
Dynamic Multimodal Prompt Tuning: Boost Few-Shot
Learning with VLM-Guided Point Cloud Models

Xiang Gua, Shuchao Panga,*, Anan Dub,∗, Yifei Wanga, Jixiang Miaoa and Jorge Díezc

aSchool of Cyber Science and Engineering, Nanjing University of Science and Technology, China
bNanjing Vocational University of Industry Technology, China

cArtificial Intelligence Center, University of Oviedo at Gijón, Spain
ORCID (Shuchao Pang): https://orcid.org/0000-0002-5668-833X, ORCID (Anan Du):

https://orcid.org/0000-0002-9634-3125, ORCID (Jorge Díez): https://orcid.org/0000-0002-1314-2441

Abstract. Few-shot learning is crucial for downstream tasks in-
volving point clouds, given the challenge of obtaining sufficient
datasets due to extensive collecting and labeling efforts. Pre-trained
VLM-Guided point cloud models, containing abundant knowledge,
can compensate for the scarcity of training data, potentially lead-
ing to very good performance. However, adapting these pre-trained
point cloud models to specific few-shot learning tasks is challeng-
ing due to their huge number of parameters and high computational
cost. To this end, we propose a novel Dynamic Multimodal Prompt
Tuning method, named DMMPT, for boosting few-shot learning
with pre-trained VLM-Guided point cloud models. Specifically, we
build a dynamic knowledge collector capable of gathering task- and
data-related information from various modalities. Then, a multi-
modal prompt generator is constructed to integrate collected dynamic
knowledge and generate multimodal prompts, which efficiently di-
rect pre-trained VLM-guided point cloud models toward few-shot
learning tasks and address the issue of limited training data. Our
method is evaluated on benchmark datasets not only in a standard
N-way K-shot few-shot learning setting, but also in a more challeng-
ing setting with all classes and K-shot few-shot learning. Notably,
our method outperforms other prompt-tuning techniques, achieving
highly competitive results comparable to full fine-tuning methods
while significantly enhancing computational efficiency.

1 Introduction

In the field of computer vision, 3D point cloud tasks are vital, with
widespread applications in various areas like autonomous driving
and robotics [4, 2, 7]. However, obtaining sufficient datasets for 3D
point cloud tasks is challenging due to the cost and effort involved in
collecting and labeling high-quality samples, which especially lim-
its the performance of deep learning models. Hence, there is a need
to design advanced methods that teach models to learn effectively
from limited training data [21, 20, 17], known as few-shot learning.
In the image field, pre-trained Vision Language Models (VLM), such
as CLIP [26], have demonstrated strong capabilities in zero-shot and
few-shot learning. These models have very good performance in the
image domain and are effective in working with text, which makes
them promising for knowledge transfer to 3D tasks, for example, to
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Figure 1: Comparison with regular prompt tuning method: By col-
lecting knowledge across modalities and generating dynamic multi-
modal prompts, we facilitate information sharing between modali-
ties, empowering the point cloud encoder with additional knowledge
to overcome the scarcity of training data.

help perform large-scale 3D representation learning. Inspired by it,
very recent studies have been dedicated to applying VLMs to 3D
tasks [36, 37, 31, 34]. By using a data set with triplets of text, im-
age and points [31, 5] to align the 3D point encoder with pre-trained
VLM’s text encoder and vision encoder, VLM-Guided point cloud
models, such as Uni3d [34] and ULIP [31], are able to perform vari-
ous downstream tasks in 3D fields. The abundant knowledge within
pre-trained VLM-Guided point cloud models can compensate for
the scarcity of training data, potentially leading to high performance
in few-shot learning. However, these models contain a mixture of
knowledge for multiple tasks, which implies that they need appropri-
ate guidance to achieve good performance in specific few-shot learn-
ing tasks.

Researchers have explored two main approaches to exploit the full
potential of pre-trained cloud models in few-shot learning tasks: fine-
tuning [29, 25, 19] and prompt tuning [12, 33]. While fine-tuning is
straightforward and commonly used, it is parameter-inefficient and
can lead to overfitting-related problems, particularly with limited
data available. In contrast, prompt tuning is introduced, which adds
learnable tokens to guide the model; it doesn’t change any parame-
ters in pre-trained encoders and can reduce the risk of overfitting. In
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the 3D field, although there are some researches related to prompt
tuning [10, 37, 33], they are limited to a single modality of a sin-
gle encoder, wasting rich knowledge from other pre-trained encoders
across different modalities. Moreover, this will trigger issues when
the single pre-trained point cloud encoder lacks information about
the target class, making it challenging to generate a proper prompt
with limited data.

