
NOTICE: This is the author’s version of a work accepted for publication by Elsevier. Changes
resulting from the publishing process, including peer review, editing, corrections, structural formatting
and other quality control mechanisms, may not be reflected in this document. A definitive version was
subsequently published in Computer Standards and Interfaces, Volume 25, Issue 3. June 2003.

Abstract-- Adaptable software systems and
architectures give the programmer the ability to create
applications that might customize themselves to
runtime-emerging requirements. Computational
reflection is a programming language technique that is
commonly used to achieve the development of this kind
of systems. Most runtime reflective systems use meta-
object protocols (MOPs). However, MOPs restrict the
amount of features an application can customize, and
the way they can express its own adaptation.
Furthermore, this kind of systems uses a fixed
programming language: they develop an interpreter,
not a whole language-independent platform.

What we present in this paper a non-restrictive
reflective platform, called nitrO, that achieves a real
computational-environment jump, making every
application and language feature adaptable at runtime
–without any previously defined restriction. Moreover,
the platform has been built using a generic interpreter,
in which the reflection mechanism is independent of the
language selected by the programmer. Different
applications may dynamically adapt each other,
regardless of the programming language they use.

Keywords: reflection, computational-environment
jump, generic interpreter, separation of concerns.

1 Introduction
Adaptability has become an important feature in

modern computing systems, languages and
software engineering methods. Different
techniques are emerging in order to build adaptable
computing systems and software engineering
methods. Two examples in the software
engineering field are aspect-oriented programming
(AOP) [1] and multi-dimensional separation of
concerns [2]. They distinguish functional code from
application crosscutting concerns, creating the final
application by weaving the program and its
specific aspects. Most of them lack runtime
adaptability, simply offering design-time
adaptation.

Reflection is a programming language
technique that achieves dynamic adaptability. It
can be used to reach aspect adaptation at runtime.
Most runtime reflective systems are based on the
ability to modify the programming language
semantics while the application is running (e.g., the
message passing mechanism). However, this
adaptability is commonly achieved by
implementing a protocol (Meta-Object Protocol,
MOP [3]) as part of the language interpreter that
specifies –and therefore, restricts– the way a
program can be modified at runtime. As we will
explain, other common MOP-based system
limitations are their language dependence and their
restrictions expressing system’s features
modification.

What we present here is a non-restrictive
reflection technique that we use in the nitrO
reflective platform [4]. In nitrO, it is possible to
change every feature of its programming languages
and applications at runtime, without any kind of
restriction imposed by an interpreter protocol. Any
programming language can be used, and every
application is capable of adapting another one’s
features, no matter whether they use the same
programming language or not.

By using our system, it is possible to develop
applications that may be adapted to unpredictable
design-time requirements, changing its own
structure and behavior at runtime, regardless of
which programming language has been used.

The rest of this paper is structured as follows.
In the next section we briefly describe two
reflection classifications and meta-object protocol
systems; we also present the Python programming
language and its reflective features. Section 3
introduces our system architecture and its design is
presented in section 4. How applications and
programming languages are represented is
described in section 5 and dynamic-adaptation
sample code is shown in the following section. We

Non-Restrictive Computational Reflection

Francisco Ortin Juan Manuel Cueva
University of Oviedo

Calvo Sotelo s/n, 33005, Oviedo, Spain
Computer Science Department

summarize our system’s benefits and performance
limitations in section 7, and section 8 presents the
final conclusions.

2 Classifying Reflection
The two main criteria used to classify reflective

systems are when reflection takes place and what
system’s features can be reflected. Depending on
when reflection might take place:

• Compile-time Reflection: The system
customization takes place at compile-time (e.g.,
OpenJava [5]). The main benefits of this kind of
systems are runtime performance and the ability
to adapt its own language. Many aspect-
oriented tools use this technique.

• Runtime Reflection: The system can be
adapted at runtime once it has been created and
run (e.g., metaXa, formerly called MetaJava
[6]). These systems offer greater adaptability
that compile-time ones, by paying performance
penalties.

If we take what can be reflected as a criterion,
we can distinguish:
• Introspection: The system structure can be

accessed but not modified. If we take Java as an
example, its java.lang.reflect package
gives the programmer the capability to get
information about classes, objects, methods and
fields at runtime.

