a Gaussian distribution, also known as a normal
distribution. The Gaussian distribution is a mathematical function that describes a
bell-shaped curve, symmetric around its mean value. This curve is defined by two
parameters: the mean (µ) and the standard deviation (σ). The mean specifies the
central value of the distribution, while the standard deviation determines the spread
of the data around the mean. The probability density function of the Gaussian
distribution can be expressed by the following equation:

f(x) =
1

σ
√
2π
e−

(x−µ)2

2σ2 (4.16)

In this equation, x represents a random variable that follows a Gaussian distri-
bution, f(x) is the probability that x takes on a specific value, µ is the mean of the
distribution, and σ is the standard deviation.

To model the sensor uncertainty, the standard deviation of this distribution is
derived using the equation 4.17. This equation accounts for the fact that the uniform

distribution’s contribution to variance is
∆2

Z

12
, which represents the spread of the Z

Resolution over its range, while σrep directly contributes to the overall variance as
the standard deviation of the Gaussian distribution representing Repeatability.

σ =

√(
∆2
Z

12
+ σ2

rep

)
(4.17)

In the simulation, we add a value drawn from this Gaussian distribution (with
standard deviation σ) to each measurement to simulate the sensor’s uncertainty. Af-
terward, we truncate the resulting value according to the parameter ∆Z to ensure it
remains within the valid measurement range of the sensor. This process effectively
simulates the combined influence of quantization error and random measurement
fluctuations, thereby providing a more realistic representation of the sensor’s perfor-
mance in practical scenarios.

92



Chapter 4 Simulation of a Laser Triangulation Profilometric Sensor

4.3 Results

This section presents the results of the laser triangulation profilometry simulator,
which integrates both geometrical and noise models. The simulation algorithms
were developed on C++ on the Ubuntu 20.04 LTS operating system. For handling
the 3D models and simulating the inspection system, the open-source Visualization
Toolkit (VTK) [69] was used. MATLAB 2022b was employed for the subsequent
processing and analysis of the results.

To evaluate the performance and reliability of the simulation algorithms, exper-
iments were conducted involving the replication of real measurements from three
distinct steel products: bearing caps, car doors, and heavy steel plates. Each prod-
uct features unique geometrical configurations and surface characteristics, influenced
by their respective manufacturing processes, despite being composed of the same ma-
terial.

The analysis of the simulation results involved a detailed comparison between
the simulated scans and actual scans of these products. Assessing the accuracy
of noise simulation proved challenging due to the inherent variability that noise
introduces into the measurements. This variability complicates the straightforward
quantification of the simulation’s fidelity.

To address this, a quantitative comparison was made, focusing on the distribution
of measurements and surface roughness parameters between the simulated and actual
scans. In addition to the quantitative analysis, a visual comparison was conducted
to examine the resemblance in the appearance of individual profiles and the overall
scan area.

These comparisons were instrumental in evaluating how closely the simulation
replicates real-world scanning conditions, particularly in terms of both geometric
precision and the characteristics of simulated noise. This comprehensive approach
provided insights into the effectiveness and realism of the simulation in practical
laser scanning applications.

4.3.1 Geometrical Model

Any commercial profilometric sensor can be simulated by modifying its parameters as
needed. To accurately replicate the conditions under which the real inspection system
operates, a simulation model must carefully account for the specific parameters of

93



Chapter 4 Simulation of a Laser Triangulation Profilometric Sensor

the profilometric sensor used. In these experiments, the AT-C5-4090CS30-495 sensor
from Automation Technology was chosen as the reference device. Main parameters
extracted from its datasheet[70] are listed in table 5.2.

The selected sensor’s parameters are critical in defining the scope and precision of
the simulation. These include factors like the working distance, Z-range, field of view,
and resolution, which collectively influence how the sensor interacts with the surface
being scanned. Additionally, the sensor’s travel speed during the experiments, set to
0.1 m/s, plays a significant role in determining the temporal and spatial resolution
of the scans. By mirroring these conditions in the simulation, it becomes possible
to create a highly accurate model that can be used to evaluate the performance and
capabilities of the sensor in various inspection scenarios.

Table 4.1: Parameters of the profilometric sensor from its datasheet and travel speed
used in these experiments.

Working distance 400 mm
Z-Range 250 mm
FOV 63.5◦

Points per profile 4096 pixels
Z resolution 3.8 µm
Profile speed 500 FPS
Travel speed 0.1 m/s

The simulation environment supports loading any 3D part as an STL file, making
it a flexible tool for testing and analysis. For instance, Figure 4.5 shows the simu-
lator’s interface with a 3D model of a car door. This setup works with a modeled
profilometric sensor, allowing for realistic simulations.

The simulator also enables configuring different scanning paths. In the example
shown, a straight-line scan is conducted between two points, P0 and P1. This path
simulates a typical inspection route that the sensor might take in actual use. The
travel speed for this scan is set to match the real system’s speed, ensuring that the
simulation closely mirrors real-world scanning.

Once the scan is completed, the results are displayed as both a point cloud and
a 2D image, as illustrated in Figure 4.6. The point cloud provides a detailed spatial
view of the scanned surface, while the 2D image gives a pixel-based depiction of the
scan. The size of the 2D image is determined by the total number of profiles captured
and the number of points per profile, giving a clear view of the scanned area. The
total number of profiles is calculated from the sensor’s travel speed and the distance
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scanned, reflecting the sensor’s capabilities in mapping the surface accurately.

Figure 4.5: Interface of the developed simulator. The CAD model of a loaded car
door and a scan path between the marked points P0 and P1 is shown.

(a) (b)

Figure 4.6: Result obtained during the simulation of a scan of the section of the
CAD model shown in figure 4.5. (a) Result in point cloud form (b) Result as 2D
image. Each row corresponds to a scan profile, so the size of the image is determined
by the total number of profiles scanned during the acquisition and the number of
points per profile. (Size: 2000x4096)
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4.3.2 Noise Model

In this study, we explore two distinct sources of noise: sensor uncertainty and speckle
noise. The uncertainty of the sensor is represented as Gaussian Noise, with the noise
amplitude determined by the sensor’s resolution. According to the datasheet, the
sensor resolution along the z-axis is specified at 3.8 micrometers. However, empirical
evidence suggests that a more practical estimate for this resolution is closer to 15
micrometers, reflecting real-world conditions more accurately.

Speckle noise, on the other hand, is modeled using Perlin noise. This type of
noise varies depending on the material properties and manufacturing processes of the
inspected product. The characteristics of Perlin noise are influenced by parameters
such as Rpm, Rvm, and Pc, which describe the surface roughness and profile of the
scanned object.

In Figure 4.7, a profile extracted from the scan shown in Figure 4.6 can be
observed, specifically from the door handle area. The figures on the left provide a
more comprehensive view of the profile, while those on the right are zoomed in on a
specific part of it.

96



Chapter 4 Simulation of a Laser Triangulation Profilometric Sensor

(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Noise simulation results. Images on the left show the complete profile and
those on the right show a zoom of the section outlined in orange. (a) y (b) Simulation
profile before adding any noise. (c) y (d) Simulation profile after Gaussian noise to
simulate sensor uncertainty. (e) y (f) Simulation profile after Perlin and Gaussian
noise.

Figures (a) and (b) demonstrate that the scan without the addition of noise yields
an ideal profile without any alterations. However, this is not desirable for replicating
real scans.

In images (c) and (d), Gaussian noise is applied to simulate sensor measurement
inaccuracies. Set at 15 micrometers based on estimated sensor specifications, this
noise introduces typical measurement variations. Additionally, Perlin Noise with
an amplitude of 80 micrometers is introduced, deliberately higher than the actual
surface roughness of the door material. This intentional contrast between Gaussian
and Perlin noise helps distinguish their effects in this specific experiment.

Images (e) and (f) display the final profiles after incorporating both types of
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noise. Here, it’s evident that Perlin noise exhibits a noticeably higher amplitude
compared to Gaussian noise, reflecting the chosen parameters that align with the
sensor’s capabilities and the surface characteristics being simulated.

In the upcoming sections, we will present the results of simulating scans for
three distinct steel products: Bearing Caps, car doors, and heavy steel plates. Each
product is manufactured using a different process: Bearing caps are cast, car doors
are stamped, and heavy steel plates are rolled. Figure 4.8 illustrates these product
types.

In these simulations, Gaussian noise with a standard deviation of 15 micrometers
has been applied to replicate sensor measurement inaccuracies. Additionally, each
piece is configured with specific Perlin Noise characteristics. This approach considers
the diverse manufacturing methods and surface textures inherent to each product,
enabling a detailed analysis of their impact on scan profiles and noise characteristics.

(a) (b) (c)

Figure 4.8: (a) Bearing cap. Image obtained from [71] (b) Car door (c) Heavy steel
plate

Comparing real and simulated scans directly is challenging due to the random
nature of noise patterns, which vary with each measurement. Our goal is to re-
alistically model measurements rather than replicate specific instances, simulating
scans of various products using any laser triangulation sensor. Nevertheless, we will
conduct a comparison of roughness parameters between real and simulated scans
to assess their similarity. Additionally, we will evaluate their visual appearance at
both profile and surface levels, focusing on scans of relatively flat areas to facilitate
analysis without distorting the part’s shape.

Emphasizing the importance of simulating both uncertainty-induced noise and
speckle noise, we will analyze the same scan under two conditions: with only Perlin
noise and with the complete noise model. Roughness parameters in the simulations
will be estimated for comparison with real samples, specifically focusing on Ra, Rq,
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Rp, Rv, Rpm, and Rvm. These parameters will be computed as averages across all
profiles.

Furthermore, we will use the Two-sample Kolmogorov-Smirnov Test [72] to eval-
uate the similarity between the distributions of real and simulated scans. The two-
sample Kolmogorov-Smirnov (KS) test is a non-parametric statistical method used
to compare two independent samples and evaluate if they come from the same dis-
tribution. In our context of simulation and scan data analysis, it provides a robust
way to quantify the similarity between real-world and simulated measurements.

The KS Test provides a way to compare the cumulative distribution functions
(CDFs) of two different datasets. The CDF essentially shows the probability that
a random variable is less than or equal to a particular value. By comparing the
CDFs of real and simulated scan data, the KS test evaluates how well these two
distributions correspond to each other across their entire range. This comparison
helps to determine if the variations in the datasets are significant or if they can be
considered similar statistically.

The null hypothesis (H0) in the KS test proposes that the two samples being
compared are from the same distribution. To evaluate it, the KS test calculates a
statistic, denoted as D, which represents the maximum absolute difference between
the CDFs of the two datasets. Mathematically, this is expressed as:

D = max|F1(x)− F2(x)| (4.18)

where F1(x) and F2(x) are the empirical CDFs of the first and second samples,
respectively. This test statistic captures the largest discrepancy between the two
CDFs at any point along their range, providing a measure of how divergent the
distributions are.

The decision to reject or not reject the null hypothesis depends on the value of
D relative to a critical value Dα, which is determined by the chosen significance
level α (commonly set at 0.05 for a 5% significance level). If the test statistic D
exceeds Dα, the null hypothesis is rejected, suggesting that the samples are unlikely
to come from the same distribution. Conversely, if D is less than or equal to Dα,,
the null hypothesis cannot be rejected, implying that there is no significant evidence
to conclude that the distributions are different.
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Bearing Cap

This section presents the results obtained during the simulation of scans over a
bearing cap. Figure 4.9 shows the comparison between the results of a simulation
scan and a real one. It presents a profile and a 2D image of the obtained scan. It
is possible to visually verify the similarity between simulated and real ones. The
displayed areas correspond to a portion of the entire scan performed with a sensor
of a 4096 pixels per profile. More precisely, it is an area of 100 profiles by 501 pixels,
that represents an area of 22.5x22.5mm. A section of the area is presented to offer
a clearer view of the noise details and facilitate a more comprehensive analysis, also
to preserve the confidentiality of the data.

Real Simulated

(a) (b)

(c) (d)

Figure 4.9: Bearing cap experiment: Comparison between real and simulated scan.
(a) Real 2D scan image. (b) Simulated 2D scan image. (c) Real scan profile. (d)
Simulated scan profile.

Table 4.2 shows the estimated parameters obtained from the analysis of real scans,
and compares them with the parameters obtained from the simulation results. The
analysis shows that the simulated roughness parameters are quite similar to the
real measurements. For instance, the average roughness (Ra) and root mean square
roughness (Rq) have relative errors of only 1.29% and 0.11%, respectively, indicating
that the simulation effectively captures the general surface texture.

Extremity measures such as maximum peak height (Rp) and maximum valley
depth (Rv) show slightly larger discrepancies, with relative errors of 4.47% and
6.55%, respectively. These differences suggest that while the simulation tends to
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Table 4.2: Bearing Cap: Comparison of roughness parameters between real and
simulated scans. Estimated as the average of the parameters calculated for each
profile.

Bearing cap

Real Simulation ϵr(%)

Ra (mm) 0.0211 0.0208 1.29
Rq (mm) 0.0263 0.0263 0.11
Rp (mm) 0.0731 0.0764 4.47
Rv (mm) 0.0742 0.0790 6.55
Rpm (mm) 0.0676 0.0702 3.76
Rvm (mm) 0.0700 0.0741 5.85
Pc (peaks/mm) 4.36 4.62 5.74

overestimate extreme surface features, it does so within a tolerable range. The mean
peak height (Rpm) and mean valley depth (Rvm) are similarly accurate, with relative
errors of 3.76% and 5.85%. These parameters are essential for understanding the
average surface profile and confirm that the simulation model captures the surface
details effectively.

Finally, the peak count (Pc), which measures the frequency of significant sur-
face peaks, shows a relative error of 5.74%, indicating a slight overestimation by
the simulation. Overall, the simulation achieves a high level of precision across all
parameters, generally maintaining relative errors around 5 %. This confirms that
the simulation model can effectively replicate the surface characteristics of bearing
caps, providing valuable insights for quality control in manufacturing.

Figure 4.10 presents the normalized histogram of real and simulated scan distri-
butions for this experiments. Both histograms show comparable shapes, suggesting
that the simulation effectively captures the distribution characteristics of the real
scans. The CDF comparison further supports this, with closely aligned CDFs indi-
cating that the distributions follow similar patterns across their range of values.

The application of the Two-sample Kolmogorov-Smirnov Test supports the ob-
served similarities between the real and simulated scan distributions. The test cal-
culates the maximum difference between the CDFs of the two datasets. In this case,
the calculated difference is small enough that we do not reject the null hypothesis
at the 5% significance level. This suggests that there is no significant statistical
difference between the distributions of the real and simulated scans, indicating they
likely come from the same distribution.
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Real scan Simulated scan CDFs

(a) (b) (c)

Figure 4.10: Comparison of distributions. (a) and (b) Normalized histogram of each
of the captures (real and simulated) in the bearing cap experiment. (c) Comparison
of the CFD’s of the captures.

Car door

This section presents the results of the simulation measurements on a car door. Simi-
larly to the previous section, table 4.3 presents a comparative between the roughness
parameters of the simulated and real scan. Figure 4.11 shows the 2D image of the
obtained scans. As the previous experiment, it is an area of 100 profiles by 501
pixels, also corresponding to 22.5x22.5mm.

Real Simulated

(a) (b)

(c) (d)

Figure 4.11: Car door experiment: Comparison between real and simulated scan.
(a) Real 2D scan image. (b) Simulated 2D scan image. (c) Real scan profile. (d)
Simulated scan profile.
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The comparison of roughness parameters between real and simulated scans of
the car door surface demonstrates a high degree of accuracy in the simulation re-
sults. Average roughness (Ra) and root mean square roughness (Rq) exhibit minimal
percentage errors of 2.03% and 2.47%, respectively, indicating that the simulated sur-
face texture closely matches the actual measurements. Parameters such as maximum
peak height (Rp), valley depth (Rv), mean peak height (Rpm), mean valley depth
(Rvm), and peaks per millimeter (Pc) also show small percentage errors ranging from
3.50% to 6.28%. These findings underscore the simulation’s capability to faithfully
reproduce both the general surface characteristics and detailed features of the car
door, validating its suitability for industrial applications requiring precise surface
analysis and quality control.

In this case, it can be seen that the roughness values are lower than in the previous
experiment. This is due to the characteristics of this particular surface. Both are steel
materials, but the ingot is manufactured by casting and the car door by stamping.
In general, stamping tends to result in lower surface roughness compared to steel
casting. This is because stamping involves shaping the metal through controlled
pressure and force, resulting in a smoother and more uniform surface. On the other
hand, casting involves pouring molten metal into a mold, which can lead to surface
irregularities and textures due to the solidification process.

Table 4.3: Car door: Comparison of roughness parameters between real and simu-
lated scans. Estimated as the average of the parameters calculated for each profile.

Car door

Real Simulation ϵr(%)

Ra (mm) 0.0134 0.0137 2.03
Rq (mm) 0.0169 0.0173 2.47
Rp (mm) 0.0523 0.0542 3.65
Rv (mm) 0.0522 0.0555 6.28
Rpm (mm) 0.0466 0.0482 3.50
Rvm (mm) 0.0477 0.0504 5.73
Pc (peaks/mm) 5.9446 6.2403 4.97

The Two-sample Kolmogorov-Smirnov Test also confirms that the null hypothesis
holds, indicating that both real and simulated samples originate from the same
distribution. Figure 4.12 presents the histograms and the cumulative distribution
functions.
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Real scan Simulated scan CDFs

(a) (b) (c)

Figure 4.12: Comparison of distributions. (a) and (b) Normalized histogram of each
of the captures (real and simulated) in the carDoor experiment. (c) Comparison of
the CFD’s of the captures.

Heavy steel plate

This section focuses into the simulation scans on a heavy steel plate. The roughness
parameters of the simulated and real scans are compared in Table 4.4. Additionally,
Figure 4.13 showcases a 2D image of the acquired scans, covering an area of 100
profiles by 501 pixels. In this case, the scanning parameters were different and cover
an area of 20x40mm.

Real Simulated

(a) (b)

(c) (d)

Figure 4.13: Plate experiment: Comparison between real and simulated scan. (a)
Real 2D scan image. (b) Simulated 2D scan image. (c) Real scan profile. (d)
Simulated scan profile.
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As observed in Table 4.4, the comparison between real and simulated scans of the
heavy steel plate demonstrates a high degree of alignment in roughness parameters.
The average roughness (Ra) shows a minor deviation, with the real value at 0.2484
mm and the simulated value at 0.2403 mm, resulting in a percentage error of 3.27%.
Similarly, the root mean square roughness (Rq) exhibits a small difference, with
values of 0.3118 mm for real and 0.3058 mm for simulated scans, corresponding to a
percentage error of 1.94%.

For parameters reflecting surface irregularities, such as maximum peak height
(Rp) and valley depth (Rv), the simulation also closely approximates the real mea-
surements. Rp shows values of 0.9397 mm for real and 0.9633 mm for simulated
scans, with a percentage error of 2.52%. Rv has real and simulated values of 0.9834
mm and 0.9642 mm, respectively, resulting in a percentage error of 1.95%.

Moreover, mean peak height (Rpm) and mean valley depth (Rvm) display per-
centage errors of 2.65% and 1.22%, respectively, indicating a robust simulation of
these specific surface features. Peaks per millimeter (Pc), though exhibiting a larger
percentage error of 9.43%, still demonstrates a reasonable alignment between real
(6.8758 peaks/mm) and simulated (6.2277 peaks/mm) scans. Compared to the bear-
ing cap and car door, heavy steel plates typically have higher surface roughness pa-
rameters. This is mainly due to the presence of scale or surface oxides, which can
contribute to a rougher surface texture and irregularities.

Table 4.4: Heavy Steel Plate: Comparison of roughness parameters between real
and simulated scans. Estimated as the average of the parameters calculated for each
profile.

Heavy steel plate

Real Simulation ϵr(%)

Ra (mm) 0.2484 0.2403 3.27
Rq (mm) 0.3118 0.3058 1.94
Rp (mm) 0.9397 0.9633 2.52
Rv (mm) 0.9834 0.9642 1.95
Rpm (mm) 0.8329 0.8550 2.65
Rvm (mm) 0.8925 0.8817 1.22
Pc (peaks/mm) 6.8758 6.2277 9.43

As in the previous experiments, we can confirm that both real and simulated
samples have similar distribution using the Two-sample Kolmogorov-Smirnov Test.
Figure 4.14 presents the histograms and the cumulative distribution functions.
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Real scan Simulated scan CDFs

(a) (b) (c)

Figure 4.14: Comparison of distributions. (a) and (b) Normalized histogram of
each of the captures (real and simulated) in the heavy steel plate experiment. (c)
Comparison of the CFD’s of the captures.

4.4 Discussion

This study introduces a simulation model designed to simulate the output of a real
laser triangulation profilometric sensor, which performs precise depth measurements
along a line. The model consists of three key components: a geometrical model
that incorporates the physical properties of the sensor, a Gaussian noise model to
simulate sensor uncertainty, and a Perlin noise model to replicate speckle-induced
noise. Validation experiments demonstrated a high degree of similarity between the
generated scans and real sensor scans. Our research provides satisfactory results,
enabling a realistic simulation of laser triangulation scans.

We use CAD models in STL format because they are widely accepted for repre-
senting industrial part geometry. STL files store data as triangular meshes, where
each triangle is defined by its vertices and a unit normal vector. However, when
simulating measurements from CAD models using profilometric sensors, a challenge
arises: the sensor’s resolution often surpasses that of the triangular mesh. As a re-
sult, simulated measurements produce profiles composed of small straight segments
corresponding to each triangle face in the mesh. This method suffices for rough
3D reconstructions but proves inadequate for simulating sensors that operate with
resolutions in the range of a few micrometers.

To address this challenge and achieve realistic scan simulations, we introduce
sensor measurement noise and speckle using a combination of Gaussian and Perlin
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noise. Quantifying the exact fidelity of the noise simulation is complex due to the
variability of the actual scans caused by sensor characteristics and speckle effects.
However, our approach aims to validate the similarity between simulated and real-
world scans.

The proposal enables simulation of any commercial laser triangulation sensor
based on its datasheet, incorporating both measurement noise due to sensor lim-
itations and noise generated by the scanned product surface. Noise simulation is
achieved straightforwardly by considering surface roughness parameters. Successful
simulation of speckle generated by the roughness of different materials was achieved.

Speckle generated by the roughness of various materials was successfully sim-
ulated, focusing specifically on three steel products manufactured using different
methods. The study results highlight the accuracy of the modeling and simulation
process across a wide range of surfaces. Comparison between real scans and simu-
lated results for bearing cap, car door, and steel plate surfaces consistently showed
similar roughness characteristics. By generalizing the noise model using roughness
parameters, different surfaces can be simulated based on prior knowledge of material
type and surface finish or through straightforward analysis of roughness parameters
from a real scan.

Comparative analysis revealed minor differences in roughness parameters between
simulated and real scans across the three experiments. These small errors in rough-
ness parameters indicate that the simulation approach effectively captures the gen-
eral surface roughness characteristics. Thus, the results suggest that the current
simulation method adequately reproduces essential roughness characteristics.

The purpose of the proposed model is not to precisely replicate real measure-
ments but to enable simulation of real measurements obtained from commercial sen-
sors. Overall, the results validate the effectiveness of the approach. The similarity
between real and simulated scans indicates that the simulation accurately captures
the essential roughness characteristics of each surface. Simulating surface roughness
opens opportunities for using simulated scans in various algorithms and applica-
tions, providing a cost-effective and efficient alternative to extensive experimental
measurements.

In this study, the simulator primarily focused on simulating the laser triangula-
tion process to evaluate its capabilities under controlled conditions. The simulation
notably addressed the significant noise source of speckle, which is crucial in laser
scanning applications. However, it did not explicitly consider other potential chal-
lenges such as occlusions due to the angle between the laser and camera, variations
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in power levels, specular reflections, and other environmental factors. These fac-
tors can significantly impact the accuracy and reliability of real-world laser scanning
systems, particularly when scanning highly reflective or dark surfaces, where laser
triangulation sensors are not the most suitable and thus are not frequently used.
However, for applications where such sensors are appropriate, this simulator proves
to be valuable.
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Chapter 5

Simulation of surface defects in 3D
models

The present chapter introduces a method for simulating surface defects in 3D models
using a Free-Form Deformation (FFD) technique. This approach allows for the
creation of defects with known dimensions and shapes, crucial for developing defect
detection algorithms in manufactured products. Mathematical models are proposed
for common defects found in sheet metal products, such as bumps, peaks, and cracks.
These models offer flexibility to parameterize defects in terms of depth, size, and
orientation, enabling precise customization of simulated defects.

To complement defect simulation, a commercial profilometric sensor simulator
discussed in the previous chapter is employed. This simulator generates high-resolution
simulated scans, providing labeled 3D information of the defective 3D models gener-
ated. This integration between defect simulation and profilometric scans simulates
the inspection experience in a controlled virtual environment, facilitating training
and validation of defect detection models. An additional advantage is that the gen-
erated defects come pre-labeled, eliminating the need for manual labeling by workers.

The main contribution of this chapter lies in generating synthetic defect datasets
in 3D models of manufactured products, particularly beneficial for Artificial Intel-
ligence algorithms. This approach addresses the challenge of acquiring real defect
data, especially during the developmental phase, due to the occasional nature of
defects and associated high costs. By exclusively using synthetically generated data,
this approach facilitates the development and optimization of 3D inspection algo-
rithms, regardless of the availability of real defect data.
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Furthermore, a detailed analysis of the results obtained from comparing synthet-
ically generated data with real measurements is presented. A comprehensive dataset
of simulated defects is generated to train a neural network using solely synthetic
data. This network is evaluated using real-world scans, and its performance is com-
pared with a model trained exclusively with real defects to validate the accuracy
of defect simulation. It is important to note that the primary objective is not to
improve detection algorithms but to evaluate the realism of simulated defects.

The contents of this chapter are under consideration for publication in Journal of
Intelligent Manufacturing, by Springer. ¡¡S. Roos-Hoefgeest, M. Roos-Hoefgeest, D.
Garćıa Peña, I. Álvarez, y R. C. González, ≪Realistic Defect Simulation in 3D Models
for Defect Detection Using Machine Learning≫, Journal of Intelligent Manufacturing,
(Currently in its third revision)

5.1 Related work

As previously mentioned, the lack of 3D defect data is a big challenge in the industry,
especially with the increasing use of AI in defect detection. AI algorithms need a
lot of well-labeled data to train properly and detect defects accurately. However,
collecting this data in industrial environments is often costly and time-consuming,
as defects do not occur very often and can vary widely. This lack of data makes it
hard to develop and test accurate detection models, showing the need for new ways
to create synthetic data to fill this gap.

Different authors have proposed the generation of synthetic data to overcome
this problem for industrial applications. Wong et al. [73] employed photogramme-
try techniques to generate a synthetic dataset from 3D models across 10 different
classes of real-world objects. Their process involved creating detailed 3D scans of
these objects, which were then utilized to generate synthetic images for training
deep learning models. Despite using just 60 real images per class, they successfully
generated 100,000 synthetic images. Their method, which integrates 3D modeling
with render-based image synthesis, proved highly effective for training an Incep-
tionV3 CNN, achieving a remarkable 95.8% accuracy in classifying real supermarket
products. Furthermore, they leveraged these synthetic images to train a RetinaNet
detector for real-time localization and classification of products.

Cohen et al. [74] proposed and developed a dataset of egocentric synthetic images
using only CAD models of desired objects, specifically aiming to replicate challenges
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often encountered in images from head-mounted cameras during bus seat assembly.
Their approach included rendering textureless CAD models from various viewpoints.
They introduced variability in viewpoint, illumination, truncation, and blurring to
mimic typical issues found in such camera images. Synthetic views of different objects
were juxtaposed against diverse backgrounds, manually selected to ensure relevance
to industrial scenarios. Their framework incorporated domain randomization tech-
niques for image augmentation, enabling realistic object placement, simulation of
truncation, and introducing variability in appearance through blur and motion ef-
fects. They employed these synthetic images to effectively train a YOLOv3 network
as an object detector, showcasing its performance on real-world images.

