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Abstract
We introduce semi-Riemannian structures well-adapted to certain fields of observers in a
Galilean spacetime. The Levi-Civita connection of such a semi-Riemannianmetric will allow
us to obtain variational characterizations of the Galilean geodesics as well as global results
on the topological and differentiable structure of the spacetime. Moreover, these new semi-
Riemannian metrics provide a new way to compare the studied Newton–Cartan models with
their relativistic counterparts.

Keywords Galilean connection · Semi-Riemannian metric · Koszul formula · Leibnizian
vector field

Mathematics Subject Classification 53Z05 · 53C80 · 53B50

1 Introduction

The geometrization of Newton’s theory of gravity began with Cartan in the early twentieth
century [16, 17]. Nevertheless, it was not until the second half of the century when Newton–
Cartan theory experienced its major boost. Indeed, a non exhaustive list of some advances
made during these years include the study of the Galilean and Lorentzian groups in [26],
which enabled the author to show that Newtonian gravity constitutes a limit of General
Relativity and how free particles are represented by geodesic curves of certain connections
in these two theories. Moreover, the existence of a symmetric connection in both theories,
which appears due to the local character of the physical laws and mathematically codifies
the inertia principle was pointed out in [40]. We should also highlight the introduction of
new Newtonian models satisfying the cosmological principle [33], obtaining the Galilean
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analogue of the relativistic Robertson–Walker spacetimes. Moreover, in [19] the Newtonian
theory is shown to be a limit of the Einstein–Klein–Gordon theory. In fact, this vision of the
theory as a limit of General Relativity continued to be developed during these years [30],
also concluding that the results obtained from Newton–Cartan cosmology were similar on
not too large scales to the ones derived from Einstein’s theory [37, 38].

In recent years, the complexity of General Relativity from a computational level com-
pared to Newton–Cartan theory has provided new applications of this non-relativistic theory
in cosmology [12], AdS/CFT correspondence [31], condensedmatter systems [11], hydrody-
namics [24], quantum collapse [35], quantum Hall effect [25] and other related phenomena.
This variety of applications has renewed the interest in Newton–Cartan theory, leading to a
revision of the geometric structures associated with a generalized Newton–Cartan theory [9]
and new extensions such as non-relativistic strings [1, 10] and Newton–Cartan Supergravity
[2]. Furthermore, new Newtonian models have been obtained such as the Newtonian Gödel
spacetime [18], Galilean Generalized Robertson–Walker spacetimes [21], standard station-
ary Galilean spacetimes [22], as well as the embedding of these geometries in relativistic
manifolds [4].

As it is well-known, the geometry in Newton–Cartan theory is more subtle than in Ein-
stein’s theory, i.e., Lorentzian geometry. This is due, among other things, to the different
behaviour of the connections featuring in both models. Whereas in the Lorentzian setting
there is a canonically associated Levi-Civita connection, in the Newtonian theory the require-
ments of the associated Galilean connection are to be compatible with the absolute clock and
the space metric. As a consequence, we cannot expect to easily obtain a variational charac-
terization of geodesics in Newton–Cartan theory, in contrast to what happens in a Lorentzian
spacetime. Since only the restriction of this Galilean connection to the spacelike leaves is
the Levi-Civita connection of the associated spatial metric, global results for the Galilean
spacetime’s geodesics are not so immediate. Therefore, the study of these connections has
been a key point to better understandNewtonian gravity. Indeed, it was Cartan’s starting point
towards the geometrization of the theory [16, 17]. Since then, many authors have continued
their characterization (see [5, 9, 40], for instance).

In this work, we study several relevant classes of Galilean spacetimes and relate their
Galilean connections to certain Levi-Civita connections defined on the samemanifold, which
is adapted to a suitable field of observers of the Newton–Cartan model. Thus, by means of
these semi-Riemannianmetrics that are partly compatiblewith theGalilean connectionwe are
able to prove new results on the geodesic connectedness and completeness of the spacetime
as well as obtain variational characterizations of the spacetime’s geodesics in certain non
relativistic models. Note that the existence of a geodesic curve joining two given points of
a semi-Riemannian manifold or, in a more general setting, of a smooth manifold endowed
with an affine connection, is a well known and interesting problem [7]. From a physical point
of view, our results on geodesic connectedness provide relevant information about whether
two non simultaneous events lie in the trajectory of some free falling observer. Furthermore,
obtaining completeness results for timelike trajectories is crucial in order to have a consistent
physical theory, i.e., one where observers do not disappear nor suddenly appear.

In addition, these semi-Riemannian metrics associated to a Galilean spacetime provide
new global results concerning the topological and differential structure of the Galilean space-
time as well as allow us to compare the different families under study with their relativistic
counterparts. On the other hand, characteristic elements of the classical gravitational field
theory, such as the potential (measured by the observer), are also related to the introduced
metric tensor.
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This article is organized as follows. In Sect. 2 we will describe the elements in Newton–
Cartan theory that will be used throughout the article to obtain our main results. Section3 is
devoted to relate the connection of a Galilean spacetime with the Levi-Civita connection of
a product semi-Riemannian manifold. As a consequence of Lemma 5 we are able to obtain a
variational characterization of the Galilean connection’s geodesics in Corollary 8, as well as
determine the topological structure of themanifold defining the spacetime in Theorem 10 and
the geodesic connectedness and completeness of the Galilean connection in Corollary 11. In
Sect. 4 we extend our results to a more general family of stationary semi-Riemannian metrics
and, thanks to themain result of this section (Lemma 12), we study the geodesic completeness
of the Galilean connection in Theorems 20 and 23 and characterize the spacetime’s structure
(Theorems 17 and 22). Finally, in Sect. 5 we obtain similar results for spatially conformally
Leibnizian spacetimes, relating their Galilean connection to the Levi-Civita connection of a
semi-Riemannian warped product (Lemma 28) and analyzing the geodesic completeness in
Theorem 30 and structure of the Galilean spacetime in Theorem 34. We also particularize
our results for the family of Galilean Generalized Robertson-Walker spacetimes.

2 Preliminaries

A Leibnizian spacetime is defined as the triad (M,�, g), where Mn+1 is a smooth connected
manifold of arbitrary dimension n + 1 ≥ 2 endowed with a Leibnizian structure (�, g)
determined by a nowhere null differential 1-form � ∈ �1(M) and a positive definite metric
g on the kernel of�. Namely, if An(�) = {v ∈ T M , �(v) = 0} is the smooth n-distribution
induced on M by � and �(T M) is the set of smooth vector fields on M , we can construct
the subset �(An(�)) = {V ∈ �(T M) / Vq ∈ An(�), ∀p ∈ M}, where the map

g : �(An(�)) × �(An(�)) −→ C∞(M), (V ,W ) �→ g(V ,W ),

is smooth, bilinear, symmetric and positive definite (see [8, 9] for further details).
In this ambient spacetime, a point p ∈ M is called an event. The Euclidean vector space

(An(�p), gp) is called the absolute space at p ∈ M and the linear form �p is the absolute
clock at p. A tangent vector v ∈ TpM is spacelike if �p(v) = 0 and timelike otherwise.
In addition, if �p(v) > 0 (resp., �p(v) < 0), v is said to be future pointing (resp., past
pointing).