• Structural Reflection: The system structure
can be dynamically modified. An example of
this kind of reflection is the addition of object’s
fields –attributes.

• Computational (Behavioral) Reflection: The
system semantics (behavior) can be modified.
For instance, in the MetaXa system [6] the
message-passing mechanism can be customized
at runtime by the program.

2.1 Meta-Object Protocols Restrictions
Most runtime computational-reflective systems

are based on Meta-Object Protocols (MOPs). A
MOP specifies the implementation of a reflective
object-model [7]. An application is developed by
means of a programming language (base level).
The application’s meta-level is the implementation
of the computational object model at the interpreter
execution environment. Therefore, a MOP
specifies the way a base-level application may
access its meta-level in order to adapt its behavior
and structure at runtime.

As shown in Figure 1, the implementation of
different meta-objects can be used to override the
system’s semantics. For example, in MetaXa [6],
we can implement the class Trace inheriting from
the class MetaObject (offered by the language as
part of the MOP), overriding the
eventMethodEnter method. Its instances are meta-
objects that can be attached to user objects. Every
time a message is passed to these user objects, the
eventMethodEnter method of its attached meta-
objects will be called –showing a trace message
and, therefore, customizing its message-passing
semantics.

Interpreter
MetaObject

attachObject(Object)
eventMethodEnter()

Trace

eventMethod
Enter()

User objects

Attached
Meta-Object

Semantics
overriding

:Object

:Object

:Object

:Trace

User Application

Executes Meta-Object Protocol

Fig. 1. MOP-based system architecture.

This Meta-Object Protocol reflective technique

has different drawbacks:

1. The way a MOP is defined restricts the amount
of features that might be customized [8]. If we
do not consider a system feature to be
adaptable by the MOP, this program attribute
will not be able to be customized once the
application is running. In our example, if we
want to adapt the way objects are created and
the MOP does not offer this possibility, we
must stop the program execution and modify
the MOP implementation.

2. Changing the Meta-Object Protocol in order to
achieve higher adaptability means different
interpreter and language versions and,
therefore, could make the previous existing
code been deprecated.

3. The way a semantic feature can be customized
has expressiveness restrictions. Object’s
behavior may be adapted by attaching a meta-
object to him. This meta-object may just
express the way it would modify its semantics
by overriding its super-class’ methods –the
interpreter will call this new method every

time a message is passed to the object. The use
of a meta-language would be a richer
mechanism to express the way an application
may be adapted.

4. Finally, MOP-based systems are language-
dependent. Meta-level and base-level
programming languages are always the same;
they do not offer runtime adaptability in a
language-independent way.

Our nitrO runtime reflection mechanism is
based on the use of a meta-language. The base-
level access the meta-level (reification) by means
of another language (meta-language) –not by using
a MOP. The meta-language is capable of adapting
the structure and behavior of the base level at
runtime without any restriction –whatever the
programming language has been used. Its design
will be specified in section 4.

2.2 Python’s Reflective Capabilities
We have selected the Python programming

language [9] to develop our system because of its
reflective capabilities [10]:

• Introspection. At runtime, the programmer
may inspect any object, its attributes, class and
inheritance graph. It may also be inspected the
application’s dynamic symbol table: the
existing modules, classes, objects and variables
at runtime.

• Structural Reflection. It is possible to modify
the set of methods a class offers and the set of
fields an object has. We can also modify the
class an object is instance of, and the set of
super-classes a class inherits from.

• Dynamic evaluation of code represented as
strings. Python offers the exec function that
evaluates a string as a set of statements. This
feature can be used to evaluate code generated
at runtime.

3 System Architecture
The theoretical definition of reflection uses the

notion of a reflective tower of interpreters [11]: we
have a tower in which an interpreter, that defines
its operational semantics, is running the user
program. A reflective computation is a
computation about the computation, i.e. a
computation that accesses the interpreter.

Related to the preceding definition, if an
application would be able to access its interpreter

at runtime, it would be able to inspect the existing
system objects (introspection), modify its structure
(structural reflection) and customize its language
semantics (computational reflection).