Horváth et al. [75] addressed the issue of transferring knowledge from simula-
tion to real-world images for industrial robotics applications, specifically focusing
on object detection. They created synthetic images from 3D models of ten selected
industrial parts, including objects such as L-brackets, U-brackets, and seat compo-
nents. These synthetic images were rendered with diverse backgrounds and added
postprocessing steps to simulate real-world challenges, such as randomized multicolor
salt and pepper noise, gaussian blur, and cutouts. The authors employed automatic
labeling and trained a YOLOv4 convolutional neural network using the synthetic
data and evaluated it with a dataset consisting of real images.

Recently, Zhu et al. [76] introduced an automated method for assembly quality
inspection leveraging synthetic data to train diverse neural networks. They uti-
lized CAD models to generate both 2D images and 3D point clouds of the assembly
components. Automatic labeling was integrated into the data generation process, fa-
cilitating the creation of synthetic datasets. The study highlighted how these trained
networks effectively enhanced the precision and efficacy of automated quality inspec-
tion systems, underscoring the value of synthetic data in industrial applications.

Previously described research focused on the generation of synthetic datasets
for the detection of objects under different challenging situations commonly found
in industrial applications. Variations mainly affected the pose of the object, the
background, or the image noise. At most, defects were associated with the relative
pose between different objects in the scene.

A different question is how to generate synthetic data of defective objects, from
CAD models of non-defective parts. Traditional methods, including those based on
digital image processing and computer-aided techniques, have been widely employed
in industrial defect image generation. Digital image processing methods leverage spe-
cific algorithms to modify original images and create targeted defects, often through
techniques such as filtering or adding noise. In parallel, traditional techniques often
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rely on computer-aided design (CAD)-based approaches. This entails constructing
CAD models or utilizing software like 3DS Max to input defect geometry and de-
scriptive information. CAD models employ advanced techniques such as ray tracing
and X-ray imaging, predominantly applied to rigid materials such as castings and
steel, where obtaining or constructing 3D models is feasible.

For instance, Domingo Mery and Nancy Hitschfeld [77] proposed a method for
simulating defects in aluminum castings by integrating CAD models with real X-ray
images. Their approach involved projecting detailed 3D polygonal mesh models onto
2D radioscopic images, enabling the simulation of specific defects like blow holes and
cracks. Flaws with intricate geometries were modeled using manifold surfaces and
superimposed onto real radioscopic images, adhering to the exponential attenuation
law for X-rays.

To achieve this, the simulation process begins with the capture and calibration
of a real X-ray digital image to establish parameters like focal length, object dimen-
sions, and digital image scale factors. Using 3D modeling software, a 3D flaw is
meticulously designed and positioned within a virtual environment. Subsequently,
a depth map is generated where rays are emitted from each pixel of the 2D digi-
tal image towards the X-ray source plane. The depth map records the intersection
points of these rays with the 3D flaw. Finally, the computed depth map is superim-
posing onto the original X-ray digital image, adjusting pixel grey values according
to the X-ray attenuation properties. Experiments using this method were primarily
conducted on cast aluminum wheels to validate the simulation of defects in X-ray
images, specifically focusing on defects such as cracks and blow holes.

Aleksei Boikov et al. [78] introduced a method for creating labeled synthetic
datasets to detect surface defects in steel slabs using deep learning. Defects are
simulated in 2D and applied to the CAD model as textures using a free 3D editor.
Procedural shaders play a crucial role in this method, transforming initial noise tex-
tures into specific defect shapes for various types. For instance, cracks are generated
using a spherical gradient procedural texture, with adjustments made to UV coordi-
nates and symmetry to achieve diverse shapes. Parameters like detorsion and noise
control the appearance and variability of these defects. The process also involves
creating textures for other defects, like chipping, through manipulation of Perlin
noise.

In the synthetic data generation process, a 3D camera simulation captures tradi-
tional 2D images of steel slabs under conditions mirroring industrial settings. Cam-
eras are positioned overhead, and lighting replicates typical conditions for computer
vision applications. An artificial labeled dataset of 6000 defect images was created to
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train and evaluate two neural network architectures: U-Net for defect segmentation
and Xception for defect classification.

Additionally, Bosnar et al, [79] introduce a procedural pipeline designed for the
generation of synthetic images intended for industrial surface inspection. Defects are
generated in 3D by constructing a defect tool specific to each defect type. This tool is
modeled with the desired shape and subsequently applied to imprint onto the surface
of the inspected object through a boolean difference with the object mesh. After
creating defects, further geometry manipulations can enhance the look of rendered
images, for example, adding some noise to face normals to simulate a rough surface.
Ultimately, realistic 2D images are produced by integrating the defective object with
material textures, physical light sources, and a camera model, simulating industrial
inspection environments. The results demonstrate the simulation of various types of
defects, such as scratches and dents, on models of metal gears through rendered 2D
images.

In recent years, deep learning techniques, including Conditional Convolutional
Variational Autoencoders (CCVAE) [80] and Generative Adversarial Networks (GANs)
[81, 82], have been widely employed in industries for generating defective images, of-
ten as part of data augmentation strategies. These methods serve to increase the
diversity of datasets by creating synthetic images to enhance surface defect detec-
tion using neural networks. Zhong et al. [83] have meticulously compiled existing
research on the generation of synthetic defect images categorizing the methods into
deep learning and traditional approaches. They analyze different methods based on
the use of Generative Adversarial Networks, discuss their shortcomings, and point
out possible research directions. In their conclusions, they point out that traditional
methods have the advantages of speed and interpretability, so it is interesting to ad-
vance research in new methods to generate synthetic data of multiple defects similar
to real ones.

The synthesis of research on generating 3D defects in CAD models underscores
the need for advancement in simulating micrometer-scale defects and building com-
prehensive 3D databases. These developments are essential for refining defect detec-
tion algorithms, enabling artificial intelligence models to learn from synthetic data
that accurately replicates real-world industrial irregularities. Previous research has
primarily focused on generating rendered 2D images, which are inadequate for de-
fects at a micrometer scale that are not visible to the naked eye. Therefore, it is
important to study this area, given the scarcity of studies that address the simulation
of micrometric defects and the generation of databases with 3D information.

In this chapter, we present a novel method to add defects to a surface described
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by a triangular mesh generated from a CAD model of the object to be inspected.
The defects to be included must be described by an elevation map that may proceed
from previously scanned defective parts or be handcrafted according to previous
knowledge from experts. We also propose models to automate the generation of
three frequent superficial defects: cracks, bumps, and peaks. The pose of each defect
on the object can be selected by the user. The proposed method can adapt the defect
to the local curvature of the surface. The result is a new triangular mesh including
the defects and the necessary information to label the data.

To apply the deformation to the surface of the object we use the Free-Form
Deformation (FFD) technique [84]. FFD is a well-known geometric method used
to model simple deformations of rigid objects. Recently, FFD has been used in
a variety of applications, for example in medicine [85], [86] or aerodynamic shape
parameterization [87], [88]. The proposed process involves creating a structured
Cartesian mesh of control points around the defect insertion point. Control points
are linked to the inner geometry of the shape, directing the deformation of the 3D
surface. The magnitude of control point displacement is determined by the elevation
map specific to the defect type, and direction is determined by the surface normal
computed from the CAD model in each point.

After simulating defects within the 3D model, the next critical step is to obtain
a point cloud or a 3D image. These data are crucial for inspecting the product and,
ultimately, generating the complete dataset needed for analysis. In Chapter 4, we
presented a simulation model to replicate the readings of real laser triangulation
profilometric sensors based on their datasheet parameters. This model mimics the
sensor’s movement over the CAD model of the inspected component, considering
the physical characteristics of the sensor and accounting for noise sources originating
both from sensor imprecision and speckle noise due to material roughness.

By using this tool and configuring the sensor’s path relative to the scanned
surface, it is possible to generate a set of simulated profiles organized into a two-
dimensional matrix. The matrix size depends on the points per profile and the total
number of profiles obtained during acquisition. Each pixel in the resulting image
corresponds to a distance measurement recorded by the profilometric sensor, a for-
mat commonly used by commercial sensors of this type. This simulation model is
used in this work to obtain synthetic 3D images of the simulated surface defects in
the CAD model of the product.

Additionally, knowing the area of the CAD model where the defect is inserted
and the specific type of defect involved, it is possible to provide a labeled point cloud
or a 3D image with the defect precisely marked. This capability enhances the utility
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of the approach by offering pre-labeled data, thus eliminating the need for additional
time and resources typically required for labeling processes.

As a further contribution, mathematical models are proposed to automatically
recreate the geometry of three common defects in manufacturing. Specifically, models
are presented for inserting bumps, peaks, and cracks. In the production of steel
products, such as plates, car doors, etc., these types of defects commonly appear,
either inherent to the manufacturing process or during the handling of parts. These
types of defects are well-known to manufacturers, as well as the most common areas
where they typically appear depending on the type and material of the product.

5.2 3D model deformation using FFD for surface

defect generation

This section introduces the method for simulating defects in 3D models. The defects
are characterized by two main attributes: a height map and their position on the
3D model’s surface. The height map specifies the size and shape of the defect in the
XY plane, while the position defines its location and orientation on the 3D surface.
An overview of the process is shown in Figure 5.1.

The surface under inspection is assumed to be a triangular mesh with known
vertex positions and unit normals for each triangle. To achieve smooth deformation in
the selected area, the triangles must be small enough, which is accomplished through
a remeshing approach that subdivides triangles based on a specified maximum area.

For deforming the 3D model according to the defect characteristics, the Free-
Form Deformation (FFD) method is employed. FFD works by enclosing the object
within a bounding lattice and then transforming the object as the lattice deforms.
This method, as outlined by Sederberg and Perry [89], involves moving control points
of a parametric curve—like Bézier curves, B-splines, or NURBS—within the lattice
to achieve the desired deformation.

In this approach, the displacements of the control points are linked to the ge-
ometry inside the bounding lattice using NURBS volumetric parameterization. The
deformation is applied only to the part of the geometry enclosed within this 3D hull.

To ensure realistic deformation, the control points are moved according to the lo-
cal characteristics of the surface. To manage computational efficiency, two strategies
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are employed based on the complexity of the surface in the defect-affected region.
These regions are classified as either simple or complex: simple areas have a nearly
constant normal vector throughout, while complex areas show significant variability
in normal directions. This classification allows for a tailored approach to deforma-
tion, balancing accuracy and computational load.

Figure 5.1: Scheme of the process for adding a modeled defect to a CAD model of
any product

5.2.1 Mesh remeshing

As previously mentioned, the inspection is performed on a surface modeled as a
triangular mesh, with available information about the vertices’ positions and the
normals of each triangle. To ensure smooth deformation in the area of interest,
it is crucial that the triangles are sufficiently small. Therefore, the first step is
to perform a remeshing process, which involves subdividing the relevant triangles
based on a predetermined maximum area. To optimize computational resources,
this subdivision is confined to the specific area where the defect is introduced.

A straightforward, case-based approach with multiple passes is used to repeatedly
subdivide the triangles in the selected area to meet the area criterion. The maximum
triangle area (A△) in the region is defined as a fraction of the area required for the
defect. Experimentally, we define this as:
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A△ =
Adefect
100000

(5.1)

In this way, the resolution is adjusted to match the defect’s size. There is a need to
balance between accurately representing the defect and maintaining computational
efficiency to ensure that the simulator remains practical and useful.

To further enhance the quality and smoothness of the remeshed area, we apply
a smoothing filter to the subdivided mesh. This filter iteratively adjusts the vertex
positions, reducing irregularities and distortions.

Figure 5.2 illustrates the outcome of subdividing the triangles in a selected region
of a 3D model.

(a) (b)

Figure 5.2: Remeshing of the selected area to be deformed according to the required
defect. (a) Before remeshing: The number of triangles is 370. (b) After remeshing:
The number of triangles is 123108

Subsequently, FFD [89] based on lattice parametrization is employed to deform
the 3D model according to the corresponding defect. FFD is based on the concept of
enclosing an object inside a cube, or another hull object, and transforming the object
inside it as the lattice is deformed. The deformation of the lattice is achieved by
moving the control points of a parametric curve, such as Bézier curves, B-splines, or
non-uniform rational B-splines (NURBS). In this work, control point displacements
are connected to the object’s geometry within the shape using a NURBS volumetric
parametrization. Deformation is applied only to the region enclosed by the 3D hull.
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First, the general principles of Free-Form Deformation (FFD) and NURBS vol-
ume representation are explained.

5.2.2 Generalities of Free-form deformation (FFD) using
NURBS parametrization

Free-Form Deformation (FFD) is a versatile technique in computer graphics used to
manipulate three-dimensional objects with precision and flexibility [89]. It operates
by manipulating a three-dimensional control mesh, often referred to as a lattice,
surrounding the target object. This lattice serves as a skeletal structure, influencing
how the object deforms. The transformation involves adjusting the positions of
control points within this lattice to achieve desired deformations and transformations
effectively.

FFD involves a transformation or mapping of the positions of every point P in
the original 3D space to its corresponding deformed position P ′. This transformation
is denoted by ϕ(·), see 5.2, where P represents the original position of a point in the
object, P ′ is its deformed position after applying the transformation ϕ at time t.

P → P ′ = ϕ(P, t) (5.2)

The transformation ϕ can be mathematically described by a function ϕ : R3 →
R3, which maps each point P in the original object to its deformed counterpart
P ′ in the transformed object. This function encapsulates the complexity of the
deformation process, influenced by factors such as the positions of control points
within the lattice and external parameters.

FFD involves adjusting the positions of control points associated with parametric
curves such as Bezier curves, B-splines, or NURBS within the lattice structure to
achieve the desired deformation effect. By moving these control points, the shape
and form of the object can be altered.

FFD involving three fundamental steps to manipulate objects. Initially, an FFD
box is set up with control points arranged in a lattice structure. These points serve
as markers for subsequent deformations. Following this, the object’s surface is inte-
grated into the FFD box, linking its physical coordinates (x, y, z) with the internal
parameter space (u, v, w) of the FFD box. This linkage ensures that adjustments
made to the control points within the lattice directly influence the object’s shape.
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The next critical step involves deforming the object’s surface by adjusting the
positions of these FFD control points. Moving these points enables us to reshape
the object while maintaining precise control over its geometry. Mathematically, this
process involves the initial vertices of the object represented as P (u, v, w), the FFD
control points Qi,j,k on the initial lattice, and the resulting vertices of the deformed
object represented as P ′(u, v, w) with corresponding new FFD points Q′

i,j,k. Here,
i, j, k range from 0 to l,m, n respectively, indicating the number of control points
in each dimension of the lattice. These steps and their associated mathematical
formulations guide the transformation from the object’s original configuration to its
altered state using the principles of FFD.

To map the control points to the deformed geometry, Non-Uniform Rational B-
Splines (NURBS) are used [90]. A NURBS curve is defined by three main elements:
order, control points, and knot vector. The order determines the number of control
points that influence any point on the curve. The curve is represented mathemat-
ically by a polynomial. Its degree is equal to the order of the curve minus one.
Control points determine the shape of the curve. Typically, each point of the curve
is computed by taking a weighted sum of a number of control points. The knot
vector is a sequence of parameter values that determine where and how the control
points affect the NURBS curve. The number of knots is always equal to the number
of control points plus the curve order.

NURBS volumes consist of a regular net of control points Qijk connected to knot
vectors and B-spline basis functions. The volumetric parametrization is defined by a
linear combination of these basis functions and controlled by weights wijk. The new
position P ′(u, v, w) of the deformed object is determined as:

P ′(u, v, w) =

∑l,m,n
i,j,k Ni,p(u)Nj,q(v)Nk,r(w)wijkQ

′
ijk∑l,m,n

i,j,k Ni,p(u)Nj,q(v)Nk,r(w)wijk
(5.3)

where Ni,p(u), Nj,q(v), and Nk,r(w) are the non-rational B-Spline basis functions
of orders p, q, and r respectively, and wijk are the weights of the new control points
Q′
ijk. The B-Spline basis functions are defined over knot vectors U, V, W, which

specify the location and continuity of the NURBS. These knot vectors are defined
as:

U = {u0, u1, . . . , ul+p+1} (5.4)

V = {v0, v1, . . . , vm+q+1} (5.5)
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W = {w0, w1, . . . , wn+r+1} (5.6)

From Figure 5.3, it can be seen that the control lattice has been deformed, with
the initial points for Qijk (in red) shifting to create a new control lattice Q′

ijk (in
blue). This figure illustrates the process of deforming the lattice and its control
points to achieve a specific defect shape on a surface.

Figure 5.3: Illustration of the lattice and control points displacement process to
deform a surface. The lattice structure is shown in the u, v, w space, with initial
control points depicted in red and new control points highlighted in blue

5.2.3 Lattice and NURBS parametrization for surface defect
simulation

Having established the theoretical framework of FFD parameterization using NURBS
volumes, we now discuss how this technique is specifically adapted to the simulation
of surface defects. This involves adapting the defect model to the shape character-
istics of the surface being deformed. To effectively classify and manage the different
surface types, we distinguish between simple and complex surfaces based on their
geometrical properties.

To determine whether a surface is simple or complex, we analyze the normal
vectors at various points within the area of interest. A surface is classified as sim-
ple if it can be closely approximated by a plane. The standard deviation of the
normal vector at the surface points within the selected area is computed. If this
value approximates zero, it is inferred that all normal directions are similar, thereby
indicating a flat surface. If the value of the standard deviation is high, exceeding
a predetermined threshold fixed experimentally, the surface is classified as complex,
due to the assumption that the direction of the normal changes over the entire sur-
face, as illustrated in Figure 5.4.
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(a) (b)

Figure 5.4: Representation of the normal vectors of the faces only in the selected
area, indicated by blue triangles. (a) Simple surface. Normals have practically the
same direction in the selected area. (b) Complex surface. Normal direction changes
over the selected surface

For both simple and complex surfaces, an elemental 3D box that encompasses the
entire defect geometry is constructed using a structured Cartesian mesh of control
points. These control points are then adjusted according to the defect model and
the normal direction specific to each point on the surface. Although this general
approach is applied to both simple and complex surfaces, each category has its unique
particularities and adjustments. These specific considerations will be discussed in
the following sections.

Simple surfaces

For simple surfaces, a lattice is constructed with two parallel planes of control points
aligned with the surface: one above and one below.

The lattice dimensions in the uv plane (L ×W ) are determined by the defect’s
length and width, while the w-dimension depends on the maximum depth of the
defect, ensuring it encloses the selected surface area of the model, as deformation
will solely affect the geometry within the lattice.

To position the lattice correctly, the orientation is set so that the base of the
lattice is parallel to the chosen region of the surface in the global xyz coordinates.
Additionally, the lattice can be rotated around the surface’s normal axis to give a
different orientation to the defect.

Internally, a NURBS volume consisting of a× b× 2 control points is established
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for simple surfaces. The values of a and b are determined based on the defect’s
size and desired precision using equation 5.7. The parameters δu and δv denote the
maximum spacing between control points in the uv plane.

a =
⌈
L
δu

⌉
, b =

⌈
W
δv

⌉
(5.7)

Points in the upper grid are displaced along the w-axis according to the elevation
value obtained from the defect’s elevation map at the corresponding uv position. The
lower grid remains unchanged as it only defines the lattice’s size and encloses the
surface to be deformed. In section 5.3, mathematical models to compute elevation
maps corresponding to the most frequent types of defects are described. So, to
simulate the defect on a simple surface, each control point Qi,j,k is adjusted using
the equation 5.8, where Qi,j,k represents the original position of the control point in
the uvw space, and Z(ui, vj) denotes the displacement in the w-direction based on
the surface’s elevation map at point (ui, vj)

Q′
i,j,0 = Qi,j,0 + Z(ui, vj) ∀i ∈ [0, a), j ∈ [0, b) (5.8)

Figure 5.5 shows the process of making any defect on a simple surface. First, we
build the lattice with the appropriate dimensions, see Figure 5.5a. Then the control
nodes are displaced according to the characteristics of the defect, see Figure 5.5b.
Finally, the lattice is applied to the vertices of the triangular mesh to transfer the
defect to the surface. The surface with the simulated defect is shown in Figure 5.5c.
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(a)

(b)

(c)

Figure 5.5: (a) Construction of the lattice around the 3D model area. (b) Result of
the lattice after displacement of the control nodes according to the defect. (c) Result
of applying the deformation of the lattice to the 3D model. Final defect
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Complex surfaces

As in the simple surfaces, a lattice of dimensions according to the size of the defect is
constructed, ensuring that the selected surface fits inside it. The lattice dimensions
in the uv plane (L × W ) are determined by the defect’s length and width, while
the w-dimension depends on the maximum depth of the defect, ensuring it encloses
the selected surface area of the model, as deformation will solely affect the geometry
within the lattice.

The lattice is aligned parallel to the global coordinate system of the surface, as
depicted in Figure 5.6a(a), ensuring its base matches the chosen region in the xyz
coordinates. Furthermore, the lattice can be rotated around the surface’s normal
axis to provide different orientations for simulating the defect.

For complex surfaces, a NURBS volume is defined using a× b× c control points,
where a, b, and c are calculated based on the defect size and desired precision ac-
cording to equation 5.9. The spacing between control points, denoted as δu, δv, and
δw, determines the resolution. The dimensions of the lattice, denoted as L×W ×H,
guide the overall shape.

a =
⌈
L
δu

⌉
, b =

⌈
W
δv

⌉
, c =

⌈
H
δw

⌉
(5.9)

Control points Qi,j,k are displaced along the normal vector N⃗(xi, yj, zk) at that
point , scaled by a factor Z(ui, vj) derived from the surface’s elevation map at the
corresponding uv position. So, to simulate the defect on a simple surface, each
control point Qi,j,k is adjusted using the equation 5.10.

Q′
i,j,k = Qi,j,k + N⃗(xi, yj, zk)Z(ui, vj)

∀i ∈ [0, a), j ∈ [0, b), k ∈ [0, c)
(5.10)

First, the control points closest to the surface are identified based on their prox-
imity to the vertices of the triangular mesh. This is achieved by calculating the
Euclidean distance between each control point and each vertex of the mesh. Control
points at a distance lower than a threshold are considered. These selected control
points are the ones that will be displaced to deform the surface. Once the closest
control points are identified, the local orientation of the surface at each control point
is calculated considering a small window of neighboring vertices around each con-
trol point. The displacement direction and magnitude are then determined from the
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elevation map representing the defect.

Finally, the control points are moved according to the displacement direction and
magnitude calculated for each one, see Figure 5.6b.

(a) (b)

(c)

Figure 5.6: (a) Construction of the lattice with the complex surface fitting into it. (b)
Cross-section of the complex surface. It shows a 2D representation of displacements
of the lattice control points to get the defect shape in complex surfaces. In red:
control points before displacement. In blue: control points after displacement. (c)
Result of applying the deformation of the lattice to the 3D model. Final defect

Figure 5.6 (b) illustrates a cross-sectional view of the complex surface, display-
ing 2D displacements of lattice control points to simulate the defect. Red points
depict control points before displacement, while blue points show them after dis-
placement. Figure 5.6 (c) demonstrates the resulting 3D model after applying the
lattice deformation, showcasing the final defect.
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5.3 Mathematical model of defects

Describing defects as an elevation map defined on a regular grid in the XY plane is
a common approach to characterize any type of defect. However, this methodology
can be laborious when dealing with defects of different shapes or sizes. Therefore,
it is convenient to have parametric mathematical models that can easily describe
various families of common defects.

During steel production, surface defects are frequently encountered on products
such as sheet metal and car doors. These defects can appear due to different factors,
such as inherent flaws in the manufacturing process or improper handling during
part manipulation. This paper focuses on three common types of surface defects:
bumps, peaks, and cracks. Here, mathematical models are proposed to simulate the
geometric characteristics of these specific defect types.

During manufacturing or transportation processes, parts can be susceptible to
impacts that result in surface imperfections or small bumps. These defects may
vary slightly in shape or depth depending on their causes but typically manifest
as changes in curvature with a smooth contour. Bumps are commonly observed as
depicted in Figure 5.7a. A Gaussian-shaped surface was selected to simulate this type
of defect. The smoothness, symmetry, and adjustable parameters of the Gaussian
distribution allow for the replication of the gradual change in curvature and specific
characteristics of dents.

Peaks are another typical surface defect observed in manufactured objects, as seen
in Figure 5.7b. This type of defect differs significantly from bumps. Instead of having
a smooth shape, peaks terminate in a sharp, pointed form, making them much more
abrupt. To accurately replicate this sharp geometry, we employ a double-exponential
surface model. This model precisely captures the sharpness and abruptness of peaks,
enabling a realistic representation of their geometry.

The third type of defects range from small stretches to cracks that propagate
through the material, as depicted in Figures 5.7c and 5.7d. These defects share sim-
ilarities with bumps on an individual profile level, but instead of having a circular
area, they extend in a specific direction. Another distinction is that they typically
appear in areas of more complex curvatures due to material stress during manufac-
turing. To capture the characteristics of cracks, Gaussian curves are used along the
axis. This model effectively represents the varying extensions and orientations of
cracks, providing a flexible approach to simulate their complex curvature patterns.
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(a) (b)

(c) (d)

Figure 5.7: Images of some common defects in steel products. (a) Bump. (b) Peak.
(c)(d) Cracks

5.3.1 Crack model

Stretches and cracks are modeled by a set of sections, distributed along a polygonal
curve that represents its medial axis. Each section is a Gaussian-shaped curve with
its own parameters to define its particular width and depth. In addition, all of them
are uniformly distributed along the medial line.

The medial axis of the crack is modeled as a polygonal curve L with (n + 1)
vertices. Each vertex, Vi = (vix, v

i
y), is defined by its coordinates in the X-Y plane.

The X-axis is oriented along the main axis associated with the set of sections and
the first vertex (V0) is selected as the origin of the crack.

L =
{
V0,V1, ...,Vn | Vi ∈ R2,V0 = 0

}
(5.11)
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The medial axis L is sampled at m points,
{
Pi = (pix, p

i
y)
}
, evenly distributed

along the X-axis in the range [v0x, v
n
x ]. Those points are the centers of the different

sections that complete the defect model. To add some variability to the model,
a zero mean Gaussian random noise is added to the y-coordinate of each center.
The maximum variation allowed of the y coordinate is defined by the parameter δy.
Figure 5.8 shows the model of the crack medial axis in the X-Y plane.

pix =
i

m− 1
(vnx − v0x) ∀ i ∈ {0, 1, ...,m− 1} (5.12)

pjy = lininterp(L, xi) +
δy
3
ϵi, {ϵi} ∼ N(0, 1) (5.13)

Figure 5.8: Model of the crack medial axis. First, a polygonal approximation is
defined using a set of vertices (blue line with square markers). Then, this curve is
sampled to obtain the initial position of each section center (red crosses). To finish,
random noise in the vertical direction is added to each center (dotted yellow line)

To complete the model, the shape of the crack at each center point (Pi) is de-
scribed as a Gaussian-shaped curve Si parallel to the Y-Z plane. Each section is
formed by ns samples. The depth and width values of each section are computed us-
ing a trapezoidal profile. Both values increase linearly from zero to their maximum in
the m1 initial sections and they decrease to zero in the final m2 ones. Nominal width
and depth remain constant in the central portion of the crack. This is represented
in Figure 5.9. As with the position of the section center, a certain amount of zero
mean Gaussian noise is added to the depth and width of each section. The param-
eters δz and δw control the maximum random variation of a section. Subsequently,
crack width for each section is computed according to equation 5.14, following the
trapezoidal profile as previously described. The first and last width values are set
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to zero. Additionally, the noise model is applied to the crack width, as outlined in
Equation 5.15.

w0 = wm = 0

wi =


iWmax

m1
if 1 ≤ i ≤ m1

Wmax if m1 < i < m2

(m− i) Wmax

m−m2
if m2 ≤ i ≤ m

(5.14)

wi = wi +
δw
3
ϵi, {ϵi} ∼ N(0, 1), 0 < i < m (5.15)

(a)

(b)

Figure 5.9: Crack depth (a) and width (b) present a trapezoidal profile with an initial
linearly increasing ramp extending over m1 samples, and a final linearly decreasing
ramp that is m2 samples wide

The crack depth for each section is computed in the same way as the width, as
detailed in Equation 5.16. The first and last depth values are set to zero and the
noise model is incorporated as shown in Equation 5.17.

