
S. I . : T IMELY ADVANCES OF DEEP LEARNING WITH APPLICATIONS AND DATA

DRIVEN MODELING

Conditioned fully convolutional denoising autoencoder for multi-
target NILM
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Abstract
Energy management requires reliable tools to support decisions aimed at optimising consumption. Advances in data-driven

models provide techniques like Non-Intrusive Load Monitoring (NILM), which estimates the energy demand of appliances

from total consumption. Common single-target NILM approaches perform energy disaggregation by using separate learned

models for each device. However, the use of single-target systems in real scenarios is computationally expensive and can

obscure the interpretation of the resulting feedback. This study assesses a conditioned deep neural network built upon a

Fully Convolutional Denoising AutoEncoder (FCNdAE) as multi-target NILM model. The network performs multiple

disaggregations using a conditioning input that allows the specification of the target appliance. Experiments compare this

approach with several single-target and multi-target models using public residential data from households and non-

residential data from a hospital facility. Results show that the multi-target FCNdAE model enhances the disaggregation

accuracy compared to previous models, particularly in non-residential data, and improves computational efficiency by

reducing the number of trainable weights below 2 million and inference time below 0.25 s for several sequence lengths.

Furthermore, the conditioning input helps the user to interpret the model and gain insight into its internal behaviour when

predicting the energy demand of different appliances.
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1 Introduction

Energy efficiency has gained significant attention, not only

in the promotion of sustainable products and generation

technologies aimed at saving energy, but also in the study

of current systems to obtain knowledge about energy

consumption patterns. Frequently, this consumption is

reported as an overview of the total demand in a certain

period of time which can enhance users’ energy awareness.

However, detailed representations of energy consumption

help users to obtain further feedback, prompting them to

take specific actions to improve overall energy efficiency

[14, 18].

This growing interest in detailed energy representations

has led to the development of energy disaggregation

techniques, commonly known as Non-Intrusive Load

Monitoring (NILM) [4, 15, 46, 54]. NILM analysis

decomposes the energy consumption of a facility by esti-

mating the appliance-specific loads using only measure-

ments from the main energy demand. Unlike other

intrusive methods, NILM provides energy disaggregation

using only data collected from the main meter, reducing

cost and complexity.

NILM disaggregation addresses the problem of esti-

mating diverse appliance load signatures across various

facilities. The load signature of devices can be grouped into

categories, such as systems with two states of operation

(ON/OFF), with a finite number of operating states, or

permanent consumer devices that remain active all the time

[4]. Moreover, energy consumption patterns are influenced

by the type of the facility. For example, residential facili-

ties include common household appliances; while, non-

residential large buildings, such as educational campuses,

hospitals or factories, integrate different types of devices

and subsystems (thermal comfort systems, lifts, etc.) with

distinct energy demand patterns.

All these complexities have been addressed using data-

driven nonlinear models [4, 30] in order to achieve a

reliable energy disaggregation. Machine Learning tech-

niques, for instance, are commonly applied to classify

appliance operating states or predict energy consumption

of each device from aggregated data. Deep Neural Net-

works (DNN) [36] have demonstrated superior accuracy

compared to earlier machine learning models in the NILM

problem, making significant advancements in this field

[31, 42]. DNN-based approaches constitute the foundation

of current research and improvements in NILM. Typical

DNN architectures include Convolutional Neural Networks

(CNN) [40] applied to time series, such as 1D CNN [16],

denoising AutoEncoders (dAEs) [7, 21, 31], or Recurrent

Neural Networks (RNN) focussed on temporal dependen-

cies [29].

Currently, the majority of DNN-based NILM models

consist of a set of trained networks for each individual

consumption independently. This means that a single-tar-

get network is dedicated to estimating the energy con-

sumption of a specific appliance. Thus, the resources of

these models for full disaggregation in a facility involve

high computational costs. As an alternative to single-target

NILM models, multi-target disaggregation allows the

estimation of all individual appliances from the main

energy consumption by training only one neural network

[16, 30]. Generally, the estimation of all appliances is

achieved by increasing the number of outputs and the depth

of the DNN architectures, resulting in more complex

models, since the number of trainable weights and the time

needed to estimate each individual consumption increase

significantly.

Although multi-target models have demonstrated com-

parable performance to single-target methods [16, 20], they

are still under development and require further exploration

of relevant aspects in the NILM field. The main research on

multi-target models focuses on the accuracy of the disag-

gregation for residential facilities. However, other key

aspects essential for the deployment of NILM systems,

such as computational efficiency, transferability to diverse

facility types, and interpretability, have been frequently

overlooked in prior analyses. These factors are particularly

important in providing actionable feedback to the user and

would help end users to gain understanding of energy

demand and confidence in the model.

A new perspective of multi-target NILM models, called

multi-FCNdAE, was introduced in [20]. The model is built

upon a single-output Fully Convolutional denoising Auto-

Encoder (FCNdAE) [21], incorporating a conditioning

input to specify the target appliance. Based on this

approach, this article extends the assessment of the multi-

FCNdAE model to several domains. The contributions of

this work include:

• Evaluation of the model performance against single-

target and multi-target methods using established NILM

metrics.

• The use of both residential and non-residential data to

broaden applicability.

• Computational efficiency through trainable weights and

time to obtain output.

• Exploration of conditioning mechanisms to enhance the

model interpretability.

To sum up, this work advances the study of the multi-

FCNdAE model, extending its application in various sce-

narios, improving accuracy and efficiency in energy con-

sumption disaggregation. Furthermore, the use of a

conditioning input helps to interpret and understand the

model with practical utility.