Generic
Interpreter

runs

“B” Language
Specification

“A” Application

reads

“A” Language
Specification

“B” Application

Modification
expressed

using Python
code

Modification
expressed
using Python
code

Fig. 2. System architecture.

However, this mechanism is complicate to

implement. Interpreters commonly have complex
structures representing different functionality like
parsing mechanism, semantics interpretation, and
runtime user-application representation. For
instance, if an application modifies by error the
parsing mechanism, it would produce unexpected
results.

What we have developed is a generic interpreter
(Figure 2) that separates the structures accessible
by the base-level from the fixed mechanism that
should never be modified. This generic interpreter
is language-independent: its inputs are both the
user application and the language specification; it
is capable of interpreting any programming
language by previously reading its specification.

At runtime, any application may access
language specifications by using the whole
expressiveness of the Python programming
language; there are no previously specified
restrictions imposed by a protocol –any feature can
be adapted. Changes to language specifications are
automatically reflected on the application
execution because the generic interpreter relies on
the language specification while the application is
running.

4 System Design
In Figure 3 we show how the generic

interpreter, every time an application is running,
offers two sets of objects to the reflective system:
the first one is the language specification
represented as a graph of objects (we will explain
its structure in the next section); the second group
of objects is the application’s runtime symbol
table: variables, objects and classes created by the
user.

Any running application may access and
modify these object structures by using the Python
programming language; its reflective features will
be used to:

1. If an application symbol table is inspected,
introspection between different applications

(independently of the language used) is
achieved.

2. Modifying the symbol table structure, by
means of Python structural reflection
capabilities, implies structural reflection of any
running application.

3. Adapting the language semantics located in the
language specification, the running application
may customize its behavior achieving
computational reflection.

The main question of this design is how the
application computational environment may access
and modify the interpreter computational
environment –i.e., how a user application may
access different language specifications and
application’s symbol-tables.

Every language in our system includes the

Language Specification Application’s
Symbol Table

User Application

Executes

Reads
and

Modifies

Reads

Generic
Interpreter

Introspection and
Structural Reflection

In
te

rp
re

te
r

C
o
m

p
u

ta
ti

o
n

a
l

E
n

v
ir

o
n

m
e
n

t

A
p

p
li
ca

ti
o
n

C
o
m

p
u

ta
ti

o
n

a
l

E
n

v
ir

o
n

m
e
n

t

Computational Reflection

Fig. 3. Language specification and symbol table modification.

a=10*2;
b=a/-18;
a;
b;
Reify <#

vars["a"]=1
vars["a"]=2

#>
a;
b;
Reify <#

code=“...”
language.["assignment"].

actions.append(code)
#>
a=10*2;

Language
Specification

Symbol
Table

vars["a"]=1
vars["a"]=2

code=“...”
language.["assignment"].

actions.append(code)

Generic
Interpreter

1) Written in any
programming language,
a user application is
being executed by the
interpreter

2) The generic
interpreter
recognizes a “reify”
statement

5) Another “reify” statement
modifies the assignment
statement semantics:
computational reflection

Python Interpreter Computational Environment

Application Computational
Environment

Executes

3) Python code is
processed as a
string and
evaluated with the
“exec” function, at
the interpreter
computational level

4) Using Python structural
reflection, application
symbol-table might be
inspected and modified

6) The rest of the
application is executed
with the new semantics
reflected

Fig. 4. Achieving a real computational-environment jump.

reify statement; the generic interpreter
automatically recognizes it, no matter the language
being used. Inside a reify statement Python code
can be written. This Python code will not be
processed as the rest of the application code:
independently of the programming language
selected, every time the interpreter recognizes a
reify statement, its Python code will be taken and
evaluated invoking the exec function. This code,
using Python structural reflection, may access and
modify application’s symbol-tables and language
specifications. This scheme is shown in Figure 4.

The code written inside a reify statement is
evaluated in the interpreter computing
environment, not in the application computing
environment –the place where it was written. So,
Python becomes a meta-language to specify, and
dynamically modify, any language and application
that would be running in our system. There is no
need to specify a MOP that would previously
restrict which language features could be adapted.

Python code inside a reify statement might be
written improperly, having syntax or semantic
errors. The correctness verification of these Python
statements is done by the exec function raising an
exception. Consequently, the programmer may
handle this exception knowing whether the reify
Python code has been executed correctly or not.