129



Chapter 5 Simulation of surface defects in 3D models

z0 = zm = 0

zi =


iZmax

m1
if 1 ≤ i ≤ m1

Zmax if m1 < i < m2

(m− i) Zmax

m−m2
if m2 ≤ i ≤ m

(5.16)

zi = zi +
δz
3
ϵi, {ϵi} ∼ N(0, 1), 0 < i < m (5.17)

(a)

(b)

Figure 5.10: Effect of adding a random variation to each section. (a) Medial axis
and external contour of the crack without noise. (b) The same information after
adding noise to each section. A large amount of noise has been added to show the
effect more clearly

Table 5.1 lists all the parameters and variables used to model a crack. The algo-
rithm to compute the elevation model of crack-type defect calculation is described
as follows. Initially, the coordinates associated with the center points of each crack
section Pi =

(
pix, p

i
y

)
are computed using Equations 5.12 and 5.13.
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Table 5.1: Parameters and variables of a Crack type defect.

Variables

L Polygonal approximation of the medial axis of the crack
Pi = (pix, p

i
y) Each of the centers sampled from L, i ∈ {0, 1, ...,m− 1}.

P0 = V0 and P(m−1) = Vn

(x̂k, ŷk, ẑk) Normalized crack section. It is used as a template to
compute the position of every section.

zi Depth of section i.
wi Width of section i.
C =

{(
ci,kx , c

i,k
y , c

i,k
z

)}
The set of points that form the crack wall. i represents
the section (i = 0, . . . ,m− 1) and k represents a sample
in that section (k = 0, . . . , ns − 1).

Parameters

n L is formed by the origin and n extra vertices. The curve
is formed by the segments connecting two consecutive
vertices.

Vi = (vix, v
i
y) Each vertex in L, i ∈ {0, 1, ..., n}

m The number points sampled from L to describe the crack
section. The samples are evenly spaced along the x-axis
and include the first and last vertex.

Zmax Maximum depth of the crack
Wmax Maximum width of the crack
m1 Number of samples to achieve the maximum depth or

width, starting from the first sample.
m2 Number of samples to descend from the maximum depth

or width to zero at the last sample.
δy, δz, δw Maximum random variation of the y-coordinate of section

center, depth and width respectively.
ns The number of samples to describe the section
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To make computations faster, a normalized crack section, (x̂k, ŷk, ẑk), is com-
puted. This section is the result of taking ns equally spaced samples from a Gaussian-
shaped curve in Y-Z plane, as shown in equation 5.18:

x̂k = 0, 0 ≤ k < ns

ŷk = −3 + k
6

ns − 1
, 0 ≤ k < ns

ẑk = e
−ysk
2 , 0 ≤ k < ns

(5.18)

For each section i ∈ {0, 1, 2, ...,m − 1}, Equations 5.14, 5.15, 5.16 and 5.17 are
used to determine the actual width wi and depth zi corresponding to section i.
These values, together with the position of its center Pi, are used to compute the
final coordinates of the section

{(
ci,kx , c

i,k
y , c

i,k
z

)}
using equation 5.19. Figure 5.11

shows the final result.

Ci,k
x = xi, 0 ≤ k < ns

Ci,k
y = yi + ŷk

wi
6
, 0 ≤ k < ns

Ci,k
z = ziẑk, 0 ≤ k < ns

(5.19)
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(a)

(b)

Figure 5.11: Volumetric representation of a crack. (a) The medial line that defines
the crack and the set of sections. (b) Resulting surface representing the crack
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5.3.2 Bump model

Bumps are surface defects characterized by changes in curvature with a relatively
smooth profile. To replicate the gradual change in curvature and specific bump
characteristics, a Gaussian-shaped surface model is build according to equation 5.20.

Z(P) = Zmax · e−
1
2
(P−P0)T

∑−1(P−P0) (5.20)

∑
=

[
σ2
x 0
0 σ2

y

]
(5.21)

In this context, Z(P) represents the surface’s elevation at a specific point P =
(x, y). The surface’s overall appearance is determined by a gain parameter denoted
as Zmax, allowing control of the maximum depth of the bump and fine-tuning the
defect’s prominence. The center of the Gaussian curve, and thus the center of the
defect, is defined by P0 = (x0, y0). The shape and characteristics of the surface are
influenced by the covariance matrix

∑
as outlined in Equation 5.21. The standard

deviations σx and σy control the shape and characteristics of the surface.

To ensure that the edges have a very small value and that there are no abrupt
jumps at the edges of the defect. According to the three-sigma rule of thumb, in a
normal distribution, 99.7% of the values are considered to lie within three standard
deviations of the mean. Therefore, it is established that the standard deviation of
the Gaussian should be at least 6 times smaller than the size of the defect in that
direction (Di). The resulting curve is depicted in Figure 5.12.

(a) (b)

Figure 5.12: Result of the bump parametrization. (a) 3D surface representation. (b)
2D section of the surface
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5.3.3 Peak model

Peaks are characterized by their pointed shape, creating a pronounced and distinctive
appearance. This particular defect is parameterized using an exponential decay
surface model, outlined in Equation 5.22. It defines the height Z as a function of
the point position in the XY-plane P = (x, y). The surface is characterized by a
maximum height Zmax and a decay factor c.

The height decreases exponentially as the distance between the point P and the
defect’s center point P0 = (x0, y0) increases. The distance ||P − P0|| between the
two points is calculated using the Euclidean norm.

Z(P) = Zmax · e−
1
c
∥P−P0∥ (5.22)

Decay is controlled by the factor 1
c
. To ensure that the curve fits within the

selected area and exhibits a smooth transition at the defect edges, we introduce the
scaling factor c. The value of c is estimated such that 99.73% of the distribution
is covered. Using the quantile function of an exponential distribution, as shown in
Equation 5.23, we find that 99.73% of the distribution is reached at x = 5.9143

λ
. Here,

λ = 1
c
, and we set c to be at least six times smaller than the defect radius.

x = F−1(p|λ) = −ln(1− p)
λ

, 0 < p < 1 (5.23)

(a) (b)

Figure 5.13: Result of the peak parametrization. (a) 3D surface representation. (b)
2D section of the surface.
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Figure 5.13 presents the result of the peak parametrization, including a 3D surface
representation (Figure 5.13a) and a 2D section of the surface (Figure 5.13b). The
chosen parameters and equations ensure a smooth and accurate representation of
the exponential-shaped defect.

5.4 Resultados

This section outlines the results obtained from our experimental study, which aimed
to simulate realistic defects rather than replicate specific existing ones. This approach
means that direct quantitative comparisons between simulated and real defects are
not feasible. The methodology involved training a neural network, specifically YOLO
(You Only Look Once), with simulated defects and assessing its defect-detection per-
formance on real scans. Subsequently, the results were compared with those obtained
from another neural network trained exclusively on real defects, both applied to de-
tect defects within the same set of real scans. This comparison aimed to evaluate
the reliability of the proposed surface defect simulation on CAD models.

In this study, the focus was placed on the surface inspection of a car’s bodywork.
A variety of defects were simulated on the CAD model of the car door, encompassing
diverse geometries and dimensions. Subsequently, the inspection system simulator
was employed to create a comprehensive database with 3D information for these
simulated defects. Figure 5.14 shows the CAD model of the car door used in these
experiments.

Based on the car door CAD model, a variety of defects were simulated. These
simulations encompassed bumps, peaks, and cracks of different sizes and shapes,
varying in terms of width, length, depth, and orientations. The defects were strate-
gically placed at multiple locations on the model to simulate a wide range of realistic
surface imperfections typically observed in car bodywork. This approach facilitated
the creation of a comprehensive dataset that captures the diversity of these defects.

To generate the 3D dataset, simulations of scans were necessary using a 3D
profilometric sensor integrated into the simulator. This sensor facilitates data acqui-
sition by loading the CAD model of the product under inspection. The parameters
of the simulated profilometric sensor were adjusted to closely match those of the real
inspection system used in the experiments, specifically the Automation Technology
model AT-C5-4090CS30-495 [91], as detailed in Table 5.2.
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Figure 5.14: CAD model of the car door employed in these experiments.

Additionally, to enhance the realism of the simulated scans, two types of noise
can be introduced into the measurements: sensor uncertainty and Speckle noise aris-
ing from material roughness. Speckle noise is generated using Perlin noise and is
dependent on the specific material properties of the part. In this study, steel parts
produced through stamping, such as car doors, were utilized. The Speckle noise is
generated based on the roughness information extracted from actual measurements,
resulting in an amplitude of 0.0532 mm and a density of 6 peaks/mm. Furthermore,
sensor uncertainty is modeled using a zero-mean Gaussian distribution with a mag-
nitude of 15 microns. The details of the simulation process have been previously
describe in Chapter 4.

For the sensor’s trajectory, the simulated experiments closely mirrored real-world
scenarios by following a straight line between two points, covering the scanning area
of the defective part. The travel speed of the simulated experiments matched that
of the real system, ensuring accurate replication of inspection conditions.

For the implementation, the open-source C++ library called Mimmo [92] is em-
ployed for manipulating and morphing surface and volume meshes. This library
proved instrumental in handling the NURBS required to construct the defects based
on the mathematical models proposed in the previous section. The algorithms were
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Table 5.2: Parameters of the profilometric sensor used in the experiments.

AT-C5-4090CS30-495 characteristics

Working distance 400 mm
Z-Range 250 mm
FOV 63.5◦

Points per profile 4096 pixels
Z resolution 3.8 µm
Profile speed 500 FPS
Travel speed 0.1 m/s

implemented using C++ programming language, running on the Ubuntu 20.04 LTS
operating system. To analyze and process the obtained results, we used MATLAB
2022b.

5.4.1 Comparison of Simulated and Real Defects

In this section, a comparison between real measurements and simulated ones for
each type of defect, bumps, peaks, and cracks, is presented. Although the simulated
dimensions may not be an exact match due to noise in modeling and capturing, a
qualitative comparison can be still performed. Several factors influence each defect,
including the specific area of the part where it is located, the noise introduced by
the inspection system, and the characteristics of the material being inspected.

It’s important to note that in the context of a real 3D image, the defect might be
challenging to discern due to its small size relative to the overall part, as depicted in
Figure 5.15a. To enhance the visibility of peak and bump defects, a preprocessing
technique is employed using two Laplacian filters at different scales. To account for
resolution changes in each dimension, we utilize two distinct variances. This ap-
proach ensures that small deformations stand out from their surroundings, enabling
comfortable visualization. It effectively separates the shape of the defect from the
actual shape of the part, as illustrated in Figure 5.15b.

In the case of crack-type defects, to decouple the shape of the part, a polynomial
profile fitted with the points of each profile is estimated and the difference with the
real scan is calculated. This produces an upward effect at the edge of the crack.
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(a) (b)

Figure 5.15: (a) Surface reconstruction from scans without any processing. The
defect is not visible due to its small size in relation to the shape of the part. Red lines
represent individual profiles from profilometric sensor. (b) Surface reconstruction
after preprocessing to emphasize small variations. The defect is now clearly visible.

If only a profile of the scan in the defective area is represented, it may not be
necessary to apply the processing explained above. In this case, a raw profile, the
geometry of the part does not vary significantly, so the shape of the defect is perfectly
visible, see Figure 5.16a.

From now on, the unprocessed profiles will be presented, because they show the
real shape of the defect, while the processed profiles are used to look for continuity
along with the different profiles of the deformation but distort the real shape of the
defect, see 5.16b.

(a) (b)

Figure 5.16: An isolated profile of the scan of figure 5.15 in the defect area. Orange
circle enclose the defect. (a) Raw measurement without any processing, correspond-
ing to figure 5.15a. (b) Measurement after processing to emphasize small variations,
corresponding to figure 5.15b
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Figure 5.17 displays the inspection profiles, while Figure 5.18 showcases a pre-
processed reconstruction of the scanned surface within the defective area. Through
this analysis, the general shape of the defects and their dimensions can be analized.

Real Scan Simulated scan

Bump

Peak

Crack

(a) (b)

Figure 5.17: Inspection profiles of each type of defect. Orange circles mark the shape
of the defect. (a) Real inspection. (b) Simulation.

The first row of the figures represents a simulated bump with a diameter of 1 mm
and a depth of 70 µm. The second row presents a peak-type defect with a depth of
70 µm and a diameter of 3 mm. Finally, the third row shows a crack profile with a
maximum depth of approximately 0.3 mm, a maximum width of 2 mm, and a length
of 2 cm. To closely resemble a real crack obtained from a scan, it was simulated by
carefully placing points that define its shape to match the actual crack, as illustrated
in Figure 5.19.

The difference between the three types of defects can be easily seen: bumps
exhibit a sudden discontinuity in the shape of the part with a relatively smooth
contour. Peaks, on the other hand, display a pointed structure. Cracks, at a profile
level, are not very different from a bump. However, the surface shows a deformation
that extends in the direction of the material stretch, growing as it approaches the
center of the defect and decreasing as it moves away from the center and gets closer
to a defect-free zone.
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Real scan Simulated scan
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Peak

Crack

(a) (b)

Figure 5.18: Reconstruction of defects from simulated scans after preprocessing to
emphasize small variations. (a) Real inspection. (b) Simulation
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(a)

(b)

Figure 5.19: (a) Diagram of the layout used to simulate a crack based on a real scan
image. (b) Simulated scan of a crack constructed from the real crack shown in (a).
White crosses mark the points that define the shape of the crack.

In the simulation of defects, we consider two scenarios based on the geometry of
the model in the target deformation area: simple and complex surfaces. While the
method developed for complex surfaces is applicable to simple surfaces, processing
flat areas can be expedited by reducing the number of control points and simplifying
point proximity search. We tested the computational time difference in simulating
defects on flat surfaces using both strategies. For a 10x10mm bump with 1mm depth,
an 87.8% speed-up was achieved with the specific flat area strategy compared to the
generic complex area strategy. Similarly, simulating a 120x90x1mm bump resulted
in a 70.6% speed-up. It’s essential to note that simulation time varies based on defect
characteristics, surface area, and the 3D model.

5.4.2 Machine Learning-based defect detection

This section evaluates simulated defects by comparing them to real-world defects
using the YOLO (You Only Look Once) neural network model. A diverse dataset
of simulated defects, including bumps, peaks, and cracks of various dimensions and
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orientations, was used to train YOLO. Subsequently, the model’s performance in
detecting real defects was tested on real-world scans to gauge how accurately the
simulated defects replicate actual defect characteristics. Additionally, another YOLO
model was trained exclusively on a dataset of real defects sourced from real-world
scans. Both models were then evaluated on the same set of real scans, enabling a
direct comparison of their detection accuracy and generalization ability.

To generate a robust dataset, a diverse collection of labeled defects was created.
This dataset captures a wide range of defect types: bumps, peaks, and cracks. Each
defect type was varied in dimensions such as width, length, depth, and orientation,
and was distributed across different locations on the CAD model of a car door. The
aim was to replicate realistic defect scenarios that might occur during the manufac-
turing and handling of steel parts.

An artificial dataset consisting of 285 diverse defect instances was meticulously
crafted for training purposes. This dataset encompassed a comprehensive range of
defect shapes, sizes, and positions, ensuring that the models could generalize effec-
tively and detect defects in various scenarios. To further enrich the training data,
a systematic data augmentation process was applied. This process involved sim-
ple transformations such as flipping the images vertically and horizontally, thereby
expanding the dataset to 1140 instances.

In addition to the synthetic dataset, a real defect dataset was prepared. This
dataset comprised 506 authentic defect instances collected from real-world scans.
Similar to the synthetic data, this real defect dataset underwent the same data
augmentation process, increasing the dataset to a total of 2024 samples.

These datasets were crucial for training two different YOLO models: one trained
exclusively on the simulated defects and the other on real defects. The comparison
between these models helps to determine how closely the simulated defects approxi-
mate the characteristics of real defects.

In Figure 5.20, depth images used to train the two models are displayed: one
using real samples and the other using simulated samples. These images serve as
samples of the defects employed in the training process, showcasing the differences
and similarities between actual and simulated data for the purpose of model devel-
opment and evaluation.
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Figure 5.20: Depth image of real versus simulated defect samples used for training
the different deep learning models. (a) Real samples. (b) Simulate samples

In the realm of machine learning for image processing, one-stage detectors like
YOLO (You Only Look Once) [93] have become highly popular, particularly in de-
fect detection algorithms, as indicated in [23]. Due to its high accuracy and high
frame rate detection capability, YOLO is widely adopted in surface defect detec-
tion tasks across diverse industries such as steel manufacturing, precision electronic
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components, and production equipment. For our study, we opted to use YOLO ver-
sion 8, specifically opting for its smallest predefined architecture named ”nano,” to
minimize computational latency and enhance the real-time usability of our defect
detection system.

YOLOv8 architecture is mainly composed of three main components [94]. First,
the ”Backbone” consists of a custom CSPDarknet53 convolutional neural network
(CNN) designed to extract features from the input image. This architecture uses
partial inter-stage connections to improve the flow of information between layers and
increase accuracy. Second, the ”Neck”, or feature extractor, fuses feature maps from
different stages of the backbone to capture information at various scales. YOLOv8
employs an innovative module called C2f instead of the traditional Feature Pyramid
Network (FPN), allowing the combination of high-level semantic features with low-
level spatial information, which improves detection accuracy, especially for small
objects. Finally, the ”Head” is responsible for making predictions. YOLOv8 uses
several detection modules that predict bounding boxes, objectivity scores, and class
probabilities for each grid cell in the feature map. These predictions are combined
to obtain the final detections.

Two models were trained using the same network architecture: one with sim-
ulated data and the other with real data. For now on, we will refer to them as
simulated model and real model, respectively. Models were trained to identify vari-
ous types of defects, and its performance was evaluated on a dataset containing 144
instances of real defects. The results are based on a comprehensive confusion matrix
analysis and the calculation of several key performance metrics. Due to the scarcity
of real samples, these models were trained with only one category: ”Defect,” without
distinguishing between different types.

Accuracy indicators are commonly used to assess the effectiveness of defect detec-
tion systems [95]. These indicators include True Positives (TP), False Positives (FP),
False Negatives (FN), Precision, Recall, F1-Score, and Average Precision (AP), each
providing insights into different aspects of the model’s performance in identifying
defects accurately:

• True Positives (TP): Represents cases where the model correctly identifies a
defect.

• False Positives (FP): Occurs when the model incorrectly identifies a non-
defective sample as a defect.

• False Negatives (FN): Represents cases where the model fails to detect a defect
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that is present.

• Precision: evaluates the accuracy of positive predictions made by the classifier
by measuring the ratio of true positives to the total number of positive re-
sults predicted. It reflects the system’s ability to avoid misclassifying positive
samples:

Precision =
TP

TP + FP
(5.24)

• Recall: assesses the system’s ability to capture all relevant positive samples by
calculating the ratio of true positives to all relevant samples that should have
been identified as positive. It indicates the system’s effectiveness in identifying
positive samples across the dataset.

Recall =
TP

TP + FN
(5.25)

• F1-Score: Harmonic mean of Precision and Recall, providing a single metric
to balance these two aspects:

F1-Score = 2 · Precision ·Recall
Precision+Recall

(5.26)

• Average Precision (AP): measures the average precision of the model in identi-
fying defects across all possible confidence thresholds. It quantifies the quality
of the model’s classification by considering both precision and recall over a
range of confidence thresholds. AP is calculated as the area under the precision-
recall curve. A higher AP indicates better performance of the model in defect
detection, as it reflects high precision and recall at various confidence thresh-
olds.

These metrics are computed for both the real and simulated models across a
range of detection thresholds, from 0.1 to 0.5. The detection threshold determines
the minimum confidence level required for predictions to be considered valid, crucially
balancing the model’s precision and recall. Setting a very low threshold can increase
detections, including more false positives, whereas a high threshold may overlook
valid detections, leading to more false negatives. It’s critical to find a balance to
optimize detection accuracy. Tables 5.3 and 5.4 present these metrics for the real
and simulated models, respectively.

Additionally, Precision-Recall curves are computed to evaluate the models fur-
ther. Figure 5.21 illustrates these curves for both models, depicting how precision

146



Chapter 5 Simulation of surface defects in 3D models

Table 5.3: Model Performance for the model trained with simulated data.

Threshold 0.1 0.2 0.3 0.4 0.5

TP 124 112 94 76 60
FN 20 32 50 68 84
FP 64 22 14 10 4
Recall 0.8611 0.7778 0.6528 0.5278 0.4167
Precision 0.6596 0.8358 0.8704 0.8837 0.9375

Table 5.4: Model Performance for the model trained with real data.

Threshold 0,1 0,2 0,3 0,4 0,5

TP 140 126 110 76 54
FN 4 18 34 68 90
FP 50 24 12 4 0
Recall 0.9722 0.8750 0.7639 0.5278 0.375
Precision 0.7368 0.8400 0.9016 0.9500 1

and recall vary with different detection thresholds from 0.1 to 0.5. The Average Pre-
cision (AP) metric, calculated as the area under these curves, provides an estimation
of each model’s performance across the range of thresholds. A higher AP, closer to
1, indicates superior model performance. For the simulated model, the calculated
AP is 0.83, while for the real model, it is 0.92, underscoring their respective efficacy
in defect detection.

The AP values indicate a good performance of both models, with the model
trained on real defects slightly outperforming for various thresholds. Despite this
slight difference in AP scores, both models exhibit comparable trends in their pre-
cision and recall metrics across the range of thresholds evaluated. The simulated
data model shows respectable precision values ranging from 0.6596 to 0.9375 as the
threshold tightens from 0.1 to 0.5. This indicates its ability to reduce false positives
while maintaining reasonably high precision, although at the cost of lower recall
(0.4167 at threshold 0.5). In contrast, the real data model consistently maintains
high precision values above 0.73 across all thresholds, achieving perfect precision
(1.0) at the highest threshold of 0.5. However, its recall decreases more significantly
as the threshold increases, dropping to 0.375 at threshold 0.5, suggesting a trade-off
between precision and recall.
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Figure 5.21: Precision-Recall of both models. In blue, the model trained with syn-
thetic data, and in orange, the model trained with real data.

Since the performance of the model trained on simulated defects closely resembles
that of the model trained on real defects, it can be concluded that the simulated
defects are sufficiently similar to real data to allow for an increase in data quantity
when it is scarce or unavailable.

In summary, the results highlight that both models are comparable. Using simu-
lated defects offers an advantage by reducing the extensive time needed for capturing
real defects of various types and in numerous locations, potentially spending hours,
days, or even months. Furthermore, this method allows for the addition of known
types of defects in alternative locations, enhancing its flexibility and applicability.

It’s important to mention that the comparison between the two models is mainly
focused on evaluating the realism of our synthetic defects. Our aim is to show that
these synthetic defect representations can be used similarly to real defects, without
any intention of improving defect detection or pursuing additional goals.

148



Chapter 5 Simulation of surface defects in 3D models

5.5 Discussion

This chapter introduces a new approach to address the shortage of 3D data needed
for developing surface inspection algorithms with 3D sensors. We describe a method
to create surface defects in 3D models using Free-Form Deformation (FFD). This
technique is versatile, allowing defects to be inserted anywhere on the model, even
in areas with complex geometries.

The process starts by modeling defects as elevation maps from a reference plane,
defining their size and shape. By setting the positions and orientations, these defects
can be integrated into the CAD model and adjusted using FFD.

Additionally, three common defect types are provided as default options: bumps,
peaks, and cracks. These can be customized to change their size, making it possible
to include a variety of deformations found in the manufacturing process. This method
ensures realistic surface defects, improving the effectiveness and range of 3D surface
inspection algorithms. However, the proposed approach also allows for the inclusion
of other types of defects beyond these models. By adjusting the control points of the
mesh, it is possible to model different deformations, such as those resembling defects
obtained from real scans. This capability enables the simulation of defects based on
the manufacturer’s prior knowledge of potential issues related to their production
process or product design.

Although any type of defect can be simulated, mathematical models were pro-
posed for three of the most common types of defects in steel parts: bumps, peaks, and
cracks. These models allow for covering a multitude of small or large deformations
that appear in the manufacturing of different products. However, this model can be
used to simulate other types of defects. For example, a burr can be constructed by
creating a crack with negative depth. In metal manufacturing, a burr refers to the
formation of rough edges or ridges on the metal piece. By modifying the parameters
of the crack model, material loss or other types of holes could be simulated. In the
proposed model, both the depth and width gradually increase from 0 at the edges to
maximum values at the central parts. This behavior can be altered to grow abruptly,
allowing for the simulation of different shapes. Additionally, cracks are constructed
as a set of surfaces with Gaussian shape, but other types of shapes can be considered,
for instance, the exponential surface used to model peak defects. This would enable
the creation of sections or cracks with a less smooth and more abrupt shape.

We consider two possible cases depending on the geometry of the model in the
area to be deformed: simple and complex surfaces, to accelerate the process and
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reduce computational load. The approach designed for complex surfaces can also
be used for simple surfaces. However, handling these flat surfaces can be expedited
by reducing the number of control points and simplifying the search for points near
the surface. With this strategy, significant improvements in speed were achieved,
demonstrating the adaptability and effectiveness of the proposed method.

The experiments show satisfactory results, enabling the simulation of realistic
defects with considerable accuracy. However, we did not pursue quantitative com-
parisons between simulated and real defects because the goal was to simulate defects
that resemble real ones, rather than replicate them exactly. The key value of this
approach lies in its ability to generate a wide range of defects using mathematical
models, eliminating the need for real defect scans for replication. These techniques
are crucial for generating data to successfully train AI models.

In our experimental setup, we trained two machine learning models: one using
real defects and the other using simulated defects. A comprehensive comparative
analysis of their performance was conducted. It’s important to note that the same
machine learning algorithm was used for both models, focusing not on optimizing
the defect detection algorithm but on assessing the performance and utility of syn-
thetic defects for data augmentation. This allowed us to validate the authenticity of
synthetic defects in representing real-world defects.

The dataset included 506 real defects compared to 285 synthetic defects. The dis-
parity in numbers stems from the inclusion of all available real defects in the dataset,
leading to many similar instances. Conversely, the synthetic dataset was generated
to be more balanced, incorporating a variety of defect shapes and positions. Despite
being trained on a smaller dataset, the model trained with synthetic defects achieved
results comparable to the model trained with real defects in detecting defects.

Given the experimental design, it was anticipated that the model trained with real
samples would have a slight advantage. This is because the real samples came from
the same car model used to evaluate the results, whereas the defects were simulated
only on the car’s front door CAD model, without access to the rest of the body.
Consequently, the model trained with real defects likely had a better understanding
of the defect’s environment, including the actual curvature of the car, which should
result in fewer false positives due to the car’s shape.

These experiments demonstrate that a model trained solely with simulated de-
fects can effectively detect defects in real parts under factory scanning conditions.
This success suggests that defect simulations and the profilometric sensor are accu-
rate enough to be used alongside or in place of real defect samples when such samples
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are limited.

It is crucial to highlight that the primary goal of this study is not to enhance
specific defect detection algorithms but to provide a tool for generating a dataset
of sufficiently realistic synthetic defects. This dataset can be integrated into ma-
chine learning algorithms designed for defect detection. While we used the YOLO
v8 network for this study, the specific choice of this network is secondary. What
matters is the consistency of the model used in both cases, allowing for a meaning-
ful comparison. The decision to use YOLO v8 was based on practical experience
with this network architecture, and no extensive exploration of different models was
conducted.
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Chapter 6

Reinforcement Learning-Based
Inspection Path Planning

In this chapter, a new strategy is introduced for generating inspection paths for
profilometric sensors employing Reinforcement Learning (RL) techniques.

