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A B S T R A C T

Background: Ultrasound (US) is a medical imaging modality that plays a crucial role in the early detection
of breast cancer. The emergence of numerous deep learning systems has offered promising avenues for the
segmentation and classification of breast cancer tumors in US images. However, challenges such as the absence
of data standardization, the exclusion of non-tumor images during training, and the narrow view of single-task
methodologies have hindered the practical applicability of these systems, often resulting in biased outcomes.
This study aims to explore the potential of multi-task systems in enhancing the detection of breast cancer
lesions.
Methods: To address these limitations, our research introduces an end-to-end multi-task framework designed
to leverage the inherent correlations between breast cancer lesion classification and segmentation tasks.
Additionally, a comprehensive analysis of a widely utilized public breast cancer ultrasound dataset named
BUSI was carried out, identifying its irregularities and devising an algorithm tailored for detecting duplicated
images in it.
Results: Experiments are conducted utilizing the curated dataset to minimize potential biases in outcomes.
Our multi-task framework exhibits superior performance in breast cancer respecting single-task approaches,
achieving improvements close to 15% in segmentation and classification. Moreover, a comparative analysis
against the state-of-the-art reveals statistically significant enhancements across both tasks.
Conclusion: The experimental findings underscore the efficacy of multi-task techniques, showcasing better
generalization capabilities when considering all image types: benign, malignant, and non-tumor images.
Consequently, our methodology represents an advance towards more general architectures with real clinical
applications in the breast cancer field.
1. Introduction

According to the World Health Organization (WHO), there were
2.3 million women diagnosed with breast cancer and 670,000 deaths
worldwide in 2022 [1]. As with the majority of cancer types, early
detection plays a crucial role in patient prognosis. In addition to
physical exams, blood chemistry studies, or biopsies, screening tests are
widely used for early detection. Screening tests allow the identification
of breast cancer through imaging modalities at an early stage, when it
can be treated and potentially cured [2]. Currently, some of the most
common imaging modalities include mammograms, ultrasound (US)
images, or digital breast tomosynthesis (DBT), and the choice depends
on factors such as the patient’s age, breast density, and specific clinical
indications [3].

Ultrasound imaging can be especially helpful in women with dense
breast tissue, where abnormal areas may be challenging to visualize
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with mammography [4]. Moreover, its non-ionizing nature makes it
a safe screening option during some lifetime periods like pregnancy
and youth [5]. However, despite these benefits, US images present
drawbacks such as limited contrast, lower spatial resolution compared
to alternative modalities, and the presence of speckle noise. These
limitations make it difficult for radiologists to segment and classify
images, especially to distinguish between benign and malignant tu-
mors [6]. Consequently, computer-aided diagnosis (CAD) systems based
on expert knowledge face considerable challenges due to biases present
in image annotation.

Artificial intelligence models, particularly convolutional neural net-
works (CNNs), have been demonstrated to be promising candidates for
CAD systems in breast lesions. Many CNN architectures have achieved
remarkable results in recent years [7]. These approaches typically rely
on previous annotated images to learn characteristic patterns and then
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generate segmentation or classification outputs [8]. Hence, having well-
nnotated datasets is essential for building robust systems capable of

generalizing effectively. The vast majority of existing CAD systems
rely on single-task methodologies, i.e., solving a single task at once,

hich typically overlook the intrinsic relationships between related
asks. While CNNs excel at extracting meaningful information from
mages and transforming it into predicted masks or tumor classes, those
ingle-task methodologies fail to benefit from the correlation between

multiple tasks [9].
In this research work, we propose a prediction-refining multi-task

ramework for breast cancer segmentation and classification. Unlike
ther methods that employ a single-task approach [10,11], our proposal
ffectively exploits the existing relationships between both tasks. This
ulti-task framework consists of different modules aimed at optimizing

and refining the predictions while maintaining fairness throughout
experimentation. The foundation of the framework is built upon a
CNN; however, in contrast to other previous works where the archi-
tecture is fixed [12,13], ours offers flexibility in terms of the backbone
architecture employed.

Moreover, several studies on automated medical image segmenta-
ion [14–16] exclude normal images, i.e., images that do not contain

any tumor regions. While this simplifies the segmentation task, it
requires manual human intervention to identify and discard non-tumor
images, which is critical to avoid unnecessary surgeries in patients
without tumors. To address this issue, our proposal allows for the
inclusion of non-tumoral cases and incorporates a prediction-refining
module to ensure coherence. As a result, it handles non-tumoral cases
effectively, making it a fully automatic method applicable in practical
settings.

On the other hand, the widespread use of public datasets has been
crucial for advancing research across various fields, including computer
vision and machine learning. However, the reliability and integrity of
those datasets can be compromised by the presence of inconsistencies,
potentially impacting the trustworthiness of research findings [17]. In
this work, we present an algorithm developed to identify and address
duplicated cases, ensuring the consistency of the dataset used for future
analyses. Furthermore, we also provide a curated version of a public
dataset to promote a more rigorous and fair comparison with future
developments in the breast cancer field.

In summary, the contributions of this research work are as follows:

• We built a CAD system for breast cancer that exploits the existing
correlations between segmentation and classification tasks, and
proves its clinical application in practice.

• We performed an exhaustive ablation study to demonstrate how
our multi-task framework outperforms single-task methods re-
gardless of the backbone model chosen.

• We developed a duplicated image recognition algorithm to un-
cover inconsistencies in a widely used public breast cancer
dataset. As a result, we also provide a curated version of this
dataset to ensure fairness in the performance analysis of future
research works.

The rest of the manuscript is organized as follows. Section 2 reviews
the current state-of-the-art methods in breast cancer segmentation and
lassification from both perspectives: single-task and multi-task learn-
ng. The proposed method is described in Section 3. In Section 4 we

present a detailed analysis of a public dataset and propose a curated
version of it. Section 5 summarizes the implementation details followed
n all the experiments along the manuscript. Results are presented and
iscussed in Section 6. Section 7 concludes the paper.

2. Related work

Over the past decade, the number of research works that em-
ploy CNNs to address biomedical segmentation tasks has increased
exponentially [18]. This quick expansion was driven by one of the
 t

2 
most widely recognized networks in the scientific community, the
U-Net, originally introduced by [19]. The U-Net network is charac-
erized by having an encoding branch that extracts the feature maps
ntil reaching the bottleneck, and a decoding branch where the orig-
nal spatial dimensions are reconstructed. Additionally, it contains
kip connection layers between the encoding and decoding paths,
acilitating the capture of both low-level and high-level features ef-
ectively. This base structure has been commonly used as a skeleton
or many architectures in medical challenges [20–22]. Remarkable

examples are: Attention U-Net [23], Residual U-Net [24], SegRes-
et [25], UNet++ [26], or SwinUNTER [27], each offering incremental
nhancements over the original. It is also worth mentioning nnU-Net,
 self-configuring method introduced by [28]. This U-Net-based ap-

proach autonomously adjusts preprocessing, training, post-processing,
nd structural components without manual intervention. nnU-Net out-
erformed existing methodologies across 23 publicly available datasets
ommonly used in competitions, demonstrating its high potential in this
omain.