In order to address the above problems within the prompt tuning
approach, inspired by the good performance of MaPle [13] in the 2D
image field, we suppose that integrating knowledge from pre-trained
encoders across different modalities can provide additional informa-
tion, which is particularly beneficial when the current point encoder
lacks relevant knowledge. Therefore, we propose the DynamicMulti-
modal Prompt Tuning method, called DMMPT, for few-shot learning
on 3D point clouds. In detail, we first construct a dynamic knowl-
edge collector capable of leveraging encoders from diverse modal-
ities to gather extra knowledge of the data and the targeted few-
shot task. Based on it, we then propose a multimodal prompt gen-
erator that is able to take the dynamic knowledge collected via in-
formation bridges and generate a multimodal prompt. As shown in
Figure 1, compared with regular prompt tuning methods, the pro-
posed DMMPT method offers the ability to absorb knowledge of
the training data in different modalities dynamically, and the gener-
ation of multimodal prompt enables better-guided information shar-
ing between modalities for few-shot learning tasks. Furthermore, our
method does not edit any parameters in pre-trained encoders, making
it significantly more efficient compared with fine-tuning-based meth-
ods. In addition to the standard N-way K-shot few-shot learning set-
ting, we also evaluate the proposed DMMPT method in a more chal-
lenging setting, where we sample K shots in each class, following the
learning setting presented by Zhang et al. in [36]. In this setting, the
trained model must learn to identify each class with relatively little
data, which is closer to real-life applications. Even in such a few-shot
learning setting, our DMMPT method continues to deliver very good
performance.

Our main contributions are as follows:

1. We propose DMMPT, a new prompt tuning method for VLM-
Guided point cloud models for few-shot learning. By introducing
a dynamic knowledge collector capable of gathering knowledge
from various modalities and creating a multimodal prompt gen-
erator to enhance knowledge sharing, we manage to fully absorb
information across modalities and boost pre-trained point cloud
models in few-shot learning tasks.

2. We evaluate our model not only in the standard N-way K-shot few-
shot settings but also in a challenging setting with a larger number
of classes for models to identify. This highlights the potential of
our method in real-life applications.

3. Experiments demonstrate that our model exhibits outstanding per-
formance in both few-shot learning settings. Our method outper-
forms other prompt-tuning-related methods and maintains strong
competitiveness with full fine-tuning methods while significantly
enhancing computational efficiency.

The remaining of the work is organized as follows: In the next sec-
tion, the related work is discussed. Section 3 introduces the details of
DMMPT, the proposed method. Section 4 presents the experimental
results and Section 5 is for the ablation study. Finally, conclusions
are presented in Section 6.

2 Related Work

This section discusses the related work for the few-shot learning in
point cloud field and VLM-Guided point cloud models as follows.

2.1 Few-shot Learning in Point Cloud Model

When it comes to few-shot learning in pre-trained VLM-Guided or
self-supervised point cloud models, fine-tuning and prompt-tuning
approaches are widely used. Among them, fine-tuning related meth-
ods [16, 28, 32] exhibit good performance when parameters are fully
fine-tuned. However, this approach not only requires abundant data
but also incurs high computational costs, and it may even lead to
overfitting issues. Additionally, it raises problems when there is a
significant gap between the original tasks and the subsequent tasks.
Instead, prompt tuning methods don’t modify any parameters in pre-
trained encoders, making them advantageous and efficient for deal-
ing with small datasets. For example, PointCLIPV2 [37] utilizes
large language models to generate a text prompt that creates a se-
mantic space closer to 3D scenes, representing an improvement in
text prompts. CG3D [10], learning from visual prompts in the image
field, adds learnable tokens to the vision encoder to better align the
3D encoder and the pre-trained vision encoder. Moreover, some at-
tempts are also made in 3D encoders. IDPT [33], introduced by Zha
et al., applies Dynamic Prompt Tuning on pre-trained point cloud
models, which generates prompts by capturing semantic prior fea-
tures of each point cloud and demonstrates competitive performance
compared with fine-tuning methods. However, all the methods men-
tioned are limited to prompts at a single modality. Prompting a sin-
gle encoder may encounter difficulties when the pre-trained encoder
lacks knowledge about the target class. To address this, we aim to
combine the rich knowledge from pre-trained encoders across differ-
ent modalities and utilize additional information to generate a multi-
modal prompt, enhancing overall performance.

