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Abstract
In this paper, we propose a machine learning approach for detecting superficial defects in metal surfaces using point cloud
data. We compare the performance of two popular deep learning architectures, multilayer perceptron networks (MLPs) and
fully convolutional networks (FCNs), with varying feature sets. Our results show that FCNs (F1=0.94) outperformed MLPs
(F1=0.52) in terms of precision, recall, and F1-score. We found that transfer learning with pre-trained models can improve
performance when the amount of available data is limited. Our study highlights the importance of considering the amount
and quality of training data in developing machine learning models for defect detection in industrial settings with 3D images.

Keywords Image segmentation · Defect detection · Convolutional neural networks · Deep learning · Machine learning ·
3D images · Fully convolutional networks · Transfer learning

1 Introduction

Nowadays, quality controls have become a key aspect in the
manufacturing industry towards the improvement of the pro-
duction processes and reduce manufacturing costs. In the
specific case of metal parts manufacturing, the absence of
functional and aesthetic defects must be ensured in 100% of
the production prior to delivery. This has led to a great interest
in the development and implementation of accurate and com-
putationally efficient quality control systems in production
lines [1, 2].

Traditionally, quality controls in production have been
conducted through the manual measurement and inspection
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of random samples. These procedures typically depend on
human operators, involve extended inspection times, and ren-
der the examination of the entire production impractical.

These procedures are still present when the inspection
requires contact between the measuring equipment and the
steel component being studied. Contact measurements have
to be performed at a relatively slow pace to avoid collisions
that could deteriorate the equipment or the production [3, 4].

The participation of human inspectors is also undesired
(due to fatigue, cost, subjectivity, etc.). With the upcoming
of non-contact measurement methods, such as ultrasound
[5], machine vision [6], or some interferometric techniques
[7], the measurement speed limitation and the human inter-
vention has been significantly reduced. As a result, it is now
possible to perform a comprehensive inspection of produc-
tion processes.

However, data from non-contact sensors must be accu-
rately and efficiently processed to inspect the entire pro-
duction. Computer vision techniques have been widely used
to process measurements in automated inspection systems
[8, 9]. Typically, the workflow of computer vision inspec-
tion systems [10] consists on (1) image acquisition, (2)
image processing, (3) feature extraction, and (4) decision-
making stage. Traditionally, handcrafted descriptors such as
size, position, and edge detection are defined as features,
and decision-making algorithms classify each sample based
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on the extracted features. Statistical models [9, 11], fuzzy
systems [12, 13], and classicmachine learning (ML) models
such as shallow neural networks (NN) [14] or decision trees
(DT) [15] have been proposed as decision-making methods.

While these methods offer simplicity and effectiveness
under certain conditions, they significantly dependon the fea-
ture extraction. Designing appropriate and reliable features
for decision-making algorithms is a difficult and time-
consumingprocess highly conditionedbydomain knowledge
of the problem, uniformbackgrounds, and invariant positions
of the objects through images.

The specific industrial context of this research focuses
on the manufacturing casting processes for the automotive
industry, which is known for its restrictive quality tolerances.
Although this study is centered on casting, it is important to
acknowledge that other fields, such as body-in-white (BIW)
[16] inspections, play a significant role in automotive man-
ufacturing. While BIW inspections pertain to the assembly
and inspection of vehicle bodies, which involves different
procedures anddefect types compared to casting, themethod-
ologies and technologies developed in this research could
potentially be adapted to BIW and other manufacturing pro-
cesses in the future.

In our specific industrial context, castings exhibit a diverse
range of positions and structures, while defects manifest
as subtle and localized irregularities, as exemplified in
Fig. 1. Traditionally handcrafted feature extraction algo-
rithms encounter significant challenges in generating an
effective feature representation [17], particularly when deal-
ing with intricate scenarios characterized by varying casting
structures, flexible positioning, and small, isolated defects.
When conventional 2D imaging is insufficient, the adoption
of 3D sensors becomes essential to capture a comprehensive
profile of the surface and identify non-compliant material
[18]. The transition from 2D cameras to 3D cameras finds
strong justification in the domain of quality control for
casting components [19]. Particularly, for surface defects
where evaluating the surface roughness is crucial in the

decision-making process, conventional 2D cameras cannot
adequately capture the roughness information. However, 3D
imaging provides depth information that enables the calcu-
lation of roughness and sphericity.