2.1. Single-task learning for breast cancer

Numerous studies have recently been conducted to investigate
reast cancer segmentation and classification through US images. Al-

most all of them have adopted a single-task learning approach, which
ddresses either the classification or the segmentation problem. [14]

introduced a two-stage multi-scale architecture prepared to handle
speckle noise and shape variations in breast ultrasound cancer seg-

entation. [29] enhanced the U-Net architecture by incorporating
bidirectional attention guidance, making use of saliency maps to cap-
ture global and local features from breast US images more effectively.
Similarly, [15] presented two novel modules called global guidance
block and boundary detection module for boosting the breast US lesion
segmentation. All these research works and many others [10,16,30]
have shown promising results in the breast ultrasound segmenta-
tion domain; however, not only did all the authors exclude normal
(i.e., non-tumor) images from their studies but also performed a binary
segmentation (without distinguishing between malignant and benign
tumors). This omission poses a drawback for clinical applications, as
the images are not pre-classified into normal, benign, and malignant
categories prior to radiologist evaluation.

Alternatively, other previous works have focused on exploring
breast cancer classification, typically including malignant, benign, and
normal images. For instance, [31] developed a novel framework that
ombined metaheuristic optimization algorithms along with deep learn-
ng techniques for a more robust feature selection preceding US image
lassification. [32] proposed a method for addressing semantic simi-

larity in the feature space to overcome the limitations associated with
classification layer reliance, thereby enhancing generalizability across
multiple datasets, including breast US. [33] used the gold-standard
techniques coming from natural language processing to develop a
highly robust yet efficient CNN-transformer hybrid model to classify
the US images.

2.2. Multi-task learning for breast cancer

Single-task approaches often fail to fully exploit the inherent corre-
ations presented between segmentation and classification tasks. Rec-
gnizing this limitation, some authors have explored the potential
or handling both tasks jointly. [34] devised an architecture capable
f classifying and segmenting volumetric breast ultrasound images.
hrough an iterative feature-refining strategy employed during train-

ing, they successfully mitigated noise in ambiguous boundaries and
consequently boosted the model performance for both tasks with re-
spect to single-task baseline models. Similarly, [35] also focused on
uzzy tumor boundaries and irregular shapes, but using 2D images. In
his case, they thoroughly analyzed frequency characteristics extracted
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Fig. 1. Overview of the proposed prediction-refining multi-task learning framework. The deterministic oversampling module operates exclusively on the training set; validation
and test sets maintain the original class distribution. Conversely, the prediction-refining module applies only to test sets during the inference phase.
from images using the discrete cosine transformation, incorporating
this information into a CNN model. [12] proposed utilizing both en-
coder and decoder level feature maps not only for tumor segmentation
but also for tumor classification. These are just a few examples; how-
ever, it is noteworthy that in all aforementioned studies, the exclusion
of normal images persisted. By contrast, a few other researchers have
emphasized the significance of including non-tumor images for the
development of clinically applicable CAD systems. For example, [36]
developed a multi-branch U-Net architecture capable of performing
breast cancer segmentation and classification using malignant, benign,
and normal images. The authors introduced an additional auto-encoder
branch for image reconstruction, which worked as a regularization
mechanism.

Although several authors have conducted studies about breast le-
sions, the domain is still insufficiently explored. The exclusion of non-
tumor images and the lack of reliability and integrity within datasets
make most of the above single-task and multi-task learning methods
unreliable in clinical practice.

3. Methodology

We propose a fully automated end-to-end multi-task framework
for breast ultrasound images. The framework aims to jointly address
classification and segmentation tasks by taking breast US images as
inputs and producing two outputs: a binary segmentation mask and a
multi-class tumor label. Fig. 1 depicts the proposed method, and their
components described below.

3.1. Shared components

The shared components encompass all common pieces required to
solve both tasks. These are the deterministic oversampling, the feature
extractor, and the prediction-refining modules.

1. Deterministic oversampling: The inherent randomness in over-
sampling techniques used to address class imbalance may sig-
nificantly influence model performance. This phenomenon is
particularly noticeable when working with small medical image
datasets (especially with ultrasound images), where the low
quality of certain images can hinder model learning. Addition-
ally, factors such as the accuracy in the annotation of ground
truth masks or anomalies within the dataset can either favor or
hinder model performance for specific instances. The proposed
module offers a suitable solution to this issue and it has been
designed to ensure fairness within the experimentation.
The strategy followed by the deterministic oversampling module
involves replicating all the images within a class, rather than
individual instances randomly. The process of balancing the
dataset begins by calculating the proportion of each class (𝑃𝐶 )
in relation to the total number of examples, which provides a
3 
measure of class distribution. Next, a replication factor (𝑅𝐹 ) is
computed for each class. This factor determines how many times
a class needs to be replicated to achieve balance, ideally bringing
its adjusted proportion closer to 1. Specifically, the replication
factor for a class 𝑐 is calculated as 𝑅𝐹𝑐 = ⌈

1
𝑃𝑐
⌉. Finally, all

examples of each class are replicated according to their corre-
sponding replication factor, ensuring a more balanced number
of examples per class. For example, in a training set where the
distribution is as follows: benign 49.3%, malignant 36.4%, and
normal 14.2%, the scaling factor for each class would be 2, 3,
and 7, respectively; resulting in the new class distribution: be-
nign 32.2%, malignant 35.6%, and normal 32.2%. This approach
ensures that, although the classes are not completely balanced,
the model is not affected by randomness-induced factors.

2. Feature extractor: It refers to the component responsible for
extracting meaningful information, also called features, from
input images. The numeric features are extracted by the en-
coding branch of the backbone network selected. This branch
typically aggregates a sequence of convolutional, max-pooling,
and activation layers to extract relevant information, which is
subsequently utilized for both segmentation and classification
tasks. In our method, the feature extractor is flexible and its role
can be performed by the backbone of a CNN architecture.

3. Prediction-refining: The objective of this refinement module is
to bring consistency to the segmentation and class predicted by
the multi-task approach, as well as to enhance its performance.
The prediction-refining module follows two strategies:

- Segmentation refinement: When the predicted segmenta-
tion contains tumor pixels, but the predicted class is nor-
mal, there is a lack of consistency from the medical point
of view. To address this issue, the prediction-refining mod-
ule corrects the predicted segmentation by marking those
pixels that had been labeled as tumor pixels as non-tumor
pixels.