Neural Computing and Applications

123



The remainder of the paper is organised as follows. In

Sect. 2, a brief revision of related work is presented. In

Sects. 3.1 and 3.2, the single-target and multi-target NILM

perspectives are detailed, respectively. The proposed multi-

FCNdAE is defined in Sect. 3.3. All the experimental

considerations are detailed in Sect. 4. In Sect. 5, the per-

formance, computational efficiency, and interpretability of

the proposed method are evaluated. Finally, the conclu-

sions and future work are presented in Sect. 6.

2 Related work

Numerous works related to energy disaggregation have

been reviewed by the research community

[4, 15, 22, 46, 54], ranging from the description of the

NILM problem to more practical and reliable approaches

[30]. Other publications in the literature focus on specific

aspects such as NILM datasets [27, 32] or performance

evaluation [44].

Hart [24] defined a signature-based approach that

focussed on finding transitions between steady-states on

total consumption. This approach involves combinatorial

optimization to find the best combination of available sig-

natures that independently estimate disaggregation, without

considering the temporal context. In contrast to the com-

putationally expensive combinatorial approaches, pattern

recognition methods rely on functions that efficiently map

features extracted from the total energy consumption to the

state of the appliances. Traditional machine learning

techniques are also suitable for pattern recognition in

NILM, especially supervised approaches, such as event

detectors and appliances’ state classifiers [3, 17, 37]. Other

unsupervised techniques based on Factorial Hidden Mar-

kov Models (FHMM) [33, 34] have been explored to avoid

the use of labelled data. FHMM achieved acceptable re-

sults, but suffered from limitations in computing models

for several appliances with multiple operating states.

Deep neural networks have improved the performance

of NILM models [26, 31, 42] and avoid the extraction of

handcrafted features on the main consumption through the

use of different Deep Learning (DL) architectures, such as

Recurrent Neural Networks (RNN), AutoEncoders (AE) or

Convolutional Neural Networks (CNN). RNNs are well-

suited for modelling time series data due to their ability to

maintain internal memory or state. By processing prior

inputs to compute the internal state, RNNs effectively

influence both the current input and output, enabling robust

sequential data analysis. RNNs encompass various variants

such as Gated Recurrent Units (GRU) or Long Short-Term

Memory (LSTM) networks, which have been compared for

energy disaggregation in [35]. The comparison revealed

that GRU networks are more suitable for NILM due to the

difficulty in training LSTM layers.

CNN models [2, 8] are popular in deep learning appli-

cations and consist of a sequence of convolution, pooling,

normalisation and fully connected layers. CNNs efficiently

exploit the temporal coherence in time series data by

employing convolutional filters with a reduced number of

trainable weights. This results in smaller architectures that

are less complex, yet highly effective, with improved

generalisation capabilities. In [51], authors proposed a deep

CNN for predicting an instantaneous individual consump-

tion from an input sequence of main consumption, leading

to a sequence-to-point method that advances on previous

sequence-to-sequence approaches.

In addition to vanilla CNN models, a wide variety of

CNN-based architectures have also been developed. In

[52], two inputs consisting of a differential and an auxiliary

signal were used to generate the final sequence. In addition,

two sub-networks in NILM models perform multiple tasks

combining regression and classification [47], and also for

the construction of a scale and context-aware network

based on convolutional branches connected to a gating

mechanism [10]. A modification of WaveNet [43], called

WaveNILM, was proposed in [23], based on dilated causal

convolutions achieving higher performance than previous

methods.

In contrast to these approaches, NILM can also be

treated as a noise reduction problem, where a denoising

AutoEncoder (dAE) [31] is used to extract the corre-

sponding appliance signal from the aggregated noisy signal

[7]. This approach shows an improvement in both seen and

unseen scenarios for household data and offers a certain

degree of robustness against noise. A NILM system com-

posed by a fully convolutional dAE (FCNdAE) was eval-

uated using real data from a hospital in [21], showing

accurate estimations for short and long-term consumption.

Most DL-based models use one neural network per

appliance for disaggregation. In contrast to this single-

target approach, multi-target NILM models use a unique

model to disaggregate all the individual appliances. The

multi-target perspective contributes to the computational

efficiency of the NILM models by reducing the complexity

of the approach. A multi-task NILM model based on U-Net

architecture has been proposed in [16] with a multi-label

learning for state detection and multi-target quantile

regression for power estimation. Another multi-target

NILM, which is the baseline for this study, was presented

in [20]. The authors proposed in this paper a FCNdAE

network to estimate individual consumptions using a con-

ditioning input that modulates intermediate activations for

each specific appliance. While preliminary results in multi-

target NILM have been reported, the challenge remains in

developing efficient and accurate multi-target models that
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provides interpretable and actionable feedback to the user,

while maintaining comparable or superior accuracy com-

pared to single-target models across various scenarios.

Previous works on NILM have focussed on approaches

trained and evaluated on residential facilities. However,

improvements in technology have led to the widespread

installation of smart meters in buildings, enabling data

collection in a broad range of facilities. Although there are

a few works that evaluate non-residential buildings [21]

and industrial energy consumption data [28], further efforts

are required to assess NILM models in these increasingly

common facilities.

Another important aspect of the NILM models is the

interpretation of their outcome, since it facilitates users to

improve the overall efficiency thanks to the knowledge

gained from NILM feedback [5, 53]. In this sense, several

solutions have emerged allowing the user to interact with

the outcome of NILM models in interactive data visuali-

sations [1, 19, 48]. Furthermore, improving the inter-

pretability of NILM models would increase the level of

confidence in their feedback [41], so any effort to improve

transparency is valuable [6].