2.2 VLM-Guided Point Cloud Model

The development of the VLM-Guided point cloud model progresses
through two stages. Initially, researchers aim to project point clouds
into depth images to fit the vision encoder. Subsequently, with
the introduction of large-scale text-image-point triplet datasets, re-
searchers propose a 3D encoder to align it with pre-trained vision-
language models.

In the first stage, aiming to transfer the rich knowledge fromVision
Language Models (VLMs), PointCLIP [36] and PointCLIPV2 [37]
involves the direct projection of point clouds into depth maps from
different angles. These depth maps are then fed into the CLIP vi-
sion encoder to perform zero-shot tasks. Similarly, Liu et al. propose
PartSLIP [15], which utilizes GLIP [14] for low-shot part segmenta-
tion of 3D point clouds. Additionally, it employs multi-view feature
fusion to enhance the transfer of point cloud features to the vision
encoder. These methods employ projection techniques to convert 3D
point clouds into a 2D field. However, during this process, crucial
geometry features of the point cloud may be lost, and performance is
influenced by the transformation of modalities.

In the second stage, 3D encoders are introduced to further narrow
the domain gap between 2D images and 3D point clouds. Huang et al.
introduce CLIP2Point [11], which employs a novel Gated Dual-Path
Adapter to align with the CLIP vision encoder and effectively applies
tuned pre-training knowledge to the following tasks. Recently, with
advancements in the creation of large-scale text-image-point triplet
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Figure 2: The pipeline of Dynamic Multimodal Prompt Tuning (DMMPT): By introducing a dynamic knowledge collector and a multimodal
prompt generator to gather and enable knowledge sharing across modalities, DMMPT fully leverages the information hidden in three modalities
dynamically and efficiently without changing any parameters in pre-trained encoders. It achieves exciting performance with limited data in
few-shot learning tasks.

datasets, ULIP [31], proposed by Xue et al., enhances the alignment
between the 3D point encoder and CLIP encoders. Zhou et al., in
the proposal of UNI3D [34], take a step forward by leveraging abun-
dant 2D pre-trained models as initialization and employing scaling-
up strategies to scale up Uni3D [34] to one billion parameters. While
these models are powerful, it is too large to fine-tune them into down-
stream tasks, so their abundant knowledge needs further guidance to
achieve better performance in subsequent tasks. To address this, we
propose a prompt-based method designed to efficiently and dynam-
ically facilitate information across modalities, enhancing the perfor-
mance of VLM-Guided point cloud models.

3 Methodology

In this section, we will delve into the proposed dynamic knowledge
collector and the multimodal prompt generator, as shown in Figure 2.
Then, we will provide a detailed explanation of our pipeline.

3.1 Preliminaries

Typically, VLM-Guided point cloud models employ three encoders
during training. They utilize the text encoder fT (·) and image en-
coder fI(·) from pre-trained vision language models and align the
3D encoder fP (·) with them using text-image-point triplet datasets.

During training, all three encoders are involved, but only the param-
eters in the 3D encoder are updated via cross-modal contrastive loss.
At the inference stage, only two modalities are involved. Given a
point cloud P and target classes list {Ti}Ni=1 with the class name of
N classes, we got normalized features

featText =
fT (T )

|fT (T )| , (1)

and

eP =
fP (P )

|fP (P )| , (2)

so the resulting prediction is

pred = argmax(eP · (featText)T ). (3)

Motivated by the training process involving all three modalities,
we aim to develop a dynamic multimodal prompt tuning method,
which can leverage the potential knowledge in different pre-trained
encoders across modalities to provide extra knowledge and further
align the point cloud encoder and text encoder in few-shot learning
tasks. Our method, Dynamic Multimodal Prompt Tuning (DMMPT),
extracts knowledge from different modalities without editing any pa-
rameters in the pre-trained model and only requires a small amount
of labeled data.