An observer in a Leibnizian spacetime is a smooth curve γ : I ⊆ R −→ M whose
velocity γ ′ is a unitary future pointing timelike vector field (i.e., �(γ ′(s)) = 1 for all s ∈ I ).
The parameter s is known as the proper time of the observer γ . A vector field Z ∈ �(T M)

with �(Z) = 1 is called a field of observers, since its integral curves are observers in the
Leibnizian spacetime.

When the smooth distribution An(�) is integrable (equivalently, if the absolute clock �

satisfies � ∧ d� = 0), the Leibnizian spacetime (M,�, g) is said to be locally synchroniz-
able. In this case, Frobenius Theorem (see [41]) guarantees the existence of a foliation of
the spacetime by a family of hypersurfaces tangent to the absolute space. In this case, it is
well-known that at each p ∈ M there is a neighborhood where� = β dT , for certain smooth
functions β > 0, T , and the hypersurfaces {T = constant} locally coincide with a leaf of
the foliation. Therefore, any observer can rescale its proper time to be synchronized with the
“compromise time” T . If d� = 0, the Leibnizian spacetime is called proper time locally
synchronizable and, locally, � = dT . In this case, observers are synchronized directly by
its proper time (up to a constant). When � = dT for some function T ∈ C∞(M), any
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observer may be assumed to be parametrized by the absolute time function T . We should
highlight that the notion of (local and local proper time) synchronizability is intrinsic to
the Leibnizian structure, applicable for every observer, in contrast to the relativistic setting,
where the analogous concepts only have meaning for fields of observers.

A vector field K in a Leibnizian spacetime is called Leibnizian [9, Def. 3] if the stages
�s of its local flows preserve the absolute clock and space, i.e.,

�∗
s� = �, and �∗

s g = g.

Both conditions are equivalent to the following ones.

(i) �([K , X ]) = K (�(X)), ∀X ∈ �(T M).
(ii) K (g(V ,W )) = g([K , V ],W ) + g(V , [K ,W ]), ∀V ,W ∈ �(An(�)).

Notice that (ii) is always well defined since [K , V ], [K ,W ] ∈ �
(
An(�)

)
by (i).

On the other hand, a connection on the spacetime is required in order to codify the inertia
principle. Nevertheless, a Leibnizian structure does not have an associated canonical affine
connection, so we need to introduce a compatible connection with the absolute clock � and
the space metric g, i.e., a connection ∇ such that

(a) ∇� = 0 (equivalently, �(∇XY ) = X(�(Y )) for any X , Y ∈ �(T M)).
(b) ∇g = 0, i.e., Z(g(V ,W )) = g(∇Z V ,W )+ g(∇ZW , V ) for any Z ∈ �(T M) and V ,W

spacelike vector fields. (Note that (a) implies that ∇Z V and ∇ZW are spacelike vector
fields).

Such a connection is called Galilean and its restriction to the spacelike leaves of the
foliation coincides with the Levi-Civita connection g. The tetrad (M,�, g,∇) formed by
a Leibnizian spacetime endowed with a Galilean connection ∇ is called a Galilean space-
time. As usual, ∇ is said to be symmetric if its torsion vanishes identically (Tor∇(X , Y ) =
∇XY − ∇Y X − [X , Y ] ≡ 0). From [9, Lemma 13] or [29, Thm. 7], the existence of a
symmetric Galilean connection for a Leibnizian structure implies the proper time local
synchronizability of the latter. Furthermore, using Poincaré’s lemma, it is clear that if the
spacetime is simply connected then there exists an absolute time function. A symmetric con-
nection is also desirable from a physical perspective since it is completely determined by its
geodesic trajectories, that is, by the free falling observers in M .

Given a field of observers Z in a Galilean spacetime (M,�, g,∇), the gravitational field
induced by ∇ in Z is given by the spacelike vector field GZ = ∇Z Z and the vorticity or
Coriolis field of Z is the 2-form ωZ = 1

2Rot(Z), defined as

ωZ (V ,W ) = 1

2

(
g(∇V Z ,W ) − g(∇W Z , V )

)
, ∀V ,W ∈ �(An(�)).

If the gravitational field a field of observers Z vanishes, i.e., GZ ≡ 0, it is said that Z is a
free falling field of observers. On the other hand, the vorticity ωZ allows us to introduce the
notion of inertial field of observers in the next definition, following [9, Def. 4.24].

Definition 1 A field of observers Z in a Galilean spacetime is said to be inertial if it is
Leibnizian and irrotational (i.e., ωZ ≡ 0).

Following [4], we can also define the gravitational fieldstrength measured by the field of
observers Z as the 2-form on M , FZ , given by

FZ (X , Y ) = g(∇X Z , PZY ) − g(∇Y Z , PZ X)), ∀X , Y ∈ �(T M),
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where PZ X = X−�(X)Z is the natural spacelike projection for Z . This tensor field encodes
all the information contained in the gravitational field GZ and the Coriolis 2-form ωZ via the
relations

FZ (Z , V ) = g(GZ , V ), FZ (V ,W ) = ωZ (V ,W ), ∀V ,W ∈ �(An(�)).

The importance of the gravitational field and the vorticity of afield of observers comes from
the fact that they determine a unique symmetric Galilean geometry for proper time locally
synchronizable spacetimes [9, Cor. 28]. Furthermore, that symmetric Galilean connection
admits a formula ‘à la Koszul’ for the field of observers Z whose expression is

∇XY = PZ (∇XY ) + X(�(Y ))Z , ∀X , Y ∈ �(T M), (1)

for each V ∈ �(An(�)),

2g(PZ (∇XY ), V ) = X(g(PZY , V )) + Y (g(PZ X , V )) − V (g(PZ X , PZY )

+2�(X)�(Y )g(GZ , V )

+2�(X)ωZ (PZY , V ) + 2�(Y )ωZ (PZ X , V )

+�(X)
(
g([Z , PZY ], V ) − g([Z , V ], PZY )

)

−�(Y )
(
g([Z , PZ X ], V ) + g([Z , V ], PZ X)

)

+g([PZ X , PZY ], V ) − g([PZY , V ], PZ X)

−g([PZ X , V ], PZY ). (2)

Let us now recall the notion of affine transformation.Given a smoothmanifoldM endowed
with a connection ∇, the automorphism f : M −→ M is an affine transformation if
f∗∇XY = ∇ f∗X f∗Y , for X , Y ∈ X(M). It is well-known that an automorphism is an affine
transformation iff it maps geodesics onto geodesics and preserves the torsion tensor. Conse-
quently, if the connection is symmetric, it suffices for a transformation to map geodesics onto
geodesics to be affine. Moreover, a vector field X ∈ X(M) is called affine iff the stages of
its (local) flows are affine transformations. Namely, X ∈ X(M) is called affine iff LX∇ = 0,
where L denotes the Lie derivative. This notion also plays an important role in Galilean
spacetimes, where we will use the following definition.

Definition 2 A Leibnizian vector field K in a Galilean spacetime (M,�, g,∇) is called
Galilean if it is affine for ∇, that is, LK∇ = 0.

The condition LK∇ = 0 can be characterized as follows:

[K ,∇Y X ] = ∇[K ,Y ]X + ∇Y [K , X ], ∀X , Y ∈ �(T M). (3)

Equivalently, a Leibnizian vector field is Galilean if and only if its flow preserves the
Galilean connection (see [28, Chap. 6]).

To conclude this section, let us show some basic examples of Galilean spacetimes.

