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Abstract—Monitoring and maintaining the health and perfor-
mance of power electronic converters is of paramount importance
in many applications. The use of digital twins for this purpose
has received significant attention over the last few years. System
parameter identification will be critical for the development of
accurate and reliable digital twins. In this paper, the application
of digital twin technology for monitoring a two-level bidirectional
converter is explored, with a special focus on the selection of
algorithms for parameter identification, and their implemen-
tation. While Particle Swarm Optimization (PSO) has gained
increased attention in power converter applications recently, it
does not necessarily produce the best results. Both simulation and
experimental verification will be used to validate the findings.
The final use of the proposed methods is onboard energy storage
integration for railways. However, the conclusions reached in this
paper can be extended to other applications as well as power
converter topologies.

Index Terms—Digital twin, Interior point method, PSO, Two-
level DC/DC bidirectional converter

I. INTRODUCTION

Power converters are sensitive to failure owing to the
degradation of components, either due to normal aging, man-
ufacturing imperfections, or stressing modes of operation [1].
Enhancing the reliability of power converters is a challenging
task for practically all applications [2]. Monitoring these
systems offers several benefits. It allows early identification
of critical situations to prevent total or partial functional loss
[3]. Also, it enables the monitoring of both passive and active
components, ensuring the overall health and performance
of the converter [4, 5]. Additionally, monitoring techniques
can be easily applied to different converter topologies while
maintaining the same theoretical basis [6].

In recent years, researchers have led the way in developing
innovative methodologies for estimating the health indicators
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of DC-DC converters, as highlighted by [7]. Interest in moni-
toring the condition of power electronics converters has grown
significantly, particularly with the introduction of digital twin
technology. A digital twin functions as a virtual duplicate of
the physical converter, working alongside its physical counter-
part. By continuously receiving data from sensors embedded
in the physical system, the digital twin accurately mirrors real-
world behavior, ensuring precise representation and dynamic
adaptation to changes in the converter’s operational environ-
ment[8]. The integration of digital twin technology into power
systems has experienced extensive exploration. In [9], the ap-
plications of IoT and digital twin for condition monitoring and
diagnosis were explored within electrical power systems. In
[10], there has been notable progress in developing controller-
embeddable probabilistic real-time digital twins customized
for power electronic converter diagnostics. These advance-
ments leverage digital twin concepts to enable more accu-
rate condition monitoring, empowering proactive maintenance
strategies and boosting system reliability. Moreover, these
digital twins offer dynamic real-time monitoring capabilities,
enabling the integration of probabilistic logic for diagnostic
purposes.

Ensuring alignment between the parameters of a digital twin
and its physical counterpart is essential. Several algorithms
have been proposed to identify relevant system parameters
in real time. In [7, 11–14], Particle Swarm Optimization
(PSO) is employed for parameter identification purposes in
power converters. In [15], Bayesian methods are employed for
identification purposes, while [16] utilizes Polynomial Chaos
Expansion (PCE) for similar objectives. The performance of
each method can depend on multiple aspects, including the
dynamic properties of the parameter being identified, sampling
rates and, errors in the measurement/estimation of inputs and
outputs.

This paper is aimed to provide a comprehensive analysis of
parameter identification methods in power converter applica-
tions. Although the paper focuses on a particular case of a two-
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Fig. 1. Two-level bidirectional DC-DC converter

level bidirectional DC/DC converter, the proposed approach is
extendable to any power converter topology. Special focus is
given to Interior Point Method (IPM) and PSO, as they were
found to provide the best results.

The paper is organized as follows: In Section II a mathe-
matical model for a two-level DC-DC bidirectional converter
is derived. In Section III, the cost function is introduced, and
the IPM is compared to PSO and presented as a preference for
parameter identification. Using these steps, a real-time digital
twin is designed. In Section IV the digital twin is validated
through simulation, and experimentally later, in Section V a
down-scaled prototype of the two-level DC-DC bidirectional
converter is used for validation. Finally, conclusions are pre-
sented in Section VI.