The methodology focuses on optimizing the sensor’s position and orientation at
each point along the scanning path, using the CAD model of the object as a reference.
This allows the system to dynamically adjust the sensor to maintain optimal orien-
tation and a consistent, appropriate distance throughout the scanning process. This
improves the capture of high-quality data and reduces noise in measurements. RL
techniques facilitate the system’s learning and adaptation to the specific geometric
characteristics of each object, thereby enhancing inspection efficiency and accuracy.

The main contribution of this section lies in the design of the RL system. The
state space, actions, and reward function are carefully defined to guide the system
in generating scanning paths. The state space encompasses the possible sensor con-
figurations relative to the object, while actions refer to the movements the system
can make to adjust sensor position and orientation. The reward function is de-
signed to encourage optimal behaviors in terms of distance, orientation, and sensor
advancement relative to the object.

To achieve this, an RL model is initially trained using a specially designed piece.
Once trained, this model is applied to different objects to generate corresponding
scanning paths. Trajectories are generated offline, allowing for careful planning and
optimization before they are executed in real-world inspection scenarios. Accurately
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calibrating the initial scan position is crucial to align the generated path with the
physical reality of the inspected object.

This chapter presents the results obtained from applying the proposed strategy
for generating scanning paths. The method was evaluated to determine its accuracy
and efficiency in creating optimal scanning trajectories. Experiments were conducted
using CAD-based simulations and physical tests with real hardware. A range of
objects with different geometric shapes and complexities were used to validate the
approach, demonstrating the strategy’s effectiveness and adaptability across various
scenarios.

6.1 Related work

To achieve comprehensive surface scanning of the inspected piece, a relative move-
ment between the piece and the sensor is necessary. Robotic systems, including
robotic arms [24], [25], unmanned aerial vehicles (UAVs) [26], unmanned ground
vehicles (UGVs) [27], [28], and submarines [29], have increasingly integrated into
inspection procedures across various applications to meet this requirement. These
systems enable precise and controlled movement between the inspected part and the
sensor, facilitating complete surface coverage and efficient inspection processes.

Effective and precise inspection demands meticulous planning of sensor trajec-
tories over the piece’s surface. While manual planning suffices for simpler scenar-
ios, more complex geometries or stringent precision standards require automated
methods. Generating inspection trajectories for robotic systems presents a signifi-
cant challenge, necessitating predefined paths that consider surface geometry, defect
characteristics, and inspection requirements.

While various studies on automated inspection trajectory planning exist in the
literature, particularly focusing on robotic arms, there remains a significant research
gap addressing the specific integration of robotics and profilometric sensors for sur-
face inspection tasks.

Chen et al. highlight this gap in their study [96], where they propose an approach
to automatically detect surface defects on free-form 3D objects using a 6-degree-of-
freedom manipulator with a line scanner and depth sensor. Their method involves
defining local paths for precise defect inspection and optimizing global time for effi-
cient scanning. Li et al. [30] propose a method for planning scan paths in automated
surface inspection. Their approach employs a path planning algorithm using a tri-
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angular mesh model. They divide the surface area of the workpiece into regions,
determine scan orientations and points in each region, and then generate scan paths
using the minimum bounding rectangle. This method entails developing a section
division algorithm to determine scan orientation, followed by generating paths that
meet system constraints.

Recently, a new trend has emerged in robotics for trajectory generation using
reinforcement learning (RL) methods. These methods have gained popularity due
to their ability to learn complex and adaptive behaviors from interactions with the
environment.

In robotics, RL has been successfully applied in a variety of applications. For
instance, Lobbezoo et al. compile different strategies in [97] from the literature
using RL algorithms for pick and place applications. On the other hand, Elguea-
Aguinaco et al. provide a comprehensive analysis in [98] of current research on RL
usage in tasks involving intensive physical interactions. These tasks refer to activities
where object manipulation involves direct and significant contact between the robot
and its environment. This study covers research across various domains, including
manipulation tasks with rigid objects (e.g., assembly, disassembly, polishing, and
grinding) and deformable objects (e.g., folding fabrics, tensioning and cutting, or
object manipulation).

Han et al. present an exhaustive research in [99] of different applications of
Deep RL in robotic manipulators, highlighting key challenges faced by RL in such
applications. One of the major issues is that models often fail to perfectly replicate
the real system. For instance, in robots guided by computer vision, simulated RGB
images may significantly differ from real images captured by cameras, a well-known
issue termed ”Sim-to-Real.” This discrepancy arises because simplified models do
not fully capture the system dynamics, making it challenging to transfer trained
models from simulation to real environments.

In the simulation of high-precision laser triangulation profilometric sensors specif-
ically, lack of realism can stem from various factors. These include the surface rough-
ness of scanned materials, which introduces additional complexities in laser reflection,
and generated noise such as speckle effect, a granular interference that arises when
the laser interacts with textured surfaces. These elements can significantly distort
measurements if not accurately replicated in simulation.

To address this issue, we will utilize the realistic simulator presented in Chapter
4, which allows us to faithfully represent measurements obtained by the laser tri-
angulation sensor. This simulator introduces measurement noise and speckle noise
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from material roughness, ensuring simulations closely approximate real operational
conditions.

Another highlighted issue is that trajectory generation using robotic arms is in-
herently multidimensional, further complicating the learning and optimization pro-
cess. Ji et al. also emphasize this problem in [100], pointing out that in robotics,
most RL-related works focus on mobile robot navigation due to its well-developed
and straightforward theory [101].

Surface inspection using profilometric sensors typically involves straight-line scan-
ning. If the part is too large for a single scan, inspection is performed through parallel
passes, often utilizing boustrophedon trajectories [102]. Section 6.2 will delve deeper
into the specific characteristics of this type of inspection. During each pass, the
sensor advances in a designated direction while adjusting its height and pitch angle
over the part, keeping other orientations constant. This feature simplifies the ac-
tion space to just three dimensions: scanning direction position, height, and pitch
orientation of the sensor. Focusing on these three parameters related to the robot’s
end effector significantly reduces problem complexity, as individual robot axes do
not need separate consideration. This inherent feature in inspection applications
facilitates sensor trajectory control and planning during the inspection process.

This approach aligns well with reinforcement learning (RL) techniques, which can
effectively adapt to problems with a limited action space. RL’s ability to learn from
environment interactions and enhance control policies based on received rewards
makes it a promising tool for addressing challenges in surface inspection. These
inspection process characteristics, coupled with recent advancements in RL algo-
rithms, create new opportunities for applying RL-based strategies in this relatively
underexplored field.

While various studies have explored RL’s potential in diverse robotics appli-
cations, few have specifically focused on its application in inspection tasks. This
research gap underscores the need for further exploration and investigation in this
area.

In the realm of inspection applications, notable research is presented by Xiang-
shuai Zeng in [103]. This work introduces PIRATE (Pipe Inspection Robot for Au-
tonomous Exploration), a robot designed for inspecting the interior of pipes us-
ing Reinforcement Learning techniques. PIRATE is equipped with multiple flexible
joints and wheels, enabling adaptive and efficient mobility. Reinforcement learning
is employed for navigating the robot through pipe interiors, learning to maneuver
around sharp corners using algorithms like PPO and deep neural networks. This
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approach allows the robot to adjust its behavior in real-time, overcoming obstacles
and adapting to various pipe configurations. The system defines specific actions, re-
wards, and observations. Actions include wheel movements and adjustments in the
flexible joints. Rewards are given for collision-free navigation and progress, while
collisions are penalized. Observations come from a 2D laser scanner providing dis-
tance information about the pipe environment, enabling the robot to perceive and
adapt in real-time.

Another focused inspection work is presented by Jing et al. in [104], centered
on automatic generation of robotic trajectories for surface inspection in production
lines. They use techniques such as Monte Carlo algorithms and greedy search ap-
proaches for Coverage Path Planning (CPP). The proposed methodology enables
automatic generation of inspection trajectories tailored to objects of different sizes
and geometries.

They utilize a structured light 3D scanner to generate a three-dimensional point
cloud representing the scanned object’s geometry. The primary goal is to minimize
the total cycle time by combining View Planning Problem (VPP) and trajectory
planning to minimize the total cost of inspection and travel after fulfilling surface cov-
erage requirements. View planning involves determining optimal poses from which
to capture images or make measurements of an object or surface.

The trajectory generation process includes: random selection of viewpoints, cal-
culation of robot movements, collision-free path planning, evaluation of visibility for
each viewpoint and covered surface area, and application of an RL-based planning
algorithm to select inspection actions until completion. Actions include viewpoint
selection and robot movement to position the 3D scanner at the selected viewpoint.
The proposed RL algorithm automatically generates the online inspection policy,
taking as input the robot model, target object model, and sensor specifications.

Continuing on the previous research line, Christian Landgraf, Bernd Meese et al.
present in [105] a new solution to address the challenge of automatic view planning
in the context of surface inspection. Similar to earlier work, this study proposes a
strategy to find optimal sets of viewpoints for the three-dimensional inspection of
specific workpieces. Their goal is to automate this process for any industrial robotic
arm available in ROS and any 3D sensor specification; in their application, they use
a stereo camera.

They employ more advanced reinforcement learning algorithms such as Q-learning,
Proximal Policy Optimization (PPO), and Deep Q-Networks (DQN). In these algo-
rithms, each action involves selecting a viewpoint and planning and executing the
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robot’s movement to this pose. Once the robot reaches its goal, the sensor generates
a 3D point cloud at this specific pose. The environment state is constructed using
observations obtained from the 3D measurements and the current pose of the robot.

The research by Jing et al. and Christian Landgraf, Bernd Meese et al. fo-
cuses on the automatic generation of inspection trajectories using 3D sensors such as
structured light 3D scanners and stereo cameras. These sensors provide a detailed
representation of the surface but may not be optimal for all applications, especially
those requiring high-resolution measurements or in environments with specific con-
straints.

For case studies like the one in this thesis, which employs laser triangulation
profilometric sensors performing measurements along a line, traditional trajectory
planning approaches such as the mentioned View Planning Problem (VPP) are not
applicable. VPP is designed to find optimal poses from which to capture images or
make measurements of an object or surface using wide-area 3D vision sensors. This
methodology does not fit the operational characteristics of profilometric sensors,
which focus on obtaining precise measurements along a continuous and specific path
on the object’s surface. Therefore, a trajectory planning approach adapted specif-
ically to the capabilities and operational modalities of these sensors is required,
optimizing linear exploration along the surface instead of seeking complete three-
dimensional coverage.

To date, no research has been found related to the generation of inspection tra-
jectories using Reinforcement Learning and profilometric sensors. This gap in the
literature highlights an unexplored opportunity and a promising area for research in
robotics and automation.

This research aims to address this gap by presenting a Reinforcement Learning-
based strategy for generating inspection trajectories using profilometric sensors. The
main contributions focus on how the state space, action space, and reward function
are modeled for each instance. Subsequently, the Proximal Policy Optimization
(PPO) algorithm is employed for agent training.

PPO is an algorithm introduced by OpenAI in [41]. The authors emphasize its
ability to balance three key aspects in reinforcement learning: ease of implementa-
tion, sampling efficiency, and simplicity in hyperparameter tuning. They underscore
that PPO not only offers competitive or superior performance compared to more ad-
vanced reinforcement learning algorithms but also stands out for its straightforward
implementation and parameter adjustment.
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The effectiveness of PPO has been demonstrated across a wide range of applica-
tions, including robot control such as the PIRATE robot [103] and the development
of view planning systems for inspection tasks as presented in the work by Landgraf,
Meese et al. [105]. Furthermore, PPO has been successfully applied in pick and
place tasks, such as training 7-degree-of-freedom robotic arms for precise object ma-
nipulation, as described in [106], and in other pick and place applications discussed
in [107].

Comparisons between PPO and other reinforcement learning algorithms like SAC
and TD3 reveal interesting patterns in terms of training efficiency, performance, and
convergence. For instance, [108] found that PPO tends to perform better in smaller
state spaces, while SAC shows advantages in larger state spaces. On the other hand,
[107] compared PPO and SAC, where SAC proved more efficient in sampling, but
PPO exhibited greater insensitivity to hyperparameters and more stable convergence
in complex problems. These findings support the choice of PPO as the primary
algorithm for the proposed research.

6.2 Characteristics of surface inspection scanning

with profilometric sensors

During the scanning process using laser triangulation profilometric sensors, the qual-
ity of the measured data is directly affected by various parameters associated with
the relative position between the sensor and the inspected piece, as detailed in [30].
These parameters are critical to ensure accurate and comprehensive surface inspec-
tion. Therefore, it is essential to carefully consider these factors during the planning
of scanning trajectories to achieve effective results in surface inspection. These pa-
rameters were previously explained in Chapter 2, but here, further detail is provided
on how they should be applied to generate an effective inspection trajectory.

In Figure 6.1, two views of a profilometric sensor are presented: a 3D represen-
tation with its coordinate system and a front view highlighting two key parameters:
the optimal working distanceWd and the depth of field Zr. In addition toWd and Zr,
other important parameters include the angle of incidence and the distance between
consecutive profiles, which also significantly affect the accuracy and quality of the
measured data.
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(a) (b)

Figure 6.1: Representation of the profilometric sensor and its main parameters. (a)
3D representation of the sensor with its coordinate system. (b) Front view of the
sensor. The optimal working distance Wd and depth of field Zr are depicted.

Here are the parameters mentioned earlier, detailed more in depth:

• Incidence angle (α): Refers to the angle between the orientation of the sen-

sor
−→
l and the normal vector of the surface of the workpiece −→n , see Figure

6.2. It is calculated according to Equation 6.1. This parameter is critical
for determining the accuracy with which the surface is captured. As the inci-
dence angle increases, there is a higher probability of introducing noise into the
capture. This phenomenon occurs because the scanner can capture unwanted
reflections of laser light and variations in the reflectivity of the surface, which
negatively impacts the quality of the obtained data. Research studies such as
those conducted in [109] and [31] have experimentally demonstrated how noise
in the capture is directly related to the incidence angle in different types of
workpieces.

α = acos(−
−→
l · −→n ) (6.1)

Therefore, it is essential to carefully select the appropriate sensor orientation
such that the incidence angle is minimized, in order to minimize the introduc-
tion of noise and ensure accurate and reliable capture of the workpiece surface.
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(a)

Figure 6.2: Incidence angle (alpha): angle between the orientation of the sensor
−→
l

and the normal vector of the surface of the workpiece −→n

• Optimal Working Distance (Wd): Refers to the optimal distance between
the sensor and the surface of the object being measured. This is the distance
from the laser source to the scanning reference plane located halfway within
the depth of field.

Maintaining the scanner at this optimal working distance ensures that the
captured data is as accurate as possible.

• Depth of Field (DOF): Also known as Z-Range (Zr). Refers to the range
of distance within which the scanner can capture surface data during a single
scan, see Figure 6.1 (b). Assuming a point in the scanner’s coordinate system
is (xs, 0, zs), Equation 6.2 must be satisfied.

Wd −
Zr
2
≤ zs ≤ Wd +

Zr
2

(6.2)

In [31], analyses have also been conducted on the noise introduced based on the
distance between the sensor and the workpiece, demonstrating that the noise
is minimal when working at the optimal working distance and increases as one
moves away from it. However, if this is not possible, it is crucial to ensure that
the sensor remains within the range of the depth of field, as outside this range
the sensor is unable to make accurate measurements.

• Distance between profiles (∆s): The point density between profiles of
consecutive scans plays a crucial role in the coverage and completeness of the
inspected surface. An adequate point density ensures that important details
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are not missed during the scanning process and that an accurate representation
of the surface is obtained. This is particularly important in areas with small
features or irregular surfaces, where low point density can result in incomplete
or inaccurate inspection. See Figure 6.3.

Figure 6.3: Distance between consecutive profiles ∆s.

In addition to considering those parameters, it is crucial to choose the appropriate
scanning trajectory to achieve comprehensive surface scanning of the part. In laser
profilometer inspection applications, one of the most common strategies is to employ
a Boustrophedon trajectory [110], [102].

In industry, the boustrophedon method is widely used for efficient surface inspec-
tions without the need to define specific trajectories for each part. This approach
allows systematic and repetitive scanning of large surfaces, ensuring complete and
uniform coverage of the surface to be inspected. In a boustrophedon scan, the sensor
initially moves straight along an axis until reaching the edge of the surface to be
inspected. Then, it moves laterally by a predetermined distance and changes direc-
tion to move back along the initial axis. This pattern of movements is repeated by
alternating directions until the entire surface has been covered.
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Figure 6.4: Top view of the scanning trajectory, where multiple parallel passes are
made, each separated by a distance d. An overlapping area is defined between each
pass. The gray square represents the sensor. The red lines show the trajectories
where the sensor captures data. The black lines indicate the intermediate movements
to position the sensor for the next pass.

Considering these types of trajectories, the profilometric sensor collects data only
during the parallel passes along the surface of the piece. In Figure 6.4, these trajec-
tories are shown in red, from the initial point of a pass (Pinii) to its end point (Peni

),
where i denotes the number of parallel passes. The movement of the robot between
each pass is shown in black. The distance between passes, d, is carefully adjusted to
ensure that the scans overlap adequately, thereby completely covering the piece.

6.3 Proposed Method

In this section, we present the proposed approach for generating inspection trajec-
tories using profilometric sensors and Reinforcement Learning (RL) techniques. Our
objective is to improve the inspection trajectories for a workpiece, which are typi-
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cally scanned following a straight line between two points or, in the case of larger
pieces, through a boustrophedon path.

Each pass along the scanning path is carefully planned to keep the sensor at its
optimal orientation and distance from the part at every point. This involves dynam-
ically adjusting the position and tilt (pitch) of the sensor to ensure a consistent pose
between the sensor and the surface at all times. The other two sensor orientations
will be fixed, allowing for accurate and uniform data capture. In addition, the profile
spacing will be taken into account to ensure full scanning coverage.

To train the RL algorithms, a simulated environment replicating the conditions
of the real system described in Chapter 4 is used. This simulator emulates the
measurements of a laser triangulation profilometric sensor. This setup provides a
realistic and controlled training environment.

The state space is constructed using the position and orientation of the robot’s
end effector. This allows for a generalization of the approach and facilitates the
method’s transferability to different robotic configurations. Additionally, the state
includes other parameters such as the average distance of the profile, the incidence
angle, and the spacing between consecutive scans.

Figure 6.5: Scheme of the process.
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The action space is defined by relative increments in the sensor’s position and
tilt angle, enabling precise adjustments and smooth movements of the sensor. The
reward function comprises three key components: the distance between the sensor
and the surface, the sensor’s alignment with the surface normal, and the spacing
between consecutive scans. This comprehensive reward function incentivizes optimal
behaviors in terms of the sensor’s distance, orientation, and advancement.

Next, we will detail each component of the proposed method, providing an in-
depth understanding of its design and implementation. A scheme of the process can
be seen in Figure 6.5

6.3.1 Simulated Environment

To effectively train reinforcement learning algorithms, it is crucial to have an envi-
ronment that closely simulates real-world conditions. Testing directly on the actual
system can be costly, hazardous, or impractical in many cases. Hence, simulators
are used to create a virtual replica of the environment.

Figure 6.6: View of the simulated environment with the profilometric sensor and a
part to be inspected.

In this work, we use a simulator detailed in the previous chapter 4 designed to
accurately mimic the conditions of the real system within a virtual setting. This
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simulator replicates the measurements of a laser triangulation profilometric sensor
and can emulate the parameters of any commercial sensor based on its specification
sheet. It allows for the precise measurement of a CAD model of the part to be
inspected, including the simulation of inherent sensor noise and speckle noise caused
by the object’s surface characteristics. Figure 6.6 shows the simulated environment
with the profilometric sensor and a CAD model of a part.

Figure 6.7: Profile obtained during the simulation of a scan of the car door handle
section of the CAD model shown in Figure 6.6.

Figure 6.8: Point cloud result obtained during the simulation of a scan of the CAD
model section shown in Figure 6.6. The start and end points of the trajectory can
be seen.

165



Chapter 6 Reinforcement Learning-Based Inspection Path Planning

In each iteration of the simulator, several critical parameters are obtained that
will be used later by the RL algorithm. First, the distance profile is captured, a
fundamental representation provided by any profilometric sensor, see Figure 6.7.
Additionally, the 3D position of the scanned points of the CAD model is collected,
providing detailed information about the surface geometry of the object, see Figure
6.8. Furthermore, the simulator also provides data on the normals at those points
on the object’s surface.

6.3.2 State Space

As previously mentioned the position and orientation of the end-effector are used
instead of relying on the positions and velocities of the robot’s joints. This choice
simplifies the state space and facilitates the transfer of the method to different robotic
configurations without the need for specific adjustments in the joints.

Mathematically, the state S is defined as a tuple as follows:

S = {P (x, y, z), θ,D, α,∆s} (6.3)

Here, P (x, y, z) represents the position of the end-effector, while θ denotes its
tilt. The parameters D, α, and ∆s correspond to the mean profile distance obtained
from the scan, the incidence angle, and the advance between consecutive scans in
the 3D space, respectively. These values represent the average of the points in each
profile.

6.3.3 Action Space

The action space is defined by the increments in the position and tilt angle of the in-
spection sensor. These increments are defined relative to the sensor’s own coordinate
system. Mathematically, the action space is represented by equation 6.4.

A = {∆y,∆z,∆θ} (6.4)

Where ∆y represents the increment in position along the predefined scanning
direction. ∆z refers to the increment in position along the global Z-axis, controlling
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the height of the end-effector relative to the part. ∆θ denotes the change in the
sensor’s pitch orientation, which involves rotation around the global X-axis. While
the scanning direction initially aligns with the Y-axis, changes in tilt (∆θ) will adjust
this alignment dynamically. This is illustrated in Figure 6.9.

Figure 6.9: The figure shows the simulation environment and represents the action
space as unit vectors (in orange). ∆y refers to the increment in position in the
scanning direction, ∆z refers to the increment in the vertical direction (Z), and ∆θ
denotes the change in the sensor’s pitch orientation.

The action space is defined as continuous, meaning that actions span a contin-
uous range of values rather than discrete ones. This approach ensures smooth and
controlled sensor movements to avoid abrupt changes that could affect measurement
accuracy or cause collisions with the workpiece. Equation 6.5 establishes the limits
for each type of action in the continuous space. Here, ∆y, ∆z, and ∆θ are con-
strained to values between ±∆ymax millimeters, ±∆zmax millimeters, and ±∆θmax

degrees, respectively.

∆y ∈ [−∆ymax,∆ymax]
∆z ∈ [−∆zmax,∆zmax]
∆θ ∈ [−∆θmax,∆θmax]

(6.5)
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Dynamic Action Limitation

To ensure smooth and safe movement of the inspection sensor, the selection of actions
is dynamically adjusted based on the environment’s observations. This action limi-
tation accelerates the convergence of the reinforcement learning algorithm, enabling
the system to learn more efficiently and effectively.

When the sensor is farther from the part surface than the optimal working dis-
tance Wd, limits are applied to the sensor’s displacement in the Z direction ∆z to
bring it closer to the surface in a controlled manner. Conversely, if the sensor is too
close, displacements in the negative direction are limited, as per equation 6.6.

∆z =

{
clip(∆z, 0,∆zmax) if (D −Wd) ≥ 0

clip(∆z,−∆zmax, 0) if (D −Wd) < 0
(6.6)

Here, clip(x, a, b) limits the value of x between a and b, ensuring that the actions
are within the permitted range, according to equation 6.7.

clip(x, a, b) =


a if x ≤ a
b if x ≥ b
x else

(6.7)

Similarly, if the sensor’s incidence angle (α) with respect to the surface normal
is positive, indicating excessive tilt, limits are applied to the angular displacement
∆θ to correct the sensor’s orientation. Conversely, if the tilt angle is negative, limits
are applied to the angular displacement in the opposite direction to keep the sensor
properly aligned with the inspected surface. This is represented in equation 6.8.

∆θ =

{
clip(∆θ, 0,∆θmax) if α ≥ 0

clip(∆θ,−∆θmax, 0) if α < 0
(6.8)

6.3.4 Reward Function

In reinforcement learning, creating an effective reward model is crucial as it guides
the agent toward desirable behaviors within the environment. This model assigns a
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value to each state-action pair, reflecting the immediate benefit or cost associated
with the agent’s decision. This section details the reward strategy designed in this
research.

The proposed reward function R(s, a) consists of three distinct components, each
capturing different aspects of the inspection process. Mathematically, this function
is expressed as shown in equation 6.9.

R(s, a) = wdRD + wαRα + w∆sR∆s (6.9)

RD represents the reward related to the distance between the sensor and the
inspected surface, Rα denotes the reward related to the alignment of the sensor’s
orientation with the normal of the inspected object’s surface, and R∆s captures the
reward associated with the sensor’s movement between consecutive scans in the 3D
space corresponding to the point cloud of the inspected piece. wd, wα, w∆s represent
the weights that each component contributes to the overall reward function.

Additionally, to ensure the feasibility of the proposed actions, the inverse kine-
matics of the robotic manipulator are considered. After calculating a new target
position for the sensor, we evaluate whether the robot can reach this position within
its kinematic constraints. If the robot is capable of reaching the position, no ad-
ditional reward or penalty is applied. However, if the robot cannot achieve the
specified position due to its kinematic limitations, a negative reward is introduced
to discourage the agent from choosing actions that are infeasible in practice.

The proposed rewards are in the range [0, -1], as the reward function aims to
incentivize the agent to perform actions that improve the inspection process. The
maximum value of 0 is assigned when the optimal goal is reached, while negative
values indicate penalties for deviations from the desired behavior.

Distance Reward (RD)

To ensure that the sensor maintains an optimal distance from the inspected surface,
a distance reward function RD is defined as a continuous penalty function that
decreases as the absolute difference between the observed distance and the optimal
working distance Wd increases. The reward function is formulated as follows:
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RD = −(Wd −D)2

(Zr

2
)2

(6.10)

Where Wd represents the optimal working distance, D the observed distance
during scanning, and Zr the specified working range of the sensor. This results in a
parabolic function with values between [-1,0], corresponding to 0 when operating at
the optimal working distance and -1 at the sensor’s range limits, as shown in Figure
6.10. If the distance is outside this range, the penalty is maximum (-1).

Figure 6.10: Graph of the Distance Reward Function RD. The graph shows the rela-
tionship between the observed distance D and the reward RD based on the difference
from the optimal working distance Wd.

Orientation Reward (Rα)

To induce the agent to align its orientation with the surface normal, we introduce an
orientation reward model (Ralpha). This model is designed to minimize the angular
disparity between the sensor direction and the surface normal vector. The function is
defined as a continuous penalty function that approaches 0 as the absolute orientation
difference decreases, see Figure 6.11:
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Rα = max(−1,− α2

α2
max

) (6.11)

Where α is the angular difference between the sensor’s orientation and the surface
normal, and αmax is the maximum allowed angular disparity threshold. This model
encourages the agent to maintain close alignment with the surface normal, optimizing
the quality of the inspection.

Figure 6.11: Graph of the Orientation Reward Function Rα. The graph shows
the relationship between the incidence angleα and the reward Rα according to a
maximum incidence angle αmax.

Movement Reward (R∆s)

In addition to optimizing the distance and orientation of the sensor, ensuring smooth
forward movement is crucial for comprehensive surface coverage. Forward scanning
movement ensures that each scanned 3D profile extends beyond the previous one,
facilitating thorough inspection. The reward function R∆s is expressed as:
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R∆s = max(−1,−(∆s−∆sopt)
2

∆s2opt
) (6.12)

This function penalizes the agent when the scanning spacing ∆s is negative,
indicating backward movement within the inspection area. Likewise, it behaves
parabolically with respect to the scanning spacing ∆s. When the spacing is equal
to twice the optimal value ∆sopt, the reward reaches its minimum value of -1. This
indicates a strong penalty for excessively large spacings. As the spacing decreases
from this point, the reward gradually increases, reaching a maximum value of 0 when
the spacing is exactly equal to the optimal value. Therefore, the reward function
motivates the agent to maintain spacing close to the optimal, as both above and
below-optimal values result in a decrease in reward, see Figure 6.12.