X. Gu et al. / Dynamic Multimodal Prompt Tuning: Boost Few-Shot Learning with VLM-Guided Point Cloud Models 763



3.2 Dynamic Knowledge Collector

A dynamic knowledge collector is introduced to gather information
across encoders of different modalities. It contains two parts, i.e.,
the text part and the image part, which serve as the task-related and
the data-related knowledge collector respectively. The purpose of the
dynamic knowledge collector is to help generate our dynamic multi-
modal prompt in the point branch.

In the text branch, we initialize the text prompt tokens
PromptT ∈ Rn×dt , where dt represents the dimension of the text
embedding, and n denotes the prompt size. This text prompt con-
ducts learnable prompt tuning in the text branch, enabling it to ab-
sorb task-related knowledge. Subsequently, this acquired knowledge
will be integrated into the multimodal prompt generator, guiding the
pre-trained point cloud encoder to specific few-shot learning tasks.
We only require dataset class names as text inputs since the learnable
text prompt tokens PromptT are utilized, eliminating the need to
preprocess the initial text input like PointCLIPV2 [37].

In the image branch, considering the flexibility of images, our pur-
pose is to dynamically leverage image information into the point
cloud branch to enhance the generation of point prompts by its addi-
tional data-related knowledge. To achieve this, we utilize the image
features featI processed by a pre-trained vision encoder fI(·) and
directly use it as a part of inputs for point prompt generation instead
of adding additional learnable tokens like text prompt. In certain few-
shot tasks, the original image paired with the point cloud may not
be feasible. Consequently, we resort to projecting the point cloud
into depth images from various views. We follow the same image
projection method used in PointCLIPV2 [37] to project point cloud,
which is parameter-free and requires point clouds only. The extensive
knowledge provided by the pre-trained vision encoder gives huge
benefits to boost the generation of the dynamic multimodal prompt
with limited training data.

3.3 Dynamic Multimodal Prompt Generation

After collecting task-related knowledge PromptT and dynamic
data-related knowledge featI via our dynamic knowledge collec-
tor, we build a prompt generation module in the point cloud branch
to absorb the rich and dynamic information provided by PromptT

and featI and generate a point cloud prompt.
As for the learnable text prompt source PromptT , we employ

fully connected layers to construct an information bridge fT→P (·)
to bridge text prompt source PromptT into point cloud dimension.
Beyond offering knowledge to the point cloud branch, it also brings
information back to the text branch to help prompt the text encoder.
Thus we build a strong knowledge sharing between modalities and
co-prompt them at the same time.

On the other hand, we choose to directly use image features featI

collected by dynamic knowledge collector. Based on our observation,
we suppose that in the text encoder, the target classes are static so the
input remains the same, making it easier to reach the target semantic
space. However, image inputs are dynamic and complex so simply
using learnable tokens can not provide useful information. Thus, we
choose to use the whole image feature, which contains image infor-
mation as the source to generate a point cloud prompt and feed it to
a fully connected layer bridge fI→P (·) to bring dynamic and rich
knowledge to the point cloud branch. Compared with training learn-
able tokens on the vision encoder, directly applying image features
is parameter-free so it is much more efficient.

The two bridges fT→P (·) and fI→P (·), individually transform

PromptT and featI into the dimension of point cloud embedding.
We concatenate them to initialize Promptmul ∈ R(n+1)×dpoint .
Then we append Promptmul at the end of point cloud embedding
and randomly drop (n + 1) in the point embedding to keep the total
shape the same. By doing so, we are able to enhance the information
communication between modalities and boost the prompt generation.

3.4 Pipeline

Given a dataset of text, point cloud {Ti, Pi}Ni=1, the first thing to do
is to collect dynamic knowledge across modalities for multimodal
prompt generation. In the text branch, we create a list T consisting
of all classes of the dataset and then obtain embedding features

eT = Embedtext(T ). (4)

The text prompt tokens are PromptT ∈ Rn×dt , where dt represents
the dimension of the text embedding, and n denotes the prompt size.
Then, we concatenate eT and our text prompt PromptT , and feed
them into the pre-trained text encoder fT (·) to obtain normalized text
features

featText =
fT ([e

T , P romptT ])

|fT ([eT , P romptT ])| . (5)

In the image branch, we first project point clouds {Pi}Ni=1 into
depth maps {Ii}Ni=1. The final normalized image feature is directly
achieved via a pre-trained vision encoder fI(·).

featImage
i =

fI(Ii)

|fI(Ii)| . (6)