The outcome of 3D imaging is commonly addressed by
3D point cloud comparison [20]. 3D point cloud compar-
ison involves the process of aligning and analyzing two
sets of point cloud data—collections of points in a three-
dimensional coordinate system—to assess their geometric
similarities and differences. When defects are smaller than
the acquisition resolution, 3D point cloud comparison proves
inadequate. For instance, in welding of cast pieces [21], the
dimensional tolerances exceed several tenths of a millimeter,
while faults like bumps may only be only fractions of mil-
limeter. This can cause cloud comparison methods to fail in
detecting these subtle defects.

Given the challenges associated with manual feature
extraction, data-driven models, particularly deep learning
(DL) techniques [22], offer a convenient alternative. In the
last decade, DL models have demonstrated their ability to
learn meaningful features from raw data in various domains,
such as image segmentation [23], object detection [24],
and medical image classification [25]. However, DL mod-
els based on supervised learning [26] require large labeled
datasets and incur high computational costs during training
and inference, making their deployment in industrial pro-
cesses, such as surface defect detection, challenging.

In addition, researchers are actively working on devel-
oping more efficient DL algorithms that can reduce the
computational costs and increase the reliability of thesemod-
els [27].

In this proposed study, we aim to investigate the effective-
ness of well-known convolutional neural networks (CNNs)
for feature extraction in the context of 3D image analysis.
Specifically, we will explore the capabilities of prominent
CNNarchitectures, includingVGG-16 [28],ResNet [29], and
U-Net [30], in extracting relevant features from 3D images.

Fig. 1 Defect view example from original cloud, distance map and 2D processed image
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These CNNs will be integrated with custom convolutional
decoders to create fully convolutional networks (FCNs) [31].

To aid in the feature extraction task, we have manually
selected 15 features based on covariance matrices. These
features allow us to assess the impact of the amount of input
information on the accuracy of detection.

Our study is structured into two stages to establish a base-
line performance and gain insights into the advantages of
transfer learning [32]. In the initial stage, we trained the
FCN model from scratch, without utilizing any pre-trained
weights. This approach provided us with a foundation for
evaluating the model’s performance from the ground up.

Subsequently, in the second stage, we leveraged transfer
learning on the FCN model that exhibited the best perfor-
mance. This involves using a smaller dataset and initializing
the model with pre-trained weights. By comparing the out-
comes of both approaches, we illustrated the benefits of
incorporating transfer learning within the context of FCN
models for image segmentation [32, 33].

In addition to introducing our custom FCN approach, we
conducted a comparative analysis with a traditional multi-
layer perceptron (MLP). This MLP was trained using both
pixel information and manually extracted features.

The remainder of the article is organized as follows: Sect. 2
describes related work; Sect. 3 describes the data acquisition
systems. The different approaches are detailed in Sect. 4, and
the results are compared in Sect. 5. Finally, Sect. 6 presents
the conclusions.

2 Related work

ML techniques have been demonstrated to be effective in
anomaly detection in various application domains, such as
anomalous consumption detection in large buildings [34],
fault detection in rotatingmachines [35], and structural health
monitoring of large infrastructures [36].

In the field of quality control by image processing, most
studies focus on defect detection using 2D images [37]. In
[38], the authors proposed a multilevel methodology for
binary classification of defective casting parts from X-ray
images. Although, initially, the use of manually extracted
features from these images was the most common approach
due to the simplicity and speed of the algorithms [39], the
selection of these features is a complex process. To address
this challenge, some studies have investigated the application
of DL methods for object recognition and defect detection
without manual feature extraction, obtaining good results
[40–42].

The development of deep CNNs has significantly advanced
various image processing tasks. Jiang et al. [43] proposed a
novel approach that combines convolutional and attention
layers for the detection of casting defects in X-ray images.