- Classification refinement: When the predicted segmenta-
tion does not contain any pixels labeled as a tumor, but
the predicted class is malignant or benign, again there is an
incoherence. In these cases, the prediction-refining module
corrects the predicted class and it is assigned as normal.

Regardless of whether segmentation and classification are
treated as isolated tasks or using a multi-task methodology, such
contradictory results may occur, making this module indispens-
able.

3.2. Segmentation components

The segmentation elements are responsible for generating a binary
segmentation mask where each pixel is labeled as 0 (non-tumor) or 1
(tumor).
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1. Upsampler: The segmentation components comprise an up-
sampler module, responsible for reconstructing the features ex-
tracted by the feature extractor. This module is essentially a
decoding branch, often utilizing transposed convolutions, that
restores the spatial dimensions of the input images. As it happens
in the feature extractor where the backbone is flexible, our
upsampler module is interchangeable and it also allows the use of
deep supervision layers [37] to enhance the segmentation maps
output.

The segmentation branch provides an initial binary segmentation
that feeds the prediction-refining module above described to output a
efinement segmentation.

3.3. Classification components

The classification components categorize the input US images into
three possible classes (benign, malignant, or normal) through two
modules: the feature processing and the classifier.

1. Feature processing: The level just before the bottleneck cap-
tures features with higher spatial resolution and more local
context, while the bottleneck contains low-level features and
a more abstract representation. Previous authors demonstrated
that combining these features enables the network to capture
both local details and high-level contextual information [34].
Consequently, the feature processing module is responsible for
merging the multi-scale features. Initially, it upsamples the bot-
tleneck to recover the spatial resolution of the previous level.
Then, it concatenates these feature maps with those coming from
the encoding and decoding branches, resulting in a multi-scale
feature map.

2. Classifier: The concatenated multi-scale features pass through
a convolutional layer with 512 3 × 3 kernels, followed by nor-
malization and ReLU activation layers. A 2D adaptive average
pooling is applied over the feature volume and then flattened to
feed into a densely connected layer with 256 neurons. Finally,
an output layer with three neurons and a softmax activation
function is added, allowing to associate probabilities to each
predicted class.

The classification branch provides an initial multi-class prediction,
which also feeds the prediction-refining module to output a refinement
multi-class prediction.

3.4. Loss function

As part of our proposed methodology to simultaneously segment
nd classify ultrasound images, we implemented a custom loss function.

The Dice similarity coefficient [38] used in this work can be defined
as follows for two segmentation masks 𝑆 and �̂�:

Dice (𝑆 , �̂�) = 2 𝑆 ⋅ �̂� + 𝜖
𝑆2 + �̂�2 + 𝜖

(1)

where 𝑆 represents the segmentation map from the proposed multi-task
framework, �̂� the ground truth segmentation, and 𝜖 a constant to avoid
zero divisions set to 1.

Since the upsampler component could benefit from deep supervision
layers, our method may output more than one segmentation map. To

anage the contribution of the 𝑖th segmentation map to the overall
oss function, we introduced a weighting parameter 𝑤𝑖. The weight
ssigned to each of these segmentation maps is inversely proportional
o their depth in the network. This weighting strategy ensures that the
oss function gives more importance to the segmentation maps from
he top layers than those coming from hidden layers. Eq. (2) shows the

segmentation loss function used in this work.

𝑠𝑒𝑔 =
𝑛
∑

𝑤𝑖(1 − Dice) (2)

𝑖

4 
where Dice is defined in Eq. (1), 𝑛 is the number of deep supervision
layers, and 𝑤𝑖 is defined as 𝑖−1.

Conversely, Eq. (3) shows the focal loss function [39] employed for
classification.

𝑐 𝑙 𝑠 = −(1 − 𝑝𝑖)𝛾 log(𝑝𝑖) (3)

where 𝑝𝑖 is the predicted probability of class 𝑖 and 𝛾 is the focusing
arameter set to 2 according to [39].

In our framework, we combined classification and segmentation
osses into a single multi-task loss function as follows:

𝑚𝑢𝑙 𝑡𝑖−𝑡𝑎𝑠𝑘 = 𝜆𝑠𝑒𝑔 + (1 − 𝜆)𝑐 𝑙 𝑠 (4)

where 𝜆 is a modularization hyperparameter that balances the weight
iven to each task.

4. Dataset

This section introduces a widely used public dataset for breast
ancer segmentation and classification and how it was prepared for this
esearch work.

4.1. BUSI

Breast UltraSound Imaging (BUSI) dataset was originally published
y Al-Dhabyani et al. [40] in 2020 to make progress in the breast cancer
omain. BUSI is comprised of 780 ultrasound images categorized into
hree classes: benign (56.0%), malignant (26.9%), and normal (17.1%).
oth benign and malignant images were annotated by expert radiolo-
ists to provide a pixel-map mask (ground truth segmentation). The
mages have a wide range of sizes, varying from 190 to 1048 pixels. It
s worth mentioning that the images of BUSI dataset do not contain
oth malignant and benign tumor pixels simultaneously within the
ame image. However, some cases contain more than one tumor region
elonging to the same class.

This dataset has been widely used within the scientific community
in recent years [41]. Nevertheless, previous authors have detected
some anomalies in the annotations. For example, [17] demonstrated
that some cases appear to be incoherent. After carefully exploring the
dataset we realized that many cases seem to be repeated and misclas-
sified. To further investigate the nature of BUSI and avoid bias in the
model evaluation, a duplicate image recognition algorithm is proposed in
this work.

4.2. Duplicate image recognition algorithm

To quantify the level of similarity between the images of the
ataset, we took advantage of the Structural Similarity Index Measure
SSIM) [42]. It was originally designed as an alternative to MSE or
AE to assess the quality of an image, since they were not always

well-aligned with human perception. SSIM, by contrast, takes into
account important aspects such as image structure and texture, and
it is commonly used to determine the perceptual similarity between
two images. Specifically, SSIM evaluates three main components to
calculate the similarity: the images’ luminance, contrast, and structure.
The values of these three components are then combined to produce
an SSIM value in the range [0, 1]. On this scale, 1 suggests perfect
similarity, whereas 0 represents complete dissimilarity.

Our duplicate image recognition algorithm relies on SSIM to analyze
nd uncover duplicated images within the BUSI dataset, and it allowed
s to find all the anomalies presented in it. See more details in the
ollowing algorithm.

Step 1. The SSIM is calculated for every pair of images in the given
dataset, excluding comparisons with themselves.