In the point cloud branch, we create two fully connected layers
fT→P (·) and fI→P (·) to bridge text prompt and dynamic image fea-
tures to point cloud branch, so point prompt is

PromptPi = [fT→P (PromptT ), fI→P (feat
Image
i )]. (7)

Pre-trained embedding layer is used to get point cloud embedding

ePi = Embedpoint(Pi). (8)

Finally we get normalized point cloud features

featPoint
i =

fP ([e
P
i , P romptPi ])

|fP ([ePi , P romptPi ])|
. (9)

Training purpose is to minimize cross entropy loss:

Loss = Cross_entropy(featPoint
i · (featText)T , label). (10)

During training stage only parameters in text prompt PromptT and
two prompt bridges fT→P (·), fI→P (·) are updated while parameters
in pre-trained encoders are frozen. At inference stage, the predicted
result is

pred = argmax(featPoint
i · (featText)T ). (11)

The whole algorithm of our method is shown in Algorithm 1.

3.5 Pre-trained Models

We utilize trained parameters from EVA [8] as our pre-trained text
and vision encoders, and from Uni3D [34] as our pre-trained point
cloud embedding and point cloud encoder. For those datasets with-
out paired images, the depth projection of each point cloud is created
following the projection method in PointCLIPV2 [37]; this is a direct
depth projection from the point cloud, so this kind of image projec-
tion does not require extra data, which keeps it a fair comparison.
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Algorithm 1 Dynamic Multimodal Prompt Tuning

Require: Few-shot learning dataset{Ti, Pi}Ni=1, pre-trained en-
coders fT (·), fI(·), fP (·)

Ensure: Trained parameters PromptT , fT→P (·), fI→P (·)
1: Dynamic Knowledge Collector Text Part:

2: featText ← fT ([Embedtext(T ), P romptT ])
3: Dynamic Knowledge Collector Image Part:

4: featImage
i ← fI(Ii)

5: Multimodal Prompt Generator:

6: PromptPi ← [fT→P (PromptT ), fI→P (feat
Image
i )]

7: featPointi ← fP ([Embedpoint(Pi), P romptPi ])
8: Training:

9: Minimize Loss = Cross_entropy(featText · (featPointi )T , label)
10: Inference:

11: Predict result pred = argmax(featPointi · (featText)T )

4 Experiments

In this section, we first introduce benchmark settings for few-shot
learning tasks, including the standard N-way K-shot few-shot learn-
ing setting as well as few-shot learning with K-shot and all class set-
tings. Subsequently, we explain the dataset used and its processing
details. Following this, we present and analyze the outcomes of our
experiments under the two few-shot learning settings respectively.
Furthermore, we conduct t-SNE visualization to do a qualitative anal-
ysis of our method.

4.1 Settings

4.1.1 Few-shot Learning Benchmark Settings

We train and evaluate our model under two different settings. The
first setting is the standard N-way K-shot few-shot learning setting.
We randomly select N classes from the entire set of classes and then
sample K+20 points for each class. The training set (support set) con-
sists of N × K samples, and the test set (query set) consists of the
rest of N × 20 samples. We repeat this process T times to generate
T folds containing different classes. Then the model is trained and
evaluated on each fold separately. Finally, the accuracy is calculated
as the average across all T folds.

In the standard N-way K-shot few-shot learning setting, we
compare our method with fine-tuning related methods, including
OcCo [28], Point-BERT [32], Point-MAE [22], Point-M2AE [35],
Point2vec [1], Point-RAE [16], TAP [29], ReCon [25], PointGPT [3],
and prompt tuning related methods which contain IDPT [33] and
ACT [6].

We also evaluate our model in a more challenging setting with all
classes following the settings of PointCLIP [36]. We call it few-shot
learning with K-shot and all classes. In a dataset with N classes, K
samples are randomly selected from each class, resulting in an N×K
sample training set. We utilize the original test set of the dataset as
our test set. This evaluation setting differs from the standard N way K
shot few-shot setting in that it involves whole classes in the dataset,
making it more challenging.

In few-shot learning with K-shot and all-classes settings, we com-
pare our model with methods mentioned in the same few-shot learn-
ing setting to keep a fair comparison. We use regular point cloud
models including PointNet [23], PointNet++ [24], CurveNet [18] and
VLM-Guided models including SimpleView [9], PointCLIP [36],
PointCLIPV2 [37] as our baseline.
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Figure 3: Some examples from used ModelNet40 and PB T50 RS
split of ScanObjectNN datasets in our experiments. ModelNet40 is
a 40-category synthetic object point cloud that is clean and well-
constructed. ScanObjectNN is a real-world dataset in 15 categories,
which has missing parts and deformations.