Example 3 ConsiderRn+1 and let {t = x0, x1, . . . , xn} be the standard Cartesian coordinates
and g = ∑n

i=1 dx
2
i be the Euclidean metric restricted to each leaf {t = constant}. The

triad (Rn+1, dt, g) constitutes a Leibnizian structure. Endowing it with several compatible
connections we obtain the next well known Galilean spacetimes:

• Galilei–Newton spacetime. It is an Aristotle spacetime endowed with the usual flat affine
connection in R

n+1, i.e., the Christoffel symbols identically vanish, �λ
μν = 0, μ, ν, λ ∈

{0, 1, · · · , n}.
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• Newton–Hooke spacetime. It is an Aristotle spacetime endowed with a connection �

whose only nonvanishing components are �i
00 = − k

τ 2
xi , i ∈ {1, . . . , n}, τ > 0, and

k ∈ R. The constant k can take the values k = +1 (expandingNewton–Hooke spacetime),
k = −1 (oscillating Newton–Hooke spacetime) or k = 0 (Galilei-Newton spacetime).
A physical interpretation of these nonrelativistic cosmological models can be found in
[20]. For this family of Galilean spacetimes the Lie algebra of Galilean vector fields is
of maximal dimension (n+1)(n+2)

2 .

3 Semi-Riemannian product metrics associated to Leibnizian vector
fields of observers

In this section we study the relation between the connection of a Galilean spacetime
(M,�, g,∇) and the Levi-Civita connection of a semi-Riemannianmanifold (M, gε), where
M is the same smooth manifold that describes the Galilean spacetime and gε is a semi-
Riemannianmetric. Indeed, let Z be a field of observers in a Leibnizian spacetime (M,�, g).
We define the following semi-Riemannian metrics in M associated to Z ,

gε = ε � ⊗ � + g(PZ ·, PZ ·), ε = ±1, (4)

i.e., gε(X , Y ) = ε �(X)�(Y ) + g(PZ X , PZY ) for any X , Y ∈ �(T M). Notice that gε

is clearly non-degenerate and the spacelike vectors are orthogonal to Z , An(�) = Z⊥.
Moreover, gε is Riemannian if ε = 1 and Lorentzian if ε = −1.

Let us state the following result, which is a direct consequence of the fact that the flow of a
Leibnizian field of observers Z in a Galilean spacetime with symmetric connection preserves
both � and g.

Proposition 4 Let (M,�, g,∇) be aGalilean spacetimewith symmetric connection∇. Then,
every Leibnizian field of observers Z is a Killing vector field of the metric gε .

These previous results allow us to obtain the relation between a symmetric connection of
a Galilean spacetime and the connection the metrics gε defined in (4). This result was already
observed in [6, Prop. A17].

Lemma 5 Let (M,�, g,∇) be a Galilean spacetime with symmetric connection and let Z be
a free falling inertial field of observers. Then, the Galilean connection ∇ is the Levi-Civita
connection of the metrics gε .

Proof Denoting by ∇ the Levi-Civita connection of the metric (4), our aim in this proof is
to obtain that

T (A, B) = ∇ AB − ∇AB = 0,

for any vector fields A, B ∈ �M . Let U , V ,W ∈ �(An(�)) denote spacelike vector fields
throughout this proof. Due to the tensorial character of this expression, its symmetry because
both connections are torsionfree and the fact that the flow of Z preserves the kernel of �,
we only need to check that T (U , V ) = T (U , Z) = T (Z , Z) = 0, with [U , V ] = [U , Z ] =
[V , Z ] = 0. Note that these assumptions on U , V , Z imply that Z(g(U , V )) = 0.

Firstly, in order to obtain that T (U , V ) = 0 we trivially see that gε(∇UV ,W ) =
g(PZ (∇UV ),W ). Thus, gε(T (U , V ),W ) = 0. Moreover, using the Koszul formula for
a semi-Riemannian metric and the Leibnizian character of Z we have

gε(∇UV , Z) = 0.
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On the other hand,

gε(∇UV , Z) = ε �(∇UV ) = ε U (�(V )) = 0.

Hence, we deduce that T (U , V ) = 0 for U , V spacelike vector fields.
Secondly, let us see that T (U , Z) = 0. Since gε(∇U Z , V ) = −2gε(∇UV , Z) = 0 and

2gε(∇U Z , V ) = 0 due to (2) and the Leibnizian character of Z , we have gε(T (U , Z), V ) =
0. Combining this with the fact that gε(∇U Z , Z) = 0 since gε(Z , Z) = ε and taking into
account that gε(∇U Z , Z) = ε �(∇U Z) = 0, we obtain that T (U , Z) = 0.

Finally, gε(∇ Z Z ,U ) = Z(gε(Z ,U )) − gε(∇ZU , Z) = 0 since �([Z ,U ]) = 0. More-
over, gε(∇Z Z , Z) = 0 because gε(Z , Z) = ε. Consequently, T (Z , Z) = 0 since both ∇Z Z
and ∇Z Z identically vanish (the second one because Z is free falling). ��
Remark 6 Note that if Z is a field of observers, the identity

2 g(∇X Z , Y ) = LZ g(X , Y ) + ωZ (X , Y ), ∀X , Y ∈ �(An(�)), (5)

implies that if Z is a free falling inertial field of observers, then Z is ∇-parallel.1

Remark 7 As a consequence of Lemma 5 we obtain by means of a new approach the well
known fact that a free falling inertial field of observers uniquely determines a symmetric
Galilean connection [5, 9].

Using Lemma 5 we can obtain the geodesics of the Galilean connection as the critical
points of the following functional.

Corollary 8 Let (M, g,�,∇) be a Galilean spacetime admitting a free falling inertial field
of observers Z. Then, the geodesics of ∇ are locally critical points of the functional L :
Cqp −→ R,

L[γ ] = 1

2

∫ b

a

[
ε �(γ ′(s))2 + g(PZγ ′(s), PZγ ′(s))

]
ds, (6)

where Cqp = {γ : [a, b] −→ M piecewise smooth observers, γ (a) = p, γ (b) = q}.
Remark 9 This variational characterization of the Galilean geodesics may be seen as a par-
ticular case of the result given in [5] obtained using a completely different approach. In [5]
the authors suppose the existence of an irrotational field of observers Z , with GZ = gradgφ,
φ ∈ C∞(M), being gradg the g-gradient along each leaf of An(�). In that setting, the field
of observers Z is not assumed to be Leibnizian, and the resulting Lagrangian is given by

Lφ[γ ] =
∫ b

a
gφ(γ ′(s), γ ′(s)) ds, gφ = φ � ⊗ � + g(PZ ·, PZ ·).

Note that gφ can be a degenerate metric, in contrast to what happens to the ones defined in
(4). However, since the functional Lφ is invariant (up to a total derivative) under a change
of field of observers, Z → Z + gradg f , f ∈ C∞(M), an analogous argument to the one
used in [5, Prop. 3.26] leads to another irrotational and free falling field of observers Z ′ with
φ′ = ε. In this way, gφ′ = gε and Lφ′

is, up to a constant, the Lagrangian (6).