3 Methods

3.1 NILM problem formulation

NILM can be addressed as either a classification or a

regression problem [30]. NILM as a classification problem

involves predicting the operating states of downstream

devices; whereas, the appliance-specific energy demand

can be estimated directly through NILM regression models.

This article only considers NILM as a regression problem

due to its better scalability to non-residential domains,

where labelling the states of each individual node could be

challenging.

The outcome of NILM regression models is computed

from a whole-facility energy consumption sequence,

commonly denoted as P. This sequence is the sum of all

appliance-specific loads in the facility:

P ¼
XN

m¼1

pm þ � ð1Þ

where pm represents a sequence —with the same length as

P— of the m-th individual load, � represents an additive

noise term, and N is equal to the number of individual

consumptions of the facility. An energy disaggregator Dm

is a function that extracts the m-th individual energy con-

sumption from P:

Dm : P ! p̂m ð2Þ

Most approaches follow the single-target strategy shown in

Fig. 1a, where the individual consumptions are estimated

by a set of N disaggregators fDmg m ¼ 1; 2; . . .;N. Sin-
gle-target models are usually based on a previous win-

dowing operation, which divides the whole sequence of

total energy consumption (daily/monthly sequence) into

smaller input sequences. This operation is defined by the

window length L and the stride M between contiguous

windows.

Once the windowing operation is applied, the resulting

training windows of total and individual consumption

fPðiÞ; p
ðiÞ
m g are used to minimise the reconstruction loss

function L in order to optimise the parameters h, which
defines the regression data-driven model Dm:

h� ¼ argmin
h

1

n

Xn

i¼1

L
�
pðiÞm ;DmðPðiÞ; hÞ

�

¼ argmin
h

1

n

Xn

i¼1

L
�
pðiÞm ; p̂ðiÞm

� ð3Þ

where p̂
ðiÞ
m is the estimated individual consumption

sequence for the i-th training sample and h� the optimised

weights. Reconstruction error functions, such as Root Mean

Squared Error (RMSE) orMean Squared Error (MSE), are

often used as loss functions in DNN-based NILM models.

Fig. 1 Different approaches for NILM. From top to bottom: a single-

target, b multi-output and c conditioned multi-target NILM

approaches
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After training, each disaggregator Dm estimates an

individual sequence p̂m from a sequence of total con-

sumption P. In practice, this approach entails excessive

memory usage in the analysis because a total of N models

must be loaded and executed to obtain all individual con-

sumptions. In addition, it is not easy to interact with the

model beyond varying the input sequence. In Sect. 2,

several models were mentioned [7, 10, 21, 29] as suit-

able energy disaggregation functions Dm.

3.2 Multi-target NILM

In contrast to the single-target NILM formulation above, in

multi-target NILM only one disaggregator D is trained:

D : P ! p̂ ð4Þ

The output of the D model consists of a set of N estima-

tions, one per appliance, denoted as p̂ ¼ ½p̂1; p̂2; . . .; p̂N �.
Recent multi-target approaches have proposed variants of

previous single-target DNN models [9, 16, 50]. They typ-

ically consist of a feature extraction stage, which can be a

1D CNN [16, 50], or a feature selection method [9], fol-

lowed by a multi-target regression or classifier. A shallow

fully connected neural network, which maps the learned

features to the output, is used as a multi-target stage in

[16, 50]. This multi-output approach is graphically repre-

sented in Fig. 1b. This results in a significant increase in

the number of weights, especially for large numbers of

extracted features F and appliances N to be disaggregated.

This leads to greater memory requirements for storing and

running the model, an increasing risk of overfitting, and

restricted scalability to facilities with varying numbers of

appliances.

In Fig. 1c, a representation of the alternative condi-

tioned multi-target NILM perspective presented in [20] is

also included. Instead of varying the output, an auxiliary

input, denoted as conditioning input S, is incorporated into

a single-target model. A conditioning mechanism processes

S and modulates the intermediate activations of the CNN

layer in order to prepare the overall model to estimate the

targeted appliance p̂m.

This approach could mitigate previously mentioned

limitations of the multi-output models and provide users

with an interactive pathway to steer the DNN model,

potentially paving the way for more flexible and inter-

pretable multi-target NILM models. The conditioned multi-

target NILM, the conditioning mechanism, and the multi-

FCNdAE architecture are further explained in the follow-

ing section.

3.3 Conditioned multi-FCNdAE

Conditioned DNN models, such as the conditioned NILM

model suggested in Fig. 1c, have recently been studied in

other application areas, with a focus on modulating the

intermediate activations of the main network using the

auxiliary input S. These modulations are commonly per-

formed by simple functions such as biasing [39], scaling

[11, 25] or affine [12, 13] transformations. Feature-wise

Linear Modulation (FiLM) [45] is a general-purpose con-

ditioning framework based on applying affine transforma-

tions to the output of the intermediate convolution layers of

a CNN using the FiLM layer shown in Fig 2 and defined

as:

FiLMðFðiÞ
j;k ; cj;k; bj;kÞ ¼ F

ðiÞ
j;kcj;k þ bj;k ð5Þ

where the k-th channel of the output feature map from the

j-th convolution layer F
ðiÞ
j;k is element-wise scaled by cj;k

and shifted by bj;k. Note that the FiLM operation only

introduces two parameters per channel to be conditioned,

so that they are independent of the size of the input

sequence to the network.

The FiLM framework modulates the output of the net-

work by stacking FiLM layers between convolution layers.