Figure 6.12: Graph of the Movement Reward Function R∆s. The graph shows the
relationship between the scanning spacing between the current and previous profile
∆s and the reward R∆s according to an optimal spacing ∆sopt.

6.3.5 RL Algorithm Configuration

In this study, the Proximal Policy Optimization (PPO) algorithm was employed to
train models capable of generating effective inspection trajectories using profilometric
sensors. The choice of PPO is driven by its robust performance and ability to handle
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continuous action spaces. Specific hyperparameter configurations were fine-tuned to
ensure optimal learning performance and convergence.

• Network Architecture: This parameter specifies the structure of the neural
network used in the RL algorithm, including the number of hidden layers and
the number of units in each layer.

• Activation Function: It determines the activation function used in the hid-
den layers of the neural network. The ReLU (Rectified Linear Unit) activation
function is commonly employed due to its ability to introduce non-linearities
into the model.

• Learning Rate: Indicates the step size taken in the opposite direction of the
gradient during the update of the neural network weights. This learning rate
influences the speed and stability of the learning process.

• Update Rate: Represents the frequency with which the model parameters
are updated during training. In some algorithms, such as PPO, this rate is
measured in terms of steps, while in others, like SAC and TD3, it is measured
in complete episodes.

• Batch Size: Specifies the number of experience samples used in each update
of the neural network. This parameter affects the training efficiency and the
stability of the model’s convergence.

• Discount Factor (γ): Determines the relative importance of future rewards
compared to immediate rewards. A higher gamma value places more weight
on future rewards, which can influence the model’s ability to learn long-term
strategies.

• Clip Ratio: Limits the magnitude of policy changes between updates to ensure
stability in training. This parameter is particularly relevant in algorithms like
PPO, where policy-based optimization techniques are used.

• Epoch: Indicates the number of times the entire dataset is processed during
training. Each epoch corresponds to one complete pass through the training
dataset.
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6.4 Experiments and results

This section details the experiments conducted to evaluate a new method for auto-
mated inspection using profilometric sensors. The primary aim is to assess whether
the Reinforcement Learning (RL) approach can generate effective scanning paths
that enhance accuracy and coverage for detecting defects across different objects.

The Reinforcement Learning algorithms were implemented using the open-source
library stable-baselines3 [111], which provides enhanced implementations of RL al-
gorithms based on OpenAI’s frameworks. To analyze and process the results, we
used MATLAB 2023b.

Three distinct objects were used in the tests: a car door, a drone body, and a
pen holder. See figure 6.13. Each object was selected for its unique shape and the
distinct challenges it presents. The car door is mostly flat with some curvature, the
drone body features complex contours and tight areas, and the pen holder is small
with intricate details.

(a) (b) (c)

Figure 6.13: Parts used for the experiments. (a) Car door. (b) Parrot drone. (c)
Pen holder

The experiments compared scanning results from paths generated by RL-optimized
trajectories with conventional methods such as straight-line paths between points or
Boustrophedon-type paths. The goal was to assess whether the RL method bet-
ter maintains the sensor’s optimal distance and orientation compared to traditional
methods. All the initial tests were conducted in simulation.

In addition to simulations, real-world experiments were carried out using a UR3e
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robot to follow some of the inspection paths created by the trained RL model. This
step aimed to validate how well the simulated solutions transfer to actual conditions.

Additionally, the tests examined how well the system adapts to various shapes.
Since real-world objects vary widely in shape and size, it is crucial to determine if
the RL approach offers improved performance across different geometries, leading to
better accuracy and efficiency in inspections.

To understand the results, it’s important to know what the metrics used for
evaluating distance and orientation errors mean. The main metrics are Mean Abso-
lute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE),
Maximum Error, Median Error, and Standard Deviation.

MAE shows the average amount by which the measured values differ from the
ideal values. It’s a simple way to understand accuracy. MSE and RMSE, which
square the errors, highlight larger mistakes more clearly. RMSE especially focuses
on bigger errors more than MAE does. Maximum Error tells us the biggest single
mistake made during scanning. Median Error shows the middle value of all errors
when they are arranged from smallest to largest. Standard Deviation shows how
spread out the errors are around the average, giving an idea of how consistent or
variable the performance is.

6.4.1 Inspection system configuration

The scanning system is composed of a 6 dof UR3e robotic arm equipped with a
triangulation laser profilometer model AT-C5-2040-CS-14-100. The complete con-
figuration of the inspection system, which includes the UR3e robotic arm equipped
with the profilometric sensor can be seen in Figure 6.31. Main parameters of the
sensor are obtained from its datasheet and detailed in Table 6.1.

Table 6.1: Parameters of the profilometric sensor extracted from its datasheet.

Parameters Value
Working Distance 197 mm

Z Range 120 mm
Field of View (X-FOV) 100 mm

Points per Profile 2048 pixels
Z Resolution 3.0 µm
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The simulation environment is configured to closely match the actual hardware
used in real-world tests. This includes modeling the UR3e robot’s 6 degrees of
freedom and replicating the AT-C5-2040-CS-14-100 sensor’s characteristics, ensuring
realistic performance in both environments.

Figure 6.14: Experimental setup: The UR3e robotic arm from Universal Robots,
equipped with an AT sensor.

Once the optimized trajectory is generated, the next step involves executing it
on the real robot. To achieve this, the RoboDK software [112] is used to calculate
the precise movements required for each joint of the robot to reach each pose along
the trajectory. This process ensures that the generated motion instructions are
accurate and tailored to the kinematic capabilities of the UR3e robot. Once the
motion program is generated, it is transferred to the UR3e robot controller, which
is configured to execute these motion commands efficiently and precisely in the real-
world scenario.

6.4.2 Training process

The training process of the RL model for trajectory optimization in robotic inspec-
tion was developed using a detailed simulation environment, the characteristics of
which are explained in [113].
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In this context, a profilometric sensor was simulated with the same specifications
as the Automation Technology model AT-C5-2040-CS-14-100, whose main parame-
ters are detailed in Table 6.1. It is important to note that this setup is designed to
generalize based on input parameters, allowing for adjustments to different working
distance, for example.

The design of the training piece was aimed at representing a wide variety of
conditions that could be encountered in real inspection applications. This piece,
created in 3D modeling software, features changes in orientation, height variations,
and flat surfaces. Its dimensions are 1050x150x50mm, as shown in Figure 6.15.

Figure 6.15: Environment used for the reinforcement learning model training. The
CAD model of the piece used and the start and end poses of the trajectory to be
optimized are shown.

During training, each episode is defined so that it corresponds to a starting point
and an ending point, determined by the scanning direction and the piece’s dimen-
sions, visually represented in the same figure showing the CAD model of the piece
used for training, as illustrated in Figure 6.15.

In the experiments, the action space is continuous, meaning actions are expressed
as values within a continuous range rather than discrete values. Specifically, these
actions are limited within the interval of [-1, 1], where position increments are mea-
sured in millimeters and pitch angles in degrees.

As previously mentioned, the RL algorithm used in this study is Proximal Policy
Optimization (PPO). The results presented here focus on the training outcomes of
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this specific algorithm. Table 6.2 shows the hyperparameters used for PPO. These
parameters were set based on the recommended values from the stable-baselines
library, which provided a solid foundation for optimizing the algorithm. The settings
were carefully chosen to ensure effective performance in the given application.

Table 6.2: Hyperparameters for the PPO algorithm used.

Hyperparameters PPO
Network Architecture [64,64]
Activation Function ReLU

Learning Rate 0.0003
Update Rate 2048 steps
Batch Size 64

Discount Factor (gamma) 0.99
Clip Ratio 0.2
Epoch 10

During the training process of the algorithms, various metrics are employed to
assess their performance and convergence capability. These metrics include the re-
ward per episode, the length of episodes, and the number of episodes required to
reach a certain performance level. The reward per episode is a crucial metric indi-
cating the total amount of reward accumulated by the agent in each training episode.
Generally, a higher reward reflects better performance of the agent in the task.

However, in this specific training context, evaluating solely the accumulated re-
ward per episode might not be the most appropriate approach. This is because the
length of episodes can vary significantly depending on the step size, defined as the
distance between profiles. Therefore, instead of focusing solely on the accumulated
reward, it is preferred to evaluate the globally normalized reward by the length of
the episode. This metric provides a more comprehensive assessment of the agent’s
performance, as it considers both the accuracy of measurements and the efficiency
of the trajectory. By doing so, a more precise insight into the overall effectiveness of
the model in trajectory optimization and inspection quality is obtained, regardless
of the specific length of episodes.

These metrics can be seen in Figure 6.16. Subfigure (a) shows that the mean
episodic reward steadily increases as training goes on, which means the agent is
getting better at its task. In Subfigure (b), the mean episode length changes in
a way that shows how well the agent is learning over time. Subfigure (c) shows
the normalized reward, which rises steadily, indicating the agent’s performance is
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improving. Together, these subfigures show that the RL algorithm starts to stabilize
and converge around episode 500, indicating that the learning process is effective.

(a) (b)

(c)

Figure 6.16: Training metrics PPO algorithm: (a) mean episodic reward, (b) mean
episode length, and (c) normalized reward over the course of training.

In this experiment, the weight for each partial reward was set according to its
significance. Orientation (Rα) and distance (RD) were considered more important,
so their weights were both set to 0.4. The profile separation (R∆s)received a lower
weight of 0.2.

While all parameters are important, deviations in profile separation within ac-
ceptable ranges, predefined for reward generation, are considered less critical. There-
fore, greater emphasis was placed on ensuring proper forward movement and prior-
itizing orientation and distance. Additionally, the penalty is at its maximum if the
movement goes backward or deviates too far from the desired range.
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Figure 6.17: Comparison of overall reward (R) and partial rewards (RD, Rα, R∆s)
during training

In Figure 6.17, the partial and total rewards over time are illustrated. It can be
observed that the reward associated with profile separation tends to be somewhat
lower than the others, which is likely due to the assigned weights. However, the
error remains quite small and within acceptable limits. This balance reflects the
design decision to prioritize critical parameters like orientation and distance while
maintaining an adequate level of accuracy in profile separation.

6.4.3 Car door

The first part used to evaluate the model is a car door of dimensions 1440x1060x190mm.
The initial trajectory, which serves as the basis for the optimization, is shown in fig-
ure 6.18. This figure shows the initial Boustrophedon trajectory, with the inspection
passes marked in red and the movements between passes in white.

The reinforcement learning model is applied to the different passes, dynamically
adjusting the orientation and distance of the profilometric sensor. The model is ap-
plied exclusively to the red passes, where the inspection is performed. The optimized
trajectories are shown in figure 6.19.
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Figure 6.18: Initial Boustrophedon Trajectory for Car Door Scanning. Red lines
represent the inspection passes to be optimized, while the white lines indicate move-
ments between passes.

Figure 6.20 (a) shows the point cloud obtained during scanning using the profilo-
metric sensor. The point cloud is represented by a color map indicating the error in
the measured distance for each point. This error is defined as the difference between
the optimal working distance of the sensor and the actual distance obtained during
the measurement at each point.

For a meaningful comparison, a scan was also performed using a traditional
method. In this case, the boustrophedon trajectory was followed with a fixed config-
uration of height and orientation, without making adjustments during the process.
This approach is commonly used in industrial applications due to its simplicity and
ease of implementation. Figure 6.20 (b) shows the distance error map obtained with
this method.
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(a)

(b)

(c)

Figure 6.19: (a) Resulting trajectories after applying the RL model. (b) Area covered
during the scanning process for one of the trajectories. (c) Detail of the trajectory
shown in (b), highlighting specific orientations.

Table 6.3 presents the distance error metrics for each sub-trajectory using the

182



Chapter 6 Reinforcement Learning-Based Inspection Path Planning

RL-optimized approach. These metrics are calculated with all the points of the
scan, allowing an evaluation of its performance.

(a) (b)

Figure 6.20: Distance error map obtained during the scanning with profilometric
sensor. The colors indicate the difference between the measured distance and the
optimal sensor distance, normalized based on defined distance values. (a) Using
trajectories that adapt to the surface of the piece, calculated by the RL algorithm.
(b) Using straight trajectories defined by a start point and an end point.

The average Mean Absolute Error (MAE) across all sub-trajectories is 2.234 mm.
This is substantially lower compared to the straight trajectory’s average MAE of
37.862 mm, as shown in Table 6.4. Additionally, the Mean Squared Error (MSE) and
Root Mean Squared Error (RMSE) for the RL-optimized trajectories are 12.339 mm²
and 3.296 mm, respectively, demonstrating a clear improvement over the straight
trajectories, which have an MSE of 1936.900 mm² and an RMSE of 42.674 mm.

The maximum error for the RL-optimized sub-trajectories is 15.312 mm, while
the straight trajectory exhibits a much larger maximum error of 71.279 mm. Median
errors for the RL approach are notably smaller, averaging -0.080 mm, in contrast
to the straight trajectory’s median error of 7.850 mm. Furthermore, the standard
deviation of errors is significantly lower for the RL-optimized trajectories, at 3.199
mm, compared to 20.349 mm for the straight trajectories.
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This maximum error for the straight trajectory can exceed the sensor’s measure-
ment range, which has a Z-range of ±60 mm around the optimal distance. Conse-
quently, in real-world applications, such errors could lead to areas falling outside the
scanning zone of the sensor. Although these values are permissible in the simula-
tion, it should be noted that in practical scenarios, the sensor would not be able to
measure such extreme errors effectively.

Table 6.3: Distance Error Metrics for Optimized Scanning Paths Using RL (mm).

Scan MAE MSE RMSE Max Err Median Err Std Err
0 1.551 4.948 2.224 10.086 0.018 2.219
1 2.394 9.785 3.128 11.506 0.149 3.095
2 3.034 21.134 4.597 20.917 0.000 4.587
3 2.996 20.945 4.577 15.344 0.056 4.452
4 2.857 29.419 5.424 27.718 -0.522 5.298
5 1.428 6.327 2.515 12.817 -0.609 2.205
6 2.743 10.906 3.303 19.672 -0.193 3.236
7 1.682 3.936 1.984 11.775 1.008 1.897
8 1.424 3.648 1.910 7.969 -0.627 1.800

Average 2.234 12.339 3.296 15.312 -0.080 3.199

Table 6.4: Distance Error Metrics for Scanning Paths Using straight trajectory (mm)

Scan MAE MSE RMSE Max Err Median Err Std Err
0 33.108 1268.500 35.616 50.946 37.276 14.774
1 37.229 1586.300 39.828 56.918 41.156 16.240
2 40.399 1848.600 42.995 60.428 44.327 16.331
3 37.152 1596.500 39.956 57.732 39.699 16.487
4 45.085 2237.200 47.299 59.994 49.447 16.580
5 55.509 4938.800 70.277 149.460 -44.726 43.100
6 27.359 1000.700 31.634 63.074 -27.475 16.675
7 36.534 1787.500 42.279 70.510 -44.177 22.049
8 28.388 1168.300 34.181 72.445 -24.877 20.902

Average 37.862 1936.900 42.674 71.279 7.850 20.349

To give a clearer picture of the errors, we included error histograms with boxplots,
as shown in Figure 6.21. This helps to understand the error distribution beyond the
average values shown in the tables. The figure compares both types of visualizations
for the two trajectory types.
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The histograms show how the errors are spread out across the different trajec-
tories, while the boxplots highlight the range and outliers of these errors. For the
RL-generated trajectory, most errors are close to zero. On the other hand, the
straight-line trajectory has a wider range of errors, with a higher average error of
37.862 mm, as summarized in the tables.

Figure 6.21: Comparation of the distance error distribution for all car door sections.

In addition to the distance error map, an orientation error map was generated,
which displays angular deviations from the optimal sensor orientation at each point.
This deviation refers to the incidence angle of the sensor on the surface. See Figure
6.22. Figure 6.22(a) shows the angular deviations for the RL-optimized trajectories,
and Figure 6.22(b) depicts the deviations for straight trajectories. The color maps
normalize the differences between the measured and optimal sensor orientations.
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(a) (b)

Figure 6.22: Orientation error map showing angular deviations from the optimal
sensor orientation at each point, normalized based on defined orientation values.
(a) Using trajectories that adapt to the surface of the piece, calculated by the RL
algorithm. (b) Using straight trajectories defined by a start point and an end point.

Orientation error metrics were also assessed. The data presented in Table 6.5
shows that the RL-optimized trajectories have an average Mean Absolute Error
(MAE) of 2.256°, with a Root Mean Squared Error (RMSE) of 4.767°. These metrics
indicate that the RL approach achieves a reasonably consistent performance across
the scanning path, with a maximum error of 82.072° and a median error of 0.636°.

In contrast, Table 6.6 presents the orientation error metrics for the straight tra-
jectories. Here, the average MAE is 13.028°, and the RMSE is 16.337°. While these
values are notably higher compared to the RL-optimized approach, the differences
are significant, indicating that the straight trajectory approach may not be as effec-
tive in minimizing orientation errors.

The maximum errors are reported as 82.072° for the RL trajectory and 89.567° for
the straight trajectory. However, these maximum errors may not be representative
of the overall performance. As shown in the error maps of orientation (Figure 6.22),
these areas of significant error typically occur at edges or detailed features such as
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the door handle or window lines. These maps show red points indicating high error
values in these specific areas. This suggests that while maximum errors provide some
insight, the errors in these specific regions do not fully capture the general accuracy
of the scanning methods.

Table 6.5: Orientation Error Metrics for Optimized Scanning Paths Using RL (º)

Scan MAE MSE RMSE Max Err Median Err Std Err
0 1.043 7.291 2.700 89.764 0.286 2.525
1 1.367 6.414 2.533 79.522 0.398 2.304
2 2.488 31.914 5.649 79.740 0.446 5.271
3 3.058 51.104 7.149 80.511 0.310 6.829
4 2.381 20.466 4.524 89.677 0.335 4.145
5 1.393 20.346 4.511 89.371 0.044 4.325
6 4.229 42.648 6.531 77.251 3.374 5.120
7 2.548 21.144 4.598 68.509 0.447 4.093
8 1.795 22.182 4.710 84.303 0.085 4.475

Average 2.256 24.834 4.767 82.072 0.636 4.343

Table 6.6: Orientation Error Metrics for Straight Scanning Paths (º)

Scan MAE MSE RMSE Max Err Median Err Std Err
0 9.298 165.260 12.855 86.481 -3.516 12.840
1 9.979 186.950 13.673 86.480 -2.667 13.672
2 9.963 183.800 13.557 89.567 -2.256 13.557
3 10.273 210.560 14.511 86.480 -2.910 14.507
4 9.956 216.190 14.704 83.513 4.611 13.525
5 13.221 211.620 14.547 88.446 12.115 6.957
6 19.919 488.530 22.103 72.452 17.528 18.840
7 20.297 468.740 21.650 85.701 17.740 14.011
8 14.350 377.630 19.433 84.934 10.698 14.497

Average 13.028 278.810 16.337 84.895 5.705 13.601

Also, histograms and boxplots are presented in Figure 6.23. Similar to the dis-
tance errors, for the RL-generated trajectory, most orientation errors are clustered
around zero, indicating high precision. In contrast, the straight-line trajectory ex-
hibits a wider spread of errors, with higher variability. Although the mean orienta-
tion error is quite close to zero, the boxplot reveal that the majority of errors for
the straight-line trajectory are distributed over a broader range. Notably, the out-
liers for this method show more pronounced deviations from the typical error range,
highlighting its greater variability. The median error for this method is 13.028°.
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Figure 6.23: Comparation of the orientation error distribution for all car door sec-
tions.

The distance measurements show a significant improvement with the RL-optimized
trajectories compared to the straight trajectories. The RL approach achieves notably
more accurate and consistent distance measurements across the entire scanning area.
This enhanced performance is particularly evident in the error metrics, which high-
light a substantial reduction in average errors and variability.

In terms of orientation, the RL-optimized trajectories perform better in areas
with surface deviations. This suggests that, as expected, the RL approach is more
effective at managing variations in sensor orientation in regions where the surface is
not perfectly flat.

These findings confirm the superior performance of the RL-optimized trajecto-
ries in achieving more precise and consistent distance measurements across all sub-
trajectories of the door. The straight trajectory, while simpler, results in significantly
larger errors and greater variability, underscoring the advantages of using adaptive
trajectories optimized by reinforcement learning for accurate scanning.
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Moreover, in Figure 6.24, a zoomed-in section of a specific area from the global
scan is presented. In this region, a bump-type defect has been intentionally intro-
duced to analyze how the type of trajectory affects defect detection. This area was
chosen because it is small and has a very pronounced orientation. The second row of
Figure 6.24 shows the results of the defect search in the scans, highlighted by a red
rectangle. The third row presents normalized density maps, which offer a detailed
visualization of the distribution of points in the scanning trajectories.

The simple trajectory demonstrated a low point density in the defect region due to
the scanning angle. In contrast, the RL-optimized trajectory achieved a higher point
density at the same scanning speed. This increase in point density facilitates a clearer
visualization of the defect, significantly enhancing its detection and characterization
during the inspection process.

In summary, while the overall orientation error metrics are similar due to the
door’s predominantly flat geometry, the RL-optimized trajectories demonstrate their
strengths by better managing localized challenges, highlighting their potential ben-
efits in more complex scanning environments.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.24: Zoom of a specific area of the scan of the car door. First row: Segment
of the trajectory followed in the area where the defect was inserted. Second row:
Results of defect detection in the scans. Third row: Density maps obtained from the
scan trajectories. (The color scale ranges from [0,1]).
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6.4.4 Pen Holder

This subsection details the results from the pen holder scanning experiments. The
dimensions of the pen holder are 150x75x75mm. In line with previous sections, a
comparison is made between two scanning trajectories: a straight trajectory, moving
from a start point to an end point as shown in Figure 6.25, and a trajectory optimized
by the Reinforcement Learning algorithm, see Figure 6.26.

Figure 6.25: Zenital view of the CAD model of the pen holder and the straight
trajectory planned for scanning.

Figure 6.26: Scanning trajectory generated by the RL algorithm for the pen holder.
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Additionally, results from executing these trajectories are presented for both sim-
ulation and real-world conditions, utilizing the previously defined inspection system.

Simulation

Figure 6.27 illustrates the distance error maps obtained from the profilometric sensor
during the scanning process. These maps reflect the differences between the measured
distances and the optimal sensor distances.

(a)

(b)

Figure 6.27: Distance error map obtained during the scanning with profilometric
sensor. The colors indicate the difference between the measured distance and the
optimal sensor distance, normalized based on defined distance values. (a) Using
trajectory that adapt to the surface of the piece, calculated by the RL algorithm.
(b) Using straight trajectory.
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The first map, corresponding to the RL-optimized trajectory, shows how the
scanning path, adapted by the Reinforcement Learning (RL) algorithm, minimizes
deviations from the optimal distance. This trajectory closely follows the surface con-
tours of the pen holder, resulting in a more accurate representation of distance errors.
The color map highlights the reduced error across the scanning area, indicating that
the RL-optimized path effectively reduces distance discrepancies.

In contrast, the second map depicts the distance errors for the straight trajectory.
Here, the sensor moves along a linear path from start to end points, without adapting
to the surface contours. This approach results in higher distance errors, as evidenced
by the color map, which shows more significant deviations from the optimal values
compared to the RL-optimized trajectory.

Table 6.7 provides a quantitative comparison of the distance errors for both tra-
jectories. The RL-optimized trajectory demonstrates a Mean Absolute Error (MAE)
of 2.438 mm, a Mean Squared Error (MSE) of 11.299mm2, and a Root Mean Squared
Error (RMSE) of 3.361 mm. The maximum observed error is 56.720 mm, with a
median error of 2.835 mm and a standard deviation of 2.315 mm.

Conversely, the straight trajectory results in a higher MAE of 6.5737 mm, an
MSE of 91.605 mm², and an RMSE of 9.5711 mm. The maximum error recorded is
61.15 mm, with a median error of 3.415 mm and a standard deviation of 6.9574 mm.

These results indicate that the straight trajectory is less effective, showing larger
average and maximum errors compared to the RL-optimized approach. Overall,
the data underscores the superior performance of the RL-optimized trajectory in
minimizing distance errors during scanning.

Table 6.7: Comparison of Distance Errors (mm)

Type MAE MSE RMSE Max Err Median Err Std Err
RL 2.438 11.299 3.361 56.720 2.835 2.315

Straight 6.574 91.605 9.571 61.150 3.415 6.957

Figure 6.28 shows the distribution of distance errors for the two different trajec-
tories. The figure indicates that the RL-optimized trajectory has smaller distance
errors compared to the straight-line trajectory. It’s also worth noting that the nega-
tive errors shown correspond to the lateral areas of the pen holder. This is expected
due to the geometry of the object and is clearly visible in the distance map in Figure
6.27. Ultimately, the goal is to optimize the average distance for each profile. Given
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the shape of the pen-holder, it is impossible for all points to have a distance error of
zero.

Figure 6.28: Comparison of the distance error distribution for the pen holder exper-
iment.

Figure 6.29 displays the orientation error maps for the pen holder scanning. These
maps illustrate the angular deviations from the optimal sensor orientation, with each
subfigure representing a different scanning trajectory.
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(a)

(b)

Figure 6.29: Orientation error map showing angular deviations from the optimal
sensor orientation at each point. (a) Using trajectory that adapt to the surface of
the piece, calculated by the RL algorithm. (b) Using straight trajectory.

Subfigure (a) shows the errors for the trajectory optimized by the RL algorithm.
This trajectory adjusts dynamically to the surface of the pen holder, leading to more
accurate sensor orientations with generally lower angular deviations. The color map
indicates relatively small deviations, suggesting that the RL optimization effectively
reduces orientation errors.

In contrast, subfigure (b) depicts the errors for the straight trajectory. This
method follows a linear path from start to finish, resulting in higher angular devia-
tions. The color map for this trajectory shows more significant deviations, reflecting
the less effective alignment of the sensor with the surface contours compared to the
RL-optimized path.
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Table 6.8 highlights a clear contrast between the orientation errors for the two
scanning trajectories. The RL-optimized trajectory demonstrates a significantly
lower MAE of 0.707°, compared to the straight trajectory’s MAE of 11.460°. This
difference indicates that the RL approach achieves much better alignment with the
optimal sensor orientation.

The MSE and RMSE further reflect this disparity. The RL trajectory has an MSE
of 5.634° and an RMSE of 2.374°, whereas the straight trajectory shows an MSE of
187.33° and an RMSE of 13.687°. However, the maximum errors reported—66.075°
for the RL trajectory and 87.304° for the straight trajectory—are seen in areas where
the sensor angle changes sharply. The median errors are much lower: 0.373° for the
RL and 10.942° for the straight trajectory. This shows that the RL method is more
consistent in keeping the sensor well-aligned. The standard deviations also reflect
this, with 2.266° for the RL trajectory and 7.484° for the straight trajectory.

Overall, these comparisons underscore the superior performance of the RL op-
timized trajectory in minimizing both average and peak orientation errors, demon-
strating its effectiveness in achieving more precise sensor orientations during scan-
ning.

Table 6.8: Comparison of Orientation Errors (º): RL and Straight trajectory

Type MAE MSE RMSE Max Err Median Err Std Err
RL 0.707 5.634 2.374 66.075 0.373 2.266

Straight 11.460 187.330 13.687 87.304 10.942 7.4844

Figure 6.30 illustrates the distribution of orientation errors for the two trajectory
types. It is particularly notable that, for the RL-optimized trajectory, most of the
errors are concentrated around zero, whereas the straight-line trajectory shows a
wider spread, ranging from -10 to 20°.