1 Identity (5) is derived using the symmetric character of ∇. In the more general context of an Aristotelian
spacetime (see for instance [32, Def. 2.17]), i.e., a Galilean spacetime (M, �, g, ∇) endowed with a Carrollian
structure (Z , h) – in our case, Z is a field of observers and h = g(PZ ·, PZ ·) –, being∇ a compatible (possibly
torsional) connection; the closedness of � and the null expansion of g with respect to Z , LZ g = 0, are the
necessary and sufficient conditions for the existence of a Galilean connection where Z is a free falling inertial
field of observers.
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In addition, we can characterize the associated semi-Riemannian space (M, gε).

Theorem 10 Let (M,�, g,∇) be a simply connected Galilean spacetime with symmetric
connection and let Z be a free falling inertial field of observers. Suppose that Z is complete.
Then, (M, gε) is isometric to a Riemannian (ε = 1) or Lorentzian (ε = −1) product
(R × F, g̃ε), where F is an integral maximal manifold of the distribution An(�) and g̃ε is
the product metric

g̃ε = εdt2 + gF ,

where gF denotes the restriction to F of the Riemannian metric g defined on An(�).

Proof From Proposition 4, Z is a Killing vector field for the metric gε . Consequently, the
flow of Z sends leaves of An(�) to leaves of An(�). Taking this into account, the semi-
Riemannian manifold (M, gε) is endowed with two complementary foliations whose leaves
intersect perpendicularly. Moreover, the leaves of both foliations are totally geodesic. Now,
it is enough to apply de Rham decomposition theorem (see [36, Cor. 2]) to obtain the desired
decomposition. ��

Theorem10provides away to ensure the geodesic connectedness of theGalilean spacetime
as we can see in the following corollary.

Corollary 11 Let (M,�, g,∇) be a simply connected Galilean spacetime with symmetric
connection and assume that there exists a geodesic complete maximal integral submanifold
of the distribution An(�). If the spacetime admits a complete free falling inertial field of
observers then its Galilean connection is geodesically complete. Moreover, given two arbi-
trary points p, q ∈ M there exists a geodesic of the Galilean connection from p to q.

Proof From Theorem 10, the semi-Riemannian manifold (M, gε) is complete. Now, it is
enough to call Lemma 5 and Hopf-Rinow’s theorem. ��

4 Stationary Galilean spacetimes via certain stationary
semi-Riemannianmetrics

In this section we extend the previous results for more general semi-Riemannian metrics.
Namely, we will relate the symmetric connection of a Galilean spacetime with the Levi-civita
connection of certain ‘stationary’ metrics. Namely, the next result extends Lemma 5 to this
setting.

Lemma 12 Let Z be a Leibnizian field of observers in a Galilean spacetime (M,�, g,∇)

with symmetric connection. Suppose that:

(i) The gravitational field of Z,GZ , is the g-gradient (along a leaf ofAn(�)) of a Z-invariant
positive function α, i.e,

GZ = − ε

2
gradgα, with Z(α) = 0. (7)

(ii) There exists a Z-invariant 1-form μ on M verifying μ(Z) = 0, such that the vorticity of
Z satisfies

2ωZ (V ,W ) = dμ(V ,W ) for all V ,W ∈ �(An(�)). (8)
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Let us denote by ∇ the Levi-Civita connection of the ‘stationary’ metric given by

gα,μ
ε = εα � ⊗ � + μ ⊗ � + � ⊗ μ + g(PZ ·, PZ ·), with ε = ±1.

Then, the following identity holds for X , Y , F ∈ �(T M)

gα,μ
ε (∇XY , F) = gα,μ

ε (∇XY , F) + ε

2
� � dα (X , Y )�(F)

+1

2
((∇Xμ)(Y ) + (∇Yμ)(X)) �(F), (9)

where ��dα = �⊗dα +dα ⊗�. Additionally, the field of observers Z is a Killing vector
field of gα,μ

ε .

Proof As in the proof of Lemma 5, we want to obtain for any vector fields A, B,C ∈ �(T M)

that
gα,μ

ε (T (A, B),C) = ε
2 � � dα (A, B)�(C) + 1

2 ((∇Aμ)(B) + (∇Bμ)(A)) �(C),

being T (A, B) = ∇ AB − ∇AB and � � dα = � ⊗ dα + dα ⊗ �. Throughout this proof,
U , V ,W will denote spacelike vector fields satisfying [U , V ] = [U , Z ] = [V , Z ] = 0.

As a first step, focusing on T (U , V ), we can easily see that for spacelike vector fields
gα,μ

ε (T (U , V ),W ) = 0.Moreover, using the classicalKoszul formula for a semi-Riemannian
metric and the Leibnizian character of Z we have

2gα,μ
ε (∇UV , Z) = U (μ(V )) + V (μ(U )) + μ([U , V ]) = U (μ(V )) + V (μ(U )). (10)

Moreover, recalling that �(∇UV ) = U (�(V )) = 0 for spacelike vectors we have

gα,μ
ε (∇UV , Z) = μ(∇UV ).

Combining these expresions we obtain

2gα,μ
ε (T (U , V ), Z) = (∇Uμ)(V ) + (∇Vμ)(U ).

Secondly, let us compute T (U , Z) (the case T (Z ,U ) follows by symmetry). Indeed, from
(10) we get

2gα,μ
ε (∇U Z , V ) = 2U (gα,μ

ε (Z , V )) − 2gα,μ
ε (Z ,∇UV ) = U (μ(V )).

Using now (2) as well as recalling that �(∇U Z) = U (�(Z)) = 0 yields

2gα,μ
ε (∇U Z , V ) = Z(g(U , V )) + 2ωZ (U , V ) − g([Z ,U ], V ) − g([Z , V ],U )

= 2ωZ (U , V ).

Combining both expressions and using the Leibnizian character of Z again we deduce

2gα,μ
ε (T (U , Z), V ) = dμ(U , V ) − 2ωZ (U , V ) = 0,

where the last equality follows from (8). Furthermore, we also have

2gα,μ
ε (∇U Z , Z) = U (gα,μ

ε (Z , Z)) = ε U (α).

Since gα,μ
ε (∇U Z , Z) = μ(∇U Z), we get from the previous equation

2gα,μ
ε (T (U , Z), Z) = ε dα(U ) − 2μ(∇U Z) = ε dα(U ) + (∇Uμ)(Z) + (∇Zμ)(U ),

where the last equality comes from the fact that LZμ = 0.
Our third and final step is to compute T (Z , Z). From the classical Koszul formula we get

2gα,μ
ε (∇Z Z ,U ) = 2Z(μ(U )) − ε U (α) + 2μ([U , Z ]) = 2Z(μ(U )) − ε U (α).
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Since gα,μ
ε (∇Z Z ,U ) = g(GZ ,U ), using again LZμ = 0 and (7) we obtain

2gα,μ
ε (T (Z , Z),U ) = −ε U (α) − 2g(GZ ,U ) = 0.

We finish the third step of the proof combining

2gα,μ
ε (∇Z Z , Z) = Z(gα,μ

ε (Z , Z)) = ε Z(α) = 0,

and gα,μ
ε (∇Z Z , Z) = μ(∇Z Z) to conclude

gα,μ
ε (T (Z , Z), Z) = (∇Zμ)(Z).

The last assertion is a straightforward consequence of the Leibnizian character of Z . ��
Remark 13 Notice that from a physical point of view the metrics gα,μ

ε are well adapted to
the observers in Z . Indeed, it is clear from (9) that the gravitational field measured by an
observer in Z satisfies GZ = ∇Z Z . On the other hand, the skew-symmetric (0, 2)-tensor
field Rotε

α,μ
(Z) is given by

Rotε
α,μ

(Z) = εdα ∧ � + dμ.