Looking for good performance, MOP-based
systems simulate the computational-environment
jump by offering meta-objects to the programmer;
these are executed in the application environment,
not at the interpreter level. That is the reason why
they lacks features pointed in section 2.1.

5 Language and Application
Representation

As we have seen in the previous section,
applications in our system may dynamically access
language specifications and application symbol
tables in order to achieve different levels of
reflection. What we present in this point is how
languages and applications are represented by
means of object structures.

Programming languages are specified with
language specification files. Their lexical (Scanner
section) and syntactic (Parser section) features are
expressed by means of context-free grammar rules;
their semantics, by means of Python code placed at
the end of each rule (between <# and #>
characters).

We have specified the Python programming
language and some domain-specific languages [12].
Currently we are specifying Java and Jscript
languages. Correctness verification (e.g., type
checking) is expressed inside the semantic actions
using Python code.

What we present here is an example of a
“VerySimple” language definition without any
semantic correctness verification:
Language = VerySimple

Scanner = {
 "Digit Token"
 digit -> "0" | "1" | "2" | "3" | "4" |
 "5" | "6" | "7" | "8" | "9"
 ;
 "Number Token"
 NUMBER -> digit moreDigits
 ;
 "Zero or more digits token"
 moreDigits -> digit moreDigits
 |
 ;
 "Character Token"
 char -> "a"|"b"|"c"|"d"|"e"|"f"|
 "g"|"h"|"i"|"j"|"k"|"l"|"m"|
 "n"|"o"|"p"|"q"|"r"|"s"|"t"|
 "u"|"w"|"x"|"y"|"z"
 ;
 "Character or Digit Token"
 charOrDigit -> char | digit
 ;
 "ID Token"
 ID -> char moreCharsOrDigits
 ;
 "Zero or more chars or digits token"
 moreCharsOrDigits -> charOrDigit
 moreCharsOrDigits
 |
 ;
 "SEMICOLON Token" SEMICOLON -> ";"
 ;
 "ASSIGN token" ASSIGN -> "="
 ;
}

Parser = {
 "Initial Context-Free Rule"
 S -> statement moreStatements SEMICOLON <#
global vars
vars={}
nodes[1].execute()
nodes[2].execute()
#>
 ;
 "Zero or more Statements"
 moreStatements -> SEMICOLON statement
moreStatements <#
nodes[2].execute()
nodes[3].execute()
#>
 |
 ;
 "Statement"
 statement -> _REIFY_ <#
nodes[1].execute()
#>
 | assignment <#
nodes[1].execute()
#>
 | expression <#
nodes[1].execute()

write("Expression value: "+
 str(nodes[1].value)+".\n")
#>
 ;
 "Assignment Statement"
 assignment -> ID ASSIGN expression <#
nodes[3].execute()
vars[nodes[1].text]= nodes[3].value
#>
 ;
 "Binary Expr. Factor"
 expression -> ID <#
nodes[0].value=vars[nodes[1].text]
#>
 | NUMBER <#
nodes[0].value=int(nodes[1].text)
#>
 ;
}

Skip = {"\t"; "\n"; " ";}

NotSkip = { }

The _REIFY_ reserved word indicates where a
reify statement might be syntactically placed.
Skip and NotSkip sections tells the interpreter
which tokens has to be automatically ignored and
which ones should be appended to the scanner
buffer.

Every application must identify its
programming language previously to its source
code. When the application is about to be
executed, its respective language specification file
is analyzed and translated into an object
representation.

NonTerminal objects, symbolizing rule’s left
non-terminal symbols, represent each language
rule. These objects are associated to a group of
Right objects, which represent its rule’s right
sides. A Right object has two attributes:

1. Attribute nodes: Collects Terminal and
NonTerminal objects representing the rule’s
right side.

2. Attribute actions: List of SemanticAction
objects; each one of them stores the Python
code located at the end of each rule’s right-
side. This code will be executed at the
application interpretation.

Figure 5 shows a fragment of the object
diagram representing the example shown above.