II. MATHEMATICAL MODEL OF THE TWO-LEVEL
BIDIRECTIONAL CONVERTER

In this section, the development of a mathematical model
of the two-level bidirectional power converter is addressed.
Fig.1 shows the power converter being considered for the
analysis. It comprises two MOSFETs, an inductor with a series
parasitic resistance, and an output capacitor. A resistive load is
considered. The circuit equations can be seen in (1)-(2), where
D(t) and D′(t) represent the pulse-width modulation (PWM)
signals for the upper and lower MOSFETs respectively; Vin

indicates the input voltage; Vc represents the voltage across the
output capacitor, IL denotes the inductor current, Vf represents
the forward voltage of the MOSFET’s body diode; Lf and Rf

indicate the inductance and resistance of the inductor respec-
tively; Rd signifies the body diode’s conductance resistance;
Rds(on) represents the MOSFET’s conductance resistance.

C
dVc

dt
= IL − Vc

Rload
(1)

L
dIL
dt

= D(Vin −Rds(on)IL)−D′(Vf +RdIL)−RfIL −Vc

(2)
Fig.2 drafts the concept of the digital twin utilized in

this paper. Two Sample and Hold (S&H) blocks are utilized:
one operates at the control sampling frequency for control
purposes, while the other functions at a much higher frequency
dedicated to the digital twin. The outputs of the converter

and digital twin are compared using a cost function, allow-
ing for parameter updates through a parameter identification
algorithm. Additionally, the results are sent to a processing
block for parameter monitoring or fault detection.

As already mentioned, the digital twin generates outputs
that are compared with those of the physical system in each
digital twin time step. To accomplish this, discretization of the
equations of the converter is required. Backward Euler method
was employed with a sampling time of Ts. The outcomes of
this discretization are displayed in (3) and (4). k represents
the current sample, and the next sample is denoted as k + 1.

IL[k + 1] = IL[k] +
Ts

L
(D[k](Vin −Rds(on)IL[k])

−D′[k](Vf +RdIL[k])−RfIL[k]− Vc[k])
(3)

Vc[k + 1] =
Vc[k] + TsIL[k + 1]/C

1 + Ts

CRload

(4)

In the discretization procedure, it is essential to employ a
sufficiently high sampling frequencies. Otherwise aliasing will
occur, making system parameters identification unfeasible.

III. PARAMETER IDENTIFICATION

Parameter identification refers to the process of determining
the values of unknown parameters in a mathematical model
or system based on observed data or experimental measure-
ments[17]. Accurate parameter identification is essential for
properly characterizing the behavior and performance of the
system.

A. Cost Function

The cost function, or objective function, is crucial in param-
eter identification. It measures the difference between observed
data and model predictions using current parameter values.
The main goal of parameter identification is to minimize this
cost function, ensuring the best possible match between the
model and the behavior of the real-world system. During the
iterative process across multiple time steps, the cost function is
computed at each step. The cost function is of the form shown
in 5 and evaluates at every time step the variance between the
system outputs, ILm and Vom, and the corresponding values,
ILd and Vod, provided by the digital twin. Coefficients a1 and
a2 are the weighting factors that determine the influence of
each term of the cost function.

fob =
1

N

N∑
k=1

(
a1 (ILd[k]− ILm[k])

2
+ a2 (Vod[k]− Vom[k])

2
)

(5)

B. Optimization Techniques for Parameter Identification

In this section, two optimization methodologies for param-
eter identification are explored: IPM and PSO. While PSO has
seen broad utilization in power converter applications, IPM is
proposed as an alternative approach. The aim is to develop a



Fig. 2. Digital twin concept for DC/DC converters

methodology for the effective selection and utilization of these
techniques.

1) Interior Point Method : IPM is a deterministic optimiza-
tion algorithm widely utilized for solving large-scale nonlinear
programming problems. It operates by iteratively refining the
solution to approach the optimal point within a feasible region
while satisfying constraints. One advantage of IPM is its
efficiency in handling complex optimization tasks. However,
challenges may be encountered with multimodal functions and
local minima [18, 19]. The update equations of IPM are as
follows:

• Primal Update:

xk+1 = xk + αk∆xk (6)

• Dual Update:

yk+1 = yk + βk∆yk (7)

• Complementarity Gap Update:

µk+1 = µk + γk∆µk (8)

where, xk and yk represent the primal and dual variables re-
spectively at iteration k. ∆xk and ∆yk are the primal and dual
updates computed at each iteration; αk, βk, and γk are step
sizes chosen to ensure convergence; µk is the complementarity
gap, and ∆µk is the update to the complementarity gap for
iteration k [20].