Consequently,

Rotε
α,μ

(Z)(V ,W ) = dμ(V ,W ) = 2ωZ (V ,W ),

for all V ,W ∈ �(An(�)).Moreover, it follows from (2) that the tensorsGZ andωZ determine
the Galilean connection of the spacetime. Therefore, the metrics gα,μ

ε contain all the physical
and mathematical information of the Galilean spacetime.

Remark 14 The existence hypothesis of such a function α and a 1-form μ in Lemma 12
are known in some of the existing literature as the conditions that a torsionfree Galilean
spacetime should verify to be a ‘Newtonian’ manifold (see [4, 5]). In the terminology of
[5], this assumption can be expressed by means of the existence of a global 1-form in M ,
AZ = − ε

2α�+μ, such that the gravitational fieldstrength is given by FZ = d AZ . Therefore,
the stationary metric gα,μ corresponds with the Lagrangian metric g(PZ ·, PZ ·)+ 2�� AZ

given in [5, Table II, Sect. D]. The positivity of α is imposed to ensure that the latter is
non-degenerate. However, we should highlight that the concept of Newtonian manifold is not
unanimous in the existing literature. For instance, in [4, 5], a torsionfree Galilean spacetime is
called Newtonian if there exists a field of observers N such that the gravitational fieldstrength
FN is closed, i.e., locally FN = d AN , where the 1-form AN is called the gravitational
potential. However, in [9, 21, 22], a (torsionfree)Newtonian spacetime is defined as aGalilean
spacetime where there exists an inertial free falling field of observers and the leaves of the
spacelike foliation are flat.

Remark 15 The exactness assumption on the vorticity is quite natural. For instance, in the
Lorentzian framework it is even assumed in the definition. In addition, the Z -invariance of
μ implies that LZωZ = 0, which means that the observers in Z are in a ‘stationary’ rotation.

Remark 16 Another form for writing (9) is

∇XY = ∇XY + 1

2
(ε � � dα (X , Y ) + (∇Xμ)(Y ) + (∇Yμ)(X)) �∗, (11)

where �∗ is the vector field gα,μ
ε -metrically equivalent to �. This may be expressed as,

�∗ = 1

εα − ‖μ‖2 (Z − μ�),
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being μ� the unique spacelike vector field satisfying g(μ�, V ) = μ(V ) for any spacelike
vector V , and ‖μ‖2 = g(μ�, μ�).

Moreover, we can characterize the Lorentzian structure associated to the Galilean one in
Lemma 12.

Theorem 17 Under the assumptions of Lemma 12, if M is simply connected and the vector
field of observers Z is complete, then the Lorentzian manifold (M, gα,μ

ε=−1) is isometric to a
relativistic standard stationary spacetime.

Proof Observe that any leaf of the foliation F defined by An(�) is spacelike for the metric
gα,μ

ε=−1. Furthermore, the existence of a global time function and the structure of the Galilean
spacetime ensure that any integral curve of Z crosses exactly once any fixed leaf F0 of the
foliation F . Therefore, it is enough to apply [27, Lemma 3.3] to conclude the proof. ��

A Galilean spacetime (M,�, g,∇) is said to be stationary if it admits a future timelike
Galilean vector field (see [22, Def. 1]). Therefore, if the 1-form μ given in Lemma 12 is
also ∇-parallel, we obtain in the next proposition a characterization of stationary Galilean
spacetimes.

Proposition 18 A vector field Z satisfying the assumptions of Lemma 12 for a ∇-parallel
1-form μ is affine for the Galilean connection. Consequently, the Galilean spacetime is
stationary in the sense of [22, Def. 1].

Proof It is enough to show that the flow of Z is an affine transformation, which is a direct
consequence of (11) and the Killing character of Z . ��
Remark 19 Recall that a relativistic spacetime is called stationary if it admits a globally
defined timelike Killing vector field. A standard stationary spacetime (M, g) is given by a
product smooth manifold R × S, where (S, g) is a Riemannian manifold, endowed with the
Lorentzian metric

g = −α dt ⊗ dt + μ ⊗ dt + dt ⊗ μ + g, (12)

where α is a positive function and μ a 1-form, both defined (defined by the existence of a
complete timelike Killing vector field) obeys the causality condition of being distinguishing,
then it is isometric to a standard stationary spacetime (see [27] for details).

If we compare the stationary Galilean case defined in Lemma 12with a relativistic station-
ary spacetime as described above, the first thing we can find is that the distribution given by
the rest-spaces at each point of the Killing field of observers is not integrable in the relativistic
case. Nevertheless, in the Galilean one the integrability of the spacelike distribution is clear,
constituting the absolute space (being independent of the observer).

Moreover, despite the fact that the tensors Rotg (relativistic case) and Rot
α,μ

ε=−1 (Galilean
case) are formally analogous, whereas in the Galilean case the rotational tensor relative
to Z is given by the 2-form dμ (acting on vectors of the absolute space), this does not
happen in the relativistic case for the rest-spaces given at each point by Z⊥. From a physical
point of view, this makes a difference in the way an observer in Z measures ‘infinitesimally
close’ events in each model. Indeed, if γ (t) is an observer in Z , the spacelike n-plane
{γ (t)}⊥ is the instantaneous space for the observer in the event γ (t). Since Z is Killing,
the correspondence t −→ {γ (t)}⊥ yields, via the parallel translation the Fermi-Walker
connection in the relativistic case and the parallel translation the Galilean connection in the
other one, a one parameter group of rotations on an associated n-Euclidean plane. Namely,

123



164 Page 12 of 22 D. de la Fuente et al.

we can say that the ‘infinitesimally close’ observers to γ are spatially rotating around it and
the observer γ measures a different rate of rotation for these ‘infinitesimally close’ observers
in each model (see [13, 14]).

Once the stationary character of the Galilean spacetime is ensured by Proposition 18 we
can study its geodesic completeness in the next result.

Theorem 20 Let Z be a complete Leibnizian field of observers in a simply connectedGalilean
spacetime (M,�, g,∇) with symmetric connection. Suppose that:

(i) The gravitational field of Z,GZ , is the g-gradient (along a leaf ofAn(�)) of a Z-invariant
positive function α, i.e, (7) holds.

(ii) There exists a Z-invariant and∇-parallel 1-formμ on M, verifying μ(Z) = 0, such that
the vorticity of Z satisfies

2ωZ (V ,W ) = dμ(V ,W ) for all V ,W ∈ �(An(�)). (13)

If some maximal integral submanifold of the distribution An(�) is complete with its
Riemannian metric g and the norm of the gravitational field ||GZ ||g is bounded on this
integral submanifold, then each inextensible geodesic of the Galilean connection is complete.

Proof Poincaré’s lemma ensures the existence of a function T such that � = dT . Consider
the Riemannian metric on M given by gR = dT ⊗ dT + g(PZ ·, PZ ·). Let ϕ be the global
flow of the vector field Z and let F0 be a leaf of the foliation induced by An(�). Define the
map

� : R × F0 −→ M, �(t, p) = ϕ(t, p).