Step 2. Choose an image, which will be called a reference image (RI),
and sort its comparisons in descending order by SSIM.
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Fig. 2. Example of four repeated images (quadruplet). From left to right: ID 139
benign, ID 157 benign, ID 65 benign, ID 99 benign.

Fig. 3. Example of three repeated images (triplet). From left to right: ID 131 benign,
ID 42 benign, ID 51 malignant.

Step 3. Select the top-ranked image based on the SSIM and manually
check whether it is apparently identical to the RI.

tep 4a. When the selected image and the RI are different, the process
concludes for the RI chosen, determining that the RI has no
more duplicates within the dataset.

tep 4b. When the selected image and the RI are identical, a duplicate
of the RI has been found. Remove the duplicated image found
from the ranking and go to Step 3.

Step 5. If there are images left to analyze, go to step 2.

4.3. Curated BUSI

This section presents the results, both qualitative and quantitative,
obtained after applying the duplicate image recognition algorithm to the
BUSI dataset. We also suggested a post-processed dataset called Curated
BUSI, which is a standardized version of the original one.

Once the algorithm carefully described in Section 4.2 was ap-
plied for all the images in BUSI, a total of three different cases were
uncovered.

(a) Quadruplets: A total of 5 quadruplets of repeated images were
found in the original BUSI dataset. Fig. 2 illustrates four images
extracted from the BUSI dataset and their corresponding segmen-
tation masks, all of them slightly different but belonging to the
same tumor class.

(b) Triplets: A total of 22 triplets of repeated images were found in
the original BUSI dataset. Fig. 3 shows three ultrasound images,
representing two benign classes and one malignant class, each of
them provided with a notably different segmentation mask by the
radiologists.

(c) Duplets: A total of 122 duplets of repeated images were found
in the original BUSI dataset. Fig. 4 shows again two ultrasound
images where both the mask and the class are different for the
same image.

Similar discrepancies are observed in other numerous images de-
tected by the algorithm, however, it is essential to determine whether
5 
Fig. 4. Example of two repeated images (duplet). From left to right: ID 406 benign,
ID 94 malignant.

Table 1
Average and standard deviation from duplicated and non-duplicated SSIM
distributions.

Duplicated images Non-duplicated images

SSIM 0.614 ± 0.172 0.103 ± 0.040

Fig. 5. Distribution of SSIM (Structural Similarity Index) values for duplicated (green)
and non-duplicated (orange) images. Histograms represent the normalized densities of
SSIM values for both groups. The shaded regions indicate the range of SSIM values
encompassing the 99th percentile intervals.

the SSIM values derived from repeated images are statistically sig-
nificantly higher than those from non-repeated images (see Table 1).
Initially, the Lilliefors test [43] was applied to both SSIM distribu-
tions, the one coming from duplicated and non-duplicated images.
This statistical test assumes as a null hypothesis, 𝐻0, that data come
from a normally distributed population. The test resulted negative in
both cases, rejecting the null hypothesis and concluding that none of
the samples followed a normal distribution. Consequently, we perform
a non-parametric test to analyze the discrepancies, specifically the
Mann–Whitney test [44]. This statistical test is built under the null
hypothesis, 𝐻0, that the distributions of both populations are identical.
The 𝑝-value obtained from the test was statistically significant enough
(<0.0001) to reject 𝐻0. Therefore, this statistical test not only confirms
the visual inspection findings but also provides robust quantitative
evidence supporting the presence of duplicated cases within the BUSI
dataset.

To complement the previous results, Fig. 5 presents the distribution
of SSIM values for duplicated and non-duplicated images, alongside
a shadowed range representing the 99th percentile. The plot visually
supports the statistically significant differences found by the Mann–
Whitney test and suggests a threshold SSIM value ≈ 0.23 to uncover
potential duplicates.
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Table 2
Grade of overlap in the ground truth annotations provided in the BUSI dataset for
duplicated images. IoU: Intersection-over-Union metric.

Overlapping grade Count Distribution

IoU = 1 88 40.4%
IoU < 0.9 92 42.2%
IoU < 0.7 17 7.8%
IoU < 0.5 7 3.2%
IoU < 0.3 9 4.1%
IoU = 0 5 2.3%

Table 3
Class distributions for BUSI and Curated BUSI datasets.

Dataset Normal Benign Malignant Total

BUSI 133 (17.1%) 437 (56.0%) 210 (26.9%) 780
Curated BUSI 64 (14.2%) 222 (49.3%) 164 (36.4%) 450

Apart from studying the similarity between the US images, we also
nalyzed the consensus between the masks provided within BUSI for
hose duplicated images. Since triplets and quadruplets are respectively
 set of three and four duplicated images, all the possible combinations
n a set were analyzed pairwise. Table 2 shows the grade of overlap be-
ween duplicated images based on the Intersection-over-Union metric.
s can be seen, there are quite a few ground truth masks coming from
imilar US images whose overlapping is very poor.

To conclude this section, we would like to mention the potential
harm of using low-quality datasets on scientific achievements. When
identical images appear in both the training and test sets, model
evaluation can be misleading: if the images share the same ground
truth, the model’s performance may be overestimated; however, if they
have different ground truths, the performance may be underestimated.
The authors of the BUSI dataset mentioned in the original paper [40]
hat duplicated images required to be removed as well as incorrect

annotation; however, it seems the task was not entirely completed.
Given the disparity in the annotations, in our view, all those dupli-
ated images found within the dataset must be removed to ensure
onsistency in the results provided by CAD systems. The proposed
urated version of BUSI has been thoroughly analyzed to preserve the
ntegrity and reliability of the results within the scientific community.
ll the information relating to this post-processed dataset along with

he duplicated image identifiers (IDs) are available in our repository.1,2

Table 3 provides a comparison between BUSI and the proposed Curated
BUSI datasets in terms of class distribution and total images. Compared
o the original BUSI, the majority and minority classes still consist of

benign and normal images, respectively, but the total number of images
as decreased by 330, representing a 42% reduction.

5. Experimental setup

This section outlines the setup considered for the experiments car-
ried out and provides a summary of the metrics employed for evaluat-
ing the models.

5.1. Dataset details

After the findings in the original BUSI dataset presented in Sec-
tion 4.3 about repeated images, in some cases with different classes
nd masks (see Figs. 2, 3, and 4), all the experiments conducted in this
esearch work were performed using Curated BUSI dataset. Inspired by
revious works [29] using BUSI and to be fair in the evaluation of the

model performance, we adopted a 4-fold cross-validation strategy. For

1 https://github.com/caumente/multi_task_breast_cancer.
2 Available after paper acceptance.
 d

6 
future comparisons, the IDs used for testing in every fold are publicly
available in our repository.