This work harnesses the power of CNNs to effectively detect
and segment casting defects. Moreover, the capability of
CNNs to excel in defect detection and segmentation tasks
has been previously demonstrated in the study by Ferguson
et al. [44].

Most studies in this field use deep architectures such as
VGG [28] or ResNet [29], which are known for being able
to extract optimal features, to classify samples as defective
or not. On the other hand, fields such as image segmentation
have gained momentum thanks to fully convolutional net-
works (FCNs) [31], which allow the simultaneous inference
of several pixels of the image and take advantage of attributes
such as parameter sharing [45] to optimize the computations
during the inference stage. In particular, architectures such
as U-Net [30] have proven to be able to perform pixel-level
classification with high accuracy, and pre-trained networks
like VGG/ResNet [28, 29] are commonly used for this task.

Regarding the utilization of 3D data, there have been sev-
eral studies focusing on employing ML techniques for the
detection of defects in industrial components. In their work
[46], the authors proposed a deep learning-based approach
for identifying defects in 3D-printed objects. Similarly, in
[47], a framework based on ML was introduced to detect
flaws in 3D objects. However, the utilization of 3D data for
industrial defect detection in machine learning research is
still lacking.

In this article, we introduce a new method for real-time
defect detection using FCNs, enhancing defect resolution by
leveraging 3D point clouds as the initial input. This work
tackles defect detection in complex geometries within the
casting processes for automotive industry,which has not been
previously addressed. We merge renowned CNN architec-
tures with point cloud data, adding a novel step to process
3D point clouds into 2D features to work with FCNs and
achieving defect detection on tolerances much higher than
prior works. Our solution operates in a fully convolutional
format, accompanied by a tailored decoder. This configura-
tion enables CNNs to act as encoders, delivering accurate
real-time image segmentation for industrial casting compo-
nents.

3 Data preprocessing

3.1 Optical system

As explained in the previous section, most of the research
in this field has been carried out on RGB images. Despite
the convenience for a computer to display such images, RGB
color spaces have a series of drawbacks. The images captured
in naturally occurring conditions or environments are prone
to be affected by natural lighting intensity.
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On the other hand, projects based on 3D laser triangu-
lation are invariant to changes in light intensity and other
environmental effects. The technique can resolvemillimeter-
size bumps and changes in depth from hundreds of meters
away. In addition, laser triangulation excels at measuring at
shorter distances, making it perfectly suited to fields such as
metrology or surface inspection [48].

3D profiling suffers with surfaces that are particularly
reflective or absorb light, so determining the wavelength and
laser power according to the material is key.

Each collision is added to a point cloud, which refers to
a set of data points in a coordinate system. In the standard
cartesian coordinate system, points are defined in terms of
X , Y , and Z coordinates. Point cloud data is then projected
into a 2D space where pixel intensity defines the distance
between the object and the camera.

3.2 Feature extraction

Our research aims to improve the accuracy of identifying
structural patterns and defects in a piece using 3D features
extracted from a distance image X ∈ R

l×n [49], being l
and n the height and width of the image. To this end, we
extract the covariance matrix for each pixel using a fixed
window around it, as shown in Fig. 2, and exclude pixels with
values far from themean of the window to reduce noise in the
resulting matrix. It is essential to address the border pixels to
ensure consistent neighborhood calculations. Therefore, we
introduce zero padding along the borders of the image.

According to Eq. 1, N is the total pixels in the neigh-
borhood, and µPi is the mean value of the given pixels.
Each element in the neighborhood, denoted as v, represents
a vector that encompasses the pixel values within the given

Fig. 2 Neighborhood extraction from distance image

neighborhood. Within this vector, each entry corresponds to
the values recorded in the three-dimensional coordinate sys-
tem, where the x and y values are directly extracted from the
row and column values in the image, respectively. Higher
neighborhood values reduce the noise present in the fea-
tures, at the cost of losing accuracy in the detection of small
defects. Conversely, a small neighborhood value allows the
detection of smaller defects, but introduces more noise to
the features. The optimal neighborhood value should be cal-
ibrated for each application manually.

CPi = 1

N

N∑

j=1

(v j − µPi )(v j − µPi )
T (1)

From the covariance matrix, a total of m geometric features
are extracted.