4.1.2 Experimental Details

We choose two widely-used benchmark datasets, ModelNet40 [30]
and ScanObjectNN [27], to evaluate our DMMPT method following
the same settings from the compared methods. As shown in Figure 3,
ModelNet40 is a 40-categories dataset with synthetic object point
clouds generated from CAD-generated meshes, which is clean and
well-constructed. ScanObjectNN is a real-world dataset in 15 cate-
gories. Compared with ModelNet40, ScanObjectNN is close to real-
world applications where the scanned point clouds have missing parts
and deformations. We use the PB T50 RS split of ScanObjectNN as
our source dataset for the generation of a few-shot learning dataset.

In the standard N-way K-shot few-shot learning setting, we evalu-
ate our model under ModelNet40. We directly use the ten-fold split
following Yu et al. [32] to make a fair comparison. In the few-shot
learning setting with K-shot and all classes, we train and evaluate our
model on ModelNet40 and ScanObjectNN. The training data is ran-
domly chosen from the original training dataset and we evaluate our
model in the original test dataset.

The hyper-parameters remain the same in each few-shot learning
experiment. The text prompt size in the dynamic knowledge collec-
tor is set to 3, and the final multimodal prompt size is set to 4 in
the multimodal prompt generator. The training epoch is 50 for each
experiment. All experiments were conducted on a single NVIDIA
A800 80 GB.

4.2 Experimental Results

4.2.1 Standard N-way K-shot Few-shot Learning

We conducted standard N-way K-shot few-shot learning on Model-
Net40 dataset, and the results for the settings of n ∈ {5, 10} and
k ∈ {10, 20} are shown in Table 1.

Our dynamic multimodal prompt tuning demonstrates consistent
performance improvements across all experiments under various set-
tings. Compared with other prompt tuning related methods [6, 33]
which focus on a single modality of a single encoder, our dynamic
knowledge collector can obtain additional information across modal-
ities, guiding the pre-trained model to specific few-shot task and
compensating for the lack of training data. In addition, the multi-
modal prompt generator enables information sharing between pre-
trained encoders. As a result, our method achieves state-of-the-
art (SOTA) performance among all prompt-tuning-related methods,

X. Gu et al. / Dynamic Multimodal Prompt Tuning: Boost Few-Shot Learning with VLM-Guided Point Cloud Models 765



Table 1: Comparisons with SOTA methods under Standard N-way K-shot few-shot learning on ModelNet40 benchmark dataset. We report
the average classification accuracy (%) with the standard deviation (%) of 10 independent experiments. #TP (M) denotes trainable parameters
(million) in models in the fine-tuning or prompt-tuning stage.

5 Way 10 Way
10 shot 20 shot 10 shot 20 shot #TP (M)

Fine Tuning
related methods

OcCo+PointNet [28] 89.7±1.9 92.4±1.6 83.9±1.8 89.7±1.5 22.1
Point-BERT [32] 94.6±3.1 96.3±2.7 91.0±5.4 92.7±5.1 22.1
Point-MAE [22] 96.3±2.5 97.8±1.8 92.6±4.1 95.0±3.0 22.1
Point-M2AE [35] 96.8±1.8 98.3±1.4 92.3±4.5 95.0±3.0 15.3
Point2vec [1] 97.0±2.8 98.7±1.2 93.9±4.1 95.8±3.1 -
Point-RAE [16] 97.3±1.6 98.7±1.3 93.3±4.0 95.8±3.0 -
TAP [29] 97.3±1.8 97.8±1.7 93.1±2.6 95.8±1.0 12.6
ReCon [25] 97.3± 1.9 98.9±1.2 93.3±3.9 98.9±1.2 44.3
PointGPT [3] 98.0±1.9 99.0±1.0 94.1±3.3 96.1±2.8 >82.1

Prompt Tuning
related methods

ACT [6] 96.8±2.3 98.0±1.4 93.3±4.0 95.6±2.8 22.1
IDPT [33] 97.3±2.1 97.9±1.1 92.8±4.1 95.5±3.0 1.7

Ours (DMMPT) 97.3±1.9 99.1±0.9 95.1±3.9 96.4±3.3 3.2

even surpassing almost all fine-tuning-related methods under differ-
ent N-Way K-shot settings.