All c and b required by the stacked FiLM layers are

computed from the conditioning input S by the FiLM

generator g:

fc; bg ¼ gðSÞ ð6Þ

In practice, the FiLM generator g is implemented as an

auxiliary neural network with two outputs, which takes as

input the selection of the individual consumption to be

disaggregated. For the sake of simplicity, in the rest of the

article we refer to Sm when the m-th individual consump-

tion is selected for disaggregation.

The FiLM framework is used to transform the single-

target FCNdAE model [21] into the multi-FCNdAE model

[20], displayed in Fig. 3. Once the S is introduced in the

model, all the FiLM parameters fc, bg are computed by a

FiLM generator made of three fully connected layers.

The computed FiLM parameters are then used to mod-

ulate the encoder in the main network. The encoder in

Fig. 3 encompasses two convolution blocks. Each convo-

lution block consists of two consecutive convolution layers

with stride of 1, followed by another convolution layer with

a stride of 2, reducing the input sequence size L by half. All

the convolution layers in the encoder are modulated by

FiLM layers. The output of the convolution blocks is then

compressed to a sequence of q elements by a convolution

layer with a kernel size of L/4 and q number of kernels. By

modulating only the encoder, the latent space representa-

tion zðiÞ is conditioned on the target consumption indicated
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in S, so that it contains distinct regions based on the

selected individual consumptions.
Finally, the decoder upsamples zðiÞ to the estimated

individual consumption p̂ðiÞm using two convolution blocks

Fig. 2 Representation of the

affine transformation inside of a

FiLM layer. The affine

transformation is illustrated for

the k-th channel (blue) of the j-
th convolution layer output Fj

Fig. 3 Architecture of the proposed conditioned multi-FCNdAE architecture
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consisting of a transposed convolution layer with a stride of

2 and two subsequent convolution layers with a stride of 1.

The targeted individual consumptions are indicated in S

as a one-hot encoding vector, denoted as Sm. However,

more complex formats of Sm, such as attributes related to

the individual consumption (e.g. location, type of con-

sumption or any prior knowledge) are also appropriate.

4 Experimental set-up

Data. The UK-DALE residential dataset [32] and a hos-

pital complex dataset [21] are used to evaluate the pro-

posed model. Thus, the analysis encompasses both

residential and non-residential contexts.

The UK-DALE dataset contains 1/6 Hz appliance-level

and 1 Hz main-level energy consumptions records in 5

households over a span of more than four years. To unify

the data, the overall sample rate is set to 1/6 Hz by

downsampling the main energy consumption data. Data

from House 1 are used to train and test the models. A year

of data is reserved for training and four months for testing.

Only data from fridge (FZ), kettle (KT), dishwasher (DW),

washing machine (WM) and microwave (MW) are con-

sidered, as these appliances are the most common and

representative of a household. The noise present in the

selected individual consumptions is reduced by a median

filter [16].

The non-residential dataset was recorded from a hospital

complex [21], where the total energy consumption was

measured together with 9 individual consumptions at a

sampling rate of 1/60 Hz over one year, resulting in a total

of 507353 samples. The individual nodes monitored are

described in Table 1. They represent a comprehensive set

of typical energy profiles within a hospital: lifts, diagnostic

equipment, inpatient rooms and data processing servers.

Duplicate nodes have been eliminated from the results

presented in Sect. 5, refining the analysis to focus solely on

the consumption of specific nodes: CGBT-2.Montante0

(lifts), Radiologia1 (X-ray), RehabilitacionA (rehabilita-

tion), CPD (data centre), Plantas 2-7 (floors). In the case of

the hospital data, ten months of data are used for model

training and one month for model evaluation.

Training set-up. The models were trained using pairs of

sequences of total and individual consumption, denoted as

fPðiÞ; p
ðiÞ
m g. The training sequences are normalised using z-

score normalisation. In order to train the multi-FCNdAE

architecture, the one-hot vectors Sm are added to the

training sequences. The models are trained using the Adam

optimiser with a stepsize a ¼ 0:001, decay rate b ¼ 0:9

and a batch size of 128. To mitigate overfitting, early

stopping regularisation is implemented by monitoring the

validation error during training epochs. The user-defined

hyperparameters related to the main architecture and

training process of the multi-FCNdAE model in Fig. 3 are

detailed in Table 2. Regarding the computational resour-

ces, a computer with Debian GNU/Linux OS and equipped

with a RTX 3090 Nvidia GPU card was employed to

develop, train and evaluate all the models.

Metrics. Root Mean Squared Error (RMSE), Mean

Absolute Error (MAE) and Estimated Accuracy (EAC)

error metrics, commonly employed in NILM literature

[4, 46] for regression methods, are applied to assess the

models under study. These metrics are separately applied to

the sequences of estimated individual consumptions p̂m of

length T obtained from a main consumption P of the same

length. RMSEm measures the standard deviation of the

energy estimation of the m-th individual consumption:

Table 1 Description of the individual nodes measured from the

hospital facility

Meter Description

Total consumption Consumptions of whole facility

CGBT-2.Montante0 South zone lifts

Radiologia1 X-ray room 1

Radiologia2 X-ray room 2

RehabilitacionA Rehab facilities A

RehabilitacionB Rehab facilities B

Subcentral3 West zone consumption

CPD Server and a data centre

Plantas_2-7 South zone floors from 2 to 7

Plantas_8-13 South zone floors from 8 to 13

Table 2 Hyperparameters of the multi-FCNdAE model illustrated in

Fig. 3 for the two datasets employed in the experiments

UK-DALE HOSPITAL

Input length (L) 500 1440

No. epochs 100 100

Batch size 128 128

Early stopping yes yes

Early stopping patience 10 10

No. downsampling blocks 2 2

No. upsampling blocks 2 2

Kernel size 4 4

No. channels downsampling (32, 64) (32, 64)