F(X(i)) = {F(i)
1 ,F(i)

2 , . . . ,F(i)
m } (2)

whereF(i)
m ∈ R

l×n is the result of the feature extraction oper-
ation F(.) on the i-th image of the training set (see Fig. 3).

The features will be grouped according to the time
involved in their computation. The final clusters are shown
in Table 1.

• Level 0: Raw data. No additional processing needed.
• Level 1: Features extracted directly from the covariance
matrix: surface normals (Nx ,Ny ,Nz) and eigenvalues
(e1,e2,e3).

• Level 2: Features derived from level 1 features: anisotropy,
sum of eigenvalues, entropy, sphericity, linearity, pla-
narity, omnivariance, surface variation [49].

4 Methodology

Once we have these features, we can train a classification
function C(.) (Eq. 3) that takes these features as input and

Table 1 Features clustering

Level 0 Level 1 Level 2

Anisotropy

Nx Sum of eigenvalues

Ny Entropy

Nz Sphericity

Distance e1 Linearity

e2 Planarity

e3 Omnivariance

Surface variation
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Fig. 3 2D to 1D conversion for m channels

outputs the probability of the image belonging to the faulty
class.

C(F(X(i))) = p(y = 1|X(i)) (3)

In previousworks [50, 51], the authors used vanilla fully con-
nected neural networks to perform this task. However, fully
connected networks based on pixel-wise classification may
not be the best choice for image segmentation tasks, espe-
cially when dealing with large images. The pixel-by-pixel
inference and feature computation can become a bottleneck
in terms of time and resources. Therefore, we will explore
the use of fully convolutional networks (FCNs) for this task.

Specifically, we will compare the performance of three
popular FCN architectures, namely U-Net [30], VGG [28],
and ResNet [29], in segmenting faulty areas in electronic
component images. These architectures have been exten-
sively used in various image segmentation tasks and have
shown promising results.

4.1 Semantic image segmentation with a vanilla
fully connected neural network

For a baseline comparison, a fully connected network as
shown in Fig. 4 was trained to produce pixel-wise class pre-
diction, so that the original 2D images must be converted
to 1D vectors, lossing spatial information of the image. To
solve this problem, information is extracted not only from
the pixel, but also from a neighborhood, as shown in Fig. 3.

For each pixel Pi inside an image F(i)
m , a feature vector

fvec with lengthws×ws corresponding to the values of F(i)
m

in W f
Pi
is extracted.

fvec = fl,n = W fl,n
ws,ws → Wws2,1

fl,n
(4)

being ws the size of the neighborhood. In this way, the input
vector is increased by a factor of ws. Different values of
ws should be tested in order to find the optimal value that
maximizes the amount of input information without failing
into overtraining problems [52].

Table 2 shows the different architectures based on dense
neural networks evaluated during this research.With an input
layer of size m × ws2 and an output layer of 1, each neural
network is designed by modifying the depth and width of
the network to evaluate the differences in both accuracy and

Fig. 4 “Fully connected” neural network architecture
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Table 2 Dense model architectures. m = 15, ws = 9

Name Input layer Neurons per
hidden layer

Output layer

DenseS 1215 256–64 1

DenseM 1215 512–128 1

DenseL 1215 1024–256-64 1

inference speed. The label for any given sample was set to
be the true label of the central pixel of the patch.

4.2 Semantic image segmentation with fully
convolutional networks

In the case of FCNmodels, the input images and correspond-
ing ground truth were split into 256× 256-pixel tiles to keep
the memory consumption low during the training and valida-
tion. These tiles were adjacent and overlapped with a factor
of 0.5.

As CNNs have the ability to learn features from input
images, it may not be necessary to use all the manually
extracted features, reducing complexity in the first layer and
allowing the network to learn the optimal features to solve
the given task. Moreover, the manual calculation features
are computationally expensive and time-consuming. Thus,
reducing the preprocessing steps will directly benefit the
overall system performance.