Furthermore, as fine-tuning methods, ReCon and PointGPT re-
main competitive with our proposed DMMPT. However, our model
only has 3.24 million learnable parameters compared with ReCon’s
44.3 million and PointGPT’s 82.1+ million parameters, as indicated
in Table 1. By achieving similar results without the need to edit any
parameters in pre-trained encoders, our method operates with fewer
parameters than fine-tuning related methods, thus offering superior
computational efficiency. These results underscore the efficacy and
versatility of our approach in enhancing model performance.

4.2.2 Few-shot Learning with K-shot and All Classes

K-shot all classes few-shot learning is conducted on ModelNet40
and PB T50 RS split of ScanObjectNN following the methodol-
ogy explained by Zhang et al. [36]. In this setting, the model needs
to identify all N classes in the dataset with limited k × N shots,
k ∈ {4, 8, 16}. To keep the comparison fair, we compare our method
with typical and SOTAmethods that conduct experiments in the same
few-shot learning setting, as shown in Table 2.

Our method, DMMPT, consistently outperforms other methods on
both benchmark datasets. Regular point cloud methods (PointNet,
PointNet++ and CurveNet) struggle to accurately identify all classes
with limited training data, as they lack sufficient information about
both the task and the dataset. However, with the rich knowledge of
pre-trained VLM encoders, we see improvement in VLM-Guided
methods such as PointCLIP and PointCLIPV2. Our method takes
a step further. We collect additional knowledge across modalities
and leverage it to guide the pre-trained point cloud encoder. Conse-
quently, our approach effectively mitigates the constraints imposed
by limited training data.

On ModelNet40 Dataset. Since ModelNet40 [30] is a 40-
category synthetic object point cloud dataset that is clean and well-
constructed. As shown in Table 2, our model surpasses PointCLIPV2
9.6% in 4 shot; this highlights the advantage of our model because
its dynamic multimodal prompt is able to provide information about
the data and the target few-shot task. In the 16 shot experiment, due
to the high quality of the dataset, all methods improve their perfor-
mance. However, our method still has a performance gain of 1.4%,
which means that besides the data-related knowledge that our method
offers, it is able to obtain the task-related knowledge to boost its per-
formance continuously.

On ScanObjectNN Dataset. ScanObjectNN [27] is a real-world
dataset in 15 categories, which has missing parts and deformations.
This makes it challenging for models to obtain enough knowledge in
few-shot learning settings. Compared with other methods in Table 2,
our method remains over 10% performance gain in all the experi-
ments. This offers powerful evidence that our method, DMMPT, has
the ability to offer dynamic cross-modality knowledge to guide the
pre-trained model in real-world applications.

4.2.3 Qualitative Analysis of DMMPT

T-SNE visualization is employed to analyze our dynamic multimodal
prompt tuning method qualitatively. We extract features from the last
layer of the pre-trained point cloud encoder and compare them to the
results obtained by directly feeding the point cloud into the point en-
coder. We choose the standard ModelNet40 dataset, which includes
all 40 classes, in a 16-shot, few-shot setting across all classes to per-
form the t-SNE visualization. The results are shown in Figure 4.

By integrating dynamic multimodal prompts into the point cloud
branch, features become more distinctively separated. For instance,
with the prompt, the "glass box" class is now distinctly separated
from the "night stand" class, and the "bottle" class is clearly sepa-
rated from the "vase" class. It is evident that our method enhances
the performance of the pre-trained point cloud encoder.

5 Ablation Study

To explore the architecture design and tuning settings of our pro-
posed DMMPT strategy, we conducted extensive ablation studies in
a 16-shot, all-classes few-shot learning setting on ModelNet40.

5.1 Evaluating Component Effectiveness in DMMPT

To assess the effectiveness of each component of our model, we per-
form experiments on three distinct parts: the text prompt, the text-
point prompt, and the dynamic multimodal prompt. The text prompt,
referred to as the knowledge collector text part, involves adding static
learnable tokens to the text encoder. Building upon this, the text-point
prompt utilizes the knowledge collected from the text part and feeds
it into the multimodal generator to generate a point cloud prompt for
the point cloud encoder. Lastly, we add the knowledge collector im-
age part and evaluate the whole dynamic multimodal prompt. Results
are shown in Table 3.