The boxplot reveals some high-value outliers for the RL method, which corre-
spond to the region of the object’s left side with a hole. This is clearly visible in
the map shown in Figure 6.29, where areas of high error, both positive and negative,
are highlighted in blue and red. Despite these outliers, the histogram indicates that
their occurrence is quite rare. Overall, this reinforces the RL-optimized trajectory’s
effectiveness, although certain geometric features of the object can still introduce
isolated errors.
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Figure 6.30: Comparison of the orientation error distribution for the pen holder
experiment.

Real experiment

Here, results provided by executing the RL trajectory in real world are presented. As
previously noted, RoboDK software is employed to compute the exact movements
needed for each joint of the robot to achieve every pose along the trajectory. These
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computed movements are then executed on a UR3e robot, which is equipped with
the sensor mounted at its end effector. The experimental setup is illustrated in the
image 6.31, which displays the sensor and pen holder prepared for scanning:

Figure 6.31: Experimental setup: The UR3e robotic arm from Universal Robots,
equipped with an AT sensor.

In Figure 6.32, the scanning results are presented as 2D images, comparing the
RL and straight trajectories across both real and simulated scenarios. On the X-axis,
the points per profile are plotted, while the Y-axis represents the number of profiles
obtained during the scan. The color gradient in the images indicates the distance
measured relative to the sensor’s optimal working distance.

The number of profiles differs between the RL and straight trajectories because
the straight trajectory scans from a starting point to an endpoint at a constant
speed, which in this case was slower than the RL trajectory. As a result, the straight
trajectory collected fewer profiles compared to the RL trajectory.

In the images, the results from the simulation and the real-world experiments
show a high degree of similarity. This indicates that the simulation effectively repli-
cates the real-world conditions. However, some differences can be observed, which
are likely due to the initial calibration of the piece.
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Figure 6.32: Pen Holder Scan: 2D images of scanning results comparing RL and
straight trajectories in both real and simulated scenarios.

The metrics obtained during the real experiments are shown in Tables 6.9 and
6.10. The comparison between the simulated and real-world distance error metrics
reveals a strong correlation in performance for both RL-generated and straight paths.

Table 6.9: Comparison of Distance Errors for RL Trajectory (mm)

Type MAE MSE RMSE Max Error Median Err Std Err
Real 2.422 9.139 3.023 5.881 1.798 1.809

Simulated 2.438 11.299 3.361 56.720 2.835 2.315
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Table 6.10: Comparison of Distance Errors for Straight Trajectory (mm)

Type MAE MSE RMSE Max Err Median Err Std Err
Real 6.965 100.550 10.027 24.364 3.172 7.215

Simulated 6.574 91.605 9.571 61.150 3.415 6.957

In the real-world tests, the RL path demonstrated a Mean Absolute Error (MAE)
of 2.422 mm, while the simulated results showed an MAE of 2.438 mm. This close
match indicates that the RL model effectively transfers its learned strategies from
simulation to practical applications. The Root Mean Squared Error (RMSE) for the
RL path was 3.023 mm in real-world tests, compared to 3.361 mm in simulation,
further demonstrating consistent accuracy across different environments.

For the straight path, the real-world MAE was 6.965 mm, while the simulated
MAE was 6.574 mm. This comparison highlights a slight variance but still aligns
with the overall trend, where the RL model consistently reduces errors more effec-
tively than the traditional straight-line approach. The consistency in MSE, RMSE,
and Median Error across both real-world and simulated scenarios underscores the
robustness of the RL method in diverse settings.

The alignment between the simulated and real-world results validates the use
of simulation as a reliable proxy for real-world experiments. This consistency con-
firms that the insights and optimizations developed in the simulated environment are
applicable and beneficial in practical scenarios. As a result, the analyses and con-
clusions drawn from the simulations can be confidently extrapolated to real-world
applications, offering valuable guidance for further industrial implementations.

6.4.5 Parrot Drone

The results obtained from the inspection trajectory of the Parrot drone are presented
below. Figure 6.33 shows an image of the drone’s body and its CAD model. The
dimensions of the part are 350x95x65mm.

A scan of one side of the drone body will be performed, focusing on the flat top
surface. Due to its dimensions, the base trajectory used will be a simple straight line
from the beginning of the part to the end, see figure 6.34.
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Figure 6.33: Image of the Parrot AR. 2.0 drone body and its CAD model.

Figure 6.34: Zenital view of the straight path followed during scanning.

Using the trained reinforcement learning (RL) model, the optimized scanning
trajectory for the drone is generated, see figure 6.35. In this trajectory, the sensor
progresses along the path but occasionally moves backward to adjust its orientation.
This backward movement helps to maintain the correct working distance and ensure
consistent measurement accuracy throughout the scanning process.
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Figure 6.35: Scanning trajectory generated by the RL algorithm.

Simulation

Figure 6.36 displays distance error maps for both trajectories. These maps illustrate
how the difference between the measured distance and the optimal distance varies
across the scanned surface. The RL-optimized trajectory results in a more consistent
and less severe distribution of errors compared to the straight trajectory, especially
in areas where the distance to the object changes.

The results in Table 6.11 provide a clear comparison of distance errors between
the RL-optimized and straight trajectories. The RL-optimized trajectory shows a
Mean Absolute Error of 3.222 mm, which is notably lower than the 22.205 mm for
the straight trajectory.

The Root Mean Squared Error also highlights a difference, with the RL trajectory
having a value of 7.488 mm compared to 24.393 mm for the straight trajectory.
This indicates that while both trajectories have some large errors, the RL-optimized
trajectory tends to have fewer large deviations.
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(a)

(b)

Figure 6.36: Distance error map obtained during the scanning with profilometric
sensor. The colors indicate the difference between the measured distance and the
optimal sensor distance, normalized based on defined distance values. (a) Using
trajectory that adapt to the surface of the piece, calculated by the RL algorithm.
(b) Using straight trajectory defined by a start point and an end point.

Both trajectories have similar maximum errors, 39.666 mm for the RL path and
40.490 mm for the straight path. These maximum errors occur in areas where the
distance changes significantly and are less indicative of overall performance. In the
case of the RL trajectory, these maximum errors occur outside the flat top surface
and are less indicative of overall performance. The error map shows that the areas
with the highest errors, highlighted in blue, are located at the transition between the
flat surface and other curved sections of the drone. This suggests that the significant
errors are associated with the curvature changes rather than the flat scanning area
itself.

The Median Error is much lower for the RL trajectory at 0.325 mm, compared
to 17.426 mm for the straight trajectory, showing that the RL method tends to
be closer to the optimal distance in most measurements. Additionally, the Standard
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Deviation for the RL trajectory is 7.005 mm, less than the 10.248 mm for the straight
trajectory, reflecting a more consistent performance.

Table 6.11: Comparison of Distance Errors (mm)

Type MAE MSE RMSE Max Err Median Err Std Err
RL 3.222 56.069 7.488 39.666 0.325 7.005

Straight 22.205 595.030 24.393 40.490 17.416 10.248

Figure 6.37 compares the two trajectory types using histograms and boxplots of
distance errors for all scanning points. For the RL-optimized trajectory, most errors
are clustered around very low values, close to zero. The boxplot also shows some
outlier points with higher errors, which, as indicated in the error map of Figure 6.36,
are located in the upper part of the drone. This area has a noticeable curvature and
deviates from the inspection plane, which leads to these higher errors. As mentioned
earlier, these errors are due to the geometry of the piece. Given the shape of the
pen-holder, it’s expected that not all points will have a distance error of zero.

Figure 6.37: Comparison of the distance error distribution for the drone experiment.
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In contrast, the straight-line trajectory shows higher errors and more variation.
This broader range of errors and greater variability emphasize the RL-optimized
trajectory’s better accuracy and consistency in reducing distance errors.

The comparison of orientation error metrics between the RL-optimized and straight
trajectories shows that both methods yield comparable results. As illustrated in Fig-
ure 6.38 and in Table 6.12, the orientation errors are more uniformly distributed with
the RL-optimized trajectory, with fewer extreme values. This is evident from the
standard deviation metric, which suggests that the errors are more consistent across
the scanning path.

(a)

(b)

Figure 6.38: Orientation error map showing angular deviations from the optimal
sensor orientation at each point. (a) Using trajectory that adapt to the surface of
the piece, calculated by the RL algorithm. (b) Using straight trajectory defined by
a start point and an end point. Two problematic areas marked by squares blue and
orange.

In particular, the RL-optimized trajectory demonstrates a significant reduction
in errors in specific problematic areas, as highlighted in Figure 6.38(b). Notably,
in region 1, marked by the blue area on the left, the RL approach reduces errors
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Table 6.12: Comparison of Orientation Errors (Degrees)

Type MAE MSE RMSE Max Err Median Err Std Err
RL 7.269 88.751 9.421 63.401 4.881 5.993

Straight 8.977 194.710 13.954 73.328 2.283 10.688

from -20° to -8°. In region 2, represented by the orange area on the right, errors are
reduced from 27° to 4°. Although the overall error metrics are comparable, the RL
trajectory shows clear improvements in minimizing and standardizing errors in these
critical regions.

The histograms and boxplots presented in Figure 6.39 support this observation.
In the histogram for the straight-line trajectory, two prominent peaks are evident at
the extremes: one at around -20° and another at approximately 27°, which correspond
to the problematic areas previously discussed. The remaining errors are concentrated
around lower values, with a median error of 8.977°.

Figure 6.39: Comparison of the orientation error distribution for the drone experi-
ment.

In contrast, the histogram for the RL-optimized trajectory shows a noticeable re-
duction in these peaks, resulting in a smoother error distribution curve. This reflects
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a significant improvement, with the median error for the RL trajectory reduced to
7.269°. This smoother distribution and lower median highlight the RL approach’s
effectiveness in minimizing orientation errors, particularly in the previously prob-
lematic regions.

Real experiment

Here, the results from executing the RL trajectory in real-world drone scanning are
presented. Figure 6.40 shows a comparison of scanning results between the RL and
straight trajectories in both real and simulated scenarios. The X-axis displays the
points per profile, while the Y-axis represents the number of profiles collected during
the scan. The color gradient in the images reflects the distance measured relative to
the sensor’s optimal working distance.

The images reveal a significant similarity between the results from the simula-
tion and the real-world experiments. This suggests that the simulation accurately
replicates the real-world conditions.

The metrics obtained during the real experiments are shown in Tables 6.13 and
6.14 The comparison between the simulated and real-world distance error metrics
reveals a strong correlation in performance for both RL-generated and straight paths.

Table 6.13: Distance Error Metrics for Real Drone Experiments (RL Trajectory)
(mm)

Type MAE MSE RMSE Max Err Median Err Std Err
Real 3.298 14.795 3.847 15.079 3.445 1.979

Simulated 3.222 56.069 7.488 39.666 0.325 7.005

Table 6.14: Distance Error Metrics for Real Drone Experiments (Straight Trajectory)
(mm)

Type MAE MSE RMSE Max Err Median Err Std Err
Real 21.570 590.660 24.303 36.574 18.643 11.202

Simulated 22.205 595.030 24.393 40.490 17.416 10.248
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Figure 6.40: Parrot Drone Scan: 2D images of scanning results comparing RL and
straight trajectories in both real and simulated scenarios.

The comparison between the real and simulated distance error metrics for the
RL trajectory reveals that both sets of results are quite similar. For the RL trajec-
tory, the real-world metrics show an MAE of 3.298 mm, an MSE of 14.795, and an
RMSE of 3.847 mm, while the simulated metrics are slightly higher with an MAE
of 3.222 mm, an MSE of 56.069, and an RMSE of 7.488 mm. Despite these differ-
ences, the closeness of these values suggests that the RL model performs consistently
across both simulated and real-world scenarios, validating the simulation as a reliable
predictor of real-world performance.

Similarly, for the straight trajectory, the real-world results indicate an MAE of
21.570 mm, an MSE of 590.660, and an RMSE of 24.303 mm, compared to the simu-
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lated results which show an MAE of 22.205 mm, an MSE of 595.030, and an RMSE
of 24.393 mm. The minimal variations between the real and simulated results for
the straight trajectory further confirm that the simulation environment closely ap-
proximates real-world conditions. These findings demonstrate that the insights and
optimizations derived from simulations are applicable in practical scenarios, reinforc-
ing the reliability of the simulation model for evaluating and predicting performance
in real-world applications.

6.5 Discussion

This chapter presents a method to generate inspection trajectories for laser profilo-
metric sensors using Reinforcement Learning (RL) techniques. The objective was to
improve the scanning process by dynamically adjusting the position and orientation
of the sensor to maintain an optimal pose with respect to the surface of the inspected
part.

A simulated environment that reproduces real-world conditions was used, as de-
veloped in previous work. The state space was defined by the position and orien-
tation of the sensor (usually the robot end-effector), which allowed generalization
and adaptability to various robotic configurations. Additional parameters, such as
mean profile distance, steering angle, and spacing between consecutive scans, were
incorporated to provide a global understanding of the inspection process.

The action space was designed to include relative increments in both sensor po-
sition and tilt angle, allowing for precise adjustments and smooth movements. The
reward function was constructed with three key components: the distance between
the sensor and the surface, the alignment with the surface normal, and the spacing
between scans.

Experiments conducted in the simulated environment validated the ability of the
RL model to adapt to various parts and maintain optimal scan trajectories, even
those that had not been encountered during training. The method was also tested
with a UR3e robotic arm in a real scenario, where an optimized trajectory, gener-
ated offline from a CAD model, was successfully executed. This demonstrated that
the method can produce accurate, high-quality inspection trajectories that ensure
effective surface coverage.

In the real-world validation tests of the scanning trajectories, we used smaller
pieces that required only a single linear scanning path, eliminating the need for a
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boustrophedon pattern. This choice was dictated by the physical limitations of the
UR3e robotic arm, which has a relatively restricted reach. Given the limited range of
the UR3e, it was not feasible to scan larger surfaces that would necessitate multiple
passes. Consequently, we opted for a smaller and more suitable piece that allowed
for effective validation within the operational capabilities of the available equipment.
This decision ensures that, although the UR3e cannot cover extensive surfaces, the
methodology and trajectory optimization principles we developed are applicable and
verifiable in a controlled and representative environment.

Despite their smaller size, the real pieces chosen for the tests have sufficient geo-
metric diversity to validate our proposed methodology. Their varied surface features
ensured that the trajectory optimization and scanning techniques could be robustly
tested. If we were to work with a larger piece, a boustrophedon scanning pattern
would simply be employed. In such cases, our reinforcement learning model would
be applied to each pass within the boustrophedon path, just as it was used in the
simulated experiment with the car door. This approach ensures that our methods
are versatile and can be adapted to both small and large-scale scanning tasks.

The scanning trajectories generated by our approach are designed to be highly
versatile and adaptable to any robotic system with sufficient reach. This versatility
arises from the fact that the trajectory increments in both position and orientation
are small and precise enough to be executed by any industrial robot. When these
incremental commands are input into the robot’s control software, it calculates the
necessary joint movements to achieve the specified end-effector positions.

The dynamic limitation of actions allows for adaptation to different types of
applications. For example, in our experiments, backward movement was permitted,
but depending on the type of robotic system or the specific part being inspected, this
might not always be possible. This flexibility is useful for adjusting the approach to
fit various inspection scenarios.

In our experiments, we used the same RL model, originally trained on a generic
part, to plan the scanning trajectories. However, this approach can be further re-
fined. The RL model could be retrained with a part that has characteristics more
closely aligned with the specific piece being inspected, allowing for more adaptable
and precise trajectory planning. By tailoring the model to the particular features of
different parts, the system could achieve improved accuracy and efficiency in inspec-
tion tasks, making it more versatile across a range of applications.

It is important to note that when inspecting large parts, such as a car door, there
is a significant risk of moving outside the sensor’s working range. This challenge is
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particularly relevant in industries like automotive manufacturing, where large com-
ponents such as car doors, hoods, and other body panels are routinely scanned. This
issue is addressed by adapting the scanning process to the specific geometry of each
part, as demonstrated in experiments involving the scanning of a car door.

The advantage of the RL method lies in its ability to adapt the scanning path
to complex geometries, which helps to manage errors more effectively and ensures
accurate and reliable inspection outcomes. In contrast, traditional scanning methods
are heavily reliant on the initial positioning and alignment of the part. If the part
is not perfectly aligned or has significant depth variations, traditional approaches
may struggle to compensate, leading to an accumulation of errors throughout the
process. Additionally, scanning areas that deviate significantly from the horizontal
plane can present challenges for these methods. By dynamically adjusting to the
actual shape of the part, the RL method minimizes these errors, providing a more
robust and accurate inspection.

Figure 6.24 highlights the importance of focusing on areas with pronounced cur-
vature, where defects such as cracks commonly occur. A zoomed-in section of the
global scan shows a bump-type defect introduced in such a high-curvature region.
The RL-optimized trajectory achieved not only a higher point density but also im-
proved sensor orientation and distance in these critical areas compared to the simple
trajectory. This enhancement in both point density and sensor positioning improves
defect visualization and detection, demonstrating the RL-based approach’s effective-
ness in identifying issues in defect-prone regions.

One limitation when transitioning from simulation to reality is the need for accu-
rate initial alignment of the part. For effective scanning, the part must be positioned
similarly to how it was in the simulation to ensure consistent results. Although this
calibration step can introduce some variability, it is generally manageable. In pro-
duction environments, part positions are often calibrated relative to the sensors and
placed in consistent starting positions. This calibration requirement aligns with stan-
dard industry practices and does not significantly impact the overall feasibility of the
proposed methodology.
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Conclusions and Future Work

In this final chapter, we present the conclusions of the research conducted in this
doctoral thesis and outline potential future work. Additionally, the contributions
and key publications resulting from the research carried out during the period of
this thesis will also be detailed.

7.1 Discussion and Final Conclusions

This thesis responds to the challenges of industrial inspection using profilometric
sensors by introducing a comprehensive framework that addresses critical aspects
of surface defect detection and inspection trajectory optimization. Central to this
framework is an advanced inspection simulator that accurately simulates scans on
CAD models, taking into account sensor parameters and incorporating realistic noise
simulations such as speckle.

In addition to simulating scans, our approach involves directly deforming CAD
models to replicate defects such as bumps, peaks, and cracks. This methodology
enables the creation of diverse and realistic 3D scan databases essential for training
and validating advanced detection algorithms.

Moreover, our framework enhances precision by optimizing scanning trajectories
through Reinforcement Learning. By dynamically adjusting sensor positions and
orientations during scanning, we minimize relative positioning errors and ensure
efficient coverage of inspected surfaces.
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By integrating detailed scan simulation, realistic defect modeling, and trajectory
optimization, our research bridges significant gaps in the literature. This unified
approach aims to streamline development processes, reduce costs, and enhance the
accuracy and efficiency of industrial inspection systems. Such advancements are cru-
cial for bolstering competitiveness in the context of Industry 4.0, where digitalization
and automation are pivotal in improving production processes and meeting stringent
quality standards.

Recognizing the intrinsic limitations of our approach is vital, especially where
the precision and quality of simulated defects are closely linked to the quality of the
3D model utilized. In our study, we use STL models, which are prevalent in the
manufacturing sector. However, STL models consist of triangular meshes, and the
size and number of these triangles are critical during defect integration.

Simulating measurements from CAD models using profilometric sensors presents
a challenge: the sensor’s resolution often exceeds that of the triangular mesh. Con-
sequently, simulated measurements generate profiles composed of small straight seg-
ments corresponding to each triangle face in the mesh. While suitable for rough 3D
reconstructions, this method proves inadequate for simulating sensors that operate
at resolutions in the range of a few micrometers.

Moreover, this challenge extends to defect simulation. Although we implement
a process to subdivide and refine these triangles within defect zones, excessively
large original triangles relative to the defect size may compromise the detailed rep-
resentation of the product’s geometry. Therefore, careful consideration of the 3D
model’s quality is essential to ensure precise defect simulation during synthetic data
generation.

To overcome this challenge and ensure realistic scan simulations, we introduce
sensor measurement noise and speckle using a combination of Gaussian and Perlin
noise. This mitigates the limitations posed by low-resolution 3D models and ensures
a more authentic representation of surface characteristics. Our results demonstrate
that the simulated noise closely resembles real-world sensor noise, further enhancing
the fidelity of our simulations.

This high fidelity in simulation plays a crucial role in the development of AI mod-
els designed to operate effectively in real-world scenarios. By accurately simulating
both defects and scan noise, our approach ensures that the generated data not only
enhances the training of inspection algorithms but also extends its utility to other
related tasks. These synthetic datasets can be utilized for tasks such as algorithm
validation, sensitivity analysis, and optimization of inspection parameters, thereby
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contributing to the broader advancement of automated quality control systems in
manufacturing and beyond. This comprehensive approach addresses the challenge
of realism in 3D datasets, originally highlighted in [23] and discussed in the Intro-
duction, reinforcing the robustness and applicability of our generated data across
various practical inspection applications.

Moreover, the tool’s capability to produce labeled data stands out as a notable
advantage. As emphasized earlier in the introduction, the data labeling process is
known to be costly and labor-intensive. However, by automating the labeling process,
this approach simplifies this aspect, saving time and resources while facilitating the
development of more efficient defect detection algorithms and dataset generation.

Training a machine learning model with synthetic data instead of real data offers
significant advantages, particularly in industrial contexts where obtaining real data
can be costly and impractical. Firstly, generating synthetic data is much faster and
cheaper compared to collecting real data, which requires constant facility operation
and incurs high operational costs. For instance, while collecting real data for rare
defects in an industrial setting may take a year, artificial defects can be generated
within weeks. Secondly, synthetic data allows for simulating a wide variety of sce-
narios and rare defects, ensuring that the model is well-trained to recognize even
the most unusual anomalies, something that may not be feasible with real data due
to its scarcity. Additionally, using synthetic data avoids issues related to data pri-
vacy and security, which can be a concern in industries with strict regulations. In
summary, synthetic data provides a more flexible and controllable path for model
training, resulting in faster and less expensive development cycles.

This thesis presents a method for generating inspection trajectories for laser pro-
filometric sensors using Reinforcement Learning (RL) techniques. The goal was to
enhance the scanning process by adjusting the sensor’s position and orientation to
keep it optimally aligned with the surface of the inspected part. The approach was
tested in a simulated environment designed to reflect real-world conditions, which
helped in adapting the model to various robotic setups and part geometries. Key
parameters like mean profile distance, incidence angle, and scan spacing were incor-
porated to offer a thorough understanding of the inspection process.

The RL model was validated through both simulations and practical tests using
a ur3e robotic arm. In both cases, the results were positive, demonstrating that the
RL-optimized trajectories effectively improved the scanning process. Additionally,
the method’s design, which operates in increments of sensor position and orientation
(typically the robot’s end-effector), allows for generalization across various types of
robots. This adaptability makes the approach versatile and applicable to different
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robotic systems.

One of the main benefits of the RL-based approach is its flexibility in handling
different scanning scenarios. For instance, the method performed well in areas with
high curvature, where defects are more likely to appear. The RL trajectory achieved
better point density and sensor positioning compared to a straightforward scanning
path, improving defect detection in these critical areas.

A practical consideration when applying the method in real-world settings is the
need for accurate initial alignment of the part. While this calibration step can in-
troduce some variability, it is a common practice in industry where parts are often
calibrated relative to sensors. Overall, the RL-based method has shown to be adapt-
able and effective, making it a viable option for improving inspection processes in
various scenarios.

In conclusion, this thesis presents a comprehensive framework for enhancing in-
dustrial inspection processes. By integrating advanced simulation techniques, real-
istic defect modeling, and trajectory optimization through RL, this work addresses
key challenges in defect detection and inspection efficiency. The developed method-
ologies and tools not only improve scanning precision but also offer valuable insights
into adapting inspection processes for various industrial applications.

During the thesis, the company CIN Advanced Systems [114] provided valuable
data for experiments, highlighting the practical relevance of the research. CIN Ad-
vanced Systems specializes in artificial vision solutions for defect detection in pro-
duction lines. Their machine vision systems typically combine advanced 3D laser
sensors, 2D cameras, and robotic systems to move these sensors across a range of
components, including stamped, machined, and cast parts, as well as complex tex-
tured surfaces.

The tools and methodologies developed in this thesis have the potential for real-
world industrial applications in companies like CIN Systems. By integrating these
advanced inspection systems, such companies could enhance their capabilities for
inline defect detection, especially in complex applications.

CIN Systems currently rely heavily on applying machine learning techniques to
high-resolution scans obtained from laser triangulation sensors to detect defects in
production lines. This approach necessitates large, labeled datasets, which is where
the contributions of this thesis become particularly valuable. The combination of a
laser triangulation sensor simulator that integrates the Speckle effect with a method
for generating surface defects in 3D models offers a powerful solution. By using
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these tools together, companies can generate extensive labeled datasets that are
crucial for training and refining their machine learning models. This capability not
only enhances the accuracy and reliability of defect detection but also addresses the
significant challenge of sourcing large, high-quality datasets.

Moreover, trajectory planning is often done manually, a process that can be time-
consuming and less efficient. The Reinforcement Learning-based trajectory planning
method developed in this thesis presents a significant improvement, enabling the
automatic design of optimal scanning paths. This method ensures comprehensive
and efficient coverage of complex surfaces, reduces inspection time, and ultimately
increases the effectiveness of inspection processes.

By adopting these advanced tools, companies like CIN Systems could simplify
their development processes, improve the accuracy of defect detection, and make
their inspection systems more efficient in practical industrial applications.

7.2 Thesis Contributions

The main contributions of this thesis can be summarized as follows:

1. Development of a simulator that integrates the Speckle effect: A
laser triangulation sensor simulator has been developed that incorporates the
Perlin noise technique to include the Speckle effect in simulations. This simula-
tor provides a useful tool for designing and evaluating real-world applications,
allowing the testing of data processing and analysis algorithms before imple-
menting them in physical systems. This can lead to more effective solutions
and savings in development time and costs.

2. Simulation of surface defects in 3D models: A method for generating
surface defects in 3D models using FFD is presented. It is important to note
that defects can be inserted in any region of the model and with any orien-
tation, including problematic areas with abrupt changes in geometry. The
proposed technique for defect insertion involves modeling them as height maps
originating from a plane, defining their size and shape.

Additionally, three common types of defects are parameterized as default op-
tions: bumps, peaks, and cracks, with the flexibility to modify their dimensions,
allowing the incorporation of a wide range of small and large deformations typ-
ically found during the manufacturing process of various products.
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The ability to generate surface defects in 3D models can be employed in dif-
ferent applications: validating different algorithms, training defect detection
models, optimizing inspection systems to reduce costs and time, or providing
flexibility in controlling defect characteristics.

3. Generation of labeled surface defect databases: Labeled defect databases
have been generated containing high-resolution simulated scans with 3D infor-
mation of surface defects. These databases are fundamental for the training
and evaluation of defect detection algorithms, as they provide a realistic and
diversified dataset that represents a wide range of possible defects in manufac-
tured products, addressing the problem of the scarcity of databases with these
characteristics.

4. Inspection trajectory planning using Reinforcement Learning: In-
spection trajectory planning using Reinforcement Learning allows the design
of optimal strategies to guide the sensor movement along the surface of the
part to be inspected. Using machine learning techniques, the system can au-
tonomously learn the best actions to take at each point on the surface to max-
imize scanning efficiency. This ensures complete and uniform coverage of the
entire surface of the part, even in hard-to-reach areas or with complex geome-
tries, thus optimizing the inspection process and reducing the time required to
complete the task.

5. The development offers an integral solution by bringing together multiple func-
tionalities in a single framework. It allows simulating precise scans, generating
surface defects, and planning inspection trajectories, all from the product’s
CAD model. This integration significantly simplifies the design and evaluation
process of automated inspection systems, eliminating the need to use multi-
ple scattered tools. Furthermore, having everything in the same environment
facilitates collaboration between different teams and rapid iteration in the de-
velopment of defect detection algorithms.