Any application code starts with its unique ID
followed by its language name. The next code is an
example of an application:
Application = "Very Simple App"
Language = "VerySimple"
 a=10;
 b=a;
 a;
 b;

Once the application’s language specification
has been translated into its respective object
structure, a backtracking algorithm parsers the
application’s source code creating an abstract
syntax tree (AST). Then, the initial non-terminal’s

statement:
NonTerminal :Right

:Reify

S:NonTerminal :Right

statement
:NonTerminal

nodes

nodes

moreStatements
:NonTerminal

SEMICOLON
:NonTerminal

:SemanticAction
action=“global vars

vars={}
nodes[1].execute()
nodes[2].execute()”

actions

:SemanticAction
action=“nodes[1].execute()”actions

:Right

assignment
:NonTerminalnodes

:SemanticAction
action=“nodes[1].execute()”actions

:Right

expression
:NonTerminalnodes

:SemanticAction
action=“nodes[1].execute()”actions

assignment
:NonTerminal :Right

ID
:NonTerminal

nodes

ASSIGN
:NonTerminal

expression
:NonTerminal

:SemanticAction
action=“nodes[3].execute()

vars[nodes[1].text]=nodes[3].value”actions

Fig. 5. Fragment of the language specification object diagram.

code is executed. The tree walking process is
defined by the way grammar-symbols execute
methods are invoked: the non-terminal execute
method evaluates its associated semantic action.
So, changes on language semantics may be
automatically reflected on the applications being
executed.

Interoperability between different applications
–programmed in different languages– is achieved
accessing the nitrO global object. Its attribute
applications is a hash table of the existing
applications in the system. Each Application
object has two attributes:

1. Attribute language: Its language specification.

2. Attribute applicationGlobalContext: Its
dynamic symbol table.

6 Dynamic Application Adaptation
Accessing the nitrO object attributes, any

application can adapt another one’s behavior or
structure at runtime, without any restriction and in
a language-independent way. As a first example,
we can use introspection to develop a trace routine
that shows any running application symbol-table,
regardless of its programming language:
• Application = "Symbol Table"
• Language = <#
• Language=JustReflection
• Scanner={}
• Parser = {
• "Initial Free-Context Rule"
• S -> _REIFY_ <#
• nodes[1].execute()

• #> ; }
• Skip={ "\n"; "\t"; " "; }
• NotSkip = { }
• #>

• reify <#
• # Shows any application symbol-table
• def f(app,nitrO):
• if nitrO.apps.has_key(app):
• theApp=nitrO.apps[app]
• # Shows the Symbol Table in the

window
• nitrO.apps["Symbol

Table"].window.write(theApp.applicati
onGlobalContext)

• else:
• nitrO.shell.write(app+" must be

started.\n")
• # Sets the function as a method
• nitrO.apps["Symbol Table"].run=f

• write("Routine installed as the run

method of Symbol Table application.")
• #>

This application specifies itself its own
programming language (lines 2 to 12):
JustReflection, a unique reify statement (lines
13 to 25). The application file contains both the
program source code and its language
specification.

If we run this application, a program that is
capable of showing any application-symbol table
will be installed into the system –the message
“Routine installed as the run method of Symbol
Table application” will be shown. The reify
statement defines a function (line 15) and
afterwards sets it as an application method (line
23). This method takes an application ID as a
parameter and searches the application object in

Fig. 6. Showing the runtime symbol-table of the “Very Simple App”.

the system (lines 16 and 17). If it is found,
application’s symbol-table will be shown on its
graphic window (line 19).

Any running application symbol-table could be
displayed using the “Symbol Table” program,
regardless of the language it has been written in.
For instance, once the “Very Simple App” and the
“Symbol Table” programs have been executed in
the nitro system, we can show the “Very Simple
App” application symbol table running the next
statement in the nitrO shell:
nitrO.apps["Symbol Table"].run(
 "Very Simple App",nitrO)

The result is shown in figure 6. On the upper
side we have the nitrO shell, where we can
evaluate Python code accessing the nitrO object.
Every running application has its own graphic
window. The lower window shows the “Symbol
Table” program execution; the one in the middle is
the “Very Simple App” one. Evaluating the
statement above, any application’s symbol-table
can be displayed whatever its programming
language would be.