To achievemaximumoptimization of system calculations,
grouping is performed based on the complexity of each cal-
culation. As discussed in Sect. 3.2, level 1 features are more
complex than level 0 features. Likewise, level 2 features are
more complex than level 1 and level 0 features. For this
reason, for each level, tests will be performed using all the
features of its own level and below. Table 3 shows the final
groups.

The final layer of the proposed FCN architecture is com-
posed of a single channel of size 256×256, which outputs
probability maps representing the likelihood of defects in
each pixel. As shown in Fig. 5, the general FCN architec-
ture includes this final output layer, which is essential for the
pixel-wise defect detection task.

Although there are a large number of architectures avail-
able to choose from, during the research, we will focus on

Table 3 Feature groups for model input layers

Name Features

Group 1 Level 0

Group 2 Level 0 + Level 1

Group 3 Level 0 + Level 1 + Level 2

Fig. 5 Output layer format in FCN models

U-Net, VGG, and ResNet. The details of the implementation
of this architecture are explained in the subsequent sections.

4.2.1 U-Net architectures

Unlike traditional architectures, U-Net [30] does not employ
any fully connected layers. Instead, it only uses convolutional
layers, with a ReLU activation function starting each normal
convolution process. This design allows U-Net to effectively
capture both fine-grained and high-level features in the input
data, making it well suited for image segmentation tasks.

As shown in Fig. 6, U-Net addresses the bottleneck issue
of the traditional autoencoder architecture by using skip con-
nections between the encoder and decoder components. This
allows U-Net to adapt to segmentation problems and seg-
ment objects of different sizes by preserving the fine-grained
features of the original image.

4.2.2 VGG encoder

VGG19 [28] is a convolutional neural network (CNN) trained
on the ImageNet dataset, known for its good performance
and simple architecture with 19 layers. It has the potential
for transfer learning and can reduce the risk of overfitting.
The decoder is constructed using deconvolution blocks con-
catenated, and a pre-layer is added to convert the input tensor
from n to 3 channels for the intended 3-channel input tensor.
Figure 7 shows the final architecture.

4.2.3 ResNet encoder

The ResNet50 [29] architecture has several advantages for
image segmentation using an FCN model, including its deep
architecture, residual connections, and good performance
on image classification tasks. The use of residual connec-
tions facilitates the flow of gradients through the network
and improves the training of deep networks, enhancing the
model’s performance. Additionally, pre-trained weights and
resources related to ResNet50 are widely available, mak-
ing it a popular choice for researchers and practitioners. The
decoder is constructed using several deconvolution blocks,
and a pre-layermust be added to convert the input tensor from
n to 3 channels as the network is intended to have a 3-channel
input tensor. Figure 8 shows the final architecture.
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Fig. 6 U-Net architecture

5 Experimental setup

The training process takes place on an Ubuntu system with
a NVIDIA GeForce GTX 1060 GPU. In this study, every
model is trained 500 epochs with early stopping after epoch
70. The model batch size for the MLP models is set to 2048.
On the other hand, the batch size for U-Net models is set
to 8. Adam method [53] is used as the optimizer during the
training stage with learning rate of 1 × 10−3, β1 = 0.9 and
β2 = 0.999.

In the case of the MLP models, as the pixel prediction
is evaluated independently, we use binary cross-entropy to
compute the error between predictions and ground truth. On
the other hand, a similarity metric is used for computing the
error between the predicted image and ground truth image
in FCN models. We found out that the best loss function
for our dataset is a combination of Focal [54] (γ = 1) and
Tversky loss (α = 0.3,β = 0.7) [55]. Tversky allows us to
set different weights for FP and TN, unlike Dice loss. Adding
Focal loss helps to focus on hard cases with low probabilities.
These hyperparameterswere extracted empirically to achieve
the best performance on the segmentation task.

L = (1 − Ltversky)
γ (5)

Ltversky = T P

T P + α × FP + β × FN
(6)

5.1 Dataset

A total of 1000 samples were extracted from different cast-
ing processes using the optical system described in Sect. 3.1.