No. channels upsampling (64, 32) (64, 32)

No. channels latent space (q) 26 26

No. neurons in FiLM Gen. layers (32,32,32) (32,32,32)

Neural Computing and Applications

123



RMSEm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

t¼1

ðpmðtÞ � p̂mðtÞÞ2

T

vuut ð7Þ

MAEm measures the error in the estimated value of an

individual energy consumption m at each time step:

MAEm ¼ 1

T

XT

t¼1

jpmðtÞ � p̂mðtÞj ð8Þ

while EACm reports a score value of accuracy for the

disaggregation of individual consumption m:

EACm ¼ 1�
PT

t¼1 jpmðtÞ � p̂mðtÞj
2
PT

t¼1 pmðtÞ
ð9Þ

EACm is normalised by the total energy consumed by the

individual consumptions, allowing for the comparison of

individual estimations between each other.

5 Results and discussion

This section evaluates and discusses the accuracy, com-

putational efficiency, and interpretability of the multi-

FCNdAE model. The accuracy of the multi-FCNdAE is

assessed against the single-target denoising AutoEncoder

(dAE) [31], biLSTM [29] and vanilla FCNdAE [21] mod-

els. The U-Net approach proposed in [16] is also included

to compare our model with a state-of-the-art multi-target

approach. In Sect. 5.1, the UK-DALE dataset is utilised to

evaluate the effectiveness in a residential domain, whereas,

in Sect. 5.2, the models are evaluated in a non-residential

scenario using data from the hospital described in Sect. 4.

Computational efficiency, focussing on the number of

weights and the models inference time, is addressed in

Sect. 5.3. Finally, the potential benefits of multi-FCNdAE

in terms of interpretability are discussed in Sect. 5.4.

5.1 Performance in residential data

The accuracy of multi-FCNdAE with respect to the

aforementioned competitors for the UK-DALE dataset is

shown in Table 3. Both FCNdAE-based approaches out-

perform the dAE and biLSTM models. This confirms that

the FCNdAE architecture is a reliable baseline method to

be expanded as a multi-target model. The FCNdAE

approach shows slightly better MAE and EAC values

compared to the multi-FCNdAE model, with higher accu-

racy in three of the five appliances analysed. Note that each

individual model Dm in the FCNdAE approach is specifi-

cally trained to disaggregate one appliance, a simpler task

than predicting all the appliances at once, as the multi-

FCNdAE model does.

Figure 4 illustrates appliance-specific energy loads

predicted by the models. The disaggregations align with the

results presented in Table 3. The FCNdAE model shows

consistent performance for all individual consumption time

series, regardless of their nature. The multi-FCNdAE

model gives similar results, but with offset errors for the

washing machine and microwave appliances.

When the multi-FCNdAE approach is compared with

the multi-target U-Net model in Table 3, it shows better

MAE and EAC values for all appliances. Multi-FCNdAE

exhibits greater consistency than the U-Net model for all

the devices, as illustrated in Fig. 4.

5.2 Performance in non-residential data

Table 4 presents the MAE and EAC results for the multi-

FCNdAE approach and its competitors when applied to the

hospital data. Multi-FCNdAE and single-target FCNdAE

architectures exhibit better overall metrics compared to the

biLSTM and dAE models. The multi-FCNdAE model

slightly improves the results of FCNdAE. In the individual

energy loads predicted by the models depicted in Fig. 5, it

can be observed that the FCNdAE model cannot reproduce

short-term patterns, especially for X-ray node. This con-

tributes to its loss of accuracy when compared to the multi-

FCNdAE.

The multi-FCNdAE model displays better performance

than the U-Net model for all individual consumptions.

Comparing examples of estimated sequences of individual

nodes in Fig. 5, the U-Net model performs better in

reproducing short-term patterns but tends to introduce

noise into the estimated sequences. Conversely, multi-

FCNdAE demonstrates a smoother behaviour for all esti-

mated individual nodes.

5.3 Computational efficiency

This section compares the computational efficiency by

examining the number of trainable weights and the time

required to obtain the output sequences of individual con-

sumptions from a sequence of main consumption for each

NILM model. The number of weights and inference time

are significantly influenced by the input length L of the

models. The optimal input length is a user-defined hyper-

parameter that depends on the data sampling rate, the

model employed and the appliances or consumptions being

estimated. In order to consider the effect of L on the

computational efficiency evaluation, the inference time and

number of weights, displayed in Fig. 6, are calculated for

models with L values of 100, 500 and 1440 timesteps.
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Figure 6a shows the number of trainable weights for

multi-target architectures, and, in the case of single-target

models, the sum of weights of all appliance-specific models

fDmg. It can be observed the invariance of the number of

weights for the U-Net and biLSTM models to the change in

the input length; while, the number of weights for the

FCNdAE and multi-FCNdAE models varies with the input

length. However, the multi-FCNdAE approaches require

substantially fewer weights than the biLSTM and U-Net

approaches for all input lengths. The output of the multi-

target U-Net architecture relies on fully connected layers,

which notably increases the number of weights in the

model. Conversely, FiLM conditioning only introduces the

weights of the FiLM generator.