Thanks to the completeness of Z (and the existence of T ) we have that � is a diffeo-
morphism. Indeed, it is enough to see that the orbits of Z meet the integral submanifolds of
An(�) only once. Reasoning by contradiction, let us suppose that an integral curve of Z , γ ,
cuts twice the same leaf Fb, b ∈ R. In that case, there are two values s1, s2 ∈ I , s1 < s2,
such that (T ◦ γ )(s1) = (T ◦ γ )(s2). Since the real function T ◦ γ : I −→ R is smooth,
Rolle’s theorem ensures the existence of s∗ ∈ (s1, s2) such that

d

ds
(T ◦ γ )(s∗) = 0 ⇐⇒ dT

(
Z
(
γ (s∗)

)) = 0,

which is a contradiction, since Z is a field of observers.
Using the pull back�∗g we obtain an isometry between (M, gR ) and (R×F0,�

∗g). As a
consequence, the Riemannian manifold (M, gR ) is complete. Moreover, since Proposition 18
ensures that Z is a Galilean vector field, we can call [22, Thm. 17] to finish the proof. ��

4.1 Static Galilean spacetimes

Lemma 12 can be particularized for the case of an associated static semi-Riemannian metric,
obtaining the following result.

Corollary 21 Let Z be an inertial field of observers in a Galilean spacetime (M,�, g,∇)

with symmetric connection. Suppose that the gravitational field of Z, GZ , is the g-gradient
(along a leaf of An(�)) of a Z-invariant positive function α, i.e., (7) holds.

Let us denote by ∇ the Levi-Civita connection of the ‘static’ metric

gα
ε = εα � ⊗ � + g(PZ ·, PZ ·), with ε = ±1. (14)
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Then, the following identity holds

∇XY = ∇XY + �(X , Y ) Z , (15)

where � = dφ ⊗�+�⊗ dφ and α = e2φ . In addition, the field of observers Z is a Killing
vector field of gα

ε .

Proof Taking μ = 0 in Lemma 12 and computing the vector field gα
ε -metrically equivalent

to �, �∗,

�∗ = ε

α
Z ,

formula (15) is directly obtained from (11). ��

Notice that from Proposition 18 the Galilean spacetime in Corollary 21 is static in the
sense of [22, Def. 1]. In this static case we can also determine the structure of the associated
semi-Riemannian manifold.

Theorem 22 Let Z be a complete inertial field of observers in a simply connected Galilean
spacetime (M,�, g,∇) with symmetric connection. Suppose that the gravitational field of
Z, GZ , is the g-gradient (along a leaf of An(�)) of a Z-invariant positive function α, i.e, (7)
holds.

Then, the semi-Riemannian manifold (M, gα
ε ) is isometric to the warped product (R ×

S, gε), where

gε = ε α dt2 + g,

being (S, g) a Riemannian manifold isometric to a maximal integral submanifold of the
distribution An(�), with its Riemannian metric.

Proof Taking into account that the stages of the global flow of Z are isometries relative to the
metric gα

ε , all the leaves of the foliation defined byAn(�) are isometric with respect to gα
ε and

totally geodesic. On the other hand, ∇Z Z = ∇Z Z . Thus, gα
ε (∇Z Z , Z) = 0, i.e., the integral

curves of Z are extrinsic circles, that is, 1-dimensional totally umbilic submanifolds with
constant mean curvature. Consequently, since we have two complementary foliations whose
leaves intersect perpendicularly we can call [36, Cor. 1] to obtain the desired isometry. ��

To conclude this section, we will provide the following result concerning the geodesic
completeness of static Galilean spacetimes.

Theorem 23 Let Z be a complete inertial field of observers in a simply connected Galilean
spacetime (M,�, g,∇) with symmetric connection. Suppose that the gravitational field of
Z, GZ , is the g-gradient (along a leaf of An(�)) of a Z-invariant positive function α, i.e, (7)
holds.

If some maximal integral submanifold of the distribution An(�) is complete with its
Riemannian metric g and the norm of the gravitational field ||GZ ||g is bounded on this
integral submanifold, then each inextensible geodesic of the Galilean connection is complete.

Proof Making use of Proposition 18, Z is a Galilean vector field. On the other hand, the
metric gε = ε α dt2 + g given in Theorem 22 is complete (see [34, Lemma 7.40]). We
complete the proof using [22, Thm. 17]. ��
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5 Spatially conformally Leibnizian spacetimes and their associated
semi-Riemannianmetrics

In this sectionwewill extend our results to the class ofGalilean spacetimes known as spatially
conformally Leibnizian spacetimes (see [21]). Let us recall some basic definitions in these
ambient spacetimes.

Definition 24 Let (M,�, g) be a Leibnizian spacetime and K a vector field satisfying

�([K , V ]) = 0 for all V ∈ �(An(�)).

The vector field K is called spatially conformally Leibnizian vector field if the Lie derivative
of the absolute space metric satisfies

LK g = 2ρ g, (16)

for some smooth function ρ ∈ C∞(M).

Note that the first condition in the previous is equivalent to the preservation of An(�) by
the flow of K .

Remark 25 If M is additionally endowed with a Galilean structure, (M,�, g,∇), where ∇
is a symmetric connection, we have

LK�(Y ) = d
(
�(K )

)
(Y ) − K

(
�(Y )

)
.

Hence, if the function �(K ) is spatially invariant, it follows

LK�(V ) = 0, ∀V ∈ �
(
An(�)

)
,

and then

�([K , V ]) = −LK�(V ) = 0, ∀V ∈ �
(
An(�)

)
.

Consequently, assumption (16) can be stated as

K (g(V ,W )) = 2ρ g(V ,W ) + g([K , V ],W ) + g([K ,W ], V ), ∀V ,W ∈ �(An(�)).

(17)

Now, let us recall the notion of irrotational conformally Leibnizian spacetime introduced
in [21].

Definition 26 Let (M,�, g,∇) be a Galilean spacetime, whose absolute clock is closed
(d� = 0). If M admits a timelike vector field K ∈ �(T M) satisfying

∇X K = ρ X , ∀X ∈ �(T M), where ρ ∈ C∞(M), (18)

M is called irrotational conformally Leibnizian spacetime (ICL).

Remark 27 Notice that condition (18) directly implies that K is conformally Leibnizian and
Rot(K )(V ,W ) = 0, for all spacelike vector fields V ,W .

We are now in a position to formulate the following result relating the symmetric Galilean
connection of a spatially conformally Leibnizian spacetime and the Levi-Civita connection
of a certain class of semi-Riemannian metrics.
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Lemma 28 Let (M,�, g,∇) be a Galilean spacetime with symmetric connection endowed
with an irrotational future timelike spatially conformally Leibnizian vector field K . Suppose
that its conformal factor ρ is spatially invariant, i.e., V (ρ) = 0 for any V spacelike vector
field and consider the following metric on M,

gε,ϕ = ε � ⊗ � + e2ϕ g(PZ ·, PZ ·), with ε = ±1, (19)

where Z is the field of observers K , Z = K/�(K ), and ϕ is a spatially invariant smooth
function on M. Denoting by ∇ the Levi-Civita connection gε,ϕ , the following relation holds
for X , Y ∈ �(M)

∇XY = ∇XY + dϕ(X)PZY + dϕ(Y )PZ X − �(X)�(Y )GZ

−ε

(
Z(ϕ) + ρ

�(K )

)
gε,ϕ(PZ X , PZY )Z , (20)

where GZ is the gravitational field of Z.