Each image has a resolution of 256 × 256. Data was man-
ually labeled as an image segmentation problem, so images
are labeled pixel-wise. The dataset was extracted from real
casting lines from automotive factories over a period of 1
week. In order to simplify the experiment process and avoid
the impact of unbalanced classes during our experiments, all
defects are labeled as a generic defect, although the dataset
contains a wide variety of defect types (buns, sands, cracks,
etc.). A total of 63 samples of the same production process
with enough defects are used to evaluate the accuracy of the
models. To increase the number of available samples, rotation
and transformation techniques based on the dihedral group
D4 are applied [56].

5.2 Transfer learning

Using transfer learning with a smaller dataset can be a use-
ful approach when resources such as data or computational
power are limited. By training a fully convolutional network
(FCN) model on a smaller dataset while using a pre-trained
model as a starting point, you can potentially improve the
model’s performance and reduce the amount of training time
and resources needed.

In this study, we trained both ResNet50 and VGG19
pre-trained with imagenet dataset on four different sizes of
datasets (25%, 50%, 75%, and 100%) and compared the
results to understandhow themodel’s performance is affected
by the size of the training dataset. This allowed us to identify
the trade-off between performance and the amount of data
used for training and potentially identify the optimal balance
for our specific tasks and resources.
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Fig. 7 VGG19-based
encoder-decoder architecture

It is important to keep in mind that the performance of
the model may also depend on the quality and diversity of
the data, and not just the quantity. Using a well-curated and
diverse dataset, even if it is small, may result in better per-
formance compared to a larger but less diverse dataset. To
obtain a diverse dataset, it is necessary to manually collect
and curate the data, as automatic methods could not capture
the full range of diversity needed for the model to general-
ize well. This can involve selecting images that cover a wide
range of environment conditions, backgrounds, angles, and
object sizes, among other factors.

5.3 Evaluation

One of the most common metrics to determine the accuracy
of binary classification problems is the F1-score. As shown in
Eq. 7, it is calculated as a combination of precision and recall

and is equivalent to the Dice coefficient with two classes.

F1 = 2 × P × R

P + R
(7)

P = T P

T P + FP
(8)

R = T P

T P + FN
(9)

The intersection over union (IoU), also known as the Jac-
card Index, is one of the most commonly used metrics in
semantic segmentation. The IoU is defined as the area of
overlap between the predicted segmentation and the ground
truth divided by the area of union between the predicted seg-
mentation and the ground truth and is calculated using Eq. 10.

I oU = T P

T P + FN + FP
(10)

123

104 The International Journal of Advanced Manufacturing Technology (2024) 134:97–111



Fig. 8 ResNet-50-based encoder-decoder architecture

Although the model may still be trained using pixel-level
labels, the performance will be evaluated using blob-level
metrics. This approach can provide a more accurate evalua-
tion of the model’s performance by taking into account the
connected regions of pixels, rather than just individual pix-
els, which can lead to a more accurate representation of the
defective regions.

It is important to note that the manual labeling of images
for training data can also have an impact on pixel-level met-
rics. In some cases, there may be normal pixels that are
incorrectly classified as defective or defective pixels that are
labeled as normal. This can affect the performance of the
modelwhen evaluated usingmetrics such as precision, recall,

and F1-score, which are highly sensitive to bad labeled data.
In such cases, metrics like intersection over union (IoU) can
provide a better understanding of the model’s overall per-
formance by taking into account the overlap between the
predicted and ground truth regions and providing a more
holistic view of the model’s ability to detect defects.

In order to compute the blob-levelmetrics, wewill convert
ground truth images to lists of bounding boxes considering
the top left and the bottom right pixels as limits. Similarly,
we create the list of predicted bounding boxes.

We will consider that the predicted bounding box is repre-
senting the real bounding box if I OU > 0.5. The following
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Table 4 MLP qualitative results on a validation sample

DenseS DenseM DenseL Ground truth

blob metrics will be calculated on this premise: precision,
recall, F1-score.

In order to evaluate and compare the computational effi-
ciency of different models, the time taken by each model to
run the inference on a 256 × 256 window will be measured
and averaged over the hole test dataset.

6 Results

In this section, we conduct qualitative and quantitative anal-
yses to show the performance of the different methods
proposed.