Figure 6b denotes the time required by models to dis-

aggregate a 5-hour sequence of main consumption P. For

Table 3 MAE and EAC metrics

of the dAE, biLSTM, FCNdAE,

multi-target U-Net and multi-
FCNdAE approaches for the

dishwasher (DW), fridge (FZ),

kettle (KT), microwave (MW)

and washing machine (WM)

appliances of UK-DALE dataset

DW FZ KT MW WM

MAE dAE 25.039 8.795 7.766 4.446 30.428

biLSTM 23.805 3.940 12.973 4.713 11.687

FCNdAE 6.451 3.927 3.804 2.495 3.706

U-Net 16.735 9.596 3.204 3.923 15.524

multi-FCNdAE 3.768 4.999 3.648 4.242 6.577

RMSE dAE 147.845 17.951 59.814 43.969 126.089

biLSTM 119.314 12.621 72.497 54.043 91.186

FCNdAE 37.547 12.334 37.887 33.759 40.075

U-Net 163.166 26.241 42.638 37.223 133.774

multi-FCNdAE 35.550 9.905 41.138 44.936 45.464

EAC dAE 0.703 0.879 0.789 0.786 0.425

biLSTM 0.718 0.946 0.647 0.773 0.779

FCNdAE 0.923 0.946 0.897 0.880 0.930

U-Net 0.802 0.868 0.913 0.811 0.706

multi-FCNdAE 0.955 0.931 0.901 0.796 0.876

Fig. 4 Appliance consumptions from UK-DALE dataset (grey line) compared to their estimations (blue line) obtained from the dAE, biLSTM,

FCNdAE, U-Net and multi-FCNdAE models
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single-target methods, the displayed times comprise the

execution of all the networks fDmg trained to predict the

individual consumption corresponding to each appliance. It

can be observed that the single-target FCNdAE approach is

the fastest method for estimating the individual consump-

tion sequences. The multi-FCNdAE model is slower than

U-Net for short input sequences, but faster for long input

sequences, and is comparable to standard FCNdAE models.

The FiLM conditioning layers defined in (5) and the need

to enter the input multiple times by varying the condi-

tioning input S could delay the disaggregation process of

the multi-target FiLM model.

Table 4 MAE and EAC metrics

of the dAE, biLSTM, FCNdAE,

multi-target U-Net and multi-
FCNdAE approaches for the

hospital dataset

Data centre Floors Lifts Rehab X-ray

MAE dAE 2.785 1.760 1.832 1.098 10.341

biLSTM 2.701 1.912 2.372 1.135 6.676

FCNdAE 0.999 1.285 1.695 0.768 4.097

U-Net 0.851 2.501 3.188 1.330 4.766

multi-FCNdAE 0.300 1.135 1.540 0.703 3.045

RMSE dAE 3.373 2.304 2.620 1.509 13.569

biLSTM 3.233 2.548 3.261 1.536 10.020

FCNdAE 1.353 1.791 2.463 1.160 7.026

U-Net 1.408 3.246 4.141 1.670 6.944

multi-FCNdAE 0.561 1.579 2.282 1.054 5.204

EAC dAE 0.975 0.972 0.974 0.973 0.824

biLSTM 0.976 0.970 0.966 0.972 0.886

FCNdAE 0.991 0.980 0.976 0.981 0.930

U-Net 0.992 0.960 0.954 0.968 0.919

multi-FCNdAE 0.997 0.982 0.978 0.983 0.948

Fig. 5 Individual consumptions from hospital data (grey line) compared to their estimations (blue line) obtained from the dAE, biLSTM,

FCNdAE, U-Net and multi-FCNdAE models
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5.4 Interpretability opportunities of conditioned
NILM

This section explores the possibilities of the conditioned

NILM approach to improve the overall interpretability and

user’s confidence in the NILM model. Three strategies are

proposed: 1) investigating the effects of FiLM in the latent

space, 2) creating interpretable transitions between indi-

vidual consumptions; and 3) exploiting the b and c
parameters to highlight relevant inner filters.

Effects of FiLM in the latent space. The multi-

FCNdAE approach uses the FiLM conditioning method to

adaptively modulate the encoder feature maps based on the

targeted individual consumptions indicated in S by means

of the Sm one-hot vectors. Thus, an input sequence PðiÞ can
be projected into different regions of the latent space

depending on Sm. This results in a latent space represen-

tation z
ðiÞ
m conditioned on the selected m-th appliance.

Figure 7 shows the latent space representation of a set of

input sequences PðiÞ for both datasets. Each sequence PðiÞ is

processed N times (one per appliance), varying the input

Sm. The resulting z
ðiÞ
m are then projected by the Uniform

Manifold Approximation and Projection (UMAP) [38] to

visualise a 2D map of the latent space. The UMAP view

reveals that the FiLM transformations divide the latent

space into appliance-specific regions. From these regions,

the decoder reconstructs the individual target consumption.

The location of node-specific clusters in the view also

appears to be meaningful, since similar nodes are projected

together, and those nodes that are different from each other

are mapped apart. For instance, in the UK-DALE map, the

latent space regions of the kettle and microwave are close

to each other, since both devices have similar energy

demand and ON durations (see Fig. 4). Likewise, in the

hospital map the Data Centre area is significantly distant

from the rest of the nodes, indicating its distinct nature (see

Fig. 5).

Interaction with the conditioning input. FiLM trans-

formations allow for continuous interaction with the con-

ditioning input Sm, enabling the end user to input

Fig. 6 Number of trainable weights (a) and inference time (b) computed for all the studied NILM methods for input sequences of 100, 500 and

1440 time steps

Fig. 7 UMAP projections of the conditioned latent space zm
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trajectories in the appliance space and receive a transition

between disaggregated nodes as output.

Figure 8 shows several examples of continuous transi-

tions obtained after introducing the same window PðiÞ into
the model and several points of the trajectory S ¼ ð1�
kÞSapp1 þ kSapp2 between two appliances, varying k in the

range [0, 1]. These transitions insightfully reveal to the

user which changes should be applied to the starting indi-

vidual node to turn it into the end node. This idea is closely

related to the field of explainable machine learning,

especially with counterfactual examples [49], since the

proposed model is able to reveal which learned features

make two sequences from individual nodes different.