X. Gu et al. / Dynamic Multimodal Prompt Tuning: Boost Few-Shot Learning with VLM-Guided Point Cloud Models766



Table 2: Comparisons with typical and SOTA methods for few-shot learning under K-shot all classes on both benchmark datasets. We train and
evaluate our model on ModelNet40 and PB T50 RS split of ScanObjectNN for a fair comparison.

ModelNet40 ScanObjectNN
4 shot 8 shot 16 shot 4 shot 8 shot 16 shot

Regular Methods
PointNet [23] 54.7 63.7 72.2 26.5 35.0 35.8
PointNet++ [24] 72.4 78.0 79.4 40.7 47.7 55.0
CurveNet [18] 69.6 75.6 80.8 26.1 30.6 35.2

VLM-Guided
Methods

SimpleView [9] 58.0 68.7 78.7 29.2 32.4 37.4
PointCLIP [36] 77.1 81.4 87.2 46.1 50.0 55.5
PointCLIPV2 [37] 78.9 84.6 89.6 49.2 53.1 55.6
DMMPT (ours) 88.5 90.1 91.0 61.6 66.0 71.8

Figure 4: The t-SNE visualization of point cloud features in the last layer with or without dynamic multimodal prompt tuning method. We
conduct this visualization on few-shot learning with 16-shot and all 40 classes on ModelNet40. The result shows with our dynamic multimodal
prompt, features become more distinctively separated.

Table 3: Prompt type and accuracy(%) on ModelNet40 under 16 way
all classes few-shot learning setting

text text-point DMMPT

acc 88.7 90.3 91.0

Compared with static text prompt tuning, we observe that multi-
modal prompts, which integrate text information into the generator
of the point cloud prompt, are advantageous. As shown in the Ta-
ble 3, the text-point prompt achieves a performance gain of 1.6%.
This strengthens the importance of the multimodal generator, which
prompts the point cloud encoder and enables information sharing
across modalities. Additionally, the dynamic information provided
by the image side further enhances performance, resulting in an addi-
tional 0.7% performance gain, showing the efficiency of the dynamic
knowledge collector which provides additional dynamic information
from other modalities’ pre-trained encoders.

5.2 Multimodal Prompt Size

Prompt size plays an important role in our method DMMPT, since
it reflects the amount of additional knowledge we provide. We con-
ducted experiments across prompt sizes n ∈ {2, . . . , 11} in the mul-
timodal prompt generator, and the results are illustrated in Figure 5.
We select a prompt size of 4 in our experiments, as it strikes a balance
between performance and parameter efficiency.

Figure 5: Ablation study on prompt size

6 Conclusion

We propose DMMPT, a dynamic multimodal prompt tuning method
for significantly boosting the performance of VLM-Guided point
cloud models. By introducing a dynamic knowledge collector to
obtain additional task-related and data-related knowledge across
modalities and using a multimodal prompt generator to enhance
the information sharing between encoders, we effectively adapt pre-
trained point cloud models to few-shot tasks. Our evaluation extends
beyond the standard N-way K-shot few-shot settings to include a
more challenging setting with a larger number of classes for model
identification. Experiment results consistently demonstrate the out-
standing performance of our model across both few-shot learning set-
tings. Our method excels beyond other prompt-based techniques and
remains highly competitive with full fine-tuning methods, demon-
strating superior computational efficiency.

X. Gu et al. / Dynamic Multimodal Prompt Tuning: Boost Few-Shot Learning with VLM-Guided Point Cloud Models 767



Acknowledgements

This work is supported by the National Natural Science Foundation
of China under Grant No.62206128, the National Key Research and
Development Program of China under Grant No.2023YFB2703900,
the Undergraduate Research Training Program of Nanjing Uni-
versity of Science and Technology (established in 2023) under
Grant No. 2023066001A and Jiangsu Autonomous Driving Tech-
nology Innovation and Application Engineering Research Cen-
ter under Grant No.ZK24-06-02. Our code will be released at
https://github.com/eminentgu/DMMPT.

References

[1] K. Abou Zeid, J. Schult, A. Hermans, and B. Leibe. Point2vec for
self-supervised representation learning on point clouds. ArXiv Preprint,
2023.
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