Before feeding the models with the ultrasound images, we applied
data augmentation on-the-fly to increase the variability during the
training phase. Every epoch the input images were flipped along both
axes with probability 0.5 and rotated between [0, 360) degrees. As a
result, the number of train images per epoch was the same, but they
were slightly different. Finally, given the size variability of the images,
all the images were resized to 128 × 128 pixels.

5.2. Performance measures

In order to measure the performance derived from the experi-
ments conducted in this research, a set of metrics widely used in both
segmentation and classification tasks was selected.

Accuracy (ACC) and F1-score (F1) are commonplace metrics in
lassification. Both are defined as follows:

ACC = TP + TN
TP + FP + TN + FN (5)

F1 = 2TP
2TP + FP + FN (6)

where TP, TN, FP, and FN represent true positives, true negatives, false
ositives, and false negatives, respectively.

F1 score is particularly useful in medical diagnosis, where both false
positives and false negatives have significant consequences, especially
in scenarios in which there is an unbalanced class distribution, such as
in the Curated BUSI dataset. Therefore, the combination of these two
metrics allows us to assess whether the system presents bias for some
specific class or it generalizes correctly.

Concerning the segmentation task, the Dice similarity coefficient
(DSC) is one of the most popular overlap-based performance measures
in the medical imaging context. It is defined as follows:

DSC = 2 TP
2 TP + FP + FN (7)

Apart from the DSC, other segmentation metrics like Hausdorff
istance (HD), Jaccard index (JAC), recall (REC), and precision (PRE)

were used in this manuscript to report the results [45].

5.3. Implementation details

We implemented our proposal using Python 3.9 and PyTorch 2.0.
ll the experiments were run on an NVIDIA GeForce RTX 3080 10 GB
PU. The framework was trained during 200 epochs using the Adam
ptimizer with an initial learning rate of 10−4 and a batch size of 2.
egarding the 𝜆 hyperparameter from Eq. (4), it was determined that

setting it to 0.85 resulted in optimal performance across both tasks.

6. Results and discussion

This section presents the experiments carried out in this research
work.

6.1. Breast cancer segmentation on curated BUSI

Since previous works did not undertake the cleaning procedures
outlined in Section 4, we conducted a comparative study on the Curated
BUSI dataset. We took some of the state-of-the-art architectures listed in
Section 2 and customized them to address a binary segmentation task.
That is, pixels within the segmentations are categorized as either tumor
(regardless of malignancy) or non-tumor.

Table 4 shows the results obtained by the selected architectures.
Alongside diverse metrics and the model utilized in each experiment,
he table also includes a ‘‘Subset’’ column. This column specifies the
ataset upon which the model was trained and tested. The idea behind

https://github.com/caumente/multi_task_breast_cancer
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Table 4
Results obtained in breast cancer binary segmentation with each architecture trained on the Curated BUSI dataset using a 4-fold cross-validation.

Subset Architecture HD DSC JACC REC PRE

U-Net [19] 29.916 ± 2.615 0.672 ± 0.014 0.552 ± 0.021 0.698 ± 0.022 0.739 ± 0.019
Attention U-Net [23] 22.398 ± 2.670 0.748 ± 0.012 0.648 ± 0.017 0.794 ± 0.023 0.783 ± 0.018
UNet++ [26] 14.812 ± 2.888 0.762 ± 0.012 0.669 ± 0.019 0.798 ± 0.017 0.817 ± 0.016

Benign & SwinUNETR [27] 18.211 ± 2.857 0.733 ± 0.022 0.634 ± 0.026 0.779 ± 0.019 0.772 ± 0.016
Malignant Residual U-Net [24] 24.071 ± 1.432 0.625 ± 0.019 0.515 ± 0.023 0.707 ± 0.023 0.756 ± 0.027
(386 images) SegResNet [25] 16.809 ± 2.351 0.739 ± 0.011 0.645 ± 0.014 0.772 ± 0.020 0.817 ± 0.017

nnU-Net [28] 13.903 ± 2.631 0.751 ± 0.029 0.659 ± 0.033 0.796 ± 0.028 0.820 ± 0.020
BTS U-Net [46] 15.604 ± 2.203 0.752 ± 0.018 0.654 ± 0.021 0.788 ± 0.022 0.810 ± 0.018

U-Net 30.383 ± 1.782 0.575 ± 0.018 0.472 ± 0.022 0.694 ± 0.026 0.732 ± 0.005
Attention U-Net 20.446 ± 2.009 0.642 ± 0.015 0.556 ± 0.019 0.791 ± 0.016 0.790 ± 0.013

Normal & UNet++ 12.937 ± 3.219 0.680 ± 0.038 0.602 ± 0.040 0.805 ± 0.012 0.832 ± 0.014
Benign & SwinUNETR 18.498 ± 3.208 0.625 ± 0.019 0.539 ± 0.024 0.771 ± 0.026 0.769 ± 0.028
Malignant Residual U-Net 16.409 ± 2.196 0.601 ± 0.031 0.511 ± 0.031 0.686 ± 0.042 0.791 ± 0.028
(450 images) SegResNet 16.073 ± 3.306 0.655 ± 0.023 0.574 ± 0.026 0.796 ± 0.011 0.811 ± 0.009

nnU-Net 12.673 ± 2.545 0.651 ± 0.021 0.573 ± 0.024 0.790 ± 0.025 0.827 ± 0.025
BTS U-Net 15.409 ± 2.183 0.652 ± 0.015 0.570 ± 0.021 0.809 ± 0.023 0.818 ± 0.028
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this differentiation is that many authors proposed segmentation mod-
els excluding normal images, arguing that images and segmentation
without any tumor pixels are meaningless. Nonetheless, we believe that
incorporating normal images in experimentation is essential to have a
fully automatic CAD system in clinical practice.

Our evaluation of breast cancer binary segmentation on the Curated
BUSI dataset highlights a superior performance in terms of overlap-
ping for UNet++. Specifically, it attained the highest average DSC
cores, 0.762 and 0.680 for the Benign & Malignant and Normal &

Benign & Malignant subsets, respectively. These results align with pre-
vious works, where authors demonstrated the generalization power of
UNet++ in segmenting medical images from different domains [26,47].
Additionally, it obtained competitive results in the remaining metrics.

It is important to highlight how the performance obtained when
using Benign & Malignant & Normal instead of only Benign & Malignant
images decreased considerably for all the methods tested. However,
despite the inclusion of normal images increasing the training time and
model complexity, end-to-end CAD systems must consider these cases
to be fully automatic.