Relevant inner filters. The FiLM parameters in Eq. (5)

provide information about the relevance of the convolution

kernels according to the targeted individual consumption in

S. In particular, the scaling parameter cj;k inhibits or pro-

motes the k-th channel of the feature map Fj;k for the j-th

convolution layer. As shown in Fig. 9, the user can

simultaneously analyse the activation maps Fj and

parameters cj values, to better understand the inner

importance of each kernel in the inner computation of the

network. The cj values improve the analysis of Fj com-

pared to the standard multi-target models [16], where the

feature maps cannot be contextualised with each output

appliance. The interpretability of the feature map analysis

in Fig. 9 is limited by the interactions between positive and

negative values of Fj and cj, thereby complicating the

association of the highlighted activations with recognisable

patterns of the appliance selected by the one-hot vector Sm.

Although not covered in this article, imposing a non-neg-

ative constraint on the FiLM parameters potentially

enhances the interpretability of the analysis in Fig. 9.

However, it is important to note that this may penalise the

overall accuracy of the system.

6 Conclusion

This article investigates the effectiveness of a multi-target

NILM model, based on a Fully Convolutional denoising

Autoencoder, denoted as multi-FCNdAE. The study con-

cludes that:

• The proposed model predicts multiple individual con-

sumptions using only one trained network, reducing the

computational cost of the model, especially for large

input sequences.

• The use of a conditioning input based on Feature-wise

Linear Modulation (FiLM) technique allows specifying

the target device. This input efficiently modulates

intermediate convolution layers and enables the user

to guide the model in an insightful way.

• Performance is evaluated in different scenarios such as

residential buildings, using the well-known UK-DALE

Fig. 8 Examples of transitions

driven by the trajectory S ¼
ð1� kÞSapp1 þ kSapp2 in the

conditioning input. The

transitions from the initial

appliance in green (k ¼ 0) to the

final appliance (k ¼ 1) in

orange are represented by

purple lines
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dataset, and in non-residential buildings using data from

a hospital facility.

• A comparison is executed using both single-target and

multi-target methods, revealing that the multi-FCNdAE

model exhibits competitive accuracy when compared to

single-target models, especially in non-residential con-

texts, and demonstrates improvement over a widely

used multi-target approach.

The multi-FCNdAE technique is characterised by a mini-

mal number of trainable weights, which reduces com-

plexity and improves inference times. This enhances the

model deployment in real-world facilities. The incorpora-

tion of the FiLM technique provides three different ways to

better understand the model: conditioned latent space,

continuous transitions between predicted individual con-

sumptions and the analysis of the FiLM parameters. These

provide valuable information about the inner mechanisms

that drive the predictions of the model.

This work faces some limitations and challenges that are

beyond the scope of this article and pave the way for future

work. Firstly, the accuracy of multi-FCNdAE approaches is

slightly outperformed by other single-target FCNdAE in

some household appliances, owing to data variability and

complexities in appliance usage patterns. Secondly, the

interpretability of gamma weights is constrained by sign

cancellations (see Sect. 5.4). Lastly, further experiments

are necessary regarding the portability of the proposed

model to new contexts. For instance, when an unseen

individual consumption is connected.

Additional potential avenues for future research include

extending the conditioning mechanism FiLM to other

NILM methods, refining techniques to enhance inference

times, and exploring knowledge integration and inter-

pretability for more interactive user experiences. By

addressing these aspects, the study lays the foundation for

advancing NILM methodologies to make them more

accessible, efficient, and user-friendly.
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23. Harell A, Makonin S, Bajić IV (2019) Wavenilm: A causal neural

network for power disaggregation from the complex power sig-

nal. ICASSP 2019–2019 IEEE International Conference on

Acoustics. Speech and Signal Processing (ICASSP), IEEE,

pp 8335–8339

24. Hart GW (1992) Nonintrusive appliance load monitoring. Proc

IEEE 80(12):1870–1891

25. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In:

Proceedings of the IEEE conference on computer vision and

pattern recognition, pp 7132–7141

26. Huber P, Calatroni A, Rumsch A et al (2021) Review on deep

neural networks applied to low-frequency nilm. Energies

14(9):2390

27. Iqbal HK, Malik FH, Muhammad A et al (2021) A critical review

of state-of-the-art non-intrusive load monitoring datasets. Electric

Power Syst Res 192:106921

28. Kalinke F, Bielski P, Singh S et al (2021) An evaluation of nilm

approaches on industrial energy-consumption data. In: Proceed-

ings of the Twelfth ACM International Conference on Future

Energy Systems, pp 239–243

29. Kaselimi M, Doulamis N, Voulodimos A et al (2020) Context

aware energy disaggregation using adaptive bidirectional LSTM

models. IEEE Trans Smart Grid 11(4):3054–3067

30. Kaselimi M, Protopapadakis E, Voulodimos A et al (2022)

Towards trustworthy energy disaggregation: a review of chal-

lenges, methods, and perspectives for non-intrusive load moni-

toring. Sensors 22(15):5872

31. Kelly J, Knottenbelt W (2015) Neural nilm: Deep neural net-

works applied to energy disaggregation. In: Proceedings of the

2nd ACM International Conference on Embedded Systems for

Energy-Efficient Built Environments, pp 55–64

32. Kelly J, Knottenbelt W (2015) The UK-DALE dataset, domestic

appliance-level electricity demand and whole-house demand

from five UK homes. Sci Data 2(1):1–14

33. Kim H, Marwah M, Arlitt M et al (2011) Unsupervised disag-

gregation of low frequency power measurements. In: Proceedings

of the 2011 SIAM International Conference on Data Mining.