Proof We will use the same ideas as in the proofs of Lemmas 5 and 12 and com-
pute gε,ϕ(T (A, B),C) for certain vector fields A, B,C ∈ �(T M), where T (A, B) =
∇ AB − ∇AB. Again, throughout this proof, U , V ,W will denote spacelike vector fields
satisfying [U , V ] = [U , Z ] = [V , Z ] = 0.

Let us begin by noticing that from Definition 24 we have V (�(K )) = K (�(V )) −
�([K , V ]) = 0, for any V ∈ �(An(�)). Therefore, since �(K ) is spatially invariant due to
∇� = 0, the vorticity of Z vanishes. In addition, a straightforward computation gives

Z
(
g(U , V )

) = 2
ρ

�(K )
g(U , V ).

Our first step now will be to compute T (U , V ). For spacelike vector fields, using the
spatial invariance of ϕ and recalling that for a conformal metric g̃ = e2ψg the Levi-Civita
connection satisfies ∇̃UV = ∇UV + U (ψ)V + V (ψ)U − g(U , V )∇ψ , we obtain that
gε,ϕ(T (U , V ),W ) = 0. In addition, the classical Koszul formula for a semi-Riemannian
metric, (17) and the fact that gε,ϕ(∇UV , Z) = 0 yield

gε,ϕ(T (U , V ), Z) = −
(
Z(ϕ) + ρ

�(K )

)
gε,ϕ(U , V ).

As a second step, let us compute T (U , Z) (the case T (Z ,U ) easily follows from the
symmetry of the connections). Using again Koszul formula, we have

2gε,ϕ(∇U Z , V ) = e2ϕ {2Z(ϕ)g(U , V ) + Z(g(U , V )) − g([Z ,U ], V ) − g([Z , V ],U )}
= e2ϕ {2Z(ϕ)g(U , V ) + Z(g(U , V ))} .

From (2) and the fact that ωZ = 0 we also get

2gε,ϕ(∇U Z , V ) = e2ϕ {Z(g(U , V )) − g([Z ,U ], V ) − g([Z , V ],U )} = e2ϕ Z(g(U , V )).

Combining both expressions we obtain

gε,ϕ(T (U , Z), V ) = Z(ϕ)gε,ϕ(U , V ).

Takingnow into account that 2gε,ϕ(∇U Z , Z) = U (gε,ϕ(Z , Z)) = 0 and gε,ϕ(∇U Z , Z) =
ε �(∇U Z) = 0, we obtain gε,ϕ(T (U , Z), Z) = 0.
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Finally, to compute T (Z , Z)we can use again Koszul formula to deduce gε,ϕ(∇Z Z ,U ) =
0, which combined with 2gε,ϕ(∇Z Z , Z) = Z(gε,ϕ(Z , Z)) = 0 and the spatial character of
GZ = ∇Z Z directly yields T (Z , Z) = −GZ . ��

The relation between these connections in Lemma 28 can be simplified in the particular
case where the variation of the warping function ϕ along the integral curves of K is related
to the conformal factor ρ, obtaining the following result.

Corollary 29 Let (M,�, g,∇) be a Galilean spacetime with symmetric connection endowed
with an irrotational future timelike spatially conformally Leibnizian vector field K . Suppose
that its conformal factor ρ is spatially invariant, i.e., V (ρ) = 0 for any V spacelike vector
field. Let Z be the field of observers K , Z = K/�(K ), and ϕ a spatially invariant smooth
function on M satisfying

K (ϕ) + ρ = 0. (21)

Consider the following metric on M,

gε,ϕ = ε � ⊗ � + e2ϕ g(PZ ·, PZ ·), with ε = ±1. (22)

Denoting by ∇ the Levi-Civita connection gε,ϕ , the following relation holds for X , Y ∈
�(M)

∇XY = ∇XY + dϕ(X)PZY + dϕ(Y )PZ X − �(X)�(Y )GZ , (23)

where GZ is the gravitational field of Z. Moreover, the field of observers Z is a Killing vector
field of gε,ϕ .

We can also guarantee the completeness of the free falling observers’ trajectories in these
Galilean spacetimes under appropriate assumptions in the next theorem.

Theorem 30 Let (M,�, g,∇) be a symmetric Galilean spacetime endowed with a future
timelike irrotational and spatially conformally Leibnizian vector field K . Suppose that its
conformal factor ρ is spatially invariant and let us consider a smooth spatially invariant
function, ϕ, satisfying (21). Suppose that:

(i) For each free falling observer γ , the function − ρ
�(K )

along γ is bounded from above by
a constant cγ > 0.

(ii) There exist some constants A,C > 0 such that

‖GZ
p ‖g ≤ A d(p, p0) + C, ∀p ∈ M,

for a fixed point p0, being GZ
γ the gravitational field the field of observers Z = K/�(K )

and d the Riemannian distance of gε,ϕ with ε = +1.

If (M, gε=+1,ϕ) is complete, then each inextensible free falling observer is complete
towards the future.

Proof The proof of this result is quite similar to the one of [15, Thm. 3] and [23, Thm. 7].
Nevertheless, we include here the proof of our theorem for the sake of completeness. Let
γ : I = [0, b) −→ M be an inextensible free falling observer and, without loss of generality,
choose p0 = γ (0). From (23), γ satisfies the following differential equation,

Dγ ′

dt
= 2 dϕ(γ ′) PZγ ′ − GZ

γ , (24)
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where GZ
γ is the gravitational field Z along γ and D

dt is the covariant derivative of gε,ϕ with
ε = +1, which from now on we will denote by g. Denoting by

u(t) = g(γ ′(t), γ ′(t)),

it is enough to prove that u is bounded by a positive constant in [0, b). On the one hand, let
us define the quadratic operator F : �(T M) −→ �(T M) given by F(X) = 2 dϕ(X) PZ X .
Using the expression of the metric g, we can easily check that

g(γ ′, F(γ ′)) = 2 e2ϕ Z(ϕ) g(PZγ ′, PZγ ′) ≤ 2 Z(ϕ) g(γ ′, γ ′) = −(
ρ

�(K )
◦ γ ) g(γ ′, γ ′).

On the other hand, we note that ‖GZ
p ‖g = eϕ ‖GZ

p ‖g . Since ϕ is spatially invariant we
deduce that ϕ is bounded along each observer γ defined on a bounded real interval. This fact
and (ii) imply that there exists a constant rγ > 0 such that

‖GZ
γ (t)‖g ≤ rγ (1 + |γ (t)|), ∀t ∈ I , (25)

being |γ (t)| = d(γ (t), γ (0)). Thus, from (24) and (25) we obtain,

u′(t) = 2 g(γ ′(t), F(γ ′(t))) + 2 g(γ ′(t),GZ
γ (t)) ≤ (2 cγ + 1)u(t) + 2 r2γ |γ (t)|2 + 2 r2γ ,

where we have used (i) and (25). Considering now v(t) = ∫ t
0 u(s) ds and taking into account

that |γ (t)| ≤ b
∫ t
0 u(s) ds, we get

v′′(t) ≤ k1v
′(t) + k2v(t) + k3,

for some constants k1, k2, k3 > 0. Finally, choosing the unique solution of the above equation
such that v(0) = 0 and v′(0) = u(0), we can use a classic argument for sub-solutions of
ordinary differential equations (see [39, Lemma 1.1]) to obtain the desired bound of u(t) in
I and complete the proof. ��

Remark 31 Note that if in Theorem 30 we replace (i) by the following assumption:

(i’) For each free falling observer γ , the function ρ
�(K )

along γ is bounded from above by a
constant c′

γ > 0.