Qualitative results The segmentation masks generated by
the models and the corresponding ground truth were visually

examined for the detection results. As demonstrated in
Table 4, models based on MLPs were able to separate the
object from the background, but were unable to properly
segment the defects. Conversely, Table 5 shows that the
performance of FCNs was heavily influenced by the fea-
tures employed. Models utilizing features from group 1
(G1) exhibited poor performance, while those incorporat-
ing features from groups 2 (G2) and 3 (G3) displayed higher
accuracy in defect segmentation. However, it is worth noting
that the G2 models generated more false positives compared
to the G3 models, as shown in Table 9.

Quantitative results Complementing the qualitative results
explained above, we provide a comparison of the proposed
methods based on the metrics described in Sect. 5.3. As
previously discussed, pixel-level results may be subject to

Table 5 FCN empirical results on a validation sample

Architecture G1 G2 G3 Ground truth

U-Net

VGG19

ResNet50

123

106 The International Journal of Advanced Manufacturing Technology (2024) 134:97–111



Table 6 Pixel-wise dense model results. Values in bold indicate best
model performaces

Name IoU Inference time (ms)

DenseS 0.035 47.0

DenseM 0 0.072 61.9

DenseL 0.080 90.6

misinterpretation due to labeling inaccuracies. As seen in
Tables 6 and 7, the performance of MLP models was con-
sistently poor, regardless of model size. Although all models
displayed high recall values, the low precision scores sug-
gest a high number of false positives. The metric results for
the FCN models are presented in Tables 8 and 9, where the
number of false positives was significantly reduced. The per-
formance of these models was influenced by the features
utilized, with better results achieved with the introduction of
more features. There was no significant difference between
the performance of models using feature groups 2 (G2) and 3
(G3). In terms of accuracy, the different model architectures
showed similar results, though the U-Net model was noted
for its computational efficiency.

Based on the findings presented above, we proposed eval-
uating transfer learning and investigating the impact of the
number of training samples on both the ResNet-50 and VGG-
19 architectures using the G2 features. In our study, we
established the baseline by using the results obtained with
100% of the available data and no transfer learning.

Despite achieving slightly better results with the G3 fea-
tures, we opted to use the G2 features in this industrial
application due to their computational efficiency. TheG2 fea-
tures consist of a set of 7 features extracted from raw images,
whereas the G3 features comprise 15 features, increasing the
computational resources in the preprocessing stage. Given
the real-time nature of the industrial setting, optimizing the
computational cost is of utmost importance. In addition to
utilizing G2 features, we also chose to freeze the pre-trained
layers in both the ResNet-50 and VGG-19 architectures.

As illustrated in Fig. 9, our focus on utilizing the G2
features alignswith the need to strike a balance between accu-
racy and computational efficiency in this specific application.

The results show that the amount of data used for training
has a significant impact on the performance of the model.

Table 7 Blob-wise dense model results. Values in bold indicates best
model performaces

Name Prec Rec F1

DenseS 0.351 0.997 0.520

DenseM 0.269 1 0.424

DenseL 0.345 0.917 0.503

Table 8 Pixel-wise FCN’s results. Trained with group 1 (G1), group 2
(G2), and group 3 (G3) of features. Values in bold indicates best model
performaces

Name IoU Inference
time (ms)

ResNet50-G3 0.989 64.3

Unet-G3 0.987 44.3

VGG16-G3 0.989 70.4

ResNet50-G2 0.986 63.5

Unet-G2 0.977 43.6

VGG16-G2 0.988 69.6

ResNet50-G1 0.959 62.3

Unet-G1 0.75 43.3

VGG16-G1 0.665 66.5

As expected, the F1-score increases as more data is used for
training. These results suggest that transfer learning can be
an effective technique to train the models when the amount
of available data is limited. Overall, the findings highlight
the importance of carefully considering the amount of data
available for training when developing machine learning
models.