Following with the example presented in this
paper, we will show how to achieve different
levels of reflection in our system. The next group
of reify sentences would dynamically adapt the
running application, no matter which program or
language might be used to execute them.

The next introspection example shows the
existing variables of our simple program as well as
their values:
reify <#
vars=nitrO.apps["Very Simple App"].
 ApplicationGlobalContext["vars"]
write(str(vars)+"\n") #Shows {b:10,a:10}
#>;

The following reify statement achieves
structural reflection: takes the variables from the
symbol table (line 2) and modifies (line 3), creates
(line 4) and erases (line 5) symbol-table objects:
• reify <#
• vars=nitrO.apps["Very Simple

App"].applicationGlobalContext["vars"
]

• vars["a"]=vars["a"]*2 # Modifies “a”
• vars["c"]=0 # Creates a new variable
• del vars["b"] # Erases a variable
• #>;

We may enhance the assignment-statement
semantics by showing a trace message every time
an assignment takes place: computational
reflection. Line 3 takes the assignment-statement
syntactic rule. The code representing the new trace

semantics is created in lines 4 to 6. Finally, line 8
enhances the assignment statement displaying a
trace message:
• reify <#
• from langSpec import SemanticAction
• assignment=nitrO.apps["Very Simple

App"].language.syntacticSpec["assignm
ent"]

• code="write(\"Assignment of
+nodes[1].text"

• code=code+"with value
+str(nodes[3].value)"

• code=code+".\\n\")"
• # Behavior adaptation
• assignment.options[0].actions.append(

SemanticAction(code))
• #>;

Using our platform, advanced adaptable
systems written in real languages (e.g., Java and
Python) are being developed. An example is an
implicit-persistence system that makes runtime
computational changes to the language semantics,
doing transparent calls to persistence functions and
making objects persist [13]. This system achieves
great flexibility as no additional application code is
needed to make it persist; changes can be
dynamically made while the application is running
and different levels of persistence can be selected
for objects. At the same time, we are developing a
dynamic-weaving aspect-oriented tool in which
aspects can be set and unset to applications at
runtime.

7 System Benefits
The non-restrictive reflective technique

presented in this paper has the following
advantages:

• The whole system is adaptable at runtime. Any
system’s feature can be adapted by means of
the reflect statement, and there are no
previously-defined restrictions imposed by any
protocol.

• Expressiveness improvement. The way
behavior is customized is not restricted to a
framework that relies on method overriding –
as happens with the use of MOPs. We offer a
complete language (Python) that may be used
to adapt any other language’s feature.

• Language independence. The system can be
programmed using any programming
language. The inputs to our generic interpreter
are both the application source code and the
language specification.

• What can be reflected. Three levels of
reflection are achieved at runtime:
introspection, structural reflection and
computational reflection.

• Application interoperability. Any application,
whatever its programming language would be,
may access, and reflectively modify, another
program being executed. Therefore, there is no
need to stop an application in order to adapt it
at runtime: another application may be used to
customize the former.

Our non-restrictive reflective technique can be
used to develop or test at runtime any reflective or
adaptable environment (e.g., fault-tolerant systems,
adaptable operating systems, knowledge base
systems or even web-based systems) without the
necessity to modify the interpreter implementation.
It might be also applied as a dynamic-weaving
aspect-adaptation platform: as the back-end of an
AOP tool that achieves dynamic inspection,
selection and modification of reusable and
language-independent crosscutting concerns [14].

7.1 Runtime Performance
The process of adapting an application at

runtime, as well as the use of reflection, induces a
certain overhead at the execution of a program.

Using interpreter optimization techniques such
as just in time (JIT) compilation or adaptable
native-code generation [15] has influenced on the
extended commercial use of interpreted platforms
(e.g., Java or Microsoft CLR).

In the following versions of the nitrO platform,
these code generation techniques will be used to
optimize the generic-interpreter implementation.
As we always translate any language into Python
code, a way of speeding up application execution
is using the interface of a Python JIT-compiler
implementation.