2) Particle Swarm Optimization: PSO is a stochastic
optimization algorithm inspired by the social behavior of
organisms such as bird flocking or fish schooling. In PSO,
a swarm of particles explores the search space to find the
optimal solution by adjusting their positions based on the best
solutions found by themselves and their neighbors [21, 22].
PSO is known for its simplicity, ease of implementation, and
robustness against local optimums. However, more iterations
may be required to converge compared to IPM. The update
equations of PSO are as follows:

• Velocity Update:

vt+1
i = ω ·vti+c1 ·r1 ·(pbestti−xt

i)+c2 ·r2 ·(gbestt−xt
i)

(9)
• Position Update:

xt+1
i = xt

i + vt+1
i (10)

where, vti and xt
i represent the velocity and position of particle

i at iteration t respectively. pbestti denotes the best position
found by particle (personal best) i so far, and gbestt is the
best position found by any particle (global best) in the swarm
at iteration t; constants ω, c1, and c2 are the inertia, cognitive,
and social parameters respectively; r1 and r2 are random
numbers uniformly distributed in the range [0, 1] [23].

Table I offers a comparative analysis between the IPM
and PSO across several criteria. In terms of speed, precision,
convergence, robustness, and scalability, IPM generally beats
PSO, as indicated by the upward arrows (↑) denoting superi-
ority in these aspects. IPM demonstrates faster convergence,
higher precision, and greater robustness compared to PSO.
However, PSO holds an advantage in terms of diversity,
providing higher diversity compared to IPM. Both IPM and
PSO offer global optimization, with IPM featuring multi-start
capabilities, denoted by (*). Furthermore, PSO is relatively
easy to implement. The choice between IPM and PSO ulti-
mately depends on the specific requirements and constraints
of the optimization problem at hand.

IV. SIMULATION RESULTS

In this section, simulations are conducted using Simulink
MATLAB to assess the performance of IPM and PSO. The
process of convergence of PSO with the number of iterations
is shown in Fig.3. A similar analysis was performed for IPM,
as shown in Fig.4. Table II presents the iterative process of
IPM implemented in MATLAB, displaying the values of the
cost function and tolerance at each iteration. Following the
identification of parameters, a comparison between the digital
twin model and the physical converter is undertaken, utilizing
the identified parameters and mathematical model explained



TABLE I
COMPARISON OF IPM AND PSO

Criteria IPM PSO
Speed ⇑ ⇓

Precision ⇑ ⇓
Convergence ⇑ ⇓
Robustness ⇑ ⇓
Scalability ⇑ ⇓

Global Optimization * ⇑
Ease of Implementation ⇑ ⇑

Diversity ⇓ ⇑
* with multi-start

⇑ and ⇓ stand for advantageous and disadvantageous respectively

Fig. 3. PSO convergence vs. number of iterations

in the preceding sections.Fig.5 illustrates the accuracy of the
model in replicating the behavior of the converter, particularly
in response to a step change in duty cycle value.

V. EXPERIMENTAL RESULTS

To validate the digital twin model and assess the per-
formance of various algorithms for parameter identification,
a down-scaled two-level bidirectional converter was imple-
mented. The converter operates at a switching frequency of
20 kHz and a sampling frequency. The control sampling
frequency is also 20 kHz, and signals are sampled at 625 MHz
using the Yokogawa DLM2024 oscilloscope with Yokogawa
current probe 700937. It can also be sampled with lower
frequencies, such as 1 MHz. The output voltage is set to 300
V. Further details can be found in Table IV. Fig.6 displays
a visual representation of the implemented converter. The
experimental setup involved operating the converter in parallel
with its corresponding digital twin model while continuously
updating the parameters. Throughout the experimentation pro-
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Fig. 4. IPM convergence vs. number of iterations
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Fig. 5. Simulation results: physical system vs. digital twin inductor current
and capacitor voltage after a step in duty cycle