SIAM, pp 747–758

34. Kolter JZ, Jaakkola T (2012) Approximate inference in additive

factorial HMMs with application to energy disaggregation. In:

Artificial intelligence and statistics, pp 1472–1482

35. Krystalakos O, Nalmpantis C, Vrakas D (2018) Sliding window

approach for online energy disaggregation using artificial neural

networks. In: Proceedings of the 10th Hellenic Conference on

Artificial Intelligence, pp 1–6

36. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature

521(7553):436–444

37. Liao J, Elafoudi G, Stankovic L et al (2014) Non-intrusive

appliance load monitoring using low-resolution smart meter data.

In: 2014 IEEE International Conference on Smart Grid Com-

munications (SmartGridComm), IEEE, pp 535–540

38. McInnes L, Healy J, Melville J (2018) Umap: Uniform manifold

approximation and projection for dimension reduction. arXiv

preprint arXiv:1802.03426

39. Mirza M, Osindero S (2014) Conditional generative adversarial

nets. arXiv preprint arXiv:1411.1784

Neural Computing and Applications

123

https://doi.org/10.1016/j.enbuild.2017.11.054
http://arxiv.org/abs/1812.03915
http://arxiv.org/abs/1606.01549
http://arxiv.org/abs/1610.07629
https://doi.org/10.23915/distill.00011
https://distill.pub/2018/feature-wise-transformations
http://arxiv.org/abs/1703.00785
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1411.1784


40. Moradzadeh A, Mohammadi-Ivatloo B, Abapour M et al (2021)

A practical solution based on convolutional neural network for

non-intrusive load monitoring. J Ambient Intell Humaniz Comput

12:9775–9789

41. Murray D, Stankovic L, Stankovic V (2020) Explainable nilm

networks. In: Proceedings of the 5th International Workshop on

non-intrusive load monitoring, pp 64–69

42. do Nascimento PPM (2016) Applications of deep learning tech-

niques on NILM. Diss Universidade Federal do Rio de Janeiro

43. Oord Avd, Dieleman S, Zen H et al (2016) Wavenet: A genera-

tive model for raw audio. arXiv preprint arXiv:1609.03499

44. Pereira L, Nunes N (2018) Performance evaluation in non-in-

trusive load monitoring: datasets, metrics, and tools-a review.

Wiley Interdiscip Rev Data Min Knowl Disc 8(6):e1265

45. Perez E, Strub F, De Vries H et al (2018) Film: Visual reasoning

with a general conditioning layer. In: Thirty-Second AAAI

Conference on Artificial Intelligence

46. Schirmer PA, Mporas I (2022) Non-Intrusive Load Monitoring: A

Review. IEEE Trans Smart Grid 14(1):769–784

47. Shin C, Joo S, Yim J et al (2019) Subtask gated networks for non-

intrusive load monitoring. In: Proceedings of the AAAI Confer-

ence on Artificial Intelligence, pp 1150–1157

48. Völker B, Pfeifer M, Scholl PM et al (2020) A Versatile High

Frequency Electricity Monitoring Framework for Our Future

Connected Home. In: Sustainable Energy for Smart Cities: First

EAI International Conference, SESC 2019, Braga, Portugal,

December 4–6, 2019, Proceedings 1, Springer, pp 221–231

49. Wang Z, Samsten I, Mochaourab R et al (2021) Learning Time

Series Counterfactuals via Latent Space Representations. In:

Discovery Science: 24th International Conference, DS 2021,

Halifax, NS, Canada, October 11–13, 2021, Proceedings 24,

Springer, pp 369–384

50. Yang Y, Zhong J, Li W et al (2019) Semisupervised multilabel

deep learning based nonintrusive load monitoring in smart grids.

IEEE Trans Industr Inf 16(11):6892–6902

51. Zhang C, Zhong M, Wang Z et al (2018) Sequence-to-point

learning with neural networks for non-intrusive load monitoring.

In: Thirty-second AAAI conference on artificial intelligence

52. Zhang Y, Yang G, Ma S (2019) Non-intrusive load monitoring

based on convolutional neural network with differential input.

Procedia CIRP 83:670–674. https://doi.org/10.1016/j.procir.2019.

04.110, https://www.sciencedirect.com/science/article/pii/

S2212827119307243, 11th CIRP Conference on Industrial Pro-

duct-Service Systems

53. Zhuang M, Shahidehpour M, Li Z (2018) An overview of non-

intrusive load monitoring: Approaches, business applications, and

challenges. In: 2018 International Conference on Power System

Technology (POWERCON), IEEE, pp 4291–4299

54. Zoha A, Gluhak A, Imran MA et al (2012) Non-intrusive load

monitoring approaches for disaggregated energy sensing: a sur-

vey. Sensors 12(12):16838–16866

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

http://arxiv.org/abs/1609.03499
https://doi.org/10.1016/j.procir.2019.04.110
https://doi.org/10.1016/j.procir.2019.04.110
https://www.sciencedirect.com/science/article/pii/S2212827119307243
https://www.sciencedirect.com/science/article/pii/S2212827119307243

	Conditioned fully convolutional denoising autoencoder for multi-target NILM
	Abstract
	Introduction
	Related work
	Methods
	NILM problem formulation
	Multi-target NILM
	Conditioned multi-FCNdAE

	Experimental set-up
	Results and discussion
	Performance in residential data
	Performance in non-residential data
	Computational efficiency
	Interpretability opportunities of conditioned NILM

	Conclusion
	Data availability
	References