Furthermore, during the course of this thesis, two practical studies were con-
ducted in real-world environments, utilizing different robotic systems for the inspec-
tion of various products. Although these studies are not the primary contributions
of the thesis, they provide valuable insights into the application of inspection tech-
nologies in industrial settings:

Use of Mobile Robots for Heavy Steel Plates Inspection: A series of
algorithms were developed to enable the inspection and repair of defects in heavy
steel plates. Key efforts focused on robot localization in confined environments,

217



Chapter 7 Conclusions

inspection and repair trajectory planning, and reconstructing the inspected sheet to
facilitate defect detection.

The inspection process employed RGB-D cameras for 2D surface reconstruction
of the metal sheets, capturing detailed surface features and defects. However, this
methodology is designed to be flexible and adaptable, allowing for the incorporation
of other sensing technologies, such as laser sensors or profilometers. These alterna-
tive sensors could enhance the precision of surface measurements or provide specific
advantages depending on the application.

For instance, integrating a laser sensor or profilometer could improve the accuracy
of surface contour and texture data, enabling more precise defect detection. More-
over, the inspection trajectories can be tailored to meet the specific requirements
of the chosen sensing tool, optimizing the process based on the sensor’s characteris-
tics and the surface being inspected. This adaptability ensures that the inspection
process can be customized to achieve optimal results across various scenarios.

This work was published in [115] and [116].

Use of Drones for Pipeline Inspection: During a 3-month research stay at
the University of Napoli Federico II, a vision-based system was developed for the
surface inspection of industrial pipelines using drones. The system was validated
through both simulations and real-world experiments, demonstrating its capability
to accurately follow the central axis of industrial pipelines and detect surface defects.

While the current system utilizes depth sensors for defect detection, future itera-
tions could integrate more advanced sensors to detect a broader range of defects. For
example, incorporating the laser triangulation sensors discussed in this thesis could
significantly enhance the system’s ability to detect smaller defects with greater ac-
curacy. These sensors would provide detailed measurements of surface irregularities
and anomalies, complementing the existing vision-based approach.

This work was published in [117].

7.3 Future work

The work developed during the present investigation suggests new lines of research
and future work:
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In terms of defect simulation, research in developing more advanced mathematical
models to simulate a broader variety of defects represents a key opportunity to
improve the quality and diversity of databases used in defect detection. These more
sophisticated models could enable the simulation of complex and realistic defects
found in a wide range of manufactured products, from electronic components to
metal structures.

By increasing the diversity and complexity of the databases, more robust and
generalizable defect detection models could be trained, significantly enhancing their
ability to identify defects across different industrial scenarios. Moreover, the ability
to simulate a wider variety of defects would pave the way for combining real and sim-
ulated data in the training of artificial intelligence algorithms. This would improve
the algorithms’ ability to generalize and adapt to new conditions and situations,
resulting in more effective and versatile defect detection systems.

Additionally, the development of more advanced mathematical models could facil-
itate the research and development of new defect detection techniques. For instance,
by precisely simulating specific defects, more specialized and effective detection ap-
proaches for those particular types of defects could be explored. This could lead
to significant advancements in the efficiency and accuracy of automated inspection
systems across a wide variety of industrial applications.

Exploring trajectory generation using reinforcement learning offers a promising
direction for improving automated inspection systems. Future research could focus
on developing more advanced algorithms that integrate additional information to
guide the sensor’s movement with greater precision and efficiency. For example,
deep learning techniques could be utilized to identify complex patterns in the data,
enhancing real-time trajectory planning. Incorporating more global rewards that
assess the system’s overall performance in terms of surface coverage, defect detection,
and scanning efficiency could also be beneficial.

Additionally, increasing the dimensionality of the system could allow for the
inspection of larger and more complex parts. This might involve expanding the
degrees of freedom for sensor movement and adapting trajectory planning techniques
to manage data across multiple dimensions. Exploring alternative trajectory types,
such as spirals or zigzags, could offer more efficient scanning strategies in certain
contexts.

A more detailed investigation into reward design could help improve trajectory
optimization. By exploring how different reward structures influence the system’s
performance, it might be possible to enhance how effectively the reinforcement learn-
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ing guides the sensor. Experimenting with various reward functions could help bal-
ance factors like surface coverage and defect detection accuracy. Additionally, trying
out different reinforcement learning algorithms, such as policy gradient methods or
actor-critic models, could offer insights into which techniques work best for specific
inspection scenarios.
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Conclusiones y trabajo futuro

En este caṕıtulo final, presentamos las conclusiones de la investigación realizada en
esta tesis doctoral y plantemoas posibles ĺıneas de trabajo futuro. Además, se detal-
larán las contribuciones y publicaciones clave derivadas de la investigación llevada a
cabo durante el periodo de esta tesis.

8.1 Discusion y Conclusiones Finales

Esta tesis aborda los desaf́ıos de la inspección industrial mediante sensores pro-
filométricos a través del desarrollo de un *framework* que trata aspectos clave en la
detección de defectos en superficies y la optimización de trayectorias de inspección.
En el centro de este framework se encuentra un simulador avanzado que permite re-
producir de forma precisa escaneos sobre modelos CAD, considerando los parámetros
del sensor e incorporando simulaciones realistas de ruido, como el speckle.

El enfoque planteado también incluye la deformación directa de modelos CAD
para imitar defectos como abolladuras, picos y grietas, lo que posibilita la generación
de bases de datos de escaneos 3D variadas y realistas, esenciales para el entrenamiento
y validación de algoritmos avanzados de detección.

Además, se ha propuesto una metodoloǵıa para optimizar las trayectorias de
escaneo mediante el uso de Aprendizaje por Refuerzo. Esta técnica ajusta de forma
dinámica las posiciones y orientaciones del sensor durante el proceso de escaneo,
con el objetivo de minimizar los errores de posicionamiento relativo y asegurar una
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cobertura eficiente de las superficies inspeccionadas.

La integración de simulaciones detalladas de escaneo, modelado realista de de-
fectos y optimización de trayectorias permite reducir las brechas existentes en la
literatura cient́ıfica. Este enfoque tiene como objetivo agilizar los procesos de desar-
rollo, reducir costes y mejorar la precisión y eficiencia de los sistemas de inspección
industrial, contribuyendo aśı a la competitividad en el contexto de la Industria 4.0,
donde la digitalización y automatización juegan un papel esencial en la mejora de
los procesos de producción y en el cumplimiento de los estándares de calidad.

Es fundamental reconocer las limitaciones intŕınsecas de este enfoque, especial-
mente cuando la precisión y calidad de los defectos simulados dependen en gran
medida de la calidad del modelo 3D utilizado. En este estudio se emplean modelos
STL, que son comunes en el sector manufacturero. Sin embargo, los modelos STL
se componen de mallas triangulares, y el tamaño y número de estos triángulos son
factores cŕıticos durante la integración de defectos.

Simular mediciones a partir de modelos CAD utilizando sensores profilométricos
presenta un desaf́ıo, ya que la resolución del sensor suele superar la de la malla
triangular. Como resultado, las mediciones simuladas generan perfiles compuestos
por pequeños segmentos rectos correspondientes a las caras de los triángulos en la
malla. Aunque este método es adecuado para reconstrucciones 3D aproximadas,
resulta insuficiente para simular sensores que operan con resoluciones de unos pocos
micrómetros.

Este problema también afecta a la simulación de defectos. Aunque se implementa
un proceso para subdividir y refinar los triángulos en las zonas defectuosas, si los
triángulos originales son excesivamente grandes en relación con el tamaño del defecto,
se puede comprometer la representación detallada de la geometŕıa del producto. Por
ello, es necesario considerar con cuidado la calidad del modelo 3D para asegurar una
simulación precisa de defectos durante la generación de datos sintéticos.

Para mitigar esta limitación y garantizar simulaciones de escaneo realistas, se
introduce ruido de medición del sensor y speckle mediante una combinación de ruido
gaussiano y de Perlin. Esto ayuda a compensar las deficiencias de los modelos 3D
de baja resolución y permite una representación más fiel de las caracteŕısticas de la
superficie. Los resultados obtenidos muestran que el ruido simulado se asemeja al
ruido real de los sensores, mejorando aśı la fidelidad de las simulaciones.

La alta fidelidad en la simulación desempeña un papel clave en el desarrollo de
modelos de inteligencia artificial diseñados para funcionar eficazmente en escenarios
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del mundo real. Al simular con precisión tanto los defectos como el ruido de los
escaneos, se garantiza que los datos generados no solo mejoren el entrenamiento de
los algoritmos de inspección, sino que también sean útiles para otras tareas rela-
cionadas. Estos conjuntos de datos sintéticos pueden emplearse en la validación de
algoritmos o al análisis de sensibilidad y optimización de parámetros de inspección,
contribuyendo aśı al avance de los sistemas de control de calidad automatizados en
el ámbito industrial y más allá. Este enfoque integral aborda el desaf́ıo del realismo
en los conjuntos de datos 3D, señalado originalmente en [23] y mencionado en la
introducción, reforzando la solidez y aplicabilidad de los datos generados en diversas
aplicaciones de inspección.

Además, la capacidad de la herramienta para producir datos etiquetados se
destaca como una ventaja notable. Como se mencionó anteriormente en la intro-
ducción, el proceso de etiquetado de datos es conocido por ser costoso y laborioso.
Sin embargo, al automatizar este proceso, se simplifica esta tarea, ahorrando tiempo
y recursos, y facilitando el desarrollo de algoritmos más eficientes para la detección
de defectos y la generación de bases de datos.

El uso de datos sintéticos para entrenar un modelo de aprendizaje automático
tiene grandes ventajas, especialmente en entornos industriales donde conseguir datos
reales puede ser caro y complicado. Primero, generar datos sintéticos es mucho más
rápido y barato que recoger datos reales, lo que suele implicar mantener las insta-
laciones en funcionamiento y asumir altos costes operativos. Por ejemplo, mientras
que recopilar datos reales sobre defectos poco comunes en un entorno industrial
podŕıa llevar un año, los defectos artificiales pueden generarse en solo unas semanas.
Además, los datos sintéticos permiten simular una gran variedad de escenarios y
defectos raros, garantizando que el modelo esté bien entrenado para detectar incluso
las anomaĺıas más inusuales, algo que no siempre es posible con datos reales debido
a su escasez. También, el uso de datos sintéticos evita problemas de privacidad y
seguridad, que son importantes en industrias con normativas estrictas. En resumen,
los datos sintéticos ofrecen una forma más flexible y controlada de entrenar modelos,
lo que acelera y abarata los ciclos de desarrollo.

Esta tesis presenta un método para generar trayectorias de inspección para sen-
sores laser profilométricos utilizando técnicas de Aprendizaje por Refuerzo (RL).
El objetivo fue mejorar el proceso de escaneo ajustando la posición y orientación
del sensor para mantenerlo alineado de manera óptima con la superficie de la pieza
inspeccionada. El enfoque se probó en un entorno simulado que reflejaba condi-
ciones del mundo real, lo que ayudó a adaptar el modelo a diferentes configuraciones
robóticas y geometŕıas de piezas. Se incorporaron parámetros clave como la distancia
media del perfil, el ángulo de incidencia y el espaciado de los escaneos para ofrecer
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una comprensión detallada del proceso de inspección.

El modelo de RL fue validado tanto en simulaciones como en pruebas prácticas
utilizando un brazo robótico ur3e. En ambos casos, los resultados fueron positivos,
demostrando que las trayectorias optimizadas con RL mejoraron el proceso de es-
caneo. Además, el diseño del método, que opera en incrementos de posición y ori-
entación del sensor (generalmente el efector final del robot), permite su generalización
a distintos tipos de robots. Esta adaptabilidad hace que el enfoque sea versátil y
aplicable a diferentes sistemas robóticos.

Uno de los principales beneficios del enfoque basado en RL es su flexibilidad
para manejar distintos escenarios de escaneo. Por ejemplo, el método mostró un
buen rendimiento en áreas con alta curvatura, donde es más probable que aparezcan
defectos. La trayectoria optimizada por RL logró una mayor densidad de puntos y
un mejor posicionamiento del sensor en comparación con una ruta de escaneo simple,
mejorando la detección de defectos en estas áreas cŕıticas.

Un aspecto práctico a considerar al aplicar este método en entornos reales es la
necesidad de una alineación inicial precisa de la pieza. Aunque este paso de cali-
bración puede introducir cierta variabilidad, es una práctica común en la industria,
donde las piezas a menudo se calibran en relación con los sensores. En general, el
método basado en RL ha demostrado ser adaptable y eficaz, lo que lo convierte en
una opción viable para mejorar los procesos de inspección en diversas situaciones.

En conclusión, esta tesis presenta un *framework* integral para mejorar los pro-
cesos de inspección industrial. Al integrar técnicas avanzadas de simulación, mod-
elado realista de defectos y optimización de trayectorias mediante Aprendizaje por
Refuerzo (RL), este trabajo aborda desaf́ıos clave en la detección de defectos y la
eficiencia de la inspección. Las metodoloǵıas y herramientas desarrolladas no solo
mejoran la precisión del escaneo, sino que también ofrecen información valiosa para
adaptar los procesos de inspección a diversas aplicaciones industriales.

Durante la realización de esta tesis, la empresa CIN Advanced Systems [114]
proporcionó datos valiosos para los experimentos, lo que resalta la relevancia práctica
de la investigación. CIN Advanced Systems se especializa en soluciones de visión
artificial para la detección de defectos en ĺıneas de producción. Sus sistemas de
visión combinan sensores láser 3D avanzados, cámaras 2D y sistemas robóticos para
mover estos sensores en diferentes tipos de componentes, incluidos piezas estampadas,
mecanizadas y fundidas, aśı como superficies con texturas complejas.

Las herramientas y metodoloǵıas desarrolladas en esta tesis tienen un potencial
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de aplicación real en entornos industriales como los de CIN Systems. La integración
de estos sistemas de inspección avanzados podŕıa mejorar las capacidades para la
detección de defectos en ĺınea, especialmente en aplicaciones complejas.

Actualmente, CIN Systems depende en gran medida del uso de técnicas de apren-
dizaje automático aplicadas a escaneos de alta resolución obtenidos mediante sen-
sores de triangulación láser para la detección de defectos en ĺıneas de producción.
Este enfoque requiere grandes conjuntos de datos etiquetados, lo que subraya el valor
de las contribuciones de esta tesis. La combinación de un simulador de sensor de tri-
angulación láser que integra el efecto *Speckle* con un método para generar defectos
en superficies de modelos 3D ofrece una solución potente. El uso conjunto de estas
herramientas permite a las empresas generar amplios conjuntos de datos etiqueta-
dos, fundamentales para entrenar y mejorar los modelos de aprendizaje automático.
Esta capacidad no solo aumenta la precisión y confiabilidad en la detección de defec-
tos, sino que también aborda el reto de obtener grandes conjuntos de datos de alta
calidad.

Además, la planificación de trayectorias suele realizarse de manera manual, un
proceso que puede ser lento y menos eficiente. El método de planificación de trayec-
torias basado en RL desarrollado en esta tesis representa una mejora significativa,
ya que permite el diseño automático de rutas de escaneo óptimas. Este método ase-
gura una cobertura completa y eficiente de superficies complejas, reduce el tiempo
de inspección y, en última instancia, incrementa la efectividad de los procesos de
inspección.

La adopción de estas herramientas avanzadas podŕıa simplificar los procesos de
desarrollo, mejorar la precisión en la detección de defectos y hacer que los sistemas
de inspección sean más eficientes en aplicaciones industriales prácticas para empresas
como CIN Systems.

8.2 Contribuciones de la Tesis

Las principales aportaciones de esta tesis pueden resumirse como sigue:

1. Desarrollo de un simulador que integra el ruido Speckle : Se ha desar-
rollado un simulador de sensores de triangulación láser que incorpora la técnica
de ruido Perlin para incluir el efecto *Speckle* en las simulaciones. Este sim-
ulador se convierte en una herramienta útil para el diseño y la evaluación de
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aplicaciones en el mundo real, permitiendo la prueba de algoritmos de proce-
samiento y análisis de datos antes de su implementación en sistemas f́ısicos.
Esto puede llevar a soluciones más efectivas y a ahorros en tiempo y costos de
desarrollo.

2. Simulación de defectos superficiales en modelos 3D: Se presenta un
método para generar defectos en superficies de modelos 3D utilizando Free
Form Deformation (FFD). Es importante destacar que los defectos pueden in-
sertarse en cualquier región del modelo y con cualquier orientación, incluyendo
áreas problemáticas con cambios abruptos en la geometŕıa. La técnica prop-
uesta para la inserción de defectos implica modelarlos como mapas de altura
originados desde un plano, definiendo su tamaño y forma.

Además, se parametrizan tres tipos comunes de defectos como opciones prede-
terminadas: bollos, picos y grietas, con la flexibilidad de modificar sus dimen-
siones, lo que permite la incorporación de una amplia gama de deformaciones
pequeñas y grandes, t́ıpicas durante el proceso de fabricación de diversos pro-
ductos.

La capacidad de generar defectos en superficies de modelos 3D puede emplearse
en diferentes aplicaciones: validación de diversos algoritmos, entrenamiento
de modelos de detección de defectos, optimización de sistemas de inspección
para reducir costes y tiempo, o proporcionando flexibilidad en el control de las
caracteŕısticas de los defectos.

3. Generación de bases de datos etiquetadas de defectos en superficies:
Se han generado bases de datos de defectos etiquetados que contienen escaneos
simulados de alta resolución con información 3D sobre defectos en superficies.
Estas bases de datos son fundamentales para el entrenamiento y la evaluación
de algoritmos de detección de defectos, ya que proporcionan un conjunto de
datos realista y diversificado que representa una amplia gama de posibles de-
fectos en productos manufacturados, abordando el problema de la escasez de
bases de datos con estas caracteŕısticas.

4. Planificación de trayectorias de inspección utilizando Aprendizaje
por Refuerzo: La planificación de trayectorias de inspección mediante Apren-
dizaje por Refuerzo permite diseñar estrategias óptimas para guiar el movimiento
del sensor a lo largo de la superficie de la pieza a inspeccionar. Utilizando
técnicas de aprendizaje automático, el sistema puede aprender de manera
autónoma las mejores acciones a seguir en cada punto de la superficie para
maximizar la eficiencia del escaneo. Esto garantiza una cobertura completa y
uniforme de toda la superficie de la pieza, incluso en áreas de dif́ıcil acceso o con
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geometŕıas complejas, optimizando aśı el proceso de inspección y reduciendo
el tiempo necesario para completar la tarea.

5. La tesos ofrece una solución integral al reunir múltiples funcionalidades en
un solo framework. Permite simular escaneos precisos, generar defectos en
superficies y planificar trayectorias de inspección, todo a partir del modelo
CAD del producto. Esta integración simplifica significativamente el proceso
de diseño y evaluación de sistemas de inspección automatizados, eliminando la
necesidad de utilizar herramientas dispersas. Además, tener todo en el mismo
entorno facilita la colaboración entre diferentes equipos y la iteración rápida
en el desarrollo de algoritmos de detección de defectos.

Además, durante el transcurso de esta tesis, se llevaron a cabo dos estudios
prácticos en entornos reales, utilizando diferentes sistemas robóticos para la in-
spección de diversos productos. Aunque estos estudios no constituyen las contribu-
ciones principales de la tesis, proporcionan valiosas perspectivas sobre la aplicación
de las tecnoloǵıas de inspección en entornos industriales:

Uso de robots móviles para la inspección de chapas de acero: Se desar-
rollaron una serie de algoritmos para permitir la inspección y reparación de defectos
en chapa gruesa. Los esfuerzos clave se centraron en la localización del robot en
entornos confinados, la planificación de trayectorias de inspección y reparación, y la
reconstrucción de la chapa inspeccionada para facilitar la detección de defectos.

El proceso de inspección empleó cámaras RGB-D para la reconstrucción en 2D
de las superficies de las chapas de acero, capturando caracteŕısticas y defectos detal-
lados de la superficie. Sin embargo, esta metodoloǵıa está diseñada para ser flexible
y adaptable, permitiendo la incorporación de otras tecnoloǵıas de detección, como
sensores láser o profilómetros. Estos sensores alternativos podŕıan mejorar la pre-
cisión de las mediciones de superficie o proporcionar ventajas espećıficas según la
aplicación.

Por ejemplo, integrar un sensor láser o un profilómetro podŕıa mejorar la pre-
cisión de los datos sobre el contorno y la textura de la superficie, permitiendo una
detección de defectos más precisa. Además, las trayectorias de inspección pueden
ajustarse para cumplir con los requisitos espećıficos de la herramienta de detección
elegida, optimizando el proceso en función de las caracteŕısticas del sensor y la super-
ficie a inspeccionar. Esta adaptabilidad asegura que el proceso de inspección pueda
personalizarse para lograr resultados óptimos en diversos escenarios.

Este trabajo fue publicado en [115] y [116].
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Uso de drones para la inspección de tubeŕıas: Durante una estancia de
investigación de 3 meses en la Universidad de Nápoles Federico II, se desarrolló un
sistema basado en visión para la inspección de superficies de tubeŕıas industriales
utilizando drones. El sistema fue validado tanto mediante simulaciones como en ex-
perimentos reales, demostrando su capacidad para seguir con precisión el eje central
de las tubeŕıas industriales y detectar defectos en la superficie.

Aunque el sistema actual utiliza sensores de profundidad para la detección de
defectos, futuras iteraciones podŕıan integrar sensores más avanzados para detectar
una gama más amplia de defectos. Por ejemplo, la incorporación de los sensores de
triangulación láser discutidos en esta tesis podŕıa mejorar significativamente la ca-
pacidad del sistema para detectar defectos más pequeños con mayor precisión. Estos
sensores proporcionaŕıan mediciones detalladas de las irregularidades y anomaĺıas de
la superficie, complementando el enfoque basado en visión existente.

Este trabajo fue publicado en [117].

8.3 Trabajo Futuro

El trabajo desarrollado en esta investigación sugiere nuevas ĺıneas de investigación y
trabajo futuro:

En cuanto a la simulación de defectos, investigar el desarrollo de modelos matemáticos
más avanzados para simular una variedad más amplia de defectos representa una
oportunidad clave para mejorar la calidad y diversidad de las bases de datos utilizadas
en la detección de defectos. Estos modelos más sofisticados podŕıan permitir la simu-
lación de defectos complejos y realistas encontrados en una amplia gama de productos
manufacturados, desde componentes electrónicos hasta estructuras metálicas.

Al aumentar la diversidad y complejidad de las bases de datos, se podŕıan en-
trenar modelos de detección de defectos más robustos y generalizables, mejorando
significativamente su capacidad para identificar defectos en diferentes escenarios in-
dustriales. Además, la capacidad de simular una gama más amplia de defectos
allanaŕıa el camino para combinar datos reales y simulados en el entrenamiento de
algoritmos de inteligencia artificial. Esto mejoraŕıa la capacidad de los algoritmos
para generalizar y adaptarse a nuevas condiciones y situaciones, resultando en sis-
temas de detección de defectos más efectivos y versátiles.

Además, el desarrollo de modelos matemáticos más avanzados podŕıa facilitar la
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investigación y el desarrollo de nuevas técnicas de detección de defectos. Por ejemplo,
al simular de manera precisa defectos espećıficos, se podŕıan explorar enfoques de
detección más especializados y efectivos para esos tipos particulares de defectos. Esto
podŕıa llevar a avances significativos en la eficiencia y precisión de los sistemas de
inspección automatizados en una variedad de aplicaciones industriales.

Explorar la generación de trayectorias mediante aprendizaje por refuerzo ofrece
una dirección prometedora para mejorar los sistemas de inspección automatizados.
La investigación futura podŕıa centrarse en desarrollar algoritmos más avanzados
que integren información adicional para guiar el movimiento del sensor con mayor
precisión y eficiencia. Por ejemplo, se podŕıan utilizar técnicas de aprendizaje pro-
fundo para identificar patrones complejos en los datos, mejorando la planificación
de trayectorias en tiempo real. Incorporar recompensas más globales que evalúen el
rendimiento general del sistema en términos de cobertura de superficie, detección de
defectos y eficiencia del escaneo también podŕıa ser beneficioso.

Además, aumentar la dimensionalidad del sistema podŕıa permitir la inspección
de partes más grandes y complejas. Esto podŕıa implicar expandir los grados de lib-
ertad para el movimiento del sensor y adaptar las técnicas de planificación de trayec-
torias para gestionar datos en múltiples dimensiones. Explorar tipos de trayectorias
alternativas, como espirales o en zig-zag, podŕıa ofrecer estrategias de escaneo más
eficientes en ciertos contextos.

Una investigación más detallada sobre el diseño de recompensas podŕıa ayudar
a mejorar la optimización de trayectorias. Al explorar cómo diferentes estructuras
de recompensas influyen en el rendimiento del sistema, podŕıa ser posible mejorar la
eficacia con la que el aprendizaje por refuerzo gúıa al sensor. Experimentar con diver-
sas funciones de recompensa podŕıa ayudar a equilibrar factores como la cobertura
de superficie y la precisión en la detección de defectos. Además, probar diferentes
algoritmos de aprendizaje por refuerzo, como métodos de gradiente de poĺıticas o
modelos actor-cŕıtico, podŕıa ofrecer ideas sobre qué técnicas funcionan mejor para
escenarios espećıficos de inspección.
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Publications

This annex lists all publications related to this research. They are divided into two
categories: 1) Publications in journals; and 2) Communications to Congress.

A part from the listed publications, the content of the chapter 5 is currently being
considered for publication in the Journal of Intelligent Manufacturing by Springer.
The manuscript, titled ”Realistic Defect Simulation in 3D Models for Defect Detec-
tion Using Machine Learning”, authored by S. Roos-Hoefgeest, M. Roos-Hoefgeest,
D. Garćıa Peña, I. Álvarez, and R. C. González, is currently in its third revision.

Also, another paper is being written based on the contents of chapter 6.
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Simulation of Laser Profilometer Measurements in the Presence
of Speckle Using Perlin Noise
Sara Roos-Hoefgeest 1,* , Mario Roos-Hoefgeest 2 , Ignacio Álvarez 1 and Rafael C. González 1

1 Department of Electrical, Computer Electronics and Systems Engineering, University of Oviedo,
33003 Oviedo, Spain; ialvarez@uniovi.es (I.Á); rcgonzalez@uniovi.es (R.C.G.)

2 Desarrollo de Soluciones Integrales Plus S.L., 33211 Gijón, Spain; mroos@cinsystems.es
* Correspondence: roossara@uniovi.es

Abstract: In the manufacturing industry, inspection systems play a crucial role in ensuring product
quality. High-resolution profilometric sensors have become increasingly popular for inspection due
to their ability to provide detailed surface information. However, the development and testing of
inspection systems can be costly and time-consuming. This paper presents the development of a
simulation of an inspection system using a high-resolution profilometric sensor. A geometrical and
noise model is proposed to simulate the readings of any actual profilometric sensor. The model
replicates the sensor’s movement on the CAD model of the inspected part. The model incorporates
the physical properties of the sensor and combines noise sources from sensor uncertainty and speckle
noise induced by the roughness of the material. Our contribution lies in noise modeling. This work
proposes a combination of Perlin noise to simulate the speckle noise and Gaussian noise for the
uncertainty-related noise. Perlin noise is generated based on the surface roughness parameters of
the inspected part. The accuracy of the simulation system is evaluated by comparing the simulated
scans with real scans. The results highlight the ability to simulate real scans of different parts, using
commercial sensor specifications and the CAD model of the inspected part.

Keywords: laser triangulation profilometry; Perlin noise; speckle; surface roughness; simulation;
computer vision

1. Introduction

As increasingly higher requirements are demanded from manufactured products,
industries rely on inspection systems to guarantee that their products achieve the expected
quality level. This is especially relevant in some industrial sectors, such as the aerospace
and automotive sectors or precision parts manufacturing. These sectors demand a full
inspection of their production that implies the acquisition of metrological information as
well as the detection of other possible defects, such as cracks or irregularities on the product
surface. This kind of superficial inspection may be carried out at an intermediate stage of
the process to discard defective parts as soon as possible.