TABLE II
INTERIOR POINT ITERATIONS TO FIND OPTIMAL RESULTS

Iter F-count f(x) Optimality Norm of step

0 5 7.844789e-02 1.834e+02
1 19 6.810543e-02 2.271e-01 1.192e-02
2 25 5.048364e-02 1.569e+02 4.419e-01
3 32 3.509114e-02 1.266e+02 1.034e-02
4 38 3.230926e-02 3.336e+02 2.450e-01
5 46 1.748181e-02 1.202e+02 6.960e-02
6 53 7.820915e-03 1.522e+01 1.867e-01
7 58 2.110241e-03 2.814e+00 5.500e-02
8 63 2.077175e-03 1.488e+00 5.346e-03
9 68 2.073470e-03 1.458e+00 4.305e-04
10 73 2.074238e-03 3.265e-02 1.679e-04
11 78 2.074206e-03 4.337e-02 3.192e-04
12 83 2.073536e-03 1.225e-01 1.845e-03
13 88 2.070151e-03 1.703e-01 8.990e-03
14 93 2.061799e-03 4.989e-02 3.304e-02
15 98 2.061813e-03 9.641e-03 4.878e-04



Fig. 6. Two-level bidirectional converter prototype

TABLE III
CONFIGURATION USED FOR IPM AND PSO

PSO IPM
Type Global Type Nonlinear Constrained

Max Iter 100 Max Iter 100
Pop 50 Max Func Eval 1000

TolFun 2× 10−6 ConsTol 3× 10−6

ω 1 Step Size Tol 1× 10−5

δ 0.99 Opt Tol 1× 10−6

Soc Acc 2
Per Acc 2

cess, the accuracy of the digital twin’s output was assessed
and analyzed.

Table IV presents the outcomes obtained from both the
IPM and PSO with configuration mentioned in Table III in
comparison with the measured data of critical parameters.
The analysis demonstrates that, in experimental conditions,
the interior point method exhibits superior accuracy and fewer
faults compared to PSO, particularly when there are noises
present during the sensing of values.

Fig.7 provides a visual representation of the alignment
between the output of the digital twin and the actual behavior
exhibited by the converter.
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TABLE IV
IDENTIFICATION RESULTS WITH MEASUREMENTS

Symbol Measurements IPM PSO
Lf 5 mH 4.99 mH 4.26 mH
Rf 700 mΩ 698 mΩ 623 mΩ
Cf 550 µ F 550 µ F 503 µ F

Rds(on) 125m Ω 126 mΩ 147 mΩ

VI. CONCLUSIONS

In this paper, PSO and IPM have been evaluated for
parameter identification for the digital twin of a two-level
DC/DC power converter. The benefits of IPM including speed
of convergence, precision, and consistency in producing repro-
ducible results with the same input, are highlighted. A digital
twin model is developed to replicate the behavior of a two-
level bidirectional converter using the parameters that were
found by the identification algorithm. Validation of the model
was carried out using a down-scaled prototype. Simulation
and experimental results have been provided to support the
proposed method. Although the paper focuses on a two-level
DC/DC converter, the proposed methodology can be applied
to any power converter topology.

REFERENCES

[1] M. Sujatha and A. K. Parvathy. “Investigation of Reliability of DC–
DC Converters Using Reliability Block Diagram and Markov Chain
Analysis”. In: (2020). Ed. by P. V. Varde, R. V. Prakash, and G. Vinod,
pp. 851–863.

[2] E. Rachev and V. Petrov. “DC link capacitor selection for DC-DC
converters”. In: (2020), pp. 1–5. DOI: 10 . 1109 / BulEF51036 . 2020 .
9326085.

[3] M. Bindi, G. Talluri, G. M. Lozito, A. Luchetta, M. C. Piccirilli, and
F. Grasso. “Smart monitoring of DC-DC converters”. In: 2022 IEEE
International Conference on Environment and Electrical Engineering
and 2022 IEEE Industrial and Commercial Power Systems Europe
(EEEIC / ICPS Europe). 2022, pp. 1–6. DOI: 10 . 1109 / EEEIC /
ICPSEurope54979.2022.9854667.