Then, the completeness towards the past of γ is ensured.

We can simplify the assumptions in Theorem 30, obtaining the following corollary.

Corollary 32 Let (M,�, g,∇) be a simply connected Galilean spacetime with symmetric
connection endowed with a future timelike irrotational and spatially conformally Leibnizian
vector field K . Suppose that its conformal factor ρ is spatially invariant and let us consider
a smooth spatially invariant function, ϕ, satisfying (21). Suppose that:

(i) The functions ρ
�(K )

and ‖GZ‖g are bounded on M.
(ii) The field of observers K and a leaf of the foliation defined by the distribution An(�) are

complete.

Then, each inextensible free falling Galilean observer is complete both towards the future
and the past.
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5.1 Irrotational conformally Leibnizian Galilean spacetimes

For an ICL Galilean spacetime, Lemma 28 particularizes to the following corollary.

Corollary 33 Let (M,�, g,∇) be an ICL Galilean spacetime with symmetric connection,
future timelike conformal vector field K and conformal factor ρ. Consider the field of
observers Z = K

�(K )
and the metric

gε,ϕ = ε � ⊗ � + e2ϕ g(PZ ·, PZ ·), with ε = ±1,

where ϕ is a spatially invariant smooth function on M. Denoting by ∇ the Levi-Civita
connection gε,ϕ , the following relation holds for X , Y ∈ �(M).

∇XY = ∇XY + dϕ(X)PZY + dϕ(Y )PZ X

−ε

(
Z(ϕ) + ρ

�(K )

)
gε,ϕ(PZ X , PZY )Z . (26)

Moreover, K is a spatially conformal vector field of gε,ϕ with conformal factor ρ +K (ϕ).
In particular, if ϕ is constant, K is a conformal vector field of gε,ϕ with conformal factor ρ.

Proof From (18) we obtain ρ = K (�(K ))
�(K )

, which is spatially invariant and GZ = ∇Z Z = 0.
Thus, we obtain (26) using (20). The last assertions follow from the next two computations.

gε,ϕ(∇V K , V ) = (ρ + K (ϕ))gε,ϕ(V , V ), ∀V ∈ An(�).

gε,ϕ(∇V K , V ) = ρ gε,ϕ(Z , Z).

��
Moreover, we can characterize the structure of the semi-Riemannian manifold related to

an ICL Galilean spacetime by means of the following result, which also provides a better
understanding of the meaning of assumption (21).

Theorem 34 Let (M,�, g,∇) be a simply connected ICLGalilean spacetimewith symmetric
connection, future timelike conformal vector field K and conformal factor ρ. If the field of
observers Z = K

�(K )
is complete then the semi-Riemannian manifold (M, gε,ϕ) with ϕ a

spatially invariant smooth function on M is isometric to a warped product (R × S, gε),
where

gε = ε dt2 + e2ϕg, with ε = ±1,

being (S, g) isometric to a leaf of the foliation defined by the distribution An(�), with the
metric g. In addition, if ϕ satisfies (21), then (M, gε,ϕ) is isometric to a product (R× S, gε),
where

gε = ε dt2 + g, with ε = ±1

and (S, g) is isometric to a leaf of the foliation defined by the distribution An(�), with the
metric g.

Proof Observe that ∇Z Z = ∇Z Z = 2GZ = 0. On the other hand, using (20) we obtain

∇V Z = ∇V Z + dϕ(Z)V = 1

�(K )
(ρ + K (ϕ))V ,
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for all V ∈ �(An(�)). Therefore, the leaves of the foliation given by the distribution An(�)

are totally umbilic submanifolds of (M, gε) with mean curvature H given by

H = ε

n
trace(A) = − ε

�(K )
(ρ + K (ϕ)),

where AV = −∇V Z denotes the shape operator associated to Z . Thus, from [36, Thm. 1]
we deduce that (M, gε,ϕ) is isometric to a warped product (R × S, gε = ε dt2 + e2ϕg).
Moreover, if (21) holds, then the leaves of the foliation given by An(�) are totally geodesic
and the second statement is obtained from [36, Cor. 2]. ��

We conclude particularizing our results for an important class of ICLGalilean spacetimes.

Example 35 (GGRW spacetimes) recall that a Galilean spacetime (M,�, g,∇) is called a
Galilean Generalized Robertson–Walker spacetime (GGRW) [21, Def. 1] if M = I × F ,
where I ⊆ R, (F, h) is an n-dimensional connected Riemannian manifold, � = dπI and g
is the restriction to the bundle An(�) of the (degenerate) metric on M given by

g = ( f ◦ πI )
2 π∗

Fh, (27)

where πI , πF are, respectively, the canonical projections onto the open interval I and the
fiber F ; f ∈ C∞(I ) and ∇ is the only symmetric Galilean connection on M such that

∇∂t ∂t = 0, and Rot ∂t = 0, (28)

being ∂t = ∂/∂t the global coordinate vector field t := πI .
This family of Galilean geometric models are the classical version of the relativistic

Generalized Robertson-Walker spacetimes introduced in [3].
As it is discussed in [21], the vector field K = ( f ◦ πI ) ∂t is a future timelike irrotational

spatially conformally Leibnizian vector field with conformal factor ρ = f ′ ◦πI . In addition,
M is an ICL spacetime. Hence, fromCorollary 33, the relation between∇ and the Levi-Civita
connection of the metric

gε,ϕ = ε � ⊗ � + π∗
Fh,

which is denoted by ∇, is

∇ = ∇ + dϕ ⊗ dπI + dπI ⊗ dϕ,

where ϕ = − log( f ◦ πI ) + C, C ∈ R. In addition, the vector field ∂t is a Killing vector
field of gε,ϕ .

6 Conclusion

In thiswork, we study several relevant classes ofGalilean spacetimes and relate their symmet-
ric Galilean connections to certain Levi-Civita connections defined on the same manifold,
adapted to a suitable field of observers of the Newton–Cartan model. Using these semi-
Riemannian metrics that are partly compatible with the Galilean connection we are able to
prove new results on the geodesic connectedness and completeness of the spacetime as well
as obtain variational characterizations of the spacetime’s geodesics. Moreover, we also pro-
vide new global results concerning the topological and differential structure of the Galilean
spacetime.
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By means of progressively weakening the assumptions on the field of observers in the
Galilean spacetime we can relate the symmetric connection of a Galilean spacetime with
the Levi-Civita connection of more general semi-Riemannian metrics. Namely, when the
field of observers is free falling and inertial (Sect. 3), the associated semi-Riemannian metric
is a product one. Relaxing our assumptions on the field of observers to certain hypotheses
on their gravitational field and vorticity the associated semi-Riemannian metric is a station-
ary one (Sect. 4), which includes the static case when the observers are inertial (Sect. 4.1).
Finally, the symmetric Galilean connection of a spatially conformally Leibnizian spacetime
is related to the Levi-Civita connection of a semi-Riemannian metric that includes the family
of Generalized Robertson-Walker Lorentzian metrics (Sect. 5).
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