However, developing inspection systems can be costly and time-consuming, especially
when dealing with high-precision sensors and complex geometries. Therefore, there is
a need for CAD tools that can facilitate the development of industrial inspection appli-
cations [1,2]. These tools can optimize the design and reduce costs by providing initial
data for algorithm development and evaluation. These tools allow for a simulation of
the inspection process before actually implementing it on the production line. From the
simulation data, it is possible to identify potential issues and refine the inspection process,
ultimately improving product quality. To be useful, the simulator must accurately repli-
cate the behavior of the inspection system using models that can be easily related to real
hardware. Designers will use that tool to test its performance under different conditions
to obtain an accurate and cost-effective solution while reducing the development time
and costs.

Sensors 2023, 1, 0. https://doi.org/10.3390/s1010000 https://www.mdpi.com/journal/sensors

Figure A.1: ”Simulation of Laser Profilometer Measurements in the Presence of
Speckle Using Perlin Noise”. Paper published in MDPI’s Sensors magazine [113]
with the results of the chapter 4.
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Realistic 3D Defect Simulation for Deep

Learning-based Industrial Inspection Systems

Sara Roos-Hoefgeest1, Mario Roos-Hoefgeest2,
Daniel Garćıa Peña2, Ignacio Álvarez1, Rafael C. González1*

1*Department of Electrical, Electronic, Communications and Systems
Engineering, University of Oviedo, Oviedo, 33003, Spain.
2CIN Advanced Systems Group S.L., Gijón, 33211, Spain.

*Corresponding author(s). E-mail(s): rcgonzalez@uniovi.es;
Contributing authors: roossara@uniovi.es; mroos@cinsystems.es;

dgarcia@cinsystems.es; ialvarez@uniovi.es;

Abstract

High-precision surface defect detection in manufactured products is a challenge
for industrial producers. The current trend is to use dense 3D point clouds
obtained with contactless sensors, such as Laser profilometric sensors, in order to
achieve the high-precision dimensional requirements demanded; then, from the
point clouds, classical machine-vision or modern machine-learning (ML) tech-
niques are applied in order to outline the defects. In both cases, but more intensely
for ML, large datasets including different shapes and defects are necessary to
train the algorithms. Acquiring and labeling real defect datasets is challenging
because of the random and infrequent nature of the defects, and the labor costs
associated to manual detection and classification.
We present a method to create synthetic labeled datasets tailored for each appli-
cation. Defects are modeled by an elevation map that defines their size and shape.
The triangular mesh describing the object is modified using Free-Form Defor-
mation techniques. Random noise is added to ensure variety in the dataset. We
propose mathematical models to characterize three common types of superficial
defects. To validate our proposal, synthetic depth images are obtained by sim-
ulating the 3D sensor acquisition process. Real and synthetic depth maps are
compared; moreover, the results of basic YOLOv8 networks trained with our syn-
thetic dataset and a real one are compared. Models were tested using a fresh
dataset of real samples. Results showed that synthetic data can replace the scarce
real data in the training phase, easing the development and tuning of inspection
applications for new products.

1

Manuscript Click here to access/download;Manuscript;JIMS-D-24-
00248_v3.tex
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Figure A.2: ”Realistic Defect Simulation in 3D Models for Defect Detection Using
Machine Learning”, authored by S. Roos-Hoefgeest, M. Roos-Hoefgeest, D. Garćıa
Peña, I. Álvarez, and R. C. González. Paper currently in its third revision with
the results of the chapter 5.
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A.2 Publications in Congress

A Vision-based Approach for Unmanned Aerial Vehicles to Track

Industrial Pipes for Inspection Tasks

Sara Roos-Hoefgeest1, Jonathan Cacace2, Vincenzo Scognamiglio2, Ignacio Álvarez1, Rafael C. González1,

Fabio Ruggiero2 and Vincenzo Lippiello2

Abstract— Inspecting and maintaining industrial plants is
an important and emerging field in robotics. A particular
case is represented by the inspection of oil and gas refinery
facilities consisting of different long pipe racks to be inspected
repeatedly. This task is costly in terms of human safety and
operation costs due to the high altitude location in which
the pipes are placed. In this domain, we propose a visual
inspection system for unmanned aerial vehicles (UAVs), allowing
the autonomous tracking and navigation of the center line of the
industrial pipe. The proposed approach exploits a depth sensor
to generate the control data for the aerial platform and, at the
same time, highlight possible pipe defects. A set of simulated
and real experiments in a GPS-denied environment have been
carried out to validate the visual inspection system.

I. INTRODUCTION

The transport of fluids like steam, heating water and oil

or liquid chemicals is made through a network of pipelines.

Pipelines are typically grouped in a steel-framed structure

called pipe racks (see Fig. 1). Typically, pipe racks are

laid between different units in any chemical processing

or power plant and are placed on elevated locations to

preserve the ground space of the plant used for operators’

mobility. Pipelines must be regularly inspected to assess their

external/internal status. Their damage can be detected as a

weakening of the external covering or the corrosion of its

structure (i.e., rust on the pipe surface). Besides, damaged

pipes can cause dangerous situations like explosions or

chemical incidents. Pipeline cracks in oil and gas companies

produce financial loss and environmental pollution rather

than heavy casualties. For this reason, the early detection of

defective pipe sections plays a crucial role in preventing un-

necessary loss faced by oil and gas companies, ensuring safe

working conditions as well. However, pipe racks often extend

for miles and are located on elevated structures. Visually

inspecting all the sections of the pipes is an expensive and

demanding task. In particular, manual inspection of pipelines

can be done regularly, but it is time-consuming and unsafe

The research leading to these results has been supported by the AERIAL-
CORE project, European Union’s Horizon 2020 research and innovation
programme under Grant Agreement No 871479; the AERO-TRAIN project,
European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No 953454; the scholarship
under the “Severo Ochoa” program for predoctoral research and teaching
with Ref: PA-20-PF-BP19-067, financed by Asturias Regional Government.
The authors are solely responsible for its content.

1Department of Electrical, Computer Electronics and Systems Engineer-
ing, University of Oviedo, Asturias, Spain

2PRISMA Lab and CREATE Consortium, Department of Electrical
Engineering and Information Technology, University of Naples Federico
II, Naples, Italy.

Fig. 1: Pipe racks structures

in hazardous areas. In addition, expensive scaffolding should

be assembled to allow operators to reach inspection points.

In this context, using unmanned aerial vehicles (UAVs)

equipped with vision sensors represents a low-cost and

reliable solution to perform similar inspection tasks [1],

[2]. Aerial systems can follow the surface of the pipelines,

processing the information captured from a vision sensor to

detect eventual defects. Automating such a task is not trivial,

and different challenges must be addressed. First, the drone

should be able to see the pipe to inspect and consequently

follow its shape, regulating its position and orientation to

track the pipeline. At the same time, during the navigation

of the UAV, pipe defects must be detected. Different flaws

can be present in the pipe structure, both externally and

internally. In the latter case, the internal structure of the pipe

is corrupted, and its thickness decreases. Here, the defects are

detected using conventional non-destructive testing (NDT)

with ultrasonic probes in contact with the inspected surface.

Differently, our work focuses on external corrosion flaws

visible on the pipeline structures.

This work’s main contributions are the definition of a

computer vision technique to detect and characterize pipeline

structures, a UAV navigation strategy to track the pipes’

surface and a method to highlight pipe defects based on

vision data autonomously. A simulated case study using

different pipe shapes has been carried out based on ROS

and Gazebo [3], [4] simulator. Preliminary real-world ex-

periments in a GPS-denied environment have also been

performed to demonstrate approach effectiveness.

The remainder of the paper is organized as follows. In

Section II, a brief overview of related works is presented

while, in Section III, the sensor elaboration module to detect

and extract salient information on the pipelines is discussed

along with the UAV navigation controller strategy. Section IV

describes the system architecture and, finally, Section V

presents simulated and real-world experiments.

2023 International Conference on Unmanned Aircraft Systems (ICUAS)
June 6-9, 2023 | Lazarski University, Warsaw, Poland
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Figure A.3: ”A Vision-based Approach for Unmanned Aerial Vehicles to Track In-
dustrial Pipes for Inspection Tasks”. Article published and presented in the inter-
national congress ICUAS 2023 [117]
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using a ring of cameras and ArUco markers 
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Abstract— Localization of mobile robots in industrial 
environments is key in an increasingly automated industry. 
Nowadays, the inspection and repair of heavy steel plates is 
performed by human workers. Repair work often requires long 
hours in uncomfortable postures that can cause problems for the 
worker. We propose a mobile robot placed on top of a steel plate 
that must move along the plate to inspect and repair it, without 
leaving the sheet. Robot localization on the plate is key to 
generate the inspection and repair trajectories.  
 
There are different methods of localization, the most widely 
used require the use of expensive laser sensors to create a map 
using information from the environment and localize from it. 
This paper proposes a less expensive localization system for a 
mobile robot based on the installation of ArUco markers in the 
environment and the use of a ring of 8 calibrated cameras 
mounted on the robot that allow a 360º vision. This ensures a 
correct localization regardless of the working area. It is 
necessary to map the markers with respect to a common 
coordinate system.  
 
We propose a method to create the map using the ring. We 
validate the proposal through experiments comparing the 
localization obtained with the proposed system and a 
localization using a state-of-the-art SLAM method employing 
laser sensors. 
 

Keywords— Mobile Robot, Computer Vision, Robot 
Localization, ArUco Markers, Ring of Cameras, ROS. 

I. INTRODUCTION  
Mobile robots are appearing in an increasingly automated 

industry in a growing range of applications. One example is 
the deployment of autonomous mobile robots for inspection 
of surface defects. Other applications seek to replace human 
workers in dangerous tasks, such as grinding. 

 In the production of heavy steel plates, both problems 
appear together. Currently, the inspection and repair are 
performed by human operators. The repair work usually 
involves long working days in uncomfortable positions that 
can lead to physical problems for the worker. 

This paper presents a localization method for a mobile 
robot performing sheet metal inspection and repair process 
without leaving the sheet. Therefore, the robot moves in a 
localized space, the width of the sheet metal varies from 1.4 
to 3.3 m and their length may change from 4 to 18 m. 
Normally, sheet metal inspections are performed in large 
indoor environments. So, there may not be enough references 
in the environment for certain types of localization systems. 

Localization problem has been discussed from multiple 
approaches, being common the use of different sensors that 
provide direct information about the location of the robot at 

each time, or about the changes that are produced in its 
environment. 

One of the most widely used alternatives in the 
localization of mobile robots is the use of Simultaneous 
Localization and Mapping (SLAM) techniques. These 
systems build a map of the environment that is used to localize 
the robot. Expensive laser scanners are generally used for the 
construction of the environment map. In addition, systems 
based on natural feature extraction and matching could be 
used but it can be problematic in certain scenarios if there are 
not enough natural landmarks. 

Sensor fusion is also common in robotics, usually using 
Kalman filters [1] or particle filters [2], [3], which allows 
combining estimates from different sources to achieve a more 
robust pose. In [4], information from inertial sensors is fused 
with a visual odometry method. 

GPS systems are another widely used method. However, 
systems based on satellite signals are not appropriate for this 
task because GPS signals are not available in indoor scenarios. 

Other strategy is by placing beacons at known positions in 
the environment to facilitate the localization of the robot. For 
example, visual beacons, such as luminous beacons of 
different geometries and colors or fiducial markers. 

Different fiducial marker systems can be found, composed 
by a set of defined markers and an algorithm that allows their 
detection and identification. These systems have been used in 
multiple vehicle localization applications. For example, 
researchers from the AVA group at the University of Cordoba 
developed different applications to localize mobile robots 
using ArUco markers with a single camera [5]. Other research 
using computer vision and artificial markers can be seen in 
[6], [7] and [8]. The paper in [9] proposes the localization of a 
mobile robot by a particle filter combining the information 
from an omnidirectional camera and a range sensor, using 
fiducial markers.  

Other strategy is using a robot tracking system. For that, 
fiducials are also used, as in [10], in which the mobile robot is 
tracked by arranging an artificial marker on top of it using a 
system of multiple cameras fixed in the environment. In [11] 
they use geometric features of the robot itself instead artificial 
markers.  

 In this paper, we propose a localization system using an 8-
camera ring fixed in the robot and a set of artificial markers 
placed in the environment, surrounding the plate being 
inspected by the robot. It is necessary to know the position of 
the markers with respect to a common coordinate system. 
Therefore, a way to locate them and create a map of the 
markers is proposed, so that the robot can move over the sheet 
as accurately as possible.  

Research supported by: Daorje S.L.U inside project code CN-18-011 and a 
scholarship under the "Severo Ochoa" program for predoctoral research and 
teaching with Ref: PA-20-PF-BP19-067 financed by Asturias Regional 
Government. 
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Figure A.4: ”Mobile robot localization in industrial environments using a ring of
cameras and ArUco markers”. Article published and presented in the international
congress IECON 2021 [115]
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Abstract—Visual inspection of manufactured products is a field
in constant expansion. In this work we present a method to create
a high resolution panorama (1mm/pixel) of a large rectangular
plate using a mobile robot with two RGB-D cameras. The
panorama is intended to analyze the surface in search of possible
defects and identify areas of interest that have been encircled
using a high contrast mark. Identifying which points belong to
the surface plane and estimating the amount of distortion caused
by the perspective correction we are able to form a panorama
of a 4400 by 2500 mm plate with errors lower than 2% and a
resolution of 1 mm/pixel.

Index Terms—visual inspection, image mosaicing, autonomous
robot.

I. INTRODUCTION

Surface inspection of steel products using computer vision
techniques is a well established practice nowadays. There have
been a huge effort to analyze different categories of steel prod-
ucts as they are manufactured [1]–[4]. Some defects occurring
in slabs or heavy plates may be repaired. Defects are removed
manually using an angle grinder. The worker that conducts
the operation usually needs to adopt awkward postures. As a
consequence, his exposition occupational hazards increases.

We are designing a mobile robot to automate heavy steel
plates reparation. To be successful, the robot must be able
to explore the plate surface to identify which parts have been
marked as defective, or even to look for defects. The thickness
of heavy steel plates ranges from 5 to 150 mm. Their width
varies from 1400 to 3300 mm and their length may change
from 4 to 18 m. To enforce robot and human safety, the robot
must complete the analysis moving exclusively within the
plate. To complete the taks, the robot must move on top of the
surface and take partial surface images. Before the inspection
starts, these images have to be stitched together to form a
single view called a panorama. This approach has been used
in many different applications [5]–[7].

Image registration and stitching is usually solved through
the pairing of image features. Those methods usually provide
very good results and are considered to be the state of the
art. Works by Szeliski [8] or Zitová and Flusser [9] are a

Research supported by: Daorje S.L.U inside project code CN-18-011 and
a scholarship under the ”Severo Ochoa” program for predoctoral research
and teaching with Ref: PA-20-PF-BP19-067, financed by Asturias Regional
Government .

good starting point to have an overview of the full process. A
common problem when these methods are applied at a large
scale is that concatenation of geometric transforms may cause
an increasing amount of image distortion [10]. Block matching
methods, although not so common, have been successfully
applied to register a sequence of images in industrial environ-
ments [6] or to determine the motion of glaciers or landslides
[11]. In this paper we describe a method to reconstruct the
surface of a large rectangular plate using an omnidirectional
mobile robot and RGB-D cameras. The method has been
developed to be used on heavy steel plates, although real tests
have been done using Oriented Strand Board (OSB) wooden
panels. This is because they can be easily handled inside
our lab and present a repetitive texture where key points are
difficult to detect. The areas to be repaired are expected to be
enclosed within a high contrast mark.

Our proposal is based on a classical block matching ap-
proach, although several new ideas are introduced to account
for image distortion and dynamic selection of the reference
block to be matched. The cameras are pointing 30◦ downward
with respect to a horizontal plane. We apply an homography
to remove the perspective effect. This introduces a distortion
in the re-projected image. We use the transformation Jacobian
to get an estimation of the distortion. This value is used to
reduce the search area within the block matching algorithm
and to control how images are merged to build the final
panorama. In addition, we classify pixels as surface/not surface
points according to their distance to the plane defined by the
inspected plate. This clustering is used to further restrict the
candidate positions of the template block. To build the full
panorama we use a hierarchical approach similar to the one
described by Xie et al. [13]. First, we register images from a
single camera to form a stripe. Neighboring stripes are stitched
together to build a unique panorama for each camera. We finish
by joining both partial panoramas into a single one.

II. METHODS

A. Algorithm description

Our algorithm, outlined in Fig. 1, follows a hierarchical
structure. First we compute the translation between two con-
secutive frames. The result is used to register the new image
within the current stripe panorama. Those stripe panoramas are
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Figure A.5: ”Block Matching Mosaicing for Surface Inspection Using an Autonomous
Mobile Robot”. Article published and presented in the international congress IECON
2021 [116]

235
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LOCALIZACIÓN DE ROBOTS MÓVILES EN ENTORNOS 
INDUSTRIALES USANDO UN ANILLO DE CÁMARAS 
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Resumen 
 
Se pretende desarrollar un robot móvil capaz de 
inspeccionar y reparar chapas de acero en un entorno 
industrial de grandes dimensiones. Uno de los 
principales problemas a resolver es la localización del 
mismo mientras navega sobre la chapa. 
 
El presente documento propone un sistema de 
localización de un robot móvil basado en la 
instalación de marcadores ArUco y el uso de un anillo 
de 8 cámaras calibradas dispuesto sobre el robot que 
permiten una visión de 360º. 
 
Es preciso conocer la posición de los marcadores 
respecto a un sistema de coordenadas común. Por 
ello, se propone una forma de localizar los 
marcadores y crear un mapa de los mismos con una 
sola cámara, de tal manera que, posteriormente, 
pueda ser utilizado para desplazarse sobre la chapa 
con la mayor precisión posible.  
 
La estrategia escogida se desarrolló en forma de 
paquetes de ROS capaces de proporcionar el estado 
del robot a otros algoritmos encargados de tareas 
como la navegación. 
 
 
Palabras clave: Robótica, Visión 3D, Localización, 
Marcadores ArUco, Mapeo, Entorno industrial, Anillo 
cámaras, ROS. 
 
 
1 INTRODUCCIÓN 
 
Se desea desarrollar un robot capaz de inspeccionar la 
totalidad de una chapa de acero en busca de defectos 
y, posteriormente, ser capaz de subsanarlos. Para ello, 
el robot deberá ser capaz de navegar con precisión en 
un entorno industrial de grandes dimensiones.  
 
Uno de los principales problemas es la localización del 
robot dentro del entorno. A priori, no se puede 
garantizar que existan elementos externos que puedan 
ser utilizados como balizas. Para resolver este 

problema, se propone un sistema de localización 
basado en la instalación de marcadores ArUco y el uso 
de un anillo de 8 cámaras dispuesto sobre el robot 
móvil. 
 
No se puede garantizar que la posición exacta de los 
marcadores con respecto a un sistema de coordenadas 
común sea conocida. En este artículo se propone una 
manera de localizar los marcadores y elaborar un 
mapa de los mismos utilizando una sola cámara, que 
permita, posteriormente, ser utilizado para que el robot 
se desplace sobre la chapa con la mayor precisión 
posible. 
 
El sistema de mapeo utiliza una cámara calibrada para 
estimar la pose de los marcadores respecto a un 
sistema de referencia común, elegido en la posición de 
uno de los marcadores en el entorno. Una vez realizada 
una primera estimación de sus posiciones se aplica un 
ajuste bundle para minimización del error y optimizar 
sus localizaciones. 
 
En cuanto a la localización, cada cámara que forma el 
arco sigue, individualmente, un esquema monocular, 
estimando la posición del robot resolviendo el 
problema de Perspective-n-Point (PnP) a partir de las 
poses 3D de marcadores y sus proyecciones en sus 
imágenes. Posteriormente, se escoge la mejor 
estimación entre las 8 cámaras y se someten los datos 
a un filtro de Kalman para eliminar malas 
estimaciones y conseguir una localización más fiable.  
 
 
2 ESTADO DEL ARTE 

 
Cada vez resulta más habitual encontrar robots 
móviles en las industrias. La localización en cada 
instante de tiempo es vital para estos robots. Este 
problema se ha tratado desde múltiples perspectivas, 
siendo común el uso de diferentes sensores que 
proporcionan información directa sobre la 
localización del robot en cada instante, o bien, sobre 
los cambios que se han producido en su entorno. 
 

XL Jornadas de Automática Visión por Computador

https://doi.org/10.17979/spudc.9788497497169.849 849

Figure A.6: ”Localización de robots móviles en entornos industriales usando un anillo
de cámaras”. Article published and presented in the national Spanish congress JJAA
2019 [118]
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Resumen 
 
El presente documento describe un algoritmo de 
generación de trayectorias para un robot móvil 
encargado de sanear chapas de acero. Las 
trayectorias generadas deben asegurar la cobertura 
total de las superficies poligonales que delimitan los 
defectos con la herramienta acoplada al robot. 
Además, el robot deberá resolver la tarea sin 
abandonar el interior de la chapa. Para resolver el 
problema, la chapa se divide en distintas zonas de 
trabajo derivadas de las orientaciones seguras que 
permiten al robot reparar sin abandonar la superficie 
de la chapa.  
 
Los defectos se recibirán en forma de polígonos que 
serán, en primer lugar, divididos de acuerdo con las 
zonas de trabajo y, a continuación, descompuestos en 
formas más simples teniendo en cuenta la orientación 
de trabajo de cada zona. El recorrido completo del 
defecto podrá realizarse calculando trayectorias 
paralelas para cada uno de los polígonos simples que 
lo componen. La trayectoria así calculada 
corresponde a la seguida por la herramienta, por lo 
que para calcular la trayectoria del robot bastará con 
aplicar una traslación. 
 
Palabras clave: Robótica, Planificación de 
trayectorias, Geometría computacional, 
Descomposición trapezoidal, ROS 
 
 
1 INTRODUCCIÓN 
 
En una industria cada vez más automatizada los robots 
móviles desempeñan cada vez más tareas. Una de 
estas posibles aplicaciones es la inspección y 
subsanación de chapas. 
 
Frente a otras alternativas, un robot móvil tiene unas 
dimensiones y un peso moderados que permite su 
sencillo traslado a otros lugares de trabajo y facilita su 
posible colaboración con operarios humanos o con 
otras máquinas. Otra ventaja de la opción escogida es 

su versatilidad, siendo capaz de reparar desde hojas de 
acero con una superficie no mucho mayor que la del 
propio robot hasta grandes chapas de decenas de 
metros, como las que pueden encontrarse en la 
industria siderúrgica. El empleo de, por ejemplo, un 
robot cartesiano para automatizar la inspección y 
reparación de estas últimas conllevaría la construcción 
de una gran estructura. 
 
Se supondrá, por tanto, la existencia de un robot 
omnidireccional dotado de una herramienta en una 
posición fija respecto al centro del robot. En este 
planteamiento el actuador se encarga de subsanar un 
defecto detectado en la chapa, aunque el algoritmo 
presentado resulta fácilmente adaptable a otras labores 
tales como inspección, pintado, limpieza, etc.  
 
En la aplicación propuesta el robot se encontrará 
trabajando sobre una superficie rectangular plana, y 
que puede estar elevada una distancia considerable 
respecto al suelo. Si el robot se sale de la superficie de 
trabajo, podría resultar peligroso y provocar graves 
daños en el robot e incluso en operarios humanos. 
 
Para resolver el problema, la chapa se divide en 4 
zonas, asociada cada una a una posible orientación del 
robot paralela a los ejes de la chapa. En cada una de 
las zonas, el robot podrá, manteniendo la orientación 
asociada, realizar las pertinentes reparaciones sin 
correr el riesgo de abandonar el espacio de trabajo. 
 
Los defectos, recibidos en forma de polígono, se 
dividirán por tanto según las zonas de trabajo. De esta 
manera, cada división se recorrerá con una única 
orientación. Con el fin de facilitar la reparación 
completa de los defectos se llevará a cabo también una 
descomposición trapezoidal que da lugar a formas 
simples de reparación más sencilla. 
 
1.1 ESTADO DEL ARTE 
 
Tras las investigaciones realizadas no se ha 
encontrado bibliografía referida a este conjunto de 
problemas combinados.  

XL Jornadas de Automática Robótica

https://doi.org/10.17979/spudc.9788497497169.702 702

Figure A.7: ”Algoritmo de generación de trayectorias en el interior de chapas para
la subsanación de defectos”. Article published and presented in the national Spanish
congress JJAA 2019 [119]
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249

http://jmlr.org/papers/v22/20-1364.html
https://robodk.com/es/
https://www.mdpi.com/1424-8220/23/17/7624
https://cinsystems.es/en/homepage/

	8a866130b266aca6f33f82d9cc27aecfd6362027855325dd3f65f365580d4fd3.pdf
	684f5666f6c87cb1440d7767dc849760fe56bdb4ece4a4ddc482042802650f34.pdf
	12bb6cf6b652c6f0d2e365ea5c0acda1e4ae8aaebb1692d5d235d90374dcc3f6.pdf
	Página en blanco


	684f5666f6c87cb1440d7767dc849760fe56bdb4ece4a4ddc482042802650f34.pdf
	684f5666f6c87cb1440d7767dc849760fe56bdb4ece4a4ddc482042802650f34.pdf
	12bb6cf6b652c6f0d2e365ea5c0acda1e4ae8aaebb1692d5d235d90374dcc3f6.pdf
	Página en blanco



	8a866130b266aca6f33f82d9cc27aecfd6362027855325dd3f65f365580d4fd3.pdf
	List of figures
	List of tables
	Introduction
	Motivation of the thesis
	Problem Statement
	Objectives
	Structure of the document
	Measurement Techniques for Surface Inspection
	Contact Measurement Systems
	Non-Contact Measurement Systems
	Time of flight
	Photogrammetry
	Structured light
	Confocal Microscopy
	Interferometry
	Conoscopic Holography

	Laser Triangulation
	Sensor Parameters
	Challenges in Light-Surface Interactions
	Surface Inspection Strategies


	Reinforcement Learning: Theoretical Foundations
	Basic principles
	States
	Actions
	Reward and Return
	Policy
	The RL Problem
	Value Functions
	Bellman Equations
	Advantage Functions

	RL Algorithms
	Q-Learning
	SARSA
	Deep Q-Network
	Policy Gradient Methods
	Trust Region Policy Optimization (TRPO)
	Proximal Policy Optimization (PPO)
	Deep Deterministic Policy Gradient (DDPG)
	TD3
	SAC
	A2C



	Simulation of a Laser Triangulation Profilometric Sensor
	Related work
	Proposed Method
	Geometrical Model
	Speckle Noise Model: Perlin Noise
	Sensor Uncertainty Model: Gaussian Noise

	Results
	Geometrical Model
	Noise Model

	Discussion

	Simulation of surface defects in 3D models
	Related work
	3D model deformation using FFD for surface defect generation
	Mesh remeshing
	99993em.5Generalities of Free-form deformation (FFD) using NURBS parametrization
	Lattice and NURBS parametrization for surface defect simulation

	Mathematical model of defects
	Crack model
	Bump model
	Peak model

	Resultados
	Comparison of Simulated and Real Defects
	Machine Learning-based defect detection

	Discussion

	Reinforcement Learning-Based Inspection Path Planning
	Related work
	Characteristics of surface inspection scanning with profilometric sensors
	Proposed Method
	Simulated Environment
	State Space
	Action Space
	Reward Function
	RL Algorithm Configuration

	Experiments and results
	Inspection system configuration
	Training process
	Car door
	Pen Holder
	Parrot Drone

	Discussion

	Conclusions and Future Work
	Discussion and Final Conclusions
	Thesis Contributions
	Future work

	Conclusiones y trabajo futuro
	Discusion y Conclusiones Finales
	Contribuciones de la Tesis
	Trabajo Futuro

	Publications
	Publications in journals
	Publications in Congress
	References