In view of the results, UNet++ was selected as one of the back-
one networks to further evaluate our method. Additionally, we also
hose nnU-Net given its popularity in recent years within the re-
earch community and its noticeable results in various medical imaging
hallenges [28].

6.2. Results of the proposed multi-task method and ablation study

In order to demonstrate the importance of each module of our
roposed framework, we performed a comprehensive ablation study
aking UNet++ and nnU-Net as backbone networks.

Tables 5 and 6 show the results obtained by each network configu-
ration, including those trained following a single-task (ST) approach
for segmentation (Seg) and classification (Cls), and employing the
multi-task (MT) approach. Additionally, we explore variations such
as integrating the prediction-refining module (PR) and the deterministic
oversampling module (DO) into the single-task experiments and multi-
task approach. Results are carefully presented for both segmentation
and classification tasks, as well as across tumor classes.

6.2.1. Segmentation analysis results
Comparing the figures from multi-task against single-task

pproaches, the average DSC values were increased by 13.6% for the
UNet++ network, from 0.661 to 0.751. Similarly, the average DSC gain
was about 15.5% for the nnU-Net, from 0.653 to 0.754. Analyzing
the segmentation results from any of Tables 5 and 6, it can be seen
hat the improvement has substantially stemmed from the accurate
egmentation of normal images, in part attributed to the prediction-
refining module. In most of the previous works utilizing the BUSI dataset,
7 
normal images were not considered. As demonstrated in Table 4,
they tend to significantly worsen segmentation results. However, our
proposal successfully addressed this issue by incorporating non-tumor
images while resulting in superior performance. As a result, our CAD
system becomes fully automatic, requiring no manual intervention.

Furthermore, a qualitative analysis was conducted on the exper-
mental results. Fig. 6 depicts a collection of cases, showing both
uccessful (green boxes) and wrong (red boxes) outcomes. The first
hree rows exemplify successful cases in which segmentation predicted
utperformed single-task (Seg). On the other hand, the red box reveals
hat the multi-task framework encountered challenges in assessing
ome cases.

6.2.2. Classification analysis results
A similar scenario is observed for the classification task. When

examining the single-task models (Cls), it is evident that their main
hallenge lies in classifying normal images. By contrast, the multi-task

framework enhanced the F1 metric for this kind of images. Moreover,
ot only did the F1 metric improve notably with respect to the single-

task method for all the classes, but it also improved the accuracy
onsiderably. Therefore, in addition to outperforming on average the
ingle-task segmentation approach, the multi-task approach can reli-
bly classify the tumor. Specifically, improvements in accuracy for

UNet++ were 14.9%, from 0.698 to 0.802, while for the nnU-Net they
were 14.7%, from 0.680 to 0.780.

A confusion matrix is depicted in Table 7 to go further in the
nterpretation results. It presents a classification performance compar-

ison between the single-task method UNet++ (Cls) and our proposed
approach, UNet++ (MT + PR + DO). Based on the figures, the UNet++
(Cls) configuration achieved an accuracy of 73.9%, 63.4%, and 71.9%
along the diagonal for the benign, malignant, and normal classes, re-
spectively. By contrast, our proposed method demonstrated substantial
improvements, achieving an accuracy of 83.3%, 74.4%, and 79.7% for
the same classes, respectively.

The findings presented in this section demonstrate how the
rediction-refining multi-task framework effectively leverages existing
ynergies between classification and segmentation tasks. In particular,

when the system is used in its entirety, considering the DO and PR
odules, the multi-task approach boosts average performance in both

tasks. The PR and DO modules made that both ST methods improved
their performance. However, solving the tasks disjointly is computa-
tionally more expensive and still does not reach the performance of
the multi-task approach. It is worth mentioning that the ST approach
enerated a ratio of 15.3% incoherent predictions, i.e., cases classified
s normal by the classifier even if they contain tumor pixels or cases

that do not contain tumor pixels but are classified as non-normal. By
contrast, that ratio decreased to 10.9% for the MT model, showing how
optimizing both tasks at once favors learning.
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Table 5
Ablation study of the proposed prediction-refining multi-task learning framework for UNet++ trained on Curated BUSI. ST: Single-task. MT: Multi-task. DO: Deterministic oversampling
module. PR: Prediction-refining module.

UNet++ architecture Segmentation Classification

DSC Benign DSC Malignant DSC Normal DSC Average F1 Benign F1 Malignant F1 Normal F1 Weighted ACC

ST (Seg) 0.799 ± 0.036 0.731 ± 0.040 0.000 ± 0.000 0.661 ± 0.017 – – – –
ST (Seg) + DO 0.797 ± 0.056 0.730 ± 0.052 0.234 ± 0.469 0.692 ± 0.044 – – – –
ST (Cls) – – – – 0.707 ± 0.057 0.673 ± 0.069 0.694 ± 0.048 0.693 ± 0.038 0.698 ± 0.038
ST (Cls) + DO – – – – 0.745 ± 0.018 0.717 ± 0.077 0.643 ± 0.088 0.720 ± 0.042 0.725 ± 0.036
ST (Seg + Cls) + PR 0.744 ± 0.051 0.726 ± 0.041 0.719 ± 0.081 0.734 ± 0.031 0.707 ± 0.057 0.673 ± 0.069 0.694 ± 0.048 0.693 ± 0.038 0.698 ± 0.038
ST (Seg + Cls) + PR + DO 0.770 ± 0.046 0.730 ± 0.052 0.656 ± 0.231 0.739 ± 0.023 0.751 ± 0.025 0.717 ± 0.077 0.679 ± 0.116 0.729 ± 0.049 0.733 ± 0.043

MT 0.806 ± 0.055 0.713 ± 0.066 0.000 ± 0.000 0.658 ± 0.025 0.788 ± 0.018 0.687 ± 0.070 0.643 ± 0.162 0.730 ± 0.036 0.742 ± 0.028
MT + PR 0.787 ± 0.057 0.707 ± 0.062 0.594 ± 0.277 0.731 ± 0.025 0.788 ± 0.018 0.687 ± 0.070 0.643 ± 0.162 0.730 ± 0.036 0.742 ± 0.028
MT + DO 0.773 ± 0.050 0.717 ± 0.058 0.703 ± 0.156 0.742 ± 0.018 0.830 ± 0.015 0.789 ± 0.023 0.721 ± 0.094 0.799 ± 0.018 0.802 ± 0.027
MT + PR + DO (Our proposal) 0.773 ± 0.050 0.711 ± 0.057 0.781 ± 0.157 0.751 ± 0.018 0.826 ± 0.029 0.791 ± 0.025 0.741 ± 0.060 0.801 ± 0.026 0.802 ± 0.018
Table 6
Ablation study of the proposed prediction-refining multi-task learning framework for nnU-Net trained on Curated BUSI. ST: Single-task. MT: Multi-task. DO: Deterministic
oversampling module. PR: Prediction-refining module.