8 Conclusions
Most systems that offer computational

reflection capabilities at runtime are based on the
use of meta-object protocols (MOPs). MOPs give a
system the ability to customize itself at runtime,
but what may be adapted must be previously
specified by the protocol. Different approaches
modifying the MOP are commonly needed to make
the system adaptable to a new characteristic.
Changing the MOP specification could involve
different interpreter and language versions and,

therefore, making the previous existing code been
deprecated. Moreover, these systems use the same
programming language at application and
interpreter computational-environments, lacking
cross-customization between different applications
regardless of the programming language they have
been written in. This paper describes a non-
restrictive reflective technique capable of
overcoming these limitations.

Using the structural reflection features of the
Python programming language, we have developed
a generic interpreter capable of interpreting every
application written in any programming language.
A language specification syntax has been defined
in order to represent any context-free language.

The generic interpreter can obtain Python code
(using the reflect statement) and evaluate it at the
interpreter computational-environment: a real
computational-environment jump is achieved, and
no changes to the interpreter implementation have
to be done. This mechanism may be used by an
application to customize, at runtime, any program
structure or behavior, without any restriction –no
matter which programming language might be
selected.

The final system is a computation platform that
uses a non-restrictive reflective technique, can be
programmed using any language, is completely
adaptable at runtime, and has a great level of
application interoperability. Therefore, it can be
used to create or test highly adaptable
environments based on dynamic separation of
concerns.

The prototype source code, different language
definitions and many testing applications can be
freely downloaded from [12].

9 References
[1] Kiczales, G., Lamping, J., Mendhekar, A.,

Maeda, C., Videira Lopes, C., Loingtier, J. M., and
Irwin, J. 1997. Aspect Oriented Programming.
European Conference on Object-Oriented
Programming Conference, Finland, June 1997.

[2] IBM Research. Multi-Dimensional Separation of
Concerns: An Overview”. [Online]. Available:
http://www.research.ibm.com

[3] Kiczales, G., Des Rivieres, J., and Bobrow, D.
G. 1992. The Art of Metaobject Protocol. MIT
Press.

[4] Ortin, F., and Cueva, J. M. Building a
Completely Adaptable Reflective System. 2001.

ECOOP’2001. Workshop on Adaptive Object-
Models and Metamodeling Techniques, Budapest,
Hungary, June 2001.

[5] Chiba, S., and Michiaki, T. A Yet Another
java.lang.Class. 1998. ECOOP’98 Workshop on
Reflective Object Oriented Programming and
Systems. Brussels, Belgium. July 1998.

[6] Kleinöder J., and Golm M. MetaJava: An
Efficient Run-Time Meta Architecture for Java™.
1996. International Workshop on Object
Orientation in Operating Systems, IWOOOS’96,
Seattle, Washington, October 1996.

[7] Kiczales, G., Des Rivieres, J., and Bobrow, D.
G. 1992. The Art of Metaobject Protocol. MIT
Press.

[8] Douence, R., and Südholt, M. The next
Reflective 700 Object-Oriented Languages. 1999.
Technical Report 99-1-INFO, École des Mines de
Nantes, Dept. Informatique, France.

[9] Rossum, G. Python Reference Manual. 2001.
Fred L. Drake Jr. Editor. Relesase 2.1.

[10] Andersen, A. A note on reflection in Python
1.5. 1998. Distributed Multimedia Research Group
Report, MPG-98-05, Lancaster University, UK,
March 1998

[11] Smith, B. C. Reflection and Semantics a
Procedural Language. 1982. Ph. D. Thesis.
Massachusetts Institute of Technology
MIT/LCS/TR-272.

[12] Ortin, F. (2002, February) The Non-Restrictive
Computational Reflective nitrO System. [Online].
Available:
http://www.di.uniovi.es/reflection/lab/prototypes.ht
ml#nrrs

[13] Ortin, F., Martinez, A. B., Alvarez, D., and
Cueva, J. M. A Reflective Persistence Middleware
over an Object-Oriented Database Engine. 1999.
X!V Brazilian Symposium on Databases (SBBD),
Florianopolis, Brazil, October 1999.

[14] Hürsch, W. L., and Videira Lopes, C.
Separation of Concerns. 1995. Technical Report
UN-CCS-95-03, Northeastern University, Boston,
January 1995.

[15] Hölzle, U., and Ungar, D. A Third-Generation
SELF Implementation: Reconciling
Responsiveness with Performance 1994.
OOPSLA’94, Portland, Oregon. October 1994.