[4] J. Chen, M.-K. Nguyen, Z. Yao, C. Wang, L. Gao, and G. Hu. “DC-
DC Converters for Transportation Electrification: Topologies, Control,
and Future Challenges”. In: IEEE Electrification Magazine 9.2 (2021),
pp. 10–22. DOI: 10.1109/MELE.2021.3070934.

[5] K. Kahen. “Hybrid power source with a high voltage capacitor and
methods of manufacturing the same”. May 2011. URL: https://patents.
google.com/patent/WO2011010141A3.

[6] M. K. Kazimierczuk. “Method and system for DC to DC power
conversion”. Aug. 2013. URL: https : / / patents . google . com / patent /
US8519691.

[7] Y. Peng, S. Zhao, and H. Wang. “A digital twin based estimation
method for health indicators of dc–dc converters”. In: IEEE Transac-
tions on Power Electronics 36 (2 2021), pp. 2105–2118. DOI: 10.1109/
tpel.2020.3009600.

[8] A. Rasheed, O. San, and T. Kvamsdal. “Digital Twin: Values, Chal-
lenges and Enablers From a Modeling Perspective”. In: IEEE Access
8 (2020), pp. 21980–22012. DOI: 10.1109/ACCESS.2020.2970143.

[9] D. A. Mansour, M. Numair, A. S. Zalhaf, R. Ramadan, M. M. F. Dar-
wish, Q. Huang, M. G. Hussien, and O. Abdel-Rahim. “Applications
of iot and digital twin in electrical power systems: a comprehensive
survey”. In: IET Generation, Transmission Amp; Distribution 17 (20
2023), pp. 4457–4479. DOI: 10.1049/gtd2.12940.

[10] M. Milton, C. D. L. O, H. L. Ginn, and A. Benigni. “Controller-
embeddable probabilistic real-time digital twins for power electronic
converter diagnostics”. In: IEEE Transactions on Power Electronics 35
(9 2020), pp. 9850–9864. DOI: 10.1109/tpel.2020.2971775.



[11] Y. Liu, G. Chen, Y. Liu, L. Mo, and X. Qing. “Condition Monitoring
of Power Electronics Converters Based on Digital Twin”. In: (2021),
pp. 190–195. DOI: 10.1109/ICCS52645.2021.9697303.

[12] M. T. Fard and J. He. “Digital Twin Health Monitoring of Five-Level
ANPC Power Converter based on Estimation of Semiconductor On-
State Resistance”. In: (2023), pp. 1–7. DOI: 10.1109/IAS54024.2023.
10406700.

[13] G. Di Nezio, M. Di Benedetto, A. Lidozzi, and L. Solero. “Digital Twin
based Real-Time Analysis of DC-DC Boost Converters”. In: (2022),
pp. 1–7. DOI: 10.1109/ECCE50734.2022.9947394.

[14] G. Di Nezio, S. Diz, M. Benedetto, A. Lidozzi, E. Peña, and L. Solero.
“Parameters Estimation of a 3-Phase AC-DC Converter based on the
Digital Twin Method”. In: (Oct. 2023), pp. 2937–2944. DOI: 10.1109/
ECCE53617.2023.10362069.

[15] S. Chen, S. Wang, P. Wen, and S. Zhao. “Digital Twin for Degradation
Parameters Identification of DC-DC Converters Based on Bayesian
Optimization”. In: (2021), pp. 1–9. DOI: 10.1109/ICPHM51084.2021.
9486446.

[16] M. Milton, C. D. L. O, H. L. Ginn, and A. Benigni. “Controller-
Embeddable Probabilistic Real-Time Digital Twins for Power Elec-
tronic Converter Diagnostics”. In: IEEE Transactions on Power Elec-
tronics 35.9 (2020), pp. 9850–9864. DOI: 10 . 1109 / TPEL . 2020 .
2971775.

[17] S. Padhee, U. C. Pati, and K. Mahapatra. “Modelling switched mode
DC-DC converter using system identification techniques: A review”.
In: 2016 IEEE Students’ Conference on Electrical, Electronics and
Computer Science (SCEECS). 2016, pp. 1–6. DOI: 10.1109/SCEECS.
2016.7509303.
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