nnU-Net architecture Segmentation Classification

DSC Benign DSC Malignant DSC Normal DSC Average F1 Benign F1 Malignant F1 Normal F1 Weighted ACC

ST (Seg) 0.793 ± 0.024 0.720 ± 0.084 0.000 ± 0.000 0.653 ± 0.019 – – – –
ST (Seg) + DO 0.773 ± 0.047 0.698 ± 0.070 0.594 ± 0.194 0.720 ± 0.031 – – – –
ST (Cls) – – – – 0.740 ± 0.025 0.665 ± 0.052 0.276 ± 0.271 0.647 ± 0.060 0.680 ± 0.043
ST (Cls) + DO – – – – 0.742 ± 0.027 0.721 ± 0.035 0.618 ± 0.112 0.717 ± 0.033 0.720 ± 0.028
ST (Seg + Cls) + PR 0.783 ± 0.027 0.715 ± 0.082 0.219 ± 0.282 0.678 ± 0.054 0.740 ± 0.025 0.665 ± 0.052 0.276 ± 0.271 0.647 ± 0.060 0.680 ± 0.043
ST (Seg + Cls) + PR + DO 0.747 ± 0.039 0.694 ± 0.067 0.766 ± 0.164 0.730 ± 0.034 0.758 ± 0.026 0.725 ± 0.031 0.756 ± 0.086 0.746 ± 0.021 0.747 ± 0.021

MT 0.806 ± 0.041 0.722 ± 0.056 0.141 ± 0.281 0.681 ± 0.034 0.770 ± 0.033 0.747 ± 0.029 0.655 ± 0.025 0.745 ± 0.029 0.747 ± 0.028
MT + PR 0.783 ± 0.038 0.721 ± 0.058 0.656 ± 0.108 0.742 ± 0.017 0.773 ± 0.034 0.747 ± 0.029 0.674 ± 0.055 0.750 ± 0.032 0.751 ± 0.031
MT + DO 0.762 ± 0.054 0.696 ± 0.080 0.672 ± 0.180 0.725 ± 0.031 0.795 ± 0.045 0.752 ± 0.022 0.696 ± 0.095 0.765 ± 0.032 0.769 ± 0.034
MT + PR + DO (Our proposal) 0.779 ± 0.046 0.717 ± 0.049 0.766 ± 0.103 0.754 ± 0.035 0.806 ± 0.005 0.751 ± 0.040 0.741 ± 0.109 0.777 ± 0.019 0.780 ± 0.017
Fig. 6. Qualitative results depicting successful (green box) and unsuccessful (red box) segmentation cases. The first two columns display the ultrasound image and its corresponding
ground truth. Subsequent columns depict the predicted segmentation by each UNet++ configuration. The cases shown, from top to bottom, are: Benign 337, Malignant 176, Normal
36, Benign 61, Malignant 141, and Normal 113. ST: Single-task. MT: Multi-task. DO: Deterministic oversampling module. PR: Prediction-refining module.
6.3. Comparison with state-of-the-art multi-task methods

In order to fully evaluate the performance of our method, we
conducted a comparison with, to the best of our knowledge, the sole
8 
end-to-end multi-task approach identified in the literature wherein
the authors employed the BUSI dataset and incorporated normal im-
ages [36]. However, as the authors did not provide the IDs of the
images employed for testing their method, and considering that our
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Table 7
Confusion matrix illustrating classifications for the benign, malignant,
and normal classes. The top table depicts results obtained with the
UNet++ single-task configuration (Cls). The bottom table shows out-
comes from the multi-task framework (our proposal).

Predicted class

Malignant Benign Normal

Single-task
Malignant 63.4% 35.4% 1.2%
Benign 16.7% 73.9% 9.5%
Normal 1.6% 26.6% 71.9%

Multi-task
Malignant 76.2% 20.1% 3.7%
Benign 9.9% 83.8% 6.3%
Normal 7.8% 14.1% 78.1%

Table 8
Segmentation performance comparison of different multi-task methods tested on Cu-
rated BUSI dataset.

Metric [36] MT UNet++ MT nnU-Net

DSC Benign 0.778 ± 0.059 0.773 ± 0.050 0.779 ± 0.046
DSC Malignant 0.716 ± 0.070 0.711 ± 0.057 0.717 ± 0.049
DSC Normal 0.000 ± 0.000 0.781 ± 0.157 0.766 ± 0.103
DSC Average 0.645 ± 0.026 0.751 ± 0.018 0.754 ± 0.035

Table 9
Classification performance comparison of different multi-task methods tested on Curated
BUSI dataset.

Metric [36] MT UNet++ MT nnU-Net

F1 Benign 0.783 ± 0.033 0.826 ± 0.029 0.806 ± 0.005
F1 Malignant 0.727 ± 0.041 0.791 ± 0.025 0.751 ± 0.040
F1 Normal 0.681 ± 0.015 0.741 ± 0.060 0.741 ± 0.109
F1 Weighted 0.748 ± 0.027 0.801 ± 0.026 0.777 ± 0.019
ACC 0.749 ± 0.026 0.802 ± 0.018 0.780 ± 0.017

study uses the cleaned version of the BUSI, we implemented the system
described in their work and tested it on Curated BUSI. Tables 8 and
9 show the performance obtained for the segmentation and classifica-
tion tasks, respectively, by our method using UNet++ and nnU-Net as
backbone network as well as the proposal from [36].

The results demonstrate two key findings. First, our multi-task
ethod obtained improvements statistically significant with respect

o [36] in both tasks. In terms of segmentation performance, both MT
nnU-Net and MT UNet++ exhibited competitive results compared to
Adityan et al. However, MT nnU-Net consistently outperformed MT
UNet++, achieving higher DSC scores across all segmentation metrics
(DSC Benign, DSC Malignant, DSC Normal, DSC Average). Notably,
ur analysis revealed a significant discrepancy in the segmentation
erformance of Adityan et al. particularly in assessing normal images,

where the method yielded poor results. This underscores its limitation
n accurately segmenting certain images, highlighting the necessity
or more sophisticated approaches like ours. On the other hand, for

classification tasks, MT UNet++ demonstrated superior performance
over both Adityan et al. and MT nnU-Net across most categories (F1
Benign, F1 Malignant, F1 Weighted, and ACC). While MT nnU-Net
showed comparable performance to MT UNet++ in certain classification
metrics, such as F1 Normal, MT UNet++ consistently achieved higher
scores overall.