The results show that the amount of data used for training
has a significant impact on the performance of the model.
As expected, the F1-score increases as more data is used
for training. However, it is important to note that despite this
quantitative improvement, qualitative analysis shows that the
model’s capability to detect defects is present evenwith fewer
data (see Table 10). These results suggest that transfer learn-
ing can be an effective technique to train the models when
the amount of available data is limited. Overall, the findings
highlight the importance of carefully considering the amount
of data available for trainingwhen developingmachine learn-
ing models, pointing out that strategic data usage can yield
significant benefits even before large datasets are accessible.

Table 9 Blob-wise FCN’s results. Values in bold indicates best model
performaces

Name Prec Rec F1

ResNet50-g3 0.894 0.973 0.932

Unet-g3 0.878 0.963 0.918

VGG16-g3 0.910 0.954 0.932

ResNet50-g2 0.900 0.985 0.941

Unet-g2 0.677 931 0.784

VGG16-g2 0.874 0.945 0.908

ResNet50-g1 0.145 0.183 0.162

Unet-g1 0.367 0.237 0.288

VGG16-g1 0.476 0.471 0.473

Trained with group 1 (g1), group 2 (g2), and group 3 (g3) of features
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Fig. 9 FCN results applying transfer learning

7 Conclusions

Our study has made significant strides in demonstrating the
applicability and effectiveness of machine learning, partic-
ularly deep learning techniques, in the realm of automated
defect detection within the casting processes in the manu-
facturing sector. Focusing on the use of fully convolutional
networks (FCNs) integrated with 3D imaging, this research
represents a substantial advancement in the field of quality
control, especially in the context of surface defect detection
in metal parts.

Model architecture and feature extraction A key finding
of our research is the pivotal role of model architecture in
determining the system’s performance. The use of FCNs, har-
nessing the power of convolutional neural networks (CNNs),
has proven to be a game-changer in feature extraction from
3D images. This approach has outperformed traditional

methods, which are often hampered by manual feature
extraction and subjective human interpretation.

Data quality and quantity The study underscores the direct
relationship between the volume and quality of training
data and the accuracy of the defect detection models. The
improvement in the F1-score with increased training data
exemplifies the necessity of comprehensive datasets for
effectively training machine learning models in precision-
critical applications.

Inference time in real-time applications A cornerstone of
our research has been the testing of these models in real-time
applications. One of the keymetrics, inference time, has been
meticulously measured to ensure the practicality of these
models in live manufacturing environments. Our findings
indicate that the optimized FCN models not only maintain
high accuracy but also achieve rapid inference times, making
them viable for integration into production lines for imme-
diate defect detection.

Impact on manufacturing processes The implementation
of these deep learning techniques in real-time applications
marks a significant evolution in manufacturing processes.
The enhanced accuracy and efficiency in defect detection
achieved by our methods can lead to substantial reductions
in waste, improvements in product quality, and increased
overall production efficiency. This is particularly crucial in
sectors where surface defects can have serious repercussions
on product functionality and safety.

Broader implications and challenges The implementation
of advanced machine learning technologies in manufac-
turing raises several challenges, including data security,
privacy, and the need for ongoing model maintenance and
updates. Addressing these issues requires a collaborative
effort between engineers, data scientists, and industry prac-
titioners to ensure that these technologies are applied effec-
tively and responsibly.

Table 10 Comparison of qualitative results of FCN-based approaches on % of data used for training

Architecture 25% 50% 75% 100% Without TL

VGG19

ResNet50

123

108 The International Journal of Advanced Manufacturing Technology (2024) 134:97–111



Efficiency and reliability enhancements The real-time appli-
cation of thesemodels has not only validated their theoretical
effectiveness but also demonstrated their potential to rev-
olutionize industrial quality control. The balance achieved
between accuracy and rapid inference times signifies a major
leap forward in deploying smart, efficient, and reliable tech-
nologies in manufacturing processes.

In conclusion, our research not only validates the efficacy
ofmachine learning techniques in enhancing defect detection
but also highlights their practical applicability in industrial
settings. The careful selection of features, optimization of
model architecture, and consideration of training data vol-
ume have proven crucial in improving system performance.
The successful integration of advanced deep learningmodels,
particularly in the context of 3D imaging and real-time appli-
cations, represents a significant advancement in industrial
manufacturing, paving the way formore intelligent, efficient,
and reliable production processes.
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