6.4. Evaluation on other breast ultrasound dataset

In order to further evaluate our method, we chose an additional
ataset called BUS-UCLM, which includes ground truth segmentations
nd multiclass labels. The dataset BUS-UCLM contains 683 breast ultra-
ound images categorized as follows: 90 malignant (13.2%), 174 benign
25.5%), and 419 normal (61.3%) images. The experiments carried out
nclude single-task approaches, ST (Seg) for segmentation and ST (Cls)
 o

9 
for classification, along with the multi-task approach and our proposed
ethod.

For experimentation with BUS-UCLM, given that it contains ap-
proximately 50% more images than Curated BUSI, the number of
pochs was increased by 50 up to a total of 250 epochs. Additionally,

a hyperparameter search was conducted for 𝜆, which balances the
given importance to segmentation and classification within the loss
function. In this case, the optimal 𝜆 value on the validation set was
0.4, compared to 0.85 obtained for Curated BUSI. This suggests that
conferring more weight to the classification task helped optimize the
system’s performance. It is worth noting that values between 0.1 and
0.95 yielded satisfactory results regardless of the dataset. For values
outside this range, however, the system became unstable due to exces-
sive prioritization of one of the tasks within the loss function. Results
are displayed in Tables 10 and 11.

As with the BUSI dataset, the MT approach outperformed most
etrics achieved by ST methods on the BUS-UCLM dataset; however,

ur proposed method achieved superior results compared to them.
ignificantly, there was a significant improvement in the segmentation
f benign and malignant tumors, increasing the DICE metric by up to
0 points. Moreover, our method reduced the standard deviations of
umerous metrics, suggesting an increment in stability and robustness.

We carefully analyzed the confusion matrices to identify the sources
f model errors. The analysis determined that our method classifies
alignant, benign, and normal classes more accurately than the ST ap-
roach, showing improvements of 6.7, 8.7, and 3.1 percentage points,
espectively. Beyond these gains, there was a reduction in both false
ositives and false negatives.

It is important to highlight how contrasting the class distributions of
the evaluated datasets are. Curated BUSI contains 14.2% normal, 49.3%
benign, and 36.4% malignant images, while BUS-UCLM includes 61.3%
normal, 25.5% benign, and 13.2% malignant images. These differences
represent a major shift in class proportions. Normal class is the minority
in Curated BUSI, in contrast to their majority in BUS-UCLM. Moreover,
the number of images in Curated BUSI is nearly 50% lower than in
BUS-UCLM. Despite this disparity in class distributions, our method
demonstrated a consistent generalization capability, maintaining high
and stable performance across both datasets. This robustness is a key
attribute for practical clinical applications, where CAD systems are
expected to generalize effectively across various scenarios without
xhibiting biases.

7. Conclusions

This research work presents an end-to-end prediction-refining multi-
task framework for breast cancer segmentation and classification on
ultrasound images. Our method aims to provide a robust CAD system
with practical applicability in clinical settings. It has been demonstrated
that leveraging the inherent correlation between both tasks enhances
performance compared to traditional single-task approaches, which
often have a more limited scope.

One of the remarkable strengths of this framework lies in its flexi-
ility and modular structure, making it adaptable to diverse problems.
ne of the modules has been incorporated to ensure fair experimenta-

ion, addressing a gap observed in previous studies that overlooked the
pecific characteristics of the BUSI dataset. Other module is prepared to

exploit the synergies between the tasks. In addition to the framework,
the manuscript presents a comprehensive analysis of the BUSI dataset,
revealing its irregularities and anomalous cases, making it an unreliable
dataset for fair research. In response, we provide an alternative post-
processed version of it named Curated BUSI, meticulously prepared to

eet the needs of future research works within the community.
The main limitation found in this work includes the lack of consen-

us in the segmentation masks provided by the radiologists, resulting in
 reduction in the number of cases within Curated BUSI. Additionally,
ur approach has the limitation that the prediction-refining module



C. Aumente-Maestro et al.

M

M

t

i
o
m
c
p

M

c
i

Computer Methods and Programs in Biomedicine 260 (2025) 108540 
Table 10
Segmentation performance comparison of the proposed prediction-refining multi-task learning framework for nnU-Net and UNet++ trained on BUS-UCLM. ST: Single-task. MT:

ulti-task.

Metric nnU-Net UNet++

ST (Seg) MT Our proposal ST (Seg) MT Our proposal

DSC Benign 0.591 ± 0.174 0.706 ± 0.046 0.716 ± 0.060 0.584 ± 0.084 0.618 ± 0.027 0.707 ± 0.020
DSC Malignant 0.558 ± 0.211 0.718 ± 0.066 0.750 ± 0.050 0.525 ± 0.212 0.686 ± 0.043 0.778 ± 0.027
DSC Normal 0.654 ± 0.446 0.838 ± 0.046 0.914 ± 0.041 0.826 ± 0.084 0.890 ± 0.100 0.924 ± 0.028
DSC Average 0.601 ± 0.277 0.754 ± 0.053 0.793 ± 0.050 0.645 ± 0.127 0.732 ± 0.057 0.803 ± 0.025
Table 11
Classification performance comparison of the proposed prediction-refining multi-task learning framework for nnU-Net and UNet++ trained on BUS-UCLM. ST: Single-task. MT:

ulti-task.

Metric nnU-Net UNet++

ST (Cls) MT Our proposal ST (Cls) MT Our proposal

F1 Benign 0.694 ± 0.028 0.692 ± 0.027 0.756 ± 0.036 0.607 ± 0.030 0.701 ± 0.034 0.757 ± 0.038
F1 Malignant 0.597 ± 0.020 0.613 ± 0.063 0.718 ± 0.053 0.508 ± 0.158 0.650 ± 0.040 0.765 ± 0.088
F1 Normal 0.884 ± 0.012 0.891 ± 0.015 0.911 ± 0.018 0.837 ± 0.060 0.896 ± 0.016 0.919 ± 0.010
F1 Weighted 0.798 ± 0.011 0.804 ± 0.005 0.846 ± 0.014 0.735 ± 0.049 0.814 ± 0.007 0.858 ± 0.025
ACC 0.801 ± 0.012 0.804 ± 0.005 0.848 ± 0.013 0.735 ± 0.056 0.814 ± 0.009 0.858 ± 0.025
corrects inconsistencies without flagging uncertain cases, which could
reduce transparency in some cases. Implementing a warning system for
hese cases could improve reliability for clinicians.

To handle the limitations included in our work, future research
ncludes considering the potential effects of previous works evaluated
n the BUSI dataset instead of its curated version, given that the results
ay be biased to some extent. Furthermore, the proposed methodology

ould be extended by making the prediction-refining module based on
robability class distributions instead or even as a learnable parameter

of the architecture.
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